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A Hybrid MPI-OpenMP Strategy to Speedup the
Compression of Big

Next-Generation Sequencing Datasets

Sandino Vargas-Pérez1 and Fahad Saeed∗,1,2

1Department of Computer Science, Western Michigan University
2Department of Electrical and Computer Engineering, Western Michigan University

Abstract

DNA sequencing has moved into the realm of Big Data due to the rapid develop-
ment of high-throughput, low cost Next-Generation Sequencing (NGS) technologies.
Sequential data compression solutions that once were sufficient to efficiently store and
distribute this information are now falling behind. In this paper we introduce phyN-
GSC, a hybrid MPI-OpenMP strategy to speedup the compression of big NGS data
by combining the features of both distributed and shared memory architectures. Our
algorithm balances work-load among processes and threads, alleviates memory latency
by exploiting locality, and accelerates I/O by reducing excessive read/write operations
and inter-node message exchange. To make the algorithm scalable, we introduce a
novel timestamp-based file structure that allows us to write the compressed data in a
distributed and non-deterministic fashion while retaining the capability of reconstruct-
ing the dataset with its original order. Our experimental results show that phyNGSC
achieved compression times for big NGS datasets that were 45% to 98% faster than
NGS-specific sequential compressors with throughputs of up to 3GB/s. Our theoretical
analysis and experimental results suggest strong scalability with some datasets yielding
super-linear speedups and constant efficiency. We were able to compress 1 terabyte of
data in under 8 minutes compared to more than 5 hours taken by NGS-specific compres-
sion algorithms running sequentially. Compared to other parallel solutions, phyNGSC
achieved up to 6x speedups while maintaining a higher compression ratio. The code
for this implementation is available at https://github.com/pcdslab/PHYNGSC.

1 Introduction

Sequencing DNA has become a very fast and low cost process [1] that is pushing Next-
Generation Sequencing (NGS) datasets into the realm of Big Data. Highly specialized com-
pression techniques for NGS have been implemented to tackle the task of loosely preserving
the key elements of these datasets. Such techniques reduce the enormous amount of resources
required to store or transmit these files until further analysis is required.

∗Corresponding author e-mail: fahad.saeed@wmich.edu
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Table 1: Comparing compression time of genomic data for sequential algorithms versus a parallel
algorithm.

Dataset Size

Sequential Parallel

NGS-Specialized General Purpose NGS-Specialized

DSRC Quip GZip DSRC 2

10 MB 0.20secs. 0.35secs. 0.87secs 0.38secs.

100 MB 2.08 secs. 2.42secs. 11.51secs. 0.47 secs.

1 GB 26.36secs. 27.31secs. 91.10secs. 1.99secs.

10 GB 5.56mins. 4.51mins. 23mins. 30.04secs.

100 GB 35.20mins. 42.12mins. 2hrs. 5.39mins.

1 TB 5.66hrs. DNF DNF 1.1hrs.

In order to exploit the characteristics of genomic data, specialized compression solutions
have been proposed. Algorithms such as Quip [2], G-SQZ [3], DSRC [4], KungFQ [5],
SeqDB [6], LW-FQZip [7], LFQC [8], LEON [9], SCALCE [10] and SOLiDzipper [11] take
into account the nature of DNA sequences and use different data compression techniques
to achieve good ratios. But these algorithms process the data sequentially and do not fully
utilize the processing powers of the newest computing resources, such as GPUs or CPU’s
multi-core technologies, to speed up the compression of an increasing amount of genomic
data.

Although several general-purpose parallel compression tools are available [12] [13] [14],
algorithms specialized in NGS datasets are scarce. A parallel algorithm specific to NGS
data, DSRC 2 [15], is a multi-threaded parallel version of DSRC with faster compression
times, variable throughput, and comparable compression ratios to existing solutions. Table
1 compares three algorithms running sequentially versus DSRC 2’s multithreading parallel
strategy. One can see the difference between specialized sequential compression algorithms
(DSRC and QUIP) and the general purpose GZip compressor, which also runs serial code,
versus DSRC 2 specialized parallel methods.

In this paper we present phyNGSC, a hybrid strategy between MPI and OpenMP to
accelerate the compression of big NGS datasets by combining the best features of distributed
and shared memory architectures to balance the load of work among processes, to alleviate
memory latency by exploiting locality, and to accelerate I/O by reducing excessive read/write
operations and inter-node message exchange. Our algorithm introduces a novel timestamp-
based approach which allows concurrent writing of compressed data in a non-deterministic
order and thereby allows us to exploit a high amount of parallelism.

In the following sections we analyze the proposed design of phyNGSC and evaluate the
performance obtained. We discuss the results of running the algorithm for big NGS datasets
with distinct combinations that vary in terms of number of processes and threads per process.
We then compare our solution with other models that use different approaches to achieve
parallel compression.
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1.1 Our Contribution

One of the problems for parallel applications is concurrent reading and writing [16]. The
effects of concurrent memory writing have been extensively studied [17]. However, the specific
issues encountered when performing I/O operations for big data are relatively new in the
field.

A very common way of writing to a file in parallel is to employ dedicated processes to read
and write and use the rest of the processes for computations in a master/slave approach as
shown in Fig. 1a. In these parallel compression schemes, the use of a shared memory buffer
is required in order for the writer to fetch the data. This guarantees a writing order since
only one process is accessing the output file and the data to be written is stored in the shared
memory buffer in an identifiable order. However, using this read/write scheme limits the
scalability of the parallel genomic compression algorithms because the process in charge of
writing has to wait for all of the workers to finish processing the data before it can write to
the output file.

(a) Reading and writing scheme commonly used in
traditional parallel algorithms specific to compression
of NGS datasets.

(b) Reading and writing method used in the proposed
hybrid strategy for compression of NGS data in pa-
rallel using our TOC-W method.

Figure 1: Comparison of the method commonly used to address read and write in parallel algo-
rithms and our proposed method.

3



In order for a parallel compression algorithm to be more scalable, the compressed form
of the data should be writable as soon as its processing is finished. In other words, the
compressed form of the data should be writable in a non-deterministic form (from any of
the processes) while retaining the properties that would allow reconstruction of the original
data. Our proposed phyNGSC hybrid parallel strategy, allows us to write data (in a shared
file space) from different processes as soon as processing completes. In order to overcome the
non-determinism and guarantee an order in the way of writing, we integrated the concept of
time-stamping which we call Timestamp-based Ordering for Concurrent Writing or TOC-
W. Our method uses a global clock and gets a snapshot of the time of completion for the
writing operation to the output file as shown in Fig. 1b. This makes the proposed parallel
strategy highly scalable since it removes the bottleneck of ordered-concurrent writing in a
shared file space. We discuss the methodology in detail in Section 3.

2 Background Information

NGS datasets are commonly structured using the FASTQ format [18]. As shown in Fig. 2,
FASTQ is composed of multiple records stored in plain text. Each record contains four lines:

1. Title line: Starts with the ASCII character ‘@’ followed by a description of the record.

2. DNA line: Contains the DNA sequence read.

3. The third line is represented by the ASCII character ‘+’ which indicates the end of the
DNA sequence read, followed by optional repetition of the title line.

4. Quality score line: Represents the quality value of the DNA sequence read. It uses
ASCII characters from ‘!’ to ‘˜’ (33 to 126 in decimal). Each of the ASCII charac-
ters will represent a probability that the corresponding nucleotide in the DNA line is
incorrect.

Figure 2: FASTQ file structure.

As a proof-of-concept, we will utilize some methods developed for DSRC [4] to underline
the compression portion of our hybrid parallel strategy, since it exhibits superior performance
for sequential solutions [19].
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2.1 Related Research

Hybrid parallel solutions utilizing MPI and OpenMP in high performance computing archi-
tectures have been successfully applied to various problems [20] [21] [22]. In [22] the authors
described a hybrid framework for interleaving I/O with data compression in order to improve
I/O throughput and reduced big scientific data. However, none of these works are specific to
genomic datasets which may require domain-specific knowledge about Omics related data.

Another parallel strategy, based on domain decomposition of the NGS data, was intro-
duced by the authors in [23]. In our preliminary work, we implemented a solution that
offered modest compression ratio, acceleration, and scalability for up to 100GB of genomic
data. The scheme only included a distributed memory model approach and limited optimiza-
tions for I/O operations. Also, the compressed form of the data was written in an orderly
format i.e., process pi had to wait until process pi−1 finished its writing process before it
could start. However, as reported in our paper, super-linear speedups were observed and
high compression throughputs were registered.

3 Proposed Hybrid Strategy For Parallel Compression

For our hybrid parallel implementation we considered an SMP system where a FASTQ file
of size N bytes is partitioned equally among p homogeneous processes, creating a working
region (hereafter refereed to as wr) of size N

p
for each pi, ∀i ∈ N : i from 0 to p− 1. FASTQ

records vary in length, hence pi cannot know if a complete record (containing the 4 lines
explained in the previous section) is present at the start and/or at the end of its wr. For
this reason we use a small overlap between them to guarantee that each pi’s wr contains
complete records. As sketched in Fig. 3, each process identifies the start of the first complete
record at the beginning of its wr by checking the characters until an ‘@’ is encountered and
it is confirmed that it belongs to a title line1. pi will continue fetching records until it reaches
the end of its wr. If it does not have a complete record after reading the last byte, it will
continue through the overlap portion and stop when a full record is found. The overlap is
three times bigger than the maximum length that a short read can be for common FASTQ
files2. This will ensure that pi will finish reading its last record at byte b since p(i+1) started
reading its first complete record at byte b + 1.

Once the wr is correctly defined for each process, they will fetch chunks of R records out
of the FASTQ file and create a threaded region where t number of threads will analyze and
compress the title, DNA, and quality score portion of each fetched record, as shown in lines
7 to 15 of the pseudo-code in Fig. 4. Threaded Region 1 is a “loop worksharing”, which
means that each thread th, ∀h ∈ N : h from 0 to t− 1, will work collectively in solving the k
tasks in the threaded region in a many-to-one relationship i.e., all threads will solve one task
at a time, until all tasks are done. Processes then will prepare temporary memory buffers
(line 17) to store the compression data from threads.

Threaded Region 2 (lines 19-25) will work on the compression of the records. This is a

1The use of ‘@’ sign to identify the start of the title line is ambiguous since the character can also appear
in the quality score line.

2Illumina NextSeq Series Specifications.
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Figure 3: Partition of a FASTQ file among processes into working regions of size N
p bytes each.

pi’s working region ends with an incomplete record and pi+1’s working region starts in the middle
of another record. pi keeps reading beyond its working region until a full record is fetched. pi+1

finds the first complete record at the beginning of its working region.

“sections worksharing” region in which a thread th will be assigned the completion of one
of the k tasks in a one-to-one relationship. In this type of threaded region if the number
of threads is greater than the number of tasks, t− k threads will remain idle. Otherwise, a
thread th will be assigned to an unsolved task until all tasks are complete.

The compressed records will form a subblock which will be copied to a writing buffer wb
of size W (lines 27-41). When wb is full, pi will create a block of compressed data and write it
using a shared file pointer to the output NGSC (Next-Generation Sequencing Compressed)
file. Immediately after pi is done writing, a timestamp will be taken and stored in a time of
completion toc list to be used later on for the TOC-W method (lines 44-48).

When all processes are done fetching and compressing records from their wr, they will
gather all the local toc lists into the root process, generally p0 (line 50). The algorithm will
terminate when p0 builds the TOC-W, creates the footer, and writes it to the NGSC file
(lines 52-56).
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Require: p processes (∀p ≥ 2), t threads per p, FASTQ file of size N
Ensure: NGSC file of size M (0 < M < N) and all p exit correctly

1: procedure phyNGSC(p, t, FASTQ)
2: Initiate MPI environment with p processes
3: pi defines its working region wr of N/p bytes
4: while wr contains records do
5: pi fetches R records from FASTQ file
6:
7: Begin Threaded Region 1: t threads and k tasks
8: OMP Loop Worksharing
9: for all records fetched do
10: k0: ALL threads locate records’ offset
11: k1: ALL threads analyze records’ title
12: k2: ALL threads analyze records’ DNA
13: k3: ALL threads analyze records’ Quality
14: end for
15: End Threaded Region 1
16:
17: pi prepares environment for compression
18:
19: Begin Threaded Region 2: t threads and k tasks
20: OMP Sections Worksharing
21: k0: ONE thread compresses EACH record’s title
22: k1: ONE thread compresses EACH record’s DNA
23: k2: ONE thread compresses EACH record’s Quality
24: k3: ONE thread compresses subblock’s header
25: End Threaded Region 2
26:
27: pi check available space in writing buffer wb of size W
28:
29: if wb is full then
30: pi packs subblocks in wb into a block
31: pi writes wb to NGSC file
32: pi adds a timestamp to toc list
33: end if
34:
35: Begin Threaded Region 3: t threads and k tasks
36: OMP Sections Worksharing
37: k0: ONE thread copies compressed title to wb
38: k1: ONE thread copies compressed DNA to wb
39: k2: ONE thread copies compressed Quality to wb
40: k3: ONE thread copies compressed header to wb
41: End Threaded Region 3
42: end while
43:
44: if wb is not empty then
45: pi packs subblocks in wb into a block
46: pi writes wb to NGSC file
47: pi adds a timestamp to toc list
48: end if
49:
50: pi calls mpi gather( pi’s toc list, p0 gathers )
51:
52: if pi’s rank = 0 then
53: p0 gathers toc lists
54: p0 builds TOC-W
55: p0 writes TOC-W as footer in NGSC file
56: end if
57:
58: pi calls mpi finalize()
59: end procedure

Figure 4: Pseudo-code for phyNGSC compression using p processes and t threads per process and
a FASTQ file.
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3.1 TOC-W: Timestamp-based Ordering for Concurrent Writing

Dependencies of a parallel algorithm on previous stages is detrimental to the scalability of
a high performance system. Previous attempts to formulate a parallel algorithm for big
datasets have been affected by these dependencies. In order for an algorithm to be scalable
for big data and/or increasing number of processes, it is required that the algorithm write
its results as soon as they are available. However, this is not possible with trivial techniques.

The use of shared file pointers, a feature introduced in MPI-2 [24] and the capabilities
of parallel file systems, guarantee that when a process pi wants to write to the output file it
will do so in a non-deterministic fashion i.e., the process that updates the shared file pointer
first will write first. This will provide faster writing phases since processes do not have to
wait for each other to call a collective write function. Several algorithms have been evaluated
in [25] using shared file pointers, showing an increase in writing performance while avoiding
dependencies that the file systems have on file locks. Although one can implement the shared
file pointers without the file system support as shown in [26]. However, non-determinism
poses a considerable challenge at the time of decompression because the algorithm will not
know which process wrote a particular block of compressed data and figuring this out will
take a significant amount of time and substantial synchronization efforts.

To solve this problem we propose TOC-W, a method based on timestamps that guar-
antees ordering of the data block for concurrent writing on distributed applications. The
MVAPICH2 implementation that we use in our strategy guarantees a global, synchronized
time for all MPI processes executing a program. Although a clock is local to the node where
the process that calls the timer resides, a boolean value “true” in MPI WTIME IS GLOBAL will
imply that all nodes participating in the parallel execution of the program have the same
synchronized time in their clocks. This is what we call a global clock. The synchronization
of the clocks does not produce a significant computation nor communication overhead since
the clocks are synchronized once when MPI Init is called, for the rest of the application’s
execution time. The effects of time drift among synchronized clocks and techniques used to
keep clocks in sync are studied in [27] and [28] which are taken into account by the MPI
implementation use for our proposed strategy. The timestamps for the toc are obtained with
an MPI call to MPI Wtime by each pi, which returns a number of seconds (not clock ticks)
that represent elapsed wall-clock time, with a precision of 1 millionth of a second3.

In Fig. 5a we can see that a NGSC file is built by each pi writing blocks of equal lengths
in arbitrary order. After a pi finishes writing a block it takes a timestamp indicating the
time of completion or toc of that writing operation. The toc is the ordering element of the
method; it is used to create an ascending sorted list of the timestamps of all processes as
in Fig. 5b. This list is then used to assign each process to the corresponding offsets of the
blocks it owns within the NGSC file. This information is stored in the footer of the file.

In order to ensure correct timestamps and ordering, the following 2 conditions need to
be satisfied:

1. A global clock : This will guarantee that each pi will have synchronized clocks and time
will be global for all processes. The MVAPICH2 implementation of MPI provides the
boolean attribute MPI WTIME IS GLOBAL that indicates whether time is synchronized

3For processors Intel EM64T Xeon E5 2.6 GHz, 8-core.
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(a) Diagram showing concurrent writing by each pi.

(b) TOC-W is build using list of timestamps.

Figure 5: Diagram showing a global, synchronized clock and equal amount of compressed data
written to NGSC file for correct TOC-W in distributed applications.

across all processes.

2. Equal amount of data to be written: Each pi needs to write an equal amount of com-
pressed data to avoid incorrect ordering. Consider the scenario where pi and pj request
the shared file pointer by calling MPI File write shared at the same time. If there
are not hardware or network issues, each process will correctly take a timestamp that
will indicate which wrote the data first. Network or memory congestion in distributed
systems can cause incorrect ordering of the blocks of compressed data. In order to
deal with this issue, we introduce a header for each block in the NGSC file marked
with a unique signature identifying the process who wrote it. The combination of both
timestamps and unique signature always allows correct ordering and identification of
the data.

Fig. 5a shows the scenario when both conditions are satisfied: A synchronized clock
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Figure 6: MPI+OpenMP hybrid approach using a masteronly model.

among processes and equal amount of data to be written. In the event that multiple pro-
cesses request an update to the shared file pointer, the update operation will be serialized
internally by MPI in a nondeterministic fashion, such that race conditions will be avoided [24]
. The time taken by each process waiting to update the shared file pointer, although small,
guarantees that at the end of the writing process there is a difference in the time of com-
pletion of each writing operation. This is illustrated with process p0 and p2 in Fig. 5a. The
operation of checking the block’s signature and offsets using MPI requires minimal memory
or time-resources [29]. The synchronization of MPI processes and timestamps required for
our proposed strategy are discussed below.

3.2 MPI+OpenMP Hybrid Scheme

For our hybrid strategy we implemented the masteronly model described in [30]. In this
model, an MPI process pi is mapped to a single core in a typical multi-socket, multi-core
SMP node n [31]. When an OpenMP parallel region4 is encountered, the number of threads
requested will be mapped to the idle cores of node n. The process pi will become the thread
master of the threads inside this threaded region, such that if t threads are requested, t− 1
idle cores will be mapped to an OpenMP thread plus the process pi (now functioning as a
thread master). The model is shown in Fig. 6.

The masteronly model allows MPI communication (send/receive, read/write, broadcast,
and so on) only outside of OpenMP parallel regions. This is advantageous for our design
because we want to use OpenMP threads to accelerate computations only, since MPI is
optimized for inter-node communication, especially for I/O. Synchronization is also reduced
using this schema, thus minimum effort is required to guarantee thread safety.

3.3 NGSC File Structure

The proposed NGSC file is composed of many blocks of equal length W and a footer which
contains information to be used for decompression such as the TOC-W and the working

4In this paper an OpenMP parallel region is referred to as threaded region.
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region offsets in the FASTQ file. Each block contains a header with information about
itself and a signature that identifies the process that wrote it. Blocks are formed by many
subblocks such that the sum of bytes for all the subblocks in the particular block is equal to
W . This implies that a block will have complete and incomplete subblocks.

A subblock will have a header and the compressed title, DNA and quality lines of the R
records fetched from that process particular working region.

3.4 Analysis of Computation and Communication Costs

Sequential compression algorithms generally have a linear asymptotic growth of O(N), where
N is the number of bytes to be compressed. We will refer to N as the problem size given in
bytes. In our hybrid parallel solution, each process pi will process an approximately equal
amount of bytes w = N

p
, let’s call w the work load and f the percentage of w that cannot be

processed within a threaded region using t threads. With Amdahl’s law we define Tt as the
factor in which the processing of w increases, i.e., by adding t threads per p, the amount of
work required to compressed N bytes will be in the order of O( N

pTt
).

3.4.1 Communication Costs

As every parallel implementation incurs in some amount of communication overhead [32],
we try to keep our overhead cost To small by reducing the communication rounds to only 3
phases; reading the FASTQ file, writing the compressed data to the NGSC file, and gathering
timestamps for our TOC-W method (Fig. 7). We assume that the time spent by process
pi reading or writing to an I/O disk d does not depend on the distance between pi and d,
but on the amount of bytes to be read/written. The same assumption will be considered for
inter-node communication between a process pi in node ni and pj in node nj.

Reading Phase Let us assume l is the size in bytes of a chunk of data that a process pi
will read out of its working region wr = N

p
. Since each pi will use an explicit offset to read

non-collectively the bytes within its wr, the communication overhead will have a complexity
of O(N

lp
).

Writing Phase Processes can write concurrently using a shared file pointer. When pi
initiates a writing operation of W bytes, it requests an update to the pointer, which reserves
W bytes and points to the next available byte to be used by another process. Concurrent
access to the shared file pointer is serialized in a non-deterministic way, but this degree of
serialization is negligible [26] compared to collective ordered access which incurs in some
synchronization overhead. With these assumptions we calculate the overhead incurred in
the writing phase by defining r as the compression ratio of the strategy given by r = N

M
,

where M is the size of the compressed output file NGSC. W , as mentioned above, is the
size of a compressed block in bytes that every process will write as they become available.
Approximately M

W
blocks will be written by p processes concurrently using the shared file

pointer, hence the complexity for this phase will be represented by O( N
rWp

).
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Figure 7: Sketch of the work flow of phyNGSC.
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Timestamp Gathering Phase The gathering of timestamps is done once per program
execution in O(log(p+ g)), where g is the number of timestamps collected by each pi. g will
vary depending on the value of p, N and the amount of writing operations performed.

3.4.2 Time Complexity

The total time complexity of phyNGSC, given by TP = Tc + To, where Tc represents the
computational costs and To the overhead costs

Tc = O

(
N

pTt

)
. (1)

To = O

(
N

lp

)
+O

(
N

rWp

)
+O

(
log(p + g)

)
. (2)

TP ≈ O

(
N

p

(
1

Tt

+
1

l
+

1

rW

))
+O

(
log(p + g)

)
. (3)

3.4.3 Scalability

Calculating the speedup S with increasing number of processes, threads, and data size will
tell us if our strategy has good scalability. We will use the definitions and assumptions
of [33]: S = TS

TP
, where TS is the sequential execution time of DSRC, ‘our proof-of-concept’

algorithm. Substituting TP with equation (3) we will have

S =
N

N
p

( 1
Tt

+ 1
l

+ 1
rW

) + log(p + g)
. (4)

Let C = 1
Tt

+ 1
l

+ 1
rW

and eliminate log(p + g) since its value is very small, then we can
reduce equation (4) to

S =
N
NC
p

=
p

C
. (5)

We know that the part 1
l

+ 1
rW

of C is a constant parameter, hence we can re-write
equation (5) to have

S ≈ pTt. (6)

4 Implementation Results

To test our implementation we used SDSC Gordon5, a high performance compute and I/O
cluster of the Extreme Science and Engineering Discovery Environment (XSEDE). Gordon

5https://portal.xsede.org/sdsc-gordon
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has 1024 compute nodes, each with two 8-core 2.6 GHz Intel EM64T Xeon E5 (Sandy
Bridge) processors and 64 GB of DDR3-1333 memory. The network topology is a 4x4x4
3D torus with adjacent switches connected by three 4x QDR InfiniBand links (120 Gb/s).
The cluster implements TORQUE resource manager and has Lustre file system. C++ was
used to code our implementation using the OpenMP library to provide thread support and
the MVAPICH2 implementation of MPI (version 1.9). The Intel compiler was used for
compilation.

To run our hybrid model, the system maps each MPI process and each OpenMP thread
to a node’s core (Fig. 6), so if 4 MPI processes are requested with 16 threads per process
to be run on 4 nodes, then the system will have 1 core in each of the 4 nodes dedicated to
MPI processes. Since each node in the SDSC Gordon cluster has 16 cores, the remaining 15
cores in each node will sleep until an OpenMP parallel region is created. At this moment
the MPI processes will become the master thread and join the other 15 threads (mapped to
the idle cores on the same node), for a total of 16 threads, to satisfy the amount requested.
To keep the nodes at a good performance it is recommended that the value of MPI processes
per node × number of threads per process do not exceed the total number of cores per node.

The NGS datasets for the experiment were obtained from the 1000 Genomes Project6 and
are shown in Table 2. In this table the column “Renamed” is used to identify the datasets
with relation to their sizes (rounded to the closest power of 10). For clarity, the “Renamed”
identification will be used throughout the rest of this paper instead of the original datasets’
IDs.

Table 2: Datasets used for the test. The fastq file SRR622457 was append three times to itself.

IDs Organism Platform Records Size(GB) Renamed

ERR005195 Homo sapiens ILLUMINA 76,167 0.0093 10MB

ERR229788 Homo sapiens ILLUMINA 889,789 0.113 100MB

ERR009075 Homo sapiens ILLUMINA 8,261,260 1.01 1GB

ERR792488 Homo sapiens — 90,441,151 15 10GB

SRR622457 Homo sapiens ILLUMINA 478,941,257 107 100GB

SRR622457 Homo sapiens ILLUMINA 1,436,823,773 1,106 1TB

4.1 Performance Evaluation

We executed the experiments using each of the datasets of Table 2 as input for phyNGSC.
The algorithm ran with a set of 2, 4, 8, 16, 32 and 647 processes, each mapped to a core in
an individual node. Each set of processes used from 1 to 8 threads. All the experiments were
repeated several times and the average execution time, max physical memory, and resulting
NGSC file size were collected. DSRC version 1 (sequential) and version 2 (multi-threaded)
as well as MPIBZIP2 were also tested for comparison with our algorithm.

As can be seen in Fig. 8, the average compression time, measured as the wallclock time
elapsed executing code between MPI initialization and finalization, decreases sharply as more

6http://www.1000genomes.org
7SDSC Gordon’s policy only allows a maximum of 64 nodes to be scheduled for use
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Figure 8: Compression time in seconds for phyNGSC with increasing number of processes and
different dataset sizes using 1, 3, 5 and 7 threads per process.

processes are added with different datasets. The compression time also improved as more
threads were added. These results are in accordance with our theoretical analysis, i.e., the
asymptotic growth of the parallel compression time remained close to that represented by TP

in equation (3). Overall the implementation demonstrated a better performance when the
number of threads were kept between 3 and 7. Fig. 8 also shows that the compression time
starts deteriorating as more processes are added to compressed datasets 10MB and 100MB.
Dataset 10MB is smaller than the size of l (3.4.1), set to be 8 megabytes, which causes the
communication overhead of the reading phase to be greater than the computations done
while compressing. Our strategy was designed to take advantage of coarse-grained task and
data parallelism which is very efficient when working with large amounts of data [34].

Table 3: Percentage decrease in compression time for phyNGSC compared to DSRC’s sequential
compression time.

Datasets
Number of Processes

2 4 8 16 32 64

10MB 53.56% 46.22% 62.73% 59.35% 21.08% 77.62%

100MB 59.13% 81.49% 86.06% 91.85% 84.90% 79.81%

1GB 73.37% 86.49% 93.70% 96.21% 97.88% 97.99%

10GB 76.73% 87.96% 94.10% 97.01% 98.24% 98.59%

100GB 68.74% 83.71% 93.77% 96.52% 97.73% 96.61%

1TB 46.70% 78.06% 88.60% 87.53% 96.94% 97.38%
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Furthermore, Table 3 shows the percentage decrease in compression time obtained by our
solution. A more than 90% decrease in compression time was obtained by using 32 and 64
processes to compress all of the bigger datasets. Also a reduction in time of more than 75%
was obtained when we used 4 processes to compress datasets 100MB to 1TB. These results
suggest that by doubling the amount of processes and threads the compression time changed
by a decreasing percentage of approximately T

p
− 1

pT
, in accordance with our theoretical

analysis of the computation cost Tc.
Table 4 shows the fastest times obtained by phyNGSC compressing different dataset

sizes. Using 64 processes our hybrid model compressed 1 terabyte of data in 8.91 minutes,
whereas the sequential DSRC took 5.66 hours.

Table 4: Total average of the best time taken by phyNGSC to compress different datasets.

Datasets DSRC DSRC 2
Number of Processes

2 4 8 16 32 64

10MB 0.20s. 0.25s. 0.09s. 0.11s. 0.07s. 0.08s. 0.16s. 0.36s.

100MB 2.08s. 0.36s. 0.85s. 0.39s. 0.29s. 0.17s. 0.31s. 0.42s.

1GB 26.36s. 1.99s. 7.02s. 3.56s. 1.66s. 1.00s. 0.56s. 0.53s.

10GB 5.56m. 30.04s. 1.29m. 40.19s. 19.69s. 9.99s. 5.88s. 4.71s.

100GB 35.37m. 5.39m. 11.06m. 5.76m. 2.20m. 1.23m. 0.80m. 0.51m.

1TB 5.66h. 55.63m. 3.02h. 1.24h. 38.69m. 42.34m. 10.37m. 8.91m.

Fig. 9 shows phyNGSC speedup ratio. It shows that super-linear speedups were obtained
when compressing the datasets using up to 32 processes and 1, 3, 5, and 7 threads per process,
respectively. This behavior is due to the fact that adding threads in the same node allows
faster access to a global memory. In addition, the use of their accumulated cache allows
the amount of data processed at a given time to fit into the new cache size, reducing the
latencies incurred in memory access. This cache effect is studied in [35].
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Figure 9: Speedup ratio S for phyNGSC with increasing number of processes and different dataset
sizes using 1, 3, 5 and 7 threads per process.
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Figure 10: Maximum memory usage for phyNGSC with increasing number of processes and
different amount of threads per process. (a) 1GB. (b) 10GB. (c) 100GB. (d) 1TB.

Fig. 10 presents the maximum memory consumed by our implementation. We can observe
that for datasets 10GB or bigger the memory usage decreases as more processes are added.
For smaller datasets, such as those of 1GB, the memory consumption remained lower than
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Table 5: Total number of timestamps collected by phyNGSC when compressing datasets of dif-
ferent sizes and increasing number of processes.

Datasets
Number of Processes

2 4 8 16 32 64

10MB
2 4 8 16 32 64

100MB
2 4 8 16 32 64

1GB
18 20 22 28 32 64

10GB
252 254 254 258 262 266

100GB
2,225 2,227 2,229 2,234 2,244 2,256

1TB
20,825 20,826 20,830 20,832 20,842 20,860

Table 6: Compression throughput (GB/s) of phyNGSC for different dataset sizes and increasing
number of processes using 7 threads per process.

Datasets
Number of Processes

2 4 8 16 32 64

10MB 0.10 0.08 0.12 0.11 0.06 0.03

100MB 0.12 0.27 0.36 0.62 0.34 0.25

1GB 0.14 0.28 0.60 0.99 1.77 1.87

10GB 0.18 0.35 0.72 1.42 2.41 3.00

100GB 0.16 0.31 0.81 1.44 2.21 1.48

1TB 0.09 0.23 0.43 0.40 1.62 1.88

50 Megabytes per process. Table 5 contains the total number of timestamps collected by
processes. Timestamps can also represent a writing operation to the NGSC file and we
can see in this table that for smaller datasets, more writing operations are required when
using high number of processes, since each pi will write blocks of size less than W . On the
other hand, with bigger datasets processes can pack and write full blocks and reduce writing
operations efficiently.

We evaluated the compression throughput of phyNGSC to have a measure of the overall
compression performance. Throughput will be defined as the amount of data being processed
per second, expressed in gigabytes per second (GB/s). Table 6 shows the compression
throughput results. Among all the datasets 10GB has the maximum throughput of 3GB/s
when compressed with 64 processes, which correlates with its super-linear speedup. 32 to 64
process were used to achieve the best compression throughput for datasets 100GB and 1TB
of 2.21GB/s - 1.48GB/s and 1.62GB/s - 1.88GB/s, respectively.

4.2 Comparison with Existing Parallel Compression Algorithms

We mentioned in Section 1 the existence of several parallel compression algorithms, such
as pigz, PBZIP2, MPIBZIP2, and DSRC 2 (multi-threaded). We selected DSRC 2 and
MPIBZIP2 to compare against our implementation. Fig. 11 shows the compression time
for DSRC 2 using 32 threads, phyNGSC and MPIBZIP2 using 2, 4, 8, 16, 32 and 64 pro-
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cesses each. We can see how phyNGSC outperforms DSRC 2 after increasing the number of
processes to more than 8. Our implementation did better than MPIBZIP2 using the same
amount of processes. MPIBZIP2 did not finish the compression of 1TB using 2 processes
after it exceeded a 24 hour execution time limit. Fig. 12 shows the compression ratio algo-
rithms. Our implementation yielded compression ratios that remained within the range of
4.3 and 7.9.
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Figure 11: Compression time for different NGS datasets for DSRC sequential, DSRC multi-
threaded, and phyNGSC and MPIBZIP2 with 2, 4, 8, 16, and 32 processes.

5 Conclusion and Discussion

In this paper we presented a hybrid parallel strategy that utilizes distributed-memory and
shared-memory architectures for the compression of big NGS datasets. In order to exploit
extreme forms of parallelism we introduce the concept of Timestamp-based Ordering for
Concurrent Writing (TOC-W) of the compressed form of the data. TOC-W presented
efficient methods to write the compressed form of the data in a non-deterministic manner
while keeping the amount of information required to reconstruct it back to its original state to
the minimum. This led to the development of a highly scalable parallel algorithm optimized
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Figure 12: Compression Ratio (y:1) of the resulting NGSC file for DSRC sequential, DSRC
multi-threaded, phyNGSC and MPIBZIP2. A higher ratio means a better compression.

for Symmetric Multiprocessing (SMP) clusters, which exhibited a tremendous reduction in
compression time and faster speedups for most of the datasets when compared to traditional
methods of dividing the data and compressing it on individual machines. To the best of
our knowledge this is the first attempt to exploit HPC architectures for non-deterministic
ordered compression of NGS data.

Theoretical analysis of our hybrid strategy suggested O( 1
pTt

) reduction in the compression
time and this was verified by our experimental results. However, we noticed that Amdahl’s
law [36] limited the theoretical linear speedups after adding 64 processes. As was observed
with 1TB dataset (Table 4), 32 processes yielded a compression time of approximately 10
minutes and doubling the amount of processes, only produced a 20% reduction in the com-
pression time. Due to the coarse-grained design of our parallel hybrid strategy the smaller
datasets (10MB and 100MB) did not benefit as much when more processes were added.

A number of research problems remain open and the techniques presented in this paper
suggest new lines of inquiry that can be pursued. For the immediate future, we plan to
develop a high-performance decompression strategy by utilizing the novel data structure
presented in this paper.
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