
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Parallel Computing and Data Science Lab
Technical Reports Computer Science

Fall 2017

Scalable Data Structure to Compress Next-Generation Sequencing Scalable Data Structure to Compress Next-Generation Sequencing

Files and its Application to Compressive Genomics Files and its Application to Compressive Genomics

Sandino Vargas-Perez
WMU, sandinonarciso.vargasperez@wmich.edu

Fahad Saeed
Western Michigan University, fahadsaeed11@gmail.com

Follow this and additional works at: https://scholarworks.wmich.edu/pcds_reports

 Part of the Bioinformatics Commons, Computational Engineering Commons, and the Data Storage

Systems Commons

WMU ScholarWorks Citation WMU ScholarWorks Citation
Vargas-Perez, Sandino and Saeed, Fahad, "Scalable Data Structure to Compress Next-Generation
Sequencing Files and its Application to Compressive Genomics" (2017). Parallel Computing and Data
Science Lab Technical Reports. 10.
https://scholarworks.wmich.edu/pcds_reports/10

This Technical Report is brought to you for free and open
access by the Computer Science at ScholarWorks at
WMU. It has been accepted for inclusion in Parallel
Computing and Data Science Lab Technical Reports by
an authorized administrator of ScholarWorks at WMU.
For more information, please contact wmu-
scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/pcds_reports
https://scholarworks.wmich.edu/pcds_reports
https://scholarworks.wmich.edu/cs
https://scholarworks.wmich.edu/pcds_reports?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/311?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/pcds_reports/10?utm_source=scholarworks.wmich.edu%2Fpcds_reports%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

Scalable Data Structure to Compress
Next-Generation Sequencing Files and its Application to

Compressive Genomics

Sandino Vargas-Pérez1 and Fahad Saeed∗,1,2

1Department of Computer Science, Western Michigan University
2Department of Electrical and Computer Engineering, Western Michigan University

Abstract

It is now possible to compress and decompress large-scale Next-Generation Se-
quencing files taking advantage of high-performance computing techniques. To this
end, we have recently introduced a scalable hybrid parallel algorithm, called phyN-
GSC, which allows fast compression as well as decompression of big FASTQ datasets
using distributed and shared memory programming models via MPI and OpenMP. In
this paper we present the design and implementation of a novel parallel data structure
which lessens the dependency on decompression and facilitates the handling of DNA
sequences in their compressed state using fine-grained decompression in a technique
that is identified as in compresso data processing. Using our data structure compres-
sion and decompression throughputs of up to 8.71 GB/s and 10.12 GB/s were observed.
Our proposed structure and methodology brings us one step closer to compressive ge-
nomics and sublinear analysis of big NGS datasets. The code for this implementation
is available at https://github.com/pcdslab/PHYNGSD

1 Introduction

With current developments in computational technologies and the increase in communication
and information sharing using the Internet, as well as interdisciplinary scientific research and
collaboration, massive amounts of data that need to be stored, accessed, distributed, and
processed in a timely manner are created. The biological sciences in particular and large-scale
studies such as the Human Genome Project [1] [2] and the 1000 Genomes Project1, alone
are responsible for generating petabytes of raw information [3]. Considering the advances
in Next-Generation Sequencing (NGS) technologies, the necessity for computing techniques
able to handle large-scale genomic information becomes apparent.

Compression and decompression algorithms have become essential tools for storing and
distributing large-scale genomic files generated by NGS machines. The use of general purpose
compression algorithms, such as gzip, is more widespread than those specialized for NGS
data. Some algorithms have been re-designed to efficiently use the computational powers of

∗Corresponding author e-mail: fahad.saeed@wmich.edu
1http://www.internationalgenome.org, The International Genome Sample Resource

1

High Performance Computing (HPC) and parallel programing models and can achieve mod-
est compression speeds, but their scalability deteriorates as more computational resources
are used.

Furthermore, after the process of compression, the data file needs to be decompressed in
order to use its content, bringing us back to the issue of handling huge datasets with limited
memory resources. A few NGS-specialized compression algorithms offer functionalities like
retrieving records [4] [5] from the compressed dataset, but they do not allow the manipulation
of data in its compressed form. Hence, better compressive genomic techniques that allow
sublinear analysis of the data are required.

In the following sections of this paper we discuss the data structure of the resulting
compressed file, analyze the design of phyNGSC [6] for decompression, and offer a discussion
on compressed data manipulation to lessen the dependency on decompression. We evaluate
the performance of phyNGSC, presenting comparisons against existing sequential and parallel
compression solutions.

2 Background Information

The authors presented a hybrid parallel solution named phyNGSC [6] for the compression
of NGS datasets utilizing MPI+OpenMP. In depth analysis of the compression portion of
the algorithm was presented. Scalability was maintained by allowing the processes to write
the compressed data as soon as it was ready to be written using a shared file pointer and a
non-deterministic way of writing. Using a timestamp technique designed for the algorithm
and named Timestamp-based Ordering for Concurrent Writing or TOC-W, the order of
the written compressed data can be guaranteed. This makes the proposed parallel strategy
highly scalable since it removes the bottleneck of ordered-concurrent writing in a shared
file space. In this paper we discuss the strategy for decompression and the resulting data
structure of the compressed file named NGSC, as well as the ability to manipulate data in
its compressed form.

General purpose compression algorithms structure the data in blocks of compressed in-
formation [7] [8] [9], ranging from 100 and 900 kB in size for BZIP2 and its parallel derivate.
NGS-specialized algorithms, such as DSRC [4] and DSRC2 [5], use a richer structure, which
allows structural metadata2 to be stored together with the actual compressed information.
These structures have the ability of achieving better compression ratios and allow for the
access of data in its compressed form.

Tools designed for the processing of FASTQ files that are able to work with compressed
files are available. The generally used gzip compressor is the preferred format for tools like
fqtools [10], which allows viewing FASTQ files, counting sequence reads, converting between
FASTQ and FASTA formats, validating files, trimming sequences, and so on.

2Structural metadata refers to information about the location and composition of the compressed data
within the file.

2

Figure 1: Data structure for the Next-Generation Sequence Compressed (NGSC) file.

3 NGSC File Structure

The use of non-deterministic writing creates the opportunity to design a new data structure
to organize the compressed information, referred to as NGS Compressed (NGSC) file, shown
in Fig. 1. The compressed data is organized in the content region into subblocks, which
are grouped together to form blocks of equal size, 8 MiB3 each. Structural metadata is
organized into both a bit-packed footer (footer region) and bit-packed headers for each
compressed subblock. The NGSC file structure facilitates the handling of DNA sequences in
their compressed state by using fine-grained decompression in a technique that is identified
as in compresso data processing.

3.1 Footer Region

The content of the footer region is bit-packed into a compact, easy to retrieve data structure.
The last 2 bytes of the NGSC file represent the length in bytes of the footer region and it is
used to exactly calculate its starting position within the compressed file. Table 1 shows the
fields and number of bits used to encode them.

In order to succinctly bit-pack this information, we use 6 fields (BEPS, BEFS, BEBS,
BESS, BELB, and LBES) to indicate the amount of bits used to encode the 6 major fields
(PS, FS, BS, SS, CBO, and LBS). These fields are then used to bit-pack the information
about the blocks in the content region using the subfields SBC, BCSS, and SBL. These first
6 fields will help to keep the footer size growth proportionally to the size of the FASTQ file,
i.e., fewer bits will be required for smaller datasets compared to bigger datasets.

For the first 6 fields we always use 26 bits:

• BEPS, which represents the number of bits that are going to be used to encode the

38 MiB or mebibyte = 8×1024×1024 bytes

3

Table 1: Bit-packed footer region structure.

Field # of bits Description

BEPS 4 Bits Encoding Processes Size

BEFS 6 Bits Encoding File Size

BEBS 5 Bits Encoding Block Size

BESS 5 Bits Encoding SubBlock Size

LBES 1 Are Last Blocks of Equal Size?

BELB 5 Bits Encoding Last Blocks Size

PS BEPS Process Size

FS BEFS FAST File Size

BS BEBS Block Size

SS BESS Subblock Size

CBO BS×BEPS Concurrent Block Order

LBS PS×BELB Last Block Sizes

SBC 4 Subblock Count

BCSS 2 Block Contains Split Subblocks?

SBL SBC×22 Subblocks Length

field PS. 4 bits are used to encode this field. The greatest value this field can hold is
24 − 1.

• BEFS, which represents the number of bits required to encode the size of the FASTQ
file. 6 bits are used to encode this field, holding a value of at most 26 − 1.

• BEBS and BESS, which represent the number of bits required to encode the total
number of blocks and subblocks in the NGSC file, respectively. 5 bits are used for each
of the fields, allowing a maximum value of 25 − 1.

• LBES, uses 1 bit to indicate if the last blocks written to the NGSC file are of the
standard size of 8 MiB. A value of 0 in this field indicates that the last blocks written
are of different sizes.

• BELB, if LBES has a value of 0, then this field will encode the number of bits use to
encode the maximum size of the last blocks written to the NGSC file. If the value of
LBES is 1, then this field won’t be present in the footer region.

The 6 major fields are encoded using the amount of bits indicated by the first fields as
follows:

• PS, which encodes the number of processes used for the compression of the FASTQ
file. Since we are using BEPS bits to encode this field, the maximum value it can hold
is 2(24−1) − 1, meaning that the algorithm can use a maximum of 32,767 processes to
compress a FASTQ file.

• FS, which encodes the original size of the FASTQ file. Using BEFS bits for this field
allows it to hold a maximum value of 2(26−1)−1, hence the maximum file size phyNGSC

4

can work with is 9 EiB4 or approximately 9 exabytes.

• BS and SS, which encode the total number of blocks and subblocks in the content
region of the NGSC file, respectively. These two fields use BEBS bits for BS and BESS
bits for SS, allowing a maximum of 2(25−1) − 1 blocks and subblocks.

• CBO, which encodes the order in which the blocks were written to the NGSC file. It
uses BEPS-1 bits to encode the id of BS blocks, for a total of BS×(BEPS-1) bits to
encode the whole list.

• LBS, if LBES has a value of 0, then this field will contain the sizes of the last blocks
written to the NGSC file, each encoded using BELB bits, for a total of PS×BELB bits.
If the value of LBES is 1, then this list won’t be present in the footer region.

The remaining fields of the footer have information about blocks and their subblocks.
Since a block contains many subblocks and they can be split in order to truncate the size of
a block, the remaining fields are encoded as shown below:

• SBC, for each block that a process wrote to the NGSC file, this field will contain the
number of subblocks in them, encoding the value with 4 bits.

• BCSS, a 2 bits fields with four possible values:

– 0: First and last subblocks in the block are not split.

– 1: Last subblock in the block is split.

– 2: First subblock in the block is split.

– 3: First and last subblocks in the block are split.

• SBL, which encodes the size in bytes of each subblock in the block using 22 bits. This
field requires SBC×22 bits to encode the size of all the block’s subblocks.

Fig. 2a shows an example of an NGSC file footer for a FASTQ dataset of 100 MB. The
file was compressed using 2 processes and created 4 blocks and 14 subblocks total. Each field
contains the value (represented in base 10) that will allow the reconstruction of the original
FASTQ file. In the example, the CBO field indicates that process p1 wrote its first block,
then p0 wrote its first and second block, and then p1 wrote its last block. Fig. 2b shows the
actual representation of the footer in the NGSC file. Bold and highlighted numbers are used
to indicate the different fields. Bytes are represented by groups of 8 bits (since this is the
smaller unit for value representation). The ‘X’ character at the end of Fig. 2b indicates the
number of bits wasted bit-packing the footer (1 bit in the example), in general it will be 7
bits or less.

3.2 Content Region

The content region of the NGSC file is formed by multiple blocks of compressed data. Each
block contains a 2 bytes ‘block id’ to identify which process wrote it to the NGSC file and
multiple subblocks. In order to truncate the size of a block to 8 MiB, the last subblock of a

49 EiB = 8× 10246 bytes

5

(a) Field values of the footer.

(b) Bit values of the footer (actual representation
in NGSC).

Figure 2: Example of a footer for an NGSC file of a 100 MB.

block needs to be split if it doesn’t fit. The remaining bytes of the split subblock are written
to the next new block. The ‘block ids’ of the blocks containing a subblock that was split
between the two need to be the same.

Subblocks are composed by a header and all the compressed titles, DNA sequences, and
quality score lines of every record (Fig. 1). The header of a subblock contains multiple fields
to help the decompression process, as shown in Table 2. These fields are:

• NR, which encodes the number of records compressed in the subblock. It uses 19 bits,
which allows a maximum value of 219 − 1 records.

• MTL and MSL, which represent the maximum title and DNA sequence length, respec-
tively, for records in the subblock. Their value is encoded using 8 bits, which allows
for a maximum length of 28 − 1.

• QSC, which uses 44 bits to encode the alphabet used for the quality score line of the
records. The first bit will represent the base used for the quality score; 0 if base 33 and
1 if base 64 [11]. The remaining 43 bits will indicate if the character is present in the
quality score by having its bit with a value of 1, or 0 if the character is not present, as
shown in Fig. 3a and 3b.

• NF, which represent the total frequency of each nucleotide (A,C, G, and T) in the
DNA sequence line of all records in the subblock. It uses 20 bits per nucleotide.

6

Table 2: Bit-packed subblock header structure.

Field # of bits Description

NR 19 Number of Records in subblock

MTL 8 Maximum Title Length

MSL 8 Maximum DNA Sequence Length

QSC 44 Quality Score Symbol Count

NF 20×4 Nucleotide Frequency

SOF BEFS Subblock Offset in FASTQ File

CTL 21 Compressed Title Length

CQL 21 Compressed Quality Score Length

• SOF, which encodes the offset in the FASTQ file from where the raw data was ex-
tracted. It uses BEFS bits to encode this value. Once the offset is decoded and the
subblock data is decompressed, a process will know exactly where to write its content
in the FASTQ file using explicit file pointers.

• CTL and CQL, which encode the length of compressed titles and quality scores. These
fields are used to divide the decompression of the title, DNA sequences, and quality
scores among multiple threads within the different processes, as will be explained in
Section 4.

(a) QSC field for base 33 quality score.

(b) QSC field for base 64 quality score.

Figure 3: Example of QSC field for a subblock header in NGSC file.

3.3 in compresso Data Processing

The in compresso data processing technique is designed to handle the data in the NGSC
format. in compresso uses a fine-grained decompression approach which consists of partially
decompressing records to solve a particular task, without the need for full decompression.
With this technique the processing of a compressed FASTQ file can be accelerated since the
system will be handling fewer bytes than the original representation.

The data structure of NGSC allows for quick retrieval of certain statistical details of
the FASTQ file by unpacking the footer and subblock headers, and gathering the metadata
where this information is stored. Subblock header fields, such as NC, QSC, and NF help
in the gathering of total number of records in the file, nucleotide frequency distribution,

7

and guessing the quality score encoding (for Solexa, Sanger, or Illumina encoding variants),
respectively.

NGSC also helps with DNA sequence and pattern finding by identifying the sequences as
they are decoded and discarding the ones that don’t match the pattern searched. Since all
the DNA sequences in a subblock are compressed as one single stream, once the pattern is
found for the first time by any of the processes involved, the algorithm will stop and return
the record information from where the pattern was found. In the worst case scenario, this
process will take O(R

p
) if the DNA sequence is located in the last record of the last subblock

being decompressed by pi, or O(1) if the DNA sequence appears in the first record of the
first subblock (best case).

The following list of tasks are possible with our in compresso data processing technique:

• FASTQ to FASTA format conversion.

• Basic FASTQ file statistics: nucleotide frequency distribution, number of records, qual-
ity score encoding.

• DNA sequence pattern finding.

• DNA sequence extraction and trimming by filtering sequences based on quality scores.

4 Methodology

In order to understand how the use of fine-grained decompression will help with in compresso
data processing and manipulation, we will describe the methodology used by phyNGSC to
achieve the decoding of the NGSC data structure to its original FASTQ file.

For our hybrid parallel implementation, an NGSC file of SB subblocks is partitioned
equally among p homogeneous processes to be decompressed into the original FASTQ file.
Decompression begins with each p reading the footer region (fr) of the NGSC file and
bit-unpacking its content.

With the information of fr processed, pi, ∀i ∈ N : 0 ≤ i < p, will calculate the number of
subblocks that it will decompress and get their precise offset from where to start fetching in
the content region (cr) of the file. pi will have Di = SB

p
subblocks to decompress, such that

0 ≤ |Di−Dj| ≤ 1, where i 6= j and ∀i j ∈ p. The pseudo-code for the work distribution step
is shown in Fig. 4. This load balancing procedure is used when the number of processes used
for compression (CP) is different than the number of processes used in decompression (DP).
When CP = DP , then each block with its subblocks will be assigned to a p for decompression,
such that the ‘block id’ of a block match the rank (id) of the particular process p.

Decompression continues with pi processing subblock’s offset from Di, one by one. A
subblock s is read from the NGSC file and its header is bit-unpacked. With the information
obtained from the header, pi starts the decompression step by creating a threaded region with
t threads. This is a “sections worksharing” region in which a thread th, ∀h ∈ N : 0 ≤ h < t
will be assigned the completion of one of the k tasks in a one-to-one relationship. This
threaded region will decompress the titles, DNA, and quality scores of all the records in the
block.

8

1: procedure Work Distribution(pi, p, SB, cr)
2: |Di| = bSB/pc
3: SB counter = 0
4: r = SB mod p
5: x = p− r
6: add to SBs = 0
7: add to SBe = 0

8: if r ≥ 1 and pi ≥ x then
9: add to SBs = pi − x

10: add to SBe = 1
11: end if

12: SBs = pi × |Di|+ add to start
13: SBe = SBs + |Di| − 1 + add to end

14: for all s in SB do
15: if SB counter ≥ SBs and SB counter ≤ SBe then
16: add offset of s in cr to Di

17: end if
18: SB counter increments by 1
19: end for
20: end procedure

Figure 4: Pseudo-code for phyNGSC compression using p processes and t threads per process
and a FASTQ file.

A “loop worksharing” threaded region is created to copy all the decompressed records to
the writing buffer (wb). In this threaded region all the R records are divided equally among
the t threads using a for loop, such that th will copy R

t
records to wb. Once wb is ready to

be written to the FASTQ file, pi will utilize a non-blocking file writing function with explicit
offsets, which will allow to write the current decompressed data in its original position on
the FASTQ file, without waiting for the writing process to be done in order to continue. A
sketch of the decompression work flow is presented in Fig. 5

4.1 Parallel I/O and Concurrency

To overcome the overhead of concurrently writing to a single disk, a strategy of stripping
the datasets among different object storage targets (OST) was devised. Taking advantage of
a Lustre parallel file system, both FASTQ and NGSC datasets were divided in chunks of 8
MiB, allowing for more concurrent access to the files, since a process pi accessing a section of
a dataset won’t interfere with another process pj accessing another section. This is because,
in most cases, bytes being accessed by different processes are located in different OSTs.

9

Figure 5: Sketch of the work flow of phyNGSC for decompression.

10

Table 3: Datasets used for the test. The fastq file SRR622457 was append nine times to
itself to get 1TB.

IDs Platform Records Size(GB) Renamed

ERR005195 ILLUMINA 76,167 0.0093 10MB

ERR229788 ILLUMINA 889,789 0.113 100MB

ERR009075 ILLUMINA 8,261,260 1.01 1GB

ERR792488 — 90,441,151 15 10GB

SRR622457 ILLUMINA 478,941,257 107 100GB

SRR622457* ILLUMINA 4,310,471,313 1,106 1TB

5 Implementation Results

The implementation of phyNGSC for decompression (and compression) was tested in SDSC
Comet5, a high performance compute and I/O cluster of the Extreme Science and Engi-
neering Discovery Environment (XSEDE). Comet has 1944 compute nodes, each with two
12-core 2.5 GHz Intel Xeon E5-2680v3 (Haswell) processors and 128 GB of DDR4 DRAM.
The network topology is a Hybrid Fat-Tree with 56 Gb/s (bidirectional) link bandwidth
and 1.03-1.97 µs MPI latency. The cluster implements SLURM resource manager and has
a Lustre-based parallel file system. C++ was used to code our implementation using the
OpenMP library to provide multithread support and the MVAPICH2 implementation of
MPI (version 2.1). The GNU Compiler Collection (version 4.9.2) was used for compilation.

NGSC datasets used for decompression where obtained by compressing the FASTQ files
in Table 3. For decompression the label 10MB, 100MB, 1GB, 10GB, 100GB, and 1TB
indicate an NGSC file resulting from compressing the FASTQ file of the corresponding size.

Fig. 6 shows the time to compress and decompress different dataset sizes using 2, 4,
8, 16, 32, 64, and 128 processes, and 12 threads per process. The average decompression
time, measured as the wallclock time elapsed executing code between MPI initialization and
finalization, decreases sharply as more processes are added with different NGSC datasets.

Compression times were improved by using the stripping methods established in Sub-
section 4.1. By implementing Lustre stripping, the time to compressed 1TB dataset was
reduced from 8 minutes (no stripping) to 5 minutes, using 64 processes and 3.5 minutes
using 128 processes. For the most part decompression is faster than compression, except for
some datasets (100GB and 1TB) where decompression took more time. This is due to the
content of the data. Datasets with larger DNA sequence reads require more time to decode.

Tables 4 and 5 show the average compression and decompression times of phyNGSC
against DSRC sequential and DSRC 2, multithreaded. Each experiment was repeated several
times and the average compression and decompression time was taken. The compression of
a FASTQ file of size 1 terabyte took approximately 3.55 minutes, reporting a 90% time
decrease against DSRC 2 with multithreaded parallelism and more than 98% time decrease
for DSRC running sequential code—i.e., 10 to 50 times faster, respectively—improving the
execution time proportionally to the added system resources.

5https://portal.xsede.org/sdsc-comet

11

2 4 8 16 32 64128
0

0.05

0.1

0.15

0.2

0.25

T
im

e
(s

)

10MB

2 4 8 16 32 64128
0

0.2

0.4

0.6

0.8

1

100MB

2 4 8 16 32 64128
0

2

4

6

8

T
im

e
(s

)
1GB

2 4 8 16 32 64128
0

20

40

60

80

100
10GB

2 4 8 16 32 64128
0

200

400

600

800

Processes

T
im

e
(s

)

100GB

2 4 8 16 32 64128
0

2,000

4,000

6,000

8,000

Processes

1TB

Compression Decompression

Figure 6: Compression and decompression times for phyNGSC, using 2, 4, 8, 16, 32, 64, and
128 processes and 12 threads per process.

Table 4: Compression Time for phyNGSC vs DSRC and DSRC2.

Datasets DSRC DSRC 2 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

10MB 0.15s. 0.29s. 0.24s. 0.08s. 0.18s. 0.16s. 0.10s. 0.10s. 0.24s.

100MB 1.69s. 1.06s. 1.05s. 0.37s. 0.29s. 0.18s. 0.21s. 0.14s. 0.18s.

1GB 18.01s. 2.07s. 8.18s. 4.32s. 2.14s. 1.15s. 0.83s. 0.36s. 0.27s.

10GB 3.73m. 36.514s. 1.60m. 48.19s. 22.38s. 12.05s. 7.05s. 3.43s. 2.15s.

100GB 21.00m. 6.59m. 6.32m. 6.69m. 3.18m. 1.56m. 47.54s. 22.76s. 13.12s.

1TB 3.06h. 36.76m. 58.97m. 37.43m. 23.46m. 17.16m. 8.59m. 5.09m. 3.55m.

Table 5: Decompression Time for phyNGSC vs DSRC and DSRC2.

Datasets DSRC DSRC 2 p = 2 p = 4 p = 8 p = 16 p = 32 p = 64 p = 128

10M 0.13s. 0.109s. 0.09s. 0.05s. 0.04s. 0.03s. 0.03s. 0.04s. 0.05s.

100M 1.72s. 0.402s. 0.72s. 0.39s. 0.23s. 0.15s. 0.10s. 0.09s. 0.11s.

1G 10.9s. 3.674s. 4.27s. 2.07s. 1.12s. 0.64s. 0.43s. 0.34s. 0.27s.

10G 3.24m. 46.473s. 58.12s. 29.43s. 14.35s. 7.47s. 4.10s. 2.34s. 1.50s.

100G 24.75m. 6.92m. 14.11m. 7.35m. 3.44m. 1.68m. 51.56s. 27.19s. 14.73s.

1T 3.85h. 43.50m. 2.27h 1.20h. 36.09m. 18.42m. 9.75m. 6.10m. 4.45m.

12

Fig. 7 shows a comparison of the compression and decompression times obtained by run-
ning phyNGSC against MPIBZIP2, DSRC, and DSRC2. It can be observed that phyNGSC
is very unbalanced when compressing the smaller dataset of 10MB, since the FASTQ file to
be compressed is smaller than the chunks of raw data read from it (approximately 8 MiB).
For larger datasets phyNGSC demonstrated very good scalability, both in compression and
decompression. The other algorithms suffered from poor scalability when decompressing.
MPIBZIP2 didn’t complete the decompression of the 1TB dataset using more than 8 pro-
cesses.

Experiments for the in compresso tasks of record counting, nucleotide frequencies, and
DNA sequence finding were performed on the 1GB and 10GB datasets. Using 16 processes,
information on the number of records was obtained 9.14x faster than having to decompress
the whole 1GB file, and 5.75x faster for the 10GB. It is useful to compared parsing a FASTQ
file to gather nucleotide frequencies to our approach to look for the subblock header field NF
and reduce the information found by the processes involved. Our approach had the effect
of 98.3% time reduction for the 1GB file and 95.1% for the 10GB file. To perform DNA
sequence finding, we located a DNA sequence near the beginning and near the end of both
files. The time taken to find the sequence near the beginning was very similar for both the
1GB and 10GB dataset. To find the sequences near the end, the time taken was always
smaller than the time taken to decompress the entire dataset, indicating that the time to
find a DNA sequence within the NGSC data structure will always have an upper bound less
or equal to the time taken by decompressing the whole file.

13

1 4 16 32 128

0.1

1

T
im

e
(s

)

10 MB (C)

1 4 16 32 128

0.0316

0.1

0.316

10 MB (D)

1 4 16 32 128
0.1

1

10

T
im

e
(s

)

100 MB (C)

1 4 16 32 128

0.1

1

100 MB (D)

1 4 16 32 128

1

10

100

T
im

e
(s

)

1 GB (C)

1 4 16 32 128

1

10

1 GB (D)

1 4 16 32 128

10

100

1,000

T
im

e
(s

)

10 GB (C)

1 4 16 32 128
1

10

100

10 GB (D)

1 4 16 32 128
10

100

1,000

10,000

T
im

e
(s

)

100 GB (C)

1 4 16 32 128
10

100

1,000

100 GB (D)

1 4 16 32 128

1,000

10,000

100,000

Processes

T
im

e
(s

)

1 TB (C)

1 4 16 32 128

1,000

10,000

Processes

1 TB (D)

phyNGSC MPIBZIP2 DSRCmt DSRCseq

Figure 7: Compression and decompression times for different NGS datasets for DSRC se-
quential, DSRC multi-threaded, phyNGSC and MPIBZIP2 with 2, 4, 8, 16, and 32 processes.

14

6 Conclusion

In this paper we presented a decompression strategy for FASTQ files compressed using phyN-
GSC [6]. Compression and decompression were accelerated using techniques like Lustre’s file
stripping, timestamping with TOC-W, shared file pointer and non-deterministic writing, and
a data structure that allows easy and efficient retrieval of the compressed information. The
proposed NGSC file structure facilitates the handling of DNA sequences in their compressed
state by using fine-grained decompression in a technique that is identified as in compresso
data manipulation. The technique can be further extended to enrich compressive genomics
and sub-linear analysis of big genomic data.

Experimental results from this research suggest strong scalability, with many datasets
yielding super-linear speedups and constant efficiency. Performance measurements were
executed to test the limitations imposed by Amdahl’s Law when doubling the number of
processing units. The compression of a FASTQ file of size 1 terabyte took less than 3.5
minutes, reporting a 90% time decrease against compression algorithms with multithreaded
parallelism and a more than 98% time decrease for those running sequential code—i.e., 10
to 50 times faster, respectively—improving the execution time proportionally to the added
system resources. Decompression for the same dataset using 128 processes and 12 threads
per process took 4.45 minutes. Compression and decompression throughputs of up to 8.71
GB/s and 10.12 GB/s, respectively, were reported.

Findings of this research provide evidence that hybrid parallelism can also be imple-
mented using CPU+GPU models for compressive genomic, potentially increasing the com-
putational power and portability of the approach. This topic will be explored as future work.
Additionally, our in compresso technique will be further expanded to analyze its functionality
and efficiency when compared to tools in the market such as fqtools and others.

Acknowledgment

This material is based in part upon work supported by the National Science Foundation
under Grant Numbers NSF CRII CCF-1464268 and NSF CAREER ACI-1651724. Any
opinions, findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

[1] M. V. Olson, “The human genome project.” Proceedings of the National Academy of
Sciences, vol. 90, no. 10, pp. 4338–4344, 1993.

[2] F. S. Collins, M. Morgan, and A. Patrinos, “The human genome project: lessons from
large-scale biology,” Science, vol. 300, no. 5617, pp. 286–290, 2003.

[3] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P. Nolan, “Computa-
tional solutions to large-scale data management and analysis,” Nature reviews. Genetics,
vol. 11, no. 9, p. 647, 2010.

15

[4] S. Deorowicz and S. Grabowski, “Compression of DNA sequence reads in FASTQ for-
mat,” Bioinformatics, vol. 27, no. 6, pp. 860–862, 2011.

[5] L. Roguski and S. Deorowicz, “DSRC 2industry-oriented compression of FASTQ files,”
Bioinformatics, vol. 30, no. 15, pp. 2213–2215, 2014.

[6] S. Vargas-Perez and F. Saeed, “A hybrid MPI-OpenMP strategy to speedup the com-
pression of big next-generation sequencing datasets,” IEEE Transactions on Parallel
and Distributed Systems, vol. PP, no. 99, pp. 1–1, 2017.

[7] J. Seward, “bzip2 and libbzip2, version 1.0. 5: A program and library for data
compression,” 2007. [Online]. Available: http://www.bzip.org

[8] J. Gilchrist. Parallel BZIP2 (PBZIP2) data compression software. HTML. [Online].
Available: http://compression.ca/pbzip2/

[9] ——. Parallel MPI BZIP2 (MPIBZIP2) data compression software. HTML. [Online].
Available: http://compression.ca/mpibzip2/

[10] A. P. Droop, “Fqtools: an efficient software suite for modern FASTQ file manipulation,”
Bioinformatics, vol. 32, no. 12, pp. 1883–1884, 2016.

[11] P. J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice, “The sanger FASTQ
file format for sequences with quality scores, and the solexa/illumina FASTQ variants,”
Nucleic acids research, vol. 38, no. 6, pp. 1767–1771, 2010.

16

	Scalable Data Structure to Compress Next-Generation Sequencing Files and its Application to Compressive Genomics
	WMU ScholarWorks Citation

	tmp.1508271622.pdf.I3Ibr

