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Abstract

Energy efficiency is a crucial problem in data centers where big data is generally represented by

directed or undirected graphs. Analysis of this big data graph is challenging due to volume and velocity

of the data as well as irregular memory access patterns. Graph sampling is one of the most effective ways

to reduce the size of graph while maintaining crucial characteristics. In this paper we present design

and implementation of an FPGA based graph sampling method which is both time- and energy-efficient.

This is in contrast to existing parallel approaches which include memory-distributed clusters, multicore

and GPUs. Our strategy utilizes a novel graph data structure, that we call COPRA that allows time-

and memory-efficient representation of graphs suitable for reconfigurable hardware such as FPGAs. Our

experiments show that our proposed techniques are 2x faster and 3x more energy efficient as compared

to serial CPU version of the algorithm. We further show that our proposed techniques give comparable

speedups to GPU and multi-threaded CPU architecture while energy consumption is 10x less than GPU

and 2x less than CPU.

1 Introduction

Extracting information through graph analysis is an essential process used in many real-world applica-

tions [18] [17]. Running simulations and analytics on massively huge graphs is impractical and cost-

prohibitive [6]. Graph sampling allows reduction in the amount of data that needs to be processed while

maintaining application specific properties e.g. degree distribution, betweenness centrality, degree expo-

nent, rank exponent etc. Graph sampling literature is extensive and includes Selection Based Sampling [1],

Traversal Based Sampling [9] [10] [19] and Reduction Based Sampling [12].
Sequential techniques are inadequate even for sampling of big data. Existing parallel sampling techniques

are either application specific [3] [4] or they are too inaccurate [16] to be used in real applications. Allocating

power hungry resources for sampling such as GPU or Intel Phi can result in significant cost for large data

centers. In addition, conventional “One Size Fits All” devices like CPUs are no longer desired as they can

lead to under utilization of resources which in turn can also waste a lot of energy [8]. Majority of large-

scale efforts focuses on conventional devices since dedicated accelerators are difficult to program. In the

past, FPGAs have had a draw back over other accelerators because of time consuming implementations of

proposed architecture using HDLs like Verilog or VHDL [20].
In this paper, we present an FPGA based parallel version of the best performing reduction based algorithm

presented in [12] geared towards power-law graphs. FPGA is our choice of accelerator since FPGAs are

highly energy efficient, can provide speedups for correctly designed strategy when compared with CPUs,

provide custom made solution and their reconfigurability allows them to be reprogrammed as per changing

requirements. We chose a higher level approach by implementing our proposed strategy using Intel FPGA

∗Corresponding author e-mail: fahad.saeed@wmich.edu
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SDK for OpenCL. Using our novel graph data structure and careful parallel design we show that our proposed

strategy is able to compete in terms of speed with both CPU and GPU based versions of the sampling

algorithms while reducing the energy consumption by a factor of 3. We test our implementation on synthetic

power-law graphs that closely resemble to real world graphs.

2 Background

Assume a graph G(V,E) with V (G) as its vertex set and E(G) as its edge set. Sampling process will select a

subset of vertices or edges from the original graph and construct a sub-graph induced by those vertices/edges.

In reduction based sampling, we select a subset of vertices or edges to be removed from the original graph.

Three parallel graph sampling algorithms (sequential version originally presented in [12]) that we implement

are:

Delete Random Vertex (DRV): Randomly choose vertices and delete from the original graph.

Delete Random Edge (DRE): Randomly delete edges from the original graph.

Delete Random Vertex Edge (DRVE): Randomly select a vertex and then delete a random edge from

set of edges incident to that vertex.
As with any graph sampling algorithm, small portion of vertices, edges or vertex-edges are removed and

we keep the largest connected component and delete all other components. The whole process is repeated

till we are left with graph of desired size.
Rest of this paper is organized as follows: In section 3, we describe our work in detail. We present our

results and compare them with CPU and GPU versions in section 4. In section 5, we conclude this paper.

3 Proposed Methods

3.1 COPRA: Graph Data Structure for Parallel Processing

The sampling methodologies that we design and implement on FPGA require removing vertices and edges

from the original graph in parallel. Therefore, we need a data structure which can deal with irregular

memory access patterns of graphs and also allow multiple threads to access data points and concurrently

make changes in parallel. Further, a data structure that can allow modification of the graph (as a result

of sampling) without accessing external memory. Such a structure will be essential for efficient bandwidth

utilization on an FPGA. Keeping these constraints in mind we introduce COPRA, a novel data structure,

which is a modified version of Compressed Sparse Row (CSR) to represent graph in memory. Let us briefly

discuss Compressed Sparse Row (CSR) before we get into the details of our modifications necessary for

FPGA based strategy.
Consider the graph shown in Fig. 1 (left) and its Compressed Sparse Row (CSR) representation (right).

In CSR, vertices and edges are stored in two separate arrays V and E. Vertex numbers are represented by

the indices of V while the value stored at each index of V points to the starting location of edges of that

vertex. In edge array E, for each edge, we store the vertex number at its other end. In its simplest form

space complexity of CSR is O(V + 2E).
Even though CSR representation is simple and memory efficient, vertex and edge removal is not possible

in its original format. Using CSR will require multiple updates to the data at external memory which will

result in inefficient on-chip memory and bandwidth usage. Such a scheme will be inefficient both in terms

of time and energy. Other graph data structure such as adjacency matrix of adjacency list also pose similar

challenges i.e. higher memory complexity O(V 2) and sequential memory accesses respectively. In order to

tackle these challenges, we introduce two major changes in CSR to allow graph modification in an efficient

manner (vertex removal and edge removal). The design of COPRA is discussed below.
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Figure 1: Graph G and its CSR Representation

3.1.1 Vertex Removal

When trying to delete a vertex say vertex “1”, we’ll lose some other information as to where edges of vertex

“0” end in E. This information comes in handy when we are trying to traverse neighbors of a vertex especially

if most of the vertices from the original graph have been removed. To solve this problem we introduce another

vertex array and rename the two vertex arrays as V-Start and V-End as they keep track of starting and

ending positions of their edges in E as shown in Fig. 2.

3.1.2 Edge Removal

The second problem is with edge removal or more specifically random edge removal. As each edge has

two entries in E, one for each vertex it’s incident on, in original CSR format (Fig. 1) we don’t have any

information available to find the other end of randomly selected edge. Suppose, we were to randomly delete

the edge that connects vertex “1” and “3” (In reality we’ll pick either index 4 or 8 and search for the other

value). Say, the randomly selected index was 4. Looking at the value we instantly know that one side is

connected to vertex “3” but to find out the vertex on the other side of this edge we’ll have to traverse the

vertex array and look for the reference to array E in V that’s nearest to index 4. This will be very time

consuming and become impractical in large graphs. To overcome this problem, we add additional values in

edge array, i.e. at the beginning of each edge set (edges incident to one vertex) we add the vertex number

(blue values). To indicate this value is not an edge we add another flag (red values) before the vertex entry

which will help us get correct vertex. Completed version is shown in Fig. 3.

3.2 Parallel Removal of Vertices, Edges and Vertex-Edges

First step of sampling process is to remove small portion of Vertices, Edges or Vertex-Edges, depending on

the sampling strategy, from the original graph. Our method is highly scalable as each thread removes one

vertex (edge or vertex-edge) in parallel. Even if multiple threads end up accessing the same memory location

the end result of sampling still remains the same. Here we discuss three algorithms that remove vertices,

edges and vertex-edges from graphs respectively.

3.2.1 Parallel Vertex Removal

Kernel pseudo-code for removing vertices is given in Algorithm 1. In the outer-loop of our algorithm we

traverse the edges of the vertex v being removed. After removing one side of an edge e = (v, u) we traverse

the edges of the neighboring vertex u in the inner loop to remove the other side.
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Figure 2: Introducing first modification in CSR i.e. adding another vertex array V-End to keep track of

ending position of edges of each vertex in array E. In this way, we can remove any vertex from the original

graph without worrying about lose of information i.e. we still know the degree of vertex “0” even after we

have removed vertex “1” as opposed to original CSR structure.

Algorithm 1 Remove Random Vertices

Input: vStart, vEnd, edges, rands

1: tid← thread-id

2: v ← rands[tid]

3: sPos← vStart[v], vStart[v]← −1

4: ePos← vEnd[v], vEnd[v]← −1

5: for i = sPos to ePos do

6: nv ← edges[i]edges[i]← −1

7: sPos1← vStart[nv]

8: ePos1← vEnd[nv]

9: for j = sPos1 to ePos1 do

10: if edges[j] == v then

11: edges[j] = −1

12: end if

13: end for

14: end for
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Figure 3: Modified CSR Representation: Final version of our proposed data structure COPRA. Edge array

”E“ is indexed by two vertex arrays ”V-Start“ and ”V-End“ and we also have corresponding vertex number

before each edge set. Space complexity of this structure is O(4V + 2E)

Algorithm 2 Remove Random Edges

Input: vStart, vEnd, edges, rands

1: tid← thread-id

2: e← rands[tid]

3: v ← edges[e], edges[e]← −1

4: i← e− 1

5: while edges[i] 6= −2 do

6: i← i− 1

7: end while

8: sPos← vStart[v]

9: ePos← vEnd[v]

10: for j = sPos to ePos do

11: if edges[j] == edges[i+ 1] then

12: edges[j] = −1

13: end if

14: end for

In OpenCL for FPGAs, nested loops can degrade performance and should be avoided if possible. In

our kernel, we used loop unrolling to reduce number of iterations of inner loop. We get the maximum

performance gain by unrolling the inner loop 16 times. This loop unrolling doesn’t add any overhead in

terms of memory accesses since the burst size of global memory used (DDR3) is 64 bytes.

3.2.2 Parallel Edge Removal

Parallel Edge Removal consists of two parts: 1) Remove one side of the edge and find the vertex on the other

side, 2) Remove the other side of the vertex. First part is done by traversing the edge array backwards till we

find −2. After getting the vertex connected to the other side we traverse its edges and delete the reference

to first vertex. This is explained in Algorithm 2 Both loops are unrolled 16 times to get the maximum

performance.
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Algorithm 3 Remove Random Vertex-Edges

Input: vStart, vEnd, edges, randV, randE

1: tid← thread-id

2: v ← randV [tid]

3: sPos← vStart[v]

4: ePos← vEnd[v]

5: d← ePos− sPos {vertex degree}
6: e← randE[tid] mod d

7: vn← edges[sPos+ e] {neighbor of v}
8: sPos1← vStart[vn]

9: ePos1← vEnd[vn]

10: for j = sPos1 to ePos1 do

11: if edges[j] == v then

12: edges[j] = −1

13: end if

14: end for

3.2.3 Parallel Vertex-Edge Removal

This technique includes picking random vertex and then deleting one of the random edges from that vertex.

To achieve this we need two arrays containing random values, we call these “randV” and “randE”. The

size of “randE” is determined based on the maximum degree D of the graph. Once, we pick a vertex v at

random, we pick a value from “randE” depending on which thread we’re in. After this, deleting the other

end of this edge is straight forward since we already know which vertex v this edge e belongs to. Pseudo

code is given in Algorithm 3. Loop is unrolled 16 times for maximum performance gain.
There is no guarantee that no two threads will access the same memory location (rather it’s very likely

that two or more vertices will end up accessing the same address). We ensure that data integrity using our

strategy is maintained by a simple observation that the value being written to any location is −1 (to indicate

removal). Whenever a thread reads a value from memory, it can check that the value is not −1. If it is, we

know that it is invalid i.e. the corresponding vertex, edge or vertex-edge has already been removed and we

won’t perform any actions on that data.

3.3 Sampling Algorithm

After having a memory efficient data structure to represent and update graph structures, we discuss design

and implementation details of our sampling strategy on FPGA. Complete algorithm is described in algorithm

4:

Algorithm 4 Parallel Graph Sampling

1: while Graph Size > Required Sample Size do

2: Launch Kernel to Remove Vertices, Edges or Vertex-Edges.

3: compSize← 0

4: while compSize < Required Sample Size do

5: while continue == true {Run BFS} do
6: continue← false

7: Launch BFS kernel described in Algorithm 5.

8: end while

9: end while

10: Launch Kernel to remove all vertices that are not in Largest Connected Component.

11: end while
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The flow chart of the entire algorithm is given in Fig 4.

Figure 4: Parallel Graph Sampling
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Figure 5: Execution time for different sampling techniques: DRV, DRE, DRVE with increasing graph size,

executed on FPGA, GPU and CPU.
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Figure 6: Energy consumption for different sampling techniques: DRV, DRE, DRVE with increasing graph

size, executed on FPGA, GPU and CPU.

4 Results

4.1 Data Generation and Experimental Setup

The techniques discussed in this paper are targeted towards sampling of power-law graphs i.e. the graphs

where number of vertices of degree x is proportional to x−α, where α > 0 is a constant. Since vast majority

of real world graphs follows power-law degree distribution; it makes our proposed technique more widely

applicable. Different studies have shown that degree sequence of World Wide Web [14] [13] [11] and Internet

router graph [7] follow power-law distributions among other applications [5] [2] [15]. For evaluation of our

proposed strategy we generated synthetic power-law graphs using parameters to match the real world graphs

that follow power-law i.e. graphs of up to 30M vertices with power-law degree distribution of exponent of

2.71 and average degree of 5.

Table 1: Specifications of FPGA, GPU and CPU used in our experiments.

DE5-Net

Stratix V

GeForce

GTX 480
Xeon W3565 Core-i5

Base Frequency - 700 MHz 3.20 GHz 3.3 GHz

# Logical Cores 1 480 8 4

Memory 4 GB 1536 MB 6 GB 6 GB
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Figure 8: Energy Efficiency in term of ”Vertices Pro-

cessed per Second per Watt” for different sampling

techniques when executed on FPGA, GPU and CPU.

We implemented the sampling algorithms on Pentium(R) and parallel version is implemented using

OpenCL 1.2 on Intel Xeon W3565, Core-i5 2600, DE5-Net Stratix V GX FPGA Development Kit and

GeForce GTX 480 GPU. Specifications of these devices are shown in Table 1.

4.2 Timing Analysis

We implemented sampling strategies on CPU, FPGA and GPU where sequential version of the algorithm

runs on Pentium(R) while FPGA, GPU, Xeon and Core-i5 run the parallel version. The results in Fig. 5

show that our FPGA based technique is faster by more than 2x as compared to algorithms running on the

CPU for all three sampling strategies. For FPGA vs GPU timing is comparable for DRV and DRE but GPU

outperforms FPGA for DRVE. The relative speed up of FPGA and GPU with respect to CPU is shown in

Fig. 7.

4.3 Energy Efficiency Analysis

To measure power efficiency we need to measure power consumed during execution of algorithms on each

device. Power consumption for each device was measured experimentally using a watt meter. For sequential

version we use Pentium(R) to minimize power consumed by idle cores. To measure power, we disconnect both

GPU and FPGA from the system and run the algorithm with minimum (constant) number of background

applications running. Average power consumed by CPU for our three implementations is around 70 Watts.

The average power consumed by the system for the execution of FPGA code is around 60 Watts while

average power consumed by the system during execution of GPU code is around 245 Watts. Note that we

only use Pentium CPU as host for FPGA and GPU versions as only a small fraction of host computational

resources are required to schedule kernels. For Xeon and Core-i5 we can directly measure power as no extra

devices are connected to them. Fig 8 shows the power efficiency comparison of different sampling strategies.
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4.4 Quality Assessment

Our proposed FPGA based strategy is only accurate if it produces results similar to the sequential algorithms

described in [12]. We run sequential and parallel version of three sampling algorithms on the largest graph

(30M vertices) and measure characteristics like Average Degree, Degree Exponent and Rank Exponent. Rank

Exponent and Degree Exponent are defined as follows [12]:

Rank Exponent is defined as the slope of log-log plot of node degrees vs their rank, where a node of kth

highest degree will have a rank of k.

Degree Exponent is defined the slope of log-log plot of degree frequency vs degree.
Our experiments show that, for sampling percentages ranging from 10% to 70%, our proposed FGPA

based strategy exhibits similar results with maximum difference of only 0.3% which is due to randomness

involved in removal process.

5 Conclusion

The goal of the paper is to develop a graph sampling technique using FPGAs which can sample large graphs

in parallel, is highly scalable and energy-efficient. We develop parallel FPGA-based sampling strategies that

include DRV, DRE and DRVE. Our proposed FPGA based design not only exploits fine grained parallelism

for sampling process but is also highly energy efficient when compared with CPU and GPU versions. Our

extensive experiments indicate that our proposed technique compared with sequential (CPU) version provides

2x speedup and is 3x more energy efficient. When compared with GPU version, our FPGAs based strategy

provides comparable execution run-times while having 10 times better energy efficiency. We also show

that our FPGAs based strategy is more energy efficient when compared with parallel versions of CPUs.

We also measure graph characteristics of sampled graph and compare them with the original graph and

those produced by sequential sampling algorithms. These characteristics are within the bounds of originally

proposed algorithms [12] and closely match with the sequential version.
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