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A NEW NON-PARAMETRIC TEST FOR UMBRELLA
ALTERNATIVES

Gilbert Ngwa Muma, Ph.D

Western Michigan University, 2012

The Mann-Whitney statistics have commonly been used as a building block for many

tests involving ordered and umbrella alternatives. Such tests are based on pair wise

information that is obtained from all Ck
2 pairs of samples. This dissertation introduces

a new nonparametric test for testing umbrella alternatives in a completely randomized

one way design. This test is based on information obtained from a subset of the

Ck
3 trios of samples. Unlike most existing tests for umbrella alternatives, the new

test lays emphasis on the importance of testing across the peak of the umbrella,

thereby rendering the new test more efficient. The test has the flexibility of testing

other patterned alternatives such as the monotone ordering of location parameters

(increasing or decreasing). The mean and variance of the test statistic are derived

under the null hypothesis with the extensive details of the derivation included in the

write-up. I also present a simplified mean and variance result that is in a practical

form. Based on the derivation of the asymptotic distribution, the standardized

test statistic corresponding to the new test converges in distribution to a standard

normal distribution. Some numerical examples involving clinical data are analyzed. A

simulation study compared power estimates of the new tests under different sample

sizes and location parameters to those of seven other existing tests. The new test

generally competed with all other existing tests and performed better than all the

other tests in many scenarios.
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CHAPTER 1. INTRODUCTION

In many settings a dose response-relationship need not be monotonic in the dosage and

may follow an umbrella trend instead. In in-vitro mutagenicity assays, for example,

experimental organisms may not survive the toxic side effects of high doses of the test

agent, thereby actually reducing the number of organisms at risk of mutation and

leading to a downturn (i.e umbrella pattern) in the dose-response curve. The data

in Table 1 is taken from Table 6.10, of Hollander and Wolfe(1999). Plates containing

Salmonella bacteria of strain TA98 were exposed to various doses of Acid Red 114.

The tabled observations are the numbers of visible revertant colonies on 12 plates in

the study. Suppose a researcher wants to test the hypothesis H0 (no dose/treatment

effect) against the alternative that the peak of the dose response curve for Salmonella

bacteria of strain TA98 exposure to Acid Red 114 occurs at dosage level 333µg/ml.

Table 1: Salmonella Bacteria Strain

Doseµg/ml
0 100 333 1000 3333 10,000
22 60 98 60 22 23
23 59 78 82 44 21
35 54 50 59 33 25

The mean plot of this data shown in Figure 6 indicates an umbrella pattern

across the groups from the first group to the last group.

1.1. Ordered and Umbrella Alternatives

Dose-response studies are frequently used to assess the relative treatment effects

of increasing or decreasing dose levels of a substance in animal experiments or clinical

trials. A researcher comparing multiple treatments (or samples) in a one way setting

is often able to rank the treatments according to the order of magnitude of the

1
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Figure 1: Mean Plot of Salmonella Bacteria Strain by Group

effect of each treatment prior to testing. The guess of this order may be based on

the experience of the researcher. Within the one-way analysis of variance setting,

the researcher is often concerned with detecting deviations from the null hypothesis

of no treatment effect. Particular deviations of interest have included the omnibus

alternative (i.e., there is a treatment effect), the ordered alternative (i.e., there is

monotone treatment effect) and the umbrella alternative (i.e., there is a monotone

alternative that is subject to change indirection). The conventional one way analysis

of variance is not a good test for testing the ordered and umbrella alternatives. This

is because the F-test is independent of the order in which the group means occur

(Jonckheere, 1954). For instance, consider the effect of a drug, which is typically

increasing up to a certain point p, and then it decreases. The interest of the study

may be on finding the change-point group (i.e. the group where an inversion of trend

2



of the variable under study is observed). A change point is not merely a maximum (or

a minimum), but a further requirement is that the trend is monotonically increasing

before group p and monotonically decreasing afterwards.

The need for understanding the order of the magnitudes of the effects of treat-

ments has led to a rise in research and the development of distribution free tests

for testing homogeneity against ordered alternatives of treatments (no treatment

effects). Such testing procedures are generally based on ranks (Basso and Salmaso,

2011). Wolfe (2006) and Millen and Wolfe (2005) did an extensive review of such

tests. Two main versions of tests for testing patterns have been discussed in many

papers: one based on average ranks after ranking the combined data and one based

on pairwise rank statistics formed by ranking only within each of the pairs of samples

(Hettmansperger and Norton, 1987). That is, the tests are all based on pairwise

information that is obtained from all Ck
2 pairs of samples. However, tests based on

ranking within each of the combination of a trio of samples has not been investigated.

Several tests have been constructed to test patterned alternatives against ho-

mogeneity of the k-samples (H0 : µ1 = · · · = µk). The alternative varies depending

on the goal of a researcher. The most common alternatives that have been studied

for k-samples (k ≥ 3) have been;

Ha : µ1 ≤ µ2 ≤ · · · ≤ µk (µ1 < µk), (1)

Ha : µ1 ≥ µ2 ≥ · · · ≥ µk (µ1 < µk), (2)

Ha : µ1 ≤ · · · ≤ µp−1 ≤ µp ≥ µp+1 ≥ · · · ≥ µk. (3)

(atleast one strict inequality)

3



The monotone trend and umbrella trend of the location parameters have been

the most common patterns studied in the area of patterned alternatives. However,

most studies involving patterned ordered alternatives have been centered around the

monotone trend. There is still need for a substancial amount of effort in studying the

umbrella alternative. For the sake of clarity, throughout this dissertation Xij denotes

the jth observation in the ith sample.

1.2. Literature Review

The Mann-Whitney test statistic has been the framework of many tests involving

ordered alternatives. Many tests for testing umbrella alternatives have been an

extension of some test for testing monotone trends.

The tests proposed by Jonckheere (1954), Mack and Wolfe (1981) and Bhat

(2009) are all an extension of the Mann-Whitney test statistic. Jonckheere (1954)

proposed the following test for testing Ha : µ1 ≤ µ2 ≤ · · · ≤ µk (µ1 < µk) :

T =
∑
i<j

Uij (4)

where

Uij =

ni∑
l=1

nj∑
k=1

I(Xil < Xjk)

Notice, this is basically a combination of the 2-sample Wilcoxon which compares

two samples at a time. Terpstra and Magel (2003) proposed the following test for

testing the same hypothesis Ha : µ1 ≤ µ2 ≤ · · · ≤ µk (µ1 < µk) :

TM =

n1∑
j1=1

· · ·
nk∑

jk=1

I(X1j1 < X2j2 · · · < Xkjk) (5)

4



This test simultaneously tests all the groups. When k = 2 (two groups) this

tests becomes a two sample Wilcoxon test.

Terpstra et. al. (2011) introduced another test for testing the monotone trend

of the location parameters ( Ha : µ1 ≤ µ2 ≤ · · · ≤ µk (µ1 < µk) ). This test makes

use of Spearman’s correlation coefficient.

T =

n1∑
i1=1

· · ·
nk∑

ik=1

rs(X1i1 , X2i2 , . . . , Xkik), (6)

where rs(X1i1 , X2i2 . . . Xkik) denotes the Spearman rank correlation coefficient

based on the following data: {(1, X1i1), (2, X2i2), . . . (k,Xkik)}. This test proposed by

Terpstra et. al. (2011) has an advantage over many existing tests that test monotone

trends in that it provides an intuitive summary measure for the degree of association

between the response variable and the treatment groups.

So much work has been carried out in developing new tests for testing ordered

alternatives (monotonic treatment effects) in comparison to the few that are out the

for testing umbrella alternatives.

Mack and Wolfe (1981) proposed the following statistic to assess the umbrella

alternative in equation (3) when the changepoint group p is known prior to testing.

That is,

Ap =

p−1∑
i=1

p∑
j=i+1

Uij +
k−1∑
i=p

k∑
j=i+1

Uji, (7)

where Uij is the Mann-Whitney statistic between the ith and the jth samples.

Mack and Wolfe’s test is an extension of the Jonckheere Terpstra test. It is

based on pairwise rank statistics formed by ranking only within each of the pairs of

5



samples. Basso and Salaso(2011) and Hettmansperger and Norton (1987) pointed out

that no comparisons are made in the Mack-Wolfe test between samples preceding the

known peak and those following it. Hettmansperger and Norton (1987) stated the

absence of across-the-peak comparison as a problem.

Bhat (2009) developed the following k-sample rank test for testing umbrella

alternatives.

A =

p−1∑
i=1

aiUi,i+1 +
k−1∑
i=p

aiUi+1,i (8)

where a1, . . . , ak−1 are real constants to be chosen suitably and Uij is the two

sample Mann-Whitney U-statistic for the ith and jth samples. This test compares

successive groups. For instance,if p = 4 and k = 6, then A = U12+U23+U34+U54+U65.

The fact that Bhat’s test does not test across groups can cause very misleading results.

If a pattern has multiple peaks, Bhat’s test would test significant if any peak is tested

indicating the presence of an umbrella pattern which is not the case. Consider the

following data and it’s mean plot.

Table 2: Simulated Data

(Group 1) (Group 2) (Group 3) (Group 4) (Group 5)
-0.2645469 5.3564944 0.498346 1.6867112 -0.3965792
1.1782195 4.7889641 0.7456039 0.6361922 0.240107
-1.3325297 4.9146766 0.2423505 2.762041 1.2912549

Using Bhat’s test to test for a peak at Group4 (p = 4), the test will give the

following results;

A=25, Mean= 18, Variance= 16.5, Test Statistic = 1.7233, p value = 0.0424

6
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The results of Bhat’s test indicates an umbrella pattern with a peak at group 4 which

is far from reality. This is the set back of not testing across all groups. Secondly, like

the Mack Wolfe test, Bhat’s test does not test across the peak. However, the Mack

and Wolfe’s test rejects Ho. This disproves the conclusion made in Bhat (2009) that

Bhat’s test is preferable to the test proposed by Mack and Wolfe for testing umbrella

alternatives. As noticed, Bhat’s test indicates the presence of peaks, regardless of

whether the peak is the highest peak or the lowest peak.

Salman (2010 ) proposed the following test for umbrella alternatives

TA =

p−1∑
i1=1

k∑
i3=p+1

Ai1,p,i3 (9)

where

Ai1,p,i3 =

ni1∑
j1=1

np∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xpj2 > Xi3j3)

Salman does compare across the peak in his test but does not test the increasing

monotone alternative on the left of the peak and the decreasing monotone alternative

on the right of the peak. Salman’s statistic is formed by ranking within three groups

at a time.

Hettmansperger and Norton (1987) constructed a test based on average ranks

after ranking the combined data. Their test statistic is stated as

V =
k∑

j=1

λj(cj − cw)Rj (10)

8



where the set of constants c1 . . . ck specifies the pattern to be detected, λj =

nj/N , N =
∑
nj , cw =

∑
λjcj and Rj is the average rank of the jth group.

Basso and Salmaso (2011) introduced a permutation test for testing umbrella

alternates. Their test is suitable for small sample sizes but the computation can be

very time consuming for larger sample sizes. Just like the Mack and Wolfe’s test, the

pemutation test does not compare across the peak.

A new distribution free test for testing umbrella alternatives in the case where

the peak is known prior to testing is introduced in this dissertation. The flexibility

of this test in terms of how it can test other patterned alternatives is discussed.

Unlike other tests for testing umbrella alternatives that compare only two groups at

a time (Xi1j1 < Xi2j2) this new test compares 3 groups at a time e.g. (Xi1j1 < Xi2j2 <

Xi3j3). That is, the new test being proposed is based on information obtained from

the subset of the Ck
3 trios of samples. Therefore there should be a minimum of three

groups for this test to be applied.

The test takes into consideration the importance of testing across the peak as

well as both sides of the peak. A detailed description of how the test is carried out is

discussed. Some special cases in which the peak appears in varying positions are also

discussed. The second part of the research derives the mean and variance of the test.

Simplified formulas for the mean and variances of the test for both the balanced and

unbalanced cases. An extensive proof of the mean and variance of the test is outlined.

In the third chapter the asymptotic distribution of the test is derived, with the help

of theorems that relate to multisample U-statistics and other asymptotic theorems.

Some real life data are analyzed and their results are compared to other existing tests

for umbrella alternatives. An extensive simulation study is carried out in which I

9



compare powers from results of the proposed test to some selected existing tests.

1.3. New Statistics

1.3.1. Notations Used Throughout the Dissertation

p refers to the peak group

k is the number of groups

np is the sample size of the peak group

ni is the sample size of the nth group

Sb
a(c) is a set of c-tuplets, where each tuplet corresponds to c ordered integers ranging

from a to b. There are Cb−a+1
c elements in this set.

For example:

S4
1(3) = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)}

S4
1(5) = ∅. (null set)

1.3.2. Hypothesis and Assumptions

This dissertation introduces a new class of nonparametric tests of homogeneity

between the k treatment groups. That is,

H0 : µ1 = µ2 = · · · = µp−1 = µp = µp+1 = · · · = µk (11)

against the umbrella alternative in equation (3)

Assumptions

• The N random variables Xi,j, i = 1, 2, . . . , k and j = 1, 2, . . . ni are mutually

independent

10



• For each fixed i ∈ {1, 2, . . . , k}, the ni random variables X1,1, X1,2 . . . Xk,ni
are

a random sample from a continuous distribution with distribution function F .

1.3.3. Design

Let {Xij}, i = 1, 2, ....k, j = 1, 2, ..., ni, denote the N =
∑k

i=1 ni random

variables corresponding to k random samples from a completely randomized design

(CRD). The cumulative distribution function (CDF) for Xij is denoted as Fi(x); i =

1, 2, ....k. Thus the general design is a one way layout as follows:

g1 g2 g3 . . gp . . gk

X11 X21 X31 . . Xp1 . . Xk1

X12 X22 X32 . . Xp2 . . Xk2

X13 X23 X33 . . Xp3 . . Xk3

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

X1n1 X2n2 X3n3 . . Xpnp . . Xknk

The groups may have equal or unequal sample sizes (balanced or unbalanced).

1.3.4. New Test

This dissertation is proposing the following test statistic:

11



T = TL + TA + TR, (12)

This is a general case, where

TL =
∑

i∈Sp
1 (3)

Li1,i2,i3 and Li1,i2,i3 =

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 ≤ Xi2j2 ≤ Xi3j3)

TA =

p−1∑
i1=1

k∑
i3=p+1

Ai1,p,i3 and Ai1,p,i3 =

ni1∑
j1=1

np∑
j2=1

ni3∑
j3=1

I(Xi1j1 ≤ Xpj2 ≥ Xi3j3)

TR =
∑

i∈Sk
p (3)

Ri1,i2,i3 and Ri1,i2,i3 =

ni1∑
j1=1

ni2∑
j2=1

pi3∑
j3=1

I(Xi1j1 ≥ Xi2j2 ≥ Xi3j3)

In this dissertation, the indicator is 1 only if there is atleast 1 strict inequality.

1.3.5. Flexibility of New Test

The proposed test is very flexible in that it can be used to test multiple ordered

patterns. In addition to the umbrella alternative stated above, this test has the ability

to test the following types of alternative hypothesis:

• Ha : µ1 < µ2 > µ3

This hypothesis is testing an umbrella pattern with peak at 2 with three groups.

The corresponding test statistic for this hypothesis would be,

12



T = TA. (13)

When p = 2 and k = 3, the new test is the same as the test proposed by Salman

(2010).

• Ha : µ1 < µ2 < · · · < µk

This hypothesis is the same as that being tested by the Jonckheere-Terpstra

test. This hypothesis is testing for a peak at the last group (i.e. p = k). The

corresponding test for this hypothesis is

T = TL. (14)

• Ha : µ1 > µ2 > · · · > µk

In this case p = 1. This is also the hypothesis being tested by the Jonckheere-

Terpstra test. The corresponding test for this special case is,

T = TR. (15)

• Ha : µ1 < µ2 > µ3 > · · · > µk

The corresponding test for this hypothesis is

T = TA + TR. (16)

• Ha : µ1 < · · · < µk−2 < µk−1 > µk

13



The corresponding test for this is

T = TL + TA. (17)
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CHAPTER 2. EXAMPLES

2.1. General Example

In this section an illustration of how T is calculated is presented. Consider the

following unbalanced one-way table with six groups (n1 = n2 = n3, n4 = n5 = n6 = 1).

suppose we want to test for an umbrella alternative with the peak at group 3.

Group 1 2 3 4 5 6

a c e g i j

b d f

The following derivations detail the calculations of T for this special case.

Note that there are atleast two groups on the left of the peak which means, the

monotone increase on the left (TL) has to be tested, and there are atleast two groups

on the right of the peak as well which means the monotone derease on the right (TR)

has to be tested. There is atleast one group on both sides of the peak which means

there needs to be a test across the peak (TA).

T = TL + TA + TR

= L123 + A134 + A234 + A135 + A235 + A136 + A236 +R345 +R346 +R356 +R456

TL = L123

L123 = I(a ≤ c ≤ e) + I(a ≤ c ≤ f) + I(a ≤ d ≤ e) + I(a ≤ d ≤ f)

+I(b ≤ c ≤ e) + I(b ≤ c ≤ f) + I(b ≤ d ≤ e) + I(b ≤ d ≤ f)

15



TA = A134 + A234 + A135 + A235 + A136 + A236

A134 = I(a ≤ e ≥ g) + I(a ≤ f ≥ g) + I(b ≤ e ≥ g) + I(b ≤ f ≥ g)

A234 = I(c ≤ e ≥ g) + I(c ≤ f ≥ g) + I(d ≤ e ≥ g) + I(d ≤ f ≥ g)

A135 = I(a ≤ e ≥ i) + I(a ≤ f ≥ i) + I(b ≤ e ≥ i) + I(b ≤ f ≥ i)

A235 = I(c ≤ e ≥ i) + I(c ≤ f ≥ i) + I(d ≤ e ≥ i) + I(d ≤ f ≥ j)

A136 = I(a ≤ e ≥ j) + I(a ≤ f ≥ i) + I(b ≤ e ≥ j) + I(b ≤ f ≥ j)

A236 = I(c ≤ e ≥ j) + I(c ≤ f ≥ j) + I(d ≤ e ≥ j) + I(d ≤ f ≥ j)

TR = R345 +R346 +R356 +R456

R345 = I(e ≥ g ≥ i) + I(f ≥ g ≥ i)

R346 = I(e ≥ g ≥ j) + I(f ≥ g ≥ j)

R356 = I(e ≥ i ≥ j) + I(f ≥ i ≥ j)

R456 = I(g ≥ i ≥ j)

T is the sum of all the indicators in TL, TAand TR.

2.2. Numerical Example 1

Consider the data in Table 1. Although the mean plot for this data indicates

p = 3, the Ha is tested at p = 4 (1000/ml) so that the results can be compared to

the results analyzed by Hollander and Wolfe (1999).
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Ho : µ1 = µ2 = µ3 = µ4 = µ5 = µ6

Ha : µ1 < µ2 < µ3 < µ4 > µ5 > µ6

Based on the hypothesis,

p = 4, k = 6 and n1 = n2 = n3 = n4 = n5 = n6 = 0

T = TL + TA + TR

T = L123 + L124 + L134 + L234 + A145 + A146 + A245 + A246 + A345 + A346 +R456

T = 18 + 24 + 12 + 3 + 27 + 27 + 24 + 24 + 12 + 12 + 21

= 204

Using the formulas from chapter 3, (i.e. equation (19) and equation (21) ) the mean

and the variance for this example is given as follows

Mean

E(T ) =
33

6


 4

3

+ 2(4− 1)(6− 4) +

 6− 4 + 1

3




=
27

6
(4 + 12 + 1)

= 76.5
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Variance

V ar(T ) =

2

360

{
39

(
4

5

)
35 +

(
4

4

)
(48(35) + 27(34)) +

(
4

3

)
(9(35) + 12(34) + 4(33))

}
+

2

360

{
39

(
6− 4

5

)
35 +

(
6− 4

4

)
(48(35) + 27(34)) +

(
6− 4

3

)
(9(35) + 12(34) + 4(33))

}
+

(4− 1)(6− 4)33

45

{
(6− 1)(32) + 4(4− 1)(6− 4)32 +

5(6− 1)3 + 2(3)

4
+ 1

}
+ 2

(6− 4)

360

{
48

(
4− 1

3

)
35 +

(
4− 1

2

)
(40(35) + 10(34))

}
+ 2

(4− 1)

360

{
48

(
6− 4

3

)
35 +

(
6− 4

2

)
(40(35) + 10(34))

}
+ 2

(
4− 1

2

)(
6− 4

2

)
35

45

=
2

360
(0 + 13851 + 13068) +

2

360
(0 + 0 + 3267) +

162

45
(45 + 216 + 20.25 + 1)

+
4

360
(11664 + 31590) +

6

360
(0 + 10530) +

1458

45

= 149.55 + 18.15 + 1016.1 + 480.6 + 175.5 + 32.4

= 1872.3
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Note that 4

5

 = 0,

 2

5

 = 0,

 2

4

 = 0 and

 2

3

 = 0

z =
204− 76.5√

1872.3

= 2.9466

p value = 0.0016

The data is analyzed using the test statistics in equations (7), (9), (8), (10) and

the Kruskal Wallis test.

Table 3: Example 1 Results for Other Umbrella Tests

Test T Mean Variance Test Statistic pvalue
LAR 204 76.5 1872.3 2.9466 0.0016
MW 69 40.5 96.75 2.8975 0.0019
Sal 126 54 1016.1 2.2587 0.0120
Bhat 35 22.5 17.25 3.0096 0.0013
HN 1.6759 0.7500 0.1613 2.3057 0.0106
KW 13.4121 0.0198

Although the plot of the data indicates the peak at group 3, all the tests for

umbrella alternatives in Table 3 are consistent. They all reject H0 in favor of Ha.

2.3. Numerical Example 2

Anogenital distance is the distance from the anus to the genitalia, the base of

the penis or vagina. Consider the following data taken from Bradstreet (1992).
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Suppose a researcher wants to test for a dose related change in anogenital

distance . This researcher expects anogenital distance to decrease with an increase in

dose concentration. Forty pregnant female rats were assigned randomly to one of four

treatments (10 rats/treatment) including a Vehicle Control and graded oral doses (50,

100, 200 mg/kg) of an investigational compound. Dosing was performed once daily

on Days 16 through 19 of gestation. On Day 20, the animals were sacrificed. The

anogenital distance and sex of each fetus was recorded. Average anogenital distances

for each sex in a litter are shown in the data below.

a) For males, is there a dose related change in anogenital distance?

Table 4: Anogenital Distance

Dose Litter
(mg/kg) Sex 1 2 3 4 5 6 7 8 9 10

0 M 2.66 2.66 2.34 2.34 2.68 2.44 2.43 2.79 2.80 2.61
0 F 1.11 1.18 1.13 1.09 1.26 1.10 1.15 1.27 1.21 1.17
50 M 1.76 1.56 2.28 1.74 1.95 1.82 1.91 1.83 2.24 1.91
50 F 0.98 1.06 1.40 1.01 1.14 1.02 1.13 1.20 1.27 1.14
100 M 1.58 1.56 1.48 1.55 1.51 1.92 1.48 1.48 1.72 1.52
100 F 1.11 1.10 1.18 1.12 1.13 1.32 1.20 1.05 1.28 1.23
200 M 1.28 1.30 1.24 1.30 1.26 1.42 1.20 1.20 1.39 (a)
200 F 1.01 1.08 1.01 1.06 1.12 1.38 1.11 1.15 1.27 (a)

(a) All fetuses found dead

Given the goal of the study, we want to test the following hypothesis,

Ho : µ1 = µ2 = µ3 = µ4

Ha : µ1 > µ2 > µ3 > µ4

Based on the hypothesis, T is the same as in Equation (15).
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Figure 3: Mean Plot of Anogenital Distance

Note that p = 1, and k = 4. Therefore

T = TR =
∑

i∈S4
1(3)

Ri1i2i3 ,

where

Ri1i2i3 =

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

(Xi1j1 > Xi2j2 > Xi3j3)

S4
1(3) = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)} , and
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T = TR = R123 +R124 +R134 +R234

= 910 + 900 + 900 + 819

= 3529

Using the formulas from chapter 3, (i.e. Equation (18) and Equation (20) ) the

mean and the variance for this example is given as follows

Mean

∑
i∈S4

1(3)

ni1ni2ni3

1

3!
=

1

3!
(n1n2n3 + n1n2n4 + n1n3n4 + n2n3n4)

=
1

3!
(10.10.10 + 10.10.9 + 10.10.10.9 + 10.10.9)

= 616.6667

Variance

V ar(T ) = V ar(TR) =
2

360
(39r1 + r2 + r3), where

r1 =
∑

i∈S4
1(5)

ni1ni2ni3ni4ni5 = 0

r2 =
∑

i∈S4
1(4)

ni1ni2ni3ni4(9(ni1 + ni4) + 15(ni2 + ni3) + 27)

= n1n2n3n4(9(n1 + n4) + 15(n2 + n3) + 27)

= 10× 10× 10× 9× (9(10 + 9) + 15(10 + 10) + 27)

= 4482000, and
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r3 =
∑

i∈S4
1(3)

ni1ni2ni3(4ni1ni2 + 4ni2ni3 + ni1ni3 + 5(ni1 + ni3) + 2ni2 + 4)

r3 = 10.10.10(4.10.10 + 4.10.10 + 10.10 + 5(10 + 10) + 2.10 + 4)

= 10.10.9(4.10.10 + 4.10.9 + 10.9 + 5(10 + 9) + 2.10 + 4)

= 10.10.9(4.10.10 + 4.10.9 + 10.9 + 5(10 + 9) + 2.10 + 4)

= 10.10.9(4.10.10 + 4.10.9 + 10.9 + 5(10 + 9) + 2.10 + 4)

= 1024000 + 872100 + 872100 + 872100

= 3640300 .

thus

V ar(T ) =
2

360
(39(0) + 4482000 + 36403000) = 45123.89

Z =
3529− 616.6667√

45123.89
= 13.71,

and

p value = 0.0000 .

Table 5: Example 2a: Dose-Response in Males

Test T Mean Variance Test Statistic pvalue
LAR 3529 616.6667 45123.89 13.71 0.0000
MW 560.5 285 1591.667 6.91 0.0000
Bhat 281 145 183.333 10.0443 0.0000
HN -0.0244 -1.2229 0.0429 5.7878 0.0000
KW 34.3467 0.0000
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b) For females, is there a dose related change in anogenital distance?

Table 6: Example 2b: Dose-Response in Females

Test T Mean Variance Test Statistic pvalue
LAR 802 616.6667 45123.89 0.8725 0.1915
MW 316.5 285 1591.667 0.7896 0.2149
Bhat 164 145 183.333 1.4032 0.0803
HN -1.0581 -1.2229 0.0429 0.7960 0.2130
KW 2.1810 0.5357

The results in Table 5 and Table 6 differ between males and females. Based on

the results, Ho is rejected for males and is not rejected for females at α = 0. The

results are also consistent for all the tests. This indicates there is a dose-response

relationship in males but none in females.

2.4. Numerical Example 3

This data is from Pedersen et. al. (2008). This was a study carried out

to describe a Doppler waveform index representing the hepatic vein flow velocity

pattern and to examine its relationship to the degree of hepatic fibrosis. The study

examined the a consecutive series of patients who underwent percutaneous liver needle

biopsy and sonographic examination that included recording of hepatic vein Doppler

waveform 5 days before the biopsy. The study comprised 66 patients (37 females and

29 males).

After completion of the study, all tracings were evaluated blindly without knowledge

about the pathology report, in one session, and hepatic vein waveform index (HVWI)

was calculated as (maximum velocity - minimum velocity)/(maximum velocity). Two

pathologists blinded to the Doppler findings examined the biopsy specimens and

graded fibrosis. In case of disagreement, they both re-examined the specimens to

reach a consensus. Fibrosis was graded as: no fibrosis (group 1); mild fibrosis (group
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2); moderate fibrosis (group 3); severe fibrosis (group 4) and cirrhosis (group 5).

In order to test the relationship between degree of fibrosis and HVWI, suppose the

study wants to test the hypothesis that there is an umbrella pattern with peak at

group 2 (mild fibrosis).

Table 7: Hepatic Vein Waveform Index

HVWI
No fibrosis Mild fibrosis Moderate fibrosis Severe fibrosis Cirrhosis
1.7917 1.7124 1.5570 1.6726 1.4182
1.7090 1.6694 1.4017 1.2893 1.4017
1.6661 1.6033 1.3587 0.9950 1.3025
1.6099 1.5934 1.3256 0.4959 1.2000
1.5669 1.5438 1.1702 1.1372
1.5537 1.4612 0.8165 0.9289
1.5008 1.3620 0.6743
1.3884 1.2860 0.6711
1.3884 1.2860 0.6248
1.3289 1.2595 0.6280
1.2496 1.2198 0.5983
0.9950 1.2033 0.5354
0.2511 1.1702 0.4694
0.0594 1.1306 0.4397

0.9983 0.4430
0.9983 0.4033
0.8496 0.3967
0.7504 0.3769
0.6413 0.2511
0.6017
0.5554
0.5587
0.1388
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Figure 4: Mean Plot of Data in Table 7
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Ho : µ1 = µ2 = µ3 = µ4 = µ5

Ha : µ1 < µ2 > µ3 > µ4 > µ5

p = 2, k = 5

n1 = 14, n2 = 23, n3 = 6, n4 = 4, n5 = 19

T = TL + TA + TR

= 0 + TA + TR

= (A123 + A124 + A125) + (R234 +R235 +R245 +R345)

= (418 + 280 + 1808) + (115 + 828 + 509 + 176)

= 4144
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Mean

E(T ) = E(TA) + E(TR)

E(T ) =
1∑

i1=1

5∑
i3=3

ni1n2ni3

1

3
+
∑

i=S5
2(3)

ni1ni2ni3

1

3!

=
n1n2n3

3
+
n1n2n4

3
+
n1n2n5

3
+
n2n3n4

6
+
n2n3n5

6
+
n2n4n5

6
+
n3n4n5

6

=
14× 23× 6

3
+

14× 23× 4

3
+

14× 23× 19

3
+

23× 6× 4

6

+
23× 6× 19

6
+

23× 4× 19

6
+

6× 4× 19

6

= 3112.6667 + 896.3333

= 4009
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Variance

V ar(T ) = V ar(TA) + V ar(TR) + 2Cov(TA, TR)

V ar(TA) =
n∗1n2n

∗
3

45

(
n2(n

∗
1 + n∗3) + 4n∗1n

∗
3 +

5(n∗1 + n∗3) + 2n2

4
+ 1

)

n∗1 =
1∑

i=1

ni = n1 = 14

n∗3 =
5∑

i=3

ni = n3 + n4 + n5 = 6 + 4 + 19 = 29

np = n2 = 23

V ar(TA) =
14× 23× 29

45

(
23(14 + 29) + 4× 14× 29 +

5(14 + 29) + 2(23)

4
+ 1

)

=
9338

45
(989 + 1624 + 65.25 + 1)

= 555974.1444

V ar(TR) =
2

360
(39r1 + r2 + r3)

r1 =
∑

i∈S5
2(5)

ni1ni2ni3ni4ni5 = 0,

r2 =
∑

i∈S5
2(4)

ni1ni2ni3ni4(9(ni1 + ni4) + 15(ni2 + ni3) + 27)
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= n2n3n4n5(9(n2 + n5) + 15(n3 + n4) + 27)

= 23.6.4.19(9(23 + 19) + 15(6 + 4) + 27)

= 10488(378 + 150 + 27)

= 5820840

r3 =
∑

i∈S5
2(3)

ni1ni2ni3(4ni1ni2 + 4ni2ni3 + ni1ni3 + 5(ni1 + ni3) + 2ni2 + 4)

= n2n3n4(4n2n3 + 4n3n4 + n2n4 + 5(n2 + n4) + 2n3 + 4)

+ n2n3n5(4n2n3 + 4n3n5 + n2n5 + 5(n2 + n5) + 2n3 + 4)

+ n2n4n5(4n2n4 + 4n4n5 + n2n5 + 5(n2 + n5) + 2n4 + 4)

+ n3n4n5(4n3n4 + 4n4n5 + n3n5 + 5(n3 + n5) + 2n4 + 4)

= 23× 6× 4(4× 23× 6 + 4× 6× 4 + 23× 4 + 5(23 + 4) + 2× 6 + 4)

+ 23× 6× 19(4× 23× 6 + 4× 6× 19 + 23× 19 + 5(23 + 19) + 2× 6 + 4)

+ 23× 4× 19(4× 23× 4 + 4× 4× 19 + 23× 19 + 5(23 + 19) + 2× 4 + 4)

+ 6× 4× 19(4× 6× 4 + 4× 4× 19 + 6× 19 + 5(6 + 19) + 2× 4 + 4)

= 491832 + 4381362 + 2326588 + 296856

= 7496638

Therefore,

V ar(TR) =
2

360
(39(0) + 5820840 + 7496638)

= 73985.9889
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Cov(TA, TR) =
n2nl

360

48
∑

i∈S5
3(3)

ni1ni2ni3 +
∑

i∈S5
3(2)

ni1ni2(8n2 + 16ni1 + 16ni2 + 10)


nl = n1 + · · ·+ np−1 = n1 = 14

∑
S5
3(3)

ni1ni2ni3 = n3n4n5

= 6× 4× 19

= 456

∑
i∈S5

3(2)

ni1ni2(8np + 16ni1 + 16ni2 + 10)

= n3n4(8np + 16n3 + 16n4 + 10)

+ n3n5(8np + 16n3 + 16n5 + 10)

+ n4n5(8np + 16n4 + 16n5 + 10)

= 6× 4(8× 23 + 16× 6 + 16× 4 + 10)

+ 6× 19(8× 23 + 16× 6 + 16× 19 + 10)

+ 4× 19(8× 23 + 16× 4 + +16× 19 + 10)

= 8496 + 67716 + 42712

= 118924
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Cov(TA, TR) =
23× 14

360
(48× 456 + 118924)

= 125948.511

V ar(T ) = 555974.1444 + 73985.9889 + 2× 125948.511

= 881857.1553

The test statistics can thus be calulated as,

Z =
4144− 4009√
881857.1553

= 0.1438

Table 8: Example 3: Results of Other Umbrella Tests

Test T Mean Variance Test Statistic pvalue
LAR 4144 4009 881857.2 0.1438 0.4428
MW 707 601.5 6018.917 1.3599 0.0869
Sal 2506 3112.7 555974.1 -0.8136 0.7921
Bhat 232.5 280 1692.667 -1.1545 0.8759
HN -0.9781 -1.5999 0.0477 2.8461 0.0022
KW 15.0037 0.0047

The results in Table 8 are contradictory. Although the mean plot in Figure 4,

does not indicate a peak at group 2, HN rejects H0 at α = 0.05 (i.e. indicating peak

is at group 2) while MW is marginally significant (p value=0.0869). The LAR, Sal

and Bhat test however do not rejects H0.
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CHAPTER 3. THEORY

The first part of this chapter describes the distributional properties of T under the null

hypothesis. The expectation and variance of T under the null hypothesis are stated

along with a few worked results. The asymptotic null distribution of T is also stated.

The second part of the chapter gives detailed proofs of the expectation, variance and

the asymptotic distribution of T . The derivation of a few preliminary results are

also included. The fundamental elements of the proofs deal with probabilities such

as P (X1 < X2 < X3), P (X1 < X2 > X3) and P (X1 < X2 < X3, X1 < X4 < X5).

In the derivation of the asymptotic distribution of T , this treats T as a multisample

U-statistic and makes use of classical theorems for multisample U-statistics.

3.1. Main Results Under the Null Hypothesis

3.1.1. T is Distribution Free

Under H0 all observations (i.e. {Xij}) are IID F , where F is a continuous distri-

bution function. Thus, the possibilities of ties between the Xs have zero probability.

Moreover, this implies that T is distribution free under Ho. See, for example, Terpstra

and Magel (2003).

3.1.2. Expectation of T

The mean of T under H0 is presented in Theorem 3.1.

Theorem 3.1: Under H0, the expectation of T is given by,

E(T ) =
∑

i∈Sp
1 (3)

ni1ni2ni3

1

3!
+

p−1∑
i1=1

k∑
i3=p+1

ni1npni3

1

3
+
∑

i∈Sk
p (3)

ni1ni2ni3

1

3!
. (18)

See Section 3.2.2 for the detailed proof of this result. That said, when n1 =

n2 = · · · = nk = n, equation (18) reduces to,
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E(T ) =
n3

6


 p

3

+ 2(p− 1)(k − p) +

 k − p+ 1

3


 , (19)

where
(
n
x

)
denotes the number of ways to choose x objects from n objects.

3.1.3. Variance of T

The variance of T under H0 is presented in Theorem 3.2. In what follows we

make use of the following quatities:

l1 = 39
∑

i∈Sp
1 (5)

ni1ni2ni3ni4ni5 ,

l2 =
∑

i∈Sp
1 (4)

ni1ni2ni3ni4(9(ni1 + ni4) + 15(ni2 + ni3) + 27),

l3 =
∑

i∈Sp
1 (3)

ni1ni2ni3(4ni1ni2 + 4ni2ni3 + ni1ni3 + 5(ni1 + ni3) + 2ni2 + 4),

r1 = 39
∑

i∈Sk
p (5)

ni1ni2ni3ni4ni5 ,

r2 =
∑

i∈Sk
p (4)

ni1ni2ni3ni4(9(ni1 + ni4) + 15(ni2 + ni3) + 27),

r3 =
∑

i∈Sk
p (3)

ni1ni2ni3(4ni1ni2 + 4ni2ni3 + ni1ni3 + 5(ni1 + ni3) + 2ni2 + 4),
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nl = n1 + · · ·+ np−1,

nr = np+1 + · · ·+ nk,

a = np(nl + nr) + 4nlnr +
5(nl + nr) + 2np

4
+ 1,

u1 = 48
∑

i∈Sp−1
1 (3)

ni1ni2ni3 ,

u2 =
∑

i∈Sp−1
1 (2)

ni1ni2(8np + 16ni1 + 16ni2 + 10),

v1 = 48
∑

i∈Sk
p+1(3)

ni1ni2ni3 ,

v2 =
∑

i∈Sk
p+1(2)

ni1ni2(8np + 16ni1 + 16ni2 + 10),

w1 =
∑

i∈Sp−1
1 (2)

ni1ni2 , and

w2 =
∑

i∈Sk
p+1(2)

ni1ni2

Recall that ∑
i∈Sb

a(c)

= 0 if b− a+ 1 < c

.

Theorem 3.2: Under H0, the variance of T is given by,
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V ar(T ) =
2

360
(l1 + l2 + l3 + r1 + r2 + r3) +

np

45
(nlnra+ w1w2)

+
np

360
(nr(u1 + u2) + nl(v1 + v2)) . (20)

Section 3.2.3 contains the proof of this result. That said, when

n1 = n2 = · · · = nk = n, equation (20) reduces to,

V (T ) =
2

360

{
39

(
p

5

)
n5 +

(
p

4

)
(48n5 + 27n4) +

(
p

3

)
(9n5 + 12n4 + 4n3)

}
+

2

360

{
39

(
k − p

5

)
n5 +

(
k − p

4

)
(48n5 + 27n4) +

(
k − p

3

)
(9n5 + 12n4 + 4n3)

}
+

(p− 1)(k − p)n3

45

{
(k − 1)n2 + 4(p− 1)(k − p)n2 +

5(k − 1)n+ 2n

4
+ 1

}

+ 2
(k − p)

360

{
48

(
p− 1

3

)
n5 +

(
p− 1

2

)
(40n5 + 10n4)

}
+ 2

(p− 1)

360

{
48

(
k − p

3

)
n5 +

(
k − p

2

)
(40n5 + 10n4)

}
+ 2

(
p− 1

2

)(
k − p

2

)
n5

45
. (21)
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3.1.4. Examples of Computed Means and Variances

Table 9 contains the calculated means and variances of some randomly selected

sample sizes and peaks. In the case where n1 = n2 = · · · = nk = n, the mean when

p = 1 is equal to the mean when p = k and the variance when p = 1 is equal to the

variance when p = k.

Table 9: Some Computed Means and Variances

n1 n2 n3 n4 n5 n6 Peak Mean Variance
2 2 2 - - - 1 1.3333 2.8444
2 2 2 - - - 2 2.6667 5.5111
2 2 2 - - - 3 1.3333 2.8444
3 3 3 - - - 1 4.5 18.1500
5 5 5 - - - 2 41.6667 461.1111
10 10 10 - - - 1 166.6667 5688.889
10 10 10 - - - 2 333.3333 14022.22
2 2 2 2 - - 1 5.3333 22.3111
3 3 3 3 - - 3 22.5 211.95
7 7 7 7 - - 3 285.8333 13561.84
9 9 9 9 - - 4 486 30354.75
4 4 4 4 4 - 1 106.6667 2476.089
4 4 4 4 4 - 2 106.6667 2779.022
11 11 11 11 11 - 4 2218.333 411375.1
9 9 9 9 9 9 3 2065.5 428830.2
1 2 3 - - - 1 1 2.1
2 3 7 - - - 2 14 90.3
19 14 9 - - - 3 399 25416.3
5 10 11 12 - - 2 603.3333 45728.22
2 3 1 3 - - 1 6.5 30.75
1 6 7 9 - - 3 154 4240.6
4 8 13 20 - - 3 1109.333 114460.1
3 2 4 1 3 - 4 17.3333 199.4222
6 14 16 18 19 - 1 4767.333 1287338
6 7 9 12 14 - 2 1211 156730
17 6 8 16 2 - 4 1229.333 126704.6
16 6 11 3 19 - 5 1728.833 221884
2 2 5 6 3 2 6 107.3333 2641.511
10 2 4 5 13 14 1 1373 156319.4
7 3 6 4 13 5 3 641.3333 62408.16
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3.1.5. Asymptotic Distribution of T

Next consider the asymptotic distribution of T . T can essentially be viewed as

a linear combination of U-statistics. It follows from Theorem 4.5.1 of Koroljuk and

Borovskich that T is asymptotically normal. This result is expressed in Theorem 3.3

Theorem 3.3: Under H0,

Z =
T − E(T )√

V (T )

d→ N(0, 1) (22)

as n = min(n1, n2, . . . nk) → ∞ provided, for i = 1, 2, . . . , k, that ni

N
→ λi ∈ (0, 1),

where

N =
k∑

i=1

ni.

3.2. Proofs

3.2.1. Preliminary Results

This section presents some important results which will be useful in deriving

the expectation and the variance of T . To begin, the following two results are used

for the expection of T :

P (X1 < X2 < X3) = 1
6

and

P (X1 < X2 > X3) = 1
3

For example,
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P (X1 < X2 < X3) =

∫ ∞
−∞

∫ ∞
x1

∫ ∞
x2

f(x1)f(x2)f(x3)dx3dx2dx1

=

∫ ∞
−∞

∫ ∞
x1

f(x1)f(x2)

(∫ ∞
x2

f(x3)dx3

)
dx2dx1

=

∫ ∞
−∞

f(x1)

(∫ ∞
x1

f(x2) (1− F (x2)) dx2

)
dx1

Next, let u = 1− F (x2) so du = −f(x2)dx2 and do a

u-substitution to get,

P (X1 < X2 < X3) =

∫ ∞
−∞

f(x1)

(
−
∫ 1−F (∞)

1−F (x1)

udu

)
dx1

=

∫ ∞
−∞

f(x1)

(∫ 1−F (x1)

0

udu

)
dx1

=

∫ ∞
−∞

f(x1)

(
1

2
u2
∣∣∣∣1−F (x1)

0

)
dx1

=

∫ ∞
−∞

f(x1)
1

2
(1− F (x1))

2dx1.

Now let u = 1− F (x1) so du = −f(x1)dx1 and do another u-substitution to get,

P (X1 < X2 < X3) = −
∫ 0

1

1

2
u2du

=
1

2

∫ 1

0

u2∂u =
1

2
.
1

3
u3
∣∣∣∣1
0

=
1

2
.
1

3
(1) =

1

3!
=

1

6
.
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Following the same logics as the previous derivation we get,

P (X1 < X2 > X3) =

∫ ∞
−∞

∫ x2

−∞

∫ x2

−∞
f(x1)f(x2)f(x3)dx2dx1dx3

=

∫ ∞
−∞

∫ x2

−∞
f(x2)f(x1)

(∫ x2

−∞
f(x3)dx3

)
dx2dx1

=

∫ ∞
−∞

∫ x2

−∞
f(x2)f(x1) (F (x2)− F (−∞)) dx2dx1

=

∫ ∞
−∞

∫ x2

−∞
f(x2)f(x1)F (x2)dx2dx1

=

∫ ∞
−∞

f(x2)F (x2)

(∫ x2

−∞
f(x1)dx1

)
dx2

=

∫ ∞
−∞

f(x2)F (x2) (F (x2)) dx2

=

∫ ∞
−∞

f(x2)F
2(x2)dx2

=

∫ 1

0

u2du =
1

3
u3
∣∣∣∣1
0

=
1

3
.

Next we consider results needed for the variance of T. Covariance results such

as Cov(I(X1 < X2 < X3)I(X1 < X4 < X5)) will be required.
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Note first that,

Cov(I(X1 < X2 < X3)I(X1 < X4 < X5)) =

E [I(X1 < X2 < X3)I(X1 < X4 < X5)]− E [I(X1 < X2 < X3)]E [I(X1 < X4 < X5)] =

P (X1 < X2 < X3, X1 < X4 < X5)− P (X1 < X2 < X3)P (X1 < X4 < X5).

The marginal expectations have already been discussed. Thus, all that is needed is

the various joint expectations. These are given below.

E(I(X1 < X2 < X3), I(X1 < X4 < X5)) =
1

20

E(I(X1 < X2 < X3), I(X2 < X4 < X5)) =
1

40

E(I(X1 < X3 < X4), I(X2 < X3 < X5)) =
1

30

E(I(X1 < X4 < X5), I(X2 < X3 < X4)) =
1

40

E(I(X1 < X2 < X3), I(X3 < X4 < X5)) =
1

120

E(I(X1 < X2 < X5), I(X3 < X4 < X5)) =
1

20

E(I(X1 < X2 < X3), I(X1 < X2 < X4)) =
1

12
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E(I(X1 < X2 < X3), I(X1 < X3 < X4)) =
1

24

E(I(X1 < X2 < X4), I(X1 < X3 < X4)) =
1

12

E(I(X1 < X2 < X3), I(X2 < X3 < X4)) =
1

24

E(I(X1 < X2 < X4), I(X2 < X3 < X4)) =
1

24

E(I(X1 < X3 < X4), I(X2 < X3 < X4)) =
1

12

E(I(X1 < X3 > X4), I(X2 < X3 > X5)) =
1

5

E(I(X1 < X2 > X3), I(X1 < X2 > X4)) =
1

4

E(I(X1 < X3 > X4), I(X2 < X3 > X4)) =
1

4

E(I(X1 < X2 < X3), I(X1 < X4 > X5)) =
3

40

E(I(X1 < X2 < X3), I(X2 < X4 > X5)) =
7

120

E(I(X1 < X2 < X3), I(X3 < X4 > X5)) =
1

30
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E(I(X1 < X2 < X4), I(X3 < X4 > X5)) =
1

10

E(I(X1 < X2 < X3), I(X1 < X3 > X4)) =
1

8

Let us only consider the first expectation, which we can write as

E
[
I(Xi1 < Xi2 < Xi3)I(Xi′1

< Xi′2
< Xi′3

)
]
,

where i2 6= i′2 and i3 6= i′3. Since this is equivalent to P (Xi1 < Xi2 < Xi3), Xi′1
<

Xi′2
< Xi′3

) we get,

P
(
Xi1 < Xi2 < Xi3 ∩Xi1 < Xi′2

< Xi′3

)
=

∫ ∞
−∞

∫ ∞
xi1

∫ ∞
xi2

∫ ∞
xi′1

∫ ∞
xi′2

f(xi1)f(xi2)f(xi3)f(xi′2)f(xi′3)dxi1dxi2dxi3dxi′2dxi′3

=

∫ ∞
−∞

∫ ∞
xi1

∫ ∞
xi2

∫ ∞
xi′1

f(xi1)f(xi2)f(xi3)f(xi′2)dxi1dxi2dxi3dxi′2

[∫ ∞
xi′2

f(xi′3)dxi′3

]

=

∫ ∞
−∞

∫ ∞
xi1

∫ ∞
xi2

∫ ∞
xi′1

f(xi1)f(xi2)f(xi3)f(xi′2)(1− F (xi′2))dxi1dxi2dxi3dxi′2

=

∫ ∞
−∞

∫ ∞
xi1

∫ ∞
xi2

f(xi1)f(xi2)f(xi3)dxi1dxi2dxi3

[∫ ∞
xi1

f(xi′2)(1− F (xi′2))dxi′2

]

=

∫ ∞
−∞

∫ ∞
xi1

∫ ∞
xi2

f(xi1)f(xi2)f(xi3)
1

2
(1− F (xi1))

2dxi1dxi2dxi3

=

∫ ∞
−∞

∫ ∞
xi1

f(xi1)f(xi2)
1

2
(1− F (xi1))

2dxi1dxi2

[∫ ∞
xi2

f(xi3)dxi3

]
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=

∫ ∞
−∞

∫ ∞
xi1

f(xi1)f(xi2)
1

2
(1− F (xi1))

2(1− F (xi2))dxi1dxi2

=

∫ ∞
−∞

f(xi1)
1

2
(1− F (xi1))

2dxi1

[∫ ∞
xi1

f(xi2)(1− F (xi2))dxi2

]

=

∫ ∞
−∞

f(xi1)
1

2
(1− F (xi1))

21

2
(1− F (xi1))

2dxi1

=

∫ ∞
−∞

f(xi1)
1

4
(1− F (xi1))

4dxi1

=
1

4

∫ 0

1

−u4du =
1

20

Now, from a previous result, we know that

P (Xi1 ≤ Xi2 ≤ Xi3) =
1

6
and

P
(
Xi1 ≤ Xi′2

≤ Xi′3

)
=

1

6

Therefore, it follows that,

Cov(I(Xi1 ≤ Xi2 ≤ Xi3), I(Xi1 ≤ Xi′2
≤ Xi′3

)) =
1

20
− 1

6

1

6
=

1

45
.

Finally, we conclude this section with some more examples of some results

that will be of use. They easily follow from the fact that u = F (x) has a uniform
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distribution on the interval (0, 1).

E
(
(1− F (x))4

)
=

1

5

E
(
(1− F (x))2(1− F 2(x))

)
=

3

10

E
(
(1− F (x))2

)
=

1

3

E
(
(1− F 2(x))2

)
=

8

15

E
(
(1− F 2(x))

)
=

2

3

E
(
F 2(x)(1− F (x))2

)
=

1

30

E
(
F 3(x)(1− F (x))

)
=

1

20

E
(
F (x)− F 2(x)

)
=

1

6

E
(
F 4(x)

)
=

1

5
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3.2.2. Proof of Expectation of T

The expectation of T can be expressed as

E(T ) = E(TL) + E(TA) + E(TR),where

E(TL) = E

 ∑
i∈Sp

1 (3)

Li1,i2,i3

 =
∑

i∈Sp
1 (3)

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

E (I(Xi1j1 < Xi2j2 < Xi3j3))

=
∑

i∈Sp
1 (3)

ni1ni2ni3

1

3!
,

E(TA) = E

(
p−1∑
i1=1

k∑
i3=p+1

Ai1,p,i3

)
=

p−1∑
i1=1

k∑
i3=p+1

ni1∑
j1=1

np∑
j2=1

ni3∑
j3=1

E (I(Xi1j1 < Xpj2 > Xi3j3))

=

p−1∑
i1=1

k∑
i3=p+1

ni1npni3

1

3
, and

E(TR) = E

 ∑
i∈Sk

p (3)

Ri1,i2,i3

 =
∑

i∈Sk
p (3)

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

E (I(Xi1j1 > Xi2j2 > Xi3j3))

=
∑

i∈Sk
p (3)

ni1ni2ni3

1

3!
.
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3.2.3. Proof of Variance of T

To begin, note that

V ar(T ) = V (TL + TA + TR)

= V (TL) + V (TA) + V (TR) + 2Cov(TL, TA) + 2Cov(TA, TR)

+ 2Cov(TL, TR)

In what follows, we treat each of the six quantities individually.

In this section, each component of the V ar(T ) is derived seperately.

Variance of TL

Here,

V (TL) = Cov(TL, TL) = Cov

 ∑
i∈Sp

1 (3)

Li1i2i3 ,
∑

i′∈Sp
1 (3)

Li1i2i3



=
∑

i∈Sp
1 (3)

V ar(Li1i2i3) + 2
∑

i∈Sp
1 (3)

∑
i′∈Sp

1 (3)

Cov(Li1i2i3 , Li′1i
′
2i
′
3
) (23)

In what follows we solve for V ar(Li1i2i3) and Cov(Li1i2i3 , Li′1i
′
2i
′
3
)

It is important to note that i1 < i2 < i3 for i and i′1 < i′2 < i′3 for i′.

In order to derive the variance of TL, it is important to first identify all the

possible cases for i and i′. The list below shows there are basically 14 cases. For

example, in case 3, i2 = i′1 and all other subscripts are distinct. That is, there is only

one tied subscript and it occurs in the second position of i and the first position of

i′. We note that the case where i = i′ is not included as this is the same as i2 = i′.

Hence, the factor of 2 for the covariance terms.
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Case i1 i2 i3 i′1 i′2 i′3 Ties

1 − − − − − − 0

2 x − − x − − 1

3 − x − x − − 1

4 − x − − x − 1

5 − x − − − x 1

6 − − x x − − 1

7 − − x − − x 1

8 x x − x x − 2

9 x − x x x − 2

10 x − x x − x 2

11 − x x x x − 2

12 − x x x − x 2

13 − x x − x x 2

14 x x x x x x 3

The covariances for each of these cases of ties are derived and summed below to

obtain the variance of TL. Note that case 14 corresponds to V ar(Li1i2i3), while cases

1 through 13 pertains to Cov(Li1i2i3 , Li′1i
′
2i
′
3
).

Case 1

Under case 1, all of the covariance terms are equal to zero since there are no tied

subscripts. That is, there are six distinct groups. Under Case 1, i 6= i′ . For example,
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Cov(L123, L456) falls under this case. Therefore Cov(Ti1i2i3 , Ti′1i′2i′3) = 0.

Case 2

Under Case 2, i1 = i′1 , i2 6= i′2 and i3 6= i′3. For example , Cov(TL123 , TL145) falls under

this case. To begin, note that

Cov(Li1i2i3 , Li1i′2i
′
3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xi3j3),

ni1∑
j′1=1

ni′2∑
j′2=1

ni′3∑
j′3=1

I(Xi1j′1
< Xi′2j

′
2
< Xi′3j

′
3
)



=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni′2∑
j′2=1

ni′3∑
j′3=1

Cov
(
I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1

< Xi′2j
′
2
< Xi′3j

′
3
)
)

Now, since i1 = i′1 , i2 6= i′2 and i3 6= i′3 it follows that j1 may or may not be

equal to j′1. Hence, we get the following 2 subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 x - - x - - 1

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

2.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xi′2j

′
2
< Xi′3j

′
3
)) = 0

2.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j1 < Xi′2j
′
2
< Xi′3j

′
3
) = 6

120
− 1

3!
1
3!

= 1
45

Lastly multiplying 2.2 by the corresponding number of terms leads to the desired

result is thus;
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Cov(Li1i2i3 , Li1i′2i
′
3
) = ni1ni2ni3ni′2

ni′3

(
− 1

360

)

Case 3

Under Case 3, i1 6= i′1, i2 = i′1 and i3 6= i′3 . For example , Cov(L123, L245) falls under

this case. To begin, note that

Cov(Li1i2i3 , Li2i′2i
′
3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xi3j3),

ni2∑
j′1=1

ni′2∑
j′2=1

ni′3∑
j′3=1

I(Xi2j′2
< Xi′2j

′
2
< Xi′3j

′
3
)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni′2∑
j′2=1

ni′3∑
j′3=1

Cov
(
I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi2j′2

< Xi′2j
′
2
< Xi′3j

′
3
)
)

Now, since i1 6= i′1, i2 = i′1 and i3 6= i′3 it follows that j2 may or may not be

equal to j′2. Hence, we get the following 2 subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 - x - x - - 1

Recall that an x denotes a tied subscript. Next, using our previously derived

covariance results we obtain the following:

3.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi2j′2
< Xi′2j

′
2
< Xi′3j

′
3
)) = 0

3.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi2j2 < Xi′2j
′
2
< Xi′3j

′
3
) = 3

120
− 1

3!
1
3!

= − 1
360
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Multiplying 3.2 by the corresponding number of terms leads to the desired result is

thus;

Cov(Li1i2i3 , Li2i′2i
′
3
) = ni1ni2ni3ni′2

ni′3

(
1

45

)

Case 4

Under Case 4, i1 6= i′1, i2 = i′2 and i3 6= i′3. For example, Cov(L134, L235) falls under

this case. To begin, note that

Cov(Li1i2i3 , Li′1i2i
′
3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xi3j3),

ni′1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi′1j
′
1
< Xi2j′2

< Xi′3j
′
3
)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi′1j
′
1
< Xi2j′2

< Xi′3j
′
3
)).

Now, since i1 6= i′1, i2 = i′2 and i3 6= i′3, it follows that j2 may or may not be equal to

j′2 . Hence, we get the following 2 subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 - x - - x - 1

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

4.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi′1j
′
1
< Xi2j′2

< Xi′3j
′
3
)) = 0,

4.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi′1j
′
1
< Xi2j2 < Xi′3j

′
3
)) = 4

120
− 1

3!
1
3!

= 1
180

,

Lastly, multiplying 4.2 by the corresponding number of terms, and then summing,
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leads to the desired result. That is,

Cov(Li1i2i3 , Li′1i2i
′
3

= ni1ni2ni3ni′1
ni′3

(
1

180

)

Case 5

Under Case 5, i1 6= i′1, i2 = i′3 and i3 6= i′3. For example, Cov(L145, L234) falls under

this case. To begin, note that

Cov(Li1i2i3 , Li′1i
′
2i2

)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xi3j3),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi′1j
′
1
< Xi′2j

′
2
< Xi2j′2

)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi′1,j
′
1
< Xi′2j

′
2
< Xi2j′2

)).

Now, since i1 6= i′1, i2 = i′3 and i3 6= i′3, it follow that j2 may or may not be equal to

j′3 Hence, we get the following 2 subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 - x - - - x 1

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

5.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi′1j
′
1
< Xi′2j

′
2
< Xi2j′2

)) = 0,

5.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi′1j
′
1
< Xi′2j

′
2
< Xi2j2)) = 3

120
− 1

3!
1
3!

= − 1
360

,

Lastly, multiplying 5.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

Li1i2i3 , Li′1,i
′
2,i2

) = ni1ni2ni3ni′1
ni′2

(
− 1

360

)
.
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Case 6

Under Case 6, i1 6= i′1, i2 6= i′2 and i3 = i′1. For example, Cov(L123, L345) falls under

this case. To begin, note that

Cov(Li1i2i3 , Li3,i′2,i
′
3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xi3j3),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi3j′3
< Xi′2j

′
2
< Xi′3j

′
3
)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi3j′3
< Xi′2j

′
2
< Xi′3j

′
3
)).

Now, sincei1 6= i′1, i2 6= i′2 and i3 = i′1, it follows that j3 may or may not be equal to

j′1. Hence, we get the following two subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 - - x x - - 1

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

6.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi3j′3
< Xi′2j

′
2
< Xi′3j

′
3
)) = 0,

6.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi3j3 < Xi′2j
′
2
< Xi′3j

′
3
)) = 1

120
− 1

3!
1
3!

= − 7
360

Lastly, multiplying 6.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

Cov(Li1i2i3 , Li3,i′2,i
′
3
) = ni1ni2ni3ni′2

ni′3

(
− 7

360

)

Case 7

Under Case 7, i1 6= i′1, i2 6= i′2 and i3 = i′3. For example, Cov(L123, L345) falls under
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this case. To begin, note that

Cov(Li1i2i3 , Li′1,i
′
2,i3

)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xi3j3),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi′1j
′
1
< Xi′2j

′
2
< Xi3j′3

)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi′1j
′
1
< Xi′2j

′
2
< Xi3j′3

)).

Now, since i1 6= i′1, i2 6= i′2 and i3 = i′3, it follows that j3 may or may not be equal to

j′3 . Hence, we get the following two subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 - - x - - x 1

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

7.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi′1j
′
1
< Xi′2j

′
2
< Xi3j′3

)) = 0,

7.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi′1j
′
1
< Xi′2j

′
2
< Xi3j3)) = 6

120
− 1

3!
1
3!

= 1
45

Lastly, multiplying 7.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

Cov(Li1i2i3 , Li′1,i
′
2,i3

) = ni1ni2ni3ni′1
ni′2

(
1

45

)
.

Case 8

Under Case 8, i1 = i′1 and i2 = i′2. For example, Cov(L123, L124) falls under this case.
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To begin, note that

Cov(Li1i2i3 , Li1i2i′3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xi3j3),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi1j′1
< Xi2j′2

< Xi′3j
′
3
)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xi2j′2

< Xi′3j
′
3
)).

Now, since i1 = i′1 and i2 = i′2, it follow that j1 may or may not be equal to j′1 and j2

may or may not be equal to j′2. Hence, we get the following four subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 x - - x - - 1

3 - x - - x - 1

4 x x - x x - 2

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

8.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xi2j′2

< Xi′3j
′
3
)) = 0,

8.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j1 < Xi2j′2
< Xi′3j

′
3
)) = 6

120
− 1

3!
1
3!

= 1
45

,

8.3 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xi2j2 < Xi′3j

′
3
)) = 4

120
− 1

3!
1
3!

= 1
180

, and

8.4 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j1 < Xi2j2 < Xi′3j
′
3
)) = 2

24
− 1

3!
1
3!

= 1
18

.

Lastly, multiplying 8.2 through 8.4 by the corresponding number of terms, and then

summing, leads to the desired result. That is,

Cov(Li1i2i3 , Li1i2i′3
)

= ni1ni2(ni2 − 1)ni3ni′3

(
1

45

)
+ ni1(ni1 − 1)ni2ni3ni′3

(
1

180

)
+ ni1ni2ni3ni′3

(
1

18

)
.
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Case 9

Under Case 9, i1 = i′1, i2 6= i′2 and i3 = i′2. For example, Cov(L123, L134) falls under

this case. To begin, note that

Cov(Li1i2i3 , Li1i2i′3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xi3j3),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi1j′1
< Xi3j′3

< Xi′3j
′
3
)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xi3j′3

< Xi′3j
′
3
)).

Now, since i1 = i′1, i2 6= i′2 and i3 = i′2, it follow that j1 may or may not be equal to

j′1 and j3 may or may not be equal to j′2. Hence, we get the following four subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 x - - x - - 1

3 - - x - x - 1

4 x - x x x - 2

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

9.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xi3j′3

< Xi′3j
′
3
)) = 0,

9.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j1 < Xi3j′3
< Xi′3j

′
3
)) = 6

120
− 1

3!
1
3!

= 1
45

,

9.3 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xi3j3 < Xi′3j

′
3
)) = 3

120
− 1

3!
1
3!

= − 1
360

,

and

9.4 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j1 < Xi3j3 < Xi3j′3
)) = 1

24
− 1

3!
1
3!

= 1
72

.
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Lastly, multiplying 9.2 through 9.4 by the corresponding number of terms, and then

summing, leads to the desired result. That is,

Cov(Li1i2i3 , Li1i2i′3
)

= ni1ni2ni3(ni3 − 1)ni′3

(
1

45

)
+ ni1(ni1 − 1)ni2ni3ni′3

(
− 1

360

)
+ ni1ni2ni3ni′3

(
1

72

)
.

Case 10

Under Case 10, i1 = i′1, i2 6= i′2 and i3 = i′3. For example, Cov(L124, L134) falls under

this case. To begin, note that

Cov(Li1i2i3 , Li1,i′2,i3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xi3j3),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi1j1 < Xi2j2 < Xi3j3)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j1 < Xi2j2 < Xi3j3)).

Now, since i1 = i′1, i2 6= i′2 and i3 = i′3, it follows that j1 may or may not be

equal to j′1 and j3 may or may not be equal to j′3. Hence, we get the following four

subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 x - - x - - 1

3 - - x - - x 1

4 x - x x - x 2

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

10.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xi′2j

′
2
< Xi3j′3

)) = 0,
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10.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j1 < Xi′2j
′
2
< Xi3j′3

)) = 6
120
− 1

3!
1
3!

= 1
45

,

10.3 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xi′2j

′
2
< Xi3j3)) = 6

120
− 1

3!
1
3!

= 1
45

, and

10.4 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j1 < Xi′2j
′
2
< Xi3j3)) = 2

24
− 1

3!
1
3!

= 1
18

.

Lastly, multiplying 10.2 through 10.4 by the corresponding number of terms, and

then summing, leads to the desired result. That is,

Cov(Li1i2i3 , Li1i2i′3
)

= ni1ni2ni3(ni3 − 1)ni′2

(
1

45

)
+ ni1(ni1 − 1)ni2ni3ni′2

(
1

45

)
+ ni1ni2ni3ni′2

(
1

18

)
.

Case 11

Under Case 11, i1 6= i′1, i2 = i′1 and i3 = i′2. For example, Cov(L123, L234) falls under

this case. To begin, note that

Cov(Li1i2i3 , Li2,i3,i′3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xi3j3),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi2j′2
< Xi3j′3

< Xi′3j
′
3
)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi2j′2
< Xi3j′3

< Xi′3j
′
3
)).

Now, since i1 6= i′1, i2 = i′1 and i3 = i′2, it follows that j2 may or may not be equal to

j′1 and j3 may or may not be equal to j′2. Hence, we get the following four subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 - x - x - - 1

3 - - x - x - 1

4 - x x x x - 2
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Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

11.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xi2j′2

< Xi′3j
′
3
)) = 0,

11.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi2j2 < Xi3j′3
< Xi′3j

′
3
)) = 3

120
− 1

3!
1
3!

= − 1
360

,

11.3 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi2j′2
< Xi3j3 < Xi′3j

′
3
)) = 3

120
− 1

3!
1
3!

= − 1
360

,

and

11.4 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi2j2 < Xi3j3 < Xi3j′3
)) = 1

24
− 1

3!
1
3!

= 1
72

.

Lastly, multiplying 11.2 through 11.4 by the corresponding number of terms, and

then summing, leads to the desired result. That is,

Cov(Li1i2i3 , Li2,i3,i′3
)

= ni1ni2ni3(ni3 − 1)ni′3

(
− 1

360

)
+ ni1ni2(ni2 − 1)ni3ni′3

(
− 1

360

)
+ ni1ni2ni3ni′3

(
1

72

)
.

Case 12

Under Case 12, i1 6= i′1, i2 = i′1 and i3 = i′3. For example, Cov(L123, L124) falls under

this case. To begin, note that

Cov(Li1i2i3 , Li2,i′2,i3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xi3j3),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi2j′2
< Xi′2j

′
2
< Xi3j′3

)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi2j′2
< Xi′2j

′
2
< Xi3j′3

)).

Now, since i1 6= i′1, i2 = i′1 and i3 = i′3, it follows that j2 may or may not be equal to

j′1 and j3 may or may not be equal to j′3. Hence, we get the following four subcases.
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j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 - x - x - - 1

3 - - x - - x 1

4 - x x x - x 2

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

12.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi2j′2
< Xi′2j

′
2
< Xi3j′3

)) = 0,

12.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi2j2 < Xi′2j
′
2
< Xi3j′3

)) = 3
120
− 1

3!
1
3!

= − 1
360

,

12.3 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi2j′2
< Xi′2j

′
2
< Xi3j3)) = 6

120
− 1

3!
1
3!

= 1
45

, and

12.4 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi2j2 < Xi′2j
′
2
< Xi3j3)) = 1

24
− 1

3!
1
3!

= 1
72

.

Lastly, multiplying 12.2 through 12.4 by the corresponding number of terms, and

then summing, leads to the desired result. That is,

Cov(Li1i2i3 , Li2,i′2,i3
)

= ni1ni2ni3(ni3 − 1)ni′2

(
− 1

360

)
+ ni1ni2(ni2 − 1)ni3ni′2

(
1

45

)
+ ni1ni2ni3ni′2

(
1

72

)
.

Case 13

Under Case 13, i1 6= i′1, i2 = i′2 and i3 = i′3. For example, Cov(L134, L234) falls under
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this case. To begin, note that

Cov(Li1i2i3 , Li′1,i2,i3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xi3j3),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi′1j
′
1
< Xi2j′2

< Xi3j′3
)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi′1j
′
1
< Xi2j′2

< Xi3j′3
)).

Now, since i1 6= i′1, i2 = i′2 and i3 = i′3, it follows that j2 may or may not be equal to

j′2 and j3 may or may not be equal to j′3. Hence, we get the following four subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 - x - - x - 1

3 - - x - - x 1

4 - x x - x x 2

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

13.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi′1j
′
1
< Xi2j′2

< Xi3j′3
)) = 0,

13.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi′1j
′
1
< Xi2j2 < Xi3j′3

)) = 4
120
− 1

3!
1
3!

= 1
180

,

13.3 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi′1j
′
1
< Xi2j′2

< Xi3j3)) = 6
120
− 1

3!
1
3!

= 1
45

, and

13.4 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi′1j
′
1
< Xi2j2 < Xi3j3)) = 2

24
− 1

3!
1
3!

= 1
18

.

Lastly, multiplying 13.2 through 13.4 by the corresponding number of terms, and

then summing, leads to the desired result. That is,

Cov(Li1i2i3 , Li′1,i2,i3
)

= ni1ni2ni3(ni3 − 1)ni′1

(
1

180

)
+ ni1ni2(ni2 − 1)ni3ni′1

(
1

45

)
+ ni1ni2ni3ni′1

(
1

18

)
.
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Case 14

Under Case 14, i1 = i′1, i2 = i′2 and i3 = i′3. For example, Cov(L123, L123) falls under

this case. To begin, note that

Cov(Li1i2i3 , Li1,i2,i3)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xi3j3),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi1j′1
< Xi2j′2

< Xi3j′3
)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xi2j′2

< Xi3j′3
)).

Now, since i1 = i′1, i2 = i′2 and i3 = i′3, it follow that j1 may or may not be equal to

j′1, j2 may or may not be equal to j′2 and j3 may or may not be equal to j′3. Hence,

we get the following eight subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 x - - x - - 1

3 - x - - x - 1

4 - - x - - x 1

5 x x - x x - 2

6 x - x x - x 2

7 - x x - x x 2

8 x x x x x x 3

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

14.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xi2j′2

< Xi3j′3
) = 0,

14.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j1 < Xi2j′2
< Xi3j′3

)) = 6
120
− 1

3!
1
3!

= 1
45

,
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14.3 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xi2j2 < Xi3j′3

)) = 4
120
− 1

3!
1
3!

= 1
180

,

14.4 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xi2j′2

< Xi3j3)) = 6
120
− 1

3!
1
3!

= 1
45

14.5 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j1 < Xi2j2 < Xi3j′3
)) = 2

24
− 1

3!
1
3!

= 1
18

,

14.6 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xi2j′2

< Xi3j3) = 3
24
− 1

3!
1
3!

= 1
18

,

14.7 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j1 < Xi2j′2
< Xi3j′3

)) = 2
24
− 1

3!
1
3!

= 1
18

, and

14.8 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1,j1 < Xi2,j2 < Xi3,j3)

Lastly, multiplying 14.2 through 14.8 by the corresponding number of terms, and

then summing, leads to the desired result. That is,

Cov(Li1i2i3 , Li1i2i3)

= ni1ni2 (ni2 − 1)ni3 (ni3 − 1)

(
1

45

)
+ ni1 (ni1 − 1)ni2ni3 (ni3 − 1)

(
1

180

)

+ ni1 (ni1 − 1)ni2 (ni2 − 1)ni3

(
1

45

)
+ ni1ni2ni3 (ni3 − 1)

(
1

18

)

+ ni1ni2 (ni2 − 1)ni3

(
1

18

)
+ ni1 (ni1 − 1)ni2ni3

(
1

18

)
+ ni1ni2ni3

(
5

36

)

To summarize, the variance and covariance results for each of the 14 cases are

given below. The variance of TL is obtained by simply summing these quantities

according to equation (23).
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2 : ni1ni2ni3ni′2
ni′3

(
1

45

)

3 : ni1ni2ni3ni′2
ni′3

(
− 1

360

)

4 : ni1ni2ni3ni′1
ni′3

(
1

180

)

5 : ni1ni2ni3ni′1
ni′2

(
− 1

360

)

6 : ni1ni2ni3ni′2
ni′3

(
− 7

360

)

7 : ni1ni2ni3ni′1
ni′2

(
1

45

)

8 : ni1ni2(ni2 − 1)ni3ni′3

(
1

45

)
+ ni1(ni1 − 1)ni2ni3ni′3

(
1

180

)
+ ni1ni2ni3ni′3

(
1

18

)

9 : ni1ni2ni3(ni3 − 1)ni′3

(
1

45

)
+ ni1(ni1 − 1)ni2ni3ni′3

(
− 1

360

)
+ ni1ni2ni3ni′3

(
1

72

)

10 : ni1ni2ni3(ni3 − 1)ni′2

(
1

45

)
+ ni1(ni1 − 1)ni2ni3ni′2

(
1

45

)
+ ni1ni2ni3ni′2

(
1

18

)

11 : ni1ni2ni3(ni3 − 1)ni′3

(
− 1

360

)
+ ni1ni2(ni2 − 1)ni3ni′3

(
− 1

360

)
+ ni1ni2ni3ni′3

(
1

72

)

12 : ni1ni2ni3(ni3 − 1)ni′2

(
− 1

360

)
+ ni1ni2(ni2 − 1)ni3ni′2

(
1

45

)
+ ni1ni2ni3ni′2

(
1

72

)
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13 : ni1ni2ni3(ni3 − 1)ni′1

(
1

180

)
+ ni1ni2(ni2 − 1)ni3ni′1

(
1

45

)
+ ni1ni2ni3ni′1

(
1

18

)

14 : ni1 (ni1 − 1)ni2 (ni2 − 1)ni3 (ni3 − 1) (0)

+ ni1ni2 (ni2 − 1)ni3 (ni3 − 1)

(
1

45

)

+ ni1 (ni1 − 1)ni2ni3 (ni3 − 1)

(
1

180

)

+ ni1 (ni1 − 1)ni2 (ni2 − 1)ni3

(
1

45

)

+ ni1ni2ni3 (ni3 − 1)

(
1

18

)

+ ni1ni2 (ni2 − 1)ni3

(
1

18

)

+ ni1 (ni1 − 1)ni2ni3

(
1

18

)

+ ni1ni2ni3

(
5

36

)

With that said, after very extensive algebraic manipulation, the result for the

variance of TL can be simplified for the balanced design (i.e. n1 = n2 = · · · = nk = n).
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It can be given by

V ar(TL) =
2

360

39

 p

5

n5 +

 p

4

 (48n5 + 27n4) +

 p

3

 (9n5 + 12n4 + 4n3)

 .

Variance of TR

The variance of TR follows from the variance of TL. For instance, recall that the

variance of TL is a function of p and n1, n2, . . . , np, say v(p;ni, n2, . . . , np). So, by

essentially reversing the order of the groups, we can obtain the variance of TR from

the variance of TL. That is , V (TR) = V (k − p + 1;nk, nk−1, . . . , np). Note that this

results is also important from a programming point of view.

Variance of TA

Next note that

V (TA) = Cov(TA, TA) = Cov(

p−1∑
i1=1

k∑
i3=p+1

Ai1pi3 ,

p−1∑
i′1=1

k∑
i′3=p+1

Ai′1pi
′
3
) =

p−1∑
i1=1

k∑
i3=p+1

V ar(Ai1,p,i3) + 2

p−1∑
i 6=i′

Cov(Ai1pi3 , Ai′1pi
′
3
) (24)

Once more, recall that i1 < p < i3 for i and i′1 < p < i′3 for i′.

The table below shows all the possible ties between groups:
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i1 ip i3 i′1 i′p i′3 Ties

1 − x − − x − 1

2 x x − x x − 2

3 − x x − x x 2

4 x x x x x x 3

Case 4 is the variance component V ar(Ai1pi3).

Case 1

Under Case 1, i1 6= i′1, ip = i′p and i3 6= i′3. For example, Cov(A134, A235) falls under

this case. To begin, note that

Cov(Ai1pi3 , Ai1pi′3
)

= Cov

 ni1∑
j1=1

np∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xpj2 > Xi3j3)),

ni1∑
j′1=1

np∑
j′2=1

ni′3∑
j′3=1

I(Xi1j′1
< Xpj′2

> Xi3j′3
)


=

ni1∑
j1=1

np∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

np∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xpj2 .Xi3j3), I(Xi1j′1
< Xpj′2

> Xi3j′3
)).

Now, since i1 6= i′1, ip = i′p and i3 6= i′3, it follows that j1 may or may not be equal to

j′1 . Hence, we get the following two subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 - x - - x - 1

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

1.1 Cov(I(Xi1j1 < Xpj2 > Xi3j3)), I(Xi1j′1
< Xpj′2

> Xi′3j
′
3
)) = 0,
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1.2 Cov(I(Xi1j1 < Xpj2 > Xi3j3 , I(Xi1j′1
< Xpj′2

> Xi′3j
′
3
)) = 24

120
− 1

3
1
3

= 4
45

.

Lastly, multiplying 1.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

Cov(Ai1i2i3 , Ai1pi′3
) = ni1npni3ni′1

ni′3

(
4

45

)
.

Case 2

Under Case 2, i1 = i′1, ip = i′p and i3 6= i′3. For example, Cov(A123, A124) falls under

this case. To begin, note that

Cov(Ai1pi3 , Ai1,p,i′3
)

= Cov

 ni1∑
j1=1

np∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xpjp > Xi3j3)),

ni1∑
j′1=1

np∑
j′2=1

ni′3∑
j′3=1

I(Xi1j′1
< Xpj′p > Xi′3j

′
3
)


=

ni1∑
j1=1

np∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

np∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi1j′1
< Xpj′p > Xi′3j

′
3
)).

Now, since i1 = i′1, ip = i′p and i3 6= i′3, it follows that j1 may or may not be equal to

j′1 and j2 may or may not be equal to j′2 . Hence, we get the following four subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 x - - x - - 1

3 - x - - x - 1

4 x x - x x - 2

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

2.1 Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi1j′1
< Xpj′p > Xi′3j

′
3
)) = 0,
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2.2 Cov(I(Xi1j1 < Xpj2 > Xi3j3), I(Xi1j1 < Xpj′p > Xi′3j
′
3
)) = 16

120
− 1

3
1
3

= 1
45

2.3 Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi1j′1
< Xpjp > Xi′3j

′
3
)) = 24

120
− 1

3
1
3

= 4
45

2.4 Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi1j1 < Xpjp > Xi′3j
′
3
)) = 6

24
− 1

3
1
3

= 5
36

Lastly, multiplying 2.2 through 2.4 by the corresponding number of terms, and then

summing, leads to the desired result. That is,

Cov(Ai1i2i3 , Ai1pi′3
)

= ni1np(np − 1)ni3ni′3

(
1

45

)
+ ni1(ni1 − 1)npni3ni′3

(
4

45

)
+ ni1npni3ni′3

(
5

36

)
.

Case 3

Under Case 3, i1 6= i′1, ip = i′p and i3 = i′3. For example, Cov(A123, A124) falls under

this case. To begin, note that

Cov(Ai1pi3 , Ai′1,p,i3
)

= Cov

 ni1∑
j1=1

np∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xpjp > Xi3j3)),

ni1∑
j′1=1

np∑
j′2=1

ni′3∑
j′3=1

I(Xi′1j
′
1
< Xpj′p > Xi3j′3

)


=

ni1∑
j1=1

np∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

np∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi′1j
′
1
< Xpj′p > Xi3j′3

)).

Now, since i1 6= i′1, ip = i′p and i3 = i′3, it follows that jp may or may not be equal to

j′p and j3 may or may not be equal to j′3 . Hence, we get the following four subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 - x - - x - 1

3 - - x - - x 1

4 - x x - x x 2
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Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

3.1 Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi′1j
′
1
< Xpj′p > Xi3j′3

)) = 0,

3.2 Cov(I(Xi1j1 < Xpj2 > Xi3j3), I(Xi′1j
′
1
< Xpjp > Xi3j′3

)) = 24
120
− 1

3
1
3

= 4
45

3.3 Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi′1j
′
1
< Xpj′p > Xi3j3)) = 16

120
− 1

3
1
3

= 1
45

3.4 Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi′1j
′
1
< Xpjp > Xi3j3)) = 6

24
− 1

3
1
3

= 5
36

Lastly, multiplying 3.2 through 3.4 by the corresponding number of terms, and

then summing, leads to the desired result. That is,

Cov(Ai1i2i3 , Ai′1,p,i3
)

= ni1npni3(ni3 − 1)ni′1

(
4

45

)
+ ni1np(np − 1)ni3ni′1

(
1

45

)
+ ni1npni3ni′1

(
5

36

)
.

Case 4

Under Case 4, i1 = i′1, ip = i′p and i3 = i′3. For example, Cov(A123, A123) falls under

this case. To begin, note that

Cov(Ai1pi3 , Ai1,p,i3)

= Cov

 ni1∑
j1=1

np∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xpjp > Xi3j3)),

ni1∑
j′1=1

np∑
j′2=1

ni′3∑
j′3=1

I(Xi1j′1
< Xpj′p > Xi3j′3

)


=

ni1∑
j1=1

np∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

np∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi1j′1
< Xpj′p > Xi3j′3

)).

Now, since i1 = i′1, ip = i′p and i3 = i′3, it follows that j1 may or may not be equal to

j′1, jp may or may not be equal to j′p and j3 may or may not be equal to j′3 . Hence,

we get the following eight subcases.
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j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 x - - x - - 1

3 - x - - x - 1

4 - - x - - x 1

5 x x - x x - 2

6 x - x x - x 2

7 - x x - x x 2

8 x x x x x x 3

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

4.1 Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi1j′1
< Xpj′p > Xi3j′3

)) = 0,

4.2 Cov(I(Xi1j1 < Xpj2 > Xi3j3), I(Xi1j1 < Xpj′p > Xi3j′3
)) = 16

120
− 1

3
1
3

= 1
45

4.3 Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi1j′1
< Xpjp > Xi3j′3

)) = 24
120
− 1

3
1
3

= 4
45

4.4 Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi1,j′1
< Xp,j′p > Xi3,j3)) = 16

120
− 1

3
1
3

= 1
45

4.5 Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi1,j1 < Xp,jp > Xi3,j′3
)) = 6

24
− 1

3
1
3

= 5
36

4.6 Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi1,j1 < Xp,j′p > Xi3,j3)) = 4
24
− 1

3
1
3

= 1
18

4.7 Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi1,j′1
< Xp,jp > Xi3,j3)) = 6

24
− 1

3
1
3

= 5
36

4.8 Cov(I(Xi1j1 < Xpjp > Xi3j3), I(Xi1,j1 < Xp,jp > Xi3,j3)) = 2
6
− 1

3
1
3

= 2
9
.

Lastly, multiplying 4.2 through 4.8 by the corresponding number of terms, and then
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summing, leads to the desired result. That is,

Cov(Ai1i2i3 , Ai′1pi3
)

= ni1np(np − 1)ni3(ni3 − 1)

(
1

45

)
+ ni1(ni1 − 1)npni3(ni3 − 1)

(
4

45

)

+ ni1(ni1 − 1)np(np − 1)ni3

(
1

45

)
+ ni1npni3(ni3 − 1)

(
5

36

)

+ ni1np(np − 1)ni3

(
1

18

)
+ ni1(ni1 − 1)npni3

(
5

36

)

+ ni1npni3

(
2

9

)

To summarize, the variance and covariance results for each of the 14 cases are given

below. The variance of TA is obtained by simply summing these quantities according

to equation (24)

1 : ni1npni3ni′1
ni′3

(
4

45

)

2 : ni1np(np − 1)ni3ni′3

(
1

45

)
+ ni1(ni1 − 1)npni3ni′3

(
4

45

)
+ ni1npni3ni′3

(
5

36

)

3 : ni1npni3(ni3 − 1)ni′1

(
4

45

)
+ ni1np(np − 1)ni3ni′1

(
1

45

)
+ ni1npni3ni′1

(
5

36

)
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4 : ni1np(np − 1)ni3(ni3 − 1)

(
1

45

)
+ ni1(ni1 − 1)npni3(ni3 − 1)

(
4

45

)

+ni1(ni1 − 1)np(np − 1)ni3

(
1

45

)
+ ni1npni3(ni3 − 1)

(
5

36

)

+ni1np(np − 1)ni3

(
1

18

)
+ ni1(ni1 − 1)npni3

(
5

36

)

+ni1npni3

(
2

9

)

With that said, after very extensive algebraic manipulation, the result for the variance

of TA can be simplified for the balanced design (i.e. n1 = n2 = · · · = nk = n). It can

be given by

V ar(TA) =
(p− 1)(k − p)n3

45

{
(k − 1)n2 + 4(p− 1)(k − p)n2 +

5(k − 1)n+ 2n

4
+ 1

}

Covariance of TL and TA

Note first that

Cov(TL, TA) = Cov(
∑

i=Sp
1 (3)

Li1i2i3 ,

p−1∑
i′1=1

k∑
i′3=p+1

Ai′1pi
′
3
)

=
∑

i=Sp
1 (3)

p−1∑
i′1=1

k∑
i′3=p+1

Cov(Li1i2i3 , Ai′1pi
′
3
) (25)

There are the following possibilities of ties between groups:
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i1 i2 i3 i′1 p i′3 Ties

1 − − − − − − 0

2 x − − x − − 1

3 − x − x − − 1

4 − − x x − − 1

5 − − x − x − 1

6 x − x x x − 2

7 − x x x x − 2

Case 2

Under Case 2, i1 = i′1, i2 6= p and i3 6= i′3. For example, Cov(L123, A145) falls under

this case. To begin, note that

Cov(Li1i2i3 , Ai1pi′3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1,j1 < Xi2,j2 < Xi3,j3),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi′1,j
′
1
< Xp,j′p > Xi′3,j

′
3
)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi′1j
′
1
< Xpj′p > Xi′3j

′
3
)).

Now, since i1 = i′1, i2 6= p and i3 6= i′3, it follows that j1 may or may not be equal to

j′1 . Hence, we get the following four subcases.

j1 j2 j3 j′1 j′p j′3 Ties

1 - - - - - - 0

2 x - - x - - 1

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:
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2.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j′1
< Xpj′2

< Xi′3j
′
3
)) = 0,

2.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi1j1 < Xpj′p > Xi′3j
′
3
) = 9

120
− 1

3!
1
3

= 7
360

,

Lastly, multiplying 2.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

Cov(Li1i2i3 , Ai1pi′3
) = ni1ni2ni3npni′3

(
7

360

)
.

Case 3

Under Case 3, i1 6= i′1, i2 = i′1 and i3 6= i′3. For example, Cov(L123, A245) falls under

this case. To begin, note that

Cov(Li1i2i3 , Ai2pi′3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xi3j3),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi2j′1
< Xpj′p > Xi′3j

′
3
)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi2j′1
< Xpj′p > Xi′3j

′
3
)).

Now, since i1 6= i′1, i2 = i′1 and i3 6= i′3, it follows that j2 may or may not be equal to

j′1 . Hence, we get the following four subcases.

j1 j2 j3 j′1 j′p j′3 Ties

1 - - - - - - 0

2 - x - x - - 1

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

3.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi2j′1
< Xpj′p > Xi′3j

′
3
)) = 0,

3.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi2j2 < Xpj′p > Xi′3j
′
3
)) = 7

120
− 1

3!
1
3

= 1
360

,
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Lastly, multiplying 3.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

Cov(Li1i2i3 , Ai2pi′3
) = ni1ni2ni3npni′3

(
1

360

)
.

Case 4

Under Case 4, i1 6= i′1, i2 6= i′2 and i3 = i′1. For example, Cov(L123, A345) falls under

this case. To begin, note that

Cov(Li1i2i3 , Ai3,p,i3)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xi3j3),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi3j′1
< Xpj′p > Xi′3j

′
3
)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi3j′1
< Xpj′p > Xi′3j

′
3
)).

Now, since i1 6= i′1, i2 6= i′2 and i3 = i′1, it follows that j3 may or may not be equal to

j′1 . Hence, we get the following four subcases.

j1 j2 j3 j′1 j′p j′3 Ties

1 - - - - - - 0

2 - - x x - - 1

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

4.1 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi3j′1
< Xpj′p > Xi′3j

′
3
)) = 0,

4.2 Cov(I(Xi1j1 < Xi2j2 < Xi3j3), I(Xi3j3 < Xpj′p > Xi′3j
′
3
)) = 4

120
− 1

3!
1
3

= − 1
45

,

Lastly, multiplying 4.2 by the corresponding number of terms, and then summing,
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leads to the desired result. That is,

Cov(Li1i2i3 , Ai2pi′3
) = ni1ni2ni3npni′3

(
− 1

45

)
.

Case 5

Under Case 5, i1 6= i′1, i2 6= i′2 and i3 = p. For example, Cov(L124, A345) falls under

this case. To begin, note that

Cov(Li1i2i3 , Ai′1pi
′
3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xpjp),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi′1j
′
1
< Xpj′p > Xi′3j

′
3
)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xpjp), I(Xi′1j
′
1
< Xpj′p > Xi′3j

′
3
)).

Now, since i1 6= i′1, i2 6= i′2 and i3 = p, it follows that j3 may or may not be equal to

j′p . Hence, we get the following four subcases.

j1 j2 j3 j′1 j′p j′3 Ties

1 - - - - - - 0

2 - - x - x - 1

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

5.1 Cov(I(Xi1j1 < Xi2j2 < Xpjp), I(Xi1j′1
< Xpj′p > Xi′3j

′
3
)) = 0,

5.2 Cov(I(Xi1j1 < Xi2j2 < Xpjp), I(Xi1j′1
< Xpjp > Xi′3j

′
3
)) = 12

120
− 1

3!
1
3

= 2
45

,

Lastly, multiplying 5.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

Cov(Li1i2i3 , Ai′1pi
′
3
) = ni1ni2npni′1

ni′3

(
2

45

)
.
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Case 6

Under Case 6, i1 = i′1 and i3 = p. For example, Cov(L123, A134) falls under this case.

To begin, note that

Cov(Li1i2i3 , Ai1pi′3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xpjp),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi3j′1
< Xpj′p > Xi′3j

′
3
)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xpjp), I(Xi3j′1
< Xpj′p > Xi′3j

′
3
)).

Now, since i1 = i′1 and i3 = p., it follows that j1 may or may not be equal to j′1 and

j3 may or may not be equal to jp. Hence, we get the following four subcases.

j1 j2 j3 j′1 j′p j′3 Ties

1 - - - - - - 0

2 x - - x - - 1

3 - - x - x - 1

4 x - x x x - 2

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

6.1 Cov(I(Xi1j1 < Xi2j2 < Xpjp), I(Xi1j′3
< Xpj′p > Xi′3j

′
3
)) = 0,

6.2 Cov(I(Xi1j1 < Xi2j2 < Xpjp), I(Xi1j1 < Xp,j′p > Xi′3j
′
3
)) = 9

120
− 1

3!
1
3

= 7
360

,

6.3 Cov(I(Xi1j1 < Xi2j2 < Xpjp), I(Xi1j′1
< Xpjp > Xi′3j

′
3
)) = 12

120
− 1

3!
1
3

= 2
45

6.4 Cov(I(Xi1j1 < Xi2j2 < Xpjp), I(Xi1j1 < Xipjp > Xi′3j
′
3
)) = 3

24
− 1

3!
1
3

= 5
72

Lastly, multiplying 6.2 through 6.4 by the corresponding number of terms, and then
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summing, leads to the desired result. That is,

Cov(Li1i2i3 , Ai1pi′3
)

= ni1ni2np(np − 1)ni′3

(
7

360

)
+ ni1(ni1 − 1)ni2npni′3

(
2

45

)
+ ni1ni2npni′3

(
5

72

)
.

Case 7

Under Case 7, i1 6= i′1, i2 = i′1 and i3 = i′3. For example, Cov(L123, A234) falls under

this case. To begin, note that

Cov(Li1i2i3 , Ai2,p,i′3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

I(Xi1j1 < Xi2j2 < Xpjp),

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

I(Xi2j′2
< Xpj′p > Xi′3j

′
3
)


=

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni1∑
j′1=1

ni2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xpjp), I(Xi2j′2
< Xpj′p > Xi′3j

′
3
)).

Now, since i2 = i′1 and i3 = p., it follows that j2 may or may not be equal to j′1 and

j3 may or may not be equal to jp. Hence, we get the following four subcases.

j1 j2 j3 j′1 j′p j′3 Ties

1 - - - - - - 0

2 - x - x - - 1

3 - - x - x - 1

4 - x x x x - 2

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

7.1 Cov(I(Xi1j1 < Xi2j2 < Xpjp), I(Xi2j′2
< Xpj′p > Xi′3j

′
3
)) = 0,

7.2 Cov(I(Xi1j1 < Xi2j2 < Xpjp), I(Xi2j2 < Xpj′p > Xi′3j
′
3
)) = 7

120
− 1

3!
1
3

= 1
360

,
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7.3 Cov(I(Xi1j1 < Xi2j2 < Xpjp), I(Xi2j′2
< Xpjp > Xi′3j

′
3
)) = 12

120
− 1

3!
1
3

= 2
45

7.4 Cov(I(Xi1j1 < Xi2j2 < Xpjp), I(Xi2j2 < Xpjp > Xi′3j
′
3
)) = 3

24
− 1

3!
1
3

= 5
72

Lastly, multiplying 7.2 through 7.4 by the corresponding number of terms, and then

summing, leads to the desired result. That is,

Cov(Li1i2i3 , Ai1pi′3
)

= ni1ni2np(np− 1)ni′3

(
1

360

)
+ ni1ni2(ni2 − 1)npni′3

(
2

45

)
+ ni1ni2npni′3

(
5

72

)
.

To summarize, the variance and covariance results for each of the 14 cases are

given below. The covariance of TL and TA is obtained by simply summing these

quantities according to equation (25).

Note that i1 < i2 < i3 ∈ TL and i′1 < i′p < i′3 ∈ TA.

2 : ni1ni2ni3npni′3

(
7

360

)

3 : ni1ni2ni3npni′3

(
1

360

)

4 : ni1ni2ni3npni′3

(
− 1

45

)

5 : ni1ni2npni′1
ni′3

(
2

45

)

6 : ni1ni2np(np − 1)ni′3

(
7

360

)
+ ni1(ni1 − 1)ni2npni′3

(
2

45

)
+ ni1ni2npni′3

(
5

72

)

7 : ni1ni2np(np− 1)ni′3

(
1

360

)
+ ni1ni2(ni2 − 1)npni′3

(
2

45

)
+ ni1ni2npni′3

(
5

72

)
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With that said, after very extensive algebraic manipulation, the result for the

covariance of TL and TA can be simplified for the balanced design (i.e. n1 = n2 =

· · · = nk = n). It can be given by

Cov(TL, TA) =
(k − p)

360

48

 p− 1

3

n5 +

 p− 1

2

 (40n5 + 10n4)



Covariance of TL and TR

Note first that

Cov(TL, TR) = Cov

 ∑
i∈Sp

1 (3)

Li1i2i3 ,
∑

i′∈Sk
p (3)

Ri′1i
′
2i
′
3


=

∑
i∈Sp

1 (3)

∑
i′∈Sk

p (3)

Cov(Li1i2i3 , Ri′1i
′
2i
′
3
), (26)

where i1 < i2 < i3 in i and i′1 < i′2 < i′3 in i′. In what follows we solve for

Cov(Li1i2i3 , Ri′1i
′
2i
′
3
) for the different cases of i and i′. The table below shows that

there are only two cases.

i1 i2 i3 i′1 i′2 i′3 Ties

1 - - - - - - 0

2 - - x x - - 1

For example, in case 2, i3 = i′1 = p and all other subscripts are distinct. The

covariances for each of these cases are now calculated.

Case 1

Under case 1, the covariance terms are equal to zero since there are no tied subscripts.

That is, since there are six distinct groups, Li1i2i3 and Ri′1i
′
2i
′
3

are independent.

81



Case 2

Under case 2, i3 = i′1 = p. For example, Cov(L123, R345) falls under this case. To

begin, note that

Cov(Li1i2p, Rpi′2i
′
3
)

= Cov

 ni1∑
j1=1

ni2∑
j2=1

np∑
j3=1

I(Xi1j1 < Xi2j2 < Xpj3),

np∑
j′1=1

ni′2∑
j′2=1

ni′3∑
j′3=1

I(Xpj′1
> Xi′2j

′
2
> Xi′3j

′
3
)


=

ni1∑
j1=1

ni2∑
j2=1

np∑
j3=1

np∑
j′1=1

ni′2∑
j′2=1

ni′3∑
j′3=1

Cov(I(Xi1j1 < Xi2j2 < Xpj3), I(Xpj′1
> Xi′2j

′
2
> Xi′3j

′
3
)).

Now, since i3 = i′1 = p, it follow that j3 may or may not be equal to j′1. Hence, we

get the following two subcases.

j1 j2 j3 j′1 j′2 j′3 Ties

1 - - - - - - 0

2 - - x x - - 1

One more, x denotes the tied subscript. Next, using our previously derived covariance

results we obtain the following:

2.1 Cov(I(Xi1j1 < Xi2j2 < Xpj3), I(Xpj′1
> Xi′2j

′
2
> Xi′3j

′
3
)) = 0 and

2.2 Cov(I(Xi1j1 < Xi2j2 < Xpj3), I(Xpj3 > Xi′2j
′
2
> Xi′3j

′
3
)) = 6

120
− 1

3!
1
3!

= 1
45

.

Lastly, multiplying 2.2 by the corresponding number of terms leads to the desired

result. That is,

Cov(Li1i2p, Rpi′2i
′
3
) = ni1ni2npni′2

ni′3

(
1

45

)
.

Hence, the covariance between TL and TR is obtained by simply substituting this

value (and 0) back into (26). For the special case where the design is balance (i.e.
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n1 = n2 = · · · = nk = n) we obtain

Cov(TL, TR) =

(
p− 1

2

)(
k − p

2

)(
n5

45

)
.

3.2.4. Asymptotic Distribution of T

This section begins by generalizing the idea of U-statistics to the case in which

we have more than one random sample. Suppose that for i = 1, 2, . . . k, Xi1, . . . , Xini
,

is an iid sample from Fi. In other words we have k random samples, each potentially

from a different distribution. Recall, ni is the sample size of the ith distribution. We

may define the statistical functional;

θ = Eφ(X11, . . . , X1a1 ;X21, . . . , X2a2 ; · · · ;Xk1, . . . Xkak). (27)

Notice that the function in equation (27) has a1+a2+ · · ·+ak arguments. The first a1

of them can be permuted without changing the value of φ, the next a2 of them can be

permuted without changing the value of φ, etc. In other words, there are k distinct

blocks of arguments of φ. In the case of T , a1 = a2 = · · · = ak = 1 (because we are

taking one element of each sample at a time) in which case we obtain the U-statistic

corresponding to the equation (27) as

UN =
1

n1 · · ·nk

n1∑
j1=1

· · ·
nk∑

jk=1

φ(X1j1 , . . . Xkjk). (28)

Theorem 3.4:

For i=1, 2, . . . , k, consider
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φi(x) = E {φ(X11, . . . , Xk1)− θ|Xi1 = x} , and (29)

σ2
i = V ar (φi) . (30)

Suppose that

E(φ2(X11, . . . , Xk1)) <∞ and max
1≤i≤k

σ2
i > 0.

Furthermore, suppose that there exist constants λ1, λ2, . . . λk, in the interval (0,1)

such that ni/N → λi for all i. It therefore follows from Theorem 4.5.1 of Koroljuk

and Borovskich, that

(UN − θ)√
V ar(UN)

→ N(0, 1), (31)

where N(0, 1) is the standard normal distribution.

Theorem 3.5

For i = 1, 2, . . . , k, let Xi1, Xi2, . . . , Xini
denote k independent random samples

from distribution Fi. Let S = {(i1, i2, i3) : 1 ≤ i1 < i2 < i3 ≤ k} and let S1 ⊂ S where

S1 6= ∅. For i ∈ S1, define

Ti =

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ti(Xi1 , Xi2 , Xi3) and

µi = E(ti(Xi1 , Xi2 , Xi3)).
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Finally, let

T =
∑
i∈S1

Ti and N = n1 + n2 + · · ·+ nk.

Assume the following:

A1 For i ∈ S, ti(Xi1 , Xi2 , Xi3) satisfies the kernel assumptions of the multi-sample

U-statistic central limit theorem for 3 samples,

A2

lim
N→∞

ni

N
= λi ∈ (0, 1) for i ∈ {1, 2, . . . , k} ,

A3

lim
N→∞

1

N5
V (T ) = v (> 0),

A4

φ(X1, X2, . . . , Xk) =
∑
i∈S1

λi1λi2λi3ti(Xi1Xi2Xi3)

satisfies the kernel assumptions of the multi-sample U-statistic central limit

theorem for k samples.

Then, under A1-A4,

Z =
T − E(T )√
V ar(T )

D→ N(0, 1). (32)
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Proof

Let N = n1 + n2 + . . . nk and N∗ = n1n2 · · ·nk. To begin, note that,

T =
∑
i∈S1

Ti

=
∑
i∈S1

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ti(Xiij1 , Xi2j2 , Xi3j3)

=
∑
i∈S1

1

ni4ni5 · · ·nik

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ni4∑
j4=1

· · ·
nik∑
jk=1

ti(Xi1j1 , Xi2j2 , Xi3j3)

=
1

N∗

∑
i∈S1

ni1ni2ni3

ni1∑
j1=1

· · ·
nik∑
jk=1

ti(Xi1j1 , Xi2j2 , Xi3j3)

=
N3

N∗

∑
i∈S1

(ni1ni2ni3

N3

) ni1∑
j1=1

· · ·
nik∑
jk=1

ti(Xi1j1 , Xi2j2 , Xi3j3)

=
N3

N∗

∑
i∈S1

(ni1ni2ni3

N3
− λi1λi2λi3 + λi1λi2λi3

)( ni1∑
j1=1

· · ·
nik∑
jk=1

ti(Xi1j1 , Xi2j2 , Xi3j3)

)

=
N3

N∗

∑
i∈S1

(ni1ni2ni3

N3
− λi1λi2λi3

) ni1∑
j1=1

· · ·
nik∑
jk=1

ti(Xi1j1 , Xi2j2 , Xi3j3) +

N3

N∗

∑
i∈S1

λi1λi2λi3

ni1∑
j1=1

· · ·
nik∑
jk=1

ti(Xi1j1 , Xi2j2 , Xi3j3)

= N3
∑
i∈S1

(ni1ni2ni3

N3
− λi1λi2λi3

)( 1

ni1ni2ni3

ni1∑
j1=1

ni2∑
j2=2

ni3∑
j3=3

ti(Xi1j1 , Xi2j2 , Xi3j3)

)
+

N3

N∗

ni1∑
j1=1

· · ·
nik∑
jk=1

(∑
i∈S1

ti(X1j1 , X2j2 , . . . , Xkjk)

)
,
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where, for the second term, we basically have

ti(X1j1 , X2j2 , . . . , Xkjk) = ti(Xi1j1 , Xi2j2 , Xi3j3).

= N3

(∑
i∈S1

(ni1ni2ni3

N3
− λi1λi2λi3

)
Ti

)
+N3

(
1

N∗

ni1∑
j1=1

· · ·
nik∑
jk=1

φ(X1j1 , X2j2 , . . . , Xkjk)

)
,

where

φ(X1, X2, . . . , Xk) =
∑
i∈S1

λi1λi2λi3ti(Xi1 , Xi2 , Xi3)

= N3(T1 + T2).

Next, let

TN =
1

N3− 1
2

(T − E(T ))

=
1

N3− 1
2

N3(T1 + T2 − E(T1)− E(T2))

=
√
N(T1 − E(T1)) +

√
N(T2 − E(T2))

= TN1 + TN2.

87



It follows that,

Z =
T − E(T )√

V (T )

=

1

N3− 1
2

(T − E(T ))

1

N3− 1
2

√
V (T )

=
TN1 + TN2√

1
N5V (T )

=
TN1√
1
N5V (T )

+
TN2√
1
N5V (T )

= Z1 + Z2.

Consider Z1 first.

Z1 =
TN1√
1
N5V (T )

=

√
N(T1 − E(T1))√

1
N5V (T )

=

∑
i∈S1

(ni1
ni2

ni3

N3 − λi1λi2λi3
) (√

N
N3i

) (√
N3i(Ti − E(Ti))

)√
1
N5V (T )

,

where N3i = ni1 + ni2 + ni3

=

∑
i∈S1

aibici√
1
N5V (T )

.
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By A2, lim
N→∞

ai = 0.

Also by A2, lim
N→∞

bi = lim
N→∞

√
N

ni1 + ni2 + ni3

=

√
1

λi1 + λi2 + λi3
(<∞) ∀i.

Next, note that
√
N3i(Ti − E(Ti)) =

√
N3iV (Ti)

 Ti − µi√
V (Ti)

 = 0p(1)∀i by A1.

That is Ti satisfies the assumptions corresponding to the multi-sample U-statistic

central limit theorem. Thus,

Ti − µi√
V (Ti)

D→ N(0, 1) and N3iV (Ti)→
3∑

l=1

1

λil
ξil ,

where this quantity is essentially the variance of the corresponding projection. Hence,

the numerator of Z1 is op(1). It now follows from A3, that Z1 is also op(1).
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Consider Z2 next.

Z2 =
TN2√
1
N5V (T )

=

√
N(T2 − E(T2))√

1
N5V (T )

=

√N
√
V (T2)√

1
N5V (T )

T2 − E(T2)√
V (T2)



=


√
NV (T2)√
1
N5V (T )

T2 − E(T2)√
V (T2)

 .

Now,
T2 − E(T2)√

V (T2)

D→ N(0, 1) by A4.

Thus, if we can show

NV (T2)
1
N5V (T )

→ 1,

then it follows that Z2
D→ N(0, 1). It will then follow from the result on Z1 that

Z = Z1 + Z2
D→ N(0, 1).
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Now,

NV (T2)
1
N5V (T )

=
V (
√
NT2)

V ( 1

N
5
2
T )

=
V (
√
N(T2 − E(T2)))

V ( 1

N
5
2

(T − E(T )))
=
V (TN2)

V (TN)
=
V (TN − TN1)

V (TN)

=
V (TN) + V (TN1) +−2Cov(TN , TN1)

V (TN)
= 1 +

V (TN1)

V (TN)
− 2Cov(TN , TN1)

V (TN)
.

Note first that,

0 ≤
∣∣∣∣−2Cov(TN , TN1)

V (TN)

∣∣∣∣ =
2 |Cov(TN , TN1)|

V (TN)
≤

2
√
V (TN)V (TN1)

V (TN)

By A3, we know that ;

V (TN) =
1

N5
V (T )→ υ (> 0).

Hence, if we can show V (TN1)→ 0, it will follow that

2Cov(TN , TN1)

V (TN)
and

V (TN1)

V (TN)

both go to 0 as N →∞.

This in turn implies that
NV (T2)
1
N5V (T )

→ 1as N →∞.

With that said, note that,

V (TN1) = V (
√
N(T1 − E(T1)))

= V

∑
i∈S1

(ni1ni2ni3

N3
− λi1λi2λi3

)
︸ ︷︷ ︸

ai

√
N

N3i︸ ︷︷ ︸
bi

√
N3i(Ti − E(Ti))︸ ︷︷ ︸

ci


= V

(∑
i∈S1

aibici

)
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= Cov

(∑
i∈S1

aibici,
∑
j∈S1

ajbjcj

)

=
∑
i∈S1

∑
j∈S1

Cov (aibici, ajbjcj)

=
∑
i∈S1

∑
j∈S1

aiajbibjCov(ci, cj)

≤
∑
i∈S1

∑
j∈S1

|aiajbibj|
√
V (ci)V (cj)

Now, we have already assumed that ti satisfies the assumptions of the multi-

sample U-statistic central limit theorem (i.e A1). Hence, V (ci)→ υi (<∞), for some

υi. Furthermore, ai → 0 ∀i and bi → βi (<∞). Since
∑

i∈S1

∑
j∈S1

is a finite sum, it

follows that V (TN1)→ 0. This completes the proof of the theorem.

Theorem : Let T be the test statistic defined in (12) . Then, under H0,

Z =
T − E[T ]√

V (T )

D→ N(0, 1).

We will now apply the conditions A1 to A4 to T .

Proof of Asymptotic Distribution of T

To begin, we show that T belongs to the class of statistics defined in Theorem

3.5. To that end, let S1 denote the set of tri-tuplets corresponding to the terms in T .

That is, S1 =
{
i : i = (i1, i2, i3), i ∈ Sp

1(3) ∪ (Sp−1
1 (1)× {p} × Sk

p+1(1)) ∪ Sk
p (3)

}
.

Next, for i ∈ S1, let

Ti =

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

ti(Xi1j1 , Xi2j2 , Xi3j3),

where
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ti(Xi1 , Xi2 , Xi3) =


I(Xi1 < Xi2 < Xi3), i ∈ S

p
1(3)

I(Xi1 < Xi2 > Xi3), i ∈ S
p−1
1 (1)× {p} × Sk

p+1(1)

I(Xi1 > Xi2 > Xi3), i ∈ Sk
p (3).

Thus, the test statistic can be written as

T =
∑
i∈S1

Ti =
∑
i∈S1

ni1∑
j1=1

ni2∑
j2=1

ni3∑
j3=1

φi(Xi1j1 , Xi2j2 , Xi3j3).

In addition, note that under H0

E[T ] = θ =
∑
i∈S1

E(Ti) =
∑
i∈S1

ni1∑
j1=1

ni2∑
j2=2

ni3∑
j3=3

θi =
∑
i∈S1

ni1ni2ni3θi where

θi =


1
6
, i ∈ Sp

1(3)

1
3
, i ∈ Sp−1

1 (1)× {p} × Sk
p+1(1)

1
6
, i ∈ Sk

p (3).

Thus, to prove the results of this theorem it suffices to show that the conditions

of Theorem 3.5 are satisfied.
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We begin with condition A2.

It has already been assumed that
ni

N
→ λi ∈ (0, 1) as N →∞.

Therefore, A2 is automatically satisfied.

Next, consider condition A1. Since ti is an indicator function for all i ∈ S1, it

follows immediately that E[t2i ] <∞ ∀ i ∈ S1. Now let

f1(x) = E (I(Xi1 < Xi2 < Xi3)|Xi1 = x)− 1

6
=

1

2
(1− F (x))2 − 1

6

=
1

2
F 2(x)− F (x) +

1

3
,

f2(x) = E (I(Xi1 < Xi2 < Xi3)|Xi2 = x)− 1

6
= (1− F (x))F (x)− 1

6

= −F 2(x) + F (x)− 1

6
,

f3(x) = E (I(Xi1 < Xi2 < Xi3)|Xi3 = x)− 1

6
=

1

2
F 2(x)− 1

6

=
1

2
F 2(x) + 0F (x)− 1

6
,

f4(x) = E (I(Xi1 < Xi2 > Xi3)|Xi1 = x)− 1

3
=

1

2
(1− F 2(x))− 1

3

= −1

2
F 2(x) + 0F (x) +

1

6
,
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f5(x) = E (I(Xi1 < Xi2 > Xi3)|Xi2 = x)− 1

3
= F 2(x)− 1

3

= F 2(x) + 0F (x)− 1

3
,

f6(x) = E (I(Xi1 < Xi2 > Xi3)|Xi3 = x)− 1

3
=

1

2
(1− F 2(x))− 1

3

= −1

2
F 2(x) + 0F (x) +

1

6
,

f7(x) = E (I(Xi1 > Xi2 > Xi3)|Xi1 = x)− 1

6
=

1

2
F 2(x)− 1

6

=
1

2
F 2(x) + 0F (x)− 1

6
,

f8(x) = E (I(Xi1 > Xi2 > Xi3)|Xi2 = x)− 1

6
= (1− F (x))F (x)− 1

6

= −F 2(x) + F (x)− 1

6
,

f9(x) = E (I(Xi1 > Xi2 > Xi3)|Xi3 = x)− 1

6
=

1

2
(1− F (x))2 − 1

6

=
1

2
F 2(x)− F (x) +

1

3
.

It is obvious from these results that fi(x) takes the quadratic form aiF
2(x)+biF (x)+

ci. Furthermore there are no cases for which ai = bi = 0. It follows that V (fi(x)) > 0

for all i. Hence, the maximum variance condition corresponding to the multi-sample
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U-statistic theorem is satisfied in all cases. This shows that A1 is satisfied. Condition

A1 is thus satisfied.

Next, consider condition A4. This condition requires us to show that the

conditions of the multi-sample U-statistic theorem are satisfied for the kernel,

t(X1, X2, . . . , Xk) =
∑
i∈S1

λi1λi2λi3ti(Xi1 , Xi2 , Xi3).

Once more, t is just a linear combination of indicator functions. Hence, it follows that

E[t2] < ∞. To show that the maximum variance condition is satisfied we consider

the following cases: T = TR, T = TA + TR, T = TL + TA + TR, T = TL + TA, and

T = TL. Actually, it turns out that the last two cases follow from the first two cases.

Hence, only the first three cases need to be considered. The derivations are similar

for all three cases, so we only show the details corresponding to T = TA + TR.

To this end, we consider

f(x) = E [t(X1, X2, . . . , Xk)− E[t]|X1 = x]

= E

[∑
i∈S1

(λi1λi2λi3ti(Xi1 , Xi2 , Xi3)− θi)|X1 = x

]

=
∑
i∈S1

λi1λi2λi3

(
−1

2
F 2(x) + 0F (x) +

1

6

)

=

(
−1

2

∑
i∈S11

(λi1λi2λi3

)
F 2(x) +

(
1

6

∑
i∈S11

(λi1λi2λi3

)

= aF 2(x) + bF (x) + c (say),

where S11, is the subset of S1, where 1 ∈ i and the terms correspond to the TA

only. That is, the conditional expectations are 0 for the TR terms. Once more, Since
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λi ∈ (0, 1) ∀ i and f(x) has the form aF 2(x) + bF (x) + c, where a and b are not both

equal to 0, it follows that V (f(x)) > 0. Hence, the ”maximum varianc” condition is

satisfied for this case. As previously mentioned, the other remaining cases are argued

in a similar fashion.

Lastly, we show condition A3. The variance of the general case of T can be used

to prove that

1

N5
V (T ) → K > 0.

Recall that,

1

N5
V (T ) =

1

N5
(V (TL) + V (TA) + V (TA) + 2Cov(TL, TA) + 2Cov(TA, TR)

+2Cov(TL, TR))

Consider V (TL) first. As N →∞,
1

N5
V ar(TL) → 2

360
(39λl1 + λl2 + λl3)

where

λl1 =
∑

i∈Sp
1 (5)

λi1λi2λi3λi4λi5

λl2 =
∑

i∈Sp
1 (4)

λi1λi2λi3λi4(9(λi1 + λi4) + 15(λi2 + λi3))

λl3 =
∑

i∈Sp
1 (3)

λi1λi2λi3(4λi1λi2 + 4λi2λi3 + λi1λi3)

where λl1 , λl2 and λl3 are all positive constants.
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Therefore,

1

N5
V (TL) → KL > 0.

Consider V (TR) next. As N →∞,
1

N5
V ar(TR) → 2

360
(39λr1 + λr2 + λr3)

where

λr1 =
∑

i∈Sk
p (5)

λi1λi2λi3λi4λi5

λr2 =
∑

i∈Sk
p (4)

λi1λi2λi3λi4(9(λi1 + λi4) + 15(λi2 + λi3))

λr3 =
∑

i∈Sk
p (3)

λi1λi2λi3(4λi1λi2 + 4λi2λi3 + λi1λi3)

where λr1 , λr2 and λr3 are all positive constants.

Therefore,

1

N5
V (TR) → KR > 0.

Next, consider V (TA) as N →∞. Here,

1

N5
V (TA) → 1

45

(
λ2i1λ

2
pλi3 + λi1λ

2
pλ

2
i3

+ λ2i1λpλ
2
i3

)
where λi1 , λp and λi3 are all positive constants.

Therefore,
1

N5
V (TA)→ KA > 0
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Next, consider Cov(TL, TA).

1

N5
Cov(TL, TA) → 1

360
(48λb1 + 8λb2 + 16λb3 + 16λb4)

where

λb1 =
∑

i∈Sp−1
1 (3)

k∑
i′=p+1

λi1λi2λi3λpλi′3

λb2 =
∑

i∈Sp−1
1 (2)

k∑
i′=p+1

λi1λi2λ
2
pλi′3

λb3 =
∑

i∈Sp−1
1 (2)

k∑
i′=p+1

λ2i1λi2λpλi′3

λb4 =
∑

i∈Sp−1
1 (2)

k∑
i′=p+1

λi1λ
2
i2
λpλi′3

where λb1 , λb2 , λb3 and λb4 are all positive constants.

Therefore,
1

N5
Cov(TL, TA)→ KLA > 0

Next, consider Cov(TA, TR).

1

N5
Cov(TA, TR) → 1

360
(48λc1 + 8λc2 + 16λc3 + 16λc4)
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where

λc1 =

p−1∑
i=1

∑
i∈Sk

p+1(3)

λi1λpλi′1λi′2λi′3

λc2 =

p−1∑
i=1

∑
i∈Sk

p+1(2)

λi1λ
2
pλi′2λi′3

λc3 =

p−1∑
i=1

∑
i∈Sk

p+1(2)

λi1λpλi′2λ
2
i′3

λc4 =

p−1∑
i=1

∑
i∈Sk

p+1(2)

λi1λpλ
2
i′2
λi′3

where λc1 , λc2 , λc3 and λc4 are all positive constants.

Therefore,
1

N5
Cov(TA, TR)→ KAR > 0.

Lastly, consider Cov(TL, TR).

1

N5
Cov(TR, TL) →

∑
i∈Sp

1 (3)

∑
i′∈Sk

p (3)

λi1λi2λipλi′2λi′3
1

45
for i3 = i′1 = ip.

Therefore,

1

N5
Cov(TL, TR) → KLR > 0.
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Since all the components of the variance of T converge to a positive constant

as N →∞ , we can therefore conclude that condition A3 holds. This completes the

proof of the theorem.
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CHAPTER 4. A FINITE SAMPLE SIMULATION STUDY

4.1. Study Design

This chapter presents the results of a finite sample simulation study which

compares the estimated powers of seven tests; namely, the new test being proposed

in this dissertation (LAR), Mack-Wolfe’s test (MW), the test proposed by Salman

(SAL), Bhat’s test, two tests proposed by Hettmansperger and Norton (for one equally

spaced location parameters (HNEQ) and the optimal test (HNOPT)) and the Kruskal-

Wallis test.

The simulation study focused around location parameters. Thus the model is

given byXij = µi+εij, where εij are IID according to some continuous CDF F and µi is

a location parameter. Note that µi does not necessarily represent the mean of Xij. For

the exponential distribution, µi represents a scale parameter. The null hypothesis for

all the tests is that of equal population location parameters as defined in equation (11).

The alternative hypothesis being tested by LAR, MW, SAl, Bhat, HNEQ and HNOPT

is the umbrella hypothesis in Equation (3), while the alternative hypothesis being

tested by the KW test is differences in group means. All tests are based on a

significance level of α = 0.05. The estimated power values (i.e. the proportion of times

H0 is rejected) are derived from 10,000 simulations. The relative powers were studied

under the null and location shift alternatives. The study considered two different

distributions, namely, the normal and exponential distributions. The simulation study

also requires values for k;n1, n2, . . . nk;µ1, µ2, . . . , µk. Theoretically, there is an infinite

number of k, sample size, location parameter, and distribution configurations. This

particular simulation study considered k = 3, 4, 5, 6 and sample sizes for the k groups

were chosen for balanced designs and randomly (with replacement from 1, 2, . . . , 25)

for the unbalanced design. The location configurations were chosen to reflect either
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an umbrella patterns or a monotone trend. The simulation study investigated equally

and unequally spaced location parameters. The study also looked at the effect of the

wideness of the space between location parameters.

4.2. Simulation Results

4.2.1. Simulating under N(µ, 1)

Equal variances are assumed for the results in Tables 10, 12, 14, 15 and 16. Table

10 shows the estimated Type I error rates. Notice that the table does not contain

the HNOPT test. The reason being ci = c ∀i under Ho. This causes the HNOPT

test, Equation (10) to be degenerate at zero under the null hypothesis. With 10,000

simulations and α = 0.05, we see that each test in Table 10 with the exception of

LAR and SAL which are slightly liberal, exhibits a power of approximately 0.05.

Consequently, the tests: MW, Bhat, and HNEQ are equivalent in terms of the Type

I error rates. KW is most conservative compared to all the tests. Figure 5 shows the

distribution of T when simulated for three groups where n1 = n2 = n3. It can be seen

from Figure 5 that the distribution of T is right skewed which explains the reason for

LAR being liberal.

4.2.2. Simulating under N(µi, 1)

Recall from chapter 1 that the SAL test is a special case of the LAR test when

k = 3 and p = 2. Power estimates of the LAR test and SAL test will be the same

under this circumstance. Bhat’s test also becomes a special case of the MW test

when k = 3 and p = 2. Thus power estimates of MW test and Bhat test will be the

same under this condition. The HNEQ and HNOPT are exactly the same test when

the spacing of the location parameter between the groups are equal and will yield the

same power estimates under this condition.
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Terpstra et. al. (2011) note that the HNOPT test can be viewed as a benchmark

for comparison purposes. This is because the HNOPT requires the proper specifica-

tion of the spacings between location parameters, which we know in this context.

This explains why the HNOPT test is typically the most powerful test among the

seven tests being considered. However the power estimates of the other six tests are

comparable.

The simulation study examined power estimates for a range of scenarios. The

outcome of the simulation study depicted some differences in power under certain

scenarios. Generally, the power estimates of all the tests increased with µi+1−µi (left

of peak) or µi−µi+1 (right of peak) and k. The power estimates were always close to

1 for any µi+1 − µi > σ2 (left of peak) or µi − µi+1 > σ2 (right of peak) . The LAR

generally performed better than all the other tests when the peak of the umbrella was

very shallow, i.e. when the differences in location parameters between adjacent groups

is very small. The study also showed that when the differences between the location

parameters of adjacent groups are all less than σ2, the LAR performed far better

than all the other tests including HNOPT. It should be noted that LAR generally

performed better than all other tests including the HNOPT at small sample sizes and

small k. The power estimates of the LAR test were higher than those of the KW test

for almost every case. There were no evident differences in the power estimates of

the balanced and unbalanced cases.

One of the methods that is proposed to correct the liberal nature of the test

statistic is the gamma approximation .

The shape parameter of T is given by
µ2

σ2

while the scale parameter is given by
σ2

µ
.
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Histogram of T
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Figure 5: Graph Showing Density of T

After the gamma approximation, simulation results under the null distribution

showed T as conservative. These results are shown in table 11.

Lloyd (2005) also states that it is naive to compare power values of a liberal

test to that of a conservative test. Since the LAR and SAL are liberal while the

other tests are conservative, it is there not fair in this lines to compare them. Lloyd

(2005) proposed methods for adjusting for size in order to achieve a fair comparison

of power estimates between liberal and conservative tests. New power estimates that

are adjusted for size were computed using the original simulated power values. The

adjusted power is given by;
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R(δ) = Φ
(
Φ−1(β)− Φ−1(α) + Φ(α∗)

)

where

β = the estimated power value,

α = the simulated power under the null,

α∗ = the α− level used in simulation.

Table 13 and Table 17 show the estimates of power values adjusted for size for

the normal and exponential distributions respectively. After adjusting for size, LAR

still generally performed better than the other tests for small differences between the

groups and for cases where there is a gradual increases and then a sudden sharp

increase toward the peak. Contrary to the results of the raw power values, LAR did

not perform better for equally spaced location parameters.
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Table 11: Simulating Under the Null after Gamma Approximation

n1 n2 n3 n4 n5 Peak LAR MW SAL Bhat HNEQ KW
2 2 2 2 0.0662 0.0662 0.0662 0.0662 0.0662 0.0000
3 3 3 2 0.0493 0.0493 0.0606 0.0493 0.0493 0.0105
5 5 5 2 0.0400 0.0486 0.0682 0.0486 0.0486 0.0446
10 10 10 2 0.0423 0.0472 0.0581 0.0472 0.0472 0.0436
15 15 15 2 0.0413 0.0475 0.0549 0.0475 0.0475 0.0475
3 5 3 2 0.0429 0.0389 0.0660 0.0389 0.0389 0.0414
7 5 2 2 0.0377 0.0548 0.0636 0.0548 0.0501 0.0305
9 11 12 2 0.0487 0.0586 0.0634 0.0586 0.0565 0.0476
9 8 17 2 0.0412 0.0481 0.0568 0.0481 0.0484 0.0463
5 10 5 2 0.0422 0.0506 0.0569 0.0506 0.0506 0.0451
17 10 19 2 0.0419 0.0493 0.0580 0.0493 0.0492 0.0476
5 5 5 5 2 0.0425 0.0514 0.0637 0.0463 0.0543 0.0391
10 10 10 10 2 0.0437 0.0525 0.0572 0.0518 0.0494 0.0437
15 15 15 15 2 0.0424 0.0493 0.0535 0.0485 0.0500 0.0467
7 3 7 9 3 0.0420 0.0531 0.0617 0.0517 0.0463 0.0377
18 13 10 15 2 0.0414 0.0518 0.0554 0.0537 0.0491 0.0504
19 19 20 15 3 0.0415 0.0472 0.0555 0.0471 0.0476 0.0459
4 4 4 4 4 2 0.0414 0.0513 0.0609 0.0392 0.0499 0.0285
5 5 5 5 5 2 0.0461 0.0505 0.0622 0.0548 0.0514 0.0369
5 5 5 5 5 3 0.0391 0.0489 0.0593 0.0510 0.0471 0.0372
10 10 10 10 10 3 0.0436 0.0480 0.0577 0.0507 0.0487 0.0447
15 15 15 15 15 3 0.0405 0.0448 0.0539 0.0455 0.0450 0.0482
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4.2.3. Simulating under E (θi)

Note that the scale parameter for this exponential distribution is θi . Also, the

mean of each group will be equal to θi while the variance is θ2i . LAR performed better

than all other tests including HNOPT for equally spaced θi of groups. Generally, the

LAR performed better than the other tests including the HNOPT when the differences

between the θi’s are small. The MW test performed better than the LAR when the

differences in θi between the groups are unequal and very wide.
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CHAPTER 5. CONCLUSIONS

This dissertation has introduced a new nonparametric test for testing umbrella alter-

natives in a completely randomized design. This test is applied for cases where the

peak of the umbrella pattern is known prior to testing. The test statistic is based on

information from a trio of groups taken Ck
3 at a time.

Unlike other tests, this test compares groups across the peak of the umbrella pat-

tern. The importance of testing across the peak was first emphasized by Hettmansperger

(1987). The results of this study has added further evidence of the importance of

testing across the peak. Consider for example the data below.

Table 20: Simulated Data

x1 x2 x3 x4 x5
-0.1250049 2.554467 2.5158302 5.610838 0.6614217
1.1177840 4.050557 1.6159421 7.513144 0.6812125
1.7691099 1.544746 1.7757046 4.980371 -0.2921197
1.3769862 5.199789 0.9867563 5.354071 0.7294717
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The mean plot for this data set is shown in the figure below.
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Figure 6: Mean Plot of Salmonella Bacteria Strain by Group

Table 21: Test Results p=2, k=5

Test T Mean Variance Test Statistic pvalue
LAR 171 106.67 2779.02 1.22 0.1112
MW 77 56 158.67 1.67 0.0477
Sal 115 64 1190.4 1.48 0.0697
Bhat 44 32 37.33 1.96 0.0248
HN 1.48 0.0691
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Table 22: Test Results p=4, k=5

Test T Mean Variance Test Statistic pvalue
LAR 313 106.67 2779.02 3.91 0.0000
MW 93 56 158.67 2.94 0.0017
Sal 188 64 1190.4 3.59 0.0002
Bhat 50 32 37.33 2.95 0.0016
HN 1.70 0.0441

The results in Table 4.2 is a typical example of a situation where the Mack-Wolfe

test and the Bhat’s test can be very misleading. You would expect all the tests in

Table 4.2 to reject Ho. However, only the LAR and Hettmansperger and Nortons test

(HN) are reliable in this case. Based on the evidence just presented, the Mack-Wolfe

test and Bhat’s tests should not be recommended in situations where there is more

than one peak in the umbrella pattern. This is because, the Mack-Wolfe test and

Bhat’s test would reject the null even at a peak that is not the highest in a case

where there are multiple peaks.

The expectation and variance of the test statistics have been derived and ex-

pressed in the simplest possible form. The expectation and variance of the special

case where all the group sample sizes are equal is also given. The expectation and

variances are simplified to a form that makes it easy for the user to use manually for

both balanced and unbalanced designs. This is one of the few tests involving ordered

alternatives whose expectations and variance is simplified in such user friendly forms.

Three numerical examples are solved manually and the results compared to other

tests.

The asymptotic distribution of the of the test statistics is derived with the use

of classical multi-sample U-statistics theorems and the detailed proof shown. The
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results of the derivation of the asymptotic distribution shows that the test statistics

converges in distribution to a standard normal distribution.

Finally, a finite simulation study which compares LAR to other existing tests is

presented in section 4. The LAR test was competing with all the other tests in terms

of estimated powers. Based on the results of the power analysis, the LAR generally

performed better than the other tests when the differences in location parameter

between the adjacent groups was small. In such cases, the peak if very low making

the entire pattern shallow. In such shallow umbrella patterns, the LAR is far more

robust than all the other tests including the HNOPT. In situations where the slope

(of either side of the peak) increased slowly and then had a sudden sharp jump,

the LAR test outperformed all the other tests being compared to it. No tests with

the exception of the HNOPT clearly stood out compared to the other tests when

the differences in location parameter is considerably wide. The other tests with the

exception of the KW test did better than the LAR in many cases where the peak is

1 or k.

These are the major points to take away from the study;

• LAR is best at detecting very minute changes in patterns between groups.

• LAR is best when the difference in means or other location or scale parameters

are small (i.e. shallow umbrella).

• LAR performs better when there is a steady increase in the group location

parameters and a sudden rise to the peak.

• The study found situations where the results of the other tests could be mislead-

ing. For instance, LAR is more efficient when the alternative contains multiple

peaks or some groups being equal in location or scale parameters . Note that
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the presence of outliers in the data set could lead to multiple peaks. In this

line, the LAR is thus more robust to outliers than all the other tests.

After completing this study, the following recommendations came to mind.

• It would relevant to investigate the effectiveness of the proposed test (LAR)

under equal variances and unequal variances.

• Since clinical research studies are very involved with repeated designs, designing

a similar test for repeated designs would be of great benefit to the clinical

research community.

• Many other patterns are of investigational interest to the research community,

the exponential trend being one of them. The LAR test could be adjusted to

serve such purposes.
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