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A NEW NON-PARAMETRIC TEST FOR UMBRELLA
ALTERNATIVES

Gilbert Ngwa Muma, Ph.D

Western Michigan University, 2012

The Mann-Whitney statistics have commonly been used as a building block for many
tests involving ordered and umbrella alternatives. Such tests are based on pair wise
information that is obtained from all C} pairs of samples. This dissertation introduces
a new nonparametric test for testing umbrella alternatives in a completely randomized
one way design. This test is based on information obtained from a subset of the
C¥ trios of samples. Unlike most existing tests for umbrella alternatives, the new
test lays emphasis on the importance of testing across the peak of the umbrella,
thereby rendering the new test more efficient. The test has the flexibility of testing
other patterned alternatives such as the monotone ordering of location parameters
(increasing or decreasing). The mean and variance of the test statistic are derived
under the null hypothesis with the extensive details of the derivation included in the
write-up. I also present a simplified mean and variance result that is in a practical
form. Based on the derivation of the asymptotic distribution, the standardized
test statistic corresponding to the new test converges in distribution to a standard
normal distribution. Some numerical examples involving clinical data are analyzed. A
simulation study compared power estimates of the new tests under different sample
sizes and location parameters to those of seven other existing tests. The new test
generally competed with all other existing tests and performed better than all the

other tests in many scenarios.
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CHAPTER 1. INTRODUCTION

In many settings a dose response-relationship need not be monotonic in the dosage and
may follow an umbrella trend instead. In in-vitro mutagenicity assays, for example,
experimental organisms may not survive the toxic side effects of high doses of the test
agent, thereby actually reducing the number of organisms at risk of mutation and
leading to a downturn (i.e umbrella pattern) in the dose-response curve. The data
in Table 1 is taken from Table 6.10, of Hollander and Wolfe(1999). Plates containing
Salmonella bacteria of strain TA98 were exposed to various doses of Acid Red 114.
The tabled observations are the numbers of visible revertant colonies on 12 plates in
the study. Suppose a researcher wants to test the hypothesis Hy (no dose/treatment
effect) against the alternative that the peak of the dose response curve for Salmonella

bacteria of strain TA98 exposure to Acid Red 114 occurs at dosage level 333ug/ml.

Table 1: Salmonella Bacteria Strain
Dosepg/ml
0 100 333 1000 3333 10,000
22 60 98 60 22 23
23 59 78 82 44 21
35 54 50 59 33 25

The mean plot of this data shown in Figure 6 indicates an umbrella pattern

across the groups from the first group to the last group.

1.1. Ordered and Umbrella Alternatives

Dose-response studies are frequently used to assess the relative treatment effects
of increasing or decreasing dose levels of a substance in animal experiments or clinical
trials. A researcher comparing multiple treatments (or samples) in a one way setting

is often able to rank the treatments according to the order of magnitude of the
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Figure 1: Mean Plot of Salmonella Bacteria Strain by Group

effect of each treatment prior to testing. The guess of this order may be based on
the experience of the researcher. Within the one-way analysis of variance setting,
the researcher is often concerned with detecting deviations from the null hypothesis
of no treatment effect. Particular deviations of interest have included the omnibus
alternative (i.e., there is a treatment effect), the ordered alternative (i.e., there is
monotone treatment effect) and the umbrella alternative (i.e., there is a monotone
alternative that is subject to change indirection). The conventional one way analysis
of variance is not a good test for testing the ordered and umbrella alternatives. This
is because the F-test is independent of the order in which the group means occur
(Jonckheere, 1954). For instance, consider the effect of a drug, which is typically
increasing up to a certain point p, and then it decreases. The interest of the study

may be on finding the change-point group (i.e. the group where an inversion of trend

2



of the variable under study is observed). A change point is not merely a maximum (or
a minimum), but a further requirement is that the trend is monotonically increasing

before group p and monotonically decreasing afterwards.

The need for understanding the order of the magnitudes of the effects of treat-
ments has led to a rise in research and the development of distribution free tests
for testing homogeneity against ordered alternatives of treatments (no treatment
effects). Such testing procedures are generally based on ranks (Basso and Salmaso,
2011). Wolfe (2006) and Millen and Wolfe (2005) did an extensive review of such
tests. Two main versions of tests for testing patterns have been discussed in many
papers: one based on average ranks after ranking the combined data and one based
on pairwise rank statistics formed by ranking only within each of the pairs of samples
(Hettmansperger and Norton, 1987). That is, the tests are all based on pairwise
information that is obtained from all C¥ pairs of samples. However, tests based on

ranking within each of the combination of a trio of samples has not been investigated.

Several tests have been constructed to test patterned alternatives against ho-
mogeneity of the k-samples (Hy : u1 = -+ = pg). The alternative varies depending
on the goal of a researcher. The most common alternatives that have been studied

for k-samples (k > 3) have been;

Hy @ o <po <o < (1 < pe), (1)
Hy @ o > o > > g (pn < pug), (2)
Ha : ,UlS"‘SﬂpflgupZMpHZ“'Z,Uk- (3)

(atleast one strict inequality)



The monotone trend and umbrella trend of the location parameters have been
the most common patterns studied in the area of patterned alternatives. However,
most studies involving patterned ordered alternatives have been centered around the
monotone trend. There is still need for a substancial amount of effort in studying the
umbrella alternative. For the sake of clarity, throughout this dissertation X;; denotes
the j™* observation in the i*" sample.

1.2. Literature Review

The Mann-Whitney test statistic has been the framework of many tests involving
ordered alternatives. Many tests for testing umbrella alternatives have been an
extension of some test for testing monotone trends.

The tests proposed by Jonckheere (1954), Mack and Wolfe (1981) and Bhat
(2009) are all an extension of the Mann-Whitney test statistic. Jonckheere (1954)

proposed the following test for testing H, : pg < po < -+ < g (p1 < ) :

T=>"Uy (4)

i<j

where

=1 k=

—_

Notice, this is basically a combination of the 2-sample Wilcoxon which compares
two samples at a time. Terpstra and Magel (2003) proposed the following test for

testing the same hypothesis H, : p3 < o < -+ < g (g < pg)



This test simultaneously tests all the groups. When k& = 2 (two groups) this
tests becomes a two sample Wilcoxon test.

Terpstra et. al. (2011) introduced another test for testing the monotone trend
of the location parameters ( Hy @ p1 < po < -+ < pg (11 < pg) ). This test makes

use of Spearman’s correlation coefficient.

ni Nk
T:Z...Z’]"S(XMl?XQiQ,...,ink); (6)
i1:1 ikzl

where rs(X1;,, Xoi, - .. Xki,) denotes the Spearman rank correlation coefficient
based on the following data: {(1, X1;,), (2, X2s,), . .. (k, Xy, )}. This test proposed by
Terpstra et. al. (2011) has an advantage over many existing tests that test monotone
trends in that it provides an intuitive summary measure for the degree of association
between the response variable and the treatment groups.

So much work has been carried out in developing new tests for testing ordered
alternatives (monotonic treatment effects) in comparison to the few that are out the
for testing umbrella alternatives.

Mack and Wolfe (1981) proposed the following statistic to assess the umbrella
alternative in equation (3) when the changepoint group p is known prior to testing.

That is,

p—1 p k—1 k
Apzzz Uz‘j—f—zz Uji, (7)
i=1 j=it1 i=p j=i+1

where U;; is the Mann-Whitney statistic between the i*" and the j* samples.

Mack and Wolfe’s test is an extension of the Jonckheere Terpstra test. It is

based on pairwise rank statistics formed by ranking only within each of the pairs of

5



samples. Basso and Salaso(2011) and Hettmansperger and Norton (1987) pointed out
that no comparisons are made in the Mack-Wolfe test between samples preceding the
known peak and those following it. Hettmansperger and Norton (1987) stated the
absence of across-the-peak comparison as a problem.

Bhat (2009) developed the following k-sample rank test for testing umbrella

alternatives.
p—1 k—1
A= Z a;iU; g1 + Z a;iUi1, (8)
i=1 i=p
where ap,...,ar—1 are real constants to be chosen suitably and Uj; is the two

sample Mann-Whitney U-statistic for the " and j** samples. This test compares
successive groups. For instance,if p = 4 and k = 6, then A = U9+ Us3+Usy+Usys+Usgs.
The fact that Bhat’s test does not test across groups can cause very misleading results.
If a pattern has multiple peaks, Bhat’s test would test significant if any peak is tested
indicating the presence of an umbrella pattern which is not the case. Consider the

following data and it’s mean plot.

Table 2: Simulated Data
(Group 1)  (Group 2) (Group 3) (Group 4) (Group 5)
-0.2645469 5.3564944 0.498346  1.6867112 -0.3965792

1.1782195  4.7889641 0.7456039 0.6361922 0.240107
-1.3325297 4.9146766 0.2423505 2.762041  1.2912549

Using Bhat’s test to test for a peak at Group4 (p = 4), the test will give the

following results;

A=25, Mean= 18, Variance= 16.5, Test Statistic = 1.7233, p value = 0.0424

6
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Figure 2: Mean Plot of Data in Table 2




The results of Bhat’s test indicates an umbrella pattern with a peak at group 4 which
is far from reality. This is the set back of not testing across all groups. Secondly, like
the Mack Wolfe test, Bhat’s test does not test across the peak. However, the Mack
and Wolfe’s test rejects H,. This disproves the conclusion made in Bhat (2009) that
Bhat’s test is preferable to the test proposed by Mack and Wolfe for testing umbrella
alternatives. As noticed, Bhat’s test indicates the presence of peaks, regardless of
whether the peak is the highest peak or the lowest peak.

Salman (2010 ) proposed the following test for umbrella alternatives

3
L

Y Anpis (9)

1ig=p+1

.

i1

where
n;1 Np n;3

21,19723 Z Z Z 11]1 < Xp]z > Xlsja)

J1=1j2=17j3=1

Salman does compare across the peak in his test but does not test the increasing
monotone alternative on the left of the peak and the decreasing monotone alternative
on the right of the peak. Salman’s statistic is formed by ranking within three groups

at a time.

Hettmansperger and Norton (1987) constructed a test based on average ranks

after ranking the combined data. Their test statistic is stated as

V=> Xle;— )R, (10)



where the set of constants c; ...c, specifies the pattern to be detected, \; =

n;/N, N=3n;,c, =5 \c;j and R; is the average rank of the j'h group.

Basso and Salmaso (2011) introduced a permutation test for testing umbrella
alternates. Their test is suitable for small sample sizes but the computation can be
very time consuming for larger sample sizes. Just like the Mack and Wolfe’s test, the
pemutation test does not compare across the peak.

A new distribution free test for testing umbrella alternatives in the case where
the peak is known prior to testing is introduced in this dissertation. The flexibility
of this test in terms of how it can test other patterned alternatives is discussed.
Unlike other tests for testing umbrella alternatives that compare only two groups at
a time (X;,j, < Xj,;,) this new test compares 3 groups at a time e.g. (X;,;, < Xi,j, <
Xi,js). That is, the new test being proposed is based on information obtained from
the subset of the C¥ trios of samples. Therefore there should be a minimum of three

groups for this test to be applied.

The test takes into consideration the importance of testing across the peak as
well as both sides of the peak. A detailed description of how the test is carried out is
discussed. Some special cases in which the peak appears in varying positions are also
discussed. The second part of the research derives the mean and variance of the test.
Simplified formulas for the mean and variances of the test for both the balanced and
unbalanced cases. An extensive proof of the mean and variance of the test is outlined.
In the third chapter the asymptotic distribution of the test is derived, with the help
of theorems that relate to multisample U-statistics and other asymptotic theorems.
Some real life data are analyzed and their results are compared to other existing tests

for umbrella alternatives. An extensive simulation study is carried out in which I



compare powers from results of the proposed test to some selected existing tests.
1.3. New Statistics

1.3.1. Notations Used Throughout the Dissertation
p refers to the peak group

k is the number of groups

n, is the sample size of the peak group

n; is the sample size of the nth group

SP(c) is a set of c-tuplets, where each tuplet corresponds to ¢ ordered integers ranging
from a to b. There are C’~%*1 elements in this set.

For example:
SH3) ={(1,2,3),(1,2,4),(1,3,4),(2,3,4)}

St(5) = 0. (null set)
1.3.2. Hypothesis and Assumptions
This dissertation introduces a new class of nonparametric tests of homogeneity

between the k treatment groups. That is,

Hﬂ:,ul:ﬂQZ"':,up—l:ﬂp:ﬂp—i—l:"':,Uk (1]_)

against the umbrella alternative in equation (3)

Assumptions

e The N random variables X, ;, ¢« = 1,2,...,k and 7 = 1,2,...n; are mutually

independent

10



e For each fixed i € {1,2,...,k}, the n; random variables X1, X12... X, are

a random sample from a continuous distribution with distribution function F'.

1.3.3. Design

Let {X;;}, i« = 1,2,....k, j = 1,2,...,n;, denote the N = Zle n; random
variables corresponding to k random samples from a completely randomized design
(CRD). The cumulative distribution function (CDF) for X;; is denoted as Fj(x);i =

1,2, ....k. Thus the general design is a one way layout as follows:

g1 g2 g3 - dp S 9k
Xn X Xai o o Xp oo Xu
Xio Xoo Xz . . Xp .. Xp
Xz Xog Xzz . . Xpz . . Xig
Xin, Xon, Xsng - - Xpnp D, ¢

The groups may have equal or unequal sample sizes (balanced or unbalanced).

1.3.4. New Test

This dissertation is proposing the following test statistic:

11



T=1T,+Ts+Tg, (12)

This is a general case, where

ni1 M2 M43

TL - Z Li1,i2,i3 and Li1,i2,i3 - Z Z Z I(Xiljl < Xi2j2 < XiSjS)

iesP(3) 1= o1 jg=1
p—1 k ni1 Mp N3

Ta=> Y Ajpiand Ay i =YY ) I(X; < Xy > Xyyj,)
i1=1143=p+1 j1=1j2=1jz=1

ni1 N2 Pi3

Ty = Z Ri)inis  and Ry iy, = Z Z Z I( Xy, 2 Xiyjo > Xigjs)

i€Sk(3) J1=1j2=17j3=1

In this dissertation, the indicator is 1 only if there is atleast 1 strict inequality.

1.3.5. Flexibility of New Test
The proposed test is very flexible in that it can be used to test multiple ordered
patterns. In addition to the umbrella alternative stated above, this test has the ability

to test the following types of alternative hypothesis:

o Hy:pn < pg>ps

This hypothesis is testing an umbrella pattern with peak at 2 with three groups.

The corresponding test statistic for this hypothesis would be,

12



T =Tjy. (13)
When p = 2 and k = 3, the new test is the same as the test proposed by Salman
(2010).

o Hy:py < pg <--- <y
This hypothesis is the same as that being tested by the Jonckheere-Terpstra
test. This hypothesis is testing for a peak at the last group (i.e. p = k). The

corresponding test for this hypothesis is

T="T;. (14)

o Mty > o > > g

In this case p = 1. This is also the hypothesis being tested by the Jonckheere-

Terpstra test. The corresponding test for this special case is,

o Hy:tpn <pg>pz > >y

The corresponding test for this hypothesis is

T =Ty + Th. (16)

o Hy:ipg <+ <o < flp—1> lg

13



The corresponding test for this is

T=T,+1Ty.

14

(17)



CHAPTER 2. EXAMPLES

2.1. General Example
In this section an illustration of how 7' is calculated is presented. Consider the
following unbalanced one-way table with six groups (ny = ny = ns,ny = ns = ng = 1).

suppose we want to test for an umbrella alternative with the peak at group 3.

Group 1 2 3 4 5 6

a c e g 1 j

b d f

The following derivations detail the calculations of T" for this special case.
Note that there are atleast two groups on the left of the peak which means, the
monotone increase on the left (77) has to be tested, and there are atleast two groups
on the right of the peak as well which means the monotone derease on the right (1)
has to be tested. There is atleast one group on both sides of the peak which means

there needs to be a test across the peak (T4).

T = Tr+Ts+Tx

= Lyog + Aisa + Aosa + Ayss + Aogs + Aize + Aoge + Raas + Rase + Rase + Rase

15



Ty = Ajgq+ Aozs+ Aizs + Aoss + Aize + Aase

Agg = Ia<e>g)+I(a<f>g)+1(b<e>g)+I(b<f>yg)
Ay = I(c<e>g)+1(c<f>g)+I(d<e>g)+Id<f>g)
Aigs = TIa<eZzi)+Il(a<f>i)+1b<e>i)+I1(b< f>1)
Agsgs = I(c<e>i)+I(c<f>2i))+1d<e>i)+I(d<f>]))
Aigs = Ia<e>j)+Ia<f>i)+1(b<e>j)+I(b< f>))

Ape = I(c<e>j)+I(c<f2j)+I(d<e>j)+I(d<f>])

Tr = Rass + R + Rase + Rase
Ryys = Ile>g>i)+1(f>g>1)
Rys = Ile=g=j)+I(f=g2))
Rass = I(e>i>j)+I(f >1i>j)

Rysg = 1(g>12>7)

T is the sum of all the indicators in T}, Tyand Tg.
2.2. Numerical Example 1

Consider the data in Table 1. Although the mean plot for this data indicates
p = 3, the H, is tested at p = 4 (1000/ml) so that the results can be compared to

the results analyzed by Hollander and Wolfe (1999).

16



Hy, @ py = po = p3 = pg = pis = e

Hy o < pg < pg < g > ps > fig

Based on the hypothesis,

p=4, k=6andn, =n,=ng=ng=n5=ng=>0

T = T, +Ta+1Tgr
T = Lygs+ Liga + Lisa + Logs + Avras + Arae + Aoas + Asag + Asas + Asae + Rase
T = 184+24+12+3+27+27+24+24+ 12+ 12+ 21

= 204

Using the formulas from chapter 3, (i.e. equation (19) and equation (21) ) the mean

and the variance for this example is given as follows

Mean

33 4 6—-4+1
E(T) = 5 +2(4—-1)(6—4)+
3 3
= —(d+12+1)
= 76.5
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Variance

Var(T) =

{39 <4> 3+ (j) (48(3%) +27(3%)) + (g) (9(3°) + 12(3%) + 4(33))}

L2 {39 (6 - 4) 35 4 (6 ) 4) (48(37) + 27(3%) + (6 . 4) (9(37) + 12(3%) + 4(33))}

56 —1)3 + 2(3)
0 + 1}

Gl 43 {(6 —1)(3%) +4(4 —1)(6 — 4)3* +

+ 2(63g04> {48(4;1>35+<42 )40 (3%) 4+ 10(3%)) }
i}

2 2 62
0 4 13851 + 13068) + ——(0 + 0 + 3267) + — (45 + 216 + 20.25 + 1
5600 - )+ g (0 F 0 8267) (45 216 + 1)

4 6 1458
11664 + 31 — 1 —
+ 360( 664 + 3 59O)+36O(0+ 0530) + 15

= 149.55 + 18.15 + 1016.1 + 480.6 + 175.5 + 32.4

= 1872.3
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Note that

4 2 2 2
=0, =0, =0 and =0
5 5 4 3
. 204 — 76.5
V1872.3
= 2.9466

p value = 0.0016

The data is analyzed using the test statistics in equations (7), (9), (8), (10) and
the Kruskal Wallis test.

Table 3: Example 1 Results for Other Umbrella Tests

Test | T Mean | Variance | Test Statistic | pvalue
LAR | 204 76.5 1872.3 2.9466 0.0016
MW | 69 40.5 96.75 2.8975 0.0019
Sal 126 54 1016.1 2.2587 0.0120
Bhat | 35 22.5 17.25 3.0096 0.0013
HN | 1.6759 | 0.7500 | 0.1613 2.3057 0.0106
KW 13.4121 0.0198

Although the plot of the data indicates the peak at group 3, all the tests for

umbrella alternatives in Table 3 are consistent. They all reject Hy in favor of H,.

2.3. Numerical Example 2
Anogenital distance is the distance from the anus to the genitalia, the base of

the penis or vagina. Consider the following data taken from Bradstreet (1992).
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Suppose a researcher wants to test for a dose related change in anogenital
distance . This researcher expects anogenital distance to decrease with an increase in
dose concentration. Forty pregnant female rats were assigned randomly to one of four
treatments (10 rats/treatment) including a Vehicle Control and graded oral doses (50,
100, 200 mg/kg) of an investigational compound. Dosing was performed once daily
on Days 16 through 19 of gestation. On Day 20, the animals were sacrificed. The
anogenital distance and sex of each fetus was recorded. Average anogenital distances

for each sex in a litter are shown in the data below.

a) For males, is there a dose related change in anogenital distance?

Table 4: Anogenital Distance
Dose Litter
(mg/kg) Sex 1 2 3 4 5 6 7 8 9 10

0 M 266 266 234 234 268 244 243 279 280 2.61
0 F 111 118 1.13 109 126 1.10 1.15 1.27 1.21 1.17
20 M 176 156 228 1.74 195 182 191 183 224 191
20 F 098 106 140 101 1.14 1.02 1.13 1.20 1.27 1.14
100 M 158 156 148 1.55 151 192 1.48 148 1.72 1.52
100 F 111 110 118 1.12 1.13 1.32 1.20 1.05 1.28 1.23
200 M 128 1.30 124 130 1.26 1.42 120 120 1.39 (a)
200 F 1.01 1.08 1.01 1.06 1.12 1.38 1.11 1.15 127 (a)

(a) All fetuses found dead

Given the goal of the study, we want to test the following hypothesis,

Hy @ = pe = p3 = g

Hy oopn > pg > ps > pd

Based on the hypothesis, T is the same as in Equation (15).
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Mean plot of Anogenital distance

2.6

2.4

Anogenital distance
1.8 2.0

1.6

1.4

I I I I I I I
1.0 15 2.0 2.5 3.0 3.5 4.0

group

Figure 3: Mean Plot of Anogenital Distance

Note that p = 1, and k£ = 4. Therefore

T=Tp = ) Riii

i€57(3)

where
nil 77@2 77/1‘3

Rijigiy = Z Z Z(Xiui > Xi2j2 > Xisjs)

Jj1=1j2=1j3=1

SH(3) ={(1,2,3),(1,2,4),(1,3,4),(2,3,4)}, and

21



T=Tr = R+ Rios+ Rizq+ Rosy
= 910+ 900 + 900 + 819

= 3529

Using the formulas from chapter 3, (i.e. Equation (18) and Equation (20) ) the

mean and the variance for this example is given as follows

Mean
1 1
Z nn”m”mg = 5(”1”2713 + nyngny + Ningng + Nangng)
i€54(3) ’ '
1
= 5(10.10.10 +10.10.9 + 10.10.10.9 + 10.10.9)
= 616.6667
Variance
2
Var(T) = Var(Tg) = %(397“1 + 79 4+ r3), where
rn = Z Ny My Mg My My = 0
i€St(5)
ro = Z NG MM Mgy (9(71“ + 7%'4) + 15(7112 + 7%3) + 27)
i€St(4)

= nynonang(9(ny + ny) + 15(ny + ng) + 27)
= 10 x 10 x 10 x 9 x (9(10 + 9) + 15(10 + 10) + 27)

= 4482000, and
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3

rs

thus

Var(T)

= Z N My Mg (47%1711'2 + 4711'27%3 + N Mg + 5(7111 + nis) + 2711‘2 + 4)
i€St(3)

= 10.10.10(4.10.10 + 4.10.10 4 10.10 4 5(10 + 10) + 2.10 + 4)

= 10.10.9(4.10.10 + 4.10.9 + 10.9 + 5(10 4 9) + 2.10 + 4)

= 10.10.9(4.10.10 + 4.10.9 + 10.9 + 5(10 4 9) + 2.10 + 4)

= 10.10.9(4.10.10 + 4.10.9 + 10.9 + 5(10 4 9) + 2.10 + 4)

= 1024000 + 872100 4 872100 + 872100

= 3640300 .

2
= 55(39(0) + 4482000 + 36403000) = 45123.89

3529 — 616.6667 1371
\/45123.89 o

and

p value = 0.0000 .

Table 5: Example 2a: Dose-Response in Males

Test | T Mean Variance | Test Statistic | pvalue
LAR | 3529 616.6667 | 45123.89 | 13.71 0.0000
MW | 560.5 285 1591.667 | 6.91 0.0000
Bhat | 281 145 183.333 | 10.0443 0.0000
HN | -0.0244 | -1.2229 | 0.0429 5.7878 0.0000
KW 34.3467 0.0000
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b) For females, is there a dose related change in anogenital distance?

Table 6: Example 2b: Dose-Response in Females

Test | T Mean Variance | Test Statistic | pvalue
LAR | 802 616.6667 | 45123.89 | 0.8725 0.1915
MW | 316.5 285 1591.667 | 0.7896 0.2149
Bhat | 164 145 183.333 | 1.4032 0.0803
HN | -1.0581 | -1.2229 | 0.0429 0.7960 0.2130
KW 2.1810 0.5357

The results in Table 5 and Table 6 differ between males and females. Based on
the results, H, is rejected for males and is not rejected for females at o = 0. The
results are also consistent for all the tests. This indicates there is a dose-response

relationship in males but none in females.

2.4. Numerical Example 3

This data is from Pedersen et. al. (2008). This was a study carried out
to describe a Doppler waveform index representing the hepatic vein flow velocity
pattern and to examine its relationship to the degree of hepatic fibrosis. The study
examined the a consecutive series of patients who underwent percutaneous liver needle
biopsy and sonographic examination that included recording of hepatic vein Doppler
waveform 5 days before the biopsy. The study comprised 66 patients (37 females and
29 males).
After completion of the study, all tracings were evaluated blindly without knowledge
about the pathology report, in one session, and hepatic vein waveform index (HVWI)
was calculated as (maximum velocity - minimum velocity) /(maximum velocity). Two
pathologists blinded to the Doppler findings examined the biopsy specimens and
graded fibrosis. In case of disagreement, they both re-examined the specimens to

reach a consensus. Fibrosis was graded as: no fibrosis (group 1); mild fibrosis (group
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2); moderate fibrosis (group 3); severe fibrosis (group 4) and cirrhosis (group 5).

In order to test the relationship between degree of fibrosis and HVWI, suppose the
study wants to test the hypothesis that there is an umbrella pattern with peak at

group 2 (mild fibrosis).

Table 7: Hepatic Vein Waveform Index

HVWI

No fibrosis Mild fibrosis Moderate fibrosis Severe fibrosis Cirrhosis
1.7917 1.7124 1.5570 1.6726 1.4182
1.7090 1.6694 1.4017 1.2893 1.4017
1.6661 1.6033 1.3587 0.9950 1.3025
1.6099 1.5934 1.3256 0.4959 1.2000
1.5669 1.5438 1.1702 1.1372
1.5537 1.4612 0.8165 0.9289
1.5008 1.3620 0.6743
1.3884 1.2860 0.6711
1.3884 1.2860 0.6248
1.3289 1.2595 0.6280
1.2496 1.2198 0.5983
0.9950 1.2033 0.5354
0.2511 1.1702 0.4694
0.0594 1.1306 0.4397

0.9983 0.4430

0.9983 0.4033

0.8496 0.3967

0.7504 0.3769

0.6413 0.2511

0.6017

0.5554

0.5587

0.1388
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HVWI

1.1 1.2 1.3

1.0

0.9

0.8

group

Figure 4: Mean Plot of Data in Table 7
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H, @ = pg = p3 = pg = s
Hy oopn < pg > pz > pg > ps
p=2k=25

ny = 14,n2:23,n3:6,n4:4,n5: 19

T, +Ta+Tg

0+Ty+Tg

(A123 + Arog + Aras) + (Ross + Ross + Ross + Raus)
(418 + 280 + 1808) + (115 + 828 + 509 + 176)

4144
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1 5
ZZnilngniS% + Z niln@nm%

i1=1143=3

i=53(3)

ninaonsg n1MoNy n1Mnaonsy TaM3My NoM3My TNy n3n4MNy
3 3 3 6 6 6 §
14x23x6 14x23x4 14x23x19 23x6x4
3 3 3 6
23 x6x19 23 x4x19 6x4x%x19
6 6 6

3112.6667 + 896.3333

4009
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Variance

Var(T) = Var(Ta)+ Var(Tg) +2Cov(Ta, Tg)

ninsni
Var(Ty) = 14; 3 <n2(n’{ +n3) +4nin; +

5(ny . 2
(n1+7”;3)—|— ”2+1>

1
ny = g n, =ny =14
i=1

5
n}ﬁ):Zni:n3+n4—|—n5:6—|—4+19:29
=3

ny, = ng = 23

14 x 23 x 29 5(14 + 29) + 2(23
Var(Ty) = X4—5X(23(14—|—29)+4><14><29—|— (14 + 4>+ ( )+1)
9338
= =5 (989+1624 46525+ 1)

= 555974.1444

2
VCL’/‘(TR) = %(397’1 + (] -+ 7‘3)
rn = Z nilnigniSnunis = O,
i€S5(5)
To = Z N My Mg MG, (9(’”“ + TLZ‘4) + 15(7%2 + 7’Li3) + 27)
i€55(4)
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r3

Therefore,

Var(Tg)

= nanznyns(9(ng + ns) + 15(nz + ny) + 27)
— 93.6.4.19(9(23 + 19) + 15(6 + 4) + 27)
— 10488(378 + 150 + 27)

= 5820840

Z T My Mg (4ni1ni2 + 471,‘2 Nig + N Mg + 5(71“ + nig) + 271,‘2 + 4)
i€55(3)
712713714(4712713 + 4’)13714 + nong + 5(712 + 7’L4) + 2’)13 + 4)
n2n3n5(4n2n3 + 4’)13715 + nons + 5(712 + 7’L5) + 2’)13 + 4)
nangns(4nang + dngns + nans + 5(ng + ns) + 2ng + 4)

nsnans(4dnsng + dngns + ngns + 5(ns + ns) + 2ng + 4)

23 x6x4(4x23x64+4x6x4+23x4+5(23+4)+2x%x6+4)
23X 6x19(4x23x64+4x6x194+23x19+5(234+19)+2x6+4)
23 x4 x19(4x23 x44+4x4x194+23 x19+5(234+19) +2x4+4)

6x4x194x6x4+4x4x19+6x%x19+5(64+19)+2x4+4)

491832 + 4381362 + 2326588 + 296856

7496638

2
5 (39(0) + 5820840 + 7496638)

73985.9889
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Cov(Ta, Tg) =

nany

360

48 Z Ty Mip Mg + Z Tiy Ty (877,2 + 167111 + 167112 + 10)
i€S3(3) i€55(2)

n=n;+--+n,_1=n =14

E Ny My Mg = MN3TUYN5
53(3)
=6x4x19

= 456

> nyni,(8n, + 16n;, + 16n;, + 10)
i€55(2)
nang(8n, + 16n3 + 1614 + 10)
n3n5(8np + 16”3 + 16715 + 10)

nans(8n, + 16n, + 1615 + 10)

6 x 4(8x 23+ 16 x 6+ 16 x 4 + 10)

6 x 19(8 x 23 + 16 x 6 + 16 x 19 + 10)
4% 19(8 x 23416 x 4 + +16 x 19 + 10)
8496 4 67716 + 42712

118924
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23 x 14
Cov(Tu, Tp) = 320 (48 x 456 + 118924)

= 125948.511

Var(T) = 555974.1444 + 73985.9889 + 2 x 125948.511

= 881857.1553

The test statistics can thus be calulated as,

4144 — 4
= 009 = 0.1438

V881857.1553

Table 8: Example 3: Results of Other Umbrella Tests

Test | T Mean | Variance | Test Statistic | pvalue
LAR | 4144 4009 881857.2 | 0.1438 0.4428
MW | 707 601.5 6018.917 | 1.3599 0.0869
Sal 2506 3112.7 | 555974.1 | -0.8136 0.7921
Bhat | 232.5 280 1692.667 | -1.1545 0.8759
HN | -0.9781 | -1.5999 | 0.0477 2.8461 0.0022
KW 15.0037 0.0047

The results in Table 8 are contradictory. Although the mean plot in Figure 4,
does not indicate a peak at group 2, HN rejects Hy at a = 0.05 (i.e. indicating peak
is at group 2) while MW is marginally significant (p value=0.0869). The LAR, Sal

and Bhat test however do not rejects Hy.
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CHAPTER 3. THEORY

The first part of this chapter describes the distributional properties of 7" under the null
hypothesis. The expectation and variance of 7" under the null hypothesis are stated
along with a few worked results. The asymptotic null distribution of 7" is also stated.
The second part of the chapter gives detailed proofs of the expectation, variance and
the asymptotic distribution of 7. The derivation of a few preliminary results are
also included. The fundamental elements of the proofs deal with probabilities such
as P(X; < Xy < X3), P(X; < X5 > X3) and P(X; < X < X3, Xj < Xy < X5).
In the derivation of the asymptotic distribution of 7', this treats T' as a multisample
U-statistic and makes use of classical theorems for multisample U-statistics.
3.1. Main Results Under the Null Hypothesis
3.1.1. T is Distribution Free

Under Hy all observations (i.e. {X;;}) are IID F', where F is a continuous distri-
bution function. Thus, the possibilities of ties between the X's have zero probability.
Moreover, this implies that T is distribution free under H,. See, for example, Terpstra
and Magel (2003).
3.1.2. Expectation of T

The mean of 7" under Hj is presented in Theorem 3.1.

Theorem 3.1: Under Hj, the expectation of T is given by,

Z Thiy Tig Ty |+Z Z ”unpnu + Z nllnzznt, (18)

i€s?(3) t1=1143=p+1 i€Sk(3

See Section 3.2.2 for the detailed proof of this result. That said, when n; =

ng = --- = ng = n, equation (18) reduces to,
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E(T) = +2(p—1)(k—p) +

n? D k—p+1
6 3 3

where (Z) denotes the number of ways to choose x objects from n objects.

3.1.3. Variance of T

The variance of T" under Hj is presented in Theorem 3.2. In what follows we

make use of the following quatities:

l

1

T2

3

39 E T M Mg My Mg s
i€S?(5)

Z nilnizniBni4(9(ni1 + nu) + 15(%12 -+ nig) + 27),
ieSt(4)

Z iy Wiy M (4103, iy + ANy iy + iy My + B(0gy + My ) + 204, + 4),
i€S?(3)

39 E NG My Mg T, T
i€Sk(5)

Z Thiy Moijp Mg Ty (g(nil + ni4) + 15(7%2 + nis) + 27):
i€Sk(4)

Z Ny My Mg (4712'17%2 + 4711‘2711'3 + N Mg + 5(7111 + ni3> + 27”Li2 + 4),
i€Sk(3)
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ny

Uy

U2

U1

(%

Recall that

ny A4y,

Npt1 + -+ Ny,

5(n; + n,) + 2n,
4

ny(ny +n,) + dnyn, + +1,

48 E T M Mg

ieSPT1(3)

> niyniy(8n, + 16n;, + 16n;, + 10),

ies?1(2)

48 E NG Mo Mg,

€Sk, 1 (3)

> nyny,(8n, + 16n;, + 16n;, + 10),

€Sk, 1 (2)

g N, Ny, and

ieSPT(2)

E TLil niQ

€Sk, (2)

Z =0if b—at+l<e
i€St(c)

Theorem 3.2: Under Hy, the variance of T' is given by,
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2
VCLT’(T) = ﬁ(ll -+ l2 + l3 +7ry+1re+ 7’3) —+ Z—g (nmra + w1w2>

+ﬁ (- (ur + ug) + m(vr +v2)) . (20)

Section 3.2.3 contains the proof of this result. That said, when

ny =ng = --- = ng = n, equation (20) reduces to,

V(T) = % {39 (7;) n’ + (Z) (48n” +27n*) + (g ) (9n® + 12n* + 4n3)}
T {39(’c _p>n5 + (k ;p) (48n° + 27n") + (k gp) (9n° + 120 +4n3)}
5(k — 1in+2n N 1}

{(k —)n®+4(p — 1)(k — p)n® +

1
n® + (p ) >(40n5 +10n%)

) }
48 k_p>n5+ (k_p>(40n5+10n4)}
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3.1.4. Examples of Computed Means and Variances

Table 9 contains the calculated means and variances of some randomly selected
sample sizes and peaks. In the case where ny = ny = --- = ny = n, the mean when
p = 1 is equal to the mean when p = k and the variance when p = 1 is equal to the

variance when p = k.

Table 9: Some Computed Means and Variances

ny Ny N3 ng ns ng | Peak | Mean Variance
2 2 2 - - - 1 1.3333 2.8444

2 2 2 - - - 2 2.6667 5.5111

2 2 2 - - - 3 1.3333 2.8444

3 3 3 - - - 1 4.5 18.1500
5 5 5 - - - 2 41.6667 | 461.1111
0 10 10 - - - 1 166.6667 | 5688.889
0 10 10 - - - 2 333.3333 | 14022.22
2 2 2 2 - - 1 5.3333 22.3111
3 3 3 3 - - 3 22.5 211.95
ToT T 7T - - 3 285.8333 | 13561.84
9 9 9 9 - - 4 486 30354.75
4 4 4 4 4 - 1 106.6667 | 2476.089
4 4 4 4 4 - 2 106.6667 | 2779.022
11 11 11 11 11 - 4 2218.333 | 411375.1
9 9 9 9 9 9 3 2065.5 428830.2
1 2 3 - - - 1 1 2.1

2 3 7 - - - 2 14 90.3

9 14 9 - - - 3 399 25416.3
5 10 11 12 - - 2 603.3333 | 45728.22
2 3 1 3 - - 1 6.5 30.75

1 6 7 9 - - 3 154 4240.6

4 8 13 20 - - 3 1109.333 | 114460.1
3 2 4 1 3 - 4 17.3333 | 199.4222
6 14 16 18 19 - 1 4767.333 | 1287338
6 7 9 12 14 - 2 1211 156730
7 6 8 16 2 - 4 1229.333 | 126704.6
6 6 11 3 19 - 5 1728.833 | 221884

2 2 5 6 3 2 6 107.3333 | 2641.511
10 2 4 5 13 14 1 1373 156319.4
7T 3 6 4 13 5 3 641.3333 | 62408.16
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3.1.5. Asymptotic Distribution of T’

Next consider the asymptotic distribution of 7. T' can essentially be viewed as

a linear combination of U-statistics. It follows from Theorem 4.5.1 of Koroljuk and

Borovskich that T' is asymptotically normal. This result is expressed in Theorem 3.3

Theorem 3.3: Under H,

T—FE(T
7 — () 4 N(0,1) (22)
V(T)
as n = min(ny,ng,...ng) — oo provided, for i = 1,2,... k, that & — \; € (0,1),
where
k
=1
3.2. Proofs

3.2.1. Preliminary Results

This section presents some important results which will be useful in deriving

the expectation and the variance of T'. To begin, the following two results are used

for the expection of T":

P(X1<X2<X3):%and
P(X1<X2>X3):%

For example,

38



P(X) < Xy < X3) — / h / Oo / " P f(2) f (s drsdmadny

_ / xlfm xQ(/ fmdm>Mﬂm
_ / fx1</ ) (1 = @gm@)ma

Next, let u=1— F(x9) so du= —f(xy)dzy and do a

u-substitution to get,

1—F(oc0)
P(X1 <Xy < Xg) = / f Il (-/ udu) dxq
00 1 F(z1)
= / f(zq) udu | dxy

- / f:m% - Flan)doy

Now let w=1— F(z1) so du = — f(x1)dz; and do another u-substitution to get,

0
1
m&<&<&):—/?ﬁu
1
1 ! 11,
= —/ 0u = —.—u?
2/ 23" |,
11 11
= (== =-.
330 =375
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Following the same logics as the previous derivation we get,

o xe ) = [ [ttt s
[ ([ )
= [ [ st (F(aa) = F(-o0)) dada,
_ / Z / Oo F(2) f (1) F(02) drndi
= s ([ i) ar,
= [ He P (Ple) dos

_ /_ Z F(2) F2 () des

! 1
= / widu = —u?
0 3

1

0 3 .

Next we consider results needed for the variance of T. Covariance results such

as Cov(1(X] < Xo < X3)I(X; < X4 < X5)) will be required.
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Note first that,

CO’U(I(Xl < X9 < Xg)](Xl <Xy < X5)) =
E[I(Xl < X9 < Xg)I(Xl <Xy < X5)] —F [I(Xl <Xy < Xg)] E [I(Xl <Xy < X5)] =

P(Xl < Xs <X3,X1 < X4 <X5)—P(X1 < Xo <X3)P(X1 < Xy <X5).

The marginal expectations have already been discussed. Thus, all that is needed is

the various joint expectations. These are given below.

E(I(X) < Xy < X3), [(X1 < Xy < X5)) = %
BUI(X: < X < Xg), 10X < X4 < X)) = 10
B(I(X1 < X3 < Xy), I(Xz < X3 < X5)) = %
E(I(Xy < Xy < X5),1(Xs < X3 < Xy)) = %
BUI(X) < X < Xg), 1(Xs < X4 < X)) = o
E(I(X) < Xo < X5), [(X3 < Xy < X5)) = %
BE(I(Xy < Xz < X3), I(Xy < Xp < X4)) = %
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< X5

< Xy

< Xy

< X5

< X3

< X3

< X5

< X3

< Xy

< Xy

< X5

< Xg),[(Xl < X3 < X4>) = —

24
1
< X4),I(X1 < Xg < X4)) = E
1
< Xg),I(XQ < X3 < X4)) = ﬂ
1
< X4),I(X2 < X3 < X4)) = ﬂ
1
< X4>,I(X2 < X3 < X4)> = E
> X4),[(X2 < X3 > X5)) = =
> X3), [(X; < Xy > Xy)) ==
> X4),[(X2 < X3 > X4>) = —
3
< Xg),](Xl < Xy > X5)) = E
7
< Xg),I(XQ < Xy > X5)) = m

1
< Xg),](Xg < X4 > X5)) = %
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E(I(X: < X < Xa), I(X3 < X4 > X5)) = 15

E(I(X; < Xy < X3), (X1 < X35> Xy)) ==
Let us only consider the first expectation, which we can write as
E[I(X;, < Xy < X)) (X < Xy < X)]
where iy # 4, and i3 # 45. Since this is equivalent to P(X;, < Xj, < Xj,), Xy <

Xy < Xiy) we get,

P(X; < Xi, < Xi, N X5, < Xy < Xy)

= / /I / / / J (i) f(@iy) f (i) () f (i )dws, dvi, dai dayy divg,
_ /_ : / OO / oo / Oo Faa) F ) F(wi,) f (@, )dsy dasy day, iy, [ / OO f(zs )da:iél

_ /: /°° /OO /:Of(xz.l)f(xm)f(;cig)f(xié)(l—F(:cié))d:nildwmdxigdxi/z

_ /_ Z / °° / OO Fea) f (i) f (i) s, dsy s, [ / Oo f(xig)<1_F(xi'z>)dxi'2]
= [ ] sz - pededde,
L

1

f(l‘ll)f(l‘m)%(l - F(xh))de%ldIZQ [/Oo f(xls)dxm]
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[ [ w30 - Fa)Pa - Few)dsds,

i1

- [ st ma s, | [ e o,

= [ Hw)50 - )Py Pl s,

/ Fles) 31— Flay))d,

I 1
= | —tfdu=—
4/1 )

Now, from a previous result, we know that

Therefore, it follows that,
Cov(I(X;, < Xy < Xiy), [(Xiy < Xiy € X)) = o= — == = —.

Finally, we conclude this section with some more examples of some results

that will be of use. They easily follow from the fact that u = F(z) has a uniform
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distribution on the interval (0, 1).
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3.2.2. Proof of Expectation of T’

The expectation of T' can be expressed as

E(T)

E(T,)=FE

E Lzl 19,13

i€ST(3)

k

p—1
=FE E E Ailyp,is
11=1143=p+1

)

E(TR) = E

E Rzl 19,13

i€Sk(3)

E(Ty) + E(Ta) + E(Tr), where

ni1 N2 N33

2. 2.2 2 Bl

i€SY(3) j1=1j2=1j3=1

1
g nilnzgnigg,

i€Ss?(3)

< X

1131 < XZ2J2 1373

)

ni1  Tp N3

ZZZE

+1 j1=1 jo=1j3=1

E Ty npnls

i3=p+1

11]1 < ij2 > Xi3j3))

and

M

’Ll:

ni1 N2 N33

2. 2.2 ) B

i€Sk(3) j1=172=17j3=1

1
Z T My Mg 5 .

i€Sk(3)

Z1J1 > Xlzjz XZJJ&))
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3.2.3. Proof of Variance of T

To begin, note that

Var(T) = V(Tp+Ta+ Tr)
== V(TL) + V(TA) + V(TR) + 2OOU(TL, TA) + QCOU(TA7 TR)

+ 2001) (TL, TR)

In what follows, we treat each of the six quantities individually.
In this section, each component of the Var(T) is derived seperately.
Variance of T7,

Here,

V(Ty) = Cov(TL,T) =Cov Z Li,isis) Z Lijigis

€SP (3 i'esST(3
= E VCM" 111213 + 2 g E OOU 1112939 111213) (23>
€S (3 i€ST(3) i'esy (3

In what follows we solve for Var(Li,ii,) and Cov(Lsiyis, Li i)

It is important to note that iy < s < i3 for ¢ and i} < i}, < 74 for 7.

In order to derive the variance of 77, it is important to first identify all the
possible cases for i and i’. The list below shows there are basically 14 cases. For
example, in case 3, i = i,y and all other subscripts are distinct. That is, there is only
one tied subscript and it occurs in the second position of ¢ and the first position of
7. We note that the case where i = ¢/ is not included as this is the same as 75 = 7'.

Hence, the factor of 2 for the covariance terms.
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Case 1 iy i3 iy 15 15 Ties

1 - - - - - =0
2 r — — r — — 1
3 - - r — — 1
4 - T - -z — 1
) - T — - — 1
6 - -z r — — 1
7T - - - — =z 1
8 r xr — r xr — 2
9 r — r r — 2
10 =z — =z r — 2
1 - z =z r r — 2
12 - z = r — 2
13 - z =z - T x 2
14 2z z = r r z 3

The covariances for each of these cases of ties are derived and summed below to
obtain the variance of 77,. Note that case 14 corresponds to Var(L;,;,i,), while cases

1 through 13 pertains to Cov(L;,iyis, Liriri)-

1123

Case 1
Under case 1, all of the covariance terms are equal to zero since there are no tied

subscripts. That is, there are six distinct groups. Under Case 1, i # ¢/ . For example,
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Cov(L123, Lyse) falls under this case. Therefore Cov(T;, 45, Ty i) = 0.

1/17,22'5
Case 2

Under Case 2, iy =i} , iy # i5 and i3 # 4. For example , Cov(Ty,,,, TL,,,) falls under

this case. To begin, note that

CO?J(Lhizig ) Lzlzézg)

iy Mg MNig ni; "

= Cov | > D D I(Xij, < Xigjy < Xiyjy)s Z Z Xij < Xujy < Xujy)

J1=1ja=1j3=1 =1j5=1j5=1

Niy  Mig Mig Mg '

- ZZZZZZCOU Zl]l <Xi2j2 <Xi3j3>7I<X“]/ <X/ i’ <X/ /))

J1=1j2=1j3=1 ji=1j4=1j4=1

Now, since i1 = 4} , iy # i} and i3 # 45 it follows that j; may or may not be

equal to jj. Hence, we get the following 2 subcases.

Ji J2 J3 ji jé jé Ties

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:
2.1 COU([(Xiljl < Xi2j2 < Xisjs)’ I(qui < Xzé]é < Xlé]é)) =0

< X, =5

2.2 COU([(Xiljl < XinQ < Xi3j3)7 [(X“]l < X1 z3j§> 120 %% 15

in5

Lastly multiplying 2.2 by the corresponding number of terms leads to the desired

result is thus;
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1
Cov(Liyiyis, Liligig) = Ty Thip Mg Tyt T4t <__360

Case 3

Under Case 3, i # i}, io = i} and i3 # 5 . For example , Cov(Li93, Lays) falls under

this case. To begin, note that

Cov(Liyiyiy, LiQigig)
nil 7742 ’N/i3

= Cov Z Z Z I(Xi1j1 < Xi2j2 13]3 Z Z Z2Jé < Xiéjé < Xiéjé)

Jj1=1j2=1j3=1 J1=1j;=1j3=1

Ni, il

Niy  Miy Mig Ty "

= Z Z Z Z Z Z CO’U 21]1 < Xizjz < Xi3j3)7I<X7j2]2 < XZ/2]2 < X,L3]3))

J1=1j2=1j3=1 j1=1 ji=1 ji=1

Now, since iy # i}, 1o = 4} and i3 # @4 it follows that jo may or may not be

equal to j5. Hence, we get the following 2 subcases.

Ji J2 J3 J1 Jy Jjy Ties

Recall that an x denotes a tied subscript. Next, using our previously derived

covariance results we obtain the following:
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Multiplying 3.2 by the corresponding number of terms leads to the desired result is
thus;

1
Cov(Liinis, Ligigig) = iy Mg Mg Tt Mgty (E

Case 4
Under Case 4, i1 # i}, o = ¢, and i3 # 1. For example, Cov(Li34, Loss) falls under

this case. To begin, note that

Cov(Liyiyiy, Li'ligig)

77/1‘1 77/1‘2 ’n/i3

= Cov | > 3 3 I(Xij, < Xigjy < Xigia): > > Z (Xirj < Xigjy < Xigjr)

J1=1j2=1j3=1 Ji=1j4=1j4i=1

n;r
21 nLZ 7,

Mgy Mig Mg Mip Mg z

— Z Z Z Z Z Z CO’U 21]1 < )(Z'Q]'2 < dejd),I(X L < X22j2 < Xz3j3))

J1=1j2=1j3=1 j1=1 ji=1 ji=1

Now, since iy # i}, o = i and i3 # 14, it follows that j, may or may not be equal to

j5 . Hence, we get the following 2 subcases.

Ji J2 J3 71 Jy Jjy Ties

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:
4.1 COU<I(X7?1J1 < Xi2j2 < Xisjs)v I(Xlllji < Xizjé < Xl/gj;';)) =0,
4.2 COU(I(Xiljl < Xi2j2 < Xi3j3)7 I(Xlllji < Xi2j2 < X2§J§>> = 355 — llll = =

Lastly, multiplying 4.2 by the corresponding number of terms, and then summing,
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leads to the desired result. That is,

1
COU( i1i213) Ll/ﬂ'22 nllnwnlgnlln% (ﬁ

Case 5
Under Case 5, i # i, iy = i4 and i3 # 1. For example, Cov(Ly4s5, Loss) falls under

this case. To begin, note that

COU<Li1i2i3 ) Lz’lzém)

Nip  Mig Mig iy MNiy z
= Cov E E E I( i < sz < X2333 § § E 2131 < XZIQJQ < Xmg)
J1=1j2=1j3=1 =1j4=1j4=1

TLZI TLZQ TLZ3 TLll n12

- Z Z Z Z Z Z COU 11]1 < Xi2j2 < Xi3j3>7I<XZ’1 gy < X’ i < Xzzj ))

J1=1j2=1j3=1 ji=1 ji=1j4=1

Now, since i1 # i}, 1o = i4 and i3 # i}, it follow that j» may or may not be equal to

J5 Hence, we get the following 2 subcases.

Ji J2 J3 ji jé j:,g Ties

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:
5.1 Cov(I( Xy < Xigjy < Xiggy), I(Xurjr < Xipjy < Xipjr)) =0,
5.2 COU(I(Xile < Xi2j2 < Xi3j3)>I(X’ < Xy < XZQJQ)) o — llll = —o

151 1272

Lastly, multiplying 5.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

1
Liyigis, Lig,ig,m) = Tiy Mgy Mg Tyl Nyt <__360 .
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Case 6
Under Case 6, iy # i}, iy # 1, and i3 = i}. For example, C'ov(Lja3, Lass) falls under

this case. To begin, note that

COU(-LiliQig ) Lig,ié,ig)

Niyp  Mig  Mig Ty Mg

= Cov | > D D (X, < Xigjy < Xijy), ZZZ Xiyjy < Xiggy < Xujy)

J1=1j2=1j3=1 Ji=1j4=1j4i=1

Niy  Mig Mig Mig  Mig 7.

=>333 Y Z Cov(I(Xij, < Xigjy < Xigja)s I(Xigjy, < Xigjy < Xigzn))-

J1=1j2=17j3=1j=1 ji=1ji=1

Now, sinceiy # i}, i # i, and i3 = ¢}, it follows that j3 may or may not be equal to

Jj1- Hence, we get the following two subcases.

J1 J2 J3 Ji Jo J3 Ties

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

6.1 COU(](XZ‘U‘I < Xi2j2 < Xi3j3)7 I<X1'3j§,

< Xy < X)) =0,

7

6.2 Cov(I(Xij, < Xiyjy < Xiggy) L (Xiysy < Xijy < Xijt)) = 135 — — 369

)
|

Lastly, multiplying 6.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

7
Cov(Lisiias Lig.iy.,) = 1y igNig T <_%

Case 7

Under Case 7, i1 # i, iy # i% and i3 = 1. For example, Cov(Lja3, L34s) falls under
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this case. To begin, note that

COU(Lilizis ) Lil17il27i3>

Niy Mg MNig Niy Mg 7,
= Cov E E E I(Xi1j1 < Xiyjy < 13]3 § : § : § : XZ'J' < XZ'J' < X23J 1)
J1=1ja=1j3=1 J1=143=175=1

Mgy Mig Mig Mip  Mig z

- Z Z Z Z Z Z Cov(I(Xiyj < Xigjp < Xigjs), [(XZ’lh < ngjz < XZ3J3))

J1=1j2=1j3=1 ji=1 ji=1 ji=1

Now, since iy # i}, i # i, and i3 = 7}, it follows that js may or may not be equal to

Jjs . Hence, we get the following two subcases.

Ji J2 J3 Jv Jy Jy Ties

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:
7.1 CO’U(I(Xiljl < Xi2j2 < Xi3j3), I(X/ < Xléjé < XZS]é)) = 0,

7.2 Cov(I(X;5 < Xiyjy < Xigjs), I( X < Xipjr < Xigjs)) = 795 —

@2l
L=
S
ot

/]1

Lastly, multiplying 7.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

1
COU(Liligingi’l,i’Q,i;g) = My My Mg T4t 104!, (4—5 .

Case 8

Under Case 8, i; = ¢} and iy = i,. For example, Cov(L1s3, L124) falls under this case.
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To begin, note that

Cov(L, iy, Lilizig)

Niy  Mig Mg

J1=1jo=1j3=1

Ny, Miy Mig Ty

n12

S Y Y ot

2.2 2.1

Xi1j1 < Xi2j2

nll

X 3505

]1—1 ]2—1 .73:1

n12 7,

Xiyjr < Xigjy < Xigjr)

’L

1131 < Xizjz < Xi3]'3)7 I(X“h <X < XZng))

Z232

J1=1j2=1j3=1ji=1ji=1ji=1

Now, since iy = i} and iy = i}, it follow that j; may or may not be equal to 71 and jo

may or may not be equal to j5. Hence, we get the following four subcases.

Jv g2 gz g1 Ja Jy Ties
1 - - - - - - 0
2z - - xr - - 1
3 - x - - T - 1
4 = x - x T - 2

Recall that an z denotes a tied subscript.

Next, using our previously derived covari-

ance results we obtain the following:

8.1 Cov(I(Xij, < Xiyjy < Xigja), I(Xiyz1

8.2 Cov(I( Xy, < Xinjs

8.3 Cov(I( Xy, < Xiyjy < Xigja), I(Xiyz1

8.4 Cov(I(Xyyj, < Xinjs

< XZ'QJ'; < XZ%]é)) = O,
< Xiia ) I( X5, < Xigji <X.,.))_L_1L:L
1373/ 1171 1279 1373 120 313! 457
4 11 1
<Xi2]2 <X§Jé>>_m_§§_m’ and
< Xiwis), I(Xiyj, < Xinin < Xiri1)) 2 _ 11 _ 1
373 ) 1171 1272 1373 24 313! 18

Lastly, multiplying 8.2 through 8.4 by the corresponding number of terms, and then

summing, leads to the desired result. That is,

Cov(Liiyis, Liligig)

= NNy (N, — 1)nggngy (45) +n4, (N, — )ng,nigng, (

1 1 1
@ + Ty My Mg n,/S E .
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Case 9
Under Case 9, iy = i}, iy # 1, and i3 = i,. For example, Cov(Lia3, L134) falls under

this case. To begin, note that

COU(-LiliQig ) Lzllglé)

Nip  Mig  Nig Tip Mg
= Cov E E E I( X, < Xigjy < Xigjs)s E E E Xiyjr < Xigjy < Xigr)
J1=1j2=1j3=1 Ji=1j4=1j4i=1

Niy  Mig Mig Mig  Mig 7.

- Z Z Z Z Z Z OOU 11]1 < Xi2j2 < Xisj3>7 [(Xm’ < Xw’ < Xzéjé))

J1=1j2=17j3=1j=1 ji=1ji=1

Now, since i1 = i}, iy # i and i3 = i}, it follow that j; may or may not be equal to
Jj1 and j3 may or may not be equal to j5. Hence, we get the following four subcases.

/

J1 J2 J3 Ji Jo J3 Ties

1 - - - - - - 0
2 x - - x - - 1
3 - - X - X - 1
4 x - X X X - 2

Recall that an x denotes a tied subscript. Next, using our previously derived covari-
ance results we obtain the following:
9.1 Cov(I(Xiyj < Xiyjy < Xigjy), I(Xiyjy < Xigy < Xig)) =0,

9.2 Cov(I(Xij, < Xigjy < Xigjy)s I (Xiyjy < Xigyy < Xinj1)) = 155 — 5131 = 15

9.3 COU([(XZ'U& < Xi2j2 < Xi3j3)7I(Xi1j{ < Xi3j3 < Xg ;’3)) = 155 — l_l = —35

and

9.4 COU(](Xiljl < Xigjz < Xigjg)) I(XZ1]1 < X,
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Lastly, multiplying 9.2 through 9.4 by the corresponding number of terms, and then

summing, leads to the desired result. That is,

Cov(Li iy, Lz‘liQig)

1 1 1
My iy Ny (4, — 1)1y YT + 14, (N, — )ngynigng, ~360 + 1 My Mg M, ="

Case 10
Under Case 10, iy = i}, s # i5 and i3 = 5. For example, Cov(L1a4, L134) falls under

this case. To begin, note that

COU(Lilizia ) Li17il2:i3)

Ny My Mig Nip Mg 7,,
= Cov E E E I(Xi1j1 < Xizjz 2’3]3 E : E : E : Z1J1 < Xlzjz Xi3j3)
J1=1j2=1753=1 J1=1j5=1j4=1

Mgy Mig Mig Mip Mg z

=222 Z Cov(I(Xiyjy < Xingy < Xigj)s I(Xiygy < Xiggy < Xigjy))-

Jj1=1j2=1j3=1ji=1ji=1j}=1

Now, since i1 = i}, io # i, and i3 = 44, it follows that j; may or may not be
equal to ji and j3 may or may not be equal to j;. Hence, we get the following four

subcases.

1 J2 J3 J1 Ja Jjg Ties

1 - - - - - - 0
2 x - - X - - 1
3 - - x - - X 1
4 x - X X - X 2

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:
10.1 OOU<[(XZ'1]'1 < Xi2j2 < Xi3j3)7I(X’51]/ < X/ / < X’Lg] )) O7
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Lastly, multiplying 10.2 through 10.4 by the corresponding number of terms, and

then summing, leads to the desired result. That is,

Cov(Li, iy, Lilmg)

1 1 1
— nilni2ni3(ni3—1)ni/2 YT —i—n“(n“—l)nhnisnié YT + iy iy Mg Ny, =)

Case 11
Under Case 11, iy # i}, 1o = 4} and i3 = ). For example, Cov(L1a3, Logs) falls under

this case. To begin, note that

Cov(Liyiyigs Liy isit)

Mgy Mip  Mig Tip Mg
= Cov E E E I( X5 < Xigjy < Xigja), E E E Xigjy < Xigjy, < Xigjr)
J1=1j2=1j3=1 =1j4=1j4i=1

Nip Miy Mig My Miy i

- Z Z Z Z Z Z COU %1]1 < Xizjz < X@'sjs)? [(Xm/ < Xz:aj/ < X'L3] ))

n=1j2=1js=1j=1j,=1ji=1

Now, since iy # i}, io = 7] and i3 = i), it follows that j, may or may not be equal to

Jj1 and j3 may or may not be equal to 75. Hence, we get the following four subcases.

Ji J2 J3 ji jé j:,), Ties

1 - - - - - - 0
2 - x - X - - 1
3 - - X - X - 1
4 - x X X X - 2
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Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

11.1 OO/U<[(XZ'1]'1 < Xi2j2 < Xi3j3),I(XZ‘1]1 < me < XZ,BJ:/’,)) == O7

11.2 COU([(Xiljl < Xi2j2 < Xigjg)yj(X’ngg < th < XZ,BJS» = % — %% = —ﬁ,
11.3 COU([(Xiljl < X’iz]é < Xigjg),[(Xiné < Xi3j3 < Xlg]g)) = 13% — %% = —ﬁ,
and

11.4 Cov(I(Xiy5, < Xigjy < Xigja), I(Xinjy < Xigjs < Xigit)) = 31 — 31

Lastly, multiplying 11.2 through 11.4 by the corresponding number of terms, and

then summing, leads to the desired result. That is,

Cov(Liyiyig, Liy isit)

1 1 1
T Mg Mg (’fLZd — 1)77,1% —% + N Ny, (niz — 1)71,37125 —% + nilniQni3nig E .

Case 12
Under Case 12, iy # i, io = ¢} and i3 = 5. For example, Cov(Lia3, L124) falls under

this case. To begin, note that

Cov(Liyigig, Ligir i)

Niyp Mg Mg nig Miy iy
= Cov E E E I(Xi1j1 < Xi2j2 Za]3 E E § : szé < Xi'gjé < Xi3jé)
71=1j2=1js=1 Ji=1j3=1j3=1

Mgy Mig Mg Mip Mg 7,

= Z Z Z Z Z Z CO’U 11]1 < Xisz < Xi3j3),[(X2231 < Xléj, < X13Jé))'

J1=1j2=17j3=1ji=1ji=1j}=1

Now, since i; # i}, io = i} and i3 = 7}, it follows that j, may or may not be equal to

Jj1 and js may or may not be equal to j5. Hence, we get the following four subcases.
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J1 Je J3 Ji Jp J3 Ties

1 - - - - - - 0
2 - x - x - - 1
3 - - X - - X 1
4 - x X X - X 2

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

12.1 Cov(I( Xy < Xigjy < Xigsy), [1(Xipjy < Xipjy < Xigjr)) =0,

12.2 Cov(I(X;,5, < Xigjy < Xigjs), I(Xigjy < Xigin < Xigjt)) = 195 — 31351 = — 360
12.3 Cov(I(Xi 5, < Xiyjy < Xigjs), I(Xipjy < Xigjs < Xisjs)) = 195 — 313 = 15» and
12.4 Cov(I(X; 5, < Xiyjy < Xigjs), I(Xinjo < Xigjy < Xisjs)) = 51 — 3131 = 75-
Lastly, multiplying 12.2 through 12.4 by the corresponding number of terms, and

then summing, leads to the desired result. That is,

COU<Li1i2i3a Li27i57i3)
1 1 !
n’i1 nign’iB (nig - 1)”’5/2 _% + ni1 n’ig (niQ - 1)”]’]/1371@/2 4_5 T nilniQ nignié E .

Case 13

Under Case 13, iy # i}, 1o = i5 and i3 = 5. For example, Cov(L134, Logs) falls under
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this case. To begin, note that

COU(Lilizis ) Li'l,i27i3>

Ny My Mig Nip Mg 7,
= Cov E E E I(Xi1j1 < Xiyjy < 13]3 § : § : § : XZ'J' < X22J' < X23J )
J1=1jo=1 j3=1 Ji=1j4=1j4i=1

Mgy Mig Mig Mip  Mig z

- Z Z Z Z Z Z COU Z1]1 < Xizjz < Xi3j3)7 [(Xz’ljl < Xzzj2 < XZ3J3))

J1=1j2=1j3=1ji=1ji=1ji=1

Now, since iy # i}, io = i, and i3 = 7}, it follows that j, may or may not be equal to

Jj5 and js may or may not be equal to j5. Hence, we get the following four subcases.

Ji J2 J3 ji jé jé Ties

1 - - - - - - 0
2 - x - - X - 1
3 - - X - - X 1
4 - x X - X X 2

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

13.1 Cov(I( Xy < Xiyjy < Xigjs), I (Xijr < Xingy < Xiggy)) =0,

13.2 Cov(I(X;,5, < Xigjy < Xigja), I(Xirjr < Xigjy < Xisjt)) = T35 — 3131 = Too»

13.3 Cov(I( Xy, < Xigjs < Xigio)s [(Xirj1 < Xiyp < Xigj)) = 95 — 4k = &, and
13.4 Cov(I(X;,5, < Xigjy < Xigja), I(Xirjr < Xigjo < Xisiy)) = 2 — 3131 = 15

Lastly, multiplying 13.2 through 13.4 by the corresponding number of terms, and

then summing, leads to the desired result. That is,

OOU<Li1i2’i37 Lz’l 12, 13)

1 1 1
Ty iy Mg (Mg — 1)1y 130 + Ny iy (N, — 1)nggnig 15 ) T ramensng | 7o)
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Case 14
Under Case 14, iy = i}, io = i5 and i3 = 5. For example, Cov(L1s3, L193) falls under

this case. To begin, note that

OOU<Li1i2i3 ) Li17i2,i3)

Ny Miy  Mig Ny Mig Vil
= CO,U : : : : : :[( 11 < XZQJQ < XZS]S z : z : z : 11.71 12.72 < dejg)
J1=1j2=1j3=1 =1j4=1j4=1

7’1«11 7’l12 n13 TLZl ’I’LZ2

- Z Z Z Z Z Z COU Z1]1 < Xi2j2 < Xi3j3>7 I<Xi1ji < Xiné < X13]§))

n=1j2=1js=1j=1j,=1ji=1

Now, since i; = 4}, iy = i}, and i3 = 74, it follow that j; may or may not be equal to
J1, j2 may or may not be equal to j, and j3 may or may not be equal to j;. Hence,

we get the following eight subcases.

Ji J2 J3 ji jé j:,), Ties

1 - - - - - - 0
2 x - - X - - 1
3 - x - - X - 1
4 - - X - - X 1
5 X X - X X - 2
6 x - X X - X 2
7T - x X - X X 2
§ x x X X X X 3

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:
14.1 COU(‘Z(Xiljl < Xi2j2 < Xi3j3)7 I(XHJ' < Xlzj Xisjé) =0,

14.2 Cov(I( X5, < Xigjy < Xigja), I(Xijy < Xigy < Xiit)) = 195 — 3131 = 5
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14.3 COU([(Xiljl < Xl'2j2 < X13j3)7I(Xi1j{ < X¢2j2 < XZJ]Z;)) = % — %% = ﬁ,

14.4 CO’U(I(Xz < Xi2j2 < Xi3j3)7I(Xi1ji < Xigjé < Xi3j3>> = % — %% = 4—15

1J1

14.5 Cov(I( X5, < Xigjy < Xigga), I Xy < Xy < Xinjt)) = 5 — 3131 = 15

1J1

14.6 COU(](XZ < Xi2j2 < Xi3j3)7 I(Xllji < X;

11 275

14.7 COU(I(XZ < Xi2j2 < Xi3j3), I(Xi1j1 < X;

11 275

14.8 OO'U<I(X1' < Xizjz < Xi3j3)> I(Xi17j1 < Xi27j2 < Xi:s,j:s)

11
Lastly, multiplying 14.2 through 14.8 by the corresponding number of terms, and

then summing, leads to the desired result. That is,

COU<Li1i2i3 ) Li1i2i3)

1 1

1 1
+ ngy (ng, — 1) ng, (na, — 1) ny, (4—5> + iy iy My (Mg — 1) (1_8>

1 1 5
+ NNy (e, — 1) Ny (E) + 1, (ng, — 1) ngyny, (1_8> + 1y Ny N (%)

To summarize, the variance and covariance results for each of the 14 cases are
given below. The variance of T} is obtained by simply summing these quantities

according to equation (23).
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10 :

11 :

12 :

1 1
T nil (nil o ].)71127113711/2 4_5 + nilniznzéni/z E
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1 1
13: nilniQniS(nig — 1)77/2/1 (1—80> + nilnh(niz — 1)7123?11/1 <£) + nilnhnigni/l (1—8

14 : Ty (ni1 - 1) Ty (niz - 1) Ty (ni3 - 1) (0>

With that said, after very extensive algebraic manipulation, the result for the

variance of T}, can be simplified for the balanced design (i.e. ny = ng =+ =ny, = n).
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It can be given by

p p
Var(Ty) = — 439 n® + (48n° + 27n*) + (9n° + 12n* + 4n?)

Variance of Tx

The variance of T follows from the variance of 7. For instance, recall that the
variance of T}, is a function of p and ny,ne,...,n,, say v(p;n;,ne,...,n,). So, by
essentially reversing the order of the groups, we can obtain the variance of Tk from
the variance of Tp,. That is , V(Tg) = V(k — p + 1;ng, ng—1,...,n,). Note that this

results is also important from a programming point of view.

Variance of Ty

Next note that

p—1 Kk p—1
V(Ty) = Cov(Ta,Ta) = Cov(d > Ajpi,, > Agp) =
i1=11i3=p+1 iy =1if=p+1

p—1 k p—1
Z Z Var(Ail,p»i:s) +2 Z COU(Ailpi:a? Alﬁplg) (24)

i1=143=p+1 i/

Once more, recall that i; < p < i3 for ¢ and 7} < p < i} for 7'

The table below shows all the possible ties between groups:
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Wiy i3 1y i iy Ties

1 - x — -z — 1
2 x T — r x — 2
3 — x «x -z x 2
4 » x =z r r x 3

Case 4 is the variance component Var(A;, yi,)-
Case 1
Under Case 1, iy # i7, i, = i, and i3 # i3. For example, Cov(Ay34, Agzs) falls under

this case. To begin, note that

COU<Ai1pi3 ) Ailp’ilg)

Ni;  np Mg iy np
= Cov E E E I(X i < Xpjp > X23J3 E E E : 1111 < ijg > ijg)
J1=1j2=1js=1 J1=175=1j5=1

iy mp  Mig Mip np

- Z Z Z Z Z Z Cov(I(Xiyj, < Xpjp-Xigjs), I(Xiyjy < Xy > Xiggt))-

J1=1j2=1j3=1j]=1 ji=1ji=1

Now, since i, # 4y, i, = i, and i3 # i3, it follows that j; may or may not be equal to

1 . Hence, we get the following two subcases.

Ji Je Js j1 Jo J3 Ties

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

1.1 COU<](Xi1j1 < ij2 > Xi3j3)), I(X“J/ < X > X,L/3J'>) =0,
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1.2 Cov(I(X;,5 < Xpjy > Xigjy, I(Xiyjy < Xpjp > Xypt)) = 55 — 53 = &

1373

Lastly, multiplying 1.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

4
COU(Ai1i2i3v Ahpig) = My NMpNz Moy My (4—5 .

Case 2
Under Case 2, i1 = i}, i, = i), and i3 # 73. For example, Cov(Aja3, A124) falls under

this case. To begin, note that

OOU(‘Ail’PiB ) Ail Dyl )

iy np  Mig n,
= Cov | > D D I(Xij, < Xpj, > X)) ZZZ Xinjy < Xy > Xign)
J1=1j2=1j3=1 Ji=144=14i=1

iy mp  Mig Mip np

- ZZZZZZOOU “31 <XPJp >X@3J3)7I(Xz1j’ <X >X’ ’))

J1=1j2=1j3=1 j]=1ji=1ji=1

Now, since iy = 4y, i, = i;, and i3 # i3, it follows that j; may or may not be equal to

Jj1 and j, may or may not be equal to 75 . Hence, we get the following four subcases.

i J2 Js J1 Ja Jjg Ties

r - - - - - - 0
2 x - - X - - 1
3 - x - - X - 1
4 x x - X X - 2

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

2.1 COU(](Xiljl < ijp > Xigjg)JI(XZU’ < X > ngj/)) = 0,
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2.2 Cov(I( Xy, < Xpjy > Xigjs), [( Xy, < Xpjr > Xipjo)) = 155 —
2.3 Cov(I(Xiyj, < Xpj, > Xigjy) L (Xijr < Xpj, > Xii)) = 55 — 35 = 3=
2.4 Cov(I(X;y5, < Xpj, > Xiojy), L(Xij, < Xopj, > Xijr)) = o5 —
Lastly, multiplying 2.2 through 2.4 by the corresponding number of terms, and then

summing, leads to the desired result. That is,

COU(Ailléis’ Ailpié)
1 4 )
= niynp(ny — Dnggng YT + 14, (ni, — )npngng, YT + My npnigny, 36 )

Case 3
Under Case 3, iy # i}, ip = i, and i3 = 73. For example, Cov(Aja3, A124) falls under

this case. To begin, note that

Cov (Ai1pi3 ’ Alll WPsi3 )

Ngy  np Mg Ny np
= Cov | > D Y I(Xij, < Xy, > X)) ZZZ (Xipj < Xpjp > Xigjy)
J1=1j2=1j3=1 =1j4=14,=1

iy mp  Mig Mip np

= Z Z Z Z Z Z COU 11]1 < ijp > Xiajs)v I(XZQJ{ < ij{) > Xls]é))

n=1j2=1js=1j=1j,=1ji=1

Now, since iy # 4}, 1, = 4, and i3 = 3, it follows that j, may or may not be equal to

Jp and jz may or may not be equal to j; . Hence, we get the following four subcases.

Ji J2 J3 J1 Jy Jjy Ties

1 - - - - - - 0
2 - x - - X - 1
3 - - X - - X 1
4 - x X - X X 2
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Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

3.1 Cov(I(Xiyj, < Xpy > Xinsa), 1 (X

Pip iy < Xpjy, > Xiyjr)) = 0,

3.2 Cov(I(Xi,j, < Xpjy > Xigjy) I (X jr < Xpj, > X)) = 55 — 35 = 2=
3.3 Cou(I(Xij, < Xpj, > Xigiy ), I(Xiujy < Xpjy > Xigjy) = 28 — 11 = L
3.4 Cov(I(Xuj, < Xpj > Xip) I(Xiryr < Xy > Xijy)) = & —

Lastly, multiplying 3.2 through 3.4 by the corresponding number of terms, and
then summing, leads to the desired result. That is,

Cov(A;

111213 )

A

il17p7i3>
4 1 5
= Ny NpNis (Mg — )Ny YT +niynp(ny — Dngng YT + Ny Mg Ny, 36 )

Case 4
Under Case 4, iy = i}, i, = i, and i3 = 73. For example, Cov(Aja3, A123) falls under

this case. To begin, note that

Cov(Aipis, Aiy piis)

iy np Mg iy np
= Cov Z Z Z I( X5, < Xpj, > Xigjs)) Z Z Z Xingy < Xpjy, > Xigjy /)
Jj1=1j2=1j3=1 =1jh=1ji=1

Nip nmp  Mig Miyp Ny

- Z Z Z Z Z Z COU Z1]1 < ijp > Xi3j3)v I(X“]/ < XPJ > XZSJ ))

J1=1j2=1j3=1ji=1j,=1j;=1

Now, since iy = 4y, i, = i;, and i3 = 3, it follows that j; may or may not be equal to
J1, Jp may or may not be equal to j, and j3 may or may not be equal to j; . Hence,

we get the following eight subcases.
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Ji J2 J3 ji jé jé Ties

1 - - - - - - 0
2 x - - x - - 1
3 - x - - X - 1
4 - - X - - X 1
5 X X - X X - 2
6 x - X X - X 2
7T - X X - X X 2
8§ X x X X X X 3

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:
4.1 COU<[(Xi1j1 < ijp > Xi3j3)> [(Xim'i < Xm'{g > Xlwé)) =0,

4.2 COU(](Xiljl < Xpjp > Xisjs)ﬂ ](Xi1j1 < ij;, > Xi?,jé)) == —

4.3 CO’U(](Xz < ij > Xi3j3)7](Xi1ji < ijp > isjé)) =24 _ %% =4

1J1

4.4 COU<](Xi1j1 < X’pjp > Xisja)v ](Xil,ji < Xp,j,’) > XiaJs)) = % - %% 15
4.5 COU(I(Xiu'l < ij > Xi3j3)v I(Xihﬁ < Xp,jp > XisJé)) = % - %% = %

4.6 OO'U(I(thl < Xpj, > Xi3j3)v I(Xih]i < Xp,jz’g > Xi37j3>) =35 —

4.7 COU([(Xiljl < ij > X; )7I(Xz

_ 6 11 _ 5
3J3 L < Xp:J’p > Xis’ﬂ's)) — 24 33 7~ 36

4.8 COU([(Xiljl < ij > Xigjg)yj(Xi < Xp,jp > Xig,jg)) = % — %% = %

1,J1

Lastly, multiplying 4.2 through 4.8 by the corresponding number of terms, and then
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summing, leads to the desired result. That is,

Cov (All 213> Ai'lpi3 )

1 4
=yl = D, = 1) () o = Do = 1) ()

1 5
+ Ny (nil - 1)”17(”17 - 1)7%3 <£> + nilnpni3(ni3 - 1) <%)

1 5
+ ni1np(np - 1)ni3 (E) + Ty (ni1 - 1)n’pni3 (%)

2
T+ N MpTs (5)

To summarize, the variance and covariance results for each of the 14 cases are given
below. The variance of Ty is obtained by simply summing these quantities according

to equation (24)
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4

1
4 0 nyny(ny, — ngg(ng, — 1) (£> +niy (niy, — D)npngg (ng; — 1) (4—5)

1 5
+ni, (niy, — D)ny(n, — 1)ny, (E) + gy npniy (ni; — 1) <%)

1 5
+ninp(ny, — 1)n;, (E) + 1, (i, — L)nyng, (%)

2
—I—nilnpnig (g)

With that said, after very extensive algebraic manipulation, the result for the variance

of T4 can be simplified for the balanced design (i.e. ny =ny =--- =n, =n). It can
be given by

— 1) (k — 3 k—1 2
Var(Ty) = & >£15 Ol {(k ) (- D)k — )+ X i" L 1}

Covariance of T}, and T

Note first that

p—1 k
OO'U(TL>TA) = COU( Z Li1i2i3?z Z Az/lpzé)

i=57(3) i =1ih=p+1

p—1 k

i=SY(3) =1 i,=p+1

There are the following possibilities of ties between groups:
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i1 19 13 iy p iy Ties

1 - - - - = =0
2z - - r — — 1
3 — r — r — — 1
4 — — =z r — — 1
5 — — -z — 1
6 v — w x r — 2
7T — T xr x — 2

Case 2
Under Case 2, iy = 7}, is # p and i3 # i4. For example, Cov(Lja3, A145) falls under

this case. To begin, note that

OOU<Li1i2i3 ) Ailpié)

Nip  MNig ni3 Nip  MNig
= OO’U E E E I(Xihjl < Xi27j2 7,3]3 E E E X/ / < X / > X/ /)
J1=1j2=1j3=1 J1=1j4=1j4i=1

Niy  Mig Mig Mig  Mig z

= D> D> D> > Z Cov(I( Xy, < Xigjy < Xiggy), I Xy < Xpjr > Xigjr)).

J1=1j2=17j3=1j]=1 ji=1ji=1

Now, since i; = i}, iy # p and i3 # 7}, it follows that j; may or may not be equal to

1 . Hence, we get the following four subcases.

1 J2 U3 JiJp Jy Ties

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:
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2.1 CO'U([(Xiljl < Xi2j2 < Xigjg)vl(Xn]’ < X < X/ /)) = O,
2.2 OO/(]([(thl < XinQ < Xi3j3)7I(Xi1j1 < ij; > Xlé]é) = % — %% = ﬁ707

Lastly, multiplying 2.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

7
Cov(Lisinias Airpiy) = My MigTig Ny (ﬁ) .

Case 3
Under Case 3, iy # i}, ia = i} and i3 # 5. For example, C'ov(Lia3, Aags) falls under

this case. To begin, note that

OOU<Li1i2i3 ) Ai2pig)

Tlil ni2 nig TL” TL12
- COU E E E ]( 111 < X2212 < XZBJ3 § , § § l2]' < XPJ > Xllgjé)
J1=1j2=1753=1 J1=1j5=1j4=1

Mgy Mig Mig  Mip Mg 7,

= > Y>> Z Cov(I(Xiyj, < Xigjy < Xiga)s I ( Xy < Xpiy > Xigg).-

J1=1j2=1j3=1 ji=1ji=1ji=1

Now, since i; # i}, io = i} and i3 # 7}, it follows that j, may or may not be equal to

Jj1 - Hence, we get the following four subcases.

J1 J2 I3 J1 j;, Jz  Ties

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:
3.1 Cov(I(Xiyj < Xigjy < Xigjy)s I(Xingy < Xy > Xirjr)) =0,

3.2 COU(](Xiljl < Xi2j2 < Xi3j3),I(XZ’2J2 < X > Xzé]’)) = % — %% = 36%0’
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Lastly, multiplying 3.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

1
OOU(LiliQi;;’ Aizpié) = Mia Mg i p Tl (%) '

Case 4
Under Case 4, iy # i}, iy # i, and i3 = |. For example, C'ov(Lja3, A345) falls under

this case. To begin, note that

COU(Liligig ) Ai&p,i:’))

iy Mig  Nig Tip Mg
= Cov E E E I(Xilh < Xi2j2 23]3 E : E : E : 23]' < X > X' ’)
J1=1j2=1j3=1 Ji=1j44=1j4i=1

Niy  Mig Mig Mip  Mig 7.

- ZZZZZZCOU 11]1 <X1'2J'2 <Xi3j3>7[(Xz3J’ <X >X’ ’))

J1=1j2=1j3=1ji=1 ji=1ji=1

Now, since iy # iy, iy # i, and i3 = i}, it follows that j3 may or may not be equal to

1 . Hence, we get the following four subcases.

v J2 U3 JiJp Jy Ties

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

4.1 COU(-Z(Xiljl < Xi2j2 < Xi3j3)7 I(X'ng’ < X > Xlé_]/)) =0,

L
45°

D=
Wl

4.2 Cov(I( Xy, < Xiyjy < Xigja), I(Xigge < Xpjy > Xirit)) = 155 —

Lastly, multiplying 4.2 by the corresponding number of terms, and then summing,
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leads to the desired result. That is,

1
COU(LZ‘”'27;3, A’izpié) = Ny, niQnisnpnig (—4—5 .

Case 5
Under Case 5, iy # 1}, is # i and i3 = p. For example, Cov(Lja4, Asgs) falls under

this case. To begin, note that

Cov(Liyiyiy: At piy)

Niy My Mg nip iy T
= Cov E E E I(Xi1j1 < XinQ pjp E g E z 1 < X > ng]é)
J1=17j2=1j3=1 =1j4=1j=1

TLZI ”22 TLZ3 TLll n12

- ZZZZZZCOU 11]1 <Xi2j2 <ijp)7‘[(Xl i’ <X >Xl/3]/))

J1=1j2=1j3=1 ji=1ji=1j4=1

Now, since iy # i}, iy # i5 and i3 = p, it follows that j3 may or may not be equal to

, - Hence, we get the following four subcases.

J1 J2 I3 i j;; Jz  Ties

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:
5.1 COU([(Xiljl < XiQJQ < me) [(X“]i < ijé > XZ;JS)) = 0’
5.2 OOU(-Z(Xiljl < Xi2j2 < XPjp)?‘Z(XilJ < me > X /)) - 12 3

¥373

Lastly, multiplying 5.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

2
CO”U(LZ'”'QZ‘3, Az’lpz3> = N Ny npnz-/l nzg (E .
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Case 6

Under Case 6, i, = i} and i3 = p. For example, Cov(L123, A134) falls under this case.

To begin, note that

COU<Li1i2i3 ) Ailpié)

Niy  Miy MNig

= Cov ZZZI

J1=1j2=1j3=1

TLZl TL12 nlg nll 7’L12

S 3930 30 3D Sp BT

Xi1j1 < Xizjz

z

J1=1j2=17j3=1j]=1 ji=1ji=1

p] p

’Ilzl 77,12

ZZZ Z3JI<X >X//)

J1—1 32—1 33—1

X < Xigjy < me) I(Xw/ < Xpjr ) > X/ /)).

Now, since i; = i} and i3 = p., it follows that j; may or may not be equal to j; and

Js may or may not be equal to j,. Hence, we get the following four subcases.

Jv Je Js g1 Jp Jy Ties
r - - - - - - 0
2 x - - X - - 1
3 - - X - X - 1
4 x - X X X - 2

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:

6.1 COU(](Xiljl < Xisz < ijp), ](Xilj?,

6.2 COU(](Xiljl < Xigjo
6.3 Cov(I(Xyyj, < Xiyjs

6.4 Cov(I(Xyj, < Xinjs

< X

Pip

< X

< X

Plp

), (X, < Xpjy > Xigt)) = 155 — 313 = 300

), I( Xy, < X

P.jp

< Xy > X)) =0,

: )7](Xi1]1 < Xpﬂp > Xlsﬂg)) % - %% = %

3 _11_ 5
>XZ’3J§,))_ 24 ~ 313 72

Lastly, multiplying 6.2 through 6.4 by the corresponding number of terms, and then
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summing, leads to the desired result. That is,

COU(Lilizisv Ailpié)
7 2 )
iy My Np(p — 1)ng 360 + 14, (ni, — D)ngynyng, YT + M4y My NNy = |-

Case 7
Under Case 7, i1 # i, io = ¢} and i3 = 5. For example, Cov(Lja3, Ag3s) falls under

this case. To begin, note that

COU<Li1i2i3 ) Aiz 0,15 )

Niy My Mg nip iy TG
= (Cov ZZZI(XHJI <X¢2j2 pjp ZZZ sz/ <X >X/ /)
J1=1j2=1j3=1 =1j4=1j4=1

Niy  Mig Mg Mg Mig 13

- Z Z Z Z Z Z COU 11]1 < Xi2j2 < ijp)af(ngj’ < X > ng]’))

n=1j2=1js=1j=1j,=1ji=1
Now, since iy = ¢} and i3 = p., it follows that j, may or may not be equal to j; and
Js may or may not be equal to j,. Hence, we get the following four subcases.

/

Ji o J2 gz g1 Jp Js Ties

1 - - - - - - 0
2 - x - X - - 1
3 - - X - X - 1
4 - x X X X - 2

Recall that an x denotes a tied subscript. Next, using our previously derived covari-

ance results we obtain the following:
7.1 COU<](Xi1j1 < Xi2j2 < ijp), ](ijé < ij; > Xlio,jé)) =0,

7.2 COU(I(XZ‘U‘I < Xi2j2 < ijp)vl(Xizjz < ij; > Xlgjé)) = E7O — %% = ﬁ,
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7.3 Cov(I(Xyyj, < Xiyjy < Xpj, ) I(Xinjy < Xpjy > Xinjt)) = 15 — 313 = 1

2279 Pjp

7.4 COU<I(Xi1j1 < Xizjz < ijp)v ](Xi2j2 < ijp > Xléjé)) = % - %

Lastly, multiplying 7.2 through 7.4 by the corresponding number of terms, and then

summing, leads to the desired result. That is,

Cov(Liyigig, Aiypiy)
1 2 5
Ry i Tp(np — nig | 5o | 4 niniy (niy — Dngnyg { = ) +nangnpng | = -

To summarize, the variance and covariance results for each of the 14 cases are
given below. The covariance of T}, and T4 is obtained by simply summing these
quantities according to equation (25).

Note that i) < iy <iz € Ty, and i) < i), < i3 € Thy.

2 0 ng NNy

5 1 myng, TpTis M,

7 2 5
6 1 nynyny(n, — 1)ng, 360 +niy (ngy, — D)ngnypng, 5 + Mgy iy MMy, 7

1 2 0
T 1 nyngny(np — 1)ni/3 (%) + 1, My (M — 1)npni’3 (E> + Ny iy NNy (5)
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With that said, after very extensive algebraic manipulation, the result for the
covariance of 77, and T4 can be simplified for the balanced design (i.e. ny = ny =

- =ny =n). It can be given by

(k—p) p—1 p—1

Cov(Ty, Ta) 50 (8 n® + (40n° + 10n")

Covariance of 1}, and Tk

Note first that

CO'U(TL, TR) - COU Z L7,112237 Z R’L/ 7,/213

€S (3 i'eSk(3

- Z Z COU 1112137Rz’1221§) (26)

ieST (3) i'eSE(3)

where iy < iy < 43 in ¢ and @} < iy, < i§ in . In what follows we solve for
Cov(Li,iyis, Ry, z/) for the different cases of 7 and i'. The table below shows that

there are only two cases.

11 do 13 iy iy iy Ties
1 - - - - - - 0
2 - - =z x - - 1
For example, in case 2, i3 = | = p and all other subscripts are distinct. The

covariances for each of these cases are now calculated.

Case 1

Under case 1, the covariance terms are equal to zero since there are no tied subscripts.

That is, since there are six distinet groups, Lj i, and Rj 4y, are independent.
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Case 2
Under case 2, i3 = i{ = p. For example, Cov(L93, R345) falls under this case. To

begin, note that

Cov(Liy i, Ryiyir)

) ) ny o,
Nip  Mig np 5 3

= Cov Z Z Z (X < Xigja < Xpja), Z Z Z (Xpj > Xy > Xigy)

J1=1j2=1js=1 J1=1j5=1j5=1

iy Mg Mp i,

- ZZZZZZCOU 11]1<X’i2]2<Xp]3) [(X >X//>XZ/3J/))

J1=1j2=17j3=1j]=1 ji=1ji=1

Now, since i3 = i} = p, it follow that j3 may or may not be equal to ji. Hence, we

get the following two subcases.

One more, = denotes the tied subscript. Next, using our previously derived covariance

results we obtain the following:

2.1 OOU(I(XZ'U'I < Xi2j2 < ij3),I(X > X/ i > Xy /)) =0 and

1375

2.2 Cov(I(Xiy5, < Xipjy < Xpja), I Xpjy > Xijy > Xigjr)) = o5 —

L=
K=
N
(@23

Lastly, multiplying 2.2 by the corresponding number of terms leads to the desired

result. That is,

1
COU(Lilizpa szézé) = N4 ni2npnigznié (4—5 .

Hence, the covariance between 77 and T% is obtained by simply substituting this

value (and 0) back into (26). For the special case where the design is balance (i.e.
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ny =mng =--- =mng =n) we obtain

Cou(Ty, Tr) = <p§ 1) <k5p> (Z—é)

3.2.4. Asymptotic Distribution of T’

This section begins by generalizing the idea of U-statistics to the case in which
we have more than one random sample. Suppose that fori =1,2,...k, X;1,..., Xj,,
is an iid sample from F;. In other words we have k random samples, each potentially
from a different distribution. Recall, n; is the sample size of the ith distribution. We

may define the statistical functional;
9 = EQb(XH, . 7X1a1; Xgl, Ce 7X2a2; e ;th e Xkak)~ (27)

Notice that the function in equation (27) has aj +as+- - - +ax arguments. The first a;
of them can be permuted without changing the value of ¢, the next ay of them can be
permuted without changing the value of ¢, etc. In other words, there are k distinct
blocks of arguments of ¢. In the case of T, a1 = as = --- = a; = 1 (because we are
taking one element of each sample at a time) in which case we obtain the U-statistic

corresponding to the equation (27) as

1 o
UNzmzngb(xm,...xkjk). (28)

Ji=1 Jk=1

Theorem 3.4:

For i=1, 2, ..., k, consider
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(bz(x) :E{¢(X11,,Xk1) —9|X21 :x},and (29)

o = Var (¢;). (30)

Suppose that
E(¢*(X11,..., X)) < 0o and max o7 > 0.

1<i<k

Furthermore, suppose that there exist constants Aj, Ag,... A, in the interval (0,1)
such that n;/N — \; for all i. It therefore follows from Theorem 4.5.1 of Koroljuk

and Borovskich, that

(Un —0)

m — N(0,1), (31)

where N (0, 1) is the standard normal distribution.

Theorem 3.5

Forv=1,2,...k, let X;1, Xia,...,X;,, denote k independent random samples
from distribution F;. Let S = {(i1,12,73) : 1 <1y < iy < i3 < k} and let S; C S where

S1 # 0. For i € S, define

Niy  Miy  MNig

T, = Zzzti(Xil,Xi2> i) and

J1=1j2=1j3=1

Hi = E(ti(XipX’iQ? XZS))
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Finally, let

T:ZTi and N =mnq+ng+ -+ ng.

1€S51

Assume the following:

For i € S, t;(X;,, Xi,, Xi;) satisfies the kernel assumptions of the multi-sample

U-statistic central limit theorem for 3 samples,

lim E:)\ie(o,l) fori e {1,2,...,k},

N—o0

) 1
Jim = V(T) =v (>0),

(X1, Xo o, X)) =D N Ay higti( X, X5, X, )

IS

satisfies the kernel assumptions of the multi-sample U-statistic central limit

theorem for k samples.

Then, under A1-A4,

2 N(0,1). (32)
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Proof

Let N =ni;+ns+...np and N* = nyng - --ng. To begin, note that,

T:ZTi

IS

Tiy Mg Mig

- Z Z Z Zt XMJU XZQJQ? X13]3)

1€851 j1=1j2=1 j3=1

iy Mig Mg Ty iy,

- S I S S K X i)

i€S1 k j1=1j2=1j3=1 ja=1 Jr=1

Ny My,

- N* Z Thiq Mg Thig Z Z t X21]17X12]27 dejs)

1€51 J1=1 Jk=1

nig Ny,

N? i1 Tip i
= T () X D X X X

1€51 Jj1=1 Je=1

n’Ll nlk

NS TV T TG
- = 3 <% D VD VIO VRT) VD ¥ ) (Z > ot X“JI,XZZ,JQ,XM))

1€S1 j1=1 Je=1
n; n;
N3 N, Mo N . k
— 1°%12"'%13
N+ Z < N3 = A A )"3) § : ’ E :t (X11J17X22j2>X1333)
1€S1 jl=1 jk=1
Ty Ny,
N+ E )‘11/\12)‘13 E § :t X1111>X12]27X2333)
i€ST J1=1 Je=1

ngn; nl Niy  Nig  TNig
= N3Z ( 1V Thig /\il/\iz/\i3> (n — Z Z Zt Xz1]17X12J27X13J3) +
i1 1big Thig

i€S1 j1=1jo2=2j3=3

N4y Ngy,
N*Z > (Zt (X1jy, Xoja, - .,ijk)>,

Jji=1 Jek=1 \i€S
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Ty

where, for the second term, we basically have

ti(leu X2j27 s 7ijk) - (XHJNX XZ3JS>‘

12j29

niq Ny,

Ny Mo N 1
N3<Z< lNg SR N AN )T>+N3<N*Z (X, Xojy -

i€S1 Ji=1 Jr=1

where

(X1, Xo o X)) =D N A higti(Xoy, Xy, X,

IS

N3 (T, + Ty).

Next, let

1
N3-3

(T = E(T))

31_1 N3 (T, + T, — E(T)) — E(Ty))
VN(T1 — E(Ty)) + VN(Tz — E(Ty))

Tny + Thvs.
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It follows that,
T —E(T)

V(T)
— (T - E(T))

1
N3—2

—L/V(T)

N3~2

T+ T'vo
=V (T)

T'na + Tno
V@) V)

- Zl +ZQ

Consider Z; first.

Dies (FREE = A Aig) <\/ 1\],\;) (V/Ns3i(T; — E(T;

where Nai = ny, + ng, + N,
Ziesl a;bic;
»V(T)
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By A2, lim a; = 0.
N—o0

N 1
Also by A2, lim b, = lim = (< o0) Vi.
N=o0 N=oo \[ My + My + Mg Aiy + Xiy + Aiy
S —(Ti-n
Next, note that \/Nai(T, — E(T})) = \/ Na:V(T}) Fi ) = 0,(1)¥i by AL
V(T)

That is T} satisfies the assumptions corresponding to the multi-sample U-statistic

central limit theorem. Thus,

3
, — 1
B NO,1) and NyV(T) = D~ 6.
=1 7

where this quantity is essentially the variance of the corresponding projection. Hence,

the numerator of Z; is 0,(1). It now follows from A3, that Z; is also o,(1).
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Consider Z, next.

Z, — T'no
= VI(T)
_ VN(T - E(Ty))
\ asV (D)
_ VNAV(T)\ (T, - B(T)
s V(T) V(Ty)
_ NV(Ly)\ [Ty — E(Ty)
= V(T) V(Tz)
Now, L—E@) A N(0,1) by A4.
V(Tz)
Thus, if we can show
NV (T3) 1
V()

then it follows that Zo = N (0,1). It will then follow from the result on Z; that

7 =7+ Zy 2 N(0,1).
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V(Tn)

V(Tn)

VAN

V(WVNT3)  V(VN(T:— E(T)))  V(In2)  V(Tw —Tw,)

V(HT)  V(HFT-EBD) V() V(I

V(TN) + V(TNl) + —2COU(TN,TN1) — 14+ V(TNl) o 2COU(TN,TN1)

V(Ty) B V(Iy) V(Iy)

Note first that,
—QCOU(TN,TNl) _ 2 ‘COU(TN,TNl)‘ < 2 V(TN)V(TNl)
V(Tn) V(Ty) - V(Tn)
By A3, we know that ;

1
SV(T) =0 (>0

Hence, if we can show V(Ty;) — 0, it will follow that

2Cov(Tn, Tn1) q V(Tn1)
V(Tn) O V(Tw)

both go to 0 as N — oc.

V(Ty)

T — las N — oo.
V(1)

This in turn implies that

With that said, note that,

V(VN(Ty — BE(Th)))

vy (% - )\ilAiQ)\iS) Vv YN — B(T))

1€S1 ~~ —— i

a; b;

\

%4 Z CLibiCi>

1€5,
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= Cov (Z aibicz-, Z (ljbjCj)

1€S1 JEST
= Z Z Cov (aibici, CijjCj)
i€S1 JES
= Z Z aiajbibjCov(ci, Cj)
1€S1 JEST
< D laiazbibs| V() V(e)
1€51 jEST

Now, we have already assumed that ¢; satisfies the assumptions of the multi-
sample U-statistic central limit theorem (i.e Al). Hence, V(¢;) = v; (< 00), for some
v;. Furthermore, a; — 0 Vi and b; — B; (< 00). Since D, > s, is a finite sum, it

follows that V(T1) — 0. This completes the proof of the theorem.

Theorem : Let T be the test statistic defined in (12) . Then, under Hy,

We will now apply the conditions Al to A4 to T.

Proof of Asymptotic Distribution of T’

To begin, we show that T" belongs to the class of statistics defined in Theorem
3.5. To that end, let S; denote the set of tri-tuplets corresponding to the terms in 7.
That is, Sy = {i i = (i1,2,43),7 € SY(3) U (SP (1) x {p} x S, (1)) USE(3)}.

Next, for ¢ € Sy, let

Miy  Miy Mig

T, = Z Z Z ti(Xilanizjzin:sjs)a

Jj1=1j2=17j3=1

where
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](Xu < XiQ < Xi?,), 1€ Sf(?))
ti( Xy, Xip, Xig) = ¢ I(X;, < Xy, > X)), 1€ SP1(1) x {p} x S5, (1)
](Xu > Xi2 > Xls)v 1€ S§<3)

Thus, the test statistic can be written as

Niy  Miy  MNig

T = ZTZ‘:ZZZZ¢i(Xi1j1aXi2j25Xi3j3)'

1€S] 1€S1 j1=1 jo=1j3=1
In addition, note that under H,

nil ni2 77,1'3

i€51 i€S1 j1=1j2=2 j3=3 i€51
5, 1€ SY(3)

6 = {3 e S x {p} x S ()
&, 1€ Sk3).

Thus, to prove the results of this theorem it suffices to show that the conditions

of Theorem 3.5 are satisfied.
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We begin with condition A2.

It has already been assumed that % — X €(0,1) as N — oo.

Therefore, A2 is automatically satisfied.

Next, consider condition A1l. Since t; is an indicator function for all ¢ € Sy, it

follows immediately that E[t?] < oo Vi € S;. Now let

file) = B, < Xy < X,)|X;, =2) — 5 = 50— F@) — ¢
= %F%:) — F(z) + %
Pala) = B(I(X, < Xy < X,)|X, =2) 5 = (- F(@)) F(2) - 5
= —P)+ F@) - 3,
11, 1
fs(o) = BI(Xy <Xy < Xig)|Xiy = 2) = o= 5F () - ¢
= %Fz(l‘) + 0F (z) — %,
1 1 , 1
falw) = EI(Xiy <Xy > Xip)| Xy =2) — 5= 5(1-F(2)) - 3

1 1
— —5Fe)+0F(2) + =,
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f5(l’) = E<[(X11 < Xiz > X13)|X2'2 = .1‘) -3 FZ(SL’) Y

— Fa) 4+ 0F(z) - %

fole) = B, < Xiy > X)Xy =2) = 5 = 51— F¥(@)) - 3
= 5 Fa) +0F() + é
f7($) - E(](X’Ll > X, > X13)|X21 = l‘) o é - %FQ(J:) B é
= %FQ(QS) +0F (z) — %,
file) = E(I(X, > X, > X,)|X, = 2) — = = (1- F(@)) Fla) — ¢
= —F) + F() -,
11 , 1
folw) = B(I(Xi > X, > X;)| Xy = 7) — o = 5 (1= F(2))" = ¢

= %Fz(ac) — F(x) + %

It is obvious from these results that f;(x) takes the quadratic form a; F(z) +b; F(x) +
¢;. Furthermore there are no cases for which a; = b; = 0. It follows that V' (f;(x)) > 0

for all 7. Hence, the maximum variance condition corresponding to the multi-sample
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U-statistic theorem is satisfied in all cases. This shows that Al is satisfied. Condition
A1 is thus satisfied.
Next, consider condition A4. This condition requires us to show that the

conditions of the multi-sample U-statistic theorem are satisfied for the kernel,

HX1, Xy Xk) = D A A A ti (X, Xy, XG).

1€S]

Once more, t is just a linear combination of indicator functions. Hence, it follows that
E[t*] < co. To show that the maximum variance condition is satisfied we consider
the following cases: T'=Tg, T =Tx+Tr, T =T, + Ty +Tg, T =T, + T4, and
T = Ty. Actually, it turns out that the last two cases follow from the first two cases.
Hence, only the first three cases need to be considered. The derivations are similar
for all three cases, so we only show the details corresponding to T' = T4 + Tg.

To this end, we consider

E D> (i i(Xi, Xy, X, )—Gi)]Xlzx]

i€S1
1
= > A ( FQ()+0F($)+5>
1€S]
1 2 1
— _5 Z <>\i1>\i2/\i3 F ($) + 6 Z (/\i1)‘i2)‘13
i€511 1€S11

= aF*(z) +bF(z) + ¢ (say),

where Sip, is the subset of S}, where 1 € ¢ and the terms correspond to the T4

only. That is, the conditional expectations are 0 for the Tk terms. Once more, Since
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A\ € (0,1) Vi and f(x) has the form aF?(x) +bF (z) + ¢, where a and b are not both
equal to 0, it follows that V' (f(z)) > 0. Hence, the "maximum varianc” condition is
satisfied for this case. As previously mentioned, the other remaining cases are argued

in a similar fashion.

Lastly, we show condition A3. The variance of the general case of T' can be used
to prove that

N5V(T) = K>0

Recall that,

V( ) = V(Tp) + V(Ta) + V(Ta) +2Cov(Ty, Ta) + 2Cov(T4, Tr)

N5 (
+200U<TL, TR))

N5

Consider V(Tp) first. As N — oo,

1 2
ﬁV(LT(TL) — 360 (39)\[1 + /\l2 + )\13)

where
)\ll = Z /\11/\ 2)‘i3 )‘i4 )‘is
i€S?(5)
A, = D A A (90 + X)) + 150N, + Aiy))
i€St(4)
)‘13 = Z Aiy i 23 4)‘11 iy + 4)‘22)‘15 + i, )‘23)
i€ST(3)

where A, \;, and \;, are all positive constants.
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Therefore,

1

WV(TL)

Consider
— Var (Tr)

N5

where

Therefore,
1
N5

Next, consider

V(Tr)

1
WV(TA)

KL>0.

V(Tr) next. As N — oo,

2
360 — (39N, + Ay + Ary)

Z iy Ai )‘i:s Aig >‘i5

i€Sk(5)

D XA A (90, + M) + 15(N, + Aiy))
i€Sk(4)

D XA (A iy 4N + A Ay
i€Sk(3)

where A\, \,, and \,, are all positive constants.

KR > 0.
V(T4) as N — oo. Here,

G (Ai Ao Nis + X A2AZ + A7 A7)

where \;,, A\, and A, are all positive constants.

1
Therefore, mV(TA) — K4>0
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Next, consider

1
WOOU(TA,TR) —

Next, consider Cov(Ty, T4).

1
50 (483 + 8As, + 16, + 16),)

where

k
> My

iesP1(3) i'=p+1

k
Do 2 M

iesP~1(2) ¥'=p+1

k
D) Xy

iesP1(2) i'=p+1

k
D) AL

iesP~(2) i'=p+1

where A, , Ap,, Ao, and Ay, are all positive constants.

1
Therefore, FCOU(TL, Ty) — Kpa >0
Cov(Ta, Tr).

1
%(48&1 + 8, + 16\, + 16).,)
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where

-1
Aoy = pz > A Ay

i=1 z€S§+1(3)

-1
Aey = pz > ANy

=1 iesk, ,(2)

p—1
Aes = DD AahAgAl

i=1 ieSh, | (2)

-1
Aey = ,,Z > AN

i=1 jesk,,(2)

where A\, A\.,, Ac; and A, are all positive constants.

1
Therefore, mCOU(TA,TR) — K > 0.

Lastly, consider Cov(Ty, Tg).
1 1 C g
ECov(Tn, Tu) — > Z i i A iy 2 for i = iy = i
i€SY(3) 'eSk(3

Therefore,

1
mOOU(TL,TR) — Krpp>0.
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Since all the components of the variance of T converge to a positive constant
as N — oo , we can therefore conclude that condition A3 holds. This completes the

proof of the theorem.
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CHAPTER 4. A FINITE SAMPLE SIMULATION STUDY

4.1. Study Design

This chapter presents the results of a finite sample simulation study which
compares the estimated powers of seven tests; namely, the new test being proposed
in this dissertation (LAR), Mack-Wolfe’s test (MW), the test proposed by Salman
(SAL), Bhat’s test, two tests proposed by Hettmansperger and Norton (for one equally
spaced location parameters (HNEQ) and the optimal test (HNOPT)) and the Kruskal-

Wallis test.

The simulation study focused around location parameters. Thus the model is
given by X;; = p;+e€;;, where ¢;; are IID according to some continuous CDF F and y; is
a location parameter. Note that p; does not necessarily represent the mean of X;;. For
the exponential distribution, u; represents a scale parameter. The null hypothesis for
all the tests is that of equal population location parameters as defined in equation (11).
The alternative hypothesis being tested by LAR, MW, SAl, Bhat, HNEQ and HNOPT
is the umbrella hypothesis in Equation (3), while the alternative hypothesis being
tested by the KW test is differences in group means. All tests are based on a
significance level of &« = 0.05. The estimated power values (i.e. the proportion of times
Hyj is rejected) are derived from 10,000 simulations. The relative powers were studied
under the null and location shift alternatives. The study considered two different
distributions, namely, the normal and exponential distributions. The simulation study
also requires values for k; ny, no, ... ng; p1, b2, - - -, pg. Theoretically, there is an infinite
number of k£, sample size, location parameter, and distribution configurations. This
particular simulation study considered k = 3,4, 5,6 and sample sizes for the k£ groups
were chosen for balanced designs and randomly (with replacement from 1,2,...,25)

for the unbalanced design. The location configurations were chosen to reflect either
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an umbrella patterns or a monotone trend. The simulation study investigated equally
and unequally spaced location parameters. The study also looked at the effect of the
wideness of the space between location parameters.
4.2. Simulation Results
4.2.1. Simulating under N(y,1)

Equal variances are assumed for the results in Tables 10, 12, 14, 15 and 16. Table
10 shows the estimated Type I error rates. Notice that the table does not contain
the HNOPT test. The reason being ¢; = ¢ Vi under H,. This causes the HNOPT
test, Equation (10) to be degenerate at zero under the null hypothesis. With 10,000
simulations and a = 0.05, we see that each test in Table 10 with the exception of
LAR and SAL which are slightly liberal, exhibits a power of approximately 0.05.
Consequently, the tests: MW, Bhat, and HNEQ are equivalent in terms of the Type
I error rates. KW is most conservative compared to all the tests. Figure 5 shows the
distribution of 7" when simulated for three groups where ny = ny = n3. It can be seen
from Figure 5 that the distribution of T is right skewed which explains the reason for

LAR being liberal.

4.2.2. Simulating under N(u;,1)

Recall from chapter 1 that the SAL test is a special case of the LAR test when
k = 3 and p = 2. Power estimates of the LAR test and SAL test will be the same
under this circumstance. Bhat’s test also becomes a special case of the MW test
when £ = 3 and p = 2. Thus power estimates of MW test and Bhat test will be the
same under this condition. The HNEQ and HNOPT are exactly the same test when
the spacing of the location parameter between the groups are equal and will yield the

same power estimates under this condition.
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Terpstra et. al. (2011) note that the HNOPT test can be viewed as a benchmark
for comparison purposes. This is because the HNOPT requires the proper specifica-
tion of the spacings between location parameters, which we know in this context.
This explains why the HNOPT test is typically the most powerful test among the
seven tests being considered. However the power estimates of the other six tests are
comparable.

The simulation study examined power estimates for a range of scenarios. The
outcome of the simulation study depicted some differences in power under certain
scenarios. Generally, the power estimates of all the tests increased with ;11 — pu; (left
of peak) or p; — p;11 (right of peak) and k. The power estimates were always close to
1 for any p;y1 — ps > o2 (left of peak) or u; — pir1 > o2 (right of peak) . The LAR
generally performed better than all the other tests when the peak of the umbrella was
very shallow, i.e. when the differences in location parameters between adjacent groups
is very small. The study also showed that when the differences between the location
parameters of adjacent groups are all less than o2, the LAR performed far better
than all the other tests including HNOPT. It should be noted that LAR generally
performed better than all other tests including the HNOPT at small sample sizes and
small k. The power estimates of the LAR test were higher than those of the KW test
for almost every case. There were no evident differences in the power estimates of
the balanced and unbalanced cases.

One of the methods that is proposed to correct the liberal nature of the test

statistic is the gamma approximation .

2
The shape parameter of T is given by ,u_2
o
o2
while the scale parameter is given by —.
L
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Histogram of T
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Figure 5: Graph Showing Density of T

After the gamma approximation, simulation results under the null distribution
showed T as conservative. These results are shown in table 11.

Lloyd (2005) also states that it is naive to compare power values of a liberal
test to that of a conservative test. Since the LAR and SAL are liberal while the
other tests are conservative, it is there not fair in this lines to compare them. Lloyd
(2005) proposed methods for adjusting for size in order to achieve a fair comparison
of power estimates between liberal and conservative tests. New power estimates that
are adjusted for size were computed using the original simulated power values. The

adjusted power is given by;
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where
[ = the estimated power value,
«a = the simulated power under the null,

o = the a — level used in simulation.

Table 13 and Table 17 show the estimates of power values adjusted for size for
the normal and exponential distributions respectively. After adjusting for size, LAR
still generally performed better than the other tests for small differences between the
groups and for cases where there is a gradual increases and then a sudden sharp
increase toward the peak. Contrary to the results of the raw power values, LAR did

not perform better for equally spaced location parameters.
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Table 11: Simulating Under the Null after Gamma Approximation

no
2
3
5
10

n3
2
3
5
10
15
3
2
12
17
5
19
5
10
15
7
10
20
4
5
5
10
15

2

10
15

15
15

10
15

ns

Tt Ot >

10
15

Peak

W W WNDNWN WNDNDNDDNDDNDDNDDNDDNDDNDDNDDNDND NN

LAR

0.0662
0.0493
0.0400
0.0423
0.0413
0.0429
0.0377
0.0487
0.0412
0.0422
0.0419
0.0425
0.0437
0.0424
0.0420
0.0414
0.0415
0.0414
0.0461
0.0391
0.0436
0.0405

MW

0.0662
0.0493
0.0486
0.0472
0.0475
0.0389
0.0548
0.0586
0.0481
0.0506
0.0493
0.0514
0.0525
0.0493
0.0531
0.0518
0.0472
0.0513
0.0505
0.0489
0.0480
0.0448

SAL

0.0662
0.0606
0.0682
0.0581
0.0549
0.0660
0.0636
0.0634
0.0568
0.0569
0.0580
0.0637
0.0572
0.0535
0.0617
0.0554
0.0555
0.0609
0.0622
0.0593
0.0577
0.0539

Bhat

0.0662
0.0493
0.0486
0.0472
0.0475
0.0389
0.0548
0.0586
0.0481
0.0506
0.0493
0.0463
0.0518
0.0485
0.0517
0.0537
0.0471
0.0392
0.0548
0.0510
0.0507
0.0455

INEQ
0.0662
0.0493
0.0486
0.0472
0.0475
0.0389
0.0501
0.0565
0.0484
0.0506
0.0492
0.0543
0.0494
0.0500
0.0463
0.0491
0.0476
0.0499
0.0514
0.0471
0.0487
0.0450

KW

0.0000
0.0105
0.0446
0.0436
0.0475
0.0414
0.0305
0.0476
0.0463
0.0451
0.0476
0.0391
0.0437
0.0467
0.0377
0.0504
0.0459
0.0285
0.0369
0.0372
0.0447
0.0482
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4.2.3. Simulating under FE (6;)

Note that the scale parameter for this exponential distribution is 6; . Also, the
mean of each group will be equal to 6; while the variance is §?. LAR performed better
than all other tests including HNOPT for equally spaced 6; of groups. Generally, the
LAR performed better than the other tests including the HNOPT when the differences
between the 6;’s are small. The MW test performed better than the LAR when the

differences in 6; between the groups are unequal and very wide.
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CHAPTER 5. CONCLUSIONS

This dissertation has introduced a new nonparametric test for testing umbrella alter-
natives in a completely randomized design. This test is applied for cases where the
peak of the umbrella pattern is known prior to testing. The test statistic is based on

information from a trio of groups taken C§ at a time.

Unlike other tests, this test compares groups across the peak of the umbrella pat-
tern. The importance of testing across the peak was first emphasized by Hettmansperger
(1987). The results of this study has added further evidence of the importance of

testing across the peak. Consider for example the data below.

Table 20: Simulated Data
x1 x2 x3 x4 X9
-0.1250049 | 2.554467 | 2.5158302 | 5.610838 | 0.6614217
1.1177840 | 4.050557 | 1.6159421 | 7.513144 | 0.6812125
1.7691099 | 1.544746 | 1.7757046 | 4.980371 | -0.2921197
1.3769862 | 5.199789 | 0.9867563 | 5.354071 | 0.7294717
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The mean plot for this data set is shown in the figure below.

Mean Plot by group

Mean

T T T T T
1 2 3 4 5

Group

Figure 6: Mean Plot of Salmonella Bacteria Strain by Group

Table 21: Test Results p=2, k=5

Test | T Mean | Variance | Test Statistic | pvalue
LAR | 171 | 106.67 | 2779.02 | 1.22 0.1112
MW | 77 | 56 158.67 1.67 0.0477
Sal 115 | 64 1190.4 1.48 0.0697
Bhat | 44 | 32 37.33 1.96 0.0248
HN 1.48 0.0691
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Table 22: Test Results p=4, k=5

Test | T Mean | Variance | Test Statistic | pvalue
LAR | 313 | 106.67 | 2779.02 | 3.91 0.0000
MW | 93 | 56 158.67 2.94 0.0017
Sal 188 | 64 1190.4 3.59 0.0002
Bhat | 50 | 32 37.33 2.95 0.0016
HN 1.70 0.0441

The results in Table 4.2 is a typical example of a situation where the Mack-Wolfe
test and the Bhat’s test can be very misleading. You would expect all the tests in
Table 4.2 to reject H,. However, only the LAR and Hettmansperger and Nortons test
(HN) are reliable in this case. Based on the evidence just presented, the Mack-Wolfe
test and Bhat’s tests should not be recommended in situations where there is more
than one peak in the umbrella pattern. This is because, the Mack-Wolfe test and
Bhat’s test would reject the null even at a peak that is not the highest in a case

where there are multiple peaks.

The expectation and variance of the test statistics have been derived and ex-
pressed in the simplest possible form. The expectation and variance of the special
case where all the group sample sizes are equal is also given. The expectation and
variances are simplified to a form that makes it easy for the user to use manually for
both balanced and unbalanced designs. This is one of the few tests involving ordered
alternatives whose expectations and variance is simplified in such user friendly forms.
Three numerical examples are solved manually and the results compared to other

tests.

The asymptotic distribution of the of the test statistics is derived with the use

of classical multi-sample U-statistics theorems and the detailed proof shown. The
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results of the derivation of the asymptotic distribution shows that the test statistics
converges in distribution to a standard normal distribution.

Finally, a finite simulation study which compares LAR to other existing tests is
presented in section 4. The LAR test was competing with all the other tests in terms
of estimated powers. Based on the results of the power analysis, the LAR generally
performed better than the other tests when the differences in location parameter
between the adjacent groups was small. In such cases, the peak if very low making
the entire pattern shallow. In such shallow umbrella patterns, the LAR is far more
robust than all the other tests including the HNOPT. In situations where the slope
(of either side of the peak) increased slowly and then had a sudden sharp jump,
the LAR test outperformed all the other tests being compared to it. No tests with
the exception of the HNOPT clearly stood out compared to the other tests when
the differences in location parameter is considerably wide. The other tests with the
exception of the KW test did better than the LAR in many cases where the peak is

1ork.

These are the major points to take away from the study;
e LAR is best at detecting very minute changes in patterns between groups.

e LAR is best when the difference in means or other location or scale parameters

are small (i.e. shallow umbrella).

e LAR performs better when there is a steady increase in the group location

parameters and a sudden rise to the peak.

e The study found situations where the results of the other tests could be mislead-
ing. For instance, LAR is more efficient when the alternative contains multiple

peaks or some groups being equal in location or scale parameters . Note that
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the presence of outliers in the data set could lead to multiple peaks. In this

line, the LAR is thus more robust to outliers than all the other tests.
After completing this study, the following recommendations came to mind.

It would relevant to investigate the effectiveness of the proposed test (LAR)

under equal variances and unequal variances.

Since clinical research studies are very involved with repeated designs, designing
a similar test for repeated designs would be of great benefit to the clinical

research community.

Many other patterns are of investigational interest to the research community,
the exponential trend being one of them. The LAR test could be adjusted to

serve such purposes.
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