

Western Michigan University ScholarWorks at WMU

Dissertations

Graduate College

4-2012

A New Non-Parametric Test for Umbrella Alternatives

Gilbert Ngwa Muma *Western Michigan University,* gilbert.muma@yahoo.com

Follow this and additional works at: http://scholarworks.wmich.edu/dissertations Part of the <u>Finance and Financial Management Commons</u>, and the <u>International Business</u> <u>Commons</u>

Recommended Citation

Muma, Gilbert Ngwa, "A New Non-Parametric Test for Umbrella Alternatives" (2012). *Dissertations*. 31. http://scholarworks.wmich.edu/dissertations/31

This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact maira.bundza@wmich.edu.

A NEW NON-PARAMETRIC TEST FOR UMBRELLA ALTERNATIVES

by

Gilbert Ngwa Muma

A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Department of Statistics Advisor: Jeffrey Terpstra, Ph.D.

Western Michigan University Kalamazoo, Michigan April 2012

THE GRADUATE COLLEGE WESTERN MICHIGAN UNIVERSITY KALAMAZOO, MICHIGAN

Date _____ 12/02/2011

WE HEREBY APPROVE THE DISSERTATION SUBMITTED BY

Gilbert N Muma

ENTITLED New Nonparametric Test for Umbrella Alternatives

AS PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF Doctor of Philosophy

Statistics

(Department)

Statistics

(Program)

Dr Jenrey Terpstra

Dissertation Review Committee Chair

Mieniadonne - Bru

Dr Magdalena Niewiadomska-Bugaj Dissertation Review Confimittee Member

Dr Jøseph W. McKean Dissertation Review Committee Member

Dr Gary Neidert Dissertation Review Committee Member

APPROVED Dean of The Graduate College

2012 Date

A NEW NON-PARAMETRIC TEST FOR UMBRELLA ALTERNATIVES

Gilbert Ngwa Muma, Ph.D

Western Michigan University, 2012

The Mann-Whitney statistics have commonly been used as a building block for many tests involving ordered and umbrella alternatives. Such tests are based on pair wise information that is obtained from all C_2^k pairs of samples. This dissertation introduces a new nonparametric test for testing umbrella alternatives in a completely randomized one way design. This test is based on information obtained from a subset of the C_3^k trios of samples. Unlike most existing tests for umbrella alternatives, the new test lays emphasis on the importance of testing across the peak of the umbrella, thereby rendering the new test more efficient. The test has the flexibility of testing other patterned alternatives such as the monotone ordering of location parameters (increasing or decreasing). The mean and variance of the test statistic are derived under the null hypothesis with the extensive details of the derivation included in the write-up. I also present a simplified mean and variance result that is in a practical form. Based on the derivation of the asymptotic distribution, the standardized test statistic corresponding to the new test converges in distribution to a standard normal distribution. Some numerical examples involving clinical data are analyzed. A simulation study compared power estimates of the new tests under different sample sizes and location parameters to those of seven other existing tests. The new test generally competed with all other existing tests and performed better than all the other tests in many scenarios.

Copyright by Gilbert Ngwa Muma 2012

ACKNOWLEDGMENTS

The printed pages of this dissertation hold far more than the culmination of years of study. These pages also reflect the relationships with many generous and inspiring people I have met since beginning my graduate work. The list is long, but I cherish each contribution to my development as a statistician:

It gives me immense pleasure to acknowledge my committee chair Dr Jeffrey Terpstra who tirelessly helped me prepare this dissertation.

To my committee members, Dr Magdalena Niewiadomska-Bugaj, Dr Joseph W. McKean and Dr Gary Neidert for their encouraging words, thoughtful criticism, time and attention during busy semesters.

To all my professors who gave me the statistical background and knowledge to build on: Dr Joshua D. Naranjo, Dr Rajib Paul, Dr Mike Stoline, Dr Gerald L. Sievers and Dr Jung Chao Wang.

To my mum and dad who are not here to witness the product of their hard work. They have been an inspiration for me throughout this journey.

To my wonderful wife who has supported and encouraged me all the way, I am proud to be your husband.

Last but not least, to my brothers and sisters who have stood by me all along, I am proud to be your brother.

Gilbert Ngwa Muma

TABLE OF CONTENTS

ACF	KNOW	LEDGMENTS i	i
LIST	ГOFТ	TABLES	V
LIST	Г OF F	FIGURES vi	i
CHA	APTEF	{	
1.	INTR	ODUCTION	1
	1.1.	Ordered and Umbrella Alternatives	1
	1.2.	Literature Review	4
	1.3.	New Statistics	0
		1.3.1. Notations Used Throughout the Dissertation 10	C
		1.3.2. Hypothesis and Assumptions 10)
		1.3.3. Design 1	1
		1.3.4. New Test 1	1
		1.3.5. Flexibility of New Test 12	2
2.	EXAN	MPLES 1	5
	2.1.	General Example 1	5
	2.2.	Numerical Example 1 10	6
	2.3.	Numerical Example 2 19	9
	2.4.	Numerical Example 3 24	4

Table of Contents — Continued

CHAPTER

3.	THE	DRY	
	3.1.	Main R	esults Under the Null Hypothesis
		3.1.1.	T is Distribution Free
		3.1.2.	Expectation of T 33
		3.1.3.	Variance of T
		3.1.4.	Examples of Computed Means and Variances 37
		3.1.5.	Asymptotic Distribution of T
	3.2.	Proofs	
		3.2.1.	Preliminary Results 38
		3.2.2.	Proof of Expectation of T
		3.2.3.	Proof of Variance of T
		3.2.4.	Asymptotic Distribution of T
4.	A FIN	NITE SA	MPLE SIMULATION STUDY 102
	4.1.	Study I	Design
	4.2.	Simulat	ion Results
		4.2.1.	Simulating under $N(\mu, 1)$
		4.2.2.	Simulating under $N(\mu_i, 1) \dots $
		4.2.3.	Simulating under $E(\theta_i) \dots \dots$
5.	CON	CLUSION	NS
REI	FEREN	ICES	

LIST OF TABLES

1	Salmonella Bacteria Strain 1
2	Simulated Data
3	Example 1 Results for Other Umbrella Tests
4	Anogenital Distance
5	Example 2a: Dose-Response in Males 23
6	Example 2b: Dose-Response in Females
7	Hepatic Vein Waveform Index
8	Example 3: Results of Other Umbrella Tests
9	Some Computed Means and Variances
10	Estimated α Levels for $k = 3, 4, 5$ under the Null Distribution 107
11	Simulating Under the Null after Gamma Approximation 108
12	Estimated Power Values for $k = 3, 4$ under $N(\mu_i, 1)$
13	Power Values Adjusted for Size $R(\delta)$ under $N(\mu_i, 1)$
14	Estimated Power Values for $k = 4, 5, 6$ under $N(\mu_i, 1)$
15	Estimated Power Values for $k = 3, 4, 5$ under $N(\mu_i, 1)$
16	Estimated Power Values for $k = 3, 4, 5$ under $N(\mu_i, 1)$ for $p = 1$ and $p = k$
17	Powers Adjusted for Size $R(\delta)$ under $E(\theta_i)$

List of Tables—Continued

18	Estimated Power Values for $k = 3, 4$ under $E(\theta_i)$
19	Estimated Power Values for $k = 4, 5, 6$ under $E(\theta_i)$
20	Simulated Data
21	Test Results $p=2, k=5$
22	Test Results $p=4$, $k=5$

LIST OF FIGURES

1	Mean Plot of Salmonella Bacteria Strain by Group	2
2	Mean Plot of Data in Table 2	7
3	Mean Plot of Anogenital Distance	21
4	Mean Plot of Data in Table 7	26
5	Graph Showing Density of T	105
6	Mean Plot of Salmonella Bacteria Strain by Group	119

CHAPTER 1. INTRODUCTION

In many settings a dose response-relationship need not be monotonic in the dosage and may follow an umbrella trend instead. In in-vitro mutagenicity assays, for example, experimental organisms may not survive the toxic side effects of high doses of the test agent, thereby actually reducing the number of organisms at risk of mutation and leading to a downturn (i.e umbrella pattern) in the dose-response curve. The data in Table 1 is taken from Table 6.10, of Hollander and Wolfe(1999). Plates containing Salmonella bacteria of strain TA98 were exposed to various doses of Acid Red 114. The tabled observations are the numbers of visible revertant colonies on 12 plates in the study. Suppose a researcher wants to test the hypothesis H_0 (no dose/treatment effect) against the alternative that the peak of the dose response curve for Salmonella bacteria of strain TA98 exposure to Acid Red 114 occurs at dosage level $333\mu q/ml$.

Table 1: Salmonella Bacteria Strain									
$Dose\mu g/ml$									
0	100	333	1000	3333	10,000				
22	60	98	60	22	23				
23	59	78	82	44	21				
35	54	50	59	33	25				

The mean plot of this data shown in Figure 6 indicates an umbrella pattern across the groups from the first group to the last group.

1.1. Ordered and Umbrella Alternatives

Dose-response studies are frequently used to assess the relative treatment effects of increasing or decreasing dose levels of a substance in animal experiments or clinical trials. A researcher comparing multiple treatments (or samples) in a one way setting is often able to rank the treatments according to the order of magnitude of the

Mean plot of Number of colonies per group

Figure 1: Mean Plot of Salmonella Bacteria Strain by Group

effect of each treatment prior to testing. The guess of this order may be based on the experience of the researcher. Within the one-way analysis of variance setting, the researcher is often concerned with detecting deviations from the null hypothesis of no treatment effect. Particular deviations of interest have included the omnibus alternative (i.e., there is a treatment effect), the ordered alternative (i.e., there is monotone treatment effect) and the umbrella alternative (i.e., there is a monotone alternative that is subject to change indirection). The conventional one way analysis of variance is not a good test for testing the ordered and umbrella alternatives. This is because the F-test is independent of the order in which the group means occur (Jonckheere, 1954). For instance, consider the effect of a drug, which is typically increasing up to a certain point p, and then it decreases. The interest of the study may be on finding the change-point group (i.e. the group where an inversion of trend of the variable under study is observed). A change point is not merely a maximum (or a minimum), but a further requirement is that the trend is monotonically increasing before group p and monotonically decreasing afterwards.

The need for understanding the order of the magnitudes of the effects of treatments has led to a rise in research and the development of distribution free tests for testing homogeneity against ordered alternatives of treatments (no treatment effects). Such testing procedures are generally based on ranks (Basso and Salmaso, 2011). Wolfe (2006) and Millen and Wolfe (2005) did an extensive review of such tests. Two main versions of tests for testing patterns have been discussed in many papers: one based on average ranks after ranking the combined data and one based on pairwise rank statistics formed by ranking only within each of the pairs of samples (Hettmansperger and Norton, 1987). That is, the tests are all based on pairwise information that is obtained from all C_2^k pairs of samples. However, tests based on ranking within each of the combination of a trio of samples has not been investigated.

Several tests have been constructed to test patterned alternatives against homogeneity of the k-samples $(H_0 : \mu_1 = \cdots = \mu_k)$. The alternative varies depending on the goal of a researcher. The most common alternatives that have been studied for k-samples $(k \ge 3)$ have been;

$$H_a : \mu_1 \le \mu_2 \le \dots \le \mu_k \ (\mu_1 < \mu_k),$$
 (1)

- $H_a : \mu_1 \ge \mu_2 \ge \dots \ge \mu_k \ (\mu_1 < \mu_k),$ (2)
- $H_a : \mu_1 \le \dots \le \mu_{p-1} \le \mu_p \ge \mu_{p+1} \ge \dots \ge \mu_k.$ (3)

(atleast one strict inequality)

The monotone trend and umbrella trend of the location parameters have been the most common patterns studied in the area of patterned alternatives. However, most studies involving patterned ordered alternatives have been centered around the monotone trend. There is still need for a substancial amount of effort in studying the umbrella alternative. For the sake of clarity, throughout this dissertation X_{ij} denotes the j^{th} observation in the i^{th} sample.

1.2. Literature Review

The Mann-Whitney test statistic has been the framework of many tests involving ordered alternatives. Many tests for testing umbrella alternatives have been an extension of some test for testing monotone trends.

The tests proposed by Jonckheere (1954), Mack and Wolfe (1981) and Bhat (2009) are all an extension of the Mann-Whitney test statistic. Jonckheere (1954) proposed the following test for testing $H_a: \mu_1 \leq \mu_2 \leq \cdots \leq \mu_k \ (\mu_1 < \mu_k):$

$$T = \sum_{i < j} U_{ij} \tag{4}$$

where

$$U_{ij} = \sum_{l=1}^{n_i} \sum_{k=1}^{n_j} I(X_{il} < X_{jk})$$

Notice, this is basically a combination of the 2-sample Wilcoxon which compares two samples at a time. Terpstra and Magel (2003) proposed the following test for testing the same hypothesis $H_a: \mu_1 \leq \mu_2 \leq \cdots \leq \mu_k \ (\mu_1 < \mu_k):$

$$TM = \sum_{j_1=1}^{n_1} \cdots \sum_{j_k=1}^{n_k} I(X_{1j_1} < X_{2j_2} \cdots < X_{kj_k})$$
(5)

This test simultaneously tests all the groups. When k = 2 (two groups) this tests becomes a two sample Wilcoxon test.

Terpstra *et. al.* (2011) introduced another test for testing the monotone trend of the location parameters ($H_a: \mu_1 \leq \mu_2 \leq \cdots \leq \mu_k \ (\mu_1 < \mu_k)$). This test makes use of Spearman's correlation coefficient.

$$T = \sum_{i_1=1}^{n_1} \cdots \sum_{i_k=1}^{n_k} r_s(X_{1i_1}, X_{2i_2}, \dots, X_{ki_k}),$$
(6)

where $r_s(X_{1i_1}, X_{2i_2} \dots X_{ki_k})$ denotes the Spearman rank correlation coefficient based on the following data: $\{(1, X_{1i_1}), (2, X_{2i_2}), \dots, (k, X_{ki_k})\}$. This test proposed by Terpstra *et. al.* (2011) has an advantage over many existing tests that test monotone trends in that it provides an intuitive summary measure for the degree of association between the response variable and the treatment groups.

So much work has been carried out in developing new tests for testing ordered alternatives (monotonic treatment effects) in comparison to the few that are out the for testing umbrella alternatives.

Mack and Wolfe (1981) proposed the following statistic to assess the umbrella alternative in equation (3) when the changepoint group p is known prior to testing. That is,

$$A_p = \sum_{i=1}^{p-1} \sum_{j=i+1}^{p} U_{ij} + \sum_{i=p}^{k-1} \sum_{j=i+1}^{k} U_{ji},$$
(7)

where U_{ij} is the Mann-Whitney statistic between the i^{th} and the j^{th} samples.

Mack and Wolfe's test is an extension of the Jonckheere Terpstra test. It is based on pairwise rank statistics formed by ranking only within each of the pairs of samples. Basso and Salaso(2011) and Hettmansperger and Norton (1987) pointed out that no comparisons are made in the Mack-Wolfe test between samples preceding the known peak and those following it. Hettmansperger and Norton (1987) stated the absence of across-the-peak comparison as a problem.

Bhat (2009) developed the following k-sample rank test for testing umbrella alternatives.

$$A = \sum_{i=1}^{p-1} a_i U_{i,i+1} + \sum_{i=p}^{k-1} a_i U_{i+1,i}$$
(8)

where a_1, \ldots, a_{k-1} are real constants to be chosen suitably and U_{ij} is the two sample Mann-Whitney U-statistic for the i^{th} and j^{th} samples. This test compares successive groups. For instance, if p = 4 and k = 6, then $A = U_{12}+U_{23}+U_{34}+U_{54}+U_{65}$. The fact that Bhat's test does not test across groups can cause very misleading results. If a pattern has multiple peaks, Bhat's test would test significant if any peak is tested indicating the presence of an umbrella pattern which is not the case. Consider the following data and it's mean plot.

Table 2: Simulated Data

(Group 1)	(Group 2)	(Group 3)	(Group 4)	(Group 5)
-0.2645469	5.3564944	0.498346	1.6867112	-0.3965792
1.1782195	4.7889641	0.7456039	0.6361922	0.240107
-1.3325297	4.9146766	0.2423505	2.762041	1.2912549

Using Bhat's test to test for a peak at Group4 (p = 4), the test will give the following results;

Figure 2: Mean Plot of Data in Table 2

The results of Bhat's test indicates an umbrella pattern with a peak at group 4 which is far from reality. This is the set back of not testing across all groups. Secondly, like the Mack Wolfe test, Bhat's test does not test across the peak. However, the Mack and Wolfe's test rejects H_o . This disproves the conclusion made in Bhat (2009) that Bhat's test is preferable to the test proposed by Mack and Wolfe for testing umbrella alternatives. As noticed, Bhat's test indicates the presence of peaks, regardless of whether the peak is the highest peak or the lowest peak.

Salman (2010) proposed the following test for umbrella alternatives

$$T_A = \sum_{i_1=1}^{p-1} \sum_{i_3=p+1}^k A_{i_1,p,i_3}$$
(9)

where

$$A_{i_1,p,i_3} = \sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_p} \sum_{j_3=1}^{n_{i_3}} I(X_{i_1j_1} < X_{pj_2} > X_{i_3j_3})$$

Salman does compare across the peak in his test but does not test the increasing monotone alternative on the left of the peak and the decreasing monotone alternative on the right of the peak. Salman's statistic is formed by ranking within three groups at a time.

Hettmansperger and Norton (1987) constructed a test based on average ranks after ranking the combined data. Their test statistic is stated as

$$V = \sum_{j=1}^{k} \lambda_j (c_j - \bar{c}_w) \overline{R}_j \tag{10}$$

where the set of constants $c_1 \dots c_k$ specifies the pattern to be detected, $\lambda_j = n_j/N$, $N = \sum n_j$, $\overline{c}_w = \sum \lambda_j c_j$ and $\overline{R_j}$ is the average rank of the $j^t h$ group.

Basso and Salmaso (2011) introduced a permutation test for testing umbrella alternates. Their test is suitable for small sample sizes but the computation can be very time consuming for larger sample sizes. Just like the Mack and Wolfe's test, the pemutation test does not compare across the peak.

A new distribution free test for testing umbrella alternatives in the case where the peak is known prior to testing is introduced in this dissertation. The flexibility of this test in terms of how it can test other patterned alternatives is discussed. Unlike other tests for testing umbrella alternatives that compare only two groups at a time $(X_{i_1j_1} < X_{i_2j_2})$ this new test compares 3 groups at a time e.g. $(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3})$. That is, the new test being proposed is based on information obtained from the subset of the C_3^k trios of samples. Therefore there should be a minimum of three groups for this test to be applied.

The test takes into consideration the importance of testing across the peak as well as both sides of the peak. A detailed description of how the test is carried out is discussed. Some special cases in which the peak appears in varying positions are also discussed. The second part of the research derives the mean and variance of the test. Simplified formulas for the mean and variances of the test for both the balanced and unbalanced cases. An extensive proof of the mean and variance of the test is outlined. In the third chapter the asymptotic distribution of the test is derived, with the help of theorems that relate to multisample U-statistics and other asymptotic theorems. Some real life data are analyzed and their results are compared to other existing tests for umbrella alternatives. An extensive simulation study is carried out in which I compare powers from results of the proposed test to some selected existing tests.

1.3. New Statistics

1.3.1. Notations Used Throughout the Dissertation

p refers to the peak group

k is the number of groups

 n_p is the sample size of the peak group

 n_i is the sample size of the nth group

 $S_a^b(c)$ is a set of *c*-tuplets, where each tuplet corresponds to *c* ordered integers ranging from a to b. There are C_c^{b-a+1} elements in this set.

For example:

 $S_1^4(3) = \{(1,2,3), (1,2,4), (1,3,4), (2,3,4)\}$

 $S_1^4(5) = \emptyset$. (null set)

1.3.2. Hypothesis and Assumptions

This dissertation introduces a new class of nonparametric tests of homogeneity between the k treatment groups. That is,

$$H_0: \mu_1 = \mu_2 = \dots = \mu_{p-1} = \mu_p = \mu_{p+1} = \dots = \mu_k \tag{11}$$

against the umbrella alternative in equation (3)

Assumptions

• The N random variables $X_{i,j}$, i = 1, 2, ..., k and $j = 1, 2, ..., n_i$ are mutually independent

• For each fixed $i \in \{1, 2, ..., k\}$, the n_i random variables $X_{1,1}, X_{1,2} ... X_{k,n_i}$ are a random sample from a continuous distribution with distribution function F.

1.3.3. Design

Let $\{X_{ij}\}, i = 1, 2, ..., k, j = 1, 2, ..., n_i$, denote the $N = \sum_{i=1}^k n_i$ random variables corresponding to k random samples from a completely randomized design (CRD). The cumulative distribution function (CDF) for X_{ij} is denoted as $F_i(x); i = 1, 2, ..., k$. Thus the general design is a one way layout as follows:

	g_{1}	g_2	g_3	•	•	g_p	•	•	g_k
λ	X_{11}	X_{21}	X_{31}			X_{p1}	•	•	X_{k1}
λ	X_{12}	X_{22}	X_{32}			X_{p2}	•	•	X_{k2}
Χ	X_{13}	X_{23}	X_{33}		•	X_{p3}	•		X_{k3}
							•	•	
					•		•		
		•				•	•	•	
X	$\frac{1}{1n_1}$	X_{2n_2}	X_{3n_3}			X_{pn_p}	•	•	X_{kn_k}

The groups may have equal or unequal sample sizes (balanced or unbalanced).

1.3.4. New Test

This dissertation is proposing the following test statistic:

$$T = T_L + T_A + T_R, (12)$$

This is a general case, where

$$T_L = \sum_{i \in S_1^p(3)} L_{i_1, i_2, i_3} \quad \text{and } L_{i_1, i_2, i_3} = \sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_{i_2}} \sum_{j_3=1}^{n_{i_3}} I(X_{i_1 j_1} \le X_{i_2 j_2} \le X_{i_3 j_3})$$

$$T_A = \sum_{i_1=1}^{p-1} \sum_{i_3=p+1}^k A_{i_1,p,i_3} \text{ and } A_{i_1,p,i_3} = \sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_p} \sum_{j_3=1}^{n_{i_3}} I(X_{i_1j_1} \le X_{pj_2} \ge X_{i_3j_3})$$

$$T_R = \sum_{i \in S_p^k(3)} R_{i_1, i_2, i_3} \quad \text{and} \ R_{i_1, i_2, i_3} = \sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_{i_2}} \sum_{j_3=1}^{p_{i_3}} I(X_{i_1 j_1} \ge X_{i_2 j_2} \ge X_{i_3 j_3})$$

In this dissertation, the indicator is 1 only if there is at least 1 strict inequality.

1.3.5. Flexibility of New Test

The proposed test is very flexible in that it can be used to test multiple ordered patterns. In addition to the umbrella alternative stated above, this test has the ability to test the following types of alternative hypothesis:

• $H_a: \mu_1 < \mu_2 > \mu_3$

This hypothesis is testing an umbrella pattern with peak at 2 with three groups. The corresponding test statistic for this hypothesis would be,

$$T = T_A. (13)$$

When p = 2 and k = 3, the new test is the same as the test proposed by Salman (2010).

• $H_a: \mu_1 < \mu_2 < \cdots < \mu_k$

This hypothesis is the same as that being tested by the Jonckheere-Terpstra test. This hypothesis is testing for a peak at the last group (i.e. p = k). The corresponding test for this hypothesis is

$$T = T_L. (14)$$

H_a: μ₁ > μ₂ > ··· > μ_k
 In this case p = 1. This is also the hypothesis being tested by the Jonckheere Terpstra test. The corresponding test for this special case is,

$$T = T_R. (15)$$

• $H_a: \mu_1 < \mu_2 > \mu_3 > \dots > \mu_k$

The corresponding test for this hypothesis is

$$T = T_A + T_R. (16)$$

• $H_a: \mu_1 < \cdots < \mu_{k-2} < \mu_{k-1} > \mu_k$

The corresponding test for this is

$$T = T_L + T_A. (17)$$

CHAPTER 2. EXAMPLES

2.1. General Example

In this section an illustration of how T is calculated is presented. Consider the following unbalanced one-way table with six groups $(n_1 = n_2 = n_3, n_4 = n_5 = n_6 = 1)$. suppose we want to test for an umbrella alternative with the peak at group 3.

Group	1	2	3	4	5	6
	a	С	e	g	i	j
	b	d	f			

The following derivations detail the calculations of T for this special case.

Note that there are atleast two groups on the left of the peak which means, the monotone increase on the left (T_L) has to be tested, and there are atleast two groups on the right of the peak as well which means the monotone derease on the right (T_R) has to be tested. There is atleast one group on both sides of the peak which means there needs to be a test across the peak (T_A) .

$$T = T_L + T_A + T_R$$

= $L_{123} + A_{134} + A_{234} + A_{135} + A_{235} + A_{136} + A_{236} + R_{345} + R_{346} + R_{356} + R_{456}$
 $T_L = L_{123}$
 $L_{123} = I(a \le c \le e) + I(a \le c \le f) + I(a \le d \le e) + I(a \le d \le f)$
 $+ I(b \le c \le e) + I(b \le c \le f) + I(b \le d \le e) + I(b \le d \le f)$

$$T_{A} = A_{134} + A_{234} + A_{135} + A_{235} + A_{136} + A_{236}$$

$$A_{134} = I(a \le e \ge g) + I(a \le f \ge g) + I(b \le e \ge g) + I(b \le f \ge g)$$

$$A_{234} = I(c \le e \ge g) + I(c \le f \ge g) + I(d \le e \ge g) + I(d \le f \ge g)$$

$$A_{135} = I(a \le e \ge i) + I(a \le f \ge i) + I(b \le e \ge i) + I(b \le f \ge i)$$

$$A_{235} = I(c \le e \ge i) + I(c \le f \ge i) + I(d \le e \ge i) + I(d \le f \ge j)$$

$$A_{136} = I(a \le e \ge j) + I(a \le f \ge i) + I(b \le e \ge j) + I(b \le f \ge j)$$

$$A_{236} = I(c \le e \ge j) + I(c \le f \ge j) + I(d \le e \ge j) + I(d \le f \ge j)$$

$$T_{R} = R_{345} + R_{346} + R_{356} + R_{456}$$

$$R_{345} = I(e \ge g \ge i) + I(f \ge g \ge i)$$

$$R_{346} = I(e \ge g \ge j) + I(f \ge g \ge j)$$

$$R_{356} = I(e \ge i \ge j) + I(f \ge i \ge j)$$

$$R_{456} = I(g \ge i \ge j)$$

T is the sum of all the indicators in T_L , T_A and T_R .

2.2. Numerical Example 1

Consider the data in Table 1. Although the mean plot for this data indicates p = 3, the H_a is tested at p = 4 (1000/ml) so that the results can be compared to the results analyzed by Hollander and Wolfe (1999).

$$H_o : \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$$
$$H_a : \mu_1 < \mu_2 < \mu_3 < \mu_4 > \mu_5 > \mu_6$$

Based on the hypothesis,

$$p = 4, k = 6 \text{ and } n_1 = n_2 = n_3 = n_4 = n_5 = n_6 = 0$$

$$T = T_L + T_A + T_R$$

$$T = L_{123} + L_{124} + L_{134} + L_{234} + A_{145} + A_{146} + A_{245} + A_{246} + A_{345} + A_{346} + R_{456}$$

$$T = 18 + 24 + 12 + 3 + 27 + 27 + 24 + 12 + 12 + 12 + 21$$

$$= 204$$

Using the formulas from chapter 3, (i.e. equation (19) and equation (21)) the mean and the variance for this example is given as follows

Mean

$$E(T) = \frac{3^3}{6} \left(\begin{pmatrix} 4\\ 3 \end{pmatrix} + 2(4-1)(6-4) + \begin{pmatrix} 6-4+1\\ 3 \end{pmatrix} \right)$$
$$= \frac{27}{6} (4+12+1)$$

= 76.5

Variance

Var(T) =

$$\begin{aligned} & \frac{2}{360} \left\{ 39 \binom{4}{5} 3^5 + \binom{4}{4} (48(3^5) + 27(3^4)) + \binom{4}{3} (9(3^5) + 12(3^4) + 4(3^3)) \right\} \\ &+ \frac{2}{360} \left\{ 39 \binom{6-4}{5} 3^5 + \binom{6-4}{4} (48(3^5) + 27(3^4)) + \binom{6-4}{3} (9(3^5) + 12(3^4) + 4(3^3)) \right\} \\ &+ \frac{(4-1)(6-4)3^3}{45} \left\{ (6-1)(3^2) + 4(4-1)(6-4)3^2 + \frac{5(6-1)3 + 2(3)}{4} + 1 \right\} \\ &+ 2 \frac{(6-4)}{360} \left\{ 48 \binom{4-1}{3} 3^5 + \binom{4-1}{2} (40(3^5) + 10(3^4)) \right\} \\ &+ 2 \frac{(4-1)}{360} \left\{ 48 \binom{6-4}{3} 3^5 + \binom{6-4}{2} (40(3^5) + 10(3^4)) \right\} \\ &+ 2 \binom{4-1}{2} \binom{6-4}{2} \frac{3^5}{45} \end{aligned}$$

$$= \frac{2}{360}(0+13851+13068) + \frac{2}{360}(0+0+3267) + \frac{162}{45}(45+216+20.25+1)$$

$$+ \frac{4}{360}(11664 + 31590) + \frac{6}{360}(0 + 10530) + \frac{1458}{45}$$

$$= 149.55 + 18.15 + 1016.1 + 480.6 + 175.5 + 32.4$$

= 1872.3

Note that

$$\begin{pmatrix} 4\\5 \end{pmatrix} = 0, \begin{pmatrix} 2\\5 \end{pmatrix} = 0, \begin{pmatrix} 2\\4 \end{pmatrix} = 0 \text{ and } \begin{pmatrix} 2\\3 \end{pmatrix} = 0$$

$$z = \frac{204 - 76.5}{\sqrt{1872.3}}$$

$$= 2.9466$$

p value = 0.0016

The data is analyzed using the test statistics in equations (7), (9), (8), (10) and the Kruskal Wallis test.

Test	Т	Mean	Variance	Test Statistic	pvalue
LAR	204	76.5	1872.3	2.9466	0.0016
MW	69	40.5	96.75	2.8975	0.0019
Sal	126	54	1016.1	2.2587	0.0120
Bhat	35	22.5	17.25	3.0096	0.0013
HN	1.6759	0.7500	0.1613	2.3057	0.0106
KW				13.4121	0.0198

Table 3: Example 1 Results for Other Umbrella Tests

Although the plot of the data indicates the peak at group 3, all the tests for umbrella alternatives in Table 3 are consistent. They all reject H_0 in favor of H_a .

2.3. Numerical Example 2

Anogenital distance is the distance from the anus to the genitalia, the base of the penis or vagina. Consider the following data taken from Bradstreet (1992). Suppose a researcher wants to test for a dose related change in anogenital distance. This researcher expects anogenital distance to decrease with an increase in dose concentration. Forty pregnant female rats were assigned randomly to one of four treatments (10 rats/treatment) including a Vehicle Control and graded oral doses (50, 100, 200 mg/kg) of an investigational compound. Dosing was performed once daily on Days 16 through 19 of gestation. On Day 20, the animals were sacrificed. The anogenital distance and sex of each fetus was recorded. Average anogenital distances for each sex in a litter are shown in the data below.

a) For males, is there a dose related change in an entity distance?

Dose						Lit	ter				
(mg/kg)	\mathbf{Sex}	1	2	3	4	5	6	7	8	9	10
0	М	2.66	2.66	2.34	2.34	2.68	2.44	2.43	2.79	2.80	2.61
0	\mathbf{F}	1.11	1.18	1.13	1.09	1.26	1.10	1.15	1.27	1.21	1.17
50	Μ	1.76	1.56	2.28	1.74	1.95	1.82	1.91	1.83	2.24	1.91
50	\mathbf{F}	0.98	1.06	1.40	1.01	1.14	1.02	1.13	1.20	1.27	1.14
100	Μ	1.58	1.56	1.48	1.55	1.51	1.92	1.48	1.48	1.72	1.52
100	\mathbf{F}	1.11	1.10	1.18	1.12	1.13	1.32	1.20	1.05	1.28	1.23
200	Μ	1.28	1.30	1.24	1.30	1.26	1.42	1.20	1.20	1.39	(a)
200	\mathbf{F}	1.01	1.08	1.01	1.06	1.12	1.38	1.11	1.15	1.27	(a)

 Table 4: Anogenital Distance

(a) All fetuses found dead

Given the goal of the study, we want to test the following hypothesis,

$$H_o$$
 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$
 H_a : $\mu_1 > \mu_2 > \mu_3 > \mu_4$

Based on the hypothesis, T is the same as in Equation (15).

Figure 3: Mean Plot of Anogenital Distance

Note that p = 1, and k = 4. Therefore

$$T = T_R = \sum_{i \in S_1^4(3)} R_{i_1 i_2 i_3},$$

where

$$R_{i_1i_2i_3} = \sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_{i_2}} \sum_{j_3=1}^{n_{i_3}} (X_{i_1j_1} > X_{i_2j_2} > X_{i_3j_3})$$

$$S_1^4(3) = \{(1,2,3), (1,2,4), (1,3,4), (2,3,4)\}, \text{ and }$$

$$T = T_R = R_{123} + R_{124} + R_{134} + R_{234}$$
$$= 910 + 900 + 900 + 819$$
$$= 3529$$

Using the formulas from chapter 3, (i.e. Equation (18) and Equation (20)) the mean and the variance for this example is given as follows

Mean

$$\sum_{i \in S_1^4(3)} n_{i_1} n_{i_2} n_{i_3} \frac{1}{3!} = \frac{1}{3!} (n_1 n_2 n_3 + n_1 n_2 n_4 + n_1 n_3 n_4 + n_2 n_3 n_4)$$
$$= \frac{1}{3!} (10.10.10 + 10.10.9 + 10.10.10.9 + 10.10.9)$$
$$= 616.6667$$

Variance

$$Var(T) = Var(T_R) = \frac{2}{360}(39r_1 + r_2 + r_3)$$
, where

$$r_{1} = \sum_{i \in S_{1}^{4}(5)} n_{i_{1}} n_{i_{2}} n_{i_{3}} n_{i_{4}} n_{i_{5}} = 0$$

$$r_{2} = \sum_{i \in S_{1}^{4}(4)} n_{i_{1}} n_{i_{2}} n_{i_{3}} n_{i_{4}} (9(n_{i_{1}} + n_{i_{4}}) + 15(n_{i_{2}} + n_{i_{3}}) + 27)$$

$$= n_{1} n_{2} n_{3} n_{4} (9(n_{1} + n_{4}) + 15(n_{2} + n_{3}) + 27)$$

$$= 10 \times 10 \times 10 \times 9 \times (9(10 + 9) + 15(10 + 10) + 27)$$

$$= 4482000, \text{ and}$$

$$\begin{aligned} r_3 &= \sum_{i \in S_1^4(3)} n_{i_1} n_{i_2} n_{i_3} (4n_{i_1} n_{i_2} + 4n_{i_2} n_{i_3} + n_{i_1} n_{i_3} + 5(n_{i_1} + n_{i_3}) + 2n_{i_2} + 4) \\ r_3 &= 10.10.10(4.10.10 + 4.10.10 + 10.10 + 5(10 + 10) + 2.10 + 4) \\ &= 10.10.9(4.10.10 + 4.10.9 + 10.9 + 5(10 + 9) + 2.10 + 4) \\ &= 10.10.9(4.10.10 + 4.10.9 + 10.9 + 5(10 + 9) + 2.10 + 4) \\ &= 10.24000 + 872100 + 872100 + 872100 \\ &= 3640300 \;. \end{aligned}$$

thus

$$Var(T) = \frac{2}{360}(39(0) + 4482000 + 36403000) = 45123.89$$

$$Z = \frac{3529 - 616.6667}{\sqrt{45123.89}} = 13.71,$$

and

$$p value = 0.0000$$
.

Table 5: Example 2a: Dose-Response in Males

		1		1	
Test	Т	Mean	Variance	Test Statistic	pvalue
LAR	3529	616.6667	45123.89	13.71	0.0000
MW	560.5	285	1591.667	6.91	0.0000
Bhat	281	145	183.333	10.0443	0.0000
HN	-0.0244	-1.2229	0.0429	5.7878	0.0000
KW				34.3467	0.0000

b) For females, is there a dose related change in anogenital distance?

Test	Т	Mean	Variance	Test Statistic	pvalue
LAR	802	616.6667	45123.89	0.8725	0.1915
MW	316.5	285	1591.667	0.7896	0.2149
Bhat	164	145	183.333	1.4032	0.0803
HN	-1.0581	-1.2229	0.0429	0.7960	0.2130
\mathbf{KW}				2.1810	0.5357

Table 6: Example 2b: Dose-Response in Females

The results in Table 5 and Table 6 differ between males and females. Based on the results, H_o is rejected for males and is not rejected for females at $\alpha = 0$. The results are also consistent for all the tests. This indicates there is a dose-response relationship in males but none in females.

2.4. Numerical Example 3

This data is from Pedersen *et. al.* (2008). This was a study carried out to describe a Doppler waveform index representing the hepatic vein flow velocity pattern and to examine its relationship to the degree of hepatic fibrosis. The study examined the a consecutive series of patients who underwent percutaneous liver needle biopsy and sonographic examination that included recording of hepatic vein Doppler waveform 5 days before the biopsy. The study comprised 66 patients (37 females and 29 males).

After completion of the study, all tracings were evaluated blindly without knowledge about the pathology report, in one session, and hepatic vein waveform index (HVWI) was calculated as (maximum velocity - minimum velocity)/(maximum velocity). Two pathologists blinded to the Doppler findings examined the biopsy specimens and graded fibrosis. In case of disagreement, they both re-examined the specimens to reach a consensus. Fibrosis was graded as: no fibrosis (group 1); mild fibrosis (group 2); moderate fibrosis (group 3); severe fibrosis (group 4) and cirrhosis (group 5).

In order to test the relationship between degree of fibrosis and HVWI, suppose the study wants to test the hypothesis that there is an umbrella pattern with peak at group 2 (mild fibrosis).

HVWI								
No fibrosis	Mild fibrosis	Moderate fibrosis	Severe fibrosis	Cirrhosis				
1.7917	1.7124	1.5570	1.6726	1.4182				
1.7090	1.6694	1.4017	1.2893	1.4017				
1.6661	1.6033	1.3587	0.9950	1.3025				
1.6099	1.5934	1.3256	0.4959	1.2000				
1.5669	1.5438	1.1702		1.1372				
1.5537	1.4612	0.8165		0.9289				
1.5008	1.3620			0.6743				
1.3884	1.2860			0.6711				
1.3884	1.2860			0.6248				
1.3289	1.2595			0.6280				
1.2496	1.2198			0.5983				
0.9950	1.2033			0.5354				
0.2511	1.1702			0.4694				
0.0594	1.1306			0.4397				
	0.9983			0.4430				
	0.9983			0.4033				
	0.8496			0.3967				
	0.7504			0.3769				
	0.6413			0.2511				
	0.6017							
	0.5554							
	0.5587							
	0.1388							

 Table 7: Hepatic Vein Waveform Index

Figure 4: Mean Plot of Data in Table 7

$$H_o : \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$$

$$H_a : \mu_1 < \mu_2 > \mu_3 > \mu_4 > \mu_5$$

$$p = 2, k = 5$$

$$n_1 = 14, n_2 = 23, n_3 = 6, n_4 = 4, n_5 = 19$$

$$T = T_L + T_A + T_R$$

= 0 + T_A + T_R
= (A₁₂₃ + A₁₂₄ + A₁₂₅) + (R₂₃₄ + R₂₃₅ + R₂₄₅ + R₃₄₅)
= (418 + 280 + 1808) + (115 + 828 + 509 + 176)
= 4144

Mean

$$\begin{split} E(T) &= E(T_A) + E(T_R) \\ E(T) &= \sum_{i_1=1}^{1} \sum_{i_3=3}^{5} n_{i_1} n_2 n_{i_3} \frac{1}{3} + \sum_{i=S_2^5(3)} n_{i_1} n_{i_2} n_{i_3} \frac{1}{3!} \\ &= \frac{n_1 n_2 n_3}{3} + \frac{n_1 n_2 n_4}{3} + \frac{n_1 n_2 n_5}{3} + \frac{n_2 n_3 n_4}{6} + \frac{n_2 n_3 n_5}{6} + \frac{n_2 n_4 n_5}{6} + \frac{n_3 n_4 n_5}{6} \\ &= \frac{14 \times 23 \times 6}{3} + \frac{14 \times 23 \times 4}{3} + \frac{14 \times 23 \times 19}{3} + \frac{23 \times 6 \times 4}{6} \\ &+ \frac{23 \times 6 \times 19}{6} + \frac{23 \times 4 \times 19}{6} + \frac{6 \times 4 \times 19}{6} \end{split}$$

$$= 3112.6667 + 896.3333$$
$$= 4009$$

Variance

$$Var(T) = Var(T_A) + Var(T_R) + 2Cov(T_A, T_R)$$

$$Var(T_A) = \frac{n_1^* n_2 n_3^*}{45} \left(n_2 (n_1^* + n_3^*) + 4n_1^* n_3^* + \frac{5(n_1^* + n_3^*) + 2n_2}{4} + 1 \right)$$
$$n_1^* = \sum_{i=1}^1 n_i = n_1 = 14$$
$$n_3^* = \sum_{i=3}^5 n_i = n_3 + n_4 + n_5 = 6 + 4 + 19 = 29$$

$$n_p = n_2 = 23$$

$$Var(T_A) = \frac{14 \times 23 \times 29}{45} \left(23(14+29) + 4 \times 14 \times 29 + \frac{5(14+29) + 2(23)}{4} + 1 \right)$$

$$= \frac{9338}{45} (989 + 1624 + 65.25 + 1)$$

= 555974.1444

 $Var(T_R) = \frac{2}{360}(39r_1 + r_2 + r_3)$

$$r_{1} = \sum_{i \in S_{2}^{5}(5)} n_{i_{1}} n_{i_{2}} n_{i_{3}} n_{i_{4}} n_{i_{5}} = 0,$$

$$r_{2} = \sum_{i \in S_{2}^{5}(4)} n_{i_{1}} n_{i_{2}} n_{i_{3}} n_{i_{4}} (9(n_{i_{1}} + n_{i_{4}}) + 15(n_{i_{2}} + n_{i_{3}}) + 27)$$

$$= n_2 n_3 n_4 n_5 (9(n_2 + n_5) + 15(n_3 + n_4) + 27)$$

= 23.6.4.19(9(23 + 19) + 15(6 + 4) + 27)
= 10488(378 + 150 + 27)
= 5820840

$$r_3 = \sum_{i \in S_2^5(3)} n_{i_1} n_{i_2} n_{i_3} (4n_{i_1} n_{i_2} + 4n_{i_2} n_{i_3} + n_{i_1} n_{i_3} + 5(n_{i_1} + n_{i_3}) + 2n_{i_2} + 4)$$

$$= n_2 n_3 n_4 (4n_2 n_3 + 4n_3 n_4 + n_2 n_4 + 5(n_2 + n_4) + 2n_3 + 4)$$

+
$$n_2n_3n_5(4n_2n_3 + 4n_3n_5 + n_2n_5 + 5(n_2 + n_5) + 2n_3 + 4)$$

+
$$n_2n_4n_5(4n_2n_4 + 4n_4n_5 + n_2n_5 + 5(n_2 + n_5) + 2n_4 + 4)$$

+
$$n_3n_4n_5(4n_3n_4 + 4n_4n_5 + n_3n_5 + 5(n_3 + n_5) + 2n_4 + 4)$$

$$= 23 \times 6 \times 4(4 \times 23 \times 6 + 4 \times 6 \times 4 + 23 \times 4 + 5(23 + 4) + 2 \times 6 + 4)$$

+ 23 × 6 × 19(4 × 23 × 6 + 4 × 6 × 19 + 23 × 19 + 5(23 + 19) + 2 × 6 + 4)
+ 23 × 4 × 19(4 × 23 × 4 + 4 × 4 × 19 + 23 × 19 + 5(23 + 19) + 2 × 4 + 4)
+ 6 × 4 × 19(4 × 6 × 4 + 4 × 4 × 19 + 6 × 19 + 5(6 + 19) + 2 × 4 + 4)

$$= 491832 + 4381362 + 2326588 + 296856$$
$$= 7496638$$

Therefore,

$$Var(T_R) = \frac{2}{360} (39(0) + 5820840 + 7496638)$$

= 73985.9889

$$Cov(T_A, T_R) = \frac{n_2 n_l}{360} \left\{ 48 \sum_{i \in S_3^5(3)} n_{i_1} n_{i_2} n_{i_3} + \sum_{i \in S_3^5(2)} n_{i_1} n_{i_2} (8n_2 + 16n_{i_1} + 16n_{i_2} + 10) \right\}$$

$$n_l = n_1 + \dots + n_{p-1} = n_1 = 14$$

$$\sum_{S_3^5(3)} n_{i_1} n_{i_2} n_{i_3} = n_3 n_4 n_5$$

 $= 6 \times 4 \times 19$

$$= 456$$

$$\sum_{i \in S_3^5(2)} n_{i_1} n_{i_2} (8n_p + 16n_{i_1} + 16n_{i_2} + 10)$$

$$= n_3 n_4 (8n_p + 16n_3 + 16n_4 + 10)$$

+
$$n_3n_5(8n_p + 16n_3 + 16n_5 + 10)$$

+
$$n_4 n_5 (8n_p + 16n_4 + 16n_5 + 10)$$

$$= 6 \times 4(8 \times 23 + 16 \times 6 + 16 \times 4 + 10)$$

+ 6 \times 19(8 \times 23 + 16 \times 6 + 16 \times 19 + 10)
+ 4 \times 19(8 \times 23 + 16 \times 4 + +16 \times 19 + 10)
= 8496 + 67716 + 42712
= 118924

$$Cov(T_A, T_R) = \frac{23 \times 14}{360} (48 \times 456 + 118924)$$

$$= 125948.511$$

$$Var(T) = 555974.1444 + 73985.9889 + 2 \times 125948.511$$

= 881857.1553

The test statistics can thus be calulated as,

$$Z = \frac{4144 - 4009}{\sqrt{881857.1553}} = 0.1438$$

 Table 8: Example 3: Results of Other Umbrella Tests

Test	Т	Mean	Variance	Test Statistic	pvalue
LAR	4144	4009	881857.2	0.1438	0.4428
MW	707	601.5	6018.917	1.3599	0.0869
Sal	2506	3112.7	555974.1	-0.8136	0.7921
Bhat	232.5	280	1692.667	-1.1545	0.8759
HN	-0.9781	-1.5999	0.0477	2.8461	0.0022
KW				15.0037	0.0047

The results in Table 8 are contradictory. Although the mean plot in Figure 4, does not indicate a peak at group 2, HN rejects H_0 at $\alpha = 0.05$ (i.e. indicating peak is at group 2) while MW is marginally significant (p value=0.0869). The LAR, Sal and Bhat test however do not rejects H_0 .

CHAPTER 3. THEORY

The first part of this chapter describes the distributional properties of T under the null hypothesis. The expectation and variance of T under the null hypothesis are stated along with a few worked results. The asymptotic null distribution of T is also stated. The second part of the chapter gives detailed proofs of the expectation, variance and the asymptotic distribution of T. The derivation of a few preliminary results are also included. The fundamental elements of the proofs deal with probabilities such as $P(X_1 < X_2 < X_3)$, $P(X_1 < X_2 > X_3)$ and $P(X_1 < X_2 < X_3, X_1 < X_4 < X_5)$. In the derivation of the asymptotic distribution of T, this treats T as a multisample U-statistic and makes use of classical theorems for multisample U-statistics.

3.1. Main Results Under the Null Hypothesis

3.1.1. *T* is Distribution Free

Under H_0 all observations (i.e. $\{X_{ij}\}$) are IID F, where F is a continuous distribution function. Thus, the possibilities of ties between the Xs have zero probability. Moreover, this implies that T is distribution free under H_o . See, for example, Terpstra and Magel (2003).

3.1.2. Expectation of T

The mean of T under H_0 is presented in Theorem 3.1.

Theorem 3.1: Under H_0 , the expectation of T is given by,

$$E(T) = \sum_{i \in S_1^p(3)} n_{i_1} n_{i_2} n_{i_3} \frac{1}{3!} + \sum_{i_1=1}^{p-1} \sum_{i_3=p+1}^k n_{i_1} n_p n_{i_3} \frac{1}{3} + \sum_{i \in S_p^k(3)} n_{i_1} n_{i_2} n_{i_3} \frac{1}{3!}.$$
 (18)

See Section 3.2.2 for the detailed proof of this result. That said, when $n_1 = n_2 = \cdots = n_k = n$, equation (18) reduces to,

$$E(T) = \frac{n^3}{6} \left(\begin{pmatrix} p \\ 3 \end{pmatrix} + 2(p-1)(k-p) + \begin{pmatrix} k-p+1 \\ 3 \end{pmatrix} \right), \tag{19}$$

where $\binom{n}{x}$ denotes the number of ways to choose x objects from n objects.

3.1.3. Variance of T

The variance of T under H_0 is presented in Theorem 3.2. In what follows we make use of the following quatities:

$$\begin{split} l_1 &= 39 \sum_{i \in S_1^p(5)} n_{i_1} n_{i_2} n_{i_3} n_{i_4} n_{i_5}, \\ l_2 &= \sum_{i \in S_1^p(4)} n_{i_1} n_{i_2} n_{i_3} n_{i_4} (9(n_{i_1} + n_{i_4}) + 15(n_{i_2} + n_{i_3}) + 27), \\ l_3 &= \sum_{i \in S_1^p(3)} n_{i_1} n_{i_2} n_{i_3} (4n_{i_1} n_{i_2} + 4n_{i_2} n_{i_3} + n_{i_1} n_{i_3} + 5(n_{i_1} + n_{i_3}) + 2n_{i_2} + 4), \\ r_1 &= 39 \sum_{i \in S_p^k(5)} n_{i_1} n_{i_2} n_{i_3} n_{i_4} n_{i_5}, \\ r_2 &= \sum_{i \in S_p^k(4)} n_{i_1} n_{i_2} n_{i_3} n_{i_4} (9(n_{i_1} + n_{i_4}) + 15(n_{i_2} + n_{i_3}) + 27), \\ r_3 &= \sum_{i \in S_p^k(3)} n_{i_1} n_{i_2} n_{i_3} (4n_{i_1} n_{i_2} + 4n_{i_2} n_{i_3} + n_{i_1} n_{i_3} + 5(n_{i_1} + n_{i_3}) + 2n_{i_2} + 4), \end{split}$$

$$n_l = n_1 + \dots + n_{p-1},$$

$$n_r = n_{p+1} + \dots + n_k,$$

$$a = n_p(n_l + n_r) + 4n_ln_r + \frac{5(n_l + n_r) + 2n_p}{4} + 1,$$

$$u_1 = 48 \sum_{i \in S_1^{p-1}(3)} n_{i_1} n_{i_2} n_{i_3},$$

$$u_2 = \sum_{i \in S_1^{p-1}(2)} n_{i_1} n_{i_2} (8n_p + 16n_{i_1} + 16n_{i_2} + 10),$$

$$v_1 = 48 \sum_{i \in S_{p+1}^k(3)} n_{i_1} n_{i_2} n_{i_3},$$

$$v_2 = \sum_{i \in S_{p+1}^k(2)} n_{i_1} n_{i_2} (8n_p + 16n_{i_1} + 16n_{i_2} + 10),$$

$$w_1 = \sum_{i \in S_1^{p-1}(2)} n_{i_1} n_{i_2}$$
, and

$$w_2 = \sum_{i \in S_{p+1}^k(2)} n_{i_1} n_{i_2}$$

Recall that

•

$$\sum_{i \in S^b_a(c)} = 0 \quad \text{if} \quad b - a + 1 < c$$

Theorem 3.2: Under H_0 , the variance of T is given by,

$$Var(T) = \frac{2}{360} (l_1 + l_2 + l_3 + r_1 + r_2 + r_3) + \frac{n_p}{45} (n_l n_r a + w_1 w_2) + \frac{n_p}{360} (n_r (u_1 + u_2) + n_l (v_1 + v_2))).$$
(20)

Section 3.2.3 contains the proof of this result. That said, when $n_1 = n_2 = \cdots = n_k = n$, equation (20) reduces to,

$$V(T) = \frac{2}{360} \left\{ 39 \binom{p}{5} n^5 + \binom{p}{4} (48n^5 + 27n^4) + \binom{p}{3} (9n^5 + 12n^4 + 4n^3) \right\}$$

+ $\frac{2}{360} \left\{ 39 \binom{k-p}{5} n^5 + \binom{k-p}{4} (48n^5 + 27n^4) + \binom{k-p}{3} (9n^5 + 12n^4 + 4n^3) \right\}$
+ $\frac{(p-1)(k-p)n^3}{45} \left\{ (k-1)n^2 + 4(p-1)(k-p)n^2 + \frac{5(k-1)n+2n}{4} + 1 \right\}$

$$+ 2\frac{(k-p)}{360} \left\{ 48\binom{p-1}{3} n^5 + \binom{p-1}{2} (40n^5 + 10n^4) \right\} + 2\frac{(p-1)}{360} \left\{ 48\binom{k-p}{3} n^5 + \binom{k-p}{2} (40n^5 + 10n^4) \right\} + 2\binom{p-1}{2} \binom{k-p}{2} \frac{n^5}{45}.$$
(21)

3.1.4. Examples of Computed Means and Variances

Table 9 contains the calculated means and variances of some randomly selected sample sizes and peaks. In the case where $n_1 = n_2 = \cdots = n_k = n$, the mean when p = 1 is equal to the mean when p = k and the variance when p = 1 is equal to the variance when p = k.

					-	D I	1	T7 •
n_1	n_2	n_3	n_4	n_5	n_6	Peak	Mean	Variance
2	2	2	-	-	-	1	1.3333	2.8444
2	2	2	-	-	-	2	2.6667	5.5111
2	2	2	-	-	-	3	1.3333	2.8444
3	3	3	-	-	-	1	4.5	18.1500
5	5	5	-	-	-	2	41.6667	461.1111
10	10	10	-	-	-	1	166.6667	5688.889
10	10	10	-	-	-	2	333.3333	14022.22
2	2	2	2	-	-	1	5.3333	22.3111
3	3	3	3	-	-	3	22.5	211.95
7	$\overline{7}$	$\overline{7}$	7	-	-	3	285.8333	13561.84
9	9	9	9	-	-	4	486	30354.75
4	4	4	4	4	-	1	106.6667	2476.089
4	4	4	4	4	-	2	106.6667	2779.022
11	11	11	11	11	-	4	2218.333	411375.1
9	9	9	9	9	9	3	2065.5	428830.2
1	2	3	-	-	-	1	1	2.1
2	3	$\overline{7}$	-	-	-	2	14	90.3
19	14	9	-	-	-	3	399	25416.3
5	10	11	12	-	-	2	603.3333	45728.22
2	3	1	3	-	-	1	6.5	30.75
1	6	$\overline{7}$	9	-	-	3	154	4240.6
4	8	13	20	-	-	3	1109.333	114460.1
3	2	4	1	3	-	4	17.3333	199.4222
6	14	16	18	19	-	1	4767.333	1287338
6	$\overline{7}$	9	12	14	-	2	1211	156730
17	6	8	16	2	-	4	1229.333	126704.6
16	6	11	3	19	-	5	1728.833	221884
2	2	5	6	3	2	6	107.3333	2641.511
10	2	4	5	13	14	1	1373	156319.4
7	3	6	4	13	5	3	641.3333	62408.16

Table 9: Some Computed Means and Variances

3.1.5. Asymptotic Distribution of T

Next consider the asymptotic distribution of T. T can essentially be viewed as a linear combination of U-statistics. It follows from Theorem 4.5.1 of Koroljuk and Borovskich that T is asymptotically normal. This result is expressed in Theorem 3.3 **Theorem 3.3**: Under H_0 ,

$$Z = \frac{T - E(T)}{\sqrt{V(T)}} \xrightarrow{d} N(0, 1)$$
(22)

as $n = min(n_1, n_2, \dots, n_k) \to \infty$ provided, for $i = 1, 2, \dots, k$, that $\frac{n_i}{N} \to \lambda_i \in (0, 1)$, where

$$N = \sum_{i=1}^{k} n_i$$

3.2. Proofs

3.2.1. Preliminary Results

This section presents some important results which will be useful in deriving the expectation and the variance of T. To begin, the following two results are used for the expection of T:

 $P(X_1 < X_2 < X_3) = \frac{1}{6}$ and

 $P(X_1 < X_2 > X_3) = \frac{1}{3}$

For example,

$$P(X_{1} < X_{2} < X_{3}) = \int_{-\infty}^{\infty} \int_{x_{1}}^{\infty} \int_{x_{2}}^{\infty} f(x_{1})f(x_{2})f(x_{3})dx_{3}dx_{2}dx_{1}$$

$$= \int_{-\infty}^{\infty} \int_{x_{1}}^{\infty} f(x_{1})f(x_{2}) \left(\int_{x_{2}}^{\infty} f(x_{3})dx_{3}\right)dx_{2}dx_{1}$$

$$= \int_{-\infty}^{\infty} f(x_{1}) \left(\int_{x_{1}}^{\infty} f(x_{2}) \left(1 - F(x_{2})\right)dx_{2}\right)dx_{1}$$

Next, let $u = 1 - F(x_2)$ so $du = -f(x_2)dx_2$ and do a

u-substitution to get,

$$P(X_{1} < X_{2} < X_{3}) = \int_{-\infty}^{\infty} f(x_{1}) \left(-\int_{1-F(x_{1})}^{1-F(\infty)} u du \right) dx_{1}$$

$$= \int_{-\infty}^{\infty} f(x_{1}) \left(\int_{0}^{1-F(x_{1})} u du \right) dx_{1}$$

$$= \int_{-\infty}^{\infty} f(x_{1}) \left(\frac{1}{2} u^{2} \Big|_{0}^{1-F(x_{1})} \right) dx_{1}$$

$$= \int_{-\infty}^{\infty} f(x_{1}) \frac{1}{2} (1 - F(x_{1}))^{2} dx_{1}.$$

Now let $u = 1 - F(x_1)$ so $du = -f(x_1)dx_1$ and do another u-substitution to get,

$$P(X_1 < X_2 < X_3) = -\int_1^0 \frac{1}{2}u^2 du$$

= $\frac{1}{2}\int_0^1 u^2 \partial u = \frac{1}{2} \cdot \frac{1}{3}u^3 \Big|_0^1$
= $\frac{1}{2} \cdot \frac{1}{3}(1) = \frac{1}{3!} = \frac{1}{6}.$

Following the same logics as the previous derivation we get,

$$P(X_{1} < X_{2} > X_{3}) = \int_{-\infty}^{\infty} \int_{-\infty}^{x_{2}} \int_{-\infty}^{x_{2}} f(x_{1})f(x_{2})f(x_{3})dx_{2}dx_{1}dx_{3}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{x_{2}} f(x_{2})f(x_{1}) \left(\int_{-\infty}^{x_{2}} f(x_{3})dx_{3}\right) dx_{2}dx_{1}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{x_{2}} f(x_{2})f(x_{1}) \left(F(x_{2}) - F(-\infty)\right) dx_{2}dx_{1}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{x_{2}} f(x_{2})f(x_{1})F(x_{2})dx_{2}dx_{1}$$

$$= \int_{-\infty}^{\infty} f(x_{2})F(x_{2}) \left(\int_{-\infty}^{x_{2}} f(x_{1})dx_{1}\right) dx_{2}$$

$$= \int_{-\infty}^{\infty} f(x_{2})F(x_{2}) \left(F(x_{2})\right) dx_{2}$$

$$= \int_{-\infty}^{\infty} f(x_{2})F^{2}(x_{2})dx_{2}$$

$$= \int_{-\infty}^{0} 1u^{2}du = \frac{1}{3}u^{3}\Big|_{0}^{1} = \frac{1}{3}.$$

Next we consider results needed for the variance of T. Covariance results such as $Cov(I(X_1 < X_2 < X_3)I(X_1 < X_4 < X_5))$ will be required. Note first that,

$$Cov(I(X_1 < X_2 < X_3)I(X_1 < X_4 < X_5)) =$$

$$E[I(X_1 < X_2 < X_3)I(X_1 < X_4 < X_5)] - E[I(X_1 < X_2 < X_3)]E[I(X_1 < X_4 < X_5)] =$$

$$P(X_1 < X_2 < X_3, X_1 < X_4 < X_5) - P(X_1 < X_2 < X_3)P(X_1 < X_4 < X_5).$$

The marginal expectations have already been discussed. Thus, all that is needed is the various joint expectations. These are given below.

$$E(I(X_1 < X_2 < X_3), I(X_1 < X_4 < X_5)) = \frac{1}{20}$$

$$E(I(X_1 < X_2 < X_3), I(X_2 < X_4 < X_5)) = \frac{1}{40}$$

$$E(I(X_1 < X_3 < X_4), I(X_2 < X_3 < X_5)) = \frac{1}{30}$$

$$E(I(X_1 < X_4 < X_5), I(X_2 < X_3 < X_4)) = \frac{1}{40}$$

$$E(I(X_1 < X_2 < X_3), I(X_3 < X_4 < X_5)) = \frac{1}{120}$$

$$E(I(X_1 < X_2 < X_5), I(X_3 < X_4 < X_5)) = \frac{1}{20}$$

$$E(I(X_1 < X_2 < X_5), I(X_3 < X_4 < X_5)) = \frac{1}{20}$$

$$E(I(X_{1} < X_{2} < X_{3}), I(X_{1} < X_{3} < X_{4})) = \frac{1}{24}$$

$$E(I(X_{1} < X_{2} < X_{4}), I(X_{1} < X_{3} < X_{4})) = \frac{1}{12}$$

$$E(I(X_{1} < X_{2} < X_{3}), I(X_{2} < X_{3} < X_{4})) = \frac{1}{24}$$

$$E(I(X_{1} < X_{2} < X_{4}), I(X_{2} < X_{3} < X_{4})) = \frac{1}{24}$$

$$E(I(X_{1} < X_{3} < X_{4}), I(X_{2} < X_{3} < X_{4})) = \frac{1}{12}$$

$$E(I(X_{1} < X_{3} > X_{4}), I(X_{2} < X_{3} > X_{5})) = \frac{1}{5}$$

$$E(I(X_{1} < X_{2} > X_{3}), I(X_{1} < X_{2} > X_{4})) = \frac{1}{4}$$

$$E(I(X_{1} < X_{2} < X_{3}), I(X_{1} < X_{2} > X_{4})) = \frac{1}{4}$$

$$E(I(X_{1} < X_{2} < X_{3}), I(X_{1} < X_{4} > X_{5})) = \frac{3}{40}$$

$$E(I(X_{1} < X_{2} < X_{3}), I(X_{2} < X_{4} > X_{5})) = \frac{7}{120}$$

$$E(I(X_1 < X_2 < X_4), I(X_3 < X_4 > X_5)) = \frac{1}{10}$$
$$E(I(X_1 < X_2 < X_3), I(X_1 < X_3 > X_4)) = \frac{1}{8}$$

Let us only consider the first expectation, which we can write as

$$E\left[I(X_{i_1} < X_{i_2} < X_{i_3})I(X_{i_1'} < X_{i_2'} < X_{i_3'})\right],$$

where $i_2 \neq i'_2$ and $i_3 \neq i'_3$. Since this is equivalent to $P(X_{i_1} < X_{i_2} < X_{i_3}), X_{i'_1} < X_{i'_2} < X_{i'_3})$ we get,

$$\begin{split} &P\left(X_{i_{1}} < X_{i_{2}} < X_{i_{3}} \cap X_{i_{1}} < X_{i_{2}'} < X_{i_{3}'}\right) \\ &= \int_{-\infty}^{\infty} \int_{x_{i_{1}}}^{\infty} \int_{x_{i_{2}}}^{\infty} \int_{x_{i_{1}'}}^{\infty} \int_{x_{i_{2}'}}^{\infty} f(x_{i_{1}})f(x_{i_{2}})f(x_{i_{3}})f(x_{i_{2}'})f(x_{i_{3}'})dx_{i_{1}}dx_{i_{2}}dx_{i_{3}}dx_{i_{2}'}dx_{i_{3}'} \\ &= \int_{-\infty}^{\infty} \int_{x_{i_{1}}}^{\infty} \int_{x_{i_{2}}}^{\infty} \int_{x_{i_{1}'}}^{\infty} f(x_{i_{1}})f(x_{i_{2}})f(x_{i_{3}})f(x_{i_{2}'})dx_{i_{1}}dx_{i_{2}}dx_{i_{3}}dx_{i_{2}'}\left[\int_{x_{i_{2}'}}^{\infty} f(x_{i_{3}'})dx_{i_{3}'}dx_{i_{3}'}dx_{i_{2}'}dx_{i_{3}'}dx$$

$$= \int_{-\infty}^{\infty} \int_{x_{i_1}}^{\infty} f(x_{i_1}) f(x_{i_2}) \frac{1}{2} (1 - F(x_{i_1}))^2 (1 - F(x_{i_2})) dx_{i_1} dx_{i_2}$$

$$= \int_{-\infty}^{\infty} f(x_{i_1}) \frac{1}{2} (1 - F(x_{i_1}))^2 dx_{i_1} \left[\int_{x_{i_1}}^{\infty} f(x_{i_2}) (1 - F(x_{i_2})) dx_{i_2} \right]$$

$$= \int_{-\infty}^{\infty} f(x_{i_1}) \frac{1}{2} (1 - F(x_{i_1}))^2 \frac{1}{2} (1 - F(x_{i_1}))^2 dx_{i_1}$$

$$= \int_{-\infty}^{\infty} f(x_{i_1}) \frac{1}{4} (1 - F(x_{i_1}))^4 dx_{i_1}$$

$$= \frac{1}{4} \int_{1}^{0} -u^4 du = \frac{1}{20}$$

Now, from a previous result, we know that

$$P(X_{i_1} \le X_{i_2} \le X_{i_3}) = \frac{1}{6}$$
 and
 $P(X_{i_1} \le X_{i'_2} \le X_{i'_3}) = \frac{1}{6}$

Therefore, it follows that,

$$Cov(I(X_{i_1} \le X_{i_2} \le X_{i_3}), I(X_{i_1} \le X_{i'_2} \le X_{i'_3})) = \frac{1}{20} - \frac{1}{6} \frac{1}{6} = \frac{1}{45}.$$

Finally, we conclude this section with some more examples of some results that will be of use. They easily follow from the fact that u = F(x) has a uniform distribution on the interval (0, 1).

$$E\left((1 - F(x))^4\right) = \frac{1}{5}$$

$$E\left((1 - F(x))^2(1 - F^2(x))\right) = \frac{3}{10}$$

$$E\left((1 - F(x))^2\right) = \frac{1}{3}$$

$$E\left((1 - F^2(x))^2\right) = \frac{8}{15}$$

$$E\left((1 - F^2(x))\right) = \frac{2}{3}$$

$$E\left(F^2(x)(1 - F(x))^2\right) = \frac{1}{30}$$

$$E\left(F^3(x)(1 - F(x))\right) = \frac{1}{20}$$

$$E\left(F(x) - F^2(x)\right) = \frac{1}{6}$$

$$E\left(F^4(x)\right) = \frac{1}{5}$$

3.2.2. Proof of Expectation of T

The expectation of ${\cal T}$ can be expressed as

$$\begin{split} E(T) &= E(T_L) + E(T_A) + E(T_R), \text{where} \\ E(T_L) &= E\left(\sum_{i \in S_1^p(3)} L_{i_1, i_2, i_3}\right) &= \sum_{i \in S_1^p(3)} \sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_{i_2}} \sum_{j_3=1}^{n_{i_3}} E\left(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3})\right) \\ &= \sum_{i \in S_1^p(3)} n_{i_1} n_{i_2} n_{i_3} \frac{1}{3!}, \\ E(T_A) &= E\left(\sum_{i_1=1}^{p-1} \sum_{i_3=p+1}^{k} A_{i_1, p, i_3}\right) &= \sum_{i_1=1}^{p-1} \sum_{i_3=p+1}^{k} \sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_p} \sum_{j_3=1}^{n_{i_3}} E\left(I(X_{i_1j_1} < X_{pj_2} > X_{i_3j_3})\right) \\ &= \sum_{i_1=1}^{p-1} \sum_{i_3=p+1}^{k} n_{i_1} n_p n_{i_3} \frac{1}{3}, \text{and} \\ E(T_R) &= E\left(\sum_{i \in S_p^k(3)} R_{i_1, i_2, i_3}\right) &= \sum_{i \in S_p^k(3)} \sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_{i_2}} \sum_{j_3=1}^{n_{i_3}} E\left(I(X_{i_1j_1} > X_{i_2j_2} > X_{i_3j_3})\right) \\ &= \sum_{i \in S_p^k(3)} n_{i_1} n_{i_2} n_{i_3} \frac{1}{3!}. \end{split}$$

3.2.3. Proof of Variance of T

To begin, note that

$$Var(T) = V(T_L + T_A + T_R)$$

= $V(T_L) + V(T_A) + V(T_R) + 2Cov(T_L, T_A) + 2Cov(T_A, T_R)$
+ $2Cov(T_L, T_R)$

In what follows, we treat each of the six quantities individually.

In this section, each component of the Var(T) is derived seperately. Variance of T_L

Here,

$$V(T_L) = Cov(T_L, T_L) = Cov\left(\sum_{i \in S_1^p(3)} L_{i_1 i_2 i_3}, \sum_{i' \in S_1^p(3)} L_{i_1 i_2 i_3}\right)$$
$$= \sum_{i \in S_1^p(3)} Var(L_{i_1 i_2 i_3}) + 2\sum_{i \in S_1^p(3)} \sum_{i' \in S_1^p(3)} Cov(L_{i_1 i_2 i_3}, L_{i'_1 i'_2 i'_3})$$
(23)

In what follows we solve for $Var(L_{i_1i_2i_3})$ and $Cov(L_{i_1i_2i_3}, L_{i'_1i'_2i'_3})$

It is important to note that $i_1 < i_2 < i_3$ for i and $i'_1 < i'_2 < i'_3$ for i'.

In order to derive the variance of T_L , it is important to first identify all the possible cases for *i* and *i'*. The list below shows there are basically 14 cases. For example, in case 3, $i_2 = i_{i_1}$ and all other subscripts are distinct. That is, there is only one tied subscript and it occurs in the second position of *i* and the first position of *i'*. We note that the case where i = i' is not included as this is the same as $i_2 = i'$. Hence, the factor of 2 for the covariance terms.

Case	i_1	i_2	i_3	i_1'	i_2'	i'_3	Ties
1	_	_	_	_	_	_	0
2	x	_	_	x	_	_	1
3	_	x	_	x	_	_	1
4	_	x	_	_	x	_	1
5	_	x	_	_	_	x	1
6	_	_	x	x	_	_	1
7	_	_	x	_	_	x	1
8	x	x	_	x	x	_	2
9	x	_	x	x	x	_	2
10	x	_	x	x	_	x	2
11	_	x	x	x	x	_	2
12	_	x	x	x	_	x	2
13	_	x	x	_	x	x	2
14	x	x	x	x	x	x	3

The covariances for each of these cases of ties are derived and summed below to obtain the variance of T_L . Note that case 14 corresponds to $Var(L_{i_1i_2i_3})$, while cases 1 through 13 pertains to $Cov(L_{i_1i_2i_3}, L_{i'_1i'_2i'_3})$.

Case 1

Under case 1, all of the covariance terms are equal to zero since there are no tied subscripts. That is, there are six distinct groups. Under Case 1, $i \neq i'$. For example,

 $Cov(L_{123}, L_{456})$ falls under this case. Therefore $Cov(T_{i_1i_2i_3}, T_{i'_1i'_2i'_3}) = 0.$

Case 2

Under Case 2, $i_1 = i'_1$, $i_2 \neq i'_2$ and $i_3 \neq i'_3$. For example, $Cov(T_{L_{123}}, T_{L_{145}})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, L_{i_{1}i'_{2}i'_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j_{3}=1}^{n_{i_{3}}}I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), \sum_{j'_{1}=1}^{n_{i_{1}}}\sum_{j'_{2}=1}^{n'_{i_{2}}}\sum_{j'_{3}=1}^{n'_{i_{3}}}I(X_{i_{1}j'_{1}} < X_{i'_{2}j'_{2}} < X_{i'_{3}j'_{3}})\right)$$
$$= \sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j'_{1}=1}^{n_{i_{1}}}\sum_{j'_{2}=1}^{n'_{i_{2}}}\sum_{j'_{3}=1}^{n'_{i_{3}}}Cov\left(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i_{1}j'_{1}} < X_{i'_{2}j'_{2}} < X_{i'_{3}j'_{3}})\right)$$

Now, since $i_1 = i'_1$, $i_2 \neq i'_2$ and $i_3 \neq i'_3$ it follows that j_1 may or may not be equal to j'_1 . Hence, we get the following 2 subcases.

	j_1	j_2	j_3	j'_1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	0
2	х	-	-	Х	-	-	1

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

2.1
$$Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j'_1} < X_{i'_2j'_2} < X_{i'_3j'_3})) = 0$$

2.2 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i'_2j'_2} < X_{i'_3j'_3})) = \frac{6}{120} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{45}$

Lastly multiplying 2.2 by the corresponding number of terms leads to the desired result is thus;

$$Cov(L_{i_1i_2i_3}, L_{i_1i'_2i'_3}) = n_{i_1}n_{i_2}n_{i_3}n_{i'_2}n_{i'_3}\left(-\frac{1}{360}\right)$$

Case 3

Under Case 3, $i_1 \neq i'_1$, $i_2 = i'_1$ and $i_3 \neq i'_3$. For example, $Cov(L_{123}, L_{245})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, L_{i_{2}i'_{2}i'_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j_{3}=1}^{n_{i_{3}}}I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), \sum_{j'_{1}=1}^{n_{i_{2}}}\sum_{j'_{2}=1}^{n_{i'_{3}}}\sum_{j'_{3}=1}^{n_{i'_{3}}}I(X_{i_{2}j'_{2}} < X_{i'_{2}j'_{2}} < X_{i'_{3}j'_{3}})\right) = \sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i_{1}}}\sum_{j'_{2}=1}^{n_{i'_{2}}}\sum_{j'_{3}=1}^{n_{i'_{3}}}Cov\left(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i_{2}j'_{2}} < X_{i'_{2}j'_{2}} < X_{i'_{3}j'_{3}})\right)$$

Now, since $i_1 \neq i'_1$, $i_2 = i'_1$ and $i_3 \neq i'_3$ it follows that j_2 may or may not be equal to j'_2 . Hence, we get the following 2 subcases.

	j_1	j_2	j_3	j'_1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	0
2	-	х	-	х	-	-	1

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

3.1 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_2j'_2} < X_{i'_2j'_2} < X_{i'_3j'_3})) = 0$ **3.2** $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_2j_2} < X_{i'_2j'_2} < X_{i'_3j'_3}) = \frac{3}{120} - \frac{1}{3!}\frac{1}{3!} = -\frac{1}{360}$ Multiplying 3.2 by the corresponding number of terms leads to the desired result is thus;

$$Cov(L_{i_1i_2i_3}, L_{i_2i'_2i'_3}) = n_{i_1}n_{i_2}n_{i_3}n_{i'_2}n_{i'_3}\left(\frac{1}{45}\right)$$

Case 4

Under Case 4, $i_1 \neq i'_1$, $i_2 = i'_2$ and $i_3 \neq i'_3$. For example, $Cov(L_{134}, L_{235})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, L_{i'_{1}i_{2}i'_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j_{3}=1}^{n_{i_{3}}}I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), \sum_{j'_{1}=1}^{n_{i'_{1}}}\sum_{j'_{2}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i'_{3}}}I(X_{i'_{1}j'_{1}} < X_{i_{2}j'_{2}} < X_{i'_{3}j'_{3}})\right) = \sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j'_{1}=1}^{n_{i_{2}}}\sum_{j'_{2}=1}^{n_{i'_{3}}}\sum_{j'_{1}=1}^{n_{i_{2}}}\sum_{j'_{2}=1}^{n_{i'_{3}}}\sum_{j'_{1}=1}^{n_{i'_{3}}}Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i'_{1}j'_{1}} < X_{i_{2}j'_{2}} < X_{i'_{3}j'_{3}})).$$

Now, since $i_1 \neq i'_1$, $i_2 = i'_2$ and $i_3 \neq i'_3$, it follows that j_2 may or may not be equal to j'_2 . Hence, we get the following 2 subcases.

	j_1	j_2	j_3	j'_1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	0
2	-	x	-	-	x	-	1

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

$$4.1 \quad Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i'_1j'_1} < X_{i_2j'_2} < X_{i'_3j'_3})) = 0,$$

$$4.2 \quad Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i'_1j'_1} < X_{i_2j_2} < X_{i'_3j'_3})) = \frac{4}{120} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{180},$$

Lastly, multiplying 4.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

$$Cov(L_{i_1i_2i_3}, L_{i'_1i_2i'_3} = n_{i_1}n_{i_2}n_{i_3}n_{i'_1}n_{i'_3}\left(\frac{1}{180}\right)$$

Case 5

Under Case 5, $i_1 \neq i'_1$, $i_2 = i'_3$ and $i_3 \neq i'_3$. For example, $Cov(L_{145}, L_{234})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, L_{i_{1}'i_{2}'i_{2}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j_{3}=1}^{n_{i_{3}}}I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), \sum_{j_{1}'=1}^{n_{i_{1}}}\sum_{j_{2}'=1}^{n_{i_{2}}}\sum_{j_{3}'=1}^{n_{i_{3}}}I(X_{i_{1}'j_{1}'} < X_{i_{2}'j_{2}'} < X_{i_{2}j_{2}'})\right) = \sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j_{3}'=1}^{n_{i_{1}}}\sum_{j_{2}'=1}^{n_{i_{2}}}\sum_{j_{3}'=1}^{n_{i_{3}}}Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i_{1}',j_{1}'} < X_{i_{2}'j_{2}'} < X_{i_{2}j_{2}'})).$$

Now, since $i_1 \neq i'_1$, $i_2 = i'_3$ and $i_3 \neq i'_3$, it follow that j_2 may or may not be equal to j'_3 Hence, we get the following 2 subcases.

	j_1	j_2	j_3	j'_1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	0
2	-	x	-	-	-	х	1

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

5.1
$$Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i'_1j'_1} < X_{i'_2j'_2} < X_{i_2j'_2})) = 0,$$

5.2 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i'_1j'_1} < X_{i'_2j'_2} < X_{i_2j_2})) = \frac{3}{120} - \frac{1}{3!} \frac{1}{3!} = -\frac{1}{360},$

Lastly, multiplying 5.2 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$L_{i_1i_2i_3}, L_{i'_1, i'_2, i_2} = n_{i_1}n_{i_2}n_{i_3}n_{i'_1}n_{i'_2} \left(-\frac{1}{360}\right).$$

Case 6

Under Case 6, $i_1 \neq i'_1$, $i_2 \neq i'_2$ and $i_3 = i'_1$. For example, $Cov(L_{123}, L_{345})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, L_{i_{3},i'_{2},i'_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j_{3}=1}^{n_{i_{3}}}I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), \sum_{j'_{1}=1}^{n_{i_{1}}}\sum_{j'_{2}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i'_{3}}}I(X_{i_{3}j'_{3}} < X_{i'_{2}j'_{2}} < X_{i'_{3}j'_{3}})\right) = \sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j'_{1}=1}^{n_{i_{2}}}\sum_{j'_{2}=1}^{n_{i_{3}}}\sum_{j'_{1}=1}^{n_{i_{2}}}\sum_{j'_{2}=1}^{n_{i_{3}}}Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i_{3}j'_{3}} < X_{i'_{2}j'_{2}} < X_{i'_{3}j'_{3}})).$$

Now, since $i_1 \neq i'_1$, $i_2 \neq i'_2$ and $i_3 = i'_1$, it follows that j_3 may or may not be equal to j'_1 . Hence, we get the following two subcases.

	j_1	j_2	j_3	j	1	j_2'	j'_3	Ties
1	-	-	-	-	-	-	-	0
2	-	-	х	2	ζ.	-	-	1

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

6.1
$$Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_3j'_3} < X_{i'_2j'_2} < X_{i'_3j'_3})) = 0,$$

6.2 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_3j_3} < X_{i'_2j'_2} < X_{i'_3j'_3})) = \frac{1}{120} - \frac{1}{3!} \frac{1}{3!} = -\frac{7}{360}$

Lastly, multiplying 6.2 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(L_{i_1i_2i_3}, L_{i_3, i'_2, i'_3}) = n_{i_1}n_{i_2}n_{i_3}n_{i'_2}n_{i'_3}\left(-\frac{7}{360}\right)$$

Case 7

Under Case 7, $i_1 \neq i'_1$, $i_2 \neq i'_2$ and $i_3 = i'_3$. For example, $Cov(L_{123}, L_{345})$ falls under

this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, L_{i'_{1},i'_{2},i_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{i_{2}}} \sum_{j_{3}=1}^{n_{i_{3}}} I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), \sum_{j'_{1}=1}^{n_{i_{1}}} \sum_{j'_{2}=1}^{n_{i_{2}}} \sum_{j'_{3}=1}^{n_{i'_{3}}} I(X_{i'_{1}j'_{1}} < X_{i'_{2}j'_{2}} < X_{i_{3}j'_{3}})\right) = \sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{i_{2}}} \sum_{j'_{1}=1}^{n_{i_{2}}} \sum_{j'_{2}=1}^{n_{i_{2}}} \sum_{j'_{3}=1}^{n_{i_{2}}} Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i'_{1}j'_{1}} < X_{i'_{2}j'_{2}} < X_{i_{3}j'_{3}})).$$

Now, since $i_1 \neq i'_1$, $i_2 \neq i'_2$ and $i_3 = i'_3$, it follows that j_3 may or may not be equal to j'_3 . Hence, we get the following two subcases.

	j_1	j_2	j_3	j'_1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	0
2	-	-	х	-	-	х	1

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

7.1
$$Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i'_1j'_1} < X_{i'_2j'_2} < X_{i_3j'_3})) = 0,$$

7.2 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i'_1j'_1} < X_{i'_2j'_2} < X_{i_3j_3})) = \frac{6}{120} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{45}$

Lastly, multiplying 7.2 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(L_{i_1i_2i_3}, L_{i'_1, i'_2, i_3}) = n_{i_1}n_{i_2}n_{i_3}n_{i'_1}n_{i'_2}\left(\frac{1}{45}\right).$$

Case 8

Under Case 8, $i_1 = i'_1$ and $i_2 = i'_2$. For example, $Cov(L_{123}, L_{124})$ falls under this case.

To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, L_{i_{1}i_{2}i'_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j_{3}=1}^{n_{i_{3}}}I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), \sum_{j'_{1}=1}^{n_{i_{1}}}\sum_{j'_{2}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i'_{3}}}I(X_{i_{1}j'_{1}} < X_{i_{2}j'_{2}} < X_{i'_{3}j'_{3}})\right) = \sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j'_{1}=1}^{n_{i_{2}}}\sum_{j'_{2}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i_{2}}}Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i_{1}j'_{1}} < X_{i_{2}j'_{2}} < X_{i'_{3}j'_{3}})).$$

Now, since $i_1 = i'_1$ and $i_2 = i'_2$, it follows that j_1 may or may not be equal to j'_1 and j_2 may or may not be equal to j'_2 . Hence, we get the following four subcases.

	j_1	j_2	j_3	j'_1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	0
2	x	-	-	x	-	-	1
3	-	x	-	-	x	-	1
4	x	x	-	x	x	-	2

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

8.1
$$Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j'_1} < X_{i_2j'_2} < X_{i'_3j'_3})) = 0,$$

8.2 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_2j'_2} < X_{i'_3j'_3})) = \frac{6}{120} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{45},$
8.3 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j'_1} < X_{i_2j_2} < X_{i'_3j'_3})) = \frac{4}{120} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{180},$ and
8.4 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_2j_2} < X_{i'_3j'_3})) = \frac{2}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{18}.$

Lastly, multiplying 8.2 through 8.4 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(L_{i_1i_2i_3}, L_{i_1i_2i'_3}) = n_{i_1}n_{i_2}(n_{i_2} - 1)n_{i_3}n_{i'_3}\left(\frac{1}{45}\right) + n_{i_1}(n_{i_1} - 1)n_{i_2}n_{i_3}n_{i'_3}\left(\frac{1}{180}\right) + n_{i_1}n_{i_2}n_{i_3}n_{i'_3}\left(\frac{1}{18}\right).$$

Case 9

Under Case 9, $i_1 = i'_1$, $i_2 \neq i'_2$ and $i_3 = i'_2$. For example, $Cov(L_{123}, L_{134})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, L_{i_{1}i_{2}i'_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j_{3}=1}^{n_{i_{3}}}I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), \sum_{j'_{1}=1}^{n_{i_{1}}}\sum_{j'_{2}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i'_{3}}}I(X_{i_{1}j'_{1}} < X_{i_{3}j'_{3}} < X_{i'_{3}j'_{3}})\right) = \sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j'_{1}=1}^{n_{i_{2}}}\sum_{j'_{2}=1}^{n_{i_{3}}}\sum_{j'_{1}=1}^{n_{i_{2}}}\sum_{j'_{2}=1}^{n_{i_{3}}}\sum_{j'_{1}=1}^{n_{i_{2}}}\sum_{j'_{2}=1}^{n_{i'_{3}}}Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i_{1}j'_{1}} < X_{i_{3}j'_{3}} < X_{i'_{3}j'_{3}})).$$

Now, since $i_1 = i'_1$, $i_2 \neq i'_2$ and $i_3 = i'_2$, it follow that j_1 may or may not be equal to j'_1 and j_3 may or may not be equal to j'_2 . Hence, we get the following four subcases.

	j_1	j_2	j_3	j'_1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	0
2	х	-	-	х	-	-	1
3	-	-	х	-	х	-	1
4	х	-	х	х	х	-	2

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

- **9.1** $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j'_1} < X_{i_3j'_3} < X_{i'_3j'_3})) = 0,$
- **9.2** $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_3j'_3} < X_{i'_3j'_3})) = \frac{6}{120} \frac{1}{3!} \frac{1}{3!} = \frac{1}{45},$
- **9.3** $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j'_1} < X_{i_3j_3} < X_{i'_3j'_3})) = \frac{3}{120} \frac{1}{3!} \frac{1}{3!} = -\frac{1}{360},$ and

9.4
$$Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_3j_3} < X_{i_3j_3})) = \frac{1}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{72}$$

Lastly, multiplying 9.2 through 9.4 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(L_{i_1i_2i_3}, L_{i_1i_2i'_3}) = n_{i_1}n_{i_2}n_{i_3}(n_{i_3} - 1)n_{i'_3}\left(\frac{1}{45}\right) + n_{i_1}(n_{i_1} - 1)n_{i_2}n_{i_3}n_{i'_3}\left(-\frac{1}{360}\right) + n_{i_1}n_{i_2}n_{i_3}n_{i'_3}\left(\frac{1}{72}\right)$$

Case 10

Under Case 10, $i_1 = i'_1$, $i_2 \neq i'_2$ and $i_3 = i'_3$. For example, $Cov(L_{124}, L_{134})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, L_{i_{1},i'_{2},i_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j_{3}=1}^{n_{i_{3}}}I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), \sum_{j'_{1}=1}^{n_{i_{1}}}\sum_{j'_{2}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i'_{3}}}I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}})\right) = \sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j'_{1}=1}^{n_{i_{2}}}\sum_{j'_{2}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i_{2}}}I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}})).$$

Now, since $i_1 = i'_1$, $i_2 \neq i'_2$ and $i_3 = i'_3$, it follows that j_1 may or may not be equal to j'_1 and j_3 may or may not be equal to j'_3 . Hence, we get the following four subcases.

	j_1	j_2	j_3	j'_1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	0
2	х	-	-	x	-	-	1
3	-	-	х	-	-	х	1
4	x	-	x	х	-	x	2

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

10.1
$$Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j'_1} < X_{i'_2j'_2} < X_{i_3j'_3})) = 0,$$

10.2
$$Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i'_2j'_2} < X_{i_3j'_3})) = \frac{6}{120} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{45},$$

10.3 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j'_1} < X_{i'_2j'_2} < X_{i_3j_3})) = \frac{6}{120} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{45},$ and
10.4 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i'_2j'_2} < X_{i_3j_3})) = \frac{2}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{18}.$

Lastly, multiplying 10.2 through 10.4 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(L_{i_1i_2i_3}, L_{i_1i_2i'_3}) = n_{i_1}n_{i_2}n_{i_3}(n_{i_3} - 1)n_{i'_2}\left(\frac{1}{45}\right) + n_{i_1}(n_{i_1} - 1)n_{i_2}n_{i_3}n_{i'_2}\left(\frac{1}{45}\right) + n_{i_1}n_{i_2}n_{i_3}n_{i'_2}\left(\frac{1}{18}\right).$$

Case 11

Under Case 11, $i_1 \neq i'_1$, $i_2 = i'_1$ and $i_3 = i'_2$. For example, $Cov(L_{123}, L_{234})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, L_{i_{2},i_{3},i_{3}'}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{i_{2}}} \sum_{j_{3}=1}^{n_{i_{3}}} I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), \sum_{j_{1}'=1}^{n_{i_{1}}} \sum_{j_{2}'=1}^{n_{i_{2}}} \sum_{j_{3}'=1}^{n_{i_{3}}} I(X_{i_{2}j_{2}'} < X_{i_{3}j_{3}'} < X_{i_{3}'j_{3}'})\right)$$
$$= \sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{i_{2}}} \sum_{j_{1}'=1}^{n_{i_{2}}} \sum_{j_{2}'=1}^{n_{i_{3}}} \sum_{j_{3}'=1}^{n_{i_{1}}} Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i_{2}j_{2}'} < X_{i_{3}j_{3}'} < X_{i_{3}'j_{3}'})).$$

Now, since $i_1 \neq i'_1$, $i_2 = i'_1$ and $i_3 = i'_2$, it follows that j_2 may or may not be equal to j'_1 and j_3 may or may not be equal to j'_2 . Hence, we get the following four subcases.

	j_1	j_2	j_3	j_{1}^{j}	$j'_1 j'_2$	j'_3	Ties
1	-	-	-	-	-	-	0
2	-	х	-	х	- I	-	1
3	-	-	х	-	х	-	1
4	-	x	x	х	x	-	2

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

11.4
$$Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_2j_2} < X_{i_3j_3} < X_{i_3j_3})) = \frac{1}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{72}$$

Lastly, multiplying 11.2 through 11.4 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(L_{i_1i_2i_3}, L_{i_2,i_3,i'_3}) = n_{i_1}n_{i_2}n_{i_3}(n_{i_3}-1)n_{i'_3}\left(-\frac{1}{360}\right) + n_{i_1}n_{i_2}(n_{i_2}-1)n_{i_3}n_{i'_3}\left(-\frac{1}{360}\right) + n_{i_1}n_{i_2}n_{i_3}n_{i'_3}\left(\frac{1}{72}\right).$$

Case 12

Under Case 12, $i_1 \neq i'_1$, $i_2 = i'_1$ and $i_3 = i'_3$. For example, $Cov(L_{123}, L_{124})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, L_{i_{2},i'_{2},i_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{i_{2}}} \sum_{j_{3}=1}^{n_{i_{3}}} I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), \sum_{j'_{1}=1}^{n_{i_{1}}} \sum_{j'_{2}=1}^{n_{i_{2}}} \sum_{j'_{3}=1}^{n_{i'_{3}}} I(X_{i_{2}j'_{2}} < X_{i'_{2}j'_{2}} < X_{i_{3}j'_{3}})\right) = \sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{i_{2}}} \sum_{j'_{1}=1}^{n_{i_{2}}} \sum_{j'_{2}=1}^{n_{i_{3}}} \sum_{j'_{1}=1}^{n_{i_{1}}} \sum_{j'_{2}=1}^{n_{i_{2}}} \sum_{j'_{3}=1}^{n_{i_{3}}} Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i_{2}j'_{2}} < X_{i'_{2}j'_{2}} < X_{i_{3}j'_{3}})).$$

Now, since $i_1 \neq i'_1$, $i_2 = i'_1$ and $i_3 = i'_3$, it follows that j_2 may or may not be equal to j'_1 and j_3 may or may not be equal to j'_3 . Hence, we get the following four subcases.

	j_1	j_2	j_3	j	1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	-	0
2	-	х	-	У	ζ	-	-	1
3	-	-	х	-	-	-	х	1
4	-	х	х	3	ζ	-	х	2

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

 $\begin{aligned} \mathbf{12.1} \ \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_2j_2'} < X_{i_2'j_2'} < X_{i_3j_3'})) &= 0, \\ \mathbf{12.2} \ \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_2j_2} < X_{i_2'j_2'} < X_{i_3j_3'})) &= \frac{3}{120} - \frac{1}{3!} \frac{1}{3!} = -\frac{1}{360}, \\ \mathbf{12.3} \ \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_2j_2'} < X_{i_2'j_2'} < X_{i_3j_3}))) &= \frac{6}{120} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{45}, \\ \mathbf{12.4} \ \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_2j_2} < X_{i_2'j_2'} < X_{i_3j_3}))) &= \frac{1}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{72}. \end{aligned}$

Lastly, multiplying 12.2 through 12.4 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(L_{i_1i_2i_3}, L_{i_2,i'_2,i_3}) = n_{i_1}n_{i_2}n_{i_3}(n_{i_3} - 1)n_{i'_2}\left(-\frac{1}{360}\right) + n_{i_1}n_{i_2}(n_{i_2} - 1)n_{i_3}n_{i'_2}\left(\frac{1}{45}\right) + n_{i_1}n_{i_2}n_{i_3}n_{i'_2}\left(\frac{1}{72}\right).$$

Case 13

Under Case 13, $i_1 \neq i'_1$, $i_2 = i'_2$ and $i_3 = i'_3$. For example, $Cov(L_{134}, L_{234})$ falls under

this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, L_{i'_{1}, i_{2}, i_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{i_{2}}} \sum_{j_{3}=1}^{n_{i_{3}}} I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), \sum_{j'_{1}=1}^{n_{i_{1}}} \sum_{j'_{2}=1}^{n_{i_{2}}} \sum_{j'_{3}=1}^{n_{i'_{3}}} I(X_{i'_{1}j'_{1}} < X_{i_{2}j'_{2}} < X_{i_{3}j'_{3}})\right) = \sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{i_{2}}} \sum_{j'_{1}=1}^{n_{i_{2}}} \sum_{j'_{3}=1}^{n_{i_{2}}} \sum_{j'_{3}=1}^{n_{i_{3}}} Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i'_{1}j'_{1}} < X_{i_{2}j'_{2}} < X_{i_{3}j'_{3}})).$$

Now, since $i_1 \neq i'_1$, $i_2 = i'_2$ and $i_3 = i'_3$, it follows that j_2 may or may not be equal to j'_2 and j_3 may or may not be equal to j'_3 . Hence, we get the following four subcases.

	j_1	j_2	j_3	j'_1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	0
2	-	х	-	-	х	-	1
3	-	-	х	-	-	х	1
4	-	x	х	-	x	x	2

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

13.1
$$Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i'_1j'_1} < X_{i_2j'_2} < X_{i_3j'_3})) = 0,$$

13.2 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i'_1j'_1} < X_{i_2j_2} < X_{i_3j'_3})) = \frac{4}{120} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{180},$
13.3 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i'_1j'_1} < X_{i_2j'_2} < X_{i_3j_3})) = \frac{6}{120} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{45},$ and
13.4 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i'_1j'_1} < X_{i_2j_2} < X_{i_3j_3})) = \frac{2}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{18}.$
Lastly, multiplying 13.2 through 13.4 by the corresponding number of terms, and

Lastly, multiplying 13.2 through 13.4 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(L_{i_1i_2i_3}, L_{i'_1, i_2, i_3}) = n_{i_1}n_{i_2}n_{i_3}(n_{i_3} - 1)n_{i'_1}\left(\frac{1}{180}\right) + n_{i_1}n_{i_2}(n_{i_2} - 1)n_{i_3}n_{i'_1}\left(\frac{1}{45}\right) + n_{i_1}n_{i_2}n_{i_3}n_{i'_1}\left(\frac{1}{18}\right).$$
Case 14

Under Case 14, $i_1 = i'_1$, $i_2 = i'_2$ and $i_3 = i'_3$. For example, $Cov(L_{123}, L_{123})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, L_{i_{1},i_{2},i_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{i_{2}}} \sum_{j_{3}=1}^{n_{i_{3}}} I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), \sum_{j_{1}'=1}^{n_{i_{1}}} \sum_{j_{2}'=1}^{n_{i_{2}}} \sum_{j_{3}'=1}^{n_{i_{3}}} I(X_{i_{1}j_{1}'} < X_{i_{2}j_{2}'} < X_{i_{3}j_{3}'})\right) = \sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{i_{2}}} \sum_{j_{3}'=1}^{n_{i_{1}}} \sum_{j_{2}'=1}^{n_{i_{2}}} \sum_{j_{3}'=1}^{n_{i_{1}}} \sum_{j_{2}'=1}^{n_{i_{2}}} \sum_{j_{3}'=1}^{n_{i_{2}}} Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i_{1}j_{1}'} < X_{i_{2}j_{2}'} < X_{i_{3}j_{3}'})).$$

Now, since $i_1 = i'_1$, $i_2 = i'_2$ and $i_3 = i'_3$, it follow that j_1 may or may not be equal to j'_1 , j_2 may or may not be equal to j'_2 and j_3 may or may not be equal to j'_3 . Hence, we get the following eight subcases.

	j_1	j_2	j_3	j'_1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	0
2	х	-	-	х	-	-	1
3	-	х	-	-	х	-	1
4	-	-	х	-	-	х	1
5	х	х	-	х	х	-	2
6	х	-	х	х	-	х	2
7	-	х	х	-	х	х	2
8	х	х	х	х	х	х	3

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

 $\begin{aligned} \mathbf{14.1} \ \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1'} < X_{i_2j_2'} < X_{i_3j_3'}) &= 0, \end{aligned}$ $\mathbf{14.2} \ \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_2j_2'} < X_{i_3j_3'})) &= \frac{6}{120} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{45}, \end{aligned}$

$$\begin{aligned} \mathbf{14.3} \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j'_1} < X_{i_2j_2} < X_{i_3j'_3})) &= \frac{4}{120} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{180}, \\ \mathbf{14.4} \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j'_1} < X_{i_2j'_2} < X_{i_3j_3}))) &= \frac{6}{120} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{45} \\ \mathbf{14.5} \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j'_3}))) &= \frac{2}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{18}, \\ \mathbf{14.6} \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j'_1} < X_{i_2j'_2} < X_{i_3j_3})) &= \frac{3}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{18}, \\ \mathbf{14.7} \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_2j'_2} < X_{i_3j'_3})) &= \frac{2}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{18}, \\ \mathbf{14.8} \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j'_3})) &= \frac{2}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{18}, \\ \mathbf{14.8} \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3})) &= \frac{2}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{18}, \\ \mathbf{14.8} \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3})) &= \frac{2}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{18}, \\ \mathbf{14.8} \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3})) &= \frac{2}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{18}, \\ \mathbf{14.8} \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3})) &= \frac{2}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{18}, \\ \mathbf{14.8} \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3})) &= \frac{1}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{18}, \\ \mathbf{14.8} \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3})) &= \frac{1}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{18}, \\ \mathbf{14.8} \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3})) &= \frac{1}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{18}, \\ \mathbf{14.8} \ Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3})) &= \frac{1}{24} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{18}, \\ \mathbf{14.8} \ Cov(I(X_{i_1j_1} < X_{i_2j_2}$$

Lastly, multiplying 14.2 through 14.8 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(L_{i_{1}i_{2}i_{3}}, L_{i_{1}i_{2}i_{3}})$$

$$= n_{i_{1}}n_{i_{2}}(n_{i_{2}} - 1) n_{i_{3}}(n_{i_{3}} - 1)\left(\frac{1}{45}\right) + n_{i_{1}}(n_{i_{1}} - 1) n_{i_{2}}n_{i_{3}}(n_{i_{3}} - 1)\left(\frac{1}{180}\right)$$

$$+ n_{i_{1}}(n_{i_{1}} - 1) n_{i_{2}}(n_{i_{2}} - 1) n_{i_{3}}\left(\frac{1}{45}\right) + n_{i_{1}}n_{i_{2}}n_{i_{3}}(n_{i_{3}} - 1)\left(\frac{1}{18}\right)$$

$$+ n_{i_{1}}n_{i_{2}}(n_{i_{2}} - 1) n_{i_{3}}\left(\frac{1}{18}\right) + n_{i_{1}}(n_{i_{1}} - 1) n_{i_{2}}n_{i_{3}}\left(\frac{1}{18}\right) + n_{i_{1}}n_{i_{2}}n_{i_{3}}\left(\frac{1}{18}\right)$$

To summarize, the variance and covariance results for each of the 14 cases are given below. The variance of T_L is obtained by simply summing these quantities according to equation (23).

$$2: \quad n_{i_1} n_{i_2} n_{i_3} n_{i'_2} n_{i'_3} \left(\frac{1}{45}\right)$$

$$3: \quad n_{i_1} n_{i_2} n_{i_3} n_{i'_2} n_{i'_3} \left(-\frac{1}{360} \right)$$

$$4: \quad n_{i_1} n_{i_2} n_{i_3} n_{i_1'} n_{i_3'} \left(\frac{1}{180}\right)$$

$$5: \quad n_{i_1} n_{i_2} n_{i_3} n_{i'_1} n_{i'_2} \left(-\frac{1}{360} \right)$$

$$6: \quad n_{i_1} n_{i_2} n_{i_3} n_{i'_2} n_{i'_3} \left(-\frac{7}{360} \right)$$

$$7: \quad n_{i_1} n_{i_2} n_{i_3} n_{i_1'} n_{i_2'} \left(\frac{1}{45}\right)$$

8:
$$n_{i_1}n_{i_2}(n_{i_2}-1)n_{i_3}n_{i'_3}\left(\frac{1}{45}\right) + n_{i_1}(n_{i_1}-1)n_{i_2}n_{i_3}n_{i'_3}\left(\frac{1}{180}\right) + n_{i_1}n_{i_2}n_{i_3}n_{i'_3}\left(\frac{1}{18}\right)$$

9:
$$n_{i_1}n_{i_2}n_{i_3}(n_{i_3}-1)n_{i'_3}\left(\frac{1}{45}\right) + n_{i_1}(n_{i_1}-1)n_{i_2}n_{i_3}n_{i'_3}\left(-\frac{1}{360}\right) + n_{i_1}n_{i_2}n_{i_3}n_{i'_3}\left(\frac{1}{72}\right)$$

$$10: \quad n_{i_1}n_{i_2}n_{i_3}(n_{i_3}-1)n_{i'_2}\left(\frac{1}{45}\right) + n_{i_1}(n_{i_1}-1)n_{i_2}n_{i_3}n_{i'_2}\left(\frac{1}{45}\right) + n_{i_1}n_{i_2}n_{i_3}n_{i'_2}\left(\frac{1}{18}\right)$$

11:
$$n_{i_1}n_{i_2}n_{i_3}(n_{i_3}-1)n_{i'_3}\left(-\frac{1}{360}\right) + n_{i_1}n_{i_2}(n_{i_2}-1)n_{i_3}n_{i'_3}\left(-\frac{1}{360}\right) + n_{i_1}n_{i_2}n_{i_3}n_{i'_3}\left(\frac{1}{72}\right)$$

$$12: \quad n_{i_1}n_{i_2}n_{i_3}(n_{i_3}-1)n_{i'_2}\left(-\frac{1}{360}\right) + n_{i_1}n_{i_2}(n_{i_2}-1)n_{i_3}n_{i'_2}\left(\frac{1}{45}\right) + n_{i_1}n_{i_2}n_{i_3}n_{i'_2}\left(\frac{1}{72}\right)$$

13:
$$n_{i_1}n_{i_2}n_{i_3}(n_{i_3}-1)n_{i'_1}\left(\frac{1}{180}\right) + n_{i_1}n_{i_2}(n_{i_2}-1)n_{i_3}n_{i'_1}\left(\frac{1}{45}\right) + n_{i_1}n_{i_2}n_{i_3}n_{i'_1}\left(\frac{1}{18}\right)$$

14:
$$n_{i_1}(n_{i_1}-1)n_{i_2}(n_{i_2}-1)n_{i_3}(n_{i_3}-1)(0)$$

$$+ n_{i_{1}}n_{i_{2}}(n_{i_{2}}-1)n_{i_{3}}(n_{i_{3}}-1)\left(\frac{1}{45}\right)$$

$$+ n_{i_{1}}(n_{i_{1}}-1)n_{i_{2}}n_{i_{3}}(n_{i_{3}}-1)\left(\frac{1}{180}\right)$$

$$+ n_{i_{1}}(n_{i_{1}}-1)n_{i_{2}}(n_{i_{2}}-1)n_{i_{3}}\left(\frac{1}{45}\right)$$

$$+ n_{i_{1}}n_{i_{2}}n_{i_{3}}(n_{i_{3}}-1)\left(\frac{1}{18}\right)$$

$$+ n_{i_{1}}(n_{i_{1}}-1)n_{i_{2}}n_{i_{3}}\left(\frac{1}{18}\right)$$

$$+ n_{i_{1}}(n_{i_{1}}-1)n_{i_{2}}n_{i_{3}}\left(\frac{1}{18}\right)$$

With that said, after very extensive algebraic manipulation, the result for the variance of T_L can be simplified for the balanced design (i.e. $n_1 = n_2 = \cdots = n_k = n$).

It can be given by

$$Var(T_L) = \frac{2}{360} \left\{ 39 \begin{pmatrix} p \\ 5 \end{pmatrix} n^5 + \begin{pmatrix} p \\ 4 \end{pmatrix} (48n^5 + 27n^4) + \begin{pmatrix} p \\ 3 \end{pmatrix} (9n^5 + 12n^4 + 4n^3) \right\}.$$

Variance of T_R

The variance of T_R follows from the variance of T_L . For instance, recall that the variance of T_L is a function of p and n_1, n_2, \ldots, n_p , say $v(p; n_i, n_2, \ldots, n_p)$. So, by essentially reversing the order of the groups, we can obtain the variance of T_R from the variance of T_L . That is, $V(T_R) = V(k - p + 1; n_k, n_{k-1}, \ldots, n_p)$. Note that this results is also important from a programming point of view.

Variance of T_A

Next note that

$$V(T_A) = Cov(T_A, T_A) = Cov(\sum_{i_1=1}^{p-1} \sum_{i_3=p+1}^k A_{i_1pi_3}, \sum_{i'_1=1}^{p-1} \sum_{i'_3=p+1}^k A_{i'_1pi'_3}) = \sum_{i_1=1}^{p-1} \sum_{i_3=p+1}^k Var(A_{i_1,p,i_3}) + 2\sum_{i\neq i'}^{p-1} Cov(A_{i_1pi_3}, A_{i'_1pi'_3})$$
(24)

Once more, recall that $i_1 for <math>i$ and $i'_1 for <math>i'$. The table below shows all the possible ties between groups:

	i_1	i_p	i_3	i'_1	i'_p	i'_3	Ties
1	_	x	_	_	x	_	1
2	x	x	_	x	x	_	2
3	_	x	x	_	x	x	2
4	x	x	x	x	x	x	3

Case 4 is the variance component $Var(A_{i_1pi_3})$.

Case 1

Under Case 1, $i_1 \neq i'_1$, $i_p = i'_p$ and $i_3 \neq i'_3$. For example, $Cov(A_{134}, A_{235})$ falls under this case. To begin, note that

$$Cov(A_{i_1pi_3}, A_{i_1pi'_3}) = Cov\left(\sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_p} \sum_{j_3=1}^{n_{i_3}} I(X_{i_1j_1} < X_{pj_2} > X_{i_3j_3})), \sum_{j'_1=1}^{n_{i_1}} \sum_{j'_2=1}^{n_p} \sum_{j'_3=1}^{n_{i'_3}} I(X_{i_1j'_1} < X_{pj'_2} > X_{i_3j'_3})\right) = \sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_p} \sum_{j'_1=1}^{n_{i_3}} \sum_{j'_2=1}^{n_p} \sum_{j'_3=1}^{n_{i'_3}} Cov(I(X_{i_1j_1} < X_{pj_2}.X_{i_3j_3}), I(X_{i_1j'_1} < X_{pj'_2} > X_{i_3j'_3})).$$

Now, since $i_1 \neq i'_1$, $i_p = i'_p$ and $i_3 \neq i'_3$, it follows that j_1 may or may not be equal to j'_1 . Hence, we get the following two subcases.

	j_1	j_2	j_3	j'_1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	0
2	-	х	-	-	х	-	1

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

1.1
$$Cov(I(X_{i_1j_1} < X_{pj_2} > X_{i_3j_3})), I(X_{i_1j'_1} < X_{pj'_2} > X_{i'_3j'_3})) = 0,$$

1.2
$$Cov(I(X_{i_1j_1} < X_{pj_2} > X_{i_3j_3}, I(X_{i_1j'_1} < X_{pj'_2} > X_{i'_3j'_3})) = \frac{24}{120} - \frac{1}{3}\frac{1}{3} = \frac{4}{45}.$$

Lastly, multiplying 1.2 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(A_{i_1i_2i_3}, A_{i_1pi'_3}) = n_{i_1}n_p n_{i_3}n_{i'_1}n_{i'_3}\left(\frac{4}{45}\right).$$

Case 2

Under Case 2, $i_1 = i'_1$, $i_p = i'_p$ and $i_3 \neq i'_3$. For example, $Cov(A_{123}, A_{124})$ falls under this case. To begin, note that

$$Cov(A_{i_1pi_3}, A_{i_1, p, i'_3}) = Cov\left(\sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_p} \sum_{j_3=1}^{n_{i_3}} I(X_{i_1j_1} < X_{pj_p} > X_{i_3j_3})), \sum_{j'_1=1}^{n_{i_1}} \sum_{j'_2=1}^{n_p} \sum_{j'_3=1}^{n_{i'_3}} I(X_{i_1j'_1} < X_{pj'_p} > X_{i'_3j'_3})\right) = \sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_p} \sum_{j_3=1}^{n_{i_1}} \sum_{j'_2=1}^{n_p} \sum_{j'_3=1}^{n_{i_1}} \sum_{j'_2=1}^{n_p} \sum_{j'_3=1}^{n_{i'_3}} Cov(I(X_{i_1j_1} < X_{pj_p} > X_{i_3j_3}), I(X_{i_1j'_1} < X_{pj'_p} > X_{i'_3j'_3})).$$

Now, since $i_1 = i'_1$, $i_p = i'_p$ and $i_3 \neq i'_3$, it follows that j_1 may or may not be equal to j'_1 and j_2 may or may not be equal to j'_2 . Hence, we get the following four subcases.

	j_1	j_2	j_3	j'_1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	0
2	х	-	-	x	-	-	1
3	-	х	-	-	х	-	1
4	x	x	-	х	x	-	2

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

2.1
$$Cov(I(X_{i_1j_1} < X_{pj_p} > X_{i_3j_3}), I(X_{i_1j'_1} < X_{pj'_p} > X_{i'_3j'_3})) = 0,$$

2.2
$$Cov(I(X_{i_1j_1} < X_{pj_2} > X_{i_3j_3}), I(X_{i_1j_1} < X_{pj'_p} > X_{i'_3j'_3})) = \frac{16}{120} - \frac{1}{3}\frac{1}{3} = \frac{1}{45}$$

2.3 $Cov(I(X_{i_1j_1} < X_{pj_p} > X_{i_3j_3}), I(X_{i_1j'_1} < X_{pj_p} > X_{i'_3j'_3})) = \frac{24}{120} - \frac{1}{3}\frac{1}{3} = \frac{4}{45}$
2.4 $Cov(I(X_{i_1j_1} < X_{pj_p} > X_{i_3j_3}), I(X_{i_1j_1} < X_{pj_p} > X_{i'_3j'_3})) = \frac{6}{24} - \frac{1}{3}\frac{1}{3} = \frac{5}{36}$

Lastly, multiplying 2.2 through 2.4 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(A_{i_1i_2i_3}, A_{i_1pi'_3}) = n_{i_1}n_p(n_p - 1)n_{i_3}n_{i'_3}\left(\frac{1}{45}\right) + n_{i_1}(n_{i_1} - 1)n_pn_{i_3}n_{i'_3}\left(\frac{4}{45}\right) + n_{i_1}n_pn_{i_3}n_{i'_3}\left(\frac{5}{36}\right).$$

Case 3

Under Case 3, $i_1 \neq i'_1$, $i_p = i'_p$ and $i_3 = i'_3$. For example, $Cov(A_{123}, A_{124})$ falls under this case. To begin, note that

$$Cov(A_{i_{1}pi_{3}}, A_{i'_{1}, p, i_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{p}} \sum_{j_{3}=1}^{n_{i_{3}}} I(X_{i_{1}j_{1}} < X_{pj_{p}} > X_{i_{3}j_{3}})), \sum_{j'_{1}=1}^{n_{i_{1}}} \sum_{j'_{2}=1}^{n_{p}} \sum_{j'_{3}=1}^{n_{i'_{3}}} I(X_{i'_{1}j'_{1}} < X_{pj'_{p}} > X_{i_{3}j'_{3}})\right)$$
$$= \sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{p}} \sum_{j'_{1}=1}^{n_{i_{1}}} \sum_{j'_{2}=1}^{n_{p}} \sum_{j'_{3}=1}^{n_{i'_{3}}} Cov(I(X_{i_{1}j_{1}} < X_{pj_{p}} > X_{i_{3}j_{3}}), I(X_{i'_{1}j'_{1}} < X_{pj'_{p}} > X_{i_{3}j'_{3}})).$$

Now, since $i_1 \neq i'_1$, $i_p = i'_p$ and $i_3 = i'_3$, it follows that j_p may or may not be equal to j'_p and j_3 may or may not be equal to j'_3 . Hence, we get the following four subcases.

	j_1	j_2	j_3	j'_1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	0
2	-	х	-	-	х	-	1
3	-	-	х	-	-	х	1
4	-	x	х	-	x	x	2

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

3.1
$$Cov(I(X_{i_1j_1} < X_{pj_p} > X_{i_3j_3}), I(X_{i'_1j'_1} < X_{pj'_p} > X_{i_3j'_3})) = 0,$$

3.2 $Cov(I(X_{i_1j_1} < X_{pj_2} > X_{i_3j_3}), I(X_{i'_1j'_1} < X_{pj_p} > X_{i_3j'_3})) = \frac{24}{120} - \frac{1}{3}\frac{1}{3} = \frac{4}{45}$
3.3 $Cov(I(X_{i_1j_1} < X_{pj_p} > X_{i_3j_3}), I(X_{i'_1j'_1} < X_{pj'_p} > X_{i_3j_3})) = \frac{16}{120} - \frac{1}{3}\frac{1}{3} = \frac{1}{45}$
3.4 $Cov(I(X_{i_1j_1} < X_{pj_p} > X_{i_3j_3}), I(X_{i'_1j'_1} < X_{pj_p} > X_{i_3j_3})) = \frac{6}{24} - \frac{1}{3}\frac{1}{3} = \frac{5}{36}$

Lastly, multiplying 3.2 through 3.4 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(A_{i_1i_2i_3}, A_{i'_1, p, i_3}) = n_{i_1}n_p n_{i_3}(n_{i_3} - 1)n_{i'_1}\left(\frac{4}{45}\right) + n_{i_1}n_p (n_p - 1)n_{i_3}n_{i'_1}\left(\frac{1}{45}\right) + n_{i_1}n_p n_{i_3}n_{i'_1}\left(\frac{5}{36}\right).$$

Case 4

Under Case 4, $i_1 = i'_1$, $i_p = i'_p$ and $i_3 = i'_3$. For example, $Cov(A_{123}, A_{123})$ falls under this case. To begin, note that

$$Cov(A_{i_1pi_3}, A_{i_1, p, i_3}) = Cov\left(\sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_p} \sum_{j_3=1}^{n_{i_3}} I(X_{i_1j_1} < X_{pj_p} > X_{i_3j_3})), \sum_{j_1'=1}^{n_{i_1}} \sum_{j_2'=1}^{n_p} \sum_{j_3'=1}^{n_{i_3'}} I(X_{i_1j_1'} < X_{pj_p'} > X_{i_3j_3'})\right) = \sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_p} \sum_{j_3=1}^{n_{i_1}} \sum_{j_1'=1}^{n_p} \sum_{j_2'=1}^{n_{i_3}} \sum_{j_1'=1}^{n_p} \sum_{j_2'=1}^{n_{i_3'}} Cov(I(X_{i_1j_1} < X_{pj_p} > X_{i_3j_3}), I(X_{i_1j_1'} < X_{pj_p'} > X_{i_3j_3'})).$$

Now, since $i_1 = i'_1$, $i_p = i'_p$ and $i_3 = i'_3$, it follows that j_1 may or may not be equal to j'_1 , j_p may or may not be equal to j'_p and j_3 may or may not be equal to j'_3 . Hence, we get the following eight subcases.

	j_1	j_2	j_3	j'_1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	0
2	х	-	-	х	-	-	1
3	-	х	-	-	х	-	1
4	-	-	х	-	-	х	1
5	х	х	-	х	х	-	2
6	х	-	х	х	-	х	2
7	-	х	х	-	х	х	2
8	x	x	X	х	х	х	3

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

 $\begin{aligned} \textbf{4.1} \quad Cov(I(X_{i_{1}j_{1}} < X_{pj_{p}} > X_{i_{3}j_{3}}), I(X_{i_{1}j_{1}'} < X_{pj_{p}'} > X_{i_{3}j_{3}'})) &= 0, \\ \textbf{4.2} \quad Cov(I(X_{i_{1}j_{1}} < X_{pj_{2}} > X_{i_{3}j_{3}}), I(X_{i_{1}j_{1}} < X_{pj_{p}'} > X_{i_{3}j_{3}'})) &= \frac{16}{120} - \frac{1}{3}\frac{1}{3} = \frac{1}{45} \\ \textbf{4.3} \quad Cov(I(X_{i_{1}j_{1}} < X_{pj_{p}} > X_{i_{3}j_{3}}), I(X_{i_{1}j_{1}'} < X_{pj_{p}} > X_{i_{3}j_{3}'})) &= \frac{24}{120} - \frac{1}{3}\frac{1}{3} = \frac{4}{45} \\ \textbf{4.4} \quad Cov(I(X_{i_{1}j_{1}} < X_{pj_{p}} > X_{i_{3}j_{3}}), I(X_{i_{1},j_{1}'} < X_{p,j_{p}'} > X_{i_{3},j_{3}})) &= \frac{16}{120} - \frac{1}{3}\frac{1}{3} = \frac{1}{45} \\ \textbf{4.5} \quad Cov(I(X_{i_{1}j_{1}} < X_{pj_{p}} > X_{i_{3}j_{3}}), I(X_{i_{1},j_{1}'} < X_{p,j_{p}'} > X_{i_{3},j_{3}})) &= \frac{6}{24} - \frac{1}{3}\frac{1}{3} = \frac{5}{36} \\ \textbf{4.6} \quad Cov(I(X_{i_{1}j_{1}} < X_{pj_{p}} > X_{i_{3}j_{3}}), I(X_{i_{1},j_{1}} < X_{p,j_{p}} > X_{i_{3},j_{3}})) &= \frac{4}{24} - \frac{1}{3}\frac{1}{3} = \frac{1}{18} \\ \textbf{4.7} \quad Cov(I(X_{i_{1}j_{1}} < X_{pj_{p}} > X_{i_{3}j_{3}}), I(X_{i_{1},j_{1}'} < X_{p,j_{p}} > X_{i_{3},j_{3}})) &= \frac{6}{24} - \frac{1}{3}\frac{1}{3} = \frac{5}{36} \\ \textbf{4.8} \quad Cov(I(X_{i_{1}j_{1}} < X_{pj_{p}} > X_{i_{3}j_{3}}), I(X_{i_{1},j_{1}} < X_{p,j_{p}} > X_{i_{3},j_{3}})) &= \frac{2}{6} - \frac{1}{3}\frac{1}{3} = \frac{2}{9}. \end{aligned}$

Lastly, multiplying 4.2 through 4.8 by the corresponding number of terms, and then

summing, leads to the desired result. That is,

$$Cov(A_{i_{1}i_{2}i_{3}}, A_{i'_{1}pi_{3}}) = n_{i_{1}}n_{p}(n_{p}-1)n_{i_{3}}(n_{i_{3}}-1)\left(\frac{1}{45}\right) + n_{i_{1}}(n_{i_{1}}-1)n_{p}n_{i_{3}}(n_{i_{3}}-1)\left(\frac{4}{45}\right)$$

+ $n_{i_{1}}(n_{i_{1}}-1)n_{p}(n_{p}-1)n_{i_{3}}\left(\frac{1}{45}\right) + n_{i_{1}}n_{p}n_{i_{3}}(n_{i_{3}}-1)\left(\frac{5}{36}\right)$
+ $n_{i_{1}}n_{p}(n_{p}-1)n_{i_{3}}\left(\frac{1}{18}\right) + n_{i_{1}}(n_{i_{1}}-1)n_{p}n_{i_{3}}\left(\frac{5}{36}\right)$
+ $n_{i_{1}}n_{p}n_{i_{3}}\left(\frac{2}{9}\right)$

To summarize, the variance and covariance results for each of the 14 cases are given below. The variance of T_A is obtained by simply summing these quantities according to equation (24)

$$1 : n_{i_1} n_p n_{i_3} n_{i'_1} n_{i'_3} \left(\frac{4}{45}\right)$$

2 :
$$n_{i_1}n_p(n_p-1)n_{i_3}n_{i'_3}\left(\frac{1}{45}\right) + n_{i_1}(n_{i_1}-1)n_pn_{i_3}n_{i'_3}\left(\frac{4}{45}\right) + n_{i_1}n_pn_{i_3}n_{i'_3}\left(\frac{5}{36}\right)$$

$$3 : n_{i_1} n_p n_{i_3} (n_{i_3} - 1) n_{i_1'} \left(\frac{4}{45}\right) + n_{i_1} n_p (n_p - 1) n_{i_3} n_{i_1'} \left(\frac{1}{45}\right) + n_{i_1} n_p n_{i_3} n_{i_1'} \left(\frac{5}{36}\right)$$

$$4 : n_{i_1}n_p(n_p-1)n_{i_3}(n_{i_3}-1)\left(\frac{1}{45}\right) + n_{i_1}(n_{i_1}-1)n_pn_{i_3}(n_{i_3}-1)\left(\frac{4}{45}\right)$$
$$+n_{i_1}(n_{i_1}-1)n_p(n_p-1)n_{i_3}\left(\frac{1}{45}\right) + n_{i_1}n_pn_{i_3}(n_{i_3}-1)\left(\frac{5}{36}\right)$$
$$+n_{i_1}n_p(n_p-1)n_{i_3}\left(\frac{1}{18}\right) + n_{i_1}(n_{i_1}-1)n_pn_{i_3}\left(\frac{5}{36}\right)$$
$$+n_{i_1}n_pn_{i_3}\left(\frac{2}{9}\right)$$

With that said, after very extensive algebraic manipulation, the result for the variance of T_A can be simplified for the balanced design (i.e. $n_1 = n_2 = \cdots = n_k = n$). It can be given by

$$Var(T_A) = \frac{(p-1)(k-p)n^3}{45} \left\{ (k-1)n^2 + 4(p-1)(k-p)n^2 + \frac{5(k-1)n+2n}{4} + 1 \right\}$$

Covariance of T_L and T_A

Note first that

$$Cov(T_L, T_A) = Cov(\sum_{i=S_1^p(3)} L_{i_1 i_2 i_3}, \sum_{i_1'=1}^{p-1} \sum_{i_3'=p+1}^k A_{i_1' p i_3'})$$
$$= \sum_{i=S_1^p(3)} \sum_{i_1'=1}^{p-1} \sum_{i_3'=p+1}^k Cov(L_{i_1 i_2 i_3}, A_{i_1' p i_3'})$$
(25)

There are the following possibilities of ties between groups:

	i_1	i_2	i_3	i'_1	p	i'_3	Ties
1	_	_	_	_	_	_	0
2	x	_	_	x	_	_	1
3	_	x	_	x	_	_	1
4	_	_	x	x	_	_	1
5	_	_	x	_	x	_	1
6	x	_	x	x	x	_	2
7	_	x	x	x	x	_	2

Case 2

Under Case 2, $i_1 = i'_1$, $i_2 \neq p$ and $i_3 \neq i'_3$. For example, $Cov(L_{123}, A_{145})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, A_{i_{1}pi'_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j_{3}=1}^{n_{i_{3}}}I(X_{i_{1},j_{1}} < X_{i_{2},j_{2}} < X_{i_{3},j_{3}}), \sum_{j'_{1}=1}^{n_{i_{1}}}\sum_{j'_{2}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i'_{3}}}I(X_{i'_{1},j'_{1}} < X_{p,j'_{p}} > X_{i'_{3},j'_{3}})\right)$$
$$= \sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j'_{1}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i_{2}}}Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i'_{1}j'_{1}} < X_{pj'_{p}} > X_{i'_{3}j'_{3}})).$$

Now, since $i_1 = i'_1$, $i_2 \neq p$ and $i_3 \neq i'_3$, it follows that j_1 may or may not be equal to j'_1 . Hence, we get the following four subcases.

	j_1	j_2	j_3	j'_1	j'_p	j'_3	Ties
1	-	-	-	-	-	-	0
2	х	-	-	х	-	-	1

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

2.1
$$Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j'_1} < X_{pj'_2} < X_{i'_3j'_3})) = 0,$$

2.2 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_1j_1} < X_{pj'_p} > X_{i'_3j'_3}) = \frac{9}{120} - \frac{1}{3!}\frac{1}{3} = \frac{7}{360},$

Lastly, multiplying 2.2 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(L_{i_1i_2i_3}, A_{i_1pi'_3}) = n_{i_1}n_{i_2}n_{i_3}n_pn_{i'_3}\left(\frac{7}{360}\right)$$

Case 3

Under Case 3, $i_1 \neq i'_1$, $i_2 = i'_1$ and $i_3 \neq i'_3$. For example, $Cov(L_{123}, A_{245})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, A_{i_{2}pi'_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j_{3}=1}^{n_{i_{3}}}I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), \sum_{j'_{1}=1}^{n_{i_{1}}}\sum_{j'_{2}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i'_{3}}}I(X_{i_{2}j'_{1}} < X_{pj'_{p}} > X_{i'_{3}j'_{3}})\right) = \sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j'_{1}=1}^{n_{i_{2}}}\sum_{j'_{2}=1}^{n_{i_{2}}}\sum_{j'_{1}=1}^{n_{i_{2}}}\sum_{j'_{2}=1}^{n_{i'_{3}}}Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i_{2}j'_{1}} < X_{pj'_{p}} > X_{i'_{3}j'_{3}})).$$

Now, since $i_1 \neq i'_1$, $i_2 = i'_1$ and $i_3 \neq i'_3$, it follows that j_2 may or may not be equal to j'_1 . Hence, we get the following four subcases.

	j_1	j_2	j_3	j'_1	j'_p	j'_3	Ties
1	-	-	-	-	-	-	0
2	-	х	-	х	-	-	1

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

3.1 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_2j'_1} < X_{pj'_p} > X_{i'_3j'_3})) = 0,$ **3.2** $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_2j_2} < X_{pj'_p} > X_{i'_3j'_3})) = \frac{7}{120} - \frac{1}{3!}\frac{1}{3} = \frac{1}{360},$ Lastly, multiplying 3.2 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(L_{i_1i_2i_3}, A_{i_2pi'_3}) = n_{i_1}n_{i_2}n_{i_3}n_pn_{i'_3}\left(\frac{1}{360}\right)$$

Case 4

Under Case 4, $i_1 \neq i'_1$, $i_2 \neq i'_2$ and $i_3 = i'_1$. For example, $Cov(L_{123}, A_{345})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, A_{i_{3}, p, i_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{i_{2}}} \sum_{j_{3}=1}^{n_{i_{3}}} I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), \sum_{j_{1}'=1}^{n_{i_{1}}} \sum_{j_{2}'=1}^{n_{i_{2}}} \sum_{j_{3}'=1}^{n_{i_{3}}} I(X_{i_{3}j_{1}'} < X_{pj_{p}'} > X_{i_{3}'j_{3}'})\right) = \sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{i_{2}}} \sum_{j_{1}'=1}^{n_{i_{2}}} \sum_{j_{2}'=1}^{n_{i_{3}}} \sum_{j_{1}'=1}^{n_{i_{2}}} \sum_{j_{2}'=1}^{n_{i_{3}}} Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{i_{3}j_{3}}), I(X_{i_{3}j_{1}'} < X_{pj_{p}'} > X_{i_{3}'j_{3}'})).$$

Now, since $i_1 \neq i'_1$, $i_2 \neq i'_2$ and $i_3 = i'_1$, it follows that j_3 may or may not be equal to j'_1 . Hence, we get the following four subcases.

	j_1	j_2	j_3	j'_1	j'_p	j'_3	Ties
1	-	-	-	-	-	-	0
2	-	-	x	х	-	-	1

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

4.1
$$Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_3j'_1} < X_{pj'_p} > X_{i'_3j'_3})) = 0,$$

4.2 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{i_3j_3}), I(X_{i_3j_3} < X_{pj'_p} > X_{i'_3j'_3})) = \frac{4}{120} - \frac{1}{3!}\frac{1}{3} = -\frac{1}{45},$

Lastly, multiplying 4.2 by the corresponding number of terms, and then summing,

leads to the desired result. That is,

$$Cov(L_{i_1i_2i_3}, A_{i_2pi'_3}) = n_{i_1}n_{i_2}n_{i_3}n_pn_{i'_3}\left(-\frac{1}{45}\right).$$

Case 5

Under Case 5, $i_1 \neq i'_1$, $i_2 \neq i'_2$ and $i_3 = p$. For example, $Cov(L_{124}, A_{345})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, A_{i'_{1}pi'_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j_{3}=1}^{n_{i_{3}}}I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{pj_{p}}), \sum_{j'_{1}=1}^{n_{i_{1}}}\sum_{j'_{2}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i'_{3}}}I(X_{i'_{1}j'_{1}} < X_{pj'_{p}} > X_{i'_{3}j'_{3}})\right) = \sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i_{2}}}Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{pj_{p}}), I(X_{i'_{1}j'_{1}} < X_{pj'_{p}} > X_{i'_{3}j'_{3}})).$$

Now, since $i_1 \neq i'_1$, $i_2 \neq i'_2$ and $i_3 = p$, it follows that j_3 may or may not be equal to j'_p . Hence, we get the following four subcases.

	j_1	j_2	j_3	j'_1	j'_p	j'_3	Ties
1	-	-	-	-	-	-	0
2	-	-	x	-	х	-	1

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

5.1
$$Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{pj_p}), I(X_{i_1j'_1} < X_{pj'_p} > X_{i'_3j'_3})) = 0,$$

5.2 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{pj_p}), I(X_{i_1j'_1} < X_{pj_p} > X_{i'_3j'_3})) = \frac{12}{120} - \frac{1}{3!}\frac{1}{3} = \frac{2}{45},$

Lastly, multiplying 5.2 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(L_{i_1i_2i_3}, A_{i'_1pi'_3}) = n_{i_1}n_{i_2}n_pn_{i'_1}n_{i'_3}\left(\frac{2}{45}\right).$$

Case 6

Under Case 6, $i_1 = i'_1$ and $i_3 = p$. For example, $Cov(L_{123}, A_{134})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, A_{i_{1}pi'_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j_{3}=1}^{n_{i_{3}}}I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{pj_{p}}), \sum_{j'_{1}=1}^{n_{i_{1}}}\sum_{j'_{2}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i'_{3}}}I(X_{i_{3}j'_{1}} < X_{pj'_{p}} > X_{i'_{3}j'_{3}})\right) = \sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j'_{1}=1}^{n_{i_{2}}}\sum_{j'_{2}=1}^{n_{i_{3}}}\sum_{j'_{1}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{i'_{3}}}Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{pj_{p}}), I(X_{i_{3}j'_{1}} < X_{pj'_{p}} > X_{i'_{3}j'_{3}})).$$

Now, since $i_1 = i'_1$ and $i_3 = p$., it follows that j_1 may or may not be equal to j'_1 and j_3 may or may not be equal to j_p . Hence, we get the following four subcases.

	j_1	j_2	j_3	j'_1	j'_p	j'_3	Ties
1	-	-	-	-	-	-	0
2	х	-	-	х	-	-	1
3	-	-	х	-	Х	-	1
4	х	-	х	x	х	-	2

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

6.1 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{pj_p}), I(X_{i_1j'_3} < X_{pj'_p} > X_{i'_3j'_3})) = 0,$ 6.2 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{pj_p}), I(X_{i_1j_1} < X_{p,j'_p} > X_{i'_3j'_3})) = \frac{9}{120} - \frac{1}{3!}\frac{1}{3} = \frac{7}{360},$ 6.3 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{pj_p}), I(X_{i_1j'_1} < X_{pj_p} > X_{i'_3j'_3})) = \frac{12}{120} - \frac{1}{3!}\frac{1}{3} = \frac{2}{45}$ 6.4 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{pj_p}), I(X_{i_1j_1} < X_{i_pj_p} > X_{i'_3j'_3})) = \frac{3}{24} - \frac{1}{3!}\frac{1}{3} = \frac{5}{72}$

Lastly, multiplying 6.2 through 6.4 by the corresponding number of terms, and then

summing, leads to the desired result. That is,

$$Cov(L_{i_1i_2i_3}, A_{i_1pi'_3}) = n_{i_1}n_{i_2}n_p(n_p - 1)n_{i'_3}\left(\frac{7}{360}\right) + n_{i_1}(n_{i_1} - 1)n_{i_2}n_pn_{i'_3}\left(\frac{2}{45}\right) + n_{i_1}n_{i_2}n_pn_{i'_3}\left(\frac{5}{72}\right).$$

Case 7

Under Case 7, $i_1 \neq i'_1$, $i_2 = i'_1$ and $i_3 = i'_3$. For example, $Cov(L_{123}, A_{234})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}i_{3}}, A_{i_{2}, p, i_{3}'}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{i_{2}}} \sum_{j_{3}=1}^{n_{i_{3}}} I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{pj_{p}}), \sum_{j_{1}'=1}^{n_{i_{1}}} \sum_{j_{2}'=1}^{n_{i_{2}}} \sum_{j_{3}'=1}^{n_{i_{3}}} I(X_{i_{2}j_{2}'} < X_{pj_{p}'}) > X_{i_{3}'j_{3}'})\right)$$
$$= \sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{i_{2}}} \sum_{j_{1}'=1}^{n_{i_{2}}} \sum_{j_{2}'=1}^{n_{i_{3}}} \sum_{j_{3}'=1}^{n_{i_{1}}} Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{pj_{p}}), I(X_{i_{2}j_{2}'} < X_{pj_{p}'}) > X_{i_{3}'j_{3}'})).$$

Now, since $i_2 = i'_1$ and $i_3 = p$., it follows that j_2 may or may not be equal to j'_1 and j_3 may or may not be equal to j_p . Hence, we get the following four subcases.

	j_1	j_2	j_3	j'_1	j'_p	j'_3	Ties
1	-	-	-	-	-	-	0
2	-	х	-	х	-	-	1
3	-	-	х	-	х	-	1
4	-	х	х	х	х	-	2

Recall that an x denotes a tied subscript. Next, using our previously derived covariance results we obtain the following:

7.1 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{pj_p}), I(X_{i_2j'_2} < X_{pj'_p} > X_{i'_3j'_3})) = 0,$ **7.2** $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{pj_p}), I(X_{i_2j_2} < X_{pj'_p} > X_{i'_3j'_3})) = \frac{7}{120} - \frac{1}{3!}\frac{1}{3} = \frac{1}{360},$

7.3
$$Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{pj_p}), I(X_{i_2j'_2} < X_{pj_p} > X_{i'_3j'_3})) = \frac{12}{120} - \frac{1}{3!}\frac{1}{3} = \frac{2}{45}$$

7.4 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{pj_p}), I(X_{i_2j_2} < X_{pj_p} > X_{i'_3j'_3})) = \frac{3}{24} - \frac{1}{3!}\frac{1}{3} = \frac{5}{72}$

Lastly, multiplying 7.2 through 7.4 by the corresponding number of terms, and then summing, leads to the desired result. That is,

$$Cov(L_{i_1i_2i_3}, A_{i_1pi'_3}) = n_{i_1}n_{i_2}n_p(np-1)n_{i'_3}\left(\frac{1}{360}\right) + n_{i_1}n_{i_2}(n_{i_2}-1)n_pn_{i'_3}\left(\frac{2}{45}\right) + n_{i_1}n_{i_2}n_pn_{i'_3}\left(\frac{5}{72}\right).$$

To summarize, the variance and covariance results for each of the 14 cases are given below. The covariance of T_L and T_A is obtained by simply summing these quantities according to equation (25).

Note that $i_1 < i_2 < i_3 \in T_L$ and $i'_1 < i'_p < i'_3 \in T_A$.

2 :
$$n_{i_1}n_{i_2}n_{i_3}n_pn_{i'_3}\left(\frac{7}{360}\right)$$

3 : $n_{i_1}n_{i_2}n_{i_3}n_pn_{i'_3}\left(\frac{1}{360}\right)$

$$4 : n_{i_1} n_{i_2} n_{i_3} n_p n_{i'_3} \left(-\frac{1}{45} \right)$$

5 :
$$n_{i_1} n_{i_2} n_p n_{i'_1} n_{i'_3} \left(\frac{2}{45}\right)$$

$$6 : n_{i_1} n_{i_2} n_p (n_p - 1) n_{i'_3} \left(\frac{7}{360}\right) + n_{i_1} (n_{i_1} - 1) n_{i_2} n_p n_{i'_3} \left(\frac{2}{45}\right) + n_{i_1} n_{i_2} n_p n_{i'_3} \left(\frac{5}{72}\right)$$

7 :
$$n_{i_1}n_{i_2}n_p(np-1)n_{i'_3}\left(\frac{1}{360}\right) + n_{i_1}n_{i_2}(n_{i_2}-1)n_pn_{i'_3}\left(\frac{2}{45}\right) + n_{i_1}n_{i_2}n_pn_{i'_3}\left(\frac{5}{72}\right)$$

With that said, after very extensive algebraic manipulation, the result for the covariance of T_L and T_A can be simplified for the balanced design (i.e. $n_1 = n_2 = \cdots = n_k = n$). It can be given by

$$Cov(T_L, T_A) = \frac{(k-p)}{360} \left\{ 48 \left(\begin{array}{c} p-1\\ 3 \end{array} \right) n^5 + \left(\begin{array}{c} p-1\\ 2 \end{array} \right) (40n^5 + 10n^4) \right\}$$

Covariance of T_L and T_R

Note first that

$$Cov(T_L, T_R) = Cov\left(\sum_{i \in S_1^p(3)} L_{i_1 i_2 i_3}, \sum_{i' \in S_p^k(3)} R_{i'_1 i'_2 i'_3}\right)$$
$$= \sum_{i \in S_1^p(3)} \sum_{i' \in S_p^k(3)} Cov(L_{i_1 i_2 i_3}, R_{i'_1 i'_2 i'_3}),$$
(26)

where $i_1 < i_2 < i_3$ in *i* and $i'_1 < i'_2 < i'_3$ in *i'*. In what follows we solve for $Cov(L_{i_1i_2i_3}, R_{i'_1i'_2i'_3})$ for the different cases of *i* and *i'*. The table below shows that there are only two cases.

	i_1	i_2	i_3	1	i'_1	i'_2	i'_3	Ties
1	-	-	-		-	-	-	0
2	-	-	x		x	-	-	1

For example, in case 2, $i_3 = i'_1 = p$ and all other subscripts are distinct. The covariances for each of these cases are now calculated.

Case 1

Under case 1, the covariance terms are equal to zero since there are no tied subscripts. That is, since there are six distinct groups, $L_{i_1i_2i_3}$ and $R_{i'_1i'_2i'_3}$ are independent.

Case 2

Under case 2, $i_3 = i'_1 = p$. For example, $Cov(L_{123}, R_{345})$ falls under this case. To begin, note that

$$Cov(L_{i_{1}i_{2}p}, R_{pi'_{2}i'_{3}}) = Cov\left(\sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j_{3}=1}^{n_{p}}I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{pj_{3}}), \sum_{j'_{1}=1}^{n_{p}}\sum_{j'_{2}=1}^{n_{i'_{2}}}\sum_{j'_{3}=1}^{n_{i'_{3}}}I(X_{pj'_{1}} > X_{i'_{2}j'_{2}} > X_{i'_{3}j'_{3}})\right) = \sum_{j_{1}=1}^{n_{i_{1}}}\sum_{j_{2}=1}^{n_{i_{2}}}\sum_{j'_{3}=1}^{n_{p}}\sum_{j'_{2}=1}^{n_{j}}\sum_{j'_{3}=1}^{n_{j'_{2}}}Cov(I(X_{i_{1}j_{1}} < X_{i_{2}j_{2}} < X_{pj_{3}}), I(X_{pj'_{1}} > X_{i'_{2}j'_{2}} > X_{i'_{3}j'_{3}})).$$

Now, since $i_3 = i'_1 = p$, it follow that j_3 may or may not be equal to j'_1 . Hence, we get the following two subcases.

	j_1	j_2	j_3	j'_1	j'_2	j'_3	Ties
1	-	-	-	-	-	-	0
2	-	-	x	x	-	-	1

One more, x denotes the tied subscript. Next, using our previously derived covariance results we obtain the following:

2.1
$$Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{pj_3}), I(X_{pj'_1} > X_{i'_2j'_2} > X_{i'_3j'_3})) = 0$$
 and
2.2 $Cov(I(X_{i_1j_1} < X_{i_2j_2} < X_{pj_3}), I(X_{pj_3} > X_{i'_2j'_2} > X_{i'_3j'_3})) = \frac{6}{120} - \frac{1}{3!} \frac{1}{3!} = \frac{1}{45}$

Lastly, multiplying 2.2 by the corresponding number of terms leads to the desired result. That is,

$$Cov(L_{i_1i_2p}, R_{pi'_2i'_3}) = n_{i_1}n_{i_2}n_p n_{i'_2}n_{i'_3}\left(\frac{1}{45}\right).$$

Hence, the covariance between T_L and T_R is obtained by simply substituting this value (and 0) back into (26). For the special case where the design is balance (i.e.

 $n_1 = n_2 = \cdots = n_k = n$) we obtain

$$Cov(T_L, T_R) = \binom{p-1}{2} \binom{k-p}{2} \left(\frac{n^5}{45}\right).$$

3.2.4. Asymptotic Distribution of T

This section begins by generalizing the idea of U-statistics to the case in which we have more than one random sample. Suppose that for $i = 1, 2, ..., k, X_{i1}, ..., X_{in_i}$, is an iid sample from F_i . In other words we have k random samples, each potentially from a different distribution. Recall, n_i is the sample size of the *ith* distribution. We may define the statistical functional;

$$\theta = E\phi(X_{11}, \dots, X_{1a_1}; X_{21}, \dots, X_{2a_2}; \dots; X_{k1}, \dots, X_{ka_k}).$$
(27)

Notice that the function in equation (27) has $a_1 + a_2 + \cdots + a_k$ arguments. The first a_1 of them can be permuted without changing the value of ϕ , the next a_2 of them can be permuted without changing the value of ϕ , etc. In other words, there are k distinct blocks of arguments of ϕ . In the case of T, $a_1 = a_2 = \cdots = a_k = 1$ (because we are taking one element of each sample at a time) in which case we obtain the U-statistic corresponding to the equation (27) as

$$U_N = \frac{1}{n_1 \cdots n_k} \sum_{j_1=1}^{n_1} \cdots \sum_{j_k=1}^{n_k} \phi(X_{1j_1}, \dots X_{kj_k}).$$
(28)

Theorem 3.4:

For $i=1, 2, \ldots, k$, consider

$$\phi_i(x) = E \{ \phi(X_{11}, \dots, X_{k1}) - \theta | X_{i1} = x \}, \text{and}$$
 (29)

$$\sigma_i^2 = Var\left(\phi_i\right). \tag{30}$$

Suppose that

$$E(\phi^2(X_{11},...,X_{k1})) < \infty \text{ and } \max_{1 \le i \le k} \sigma_i^2 > 0.$$

Furthermore, suppose that there exist constants $\lambda_1, \lambda_2, \ldots, \lambda_k$, in the interval (0,1) such that $n_i/N \to \lambda_i$ for all *i*. It therefore follows from Theorem 4.5.1 of Koroljuk and Borovskich, that

$$\frac{(U_N - \theta)}{\sqrt{Var(U_N)}} \to N(0, 1), \tag{31}$$

where N(0, 1) is the standard normal distribution.

Theorem 3.5

For i = 1, 2, ..., k, let $X_{i1}, X_{i2}, ..., X_{in_i}$ denote k independent random samples from distribution F_i . Let $S = \{(i_1, i_2, i_3) : 1 \le i_1 < i_2 < i_3 \le k\}$ and let $S_1 \subset S$ where $S_1 \ne \emptyset$. For $i \in S_1$, define

$$T_{i} = \sum_{j_{1}=1}^{n_{i_{1}}} \sum_{j_{2}=1}^{n_{i_{2}}} \sum_{j_{3}=1}^{n_{i_{3}}} t_{i}(X_{i_{1}}, X_{i_{2}}, X_{i_{3}}) \text{ and}$$
$$\mu_{i} = E(t_{i}(X_{i_{1}}, X_{i_{2}}, X_{i_{3}})).$$

Finally, let

$$T = \sum_{i \in S_1} T_i$$
 and $N = n_1 + n_2 + \dots + n_k$.

Assume the following:

A1 For $i \in S$, $t_i(X_{i_1}, X_{i_2}, X_{i_3})$ satisfies the kernel assumptions of the multi-sample U-statistic central limit theorem for 3 samples,

$\mathbf{A2}$

$$\lim_{N \to \infty} \frac{n_i}{N} = \lambda_i \in (0, 1) \text{ for } i \in \{1, 2, \dots, k\},\$$

 $\mathbf{A3}$

$$\lim_{N \to \infty} \frac{1}{N^5} V(T) = v \quad (>0),$$

 $\mathbf{A4}$

$$\phi(X_1, X_2, \dots, X_k) = \sum_{i \in S_1} \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} t_i(X_{i_1} X_{i_2} X_{i_3})$$

satisfies the kernel assumptions of the multi-sample U-statistic central limit theorem for k samples.

Then, under A1-A4,

$$Z = \frac{T - E(T)}{\sqrt{Var(T)}} \xrightarrow{D} N(0, 1).$$
(32)

Proof

Let $N = n_1 + n_2 + \dots + n_k$ and $N^* = n_1 n_2 \cdots n_k$. To begin, note that,

$$\begin{split} T &= \sum_{i \in S_1} T_i \\ &= \sum_{i \in S_1} \sum_{j_1=1}^{n_{1_1}} \sum_{j_2=1}^{n_{2_2}} \sum_{j_3=1}^{n_{1_3}} t_i(X_{i_1j_1}, X_{i_2j_2}, X_{i_3j_3}) \\ &= \sum_{i \in S_1} \frac{1}{n_{i_4} n_{i_5} \cdots n_{i_k}} \sum_{j_1=1}^{n_{1_1}} \sum_{j_2=1}^{n_{2_2}} \sum_{j_3=1}^{n_{1_3}} \sum_{j_1=1}^{n_{4_1}} \cdots \sum_{j_k=1}^{n_{i_k}} t_i(X_{i_1j_1}, X_{i_2j_2}, X_{i_3j_3}) \\ &= \frac{1}{N^*} \sum_{i \in S_1} n_{i_1} n_{i_2} n_{i_3} \sum_{j_1=1}^{n_{1_1}} \cdots \sum_{j_k=1}^{n_{i_k}} t_i(X_{i_1j_1}, X_{i_2j_2}, X_{i_3j_3}) \\ &= \frac{N^3}{N^*} \sum_{i \in S_1} \left(\frac{n_{i_1} n_{i_2} n_{i_3}}{N^3} \right) \sum_{j_1=1}^{n_{1_1}} \cdots \sum_{j_k=1}^{n_{i_k}} t_i(X_{i_1j_1}, X_{i_2j_2}, X_{i_3j_3}) \\ &= \frac{N^3}{N^*} \sum_{i \in S_1} \left(\frac{n_{i_1} n_{i_2} n_{i_3}}{N^3} - \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} + \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} \right) \left(\sum_{j_1=1}^{n_{1_1}} \cdots \sum_{j_k=1}^{n_{i_k}} t_i(X_{i_1j_1}, X_{i_2j_2}, X_{i_3j_3}) \right) \\ &= \frac{N^3}{N^*} \sum_{i \in S_1} \left(\frac{n_{i_1} n_{i_2} n_{i_3}}{N^3} - \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} \right) \sum_{j_1=1}^{n_{i_1}} \cdots \sum_{j_k=1}^{n_{i_k}} t_i(X_{i_1j_1}, X_{i_2j_2}, X_{i_3j_3}) + \\ &= \frac{N^3}{N^*} \sum_{i \in S_1} \left(\frac{n_{i_1} n_{i_2} n_{i_3}}{N^3} - \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} \right) \left(\frac{1}{n_{i_1} n_{i_2} n_{i_3}} \sum_{j_1=1}^{n_{i_1}} \sum_{i_2 \in S_1} \sum_{j_3=3}^{n_{i_1}} t_i(X_{i_1j_1}, X_{i_2j_2}, X_{i_3j_3}) \right) \\ &= N^3 \sum_{i \in S_1} \left(\frac{n_{i_1} n_{i_2} n_{i_3}}{N^3} - \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} \right) \left(\frac{1}{n_{i_1} n_{i_2} n_{i_3}} \sum_{j_1=1}^{n_{i_2}} \sum_{j_3=3}^{n_{i_3}} t_i(X_{i_1j_1}, X_{i_2j_2}, X_{i_3j_3}) \right) \\ &= N^3 \sum_{i \in S_1} \left(\frac{n_{i_1} n_{i_2} n_{i_3}}{N^3} - \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} \right) \left(\frac{1}{n_{i_1} n_{i_2} n_{i_3}} \sum_{j_1=1}^{n_{i_2}} \sum_{j_3=3}^{n_{i_3}} t_i(X_{i_1j_1}, X_{i_2j_2}, X_{i_3j_3}) \right) \right) + \\ &= \frac{N^3}{N^*} \sum_{j_1=1}^{n_{i_1}} \cdots \sum_{j_k=1}^{n_{i_k}} t_i(X_{i_1j_1}, X_{i_2j_2}, \dots, X_{kj_k}) \right), \end{split}$$

where, for the second term, we basically have

$$t_i(X_{1j_1}, X_{2j_2}, \dots, X_{kj_k}) = t_i(X_{i_1j_1}, X_{i_2j_2}, X_{i_3j_3}).$$

$$= N^{3}\left(\sum_{i\in S_{1}}\left(\frac{n_{i_{1}}n_{i_{2}}n_{i_{3}}}{N^{3}} - \lambda_{i_{1}}\lambda_{i_{2}}\lambda_{i_{3}}\right)\overline{T_{i}}\right) + N^{3}\left(\frac{1}{N^{*}}\sum_{j_{1}=1}^{n_{i_{1}}}\cdots\sum_{j_{k}=1}^{n_{i_{k}}}\phi(X_{1j_{1}}, X_{2j_{2}}, \dots, X_{kj_{k}})\right),$$

where

$$\phi(X_1, X_2, \dots, X_k) = \sum_{i \in S_1} \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} t_i(X_{i_1}, X_{i_2}, X_{i_3})$$

$$= N^3(T_1 + \overline{T_2}).$$

Next, let

$$T_N = \frac{1}{N^{3-\frac{1}{2}}}(T - E(T))$$

$$= \frac{1}{N^{3-\frac{1}{2}}} N^3 (T_1 + \overline{T_2} - E(T_1) - E(\overline{T_2}))$$

= $\sqrt{N} (T_1 - E(T_1)) + \sqrt{N} (\overline{T_2} - E(\overline{T_2}))$
= $T_{N1} + T_{N2}.$

It follows that,

$$Z = \frac{T - E(T)}{\sqrt{V(T)}}$$

= $\frac{\frac{1}{N^{3-\frac{1}{2}}}(T - E(T))}{\frac{1}{N^{3-\frac{1}{2}}}\sqrt{V(T)}}$
= $\frac{T_{N1} + T_{N2}}{\sqrt{\frac{1}{N^5}V(T)}}$
= $\frac{T_{N1}}{\sqrt{\frac{1}{N^5}V(T)}} + \frac{T_{N2}}{\sqrt{\frac{1}{N^5}V(T)}}$
= $Z_1 + Z_2.$

Consider Z_1 first.

$$Z_{1} = \frac{T_{N1}}{\sqrt{\frac{1}{N^{5}}V(T)}}$$

$$= \frac{\sqrt{N}(T_{1} - E(T_{1}))}{\sqrt{\frac{1}{N^{5}}V(T)}}$$

$$= \frac{\sum_{i \in S_{1}} \left(\frac{n_{i_{1}}n_{i_{2}}n_{i_{3}}}{N^{3}} - \lambda_{i_{1}}\lambda_{i_{2}}\lambda_{i_{3}}\right) \left(\sqrt{\frac{N}{N_{3i}}}\right) \left(\sqrt{N_{3i}}(\overline{T_{i}} - E(\overline{T_{i}}))\right)}{\sqrt{\frac{1}{N^{5}}V(T)}},$$

where

=

$$N_{3i} = n_{i_1} + n_{i_2} + n_{i_3}$$
$$\frac{\sum_{i \in S_1} a_i b_i c_i}{\sqrt{\frac{1}{N^5} V(T)}}.$$

By A2,
$$\lim_{N \to \infty} a_i = 0$$
.
Also by A2, $\lim_{N \to \infty} b_i = \lim_{N \to \infty} \sqrt{\frac{N}{n_{i_1} + n_{i_2} + n_{i_3}}} = \sqrt{\frac{1}{\lambda_{i_1} + \lambda_{i_2} + \lambda_{i_3}}} \ (<\infty) \ \forall i$.
Next, note that $\sqrt{N_{3i}}(\overline{T_i} - E(\overline{T_i})) = \sqrt{N_{3i}V(\overline{T_i})} \left(\frac{\overline{T_i} - \mu_i}{\sqrt{V(\overline{T_i})}}\right) = 0_p(1) \forall i$ by A1

That is $\overline{T_i}$ satisfies the assumptions corresponding to the multi-sample U-statistic central limit theorem. Thus,

$$\frac{\overline{T_i} - \mu_i}{\sqrt{V(\overline{T_i})}} \xrightarrow{D} N(0, 1) \text{ and } N_{3i}V(\overline{T_i}) \to \sum_{l=1}^3 \frac{1}{\lambda_{i_l}} \xi_{i_l},$$

where this quantity is essentially the variance of the corresponding projection. Hence, the numerator of Z_1 is $o_p(1)$. It now follows from A3, that Z_1 is also $o_p(1)$. Consider Z_2 next.

$$Z_{2} = \frac{T_{N2}}{\sqrt{\frac{1}{N^{5}}V(T)}}$$

$$= \frac{\sqrt{N}(\overline{T_{2}} - E(\overline{T_{2}}))}{\sqrt{\frac{1}{N^{5}}V(T)}}$$

$$= \left(\frac{\sqrt{N}\sqrt{V(\overline{T_{2}})}}{\sqrt{\frac{1}{N^{5}}V(T)}}\right) \left(\frac{\overline{T_{2}} - E(\overline{T_{2}})}{\sqrt{V(\overline{T_{2}})}}\right)$$

$$= \left(\frac{\sqrt{NV(\overline{T_{2}})}}{\sqrt{\frac{1}{N^{5}}V(T)}}\right) \left(\frac{\overline{T_{2}} - E(\overline{T_{2}})}{\sqrt{V(\overline{T_{2}})}}\right).$$
Now,
$$\frac{\overline{T_{2}} - E(\overline{T_{2}})}{\sqrt{V(\overline{T_{2}})}} \xrightarrow{D} N(0, 1) \text{ by A4.}$$

Thus, if we can show

$$\frac{NV(\overline{T_2})}{\frac{1}{N^5}V(T)} \to 1,$$

then it follows that $Z_2 \xrightarrow{D} N(0,1)$. It will then follow from the result on Z_1 that $Z = Z_1 + Z_2 \xrightarrow{D} N(0,1)$.

Now,

$$\frac{NV(\overline{T_2})}{\frac{1}{N^5}V(T)} = \frac{V(\sqrt{N}\overline{T_2})}{V(\frac{1}{N^{\frac{5}{2}}}T)} = \frac{V(\sqrt{N}(\overline{T_2} - E(\overline{T_2})))}{V(\frac{1}{N^{\frac{5}{2}}}(T - E(T)))} = \frac{V(T_{N2})}{V(T_N)} = \frac{V(T_N - T_{N_1})}{V(T_N)}$$

$$= \frac{V(T_N) + V(T_{N1}) + -2Cov(T_N, T_{N1})}{V(T_N)} = 1 + \frac{V(T_{N1})}{V(T_N)} - \frac{2Cov(T_N, T_{N1})}{V(T_N)}.$$

$$0 \leq \left| \frac{-2Cov(T_N, T_{N_1})}{V(T_N)} \right| = \frac{2 |Cov(T_N, T_{N_1})|}{V(T_N)} \leq \frac{2\sqrt{V(T_N)V(T_{N_1})}}{V(T_N)}$$

By A3, we know that ;

$$V(T_N) = \frac{1}{N^5} V(T) \to \upsilon \ (>0).$$

Hence, if we can show $V(T_{N1}) \to 0$, it will follow that

$$\frac{2Cov(T_N, T_{N1})}{V(T_N)}$$
 and $\frac{V(T_{N1})}{V(T_N)}$

both go to 0 as $N \to \infty$. This in turn implies that $\frac{NV(\overline{T_2})}{\frac{1}{N^5}V(T)} \to 1$ as $N \to \infty$.

With that said, note that,

$$V(T_{N1}) = V(\sqrt{N}(T_1 - E(T_1)))$$

$$= V\left(\sum_{i\in S_1} \underbrace{\left(\frac{n_{i_1}n_{i_2}n_{i_3}}{N^3} - \lambda_{i_1}\lambda_{i_2}\lambda_{i_3}\right)}_{a_i}\underbrace{\sqrt{\frac{N}{N_{3i}}}}_{b_i}\underbrace{\sqrt{N_{3i}(\overline{T_i} - E(\overline{T_i}))}}_{c_i}\right)$$
$$= V\left(\sum_{i\in S_1} a_i b_i c_i\right)$$

$$= Cov\left(\sum_{i\in S_1} a_i b_i c_i, \sum_{j\in S_1} a_j b_j c_j\right)$$
$$= \sum_{i\in S_1} \sum_{j\in S_1} Cov\left(a_i b_i c_i, a_j b_j c_j\right)$$
$$= \sum_{i\in S_1} \sum_{j\in S_1} a_i a_j b_i b_j Cov(c_i, c_j)$$
$$\leq \sum_{i\in S_1} \sum_{j\in S_1} |a_i a_j b_i b_j| \sqrt{V(c_i)V(c_j)}$$

Now, we have already assumed that t_i satisfies the assumptions of the multisample U-statistic central limit theorem (i.e A1). Hence, $V(c_i) \to v_i$ ($< \infty$), for some v_i . Furthermore, $a_i \to 0 \ \forall i$ and $b_i \to \beta_i$ ($< \infty$). Since $\sum_{i \in S_1} \sum_{j \in S_1} i$ is a finite sum, it follows that $V(T_{N1}) \to 0$. This completes the proof of the theorem.

Theorem : Let T be the test statistic defined in (12) . Then, under H_0 ,

$$Z = \frac{T - E[T]}{\sqrt{V(T)}} \xrightarrow{D} N(0, 1).$$

We will now apply the conditions A1 to A4 to T.

Proof of Asymptotic Distribution of T

To begin, we show that T belongs to the class of statistics defined in Theorem 3.5. To that end, let S_1 denote the set of tri-tuplets corresponding to the terms in T. That is, $S_1 = \{i : i = (i_1, i_2, i_3), i \in S_1^p(3) \cup (S_1^{p-1}(1) \times \{p\} \times S_{p+1}^k(1)) \cup S_p^k(3)\}$.

Next, for $i \in S_1$, let

$$T_i = \sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_{i_2}} \sum_{j_3=1}^{n_{i_3}} t_i(X_{i_1j_1}, X_{i_2j_2}, X_{i_3j_3}),$$

where

$$t_i(X_{i_1}, X_{i_2}, X_{i_3}) = \begin{cases} I(X_{i_1} < X_{i_2} < X_{i_3}), \ i \in S_1^p(3) \\ I(X_{i_1} < X_{i_2} > X_{i_3}), \ i \in S_1^{p-1}(1) \times \{p\} \times S_{p+1}^k(1) \\ I(X_{i_1} > X_{i_2} > X_{i_3}), \ i \in S_p^k(3). \end{cases}$$

Thus, the test statistic can be written as

$$T = \sum_{i \in S_1} T_i = \sum_{i \in S_1} \sum_{j_1=1}^{n_{i_1}} \sum_{j_2=1}^{n_{i_2}} \sum_{j_3=1}^{n_{i_3}} \phi_i(X_{i_1j_1}, X_{i_2j_2}, X_{i_3j_3}).$$

In addition, note that under H_0

$$E[T] = \theta = \sum_{i \in S_1} E(T_i) = \sum_{i \in S_1} \sum_{j_1=1}^{n_{i_1}} \sum_{j_2=2}^{n_{i_2}} \sum_{j_3=3}^{n_{i_3}} \theta_i = \sum_{i \in S_1} n_{i_1} n_{i_2} n_{i_3} \theta_i \text{ where}$$
$$\theta_i = \begin{cases} \frac{1}{6}, \ i \in S_1^p(3) \\ \frac{1}{3}, \ i \in S_1^{p-1}(1) \times \{p\} \times S_{p+1}^k(1) \\ \frac{1}{6}, \ i \in S_p^k(3). \end{cases}$$

Thus, to prove the results of this theorem it suffices to show that the conditions of Theorem 3.5 are satisfied.

We begin with condition A2.

It has already been assumed that
$$\frac{n_i}{N} \to \lambda_i \in (0, 1)$$
 as $N \to \infty$.

Therefore, A2 is automatically satisfied.

Next, consider condition A1. Since t_i is an indicator function for all $i \in S_1$, it follows immediately that $E[t_i^2] < \infty \forall i \in S_1$. Now let

$$\begin{split} f_1(x) &= E\left(I(X_{i_1} < X_{i_2} < X_{i_3})|X_{i_1} = x\right) - \frac{1}{6} = \frac{1}{2}(1 - F(x))^2 - \frac{1}{6} \\ &= \frac{1}{2}F^2(x) - F(x) + \frac{1}{3}, \\ f_2(x) &= E\left(I(X_{i_1} < X_{i_2} < X_{i_3})|X_{i_2} = x\right) - \frac{1}{6} = (1 - F(x))F(x) - \frac{1}{6} \\ &= -F^2(x) + F(x) - \frac{1}{6}, \\ f_3(x) &= E\left(I(X_{i_1} < X_{i_2} < X_{i_3})|X_{i_3} = x\right) - \frac{1}{6} = \frac{1}{2}F^2(x) - \frac{1}{6} \\ &= \frac{1}{2}F^2(x) + 0F(x) - \frac{1}{6}, \\ f_4(x) &= E\left(I(X_{i_1} < X_{i_2} > X_{i_3})|X_{i_1} = x\right) - \frac{1}{3} = \frac{1}{2}(1 - F^2(x)) - \frac{1}{3} \\ &= -\frac{1}{2}F^2(x) + 0F(x) + \frac{1}{6}, \end{split}$$

$$\begin{split} f_5(x) &= E\left(I(X_{i_1} < X_{i_2} > X_{i_3})|X_{i_2} = x\right) - \frac{1}{3} = F^2(x) - \frac{1}{3} \\ &= F^2(x) + 0F(x) - \frac{1}{3}, \\ f_6(x) &= E\left(I(X_{i_1} < X_{i_2} > X_{i_3})|X_{i_3} = x\right) - \frac{1}{3} = \frac{1}{2}(1 - F^2(x)) - \frac{1}{3} \\ &= -\frac{1}{2}F^2(x) + 0F(x) + \frac{1}{6}, \\ f_7(x) &= E\left(I(X_{i_1} > X_{i_2} > X_{i_3})|X_{i_1} = x\right) - \frac{1}{6} = \frac{1}{2}F^2(x) - \frac{1}{6} \\ &= \frac{1}{2}F^2(x) + 0F(x) - \frac{1}{6}, \\ f_8(x) &= E\left(I(X_{i_1} > X_{i_2} > X_{i_3})|X_{i_2} = x\right) - \frac{1}{6} = (1 - F(x))F(x) - \frac{1}{6} \\ &= -F^2(x) + F(x) - \frac{1}{6}, \\ f_9(x) &= E\left(I(X_{i_1} > X_{i_2} > X_{i_3})|X_{i_3} = x\right) - \frac{1}{6} = \frac{1}{2}(1 - F(x))^2 - \frac{1}{6} \\ &= \frac{1}{2}F^2(x) - F(x) + \frac{1}{3}. \end{split}$$

It is obvious from these results that $f_i(x)$ takes the quadratic form $a_i F^2(x) + b_i F(x) + c_i$. Furthermore there are no cases for which $a_i = b_i = 0$. It follows that $V(f_i(x)) > 0$ for all *i*. Hence, the maximum variance condition corresponding to the multi-sample

U-statistic theorem is satisfied in all cases. This shows that A1 is satisfied. Condition A1 is thus satisfied.

Next, consider condition A4. This condition requires us to show that the conditions of the multi-sample U-statistic theorem are satisfied for the kernel,

$$t(X_1, X_2, \dots, X_k) = \sum_{i \in S_1} \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} t_i(X_{i_1}, X_{i_2}, X_{i_3}).$$

Once more, t is just a linear combination of indicator functions. Hence, it follows that $E[t^2] < \infty$. To show that the maximum variance condition is satisfied we consider the following cases: $T = T_R$, $T = T_A + T_R$, $T = T_L + T_A + T_R$, $T = T_L + T_A$, and $T = T_L$. Actually, it turns out that the last two cases follow from the first two cases. Hence, only the first three cases need to be considered. The derivations are similar for all three cases, so we only show the details corresponding to $T = T_A + T_R$. To this end, we consider

$$\begin{split} f(x) &= E\left[t(X_1, X_2, \dots, X_k) - E[t] | X_1 = x\right] \\ &= E\left[\sum_{i \in S_1} (\lambda_{i_1} \lambda_{i_2} \lambda_{i_3} t_i(X_{i_1}, X_{i_2}, X_{i_3}) - \theta_i) | X_1 = x\right] \\ &= \sum_{i \in S_1} \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} \left(-\frac{1}{2} F^2(x) + 0F(x) + \frac{1}{6} \right) \\ &= \left(-\frac{1}{2} \sum_{i \in S_{11}} (\lambda_{i_1} \lambda_{i_2} \lambda_{i_3}) F^2(x) + \left(\frac{1}{6} \sum_{i \in S_{11}} (\lambda_{i_1} \lambda_{i_2} \lambda_{i_3}) \right) \right) \\ &= aF^2(x) + bF(x) + c \ (say), \end{split}$$

where S_{11} , is the subset of S_1 , where $1 \in i$ and the terms correspond to the T_A only. That is, the conditional expectations are 0 for the T_R terms. Once more, Since $\lambda_i \in (0,1) \forall i \text{ and } f(x) \text{ has the form } aF^2(x) + bF(x) + c$, where a and b are not both equal to 0, it follows that V(f(x)) > 0. Hence, the "maximum varianc" condition is satisfied for this case. As previously mentioned, the other remaining cases are argued in a similar fashion.

Lastly, we show condition A3. The variance of the general case of T can be used to prove that

$$\frac{1}{N^5}V(T) \quad \to \quad K > 0.$$

Recall that,

$$\frac{1}{N^5}V(T) = \frac{1}{N^5}(V(T_L) + V(T_A) + V(T_A) + 2Cov(T_L, T_A) + 2Cov(T_A, T_R) + 2Cov(T_L, T_R))$$

Consider
$$V(T_L)$$
 first. As $N \to \infty$,
 $\frac{1}{N^5} Var(T_L) \to \frac{2}{360} (39\lambda_{l_1} + \lambda_{l_2} + \lambda_{l_3})$

where

$$\lambda_{l_1} = \sum_{i \in S_1^p(5)} \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} \lambda_{i_4} \lambda_{i_5}$$
$$\lambda_{l_2} = \sum_{i \in S_1^p(4)} \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} \lambda_{i_4} (9(\lambda_{i_1} + \lambda_{i_4}) + 15(\lambda_{i_2} + \lambda_{i_3}))$$

$$\lambda_{l_3} = \sum_{i \in S_1^p(3)} \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} (4\lambda_{i_1}\lambda_{i_2} + 4\lambda_{i_2}\lambda_{i_3} + \lambda_{i_1}\lambda_{i_3})$$

where $\lambda_{l_1}, \lambda_{l_2}$ and λ_{l_3} are all positive constants.
Therefore,

$$\frac{1}{N^5}V(T_L) \quad \to \quad K_L > 0.$$

Consider $V(T_R)$ next. As $N \to \infty$, $\frac{1}{N^5} Var(T_R) \to \frac{2}{360} (39\lambda_{r_1} + \lambda_{r_2} + \lambda_{r_3})$

where

$$\lambda_{r_1} = \sum_{i \in S_p^k(5)} \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} \lambda_{i_4} \lambda_{i_5}$$

$$\lambda_{r_2} = \sum_{i \in S_p^k(4)} \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} \lambda_{i_4} (9(\lambda_{i_1} + \lambda_{i_4}) + 15(\lambda_{i_2} + \lambda_{i_3}))$$

$$\lambda_{r_3} = \sum_{i \in S_p^k(3)} \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} (4\lambda_{i_1}\lambda_{i_2} + 4\lambda_{i_2}\lambda_{i_3} + \lambda_{i_1}\lambda_{i_3})$$

where $\lambda_{r_1}, \lambda_{r_2}$ and λ_{r_3} are all positive constants.

Therefore,

$$\frac{1}{N^5}V(T_R) \quad \to \quad K_R > 0.$$

Next, consider $V(T_A)$ as $N \to \infty$. Here,

$$\frac{1}{N^5}V(T_A) \rightarrow \frac{1}{45} \left(\lambda_{i_1}^2 \lambda_p^2 \lambda_{i_3} + \lambda_{i_1} \lambda_p^2 \lambda_{i_3}^2 + \lambda_{i_1}^2 \lambda_p \lambda_{i_3}^2\right)$$

where λ_{i_1}, λ_p and λ_{i_3} are all positive constants.
Therefore, $\frac{1}{N^5}V(T_A) \rightarrow K_A > 0$

Next, consider $Cov(T_L, T_A)$.

$$\frac{1}{N^5} Cov(T_L, T_A) \to \frac{1}{360} (48\lambda_{b_1} + 8\lambda_{b_2} + 16\lambda_{b_3} + 16\lambda_{b_4})$$

where

$$\lambda_{b_1} = \sum_{i \in S_1^{p-1}(3)} \sum_{i'=p+1}^k \lambda_{i_1} \lambda_{i_2} \lambda_{i_3} \lambda_p \lambda_{i'_3}$$

$$\lambda_{b_2} = \sum_{i \in S_1^{p-1}(2)} \sum_{i'=p+1}^k \lambda_{i_1} \lambda_{i_2} \lambda_p^2 \lambda_{i'_3}$$

$$\lambda_{b_3} = \sum_{i \in S_1^{p-1}(2)} \sum_{i'=p+1}^k \lambda_{i_1}^2 \lambda_{i_2} \lambda_p \lambda_{i'_3}$$

$$\lambda_{b_4} = \sum_{i \in S_1^{p-1}(2)} \sum_{i'=p+1}^k \lambda_{i_1} \lambda_{i_2}^2 \lambda_p \lambda_{i'_3}$$

where $\lambda_{b_1}, \lambda_{b_2}, \lambda_{b_3}$ and λ_{b_4} are all positive constants. Therefore, $\frac{1}{N^5} Cov(T_L, T_A) \to K_{LA} > 0$

Next, consider $Cov(T_A, T_R)$.

$$\frac{1}{N^5} Cov(T_A, T_R) \rightarrow \frac{1}{360} (48\lambda_{c_1} + 8\lambda_{c_2} + 16\lambda_{c_3} + 16\lambda_{c_4})$$

where

$$\begin{split} \lambda_{c_1} &= \sum_{i=1}^{p-1} \sum_{i \in S_{p+1}^k(3)} \lambda_{i_1} \lambda_p \lambda_{i'_1} \lambda_{i'_2} \lambda_{i'_3} \\ \lambda_{c_2} &= \sum_{i=1}^{p-1} \sum_{i \in S_{p+1}^k(2)} \lambda_{i_1} \lambda_p^2 \lambda_{i'_2} \lambda_{i'_3} \\ \lambda_{c_3} &= \sum_{i=1}^{p-1} \sum_{i \in S_{p+1}^k(2)} \lambda_{i_1} \lambda_p \lambda_{i'_2} \lambda_{i'_3}^2 \\ \lambda_{c_4} &= \sum_{i=1}^{p-1} \sum_{i \in S_{p+1}^k(2)} \lambda_{i_1} \lambda_p \lambda_{i'_2}^2 \lambda_{i'_3} \\ & \text{where } \lambda_{c_1}, \lambda_{c_2}, \lambda_{c_3} \text{ and } \lambda_{c_4} \text{ are all positive constants.} \\ & \text{Therefore, } \frac{1}{N^5} Cov(T_A, T_R) \to K_{AR} > 0. \end{split}$$

Lastly, consider
$$Cov(T_L, T_R)$$
.

$$\frac{1}{N^5} Cov(T_R, T_L) \quad \to \quad \sum_{i \in S_1^p(3)} \sum_{i' \in S_p^k(3)} \lambda_{i_1} \lambda_{i_2} \lambda_{i_p} \lambda_{i'_2} \lambda_{i'_3} \frac{1}{45} \text{ for } i_3 = i'_1 = i_p.$$

Therefore,

$$\frac{1}{N^5}Cov(T_L, T_R) \quad \to \quad K_{LR} > 0.$$

Since all the components of the variance of T converge to a positive constant as $N \to \infty$, we can therefore conclude that condition A3 holds. This completes the proof of the theorem.

CHAPTER 4. A FINITE SAMPLE SIMULATION STUDY

4.1. Study Design

This chapter presents the results of a finite sample simulation study which compares the estimated powers of seven tests; namely, the new test being proposed in this dissertation (LAR), Mack-Wolfe's test (MW), the test proposed by Salman (SAL), Bhat's test, two tests proposed by Hettmansperger and Norton (for one equally spaced location parameters (HNEQ) and the optimal test (HNOPT)) and the Kruskal-Wallis test.

The simulation study focused around location parameters. Thus the model is given by $X_{ij} = \mu_i + \epsilon_{ij}$, where ϵ_{ij} are IID according to some continuous CDF F and μ_i is a location parameter. Note that μ_i does not necessarily represent the mean of X_{ij} . For the exponential distribution, μ_i represents a scale parameter. The null hypothesis for all the tests is that of equal population location parameters as defined in equation (11). The alternative hypothesis being tested by LAR, MW, SAI, Bhat, HNEQ and HNOPT is the umbrella hypothesis in Equation (3), while the alternative hypothesis being tested by the KW test is differences in group means. All tests are based on a significance level of $\alpha = 0.05$. The estimated power values (i.e. the proportion of times H_0 is rejected) are derived from 10,000 simulations. The relative powers were studied under the null and location shift alternatives. The study considered two different distributions, namely, the normal and exponential distributions. The simulation study also requires values for $k; n_1, n_2, \ldots, n_k; \mu_1, \mu_2, \ldots, \mu_k$. Theoretically, there is an infinite number of k, sample size, location parameter, and distribution configurations. This particular simulation study considered k = 3, 4, 5, 6 and sample sizes for the k groups were chosen for balanced designs and randomly (with replacement from $1, 2, \ldots, 25$) for the unbalanced design. The location configurations were chosen to reflect either

an umbrella patterns or a monotone trend. The simulation study investigated equally and unequally spaced location parameters. The study also looked at the effect of the wideness of the space between location parameters.

4.2. Simulation Results

4.2.1. Simulating under $N(\mu, 1)$

Equal variances are assumed for the results in Tables 10, 12, 14, 15 and 16. Table 10 shows the estimated Type I error rates. Notice that the table does not contain the HNOPT test. The reason being $c_i = c \forall i$ under H_o . This causes the HNOPT test, Equation (10) to be degenerate at zero under the null hypothesis. With 10,000 simulations and $\alpha = 0.05$, we see that each test in Table 10 with the exception of LAR and SAL which are slightly liberal, exhibits a power of approximately 0.05. Consequently, the tests: MW, Bhat, and HNEQ are equivalent in terms of the Type I error rates. KW is most conservative compared to all the tests. Figure 5 shows the distribution of T when simulated for three groups where $n_1 = n_2 = n_3$. It can be seen from Figure 5 that the distribution of T is right skewed which explains the reason for LAR being liberal.

4.2.2. Simulating under $N(\mu_i, 1)$

Recall from chapter 1 that the SAL test is a special case of the LAR test when k = 3 and p = 2. Power estimates of the LAR test and SAL test will be the same under this circumstance. Bhat's test also becomes a special case of the MW test when k = 3 and p = 2. Thus power estimates of MW test and Bhat test will be the same under this condition. The HNEQ and HNOPT are exactly the same test when the spacing of the location parameter between the groups are equal and will yield the same power estimates under this condition.

Terpstra *et. al.* (2011) note that the HNOPT test can be viewed as a benchmark for comparison purposes. This is because the HNOPT requires the proper specification of the spacings between location parameters, which we know in this context. This explains why the HNOPT test is typically the most powerful test among the seven tests being considered. However the power estimates of the other six tests are comparable.

The simulation study examined power estimates for a range of scenarios. The outcome of the simulation study depicted some differences in power under certain scenarios. Generally, the power estimates of all the tests increased with $\mu_{i+1} - \mu_i$ (left of peak) or $\mu_i - \mu_{i+1}$ (right of peak) and k. The power estimates were always close to 1 for any $\mu_{i+1} - \mu_i > \sigma^2$ (left of peak) or $\mu_i - \mu_{i+1} > \sigma^2$ (right of peak). The LAR generally performed better than all the other tests when the peak of the umbrella was very shallow, i.e. when the differences in location parameters between adjacent groups is very small. The study also showed that when the differences between the location parameters of adjacent groups are all less than σ^2 , the LAR performed far better than all the other tests including the HNOPT at small sample sizes and small k. The power estimates of the LAR test were higher than those of the KW test for almost every case. There were no evident differences in the power estimates of the balanced and unbalanced cases.

One of the methods that is proposed to correct the liberal nature of the test statistic is the gamma approximation .

The shape parameter of T is given by
$$\frac{\mu^2}{\sigma^2}$$

while the scale parameter is given by $\frac{\sigma^2}{\mu}$.

Figure 5: Graph Showing Density of T

After the gamma approximation, simulation results under the null distribution showed T as conservative. These results are shown in table 11.

Lloyd (2005) also states that it is naive to compare power values of a liberal test to that of a conservative test. Since the LAR and SAL are liberal while the other tests are conservative, it is there not fair in this lines to compare them. Lloyd (2005) proposed methods for adjusting for size in order to achieve a fair comparison of power estimates between liberal and conservative tests. New power estimates that are adjusted for size were computed using the original simulated power values. The adjusted power is given by;

$$R(\delta) = \Phi \left(\Phi^{-1}(\beta) - \Phi^{-1}(\alpha) + \Phi(\alpha^*) \right)$$

where

 β = the estimated power value, α = the simulated power under the null, α^* = the α - level used in simulation.

Table 13 and Table 17 show the estimates of power values adjusted for size for the normal and exponential distributions respectively. After adjusting for size, LAR still generally performed better than the other tests for small differences between the groups and for cases where there is a gradual increases and then a sudden sharp increase toward the peak. Contrary to the results of the raw power values, LAR did not perform better for equally spaced location parameters.

	ΚW	0.0000	0.0092	0.0105	0.0441	0.0490	0.0444	0.0379	0.0304	0.0477	0.0451	0.0369	0.0461	0.0471	0.0373	0.0398	0.0285	0.0352	0.0337	0.0457	0.0480	0.0505	0.0425	0.0451	0.0477	0.0466	0.0456	0.0462	0.0423	0.0454
uc	HNEQ	0.0697	0.0462	0.0467	0.0480	0.0484	0.0510	0.0378	0.0523	0.0483	0.0470	0.0511	0.0511	0.0494	0.0513	0.0497	0.0496	0.0538	0.0490	0.0498	0.0508	0.0526	0.0500	0.0438	0.0500	0.0488	0.0481	0.0490	0.0511	0.0486
ISULIDUUI	Bhat	0.0697	0.0462	0.0467	0.0480	0.0484	0.0510	0.0378	0.0589	0.0509	0.0477	0.0415	0.0508	0.0474	0.0451	0.0478	0.0416	0.0512	0.0561	0.0526	0.0530	0.0473	0.0500	0.0443	0.0499	0.0513	0.0493	0.0494	0.0511	0.0464
e inuit d	SAL	0.0697	0.0569	0.0581	0.0661	0.0581	0.0597	0.0634	0.0639	0.0563	0.0561	0.0588	0.0565	0.0560	0.0610	0.0581	0.0610	0.0577	0.0600	0.0605	0.0593	0.0551	0.0573	0.0536	0.0554	0.0585	0.0531	0.0522	NA	NA
inder tne	МW	0.0697	0.0462	0.0467	0.0480	0.0484	0.0510	0.0378	0.0589	0.0509	0.0477	0.0488	0.0522	0.0477	0.0497	0.0462	0.0491	0.0485	0.0507	0.0493	0.0493	0.0510	0.0500	0.0443	0.0470	0.0509	0.0475	0.0488	0.0520	0.0492
= 3, 4, 3 U	LAR	0.0697	0.0569	0.0581	0.0661	0.0581	0.0597	0.0634	0.0639	0.0563	0.0561	0.0621	0.0573	0.0557	0.0604	0.0559	0.0627	0.0586	0.0609	0.0603	0.0592	0.0557	0.0573	0.0536	0.0557	0.0578	0.0551	0.0532	0.0643	0.0555
IOF $\mathcal{K} =$	Peak	2	2	2	2	2	2	2	2	2	2	2	2	2	റ	co Co	2	2	co co	co	4	co Co	2	2	2	c c	e S	c,	ы	ۍ ا
SVelS	μ_5																0	0	0	0	0	0					0	0	0	0
αF	μ_4											0	0	0	0	0	0	0	0	0	0	0			0		0	0	0	0
ated	μ_3	0	°	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SUIM	μ_2	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ц. П.	μ_1	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DIE I	n_5																4	ъ	ъ	10	10	15					15	25	15	15
Тa	n_4											ъ	10	15	ъ	6	4	ы	ы	10	10	15			15	15	20	25	10	20
	n_3	5	လ	3	ы	10	15	လ	2	12	17	ъ	10	15	ъ	2	4	ы	ы	10	10	15	ы	19	10	20	23	25	15	15
	n_2	2	e S	e S	ъ	10	15	ы	ю	11	∞	ъ	10	15	ю	e S	4	ъ	ъ	10	10	15	10	10	13	19	22	25	10	20
	n_1	2	က	က	ю	10	15	က	2	6	6	ю	10	15	ы	2	4	ю	ю	10	10	15	ю	17	18	19	21	25	15	15

Table 10: Estimated α Levels for k = 3, 4, 5 under the Null Distribution

n_1	n_2	n_3	n_4	n_5	Peak	LAR	MW	SAL	Bhat	HNEQ	KW
2	2	2			2	0.0662	0.0662	0.0662	0.0662	0.0662	0.0000
3	3	3			2	0.0493	0.0493	0.0606	0.0493	0.0493	0.0105
5	5	5			2	0.0400	0.0486	0.0682	0.0486	0.0486	0.0446
10	10	10			2	0.0423	0.0472	0.0581	0.0472	0.0472	0.0436
15	15	15			2	0.0413	0.0475	0.0549	0.0475	0.0475	0.0475
3	5	3			2	0.0429	0.0389	0.0660	0.0389	0.0389	0.0414
7	5	2			2	0.0377	0.0548	0.0636	0.0548	0.0501	0.0305
9	11	12			2	0.0487	0.0586	0.0634	0.0586	0.0565	0.0476
9	8	17			2	0.0412	0.0481	0.0568	0.0481	0.0484	0.0463
5	10	5			2	0.0422	0.0506	0.0569	0.0506	0.0506	0.0451
17	10	19			2	0.0419	0.0493	0.0580	0.0493	0.0492	0.0476
5	5	5	5		2	0.0425	0.0514	0.0637	0.0463	0.0543	0.0391
10	10	10	10		2	0.0437	0.0525	0.0572	0.0518	0.0494	0.0437
15	15	15	15		2	0.0424	0.0493	0.0535	0.0485	0.0500	0.0467
7	3	$\overline{7}$	9		3	0.0420	0.0531	0.0617	0.0517	0.0463	0.0377
18	13	10	15		2	0.0414	0.0518	0.0554	0.0537	0.0491	0.0504
19	19	20	15		3	0.0415	0.0472	0.0555	0.0471	0.0476	0.0459
4	4	4	4	4	2	0.0414	0.0513	0.0609	0.0392	0.0499	0.0285
5	5	5	5	5	2	0.0461	0.0505	0.0622	0.0548	0.0514	0.0369
5	5	5	5	5	3	0.0391	0.0489	0.0593	0.0510	0.0471	0.0372
10	10	10	10	10	3	0.0436	0.0480	0.0577	0.0507	0.0487	0.0447
15	15	15	15	15	3	0.0405	0.0448	0.0539	0.0455	0.0450	0.0482

Table 11: Simulating Under the Null after Gamma Approximation

	KW	0.169	0.122	0.036	0.983	0.253	0.055	0.088	0.079	0.245	0.535	0.959	0.258	0.997	1.000	0.339	0.095	0.997	0.758	0.154	0.362	0.518	0.666	0.715	0.862
	HNOPT	0.970	0.646	0.336	0.999	0.515	0.108	0.210	0.172	0.512	0.786	0.995	0.493	1.000	1.000	0.572	0.196	1.000	0.915	0.448	0.756	0.889	0.952	0.963	0.990
	HNEQ	0.970	0.509	0.336	0.999	0.515	0.108	0.210	0.150	0.512	0.786	0.970	0.451	0.850	1.000	0.502	0.196	0.997	0.915	0.304	0.718	0.799	0.881	0.877	0.864
μ^{i} , μ^{j}	Bhat	0.970	0.509	0.336	0.999	0.515	0.108	0.210	0.150	0.512	0.786	0.970	0.451	0.850	1.000	0.502	0.196	0.997	0.915	0.331	0.485	0.816	0.838	0.943	0.377
	SAL	0.979	0.548	0.376	1.000	0.559	0.134	0.253	0.178	0.565	0.796	0.950	0.472	0.648	1.000	0.511	0.206	0.991	0.918	0.467	0.450	0.882	0.918	0.920	0.320
- 0, 1 m	MW	0.970	0.509	0.336	0.999	0.515	0.108	0.210	0.150	0.512	0.786	0.970	0.451	0.850	1.000	0.502	0.196	0.997	0.915	0.356	0.600	0.851	0.897	0.949	0.596
	LAR	0.979	0.548	0.376	1.000	0.559	0.134	0.253	0.178	0.565	0.796	0.950	0.472	0.648	1.000	0.511	0.206	0.991	0.918	0.449	0.575	0.896	0.930	0.938	0.484
A du uco	Peak	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3	2	2	3
	$5 \mu_6$																								
manar	$\mu_4 \mu$.2	1.5).5	0.0	1.0	2.9
	μ_3	0.0	0.0	0																\circ		\cup			
			0	0.	0.0	0.0	0.0	0.0	0.3	1.0	1.0	0.0	0.5	0.0	1.0	0.0	0.0	2.0	1.0	0.1 0	2.0	2.0 (0.1	2.0	3.0
3	μ_2	3.0	2.0 (1.0 0.	3.0 0.0	1.0 0.0	0.3 0.0	0.5 0.0	0.5 0.3	2.0 1.0	2.0 1.0	2.0 0.0	1.0 0.5	2.3 0.0	3.0 1.0	0.7 0.0	0.3 0.0	4.0 2.0	2.0 1.0	1.0 0.1 0	1.0 2.0	0.5 2.0 (2.0 0.1	3.0 2.0	1.1 3.0
TOPT	$3 \mu_1 \mu_2$	0.0 3.0	1.0 2.0 0	0.0 1.0 0.	0.0 3.0 0.0	0.0 1.0 0.0	0.0 0.3 0.0	0.0 0.5 0.0	0.0 0.5 0.3	$1.0 \ 2.0 \ 1.0$	1.0 2.0 1.0	$1.0 \ 2.0 \ 0.0$	0.3 1.0 0.5	2.0 2.3 0.0	$0.0 \ 3.0 \ 1.0$	0.3 0.7 0.0	0.0 0.3 0.0	3.0 4.0 2.0	$1.0 \ 2.0 \ 1.0$	0.2 1.0 0.1 0	0.5 1.0 2.0	0.3 0.5 2.0 (0.5 2.0 0.1	1.0 3.0 2.0	1.0 1.1 3.0
TOT	$n_5 n_6 \mu_1 \mu_2$	0.0 3.0	1.0 2.0 0	0.0 1.0 0.	0.0 3.0 0.0	0.0 1.0 0.0	0.0 0.3 0.0	0.0 0.5 0.0	0.0 0.5 0.3	1.0 2.0 1.0	$1.0 \ 2.0 \ 1.0$	$1.0 \ 2.0 \ 0.0$	0.3 1.0 0.5	2.0 2.3 0.0	0.0 3.0 1.0	0.3 0.7 0.0	0.0 0.3 0.0	$3.0 \ 4.0 \ 2.0$	$1.0 \ 2.0 \ 1.0$	0.2 1.0 0.1 0	0.5 1.0 2.0	0.3 0.5 2.0 ($0.5 \ 2.0 \ 0.1$	1.0 3.0 2.0	1.0 1.1 3.0
TOT	$n_4 \ n_5 \ n_6 \ \mu_1 \ \mu_2$	0.0 3.0	1.0 2.0 0	0.0 1.0 0.	0.0 3.0 0.0	0.0 1.0 0.0	0.0 0.3 0.0	0.0 0.5 0.0	0.0 0.5 0.3	1.0 2.0 1.0	1.0 2.0 1.0	$1.0 \ 2.0 \ 0.0$	0.3 1.0 0.5	2.0 2.3 0.0	0.0 3.0 1.0	0.3 0.7 0.0	0.0 0.3 0.0	3.0 4.0 2.0	1.0 2.0 1.0	5 0.2 1.0 0.1 0	5 0.5 1.0 2.0	5 0.3 0.5 2.0 0	5 0.5 2.0 0.1	5 $ 1.0 3.0 2.0$	5 1.0 1.1 3.0
TOT	n_3 n_4 n_5 n_6 μ_1 μ_2	3 0.0 3.0	3 1.0 2.0 0	3 0.0 1.0 0.	5 0.0 3.0 0.0	5 0.0 1.0 0.0	5 0.0 0.3 0.0	5 0.0 0.5 0.0	5 0.0 0.5 0.3	5 1.0 2.0 1.0	10 1.0 2.0 1.0	10 1.0 2.0 0.0	10 0.3 1.0 0.5	10 $2.0 2.3 0.0$	10 $0.0 3.0 1.0$	15 $0.3 0.7 0.0$	15 0.0 0.3 0.0	15 $3.0 4.0 2.0$	15 1.0 2.0 1.0	5 5 5 0.2 1.0 0.1 0	5 5 0.5 1.0 2.0	5 5 0.3 0.5 2.0 (5 5 $0.5 2.0 0.1$	5 5 $ 1.0 3.0 2.0 $	5 5 10 1.1 3.0
TOPT	$n_2 \ n_3 \ n_4 \ n_5 \ n_6 \ \mu_1 \ \mu_2$	3 3 0.0 3.0	3 3 11.0 2.0 0	3 3 0.0 1.0 0.	5 5 0.0 3.0 0.0	5 5 0.0 1.0 0.0	5 5 0.0 0.3 0.0	5 5 0.0 0.5 0.0	5 5 0.0 0.5 0.3	5 5 1.0 2.0 1.0	10 10 10 1.0 2.0 1.0	10 10 10 1.0 2.0 0.0	10 10 0.3 1.0 0.5	10 10 2.0 2.3 0.0	10 10 0.0 3.0 1.0	15 15 $0.3 0.7 0.0$	15 15 $0.0 0.3 0.0$	15 15 $3.0 4.0 2.0$	15 15 15 $1.0 2.0 1.0$	5 5 5 5 0.2 1.0 0.1 0	5 5 5 5 0.5 1.0 2.0	5 5 5 5 0.3 0.5 2.0 (5 5 5 5 0.5 2.0 0.1	5 5 5 5 1.0 3.0 2.0	5 5 5 5 10 1.1 3.0

Table 12: Estimated Power Values for k = 3, 4 under $N(\mu_i, 1)$

Table 13: Power Values Adjusted for Size $R(\delta)$ under $N(\mu_i, 1)$ n_1 n_3 n_4 p_1 p_2 p_4 p_6 LAR< MW SAL Bint HNEQ KW n_1 n_3 n_1 p_1 p_2 p_1 p_2 $p_1 p_2$ $p_2 p_2$ $p_2 p_2$ $p_2 p_2$ $p_2 p_2$ $p_2 p_2$ $p_2 p_2$ $p_1 p_2$ $p_1 p_1$			·						·									·			·			r			·			·		
Table 13: Power Values Adjusted for Size $R(\delta)$ under $N(\mu_i, 1)$ n_1 n_2 n_3 μ_1 μ_2 μ_3 μ_4 μ_6 Peak LAR MW SAL Bhat HNEQ 3 3 3 0.0 <td></td> <td>KW</td> <td>0.0105</td> <td>0.3840</td> <td>0.1280</td> <td>0.0441</td> <td>0.0980</td> <td>0.2643</td> <td>0.0490</td> <td>0.5389</td> <td>0.9598</td> <td>0.0369</td> <td>0.1904</td> <td>0.7163</td> <td>0.0461</td> <td>0.1417</td> <td>0.5317</td> <td>0.0457</td> <td>0.4370</td> <td>0.4621</td> <td>0.0341</td> <td>0.0507</td> <td>0.3442</td> <td>0.0337</td> <td>0.9995</td> <td>0.3891</td> <td>0.0427</td> <td>0.9035</td> <td>0.2829</td> <td>0.0297</td> <td>0.4477</td> <td>0.0730</td>		KW	0.0105	0.3840	0.1280	0.0441	0.0980	0.2643	0.0490	0.5389	0.9598	0.0369	0.1904	0.7163	0.0461	0.1417	0.5317	0.0457	0.4370	0.4621	0.0341	0.0507	0.3442	0.0337	0.9995	0.3891	0.0427	0.9035	0.2829	0.0297	0.4477	0.0730
Table 13: Power Values Adjusted for Size $R(\delta)$ under $N(\mu_i, 1)$ n_1 n_2 n_3 μ_1 μ_2 μ_3 μ_4 NN SAL Bhat 3 3 0.0 <td></td> <td>HNEQ</td> <td>0.0467</td> <td>0.9722</td> <td>0.3481</td> <td>0.0480</td> <td>0.2157</td> <td>0.5198</td> <td>0.0484</td> <td>0.7906</td> <td>0.9711</td> <td>0.0511</td> <td>0.3003</td> <td>0.8789</td> <td>0.0511</td> <td>0.2649</td> <td>0.6584</td> <td>0.0498</td> <td>0.7536</td> <td>0.7107</td> <td>0.0504</td> <td>0.0664</td> <td>0.3026</td> <td>0.0574</td> <td>0.2778</td> <td>0.5654</td> <td>0.0490</td> <td>0.9412</td> <td>0.4274</td> <td>0.0510</td> <td>0.5352</td> <td>0.1475</td>		HNEQ	0.0467	0.9722	0.3481	0.0480	0.2157	0.5198	0.0484	0.7906	0.9711	0.0511	0.3003	0.8789	0.0511	0.2649	0.6584	0.0498	0.7536	0.7107	0.0504	0.0664	0.3026	0.0574	0.2778	0.5654	0.0490	0.9412	0.4274	0.0510	0.5352	0.1475
Table 13: Power Values Adjusted for Size $R(\delta)$ under $N(I)$ n_1 n_2 μ_1 μ_2 μ_3 μ_4 μ_8 LAR MW SAL 3 3 0.0 0.0 0.0 0.0 0.0 0.0581 0.0467 0.0581 0.0467 0.0581 0.05120 0.0750 0.0722 0.03483 0.0611 0.03483 0.0611 0.0484 0.0611 0.0484 0.0611 0.0484 0.0611 0.0484 0.0611 0.0414 0.0611 0.0414 0.0611 0.0414 0.0611 0.0414 0.0611 0.0414 0.0568 0.0618 0.0588 0.0618 0.0588 0.0618 0.0618 0.0588 0.0618	$\iota_i, 1)$	Bhat	0.0467	0.9722	0.3481	0.0480	0.2157	0.5198	0.0484	0.7906	0.9711	0.0415	0.3637	0.8588	0.0508	0.3206	0.7687	0.0526	0.7665	0.7594	0.0516	0.0702	0.3612	0.0576	0.9570	0.7439	0.0462	0.9594	0.4442	0.0425	0.7072	0.1553
Table 13: Power Values Adjusted for Size $R(\delta)$ un n_1 n_3 n_4 n_5 μ_1 μ_2 μ_3 Peak LAR MW 3 3 3 0.0 0.0 0.0 0.0 0.753 0.9750 0.9750 0.9722 3 3 3 0.0 0.0 0.0 0.0 0.7544 0.9451 5 5 0.0 0.0 0.0 0.0 0.0 0.4451 0.9451 5 5 0.0 0.0 0.0 0.0 0.9431 0.9431 10 10 10 10 0.0 0.0 0.0 0.9343 5 5 0.0 0.0 0.0 0.0 0.9341 0.9431 10 10 10 10 0.0 0.0 0.0 0.9341 0.9341 5 5 5 0.0 0.0 0.0 0.0 0.9343 0.93414 10 10<	nder $N(\mu$	SAL	0.0581	0.9750	0.3483	0.0661	0.2106	0.5097	0.0581	0.7744	0.9419	0.0588	0.4354	0.9052	0.0565	0.3240	0.8174	0.0605	0.7457	0.8062	0.0609	0.0659	0.4255	0.0652	0.9886	0.8914	0.0582	0.9855	0.5635	0.0672	0.7139	0.1549
Table 13: Power Values Adjusted for Size n_1 n_2 n_3 μ_1 μ_2 $Peak$ LAR 3 3 3 n_3 μ_1 μ_2 μ_3 $Peak$ LAR 3 3 3 n_3 n_1 μ_1 μ_2 $Peak$ LAR 3 3 3 n_1 n_1 n_1 n_1 n_2 0.05 0.05 0.05 0.05 0.0661 0.0744 5 5 5 0.0 0.0 0.0 0.0 0.01 0.0161 10 10 10 1.0 0.0 0.0 0.01 0.0161 0.0161 5 5 0.01 0.0 0.0 0.0 0.017 0.0141 10 10 10 1.0 0.0 0.0 0.01 0.017 0.0514 5 5 0.01 0.0 0.0 0.01	$R(\delta)$ ur	MW	0.0467	0.9722	0.3481	0.0480	0.2157	0.5198	0.0484	0.7906	0.9711	0.0488	0.3604	0.8991	0.0522	0.3140	0.7643	0.0493	0.7930	0.7890	0.0516	0.0702	0.3612	0.0577	0.9592	0.7779	0.0466	0.9807	0.4956	0.0583	0.6961	0.1535
Table 13: Power Values Adjusted n_1 n_2 n_3 μ_1 μ_2 μ_3 μ_4 μ_5 $Peak$ 3 3 3 0.0 0.0 0.0 0.0 2 3 3 3 0.0 0.0 0.0 2 2 5 5 5 0.0 0.0 0.0 2 2 10 10 10 10 0.0 0.0 0.0 2 10 10 10 10 10 2 2 2 10 10 10 10 10 2 2 2 10 10 10 10 10 2 2 2 10 10 10 10 10 2 2 2 10 10 10 10 2 2 2 2 10 10 10 0 0 0 2 <td>l for Size</td> <td>LAR</td> <td>0.0581</td> <td>0.9750</td> <td>0.3483</td> <td>0.0661</td> <td>0.2106</td> <td>0.5097</td> <td>0.0581</td> <td>0.7744</td> <td>0.9419</td> <td>0.0621</td> <td>0.4069</td> <td>0.9144</td> <td>0.0573</td> <td>0.3284</td> <td>0.8093</td> <td>0.0603</td> <td>0.7655</td> <td>0.8099</td> <td>0.0609</td> <td>0.0659</td> <td>0.4255</td> <td>0.0652</td> <td>0.9845</td> <td>0.8804</td> <td>0.0580</td> <td>0.9914</td> <td>0.5760</td> <td>0.0668</td> <td>0.7194</td> <td>0.1543</td>	l for Size	LAR	0.0581	0.9750	0.3483	0.0661	0.2106	0.5097	0.0581	0.7744	0.9419	0.0621	0.4069	0.9144	0.0573	0.3284	0.8093	0.0603	0.7655	0.8099	0.0609	0.0659	0.4255	0.0652	0.9845	0.8804	0.0580	0.9914	0.5760	0.0668	0.7194	0.1543
n_1 n_2 n_3 n_4 n_5 μ_1 μ_2 μ_3 μ_4 μ_5 3 3 3 0.0 0.0 0.0 0.0 5 5 5 0.0 0.0 0.0 0.0 5 5 5 0.0 0.0 0.0 0.0 6 5 5 0.0 0.0 0.0 0.0 10 10 10 10 10 0.0 0.0 0.0 10 10 10 10 10 0.0 0.0 0.0 0.0 10 10 10 10 1.0 2.0 1.0 0.0 10 10 10 10 0.0 0.0 0.0 0.0 0.0 10 10 10 10 0.0 0.0 0.0 0.0 10 10 10 0.0 0.0 0.0 0.0 0.0	djustec	Peak	2	2	2	2	2	2	2	7	2	2	2	2	2	2	2	с С	3	e S	2	2	2	2	2	2	2	2	2	с С	3	3
Table 13: Power Valu n_1 n_2 n_3 μ_1 μ_2 μ_3 μ_4 3 3 3 3 n_4 n_5 μ_1 μ_2 μ_3 μ_4 3 3 3 3 n_6 n_0 n_0 n_0 5 5 5 0.0 0.0 0.0 0.0 10 10 10 0.0 0.0 0.0 0.0 10 10 10 10 0.0 0.0 0.0 0.0 10 10 10 10 0.0 0.0 0.0 0.0 10 10 10 0.0 0.0 0.0 0.0 10 10 10 0.0 0.0 0.0 0.0 10 10 10 0.0 0.0 0.0 0.0 10 10 10 10	es A	μ_5																0.0	0.0	0.0												
Table 13: Power n_1 n_2 n_3 μ_1 μ_2 μ_3 3 3 3 η_1 μ_2 μ_3 μ_3 3 3 3 η_1 μ_2 μ_3 μ_3 μ_3 5 5 5 η_1 μ_2 μ_3 η_1 10 10 10 η_1 η_2 η_3 η_1 10 10 10 η_1 η_2 η_3 η_1 10 10 10 η_1 η_2 η_3 η_1 10 10 10 η_1 η_2 η_1 η_1 10 10 10 η_2 η_2 η_1 η_1 10 10 10 η_2 η_2 η_1 η_2 10 10 10 η_2 η_2 η_2 η_1 10 10 η_2 η_2	Valu	μ_4										0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.3	0.1				0.0	2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Table 13: P n_1 n_2 n_3 n_1 μ_2 μ_2 3 3 3 0.0 0.0 0.0 5 5 5 0.0 0.0 0.0 5 5 5 0.0 0.0 0.0 5 5 5 0.0 0.0 0.0 10 10 10 10 0.0 0.0 0.0 10 10 10 10 0.0 0.0 0.0 10 10 10 10 10 0.0 0.0 10 10 10 10 1.0 0.0 0.0 10 10 10 10 0.0 0.0 0.0 10 10 10 10 0.0 0.0 0.0 10 10 10 10 0.0 0.0 0.0 10 10 10 10 0.0 0.0	ower	μ_3	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.1	0.1	0.0	0.1	0.0	0.0	1.0	1.0	0.0	0.0	2.0	0.0	3.0	0.1	0.0	0.5	0.1	0.0	2.0	0.4
n_1 n_2 n_3 n_4 n_5 μ_1 3 3 3 3 9 0.0 5 5 5 5 0.0 5 5 5 0.0 5 5 5 1.0 10 10 10 0.0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 0.0 10 10 10 0.0 10 10 10 0.0 10 10 10 0.0 3 3 10 0.0 3 5 4 0.0 7 6 9 10 8 6 4 3 0.0 10 10 10 0.0 0.0 10	l3: P	μ_2	0.0	3.0	1.0	0.0	0.5	2.0	0.0	2.0	2.0	0.0	1.0	2.0	0.0	0.5	1.0	0.0	0.3	0.1	0.0	0.1	2.7	0.0	5.0	2.0	0.0	2.0	0.9	0.0	1.0	0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	able :	μ_1	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	1.0	0.0	0.2	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ĥ	n_5												-				10	10	10						-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		n_4										5 L	5 C	ю	10	10	10	10	10	10				4	4	4	12	12	12	с С	3	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		n_3	3	လ	3	5 L	ы	5 L	10	10	10	5 L	ъ	ю	10	10	10	10	10	10	10	10	e S	л С	ъ	ы	6	6	6	4	4	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		n_2	3	3 S	c,	5 L	ы	5 L	10	10	10	л С	ы	ъ	10	10	10	10	10	10	ر	က	e S	с С	e S	e S	9	9	9	9	9	6
		n_1	3	3 S	3	ы	ю	Ŋ	10	10	10	ы	ю	ю	10	10	10	10	10	10	с С	က	n	9	9	9	2	2	2	с С	က	°

NTV $R(\lambda)$ Ü د ÷ ~ -17. þ 19.

	ΜY	0.023	0.039	0.060	0.960	.941	(.133)	(410)	0.516	0.984	l.000).983	0.420	000.1	.445	0.120	.968	l.000	0.048	0.075).141	.111	0.405).115
	Ŀ		U	U	U	U	U	U	U	U	,,	U	U	,,	U	U	U		U	U	U	U	U	U
	HNOI	0.083	0.099	0.130	1.000	0.995	0.334	0.742	0.839	1.000	1.000	1.000	0.795	1.000	0.828	0.354	1.000	1.000	0.136	0.198	0.435	0.350	0.827	0.357
	HNEQ	0.083	0.099	0.130	0.978	0.995	0.268	0.683	0.662	1.000	1.000	0.997	0.753	1.000	0.710	0.318	0.968	1.000	0.108	0.142	0.344	0.285	0.640	0.291
$(\mu_i, 1)$	Bhat	0.088	0.100	0.130	0.962	0.978	0.323	0.424	0.771	0.999	1.000	0.998	0.774	1.000	0.767	0.341	0.943	0.999	0.136	0.185	0.328	0.322	0.757	0.330
nder $N($	SAL	0.102	0.099	0.121	1.000	0.919	0.346	0.317	0.833	0.990	1.000	1.000	0.775	1.000	0.831	0.353	1.000	1.000	0.141	0.179	0.296	0.341	0.827	0.337
l, 5, 6 ui	MW	0.087	0.098	0.126	0.998	0.992	0.322	0.546	0.771	1.000	1.000	1.000	0.791	1.000	0.787	0.345	0.998	1.000	0.129	0.180	0.384	0.338	0.776	0.344
or $k = 4$	LAR	0.096	0.104	0.127	1.000	0.973	0.353	0.444	0.827	0.996	1.000	1.000	0.793	1.000	0.834	0.366	1.000	1.000	0.153	0.193	0.347	0.363	0.837	0.365
ues fo	eak																							
_	I C . I	\sim	\sim	\sim	\sim	^ 1	A 1	^ 1	A 1	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim	\sim			\sim	\sim	\sim	\sim
ar Valı	46 P	က	с С	er er	e S	2	2	2	2	က	က	3	3	3 C	3 C	3	3 C	с С	4	4	0.0 3	0.0 3	0.0 3	0.0 3
Power Valı	$\mu_5 \mu_6$ P	1.0 3	1.0 3	1.0 3	1.0 3	2	2	2	2	1.0 3	1.0 3	0.0 3	0.0 3	0.0 3	0.0 3	0.0 3	1.0 3	1.0 3	1.0 4	1.0 4	0.1 0.0 3	0.1 0.0 3	0.1 0.0 3	0.1 0.0 3
lated Power Valı	μ_4 μ_5 μ_6 ${ m P}$	1.1 1.0 3	1.1 1.0 3	1.1 1.0 3	1.1 1.0 3	0.0 2	0.0 2	0.5 2	0.0 2	2.0 1.0 3	1.1 1.0 3	0.3 0.0 3	0.3 0.0 3	$0.1 0.0 \qquad 3$	$0.1 0.0 \qquad 3$	$0.1 0.0 \qquad 3$	1.0 1.0 3	1.0 1.0 3	1.3 1.0 4	1.3 1.0 4	0.4 0.1 0.0 3	0.2 0.1 0.0 3	0.2 0.1 0.0 3	0.2 0.1 0.0 3
Estimated Power Valı	μ_3 μ_4 μ_5 μ_6 \mathbb{P}	1.2 1.1 1.0 3	1.2 1.1 1.0 3	1.2 1.1 1.0 3	4.0 1.1 1.0 3	1.0 0.0 2	0.1 0.0 2	1.0 0.5 2	0.0 0.0 2	3.0 2.0 1.0 3	4.0 1.1 1.0 3	2.0 0.3 0.0 3	1.0 0.3 0.0 3	3.0 0.1 0.0 3	1.0 0.1 0.0 3	0.5 0.1 0.0 3	1.0 1.0 1.0 3	1.0 1.0 1.0 3	1.2 1.3 1.0 4	1.2 1.3 1.0 4	0.5 0.4 0.1 0.0 3).5 0.2 0.1 0.0 3	1.0 0.2 0.1 0.0 3).5 0.2 0.1 0.0 3
14: Estimated Power Valı	μ_2 μ_3 μ_4 μ_5 μ_6 $ $ P	1.1 1.2 1.1 1.0 3	1.1 1.2 1.1 1.0 3	1.1 1.2 1.1 1.0 3	1.1 4.0 1.1 1.0 3	2.0 1.0 0.0 2	$0.5 0.1 0.0 \qquad 2$	1.5 1.0 0.5 2	1.0 0.0 0.0 2	2.0 3.0 2.0 1.0 3	1.1 4.0 1.1 1.0 3	0.3 2.0 0.3 0.0 3	0.3 1.0 0.3 0.0 3	0.1 3.0 0.1 0.0 3	0.1 1.0 0.1 0.0 3	$0.1 0.5 0.1 0.0 \qquad 3$	$1.0 \ 4.0 \ 1.0 \ 1.0 \ 3$	$1.0 \ 4.0 \ 1.0 \ 1.0 \ 3$	1.1 1.2 1.3 1.0 4	1.1 1.2 1.3 1.0 4	0.1 0.5 0.4 0.1 0.0 3	0.1 0.5 0.2 0.1 0.0 3	0.1 1.0 0.2 0.1 0.0 3	0.1 0.5 0.2 0.1 0.0 3
Table 14: Estimated Power Valu	u_1 μ_2 μ_3 μ_4 μ_5 μ_6 $ m P$	$1.0 1.1 1.2 1.1 1.0 \boxed{3}$	1.0 1.1 1.2 1.1 1.0 3	$1.0 1.1 1.2 1.1 1.0 \ 3$	1.0 1.1 4.0 1.1 1.0 3	1.0 2.0 1.0 0.0 2	0.0 0.5 0.1 0.0 0.2	$1.3 1.5 1.0 0.5 \ 2$	0.0 1.0 0.0 0.0 2	1.0 2.0 3.0 2.0 1.0 3	1.0 1.1 4.0 1.1 1.0 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.0 1.0 4.0 1.0 1.0 3	1.0 1.0 4.0 1.0 1.0 1.0 3	$1.0 1.1 1.2 1.3 1.0 \ 4$	$1.0 1.1 1.2 1.3 1.0 \ 4$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 0.1 0.5 0.2 0.1 0.0 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Table 14: Estimated Power Valı	$n_6 \mid \mu_1 \mid \mu_2 \mid \mu_3 \mid \mu_4 \mid \mu_5 \mid \mu_6 \mid \mathrm{P}$	1.0 1.1 1.2 1.1 1.0 3	1.0 1.1 1.2 1.1 1.0 3	1.0 1.1 1.2 1.1 1.0 3	1.0 1.1 4.0 1.1 1.0 3	1.0 2.0 1.0 0.0 2	0.0 0.5 0.1 0.0 2	1.3 1.5 1.0 0.5 2	0.0 1.0 0.0 0.0 2	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 1.1 4.0 1.1 1.0 3	0.0 0.3 2.0 0.3 0.0 3	$0.0 \ 0.3 \ 1.0 \ 0.3 \ 0.0$ 3	0.0 0.1 3.0 0.1 0.0 3	0.0 0.1 1.0 0.1 0.0 3	0.0 0.1 0.5 0.1 0.0 3	1.0 1.0 4.0 1.0 1.0 3	1.0 1.0 4.0 1.0 1.0 3	1.0 1.1 1.2 1.3 1.0 4	1.0 1.1 1.2 1.3 1.0 4	$10 \ 0.0 \ 0.1 \ 0.5 \ 0.4 \ 0.1 \ 0.0 \ 3$	$10 \ 0.0 \ 0.1 \ 0.5 \ 0.2 \ 0.1 \ 0.0 \ 3$	$10 \ 0.0 \ 0.1 \ 1.0 \ 0.2 \ 0.1 \ 0.0 \ 3$	$10 \ 0.0 \ 0.1 \ 0.5 \ 0.2 \ 0.1 \ 0.0 \ 3$
Table 14: Estimated Power Valı	$n_5 \; n_6 \; ig \; \mu_1 \; \; \mu_2 \; \; \mu_3 \; \; \mu_4 \; \; \mu_5 \; \; \mu_6 \; ig \; \mathrm{P}$	3 1.0 1.1 1.2 1.1 1.0 3	5 1.0 1.1 1.2 1.1 1.0 3	$10 \qquad 1.0 1.1 1.2 1.1 1.0 3$	5 1.0 1.1 4.0 1.1 1.0 3	1.0 2.0 1.0 0.0 2	0.0 0.5 0.1 0.0 2	1.3 1.5 1.0 0.5 2	0.0 1.0 0.0 0.0 2	$10 \qquad 1.0 2.0 3.0 2.0 1.0 \qquad 3$	$10 \qquad 1.0 1.1 4.0 1.1 1.0 3$	$10 \qquad 0.0 0.3 2.0 0.3 0.0 \qquad 3$	$10 \qquad 0.0 0.3 1.0 0.3 0.0 \qquad 3$	$10 \qquad 0.0 0.1 3.0 0.1 0.0 \qquad 3$	$10 \qquad 0.0 0.1 1.0 0.1 0.0 3$	$10 \qquad 0.0 0.1 0.5 0.1 0.0 3$	$5 \qquad 1.0 1.0 4.0 1.0 1.0 3$	$10 \qquad 1.0 1.0 4.0 1.0 1.0 \qquad 3 \\$	$5 \qquad 1.0 1.1 1.2 1.3 1.0 4$	$10 \qquad 1.0 1.1 1.2 1.3 1.0 \qquad 4 \\$	10 10 0.0 0.1 0.5 0.4 0.1 0.0 3	10 10 0.0 0.1 0.5 0.2 0.1 0.0 3	10 10 0.0 0.1 1.0 0.2 0.1 0.0 3	10 10 0.0 0.1 0.5 0.2 0.1 0.0 3
Table 14: Estimated Power Valu	$n_4 \ n_5 \ n_6 \ \ \mu_1 \ \ \mu_2 \ \ \mu_3 \ \ \mu_4 \ \ \mu_5 \ \ \mu_6 \ \ \ { m P}$	3 3 3 1.0 1.1 1.2 1.1 1.0 3	5 5 7 1.0 1.1 1.2 1.1 1.0 3	10 10 1.0 1.1 1.2 1.1 1.0 3	5 5 7 1.0 1.1 4.0 1.1 1.0 3	10 1.0 2.0 1.0 0.0 2	10 0.0 0.5 0.1 0.0 2	10 1.3 1.5 1.0 0.5 2	10 0.0 1.0 0.0 0.0 2	10 10 1.0 2.0 3.0 2.0 1.0 3	10 10 1.0 1.1 4.0 1.1 1.0 3	10 10 0.0 0.3 2.0 0.3 0.0 3	10 10 0.0 0.3 1.0 0.3 0.0 3	10 10 0.0 0.1 3.0 0.1 0.0 3	10 10 0.0 0.1 1.0 0.1 0.0 3	$10 10 \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 5 7 1.0 1.0 4.0 1.0 1.0 3	10 10 1.0 1.0 4.0 1.0 1.0 3	5 5 7 1.0 1.1 1.2 1.3 1.0 4	10 10 1.0 1.1 1.2 1.3 1.0 4	10 10 10 0.0 0.1 0.5 0.4 0.1 0.0 3	10 10 10 0.0 0.1 0.5 0.2 0.1 0.0 3	10 10 10 0.0 0.1 1.0 0.2 0.1 0.0 3	10 10 10 0.0 0.1 0.5 0.2 0.1 0.0 3
Table 14: Estimated Power Valı	$n_3 \ n_4 \ n_5 \ n_6 \ \ \mu_1 \ \ \mu_2 \ \ \mu_3 \ \ \mu_4 \ \ \mu_5 \ \ \mu_6 \ \ \mathrm{P}$	3 3 3 3 1.0 1.1 1.2 1.1 1.0 3	5 5 5 5 1.0 1.1 1.2 1.1 1.0 3	10 10 10 10 1.0 1.1 1.2 1.1 1.0 3	5 5 5 5 1.0 1.1 4.0 1.1 1.0 3	$10 10 \qquad 1.0 2.0 1.0 0.0 \qquad 2$	10 10 0.0 0.5 0.1 0.0 2	10 10 10 1.3 1.5 1.0 0.5 2	10 10 0.0 1.0 0.0 0.0 0.0 2	10 10 10 10 1.0 2.0 3.0 2.0 1.0 3.0	10 10 10 10 1.0 1.1 4.0 1.1 1.0 3	10 10 10 0.0 0.3 2.0 0.3 0.0 3	10 10 10 0.0 0.3 1.0 0.3 0.0 3	10 10 10 0.0 0.1 3.0 0.1 0.0 3.	10 10 10 0.0 0.1 1.0 0.1 0.0 3	10 10 10 0.0 0.1 0.5 0.1 0.0 3	5 5 5 5 1.0 1.0 4.0 1.0 1.0 3	10 10 10 10 1.0 1.0 4.0 1.0 1.0 3	5 5 5 5 1.0 1.1 1.2 1.3 1.0 4	10 10 10 10 1.0 1.1 1.2 1.3 1.0 4	10 10 10 10 0.0 0.1 0.5 0.4 0.1 0.0 3	10 10 10 10 10 0.0 0.1 0.5 0.2 0.1 0.0 3	10 10 10 10 0.0 0.1 1.0 0.2 0.1 0.0 3	10 10 10 10 0.0 0.1 0.5 0.2 0.1 0.0 3
Table 14: Estimated Power Valu	$n_2 \ n_3 \ n_4 \ n_5 \ n_6 \ \ \mu_1 \ \ \mu_2 \ \ \mu_3 \ \ \mu_4 \ \ \mu_5 \ \ \mu_6 \ \ \mathrm{P}$	3 3 3 3 3 1.0 1.1 1.2 1.1 1.0 3	5 5 5 5 1.0 1.1 1.2 1.1 1.0 3	$10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \$	5 5 5 5 1.0 1.1 4.0 1.1 1.0 3	$10 \ 10 \ 10 \ 10 \ 1.0 \ 2.0 \ 1.0 \ 0.0 \ 2.0 \ 1.0 \ 0.0 \ 2.0 \ 1.0 \ 0.$	$10 \ 10 \ 10 \ 10 \ 0.0 \ 0.5 \ 0.1 \ 0.0 \ 2$	$10 \ 10 \ 10 \ 10 \ 1.3 \ 1.5 \ 1.0 \ 0.5 \ 2$	$10 \ 10 \ 10 \ 10 \ 0.0 \ 1.0 \ 0.$	10 10 10 10 10 1.0 2.0 3.0 2.0 1.0 3	10 10 10 10 10 1.0 1.1 4.0 1.1 1.0 3	10 10 10 10 0.0 0.3 2.0 0.3 0.0 3	$10 \ 10 \ 10 \ 10 \ 10 \ 0.0 \ 0.3 \ 1.0 \ 0.3 \ 0.3 \ 0.3$	$10 \ 10 \ 10 \ 10 \ 10 \ 0.0 \ 0.1 \ 3.0 \ 0.1 \ 0.0 \ 3$	$10 \ 10 \ 10 \ 10 \ 10 \ 0.0 \ 0.1 \ 1.0 \ 0.1 \ 0.0 \ 3$	$10 \ 10 \ 10 \ 10 \ 10 \ 0.0 \ 0.1 \ 0.5 \ 0.1 \ 0.0 \ 3$	5 5 5 5 1.0 1.0 4.0 1.0 10 3	10 10 10 10 10 1.0 1.0 4.0 1.0 1.0 3	5 5 5 5 5 10 1.1 1.2 1.3 1.0 4	10 10 10 10 10 1.0 1.1 1.2 1.3 1.0 4	10 10 10 10 10 10 0.0 0.1 0.5 0.4 0.1 0.0 3	10 10 10 10 10 10 0.0 0.1 0.5 0.2 0.1 0.0 3	10 10 10 10 10 10 0.0 0.1 1.0 0.2 0.1 0.0 3	10 10 10 10 10 10 0.0 0.1 0.5 0.2 0.1 0.0 3

μ_i
\sim
\geq
under 7
0
ų,
4
k =
for
Values
Power
Estimated
able 14:
Г

	<u> </u>	r																		
	КW	0.987	0.768	0.581	0.961	0.921	0.923	0.270	0.281	1.000	1.000	0.999	0.149	0.890	0.374	0.156	0.512	1.000	0.355	0.515
	HNOPT	0.999	0.950	0.805	0.994	0.991	0.988	0.507	0.606	1.000	1.000	1.000	0.389	0.991	0.717	0.459	0.812	1.000	0.808	0.820
-	HNEQ	0.006	0.537	0.733	0.881	0.076	0.978	0.460	0.304	1.000	1.000	0.301	0.346	0.940	0.517	0.299	0.812	1.000	0.539	0.461
$N(\mu_i, 1)$	Bhat	0.008	0.542	0.729	0.888	0.123	0.977	0.460	0.367	1.000	1.000	0.963	0.371	0.956	0.425	0.175	0.726	1.000	0.680	0.432
under 7	SAL	0.009	0.476	0.617	0.889	0.216	0.979	0.321	0.464	1.000	1.000	0.992	0.403	0.988	0.429	0.167	0.548	1.000	0.762	0.334
3, 4, 5	MM	0.008	0.542	0.729	0.888	0.123	0.977	0.460	0.367	1.000	1.000	0.965	0.379	0.979	0.465	0.230	0.778	1.000	0.722	0.486
for $k =$	LAR	0.009	0.476	0.617	0.889	0.216	0.979	0.321	0.464	1.000	1.000	0.989	0.410	0.993	0.458	0.221	0.686	1.000	0.766	0.381
Values	Peak	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	c,	3
Power	μ_5																			
lated	μ_4											2.5	1.8	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Estim	μ_3	3.0	1.7	0.5	0.8	0.5	1.5	0.0	2.0	4.0	0.0	3.0	2.0	0.5	0.0	1.0	0.5	0.5	2.0	0.9
15:	μ_2	2.0	3.0	1.5	2.8	3.0	3.5	8.0	2.7	6.0	5.0	5.0	2.5	2.0	1.0	1.0	1.0	4.0	1.0	1.0
Table	μ_1	0.0	1.0	1.0	2.0	3.0	2.0	0.5	1.0	3.0	0.0	0.0	1.9	0.0	0.7	0.7	0.5	0.5	0.5	0.0
L	n_6																			
	n_5																			
	n_4											4	ъ	12	c,	c,	16	16	က	12
	n_3	6	ŝ	15	11	4	14	∞	10	13	15	ю	ഹ	6	6	6	14	15	4	11
	n_2	ഹ	2	13	∞	4	9	14	e S	15	ŋ	c:	∞	9	6	6	12	12	9	10

1	ς
	ā
	C
	Ξ
	-
)	ς,
-	
C	Υ.
	II
-	4
1	۲
ل	4
į	J
1	٩
_	
Ľ	π
٢	~
1	Ŀ
	۶
Ċ	ì
-	Ē
	α
	٤
	Ξ
-	Ų
H	T
	•

	KW	0.0303	0.1134	0.1892	0.6415	0.0796	0.9217	0.9564	0.1069	0.0157	0.1782	0.0564	0.0764	0.2879	0.4828	0.9432	0.7825	1.0000	0.2317	0.9823	0.2335	0.4696	0.9452	0.3127	0.1225	0.0396	0.4007	0.0976
d $p = k$	HNOPT	0.2580	0.6389	0.4202	0.8866	0.1886	0.9855	0.9935	0.7406	0.1410	0.9683	0.1185	0.1637	0.5140	0.8497	0.9980	0.9590	1.0000	0.5141	0.9988	0.5229	0.8328	0.9983	0.6856	0.4212	0.2066	0.7672	0.2652
p = 1 an	HNEQ	0.2580	0.6389	0.4202	0.8866	0.1809	0.9857	0.9806	0.5986	0.1201	0.7572	0.1109	0.1624	0.4617	0.8507	0.9980	0.9590	1.0000	0.4622	0.9892	0.5229	0.8217	0.9877	0.6818	0.3772	0.1825	0.7130	0.2652
$\iota_i, 1$) for	Bhat	0.1993	0.5284	0.3629	0.8379	0.1597	0.9767	0.9456	0.4554	0.0904	0.5030	0.0995	0.1476	0.4332	0.7145	0.9793	0.9164	0.9984	0.3375	0.9726	0.4606	0.6927	0.9725	0.5445	0.3313	0.1643	0.5287	0.1887
nder $N(\mu$	MW	0.3146	0.7063	0.4040	0.8791	0.1734	0.9845	0.9766	0.6575	0.1543	0.7775	0.1059	0.1561	0.4601	0.8445	0.9980	0.9572	0.9999	0.4593	0.9847	0.5214	0.8174	0.9847	0.6758	0.3715	0.1893	0.7449	0.2624
3, 4, 5 ur	LAR	0.3378	0.6987	0.4214	0.8619	0.2039	0.9694	0.9061	0.6241	0.1771	0.6614	0.1357	0.1751	0.4340	0.8305	0.9958	0.9461	0.9981	0.4525	0.9634	0.5215	0.8167	0.9834	0.6714	0.3883	0.2310	0.7035	0.2795
or $k =$	Peak	1	1	1	1	1	1	1	3	3	3	3	3	3	1	1	1	1	1	1	1	ъ	л С	ю	ю	ю	л С	ю
ues fo	μ_5																					1.2	2	Ļ	Ļ	Ļ	H	0.5
er Val	μ_4														0.3	2.0	0.5	1.0	1.0	1.0	0.3	0.8	0.7	0.7	0.5	0.5	0.5	0.4
Powe	μ_3	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.5	2.0	3.0	0.4	0.4	0.7	1.0	3.0	1.0	1.0	1.0	1.2	0.5	0.5	0.5	0.5	0.3	0.3	0.3	0.3
lated	μ_2	1.5	2.0	1.5	2.0	1.2	1.0	1.6	0.3	0.3	0.1	0.2	0.2	0.2	1.5	4.0	1.5	1.5	1.5	1.3	0.8	0.3	0.3	0.3	0.3	0.3	0.3	0.2
Estin	μ_1	2	3 S	2	က	1.5	1.8	1.8	0	0	0	0.1	0.1	0.1	2	ю	2	4	1.6	က	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
16:	n_5																					10	10	10	ю	1	16	16
Lable	n_4														ŋ	ŋ	10	10	10	10	10	10	10	10	ŋ	ŋ	12	17
r .	n_3	က	က	Ŋ	ഹ	ŋ	10	10	က	က	က	ю	10	15	ŋ	ю	10	10	10	10	10	10	10	10	ю	ю	ŋ	14
	n_2	က	က	ю	Ŋ	ю	10	10	က	က	က	ŋ	10	15	ŋ	ഹ	10	10	10	10	10	10	10	10	ഹ	ഹ	∞	x
	n_1	က	က	ю	Ŋ	ю	10	10	က	က	က	ю	10	15	ю	ю	10	10	10	10	10	10	10	10	ю	ю	10	6

d
and
d.
for
$\overline{1}$
$\mu_i,$
\sim
\leq
ıder
n
ъ,
4
$\hat{\mathbf{c}}$
~
for
les
alı
\geq
wer
0
<u> </u>
atec
tim
$\mathbf{E}_{\mathbf{S}}$
16:
le
qr
Ĥ

4.2.3. Simulating under $E(\theta_i)$

Note that the scale parameter for this exponential distribution is θ_i . Also, the mean of each group will be equal to θ_i while the variance is θ_i^2 . LAR performed better than all other tests including HNOPT for equally spaced θ_i of groups. Generally, the LAR performed better than the other tests including the HNOPT when the differences between the θ_i 's are small. The MW test performed better than the LAR when the differences in θ_i between the groups are unequal and very wide.

A tabue 1.1 towers And used to 3.225 A(0) under $D(\alpha)$ n_1 n_2 n_3 μ_1 μ_2 μ_3 μ_4 μ_5 $Peak$ LAR MW SAL Bhat HNEQ KW 5 5 5 10 0.0 0.0 0.0 0.0 0.03535 0.5736 0.03256 0.0455 0.0511 0.03357 5 5 5 10 1.0 1.0 1.0 1.0 1.0 0.03356 0.0455 0.0535 0.05357 0.03356 0.03356 0.03356 0.03356 0.03356 0.03356 0.03356 0.03356 0.03356 0.03356 0.03356 0.03356 0.03356 0.03356 0.03365 0.03556 0.04759 0.03569 0.0459 0.03569 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0459 0.0																						
name in a construction and the large in the lar		KW	0.0398	0.1376	0.0834	0.3053	0.2209	0.0469	0.5792	0.2443	0.5081	0.0412	0.2347	0.2379	0.2290	0.0458	0.5432	0.9442	0.0340	0.2498	0.2327	0.0714
nature 11.1 Oversis And back n_1 n_2 n_4 n_5 μ_4 μ_5 Peak LAR MW SAL Bhat 5 5 5 0.0		HNEQ	0.0511	0.2712	0.1474	0.4350	0.2884	0.0479	0.6892	0.4553	0.7456	0.0519	0.4001	0.4282	0.4181	0.0509	0.6647	0.9947	0.0479	0.4194	0.4002	0.1575
TAGGE 11.1 CONCEPT AND INDUCT 10 (5) n_1 n_2 n_3 n_4 n_5 p_4 p_2 p_{3146} DAR MW SAL 5 5 5 0.0		Bhat	0.0432	0.2985	0.1667	0.4669	0.3164	0.0479	0.6892	0.4553	0.7456	0.0461	0.4787	0.5108	0.4924	0.0528	0.7622	0.9725	0.0526	0.5012	0.4973	0.1621
Latter 11.1 OWERS AND UNCOUNT AND UNCOUNT AND UNCOUNT AND UNCOUNT AND	\mathbf{U}_{i}	SAL	0.0592	0.3146	0.1731	0.4794	0.3181	0.0582	0.7042	0.4863	0.7942	0.0605	0.4379	0.5382	0.5293	0.0557	0.8185	0.9041	0.0582	0.5126	0.4875	0.1777
LADIA IN TAULAN AND ADDE ADDE	niin (o)i	MW	0.0485	0.2796	0.1533	0.4450	0.2971	0.0479	0.6892	0.4553	0.7456	0.0506	0.4802	0.5136	0.4969	0.0530	0.7661	0.9893	0.0492	0.5463	0.5270	0.1723
Labore 10.1 OWELS AND LADORED n_1 n_2 n_3 μ_1 μ_2 μ_3 μ_4 μ_5 Feak 5 5 5 10 0.0 0.0 0.0 2 5 5 5 11.0 1.5 1.0 2 2 5 5 5 1.0 2.0 1.0 2 2 5 5 5 0.1 0.3 0.2 2 2 10 10 10 10 2 0.1 0.3 2 2 10 10 10 10 1.0 2 2 2 10 10 10 1.0 2 2 2 2 5 5 5 1.0 0.3 0.2 0.1 2 10 10 10 1.0 1.0 2 1.0 2 5 5 5 1.0 0.0		LAR	0.0606	0.3105	0.1701	0.4747	0.3139	0.0582	0.7042	0.4863	0.7942	0.0624	0.4570	0.5522	0.5336	0.0572	0.8119	0.9652	0.0585	0.5592	0.5330	0.1780
n_1 n_2 n_3 n_4 n_5 μ_1 μ_2 μ_3 μ_4 μ_5 λ_1 λ_2 <t< td=""><td>i nans</td><td>Peak</td><td>2</td><td>2</td><td>2</td><td>0</td><td>2</td><td>2</td><td>0</td><td>0</td><td>2</td><td></td><td>2</td><td>~</td><td>~</td><td>2</td><td>~</td><td>2</td><td></td><td>4</td><td>4</td><td></td></t<>	i nans	Peak	2	2	2	0	2	2	0	0	2		2	~	~	2	~	2		4	4	
Table 11. 1 OWERS n_1 n_2 n_3 n_4 n_5 μ_1 μ_2 μ_3 μ_4 5 5 5 10 0.0 0.0 0.0 5 5 5 1.0 2.0 1.0 5 5 5 1.0 2.0 1.0 5 5 5 1.0 2.0 1.0 6 0 0 0.0 0.0 0.0 10 10 10 10 1.0 2.0 1.0 10 10 10 0.1 0.3 0.2 0.1 5 5 5 0.1 0.3 0.1 0 10 10 10 1.0 1.0 1.0 1.0 5 5 5 5 1.0 0.0 0.0 0.0 10 10 10 1.0 1.0 1.0 1.0 1.0 6	AuJu	μ_5																	0.0	1.0	1.0	1.0
n_1 n_2 n_3 n_4 n_5 μ_1 μ_2 μ_3 5 5 5 0.0 0.0 0.0 0.0 5 5 5 1.0 1.5 1.0 1.5 1.0 5 5 5 1.0 0.1 0.4 0.2 1.0 5 5 5 0.1 0.1 0.3 0.2 1.0 10 10 10 10 10 0.1 0.3 0.2 10 10 10 10 10 1.0 1.0 1.0 5 5 5 0.1 0.3 0.2 1.0 10 10 10 1.0 1.0 1.0 1.0 1.0 5 5 5 1.0 1.0 1.0 1.0 1.0 10 10 10 1.0 1.0 1.0 1.0 1.0 5 5 5 <td>Mers</td> <td>μ_4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td> <td>0.1</td> <td>1.0</td> <td>1.0</td> <td>0.0</td> <td>1.0</td> <td>0.0</td> <td>0.0</td> <td>2.0</td> <td>2.0</td> <td>1.1</td>	Mers	μ_4										0.0	0.1	1.0	1.0	0.0	1.0	0.0	0.0	2.0	2.0	1.1
Labure n_1 n_2 n_3 n_4 n_5 μ_1 μ_2 5 5 5 5 1.0 2.0 5 5 5 1.0 2.0 5 5 5 1.0 2.0 5 5 5 1.0 2.0 10 10 10 10 1.0 1.5 10 10 10 10 0.1 0.3 10 10 10 10 1.0 1.0 1.5 5 5 5 0.1 0.3 0.1 0.3 10 10 10 1.0 1.0 1.0 1.5 5 5 5 0.1 0.3 0.1 1.0 10 10 1.0 1.0 1.0 1.0 1.0 5 5 5 0.1 0.0 0.0 0.0 10 10 1.0 </td <td></td> <td>μ_3</td> <td>0.0</td> <td>1.0</td> <td>1.0</td> <td>0.2</td> <td>0.2</td> <td>0.0</td> <td>0.2</td> <td>1.0</td> <td>1.0</td> <td>0.0</td> <td>0.2</td> <td>3.2</td> <td>2.0</td> <td>0.0</td> <td>2.0</td> <td>1.0</td> <td>0.0</td> <td>1.5</td> <td>1.5</td> <td>1.4</td>		μ_3	0.0	1.0	1.0	0.2	0.2	0.0	0.2	1.0	1.0	0.0	0.2	3.2	2.0	0.0	2.0	1.0	0.0	1.5	1.5	1.4
n_1 n_2 n_3 n_4 n_5 μ_1 5 5 5 7 10 5 5 5 7 10 5 5 5 110 10 5 5 5 110 10 5 5 5 110 10 10 10 10 10 10 10 10 10 10 10 5 5 5 0.1 10 5 5 5 0.1 10 10 10 10 10 10 10 5 5 5 5 10.0 10 10 10 10 10 10 10 10 10 10 10 10 5 5 5 5 10 10 6 10 10 10 10 10 10 <t< td=""><td>ante</td><td>μ_2</td><td>0.0</td><td>2.0</td><td>1.5</td><td>0.4</td><td>0.3</td><td>0.0</td><td>0.4</td><td>2.0</td><td>3.0</td><td>0.0</td><td>0.3</td><td>1.5</td><td>1.1</td><td>0.0</td><td>1.0</td><td>2.0</td><td>0.0</td><td>1.0</td><td>1.1</td><td>1.0</td></t<>	ante	μ_2	0.0	2.0	1.5	0.4	0.3	0.0	0.4	2.0	3.0	0.0	0.3	1.5	1.1	0.0	1.0	2.0	0.0	1.0	1.1	1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	μ_1	0.0	1.0	1.0	0.1	0.1	0.0	0.1	1.0	1.0	0.0	0.1	1.0	1.0	0.0	1.0	1.0	0.0	1.0	1.0	1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		n_5				-	-		-	-			-	-	-		-		5	ъ	ъ	υ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		n_4										ഹ	ю	ю	Ŋ	10	10	10	Ŋ	ഹ	ю	Ŋ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		n_3	5 L	Ŋ	ъ	ю	υ	10	10	10	10	ъ	ъ	Ŋ	ю	10	10	10	υ	ы	ю	υ
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		n_2	പ	ю	ю	IJ	Ŋ	10	10	10	10	ഹ	ю	IJ	Ŋ	10	10	10	Ŋ	പ	ഹ	Ŋ
				5	20	ы	ស	10	10	10	10	ы	ഹ	ю	ю	10	10	10	Ŋ	n	ю	ю

Table 17: Powers Adjusted for Size $R(\delta)$ under $E(\theta_i)$

1	1 0.2747 0.11 8 0.1708 0.06	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0.2747 0	0 1/08 0 1/08	$\begin{array}{rrrr} 0.1498 & 0.1498 \\ 0.0811 & 0.0811 \end{array}$	0.1498 0.1498 0.0811 0.0811 0.4392 0.5248	0.1498 0.1498 0.0811 0.0811 0.4392 0.5248 0.2920 0.3975	$\begin{array}{rrrr} 0.1498 & 0.1498 \\ 0.0811 & 0.0811 \\ 0.4392 & 0.5248 \\ 0.2920 & 0.3975 \\ 0.9817 & 0.9859 \end{array}$	0.1498 0.1498 0.0811 0.0811 0.4392 0.5248 0.2920 0.3975 0.9817 0.9859 0.6818 0.7874	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
0.1498 0.149	N.LT.U UGTIU	0.0811 0.081	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0811 0.081 0.4392 0.439 0.2920 0.292	0.0811 0.081 0.4392 0.439 0.2920 0.292 0.9817 0.981	0.0811 0.081 0.4392 0.439 0.2920 0.292 0.9817 0.981 0.6818 0.681	0.0811 0.081 0.4392 0.439 0.2920 0.2920 0.2921 0.2921 0.9817 0.981 0.6818 0.681 0.4471 0.447	0.0811 0.081 0.4392 0.439 0.2920 0.292 0.2921 0.292 0.9817 0.981 0.6818 0.681 0.4471 0.447 0.7389 0.738	0.0811 0.081 0.4392 0.439 0.2920 0.2929 0.2920 0.2921 0.9817 0.981 0.6818 0.681 0.4471 0.447 0.7389 0.738 0.5354 0.535	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.U 6681.U	0.1094 0.0		0.5126 0.4	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.5 \end{array}$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.5 \\ 0.9910 & 0.6 \end{array}$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.5 \\ 0.9910 & 0.9 \\ 0.7295 & 0.6 \end{array}$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.5 \\ 0.9910 & 0.6 \\ 0.7295 & 0.6 \\ 0.5161 & 0.4 \end{array}$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.5 \\ 0.9910 & 0.9 \\ 0.7295 & 0.6 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \end{array}$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.2 \\ 0.9910 & 0.9 \\ 0.7295 & 0.6 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \\ 0.4839 & 0.4 \\ 0.4839 & 0.4 \end{array}$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.5 \\ 0.9910 & 0.6 \\ 0.7295 & 0.6 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8139 & 0.6 \\ 0.9916 & 0.9 \\ 0.9916 & 0.9 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.5 \\ 0.9910 & 0.9910 & 0.6 \\ 0.7295 & 0.6 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.5555 & 0.5 \\ 0.1000 & 1.0 \\ 1.0000 & 1.0 \\ \end{array}$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.2 \\ 0.9910 & 0.6 \\ 0.7295 & 0.6 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.2 \\ 0.9910 & 0.910 & 0.6 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8753 & 0.6 \\ 0.4753 & 0.6 \\ 0.4753 & 0.6 \\ 0.4753 & 0.6 \\ 0.4753 & 0.6 \\ 0.4753 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.6 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5754 \\ 0.5754 & 0.5754 \\ 0.5754 & 0.5754 \\ 0.5754 & 0.5754 \\ 0.5754 & 0.5754 \\ 0.5754 & 0.5754 \\ 0.5754 & 0.5754 \\ 0.5754 & 0.5754 \\ 0.5754 & 0.5$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.2 \\ 0.9910 & 0.910 & 0.6 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.2 \\ 0.9910 & 0.910 & 0.6 \\ 0.5161 & 0.4 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \\ 0.4839 & 0.7 \\ 0.4839 & 0.7 \\ 0.9916 & 0.7 \\ 0.9875 & 0.2 \\ 0.4001 & 0.4 \\ 0.4753 & 0.4 \\ 0.4001 & 0.4 \\ 0.5754 & 0.4 \\ 0.5756 & 0.4 \\ 0.5756 & 0.2 \\ 0.5756 & 0.2 \\ 0.5756 & 0.2 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.9 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.910 \\ 0.910 & 0.$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.2 \\ 0.9910 & 0.910 & 0.6 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.9166 & 0.2 \\ 0.5786 & 0.2 \\ 0.5786 & 0.2 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.3 \\ 0.9403 & 0.4 \\ 0.9404 & 0.4 \\ 0.9404 & 0.4 \\ 0.9404 & 0.4 \\ 0.9404 & 0.4 \\ 0.9404 & 0.4 \\ 0.9404 & 0.4 \\ 0.9404 & 0.4 \\ 0.9404 & 0.4 \\ 0.9404 & 0.4 \\ 0.9404$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.2 \\ 0.9910 & 0.910 & 0.6 \\ 0.5161 & 0.4 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.916 & 0.2 \\ 0.916 & 0.2 \\ 0.2555 & 0.2 \\ 0.4753 & 0.2 \\ 0.2555 & 0.2 \\ 0.5754 & 0.2 \\ 0.5756 & 0.2 \\ 0.5756 & 0.2 \\ 0.9403 & 0.2 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 & 0.4 \\ 0.5508 &$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.2 \\ 0.9910 & 0.910 & 0.6 \\ 0.5161 & 0.4 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.4839 & 0.6 \\ 0.916 & 0.9 \\ 0.916 & 0.9 \\ 0.2555 & 0.6 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.5754 & 0.2 \\ 0.5754 & 0.2 \\ 0.5754 & 0.2 \\ 0.5754 & 0.2 \\ 0.5754 & 0.2 \\ 0.5754 & 0.2 \\ 0.5756 & 0.2 \\ 0.5756 & 0.2 \\ 0.5750 & 0.6 \\ 0.5750 & 0.6 \\ 0.5665 & 0.2 \\ 0.5666 & 0.2 \\ 0.5666 & 0.2 \\ 0.5750 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 & 0.6 \\ 0.6805 &$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.2 \\ 0.9910 & 0.9910 & 0.6 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.916 & 0.6 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.4753 & 0.7 \\ 0.25555 & 0.7 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5666 & 0.4 \\ 0.5666 & 0.4 \\ 0.5666 & 0.4 \\ 0.5786 & 0.4 \\ 0.5689 & 0.6 \\ 0.5894 & 0.6 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5895 & 0.4 \\ 0.5894 & 0.4 \\ 0.5895 & 0.4 \\ 0.5894 & 0.4 \\ 0.5895 & 0.4 \\ 0.5894 & 0.4 \\ 0.5894 & 0.4 \\ 0.5895 & 0.4 \\ 0.5894 & 0.4 \\ 0.5895 & 0.4 \\ 0.5894 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5894 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.5895 & 0.4 \\ 0.589$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.2 \\ 0.9910 & 0.910 & 0.9 \\ 0.5161 & 0.4 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8321 & 0.4 \\ 0.5666 & 0.4 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.4753 & 0.7 \\ 0.4753 & 0.7 \\ 0.4753 & 0.7 \\ 0.5666 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5689 & 0.4 \\ 0.5894 & 0.4 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321 & 0.7 \\ 0.8321$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.2 \\ 0.9910 & 0.910 & 0.6 \\ 0.5161 & 0.4 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8321 & 0.4 \\ 0.2555 & 0.6 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.55894 & 0.4 \\ 0.5805 & 0.7 \\ 0.5805 & 0.7 \\ 0.5804 & 0.4 \\ 0.5805 & 0.7 \\ 0.5804 & 0.4 \\ 0.5805 & 0.7 \\ 0.5804 & 0.2 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5804 & 0.4 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.5802 & 0.7 \\ 0.580$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.2 \\ 0.9910 & 0.910 & 0.6 \\ 0.5161 & 0.4 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.4839 & 0.6 \\ 0.4753 & 0.4 \\ 0.4001 & 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.5 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.4 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5 \\ 0.5754 & 0.5$	$\begin{array}{c} 0.5126 & 0.4 \\ 0.3484 & 0.2 \\ 0.9910 & 0.9910 & 0.6 \\ 0.5161 & 0.4 \\ 0.5161 & 0.4 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.8148 & 0.7 \\ 0.916 & 0.4 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.4753 & 0.4 \\ 0.5666 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5666 & 0.4 \\ 0.5786 & 0.4 \\ 0.5786 & 0.4 \\ 0.5666 & 0.4 \\ 0.5666 & 0.4 \\ 0.5666 & 0.4 \\ 0.5786 & 0.4 \\ 0.5666 & 0.4 \\ 0.5786 & 0.4 \\ 0.5666 & 0.4 \\ 0.5666 & 0.4 \\ 0.5666 & 0.4 \\ 0.5666 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.5780 & 0.4 \\ 0.5780 & 0.4 \\ 0.5780 & 0.4 \\ 0.5780 & 0.4 \\ 0.5805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.5780 & 0.4 \\ 0.56805 & 0.4 \\ 0.56805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\ 0.5805 & 0.4 \\$	$\begin{array}{c} 0.5126 & 0.4\\ 0.3484 & 0.2\\ 0.9910 & 0.9910 & 0.6\\ 0.5161 & 0.4\\ 0.5161 & 0.4\\ 0.8148 & 0.7\\ 0.8148 & 0.7\\ 0.8148 & 0.6\\ 0.8148 & 0.6\\ 0.8148 & 0.6\\ 0.8148 & 0.6\\ 0.9168 & 0.6\\ 0.4753 & 0.6\\ 0.4753 & 0.6\\ 0.4753 & 0.6\\ 0.4753 & 0.6\\ 0.4753 & 0.6\\ 0.4753 & 0.6\\ 0.4753 & 0.6\\ 0.4753 & 0.6\\ 0.5666 & 0.6\\ 0.4753 & 0.6\\ 0.5754 & 0.6\\ 0.5754 & 0.6\\ 0.5666 & 0.6\\ 0.6\\ 0.5754 & 0.6\\ 0.5666 & 0.6\\ 0.6\\ 0.5666 & 0.6\\ 0.6\\ 0.5666 & 0.6\\ 0.6\\ 0.5666 & 0.6\\ 0.6\\ 0.5699 & 0.6\\ 0.6\\ 0.5699 & 0.6\\ 0.6\\ 0.9128 & 0.6\\ 0.9128 & 0.6\\ 0.9128 & 0.6\\ 0.9999 & 1.6\\ 0.9999 & 1.6\\ 0.9999 & 1.6\\ 0.9999 & 1.6\\ 0.9999 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 & 1.6\\ 0.9000 $
	0.0811	0.4392 (0.2920	0.2920 (0.9817	0.2920 0.9817 0.6818	0.2920 0.9817 0.6818 0.4471	0.2920 0.9817 0.6818 0.6818 0.4471 0.7389	0.2920 0.9817 0.6818 0.6818 0.4471 0.7389 0.5354	0.2920 0.9817 0.6818 0.4471 0.4471 0.7389 0.7389 0.5354 0.5354 0.972	0.2920 0.9817 0.6818 0.4471 0.7389 0.5354 0.5354 0.2360	$\begin{array}{c} 0.2920 \\ 0.9817 \\ 0.9817 \\ 0.6818 \\ 0.4471 \\ 0.7389 \\ 0.7389 \\ 0.5354 \\ 0.5354 \\ 0.9972 \\ 0.9972 \\ 0.2360 \\ 1.0000 \end{array}$	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.7389\\ 0.7389\\ 0.7389\\ 0.7389\\ 0.7389\\ 0.7389\\ 0.2360\\ 1.0000\\ 0.4825\\ 0.4825\end{array}$	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.7389\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.2360\\ 0.4825\\ 0.4875\\ 0.4875\end{array}$	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.7389\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5356\\ 0.2360\\ 1.0000\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.5159\end{array}$	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.7389\\ 0.7389\\ 0.7389\\ 0.7389\\ 0.7389\\ 0.7389\\ 0.5354\\ 0.972\\ 0.972\\ 0.972\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4992\\ 0.4992\end{array}$	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5356\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4813\\ 0.4813\\ 0.4813\end{array}$	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5356\\ 0.2360\\ 1.0000\\ 0.4875\\ 0.4875\\ 0.4892\\ 0.4892\\ 0.4813\\ 0.4813\\ 0.4813\\ 0.5159\\ 0.4813\\ 0.5159\\ 0.4813\\ 0.9735\end{array}$	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5356\\ 0.5356\\ 0.5356\\ 0.5356\\ 0.2360\\ 1.0000\\ 0.2360\\ 0.4875\\ 0.2360\\ 0.4875\\ 0.2360\\ 0.4875\\ 0.2360\\ 0.4875\\ 0.2360\\ 0.4813\\ 0.9735\\ 0.9735\\ 0.9089\end{array}$	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.7389\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5356\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4813\\ 0.9735\\ 0.4813\\ 0.9735\\ 0.9089\\ 0.9089\\ 0.6142\end{array}$	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.7389\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.9725\\ 0.2360\\ 0.4875\\ 0.2360\\ 0.4875\\ 0.2360\\ 0.4875\\ 0.2360\\ 0.4875\\ 0.9735\\ 0.4892\\ 0.4813\\ 0.4813\\ 0.6142\\ 0.6142\\ 0.6142\\ 0.6121\end{array}$	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.9735\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4813\\ 0.4813\\ 0.6142\\ 0.6142\\ 0.06142\\ 0.6121\\ 0.61221\\ 0.612221\\ 0.61221\\ 0.61221\\ 0.61221\\ 0.61221\\ 0.61221\\ 0.61221\\ 0.61$	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5356\\ 0.9735\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4813\\ 0.4875\\ 0.4875\\ 0.4813\\ 0.4922\\ 0.4813\\ 0.6142\\$	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.5354\\ 0.9972\\ 0.9735\\ 0.9735\\ 0.4875\\ 0.4892\\ 0.4875\\ 0.4920\\ 0.7315\\ 0.7747\\$	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.9735\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4875\\ 0.4825\\ 0.4813\\ 0.4813\\ 0.4813\\ 0.4825\\ 0.4825\\ 0.4825\\ 0.4825\\ 0.4922\\ 0.4922\\ 0.6142\\ 0.6142\\ 0.6121\\ 0.0899\\ 0.6142\\ 0.7747\\ 0.9001\\ 0.9001\\ 0.9001\\ 0.9001\\ 0.0901\\ 0.9001\\$	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5356\\ 0.5356\\ 0.2360\\ 1.0000\\ 1.0000\\ 0.4875\\ 0.2360\\ 0.4875\\ 0.4920\\ 0.6142\\ 0.901\\ 0.9901\\ 0.9990\\ 0.9990\\ 0.9990\\ 0.9990\\ 0.9817\\ 0.9990\\ 0.9990\\ 0.9990\\ 0.9990\\ 0.9990\\ 0.9990\\ 0.9817\\ 0.9990\\ 0.9990\\ 0.9990\\ 0.9990\\ 0.9990\\ 0.9900\\ $	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5354\\ 0.5356\\ 0.3607\\ 0.4875\\ 0.4992\\ 0.4875\\ 0.4992\\ 0.4875\\ 0.4992\\ 0.4875\\ 0.4992\\ 0.4813\\ 0.4875\\ 0.4992\\ 0.4813\\ 0.4920\\ 0.4813\\ 0.6142\\ 0.7315\\ 0.9990\\ 0.7747\\ 0.9990\\ 1.0000\\ 1.0000\end{array}$	$\begin{array}{c} 0.2920\\ 0.9817\\ 0.9817\\ 0.9817\\ 0.6818\\ 0.4471\\ 0.7389\\ 0.7389\\ 0.9735\\ 0.9735\\ 0.4875\\ 0.4992\\ 0.9990\\ 1.0000\\ 1.0000\\ 1.0000\\ \end{array}$
>>>+->	0.1094	0.5126	0 9101	0.0404	0.9910	0.9910 0.7295	0.9404 0.9910 0.7295 0.5161	0.5404 0.9910 0.7295 0.5161 0.8148	0.04839 0.9910 0.7295 0.5161 0.8148 0.4839	0.0464 0.9910 0.7295 0.5161 0.8148 0.4839 0.4839 0.9916	0.0464 0.9910 0.7295 0.5161 0.8148 0.4839 0.4839 0.9916 0.2555	0.2555 0.9910 0.7295 0.5161 0.8148 0.8148 0.4839 0.9916 0.2555 1.0000	0.2555 0.9910 0.7295 0.5161 0.8148 0.4839 0.4839 0.9916 0.25555 1.0000 0.5008	0.57295 0.9910 0.7295 0.5161 0.8148 0.4839 0.4839 0.9916 0.2555 1.0000 0.5008 0.4337	0.5555 0.9910 0.7295 0.5161 0.8148 0.8148 0.4839 0.4839 0.9916 0.2555 1.0000 0.5508 0.4337 0.5953	0.5770 0.7295 0.7295 0.5161 0.8148 0.4839 0.4839 0.4839 0.25555 1.0000 0.5008 0.5953 0.5953 0.5953	0.5776 0.9910 0.7295 0.5161 0.8148 0.4839 0.4839 0.9916 0.2555 1.0000 0.5008 0.4337 0.5770 0.5778	0.5726 0.9910 0.7295 0.5161 0.8148 0.8148 0.4839 0.4839 0.9916 0.2555 1.0000 0.5508 0.4337 0.5953 0.5770 0.5778 0.5778 0.5778	0.570 0.9910 0.7295 0.5161 0.8148 0.4839 0.4839 0.4839 0.9916 0.25555 1.0000 0.5008 0.5953 0.5953 0.5953 0.5770 0.5770 0.5778 0.9901 0.9512	0.57295 0.9910 0.7295 0.5161 0.8148 0.8148 0.4839 0.9916 0.9916 0.2555 1.0000 0.5008 0.4337 0.5923 0.5778 0.5778 0.5778 0.5778 0.5901 0.5550 0.5778 0.5778 0.5778 0.5778 0.5512 0.5512 0.55512 0.55512 0.55512 0.55512 0.55512 0.55512 0.55512 0.55512 0.55523 0.55778 0.5578 0.55778 0.	0.57295 0.9910 0.7295 0.5161 0.8148 0.8148 0.4839 0.9916 0.25555 1.0000 0.5008 0.4337 0.5953 0.5953 0.5770 0.5778 0.5850 0.5850 0.5850	0.5726 0.9910 0.7295 0.5161 0.8148 0.8148 0.8148 0.9916 0.2555 1.0000 0.5570 0.5953 0.5973 0.5972 0.5971 0.5972 0.5971 0.5971 0.5953 0.5778 0.5891 0.5891	0.57295 0.9910 0.7295 0.8148 0.8148 0.4839 0.9916 0.9916 0.2555 1.0000 0.5008 0.4337 0.5008 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5770 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5891 0.5804	0.57295 0.9910 0.7295 0.5161 0.8148 0.8148 0.4839 0.9916 0.25555 1.0000 0.5008 0.4337 0.5933 0.5778 0.5953 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5851 0.5861 0.5804 0.	0.57295 0.9910 0.7295 0.5161 0.8148 0.8148 0.9916 0.25555 1.0000 0.5953 0.5953 0.5953 0.5770 0.5770 0.5778 0.59512 0.5891 0.5891 0.5891 0.5891 0.5891 0.5891 0.5891 0.5891 0.5892 0.59292 0.59292 0.59292 0.59292 0.59292 0.59292 0.59292 0.59292 0.59292 0.59292 0.59292 0.59292 0.59292 0.59292 0.59700 0.59700 0.59700 0.59700 0.59700 0.59700 0.59700 0.59700 0.589202 0.59700 0.59700 0.59700 0.59700 0.59700 0.589202 0.597000 0.597000 0.597000 0.59700000000000000000000000000000000000	0.57295 0.9910 0.7295 0.8148 0.8148 0.4839 0.9916 0.9916 0.2555 1.0000 0.5978 0.5770 0.5778 0.5901 0.5778 0.5912 0.5820 0.5820 0.5801 0.5801 0.5801 0.5801 0.5801 0.5801 0.5802 0.9850 0.9850 0.9850	0.57295 0.9910 0.7295 0.5161 0.8148 0.8148 0.4839 0.9916 0.25555 1.0000 0.5778 0.5778 0.5973 0.5778 0.5901 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5778 0.5770 0.5778 0.5770 0.5778 0.5778 0.5770 0.5778 0.5770 0.5770 0.5770 0.5770 0.5770 0.5770 0.5770 0.5770 0.5770 0.5770 0.5770 0.5770 0.5770 0.5801 0.5801 0.5801 0.5801 0.5802 0.9850 0.9850 0.9850 1.0000 0.9850 0.990 0.900 0.900 0.900 0.900 0.900 0.900	0.57295 0.9910 0.7295 0.5161 0.8148 0.8148 0.4839 0.9916 0.5555 1.0000 0.5770 0.5778 0.5953 0.5778 0.5953 0.5778 0.5850 0.5950 0.5850 0.5850 0.5850 0.5950 0.5850 0.5850 0.5850 0.5850 0.5950 0.5950 0.5950 0.5950 0.5950 0.5000 0.5000 0.5000 0.5000
2	10	2		2	0 0	000	0000	00000	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	иииииииииииииииииииииииииииииииииииии	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	си с с с с с с с с с с с с с с с с с с	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	сосорососососососососососососососососос	てらららしてていらららしててててててて	ててららららてててららららてててててて	ら て ら ら ら ら て ら ら ら ら ら て て て て て て て て	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
													1	10	0 0 1	0 0 0	1 0 0 0	10001	1 0 0 0 1 1	1 0 0 0 1 1 0		100011000	- 0 0 0 0 0 0			10001100001		
U		.2		5	5 5 5	यं यं यं	<i>i i i i</i> o	<i>4 6 7 6 0</i>	<u>ci ci ci oi oi si</u>	2i 2i 2i 0i 0i 8i 0i	<i>4 4 9 0 0 8 0 0</i>	<i>vi vi vi o</i> o xi o o o	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 3 2 3 5 5 5 5 5 5 5	2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 0 0 0 0 0 0 0 7 7 7 0 0 0 0 0 0	2 2 2 2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2 0 0 0 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7
- 1- - 1-	[.2 1.0	.4 0.5		.3 0.5).3 0.5 L.0 0.5).3 0.5 1.0 0.1 0.4 0.5).3 0.3 1.0 0.4 1.0 1.0 2.0 1.0	0.3 0.3 1.0 0.1 0.4 0.2 0.1 0.5 8.0 1.0 8.0 1.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.3 0.3 0.3 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.3 0.3 0.3 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.33 1.0 1.0 0.1 0.1 0.1 0.0 1.0 1.0 1.0 1.0	0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	2.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	$\begin{array}{c} 0.3\\ 1.0\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0 3.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	0.3 0.3 0.1 0.4 0.2 0.1 0.3 0.1 0.4 0.2 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.2 0.5 0.2 0.5 0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3 0.3 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.3 0.3 0.1 0.1 0.2 0.1 0.3 0.1 0.1 0.1 0.2 0.1 0.3 0.3 0.4 0.2 0.5 0.1 0.5 0.2 0.5 0	0.3 0.3 0.3 0.1 0.2 0.1 0.2 0.1 0.2 0.3 0.1 0.2 0.1 0.3 0.3 0.1 0.2 0.1 0.2 0.3 0.3 0.1 0.1 0.2 0.3 0.3 0.2 0.1 0.2 0.3 0.3 0.3 0.1 0.3 0.3 0.3 0.3 0.1 0.2 0.3 0.3 0.3 0.1 0.3 0.3 0.3 0.3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.3 0.3 0.3 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 0	$\begin{array}{c} 0.3\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.3\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$	$\begin{array}{c} 0.3\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-	.0 1.	0.1 0.	C F C	0.T U.	0.1 U. 0.1 1.	0.1 U. 0.1 1. 0.1 0.	0.1 0.1 0.1 1. 0.1 0. 1.0 2.	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.1 0.1 0.1 0.1 1.0 0.1 0.1 0.1 0.1 0.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 1.0 \\ 1.0 \\ 2. \\ 1.0 \\ 2. \\ 1.0 \\ 2. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 3. \\ 1.0 \\ 1.0 \\ 3. \\ 1.0 \\ 1.$	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 1.0 \\ 1.0 \\ 2.3 \\ 1.0 \\ 2.3 \\ 1.0 \\ 1.0 \\ 1.0 \\ 0.1 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 1.0 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.1 \\ 0.1 \\ 0.1 \\ 1.0 \\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.1\\ 0.1\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	$\begin{array}{c} 0.1\\ 0.1\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.1\\ 0.1\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\$
.0																												
$\begin{vmatrix} 1.0 & 2. \\ 1.0 & 1. \end{vmatrix}$																												
													ىر س	ى ت	വ വ	ப்பி	പ പ പ പ പ	ດດດວດ	വ വ വ വ വ വ	ບດດດດດດ	ດ ດ ດ ດ ດ ດ ດ ດ	ດດດວດດວດ	പെപപപപപപപം പ	- 1 1 ממממממממ	10 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ר 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0
5 1.0 2.	5 C	Ľ	5	טינ	0 10 5	5 0 10 0 10	$ \begin{array}{c} 5 \\ 0 \\ 10 \\ 0 \\ 10 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 10 \\ 0 \\ 10 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	13 13 13 10 10 10 10 10 10 10 10 10 10 10 10 10	ور 15 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ور ور ور ور ور ور ور 1 ور ور ور ور ور ور ور ور 1 ور	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر ر	9 9 9 9 9 9 9 9 9 9 9 9 9 9	ى 10 10 10 10 10 10 10 10 10 10 10 10 10 1	ດ ດີດ ດີດ ດີດ ດີດ ດີດ ດີດ ດີດ ດີດ ດີດ ດ	ດດດີດ ດີດີດີດີດີ ດີດີດີດີ ດີດີດີ ດີດີດີ ດີດີ ດີດີ ດີດີ ດີດີ ດີ	ດ ດີດີດີດີ ດີດີດີດີ ດີດີດີດີ ດີດີດີດີ ດີດີດີ ດີດີ ດີດີ ດີດີ ດີດີ ດີດີ ດີດີ ດີດີ ດີດີ ດີ					0 10 10 10 10 10 10 10 10 10 10 10 10 10	0 10 10 10 10 10 10 10 10 10 10 10 10 10	0 10 10 10 10 10 10 10 10 10 1	0 10 10 10 10 10 10 10 10 10 10 10 10 10	م 10 10 10 10 10 10 10 10 10 10 10 10 10 1

Table 18: Estimated Power Values for k = 3, 4 under $E(\theta_i)$

	KW	0.1825	0.1668	0.1546	0.0556	0.0657	0.1962	0.1814	0.0499	0.0848	0.0509	0.7457	0.9975	0.1391	0.4600	0.5915	0.6487	0.4564	0.0533	0.0926	0.1454	0.3418	0.0610	0.2425	1.0000	0.8437	0.8547	0.2216	0.9650	0.0664	0.0886
	HNOPT	0.5389	0.5300	0.4767	0.1919	0.2340	0.5931	0.5627	0.1831	0.2921	0.1649	0.9430	1.0000	0.5258	0.8976	0.9741	0.8580	0.7176	0.0958	0.2020	0.4198	0.6459	0.1273	0.5009	1.0000	0.9816	0.9868	0.5677	0.9995	0.1894	0.2583
	HNEQ	0.5389	0.4957	0.4467	0.1741	0.2298	0.4113	0.3922	0.1526	0.2921	0.1598	0.9602	1.0000	0.2612	0.6281	0.8258	0.8580	0.6161	0.0958	0.1890	0.4198	0.5982	0.1273	0.3791	1.0000	0.8468	0.9478	0.5677	0.9995	0.1792	0.2260
$(heta_i)$	Bhat	0.4863	0.5102	0.3867	0.1734	0.2209	0.5111	0.5072	0.1682	0.2763	0.1527	0.9541	0.99999	0.4468	0.7315	0.9099	0.8588	0.6173	0.0968	0.1909	0.2798	0.3572	0.1164	0.4417	0.9949	0.9645	0.9348	0.5393	0.9911	0.1465	0.2430
under E (SAL	0.39999	0.5100	0.2909	0.1549	0.1860	0.5424	0.5173	0.1978	0.2574	0.1466	0.9188	1.0000	0.5230	0.6580	0.9766	0.8602	0.6327	0.1053	0.1990	0.3213	0.2695	0.1152	0.3979	0.6885	0.9753	0.9613	0.3573	0.9855	0.1561	0.1952
= 4, 5, 6 u	MM	0.4977	0.5320	0.4033	0.1729	0.2202	0.5432	0.5239	0.1703	0.2845	0.1551	0.9550	1.0000	0.4263	0.7690	0.9462	0.8588	0.6173	0.0968	0.1909	0.3523	0.4250	0.1217	0.4395	0.9960	0.9571	0.9692	0.5381	0.9989	0.1609	0.2520
s for $k =$	LAR	0.4467	0.5391	0.3336	0.1705	0.2090	0.5895	0.5636	0.1989	0.2744	0.1562	0.9413	1.0000	0.5107	0.7249	0.9785	0.8602	0.6327	0.1053	0.1990	0.3814	0.3231	0.1293	0.4268	0.8659	0.9769	0.9716	0.4122	0.9941	0.1714	0.2276
alue	eak																														
\geq		က	က	က	$\hat{\mathbf{c}}$	\mathfrak{S}	4	$\overline{4}$	\mathfrak{S}	\mathfrak{S}	\mathfrak{S}	$\hat{\mathbf{c}}$	က	S	\mathfrak{S}	\mathfrak{S}	\sim	\sim	\sim	2	$\hat{\mathbf{c}}$	\mathfrak{S}	\sim	\sim	\mathfrak{S}	4	2	\mathfrak{S}	\mathfrak{S}	ŝ	\mathfrak{S}
ower V			ন্ <u>য</u>	<u></u>	с,	ср 	4	4	с С	co	co C	က 	00 	0.0 5	0.0 3	0.0 3	5	5	5	7	с.	00 0	2	5	co	4	7	က	က	က	0.0 3
ed Power V	μ_5 F	1.0 3	0.0 3	1.0 3	0.0 3	0.0 3	1.0 4	1.0 4	1.0 3	1.0 3	1.0 3	0.1 3	0.1 3	1.0 0.0 5	1.0 0.0 3	0.2 0.0 3	5	5	2	5	ന 	<u></u>	2	2	0.0 3	0.1 4	0.0 2	0.0 3	0.0 3	0.0 3	0.1 0.0 3
timated Power V	$\mu_4 \mu_5 $ F	2.0 1.0 3	0.3 0.0 3	2.0 1.0 3	$0.1 0.0 \qquad 3$	$0.3 0.0 \qquad 3$	$2.0 1.0 \ 4$	2.0 1.0 4	1.1 1.0 3	1.5 1.0 3	1.3 1.0 3	0.2 0.1 3	0.2 0.1 3	0.4 1.0 0.0 5	1.0 1.0 0.0 3	0.4 0.2 0.0 3	2	2	2	2	2.0 3	2.0 3	0.0 2	0.0 2	1.0 0.0 3	1.0 0.1 4	$0.1 0.0 \qquad 2$	0.5 0.0 3	$1.0 0.0 \qquad 3$	0.2 0.0 3	0.2 0.1 0.0 3
9: Estimated Power V	$\mu_3 \mu_4 \mu_5 $ F	3.0 2.0 1.0 3	$1.0 0.3 0.0 \qquad 3$	2.5 2.0 1.0 3	$0.4 0.1 0.0 \qquad 3$	0.5 0.3 0.0 3	$1.5 2.0 1.0 \ 4$	$1.5 2.0 1.0 \ 4$	1.4 1.1 1.0 3	2.0 1.5 1.0 3	1.5 1.3 1.0 3	$0.5 0.2 0.1 \qquad 3$	3.0 0.2 0.1 3.0	0.2 0.4 1.0 0.0 5	1.5 1.0 1.0 0.0 3	2.0 0.4 0.2 0.0 3	1.0 2	1.0 2	0.1 2	0.6 2	3.0 2.0 3	2.5 2.0 3	0.1 0.0 2	0.3 0.0 2	2.0 1.0 0.0 3	0.2 1.0 0.1 4	$0.1 0.1 0.0 \qquad 2$	$1.0 0.5 0.0 \qquad 3$	2.0 1.0 0.0 3	$0.3 0.2 0.0 \qquad 3$	0.3 0.2 0.1 0.0 3
ble 19: Estimated Power V	μ_2 μ_3 μ_4 μ_5 F	2.0 3.0 2.0 1.0 3	0.3 1.0 0.3 0.0 3	2.0 2.5 2.0 1.0 3	0.3 0.4 0.1 0.0 3	$0.3 0.5 0.3 0.0 \qquad \ 3$	$1.0 1.5 2.0 1.0 \ 4$	$1.1 1.5 2.0 1.0 \ 4$	1.0 1.4 1.1 1.0 3	1.5 2.0 1.5 1.0 3	$1.3 1.5 1.3 1.0 \qquad 3$	0.2 0.5 0.2 0.1 3	$0.2 \ 3.0 \ 0.2 \ 0.1 $ 3	0.2 0.2 0.4 1.0 0.0 5	$0.2 \ 1.5 \ 1.0 \ 1.0 \ 0.0 \ 3$	0.2 2.0 0.4 0.2 0.0 3	2.0 1.0 2	2.0 1.0 2	0.2 0.1 2	0.8 0.6 2	$2.0 \ 3.0 \ 2.0$ 3.0 2.0 3	2.0 2.5 2.0 3	0.2 0.1 0.0 2	0.5 0.3 0.0 2	1.0 2.0 1.0 0.0 3	0.1 0.2 1.0 0.1 4	1.5 0.1 0.1 0.0 2	0.5 1.0 0.5 0.0 3	1.0 2.0 1.0 0.0 3	$0.1 0.3 0.2 0.0 \qquad 3$	0.1 0.3 0.2 0.1 0.0 3
Table 19: Estimated Power V	μ_1 μ_2 μ_3 μ_4 μ_5 F	1.0 2.0 3.0 2.0 1.0 3	0.0 0.3 1.0 0.3 0.0 3	1.0 2.0 2.5 2.0 1.0 3	0.0 0.3 0.4 0.1 0.0 3	0.0 0.3 0.5 0.3 0.0 3	$1.0 1.0 1.5 2.0 1.0 \ 4$	$1.0 1.1 1.5 2.0 1.0 \ 4$	1.0 1.0 1.4 1.1 1.0 3	1.0 1.5 2.0 1.5 1.0 3	1.0 1.3 1.5 1.3 1.0 3	0.1 0.2 0.5 0.2 0.1 3	0.1 0.2 3.0 0.2 0.1 3	0.1 0.2 0.2 0.4 1.0 0.0 5	0.1 0.2 1.5 1.0 1.0 0.0 3	0.0 0.2 2.0 0.4 0.2 0.0 3	1.0 2.0 1.0 2	1.5 2.0 1.0 2	0.1 0.2 0.1 2	0.5 0.8 0.6 2	1.0 2.0 3.0 2.0 3	$1.0 \ 2.0 \ 2.5 \ 2.0$ 3	0.1 0.2 0.1 0.0 2	0.0 0.5 0.3 0.0 2	$0.0 1.0 2.0 1.0 0.0 \ 3$	0.1 0.1 0.2 1.0 0.1 4	$0.5 \ 1.5 \ 0.1 \ 0.1 \ 0.0 \ \ 2$	0.0 0.5 1.0 0.5 0.0 3	0.0 1.0 2.0 1.0 0.0 3	0.0 0.1 0.3 0.2 0.0 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Table 19: Estimated Power V	$egin{array}{c c c c c c c c c c c c c c c c c c c $	1.0 2.0 3.0 2.0 1.0 3	0.0 0.3 1.0 0.3 0.0 3	1.0 2.0 2.5 2.0 1.0 3	0.0 0.3 0.4 0.1 0.0 3	0.0 0.3 0.5 0.3 0.0 3	1.0 1.0 1.5 2.0 1.0 4	1.0 1.1 1.5 2.0 1.0 4	1.0 1.0 1.4 1.1 1.0 3	1.0 1.5 2.0 1.5 1.0 3	1.0 1.3 1.5 1.3 1.0 3	0.1 0.2 0.5 0.2 0.1 3	0.1 0.2 3.0 0.2 0.1 3	5 0.1 0.2 0.2 0.4 1.0 0.0 5	5 0.1 0.2 1.5 1.0 1.0 0.0 3	5 0.0 0.2 2.0 0.4 0.2 0.0 3	1.0 2.0 1.0 2	1.5 2.0 1.0 2	0.1 0.2 0.1 2	0.5 0.8 0.6 2	1.0 2.0 3.0 2.0 3	1.0 2.0 2.5 2.0 3	0.1 0.2 0.1 0.0 2	0.0 0.5 0.3 0.0 2	0.0 1.0 2.0 1.0 0.0 3	0.1 0.1 0.2 1.0 0.1 4	0.5 1.5 0.1 0.1 0.0 2	0.0 0.5 1.0 0.5 0.0 3	0.0 1.0 2.0 1.0 0.0 3	0.0 0.1 0.3 0.2 0.0 3	22 0.0 0.1 0.3 0.2 0.1 0.0 3
Table 19: Estimated Power V	$n_5 n_6 \mu_1 \mu_2 \mu_3 \mu_4 \mu_5 F$	5 1.0 2.0 3.0 2.0 1.0 3	5 0.0 0.3 1.0 0.3 0.0 3	5 1.0 2.0 2.5 2.0 1.0 3	5 0.0 0.3 0.4 0.1 0.0 3	5 0.0 0.3 0.5 0.3 0.0 3	5 1.0 1.0 1.5 2.0 1.0 4	5 1.0 1.1 1.5 2.0 1.0 4	5 1.0 1.0 1.4 1.1 1.0 3	5 1.0 1.5 2.0 1.5 1.0 3	5 1.0 1.3 1.5 1.3 1.0 3	$10 \qquad 0.1 0.2 0.5 0.2 0.1 \qquad 3$	$10 \qquad 0.1 0.2 3.0 0.2 0.1 \qquad 3$	5 5 0.1 0.2 0.2 0.4 1.0 0.0 5	5 5 0.1 0.2 1.5 1.0 1.0 0.0 3	5 5 0.0 0.2 2.0 0.4 0.2 0.0 3	1.0 2.0 1.0	1.5 2.0 1.0 2	0.1 0.2 0.1 2	0.5 0.8 0.6	1.0 2.0 3.0 2.0 3	1.0 2.0 2.5 2.0 3	0.1 0.2 0.1 0.0 2	0.0 0.5 0.3 0.0 2	5 0.0 1.0 2.0 1.0 0.0 3	25 0.1 0.1 0.2 1.0 0.1 4	$4 \qquad 0.5 1.5 0.1 0.1 0.0 \qquad 2$	5 0.0 0.5 1.0 0.5 0.0 3	5 0.0 1.0 2.0 1.0 0.0 3	3 0.0 0.1 0.3 0.2 0.0 3	20 22 0.0 0.1 0.3 0.2 0.1 0.0 3
Table 19: Estimated Power V	$n_4 \ n_5 \ n_6 \ \mu_1 \ \mu_2 \ \mu_3 \ \mu_4 \ \mu_5 \ F$	5 5 1.0 2.0 3.0 2.0 1.0 3	5 5 0.0 0.3 1.0 0.3 0.0 3	5 5 1 1.0 2.0 2.5 2.0 1.0 3	5 5 0.0 0.3 0.4 0.1 0.0 3	5 5 0.0 0.3 0.5 0.3 0.0 3	5 5 1 1.0 1.0 1.5 2.0 1.0 4	5 5 1 1.0 1.1 1.5 2.0 1.0 4	5 5 1.0 1.0 1.4 1.1 1.0 3	5 5 7 1.0 1.5 2.0 1.5 1.0 3	5 5 1.0 1.3 1.5 1.3 1.0 3	10 10 0.1 0.2 0.5 0.2 0.1 3	10 10 0.1 0.2 3.0 0.2 0.1 3	5 5 5 5 0.1 0.2 0.2 0.4 1.0 0.0 5	5 5 5 5 0.1 0.2 1.5 1.0 1.0 0.0 3	5 5 5 5 0.0 0.2 2.0 0.4 0.2 0.0 3	1.0 2.0 1.0 2	1.5 2.0 1.0	0.1 0.2 0.1 2	0.5 0.8 0.6 2	7 1.0 2.0 3.0 2.0 3	20 1.0 2.0 2.5 2.0 3	13 0.1 0.2 0.1 0.0 2	13 0.0 0.5 0.3 0.0 2	$10 \ 5 \qquad 0.0 \ 1.0 \ 2.0 \ 1.0 \ 0.0 \qquad 3$	24 25 0.1 0.1 0.2 1.0 0.1 4	8 4 0.5 1.5 0.1 0.1 0.0 2	20 5 0.0 0.5 1.0 0.5 0.0 3	6 5 0.0 1.0 2.0 1.0 0.0 3	$16 \ 3 \qquad 0.0 \ 0.1 \ 0.3 \ 0.2 \ 0.0 \qquad 3$	19 20 22 0.0 0.1 0.3 0.2 0.1 0.0 3
Table 19: Estimated Power V	$n_3 \ n_4 \ n_5 \ n_6 \ \mu_1 \ \mu_2 \ \mu_3 \ \mu_4 \ \mu_5 \ \mu_5$	5 5 5 1.0 2.0 3.0 2.0 1.0 3	5 5 5 0.0 0.3 1.0 0.3 0.0 3	5 5 5 1.0 2.0 2.5 2.0 1.0 3	5 5 5 0.0 0.3 0.4 0.1 0.0 3	5 5 5 6 0.0 0.3 0.5 0.3 0.0 3	5 5 5 5 1.0 1.0 1.5 2.0 1.0 4	5 5 5 5 1.0 1.1 1.5 2.0 1.0 4	5 5 5 5 1.0 1.0 1.4 1.1 1.0 3	5 5 5 1.0 1.5 2.0 1.5 1.0 3	5 5 5 1.0 1.3 1.5 1.3 1.0 3	$10 \ 10 \ 10 \ 0.1 \ 0.2 \ 0.5 \ 0.2 \ 0.1 \ 3$	10 10 10 10 0.1 0.2 3.0 0.2 0.1 3	5 5 5 5 5 0.1 0.2 0.2 0.4 1.0 0.0 5	5 5 5 5 5 0.1 0.2 1.5 1.0 1.0 0.0 3	5 5 5 5 0.0 0.2 2.0 0.4 0.2 0.0 3	8 1.0 2.0 1.0 2	8 1.5 2.0 1.0 2	21 0.1 0.2 0.1 2	11 0.5 0.8 0.6 2	8 7 1.0 2.0 3.0 2.0 3	9 20 1.0 2.0 2.5 2.0 3	21 13 0.1 0.2 0.1 0.0 2	21 13 0.0 0.5 0.3 0.0 2	5 10 5 0.0 1.0 2.0 1.0 0.0 3	21 24 25 0.1 0.1 0.2 1.0 0.1 4	7 8 4 0.5 1.5 0.1 0.1 0.0 2	5 20 5 0.0 0.5 1.0 0.5 0.0 3	12 6 5 0.0 1.0 2.0 1.0 0.0 3	$14 16 3 \qquad \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	13 19 20 22 0.0 0.1 0.3 0.2 0.1 0.0 3
Table 19: Estimated Power V	$n_2 \ n_3 \ n_4 \ n_5 \ n_6 \ \mu_1 \ \mu_2 \ \mu_3 \ \mu_4 \ \mu_5 \ F$	5 5 5 5 110 2.0 3.0 2.0 1.0 3	5 5 5 5 5 0.0 0.3 1.0 0.3 0.0 3	5 5 5 5 1.0 2.0 2.5 2.0 1.0 3	5 5 5 5 0.0 0.3 0.4 0.1 0.0 3	5 5 5 5 5 0.0 0.3 0.5 0.3 0.0 3	5 5 5 5 5 10 1.0 1.0 1.5 2.0 1.0 4	5 5 5 5 5 1.0 1.1 1.5 2.0 1.0 4	5 5 5 5 1.0 1.0 1.4 1.1 1.0 3	5 5 5 5 1.0 1.5 2.0 1.5 1.0 3	5 5 5 5 1.0 1.3 1.5 1.3 1.0 3	10 10 10 10 0.1 0.2 0.5 0.2 0.1 3	10 10 10 10 0.1 0.2 3.0 0.2 0.1 3	5 5 5 5 5 5 0.1 0.2 0.2 0.4 1.0 0.0 5	5 5 5 5 5 5 0.1 0.2 1.5 1.0 1.0 0.0 3	5 5 5 5 5 5 5 0.0 0.2 2.0 0.4 0.2 0.0 3	15 8 1.0 2.0 1.0 2	15 8 1.5 2.0 1.0 2	18 21 0.1 0.2 0.1 2	17 11 0.5 0.8 0.6 2	6 8 7 1.0 2.0 3.0 2.0 3	$12 9 20 \qquad \left 1.0 2.0 2.5 2.0 \qquad \right 3$	18 21 13 0.1 0.2 0.1 0.0 2	18 21 13 0.0 0.5 0.3 0.0 2	$10 \ 5 \ 10 \ 5 \ 10 \ 5 \ 0.0 \ 1.0 \ 2.0 \ 1.0 \ 0.0 \ 3$	23 21 24 25 0.1 0.1 0.2 1.0 0.1 4	$14 \ 7 \ 8 \ 4 \qquad 0.5 \ 1.5 \ 0.1 \ 0.1 \ 0.0 \qquad 2$	20 5 20 5 0.0 0.5 1.0 0.5 0.0 3	8 12 6 5 0.0 1.0 2.0 1.0 0.0 3	$11 14 16 3 \qquad 0.0 0.1 0.3 0.2 0.0 3$	18 13 19 20 22 0.0 0.1 0.3 0.2 0.1 0.0 3

CHAPTER 5. CONCLUSIONS

This dissertation has introduced a new nonparametric test for testing umbrella alternatives in a completely randomized design. This test is applied for cases where the peak of the umbrella pattern is known prior to testing. The test statistic is based on information from a trio of groups taken C_3^k at a time.

Unlike other tests, this test compares groups across the peak of the umbrella pattern. The importance of testing across the peak was first emphasized by Hettmansperger (1987). The results of this study has added further evidence of the importance of testing across the peak. Consider for example the data below.

Table 20: Simulated Data

x1	x2	x3	x4	x5
-0.1250049	2.554467	2.5158302	5.610838	0.6614217
1.1177840	4.050557	1.6159421	7.513144	0.6812125
1.7691099	1.544746	1.7757046	4.980371	-0.2921197
1.3769862	5.199789	0.9867563	5.354071	0.7294717

The mean plot for this data set is shown in the figure below.

Figure 6: Mean Plot of Salmonella Bacteria Strain by Group

Test	Т	Mean	Variance	Test Statistic	pvalue
LAR	171	106.67	2779.02	1.22	0.1112
MW	77	56	158.67	1.67	0.0477
Sal	115	64	1190.4	1.48	0.0697
Bhat	44	32	37.33	1.96	0.0248
HN				1.48	0.0691

Table 21: Test Results p=2, k=5

Test	Т	Mean	Variance	Test Statistic	pvalue
LAR	313	106.67	2779.02	3.91	0.0000
MW	93	56	158.67	2.94	0.0017
Sal	188	64	1190.4	3.59	0.0002
Bhat	50	32	37.33	2.95	0.0016
HN				1.70	0.0441

Table 22: Test Results p=4, k=5

The results in Table 4.2 is a typical example of a situation where the Mack-Wolfe test and the Bhat's test can be very misleading. You would expect all the tests in Table 4.2 to reject H_o . However, only the LAR and Hettmansperger and Nortons test (HN) are reliable in this case. Based on the evidence just presented, the Mack-Wolfe test and Bhat's tests should not be recommended in situations where there is more than one peak in the umbrella pattern. This is because, the Mack-Wolfe test and Bhat's test would reject the null even at a peak that is not the highest in a case where there are multiple peaks.

The expectation and variance of the test statistics have been derived and expressed in the simplest possible form. The expectation and variance of the special case where all the group sample sizes are equal is also given. The expectation and variances are simplified to a form that makes it easy for the user to use manually for both balanced and unbalanced designs. This is one of the few tests involving ordered alternatives whose expectations and variance is simplified in such user friendly forms. Three numerical examples are solved manually and the results compared to other tests.

The asymptotic distribution of the of the test statistics is derived with the use of classical multi-sample U-statistics theorems and the detailed proof shown. The results of the derivation of the asymptotic distribution shows that the test statistics converges in distribution to a standard normal distribution.

Finally, a finite simulation study which compares LAR to other existing tests is presented in section 4. The LAR test was competing with all the other tests in terms of estimated powers. Based on the results of the power analysis, the LAR generally performed better than the other tests when the differences in location parameter between the adjacent groups was small. In such cases, the peak if very low making the entire pattern shallow. In such shallow umbrella patterns, the LAR is far more robust than all the other tests including the HNOPT. In situations where the slope (of either side of the peak) increased slowly and then had a sudden sharp jump, the LAR test outperformed all the other tests being compared to it. No tests with the exception of the HNOPT clearly stood out compared to the other tests when the differences in location parameter is considerably wide. The other tests with the exception of the KW test did better than the LAR in many cases where the peak is 1 or k.

These are the major points to take away from the study;

- LAR is best at detecting very minute changes in patterns between groups.
- LAR is best when the difference in means or other location or scale parameters are small (i.e. shallow umbrella).
- LAR performs better when there is a steady increase in the group location parameters and a sudden rise to the peak.
- The study found situations where the results of the other tests could be misleading. For instance, LAR is more efficient when the alternative contains multiple peaks or some groups being equal in location or scale parameters . Note that

the presence of outliers in the data set could lead to multiple peaks. In this line, the LAR is thus more robust to outliers than all the other tests.

After completing this study, the following recommendations came to mind.

- It would relevant to investigate the effectiveness of the proposed test (LAR) under equal variances and unequal variances.
- Since clinical research studies are very involved with repeated designs, designing a similar test for repeated designs would be of great benefit to the clinical research community.
- Many other patterns are of investigational interest to the research community, the exponential trend being one of them. The LAR test could be adjusted to serve such purposes.

REFERENCES

- A.R. Jonckheere, A distribution-free k-sample test against ordered alternatives, Biometrika 41 (1954), pp. 133-145.
- B.A. Millen and D.A. Wolfe, A class of nonparametric tests for umbrella alternatives, Journal of Statistical Research. 39 (2005), pp. 7-24
- [3] A.S Salman, A new nonparametric test for the umbrella alternative, A Masters thesis submitted to the Department of Statistics, North Dakota University, (2010).
- [4] C.J. Lloyd, Estimating test power adjusted for size, Journal of Statistical Computation and Simulation, 75:11 (2005), pp. 921-933
- [5] D.A. Wolfe, Nonparametric distribution-free procedures for order restricted altenatives, In: Ahsanullah, M., Raquab, M.Z. (eds.) recent Developments in Order Random Variables. Nova Science, New York (2006).
- [6] D. Basso and L. Salmaso, A permutation test for umbrella alternatives, Stat Comput, 21 (2011), pp. 45-54.
- [7] G. A. Mack and D. A. Wolfe, K-Sample Rank Tests for Umbrella Alternatives, Journal of the American Statistical Association, 76 (1981), pp. 175-181.
- [8] J.F. Pedersen, L.G. Madsen, A.L. Vibeke, O. Hamberg, T. Horn, B. Federspiel, and P. Bytzer, A Doppler waveform index to characterize hepatic vein velocity pattern and evaluate hepatic fibrosis, J. Clin. Ultrasound 36 (4) (2008), pp. 208-211.
- [9] J. T. Terpstra, C. H. Chang and R. C. Magel, On the use of Spearman's correlation coefficient for testing ordered alternatives, Journal of Statistical Computation and Simulation **iFirst**, (2011), pp. 1-12.
- [10] J. T. Terpstra and R. C. Magel, A new nonparametric test for the ordered alternative problem, Journal of Nonparametric Statistics 15 (3) (2003), pp. 289-301.
- [11] M. Hollander, and D. A. Wolfe, Nonparametric Statistical Methods (second ed.). New York: John Wiley Sons Inc. A Wiley-Interscience Publication, (1999).
- [12] S.V. Bhat, Simple K-Sample Rank Tests for Umbrella Alternatives, Research Journal of Mathematics and Statistics 1(1)(2009), pp. 27-29.
- [13] T.E. Bradstreet, "Favorite Data Sets from Early Phases of Drug Research -Part 2." Proceedings of the Section on Statistical Education of the American Statistical Association, (1992).

- [14] T.P. Hettmansperger and R.M. Norton, Tests for patterned alternatives in k-sample problems, J.Amer. Statist. Assoc.82 (1987), pp. 292-299.
- [15] V.S. Koroliuk and I.V. Borovskikh, *Theory of U-statistics*, Kluwer Academic Publishers Group, Dordrecht, (1994).