Protection of Sensitive Data in Clouds
Using Active Privacy Bundles and Agent-Based Secure Multiparty Computation

Akram Y. Sarhan (Advisor: Prof. Leszek T. Lilien)
Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008

Introduction

- Challenges for protecting data in clouds (cf. TechInsights Report, 2013)
 - ‘Security’ below includes privacy
 - Infrastructure readiness/network
 - Visibility into services across cloud
 - Contracts/liability concerns
 - Cost
 - Performance/availability
 - Certain apps are too core/critical
 - Privacy/Legal issues
 - Security

Privacy and security challenges in clouds (Jansen, 2011)
- Data leakage, performance, risk management, efficient data storage
- Two types of solutions for cloud-based privacy and security
 1) Centralized solutions
 - Rely on centralized trusted third parties (TTPs)
 2) Decentralized solutions
 - Avoid relying on centralized TTPs
- Problems with using TTPs
 - Bottleneck, insecure, single point of failure
- Active Privacy Bundle (APB)
 - Sensitive data: user data
 - Metadata: describes various policies for sensitive data
 - Distribution control policy
 - Access control policy
 - Integrity self-check specification
 - Virtual machine (VM): executes APB, incl. three privacy/security activities
 - Integrity self-checking
 - Evaporation: partial APB self-destruction
 - Apoptosis: complete APB self-destruction

Motivation and Objectives
- Providing adequate privacy and security for data in clouds
 - Self-protecting data
 - Fine-grained access control
 - Fault tolerance
- Protect cloud data against attackers
 - Dishonest cloud providers
 - Unauthorized sub-contractors
 - Dishonest tenants (i.e., other cloud users)
- Protecting data with decentralized TTP (without centralized TTP)
 - Using multi-agent systems (MAS) for implementing decentralized TTPs
 - Using MAS for performance improvements
 - Thanks to parallel processing of data

Methods

- Solution components and their roles
 - Active privacy bundle
 - Secure multiparty computation
 - Multi-agent systems
 - Attribute-based encryption
 - RSA threshold cryptography
 - BGW protocol
 - JADE
 - CP-ABE
 - Secret sharing
 - Verifiable secret sharing
 - Polynomial interpolation

- Active privacy bundle (APB)
 - Encapsulates and protects sensitive data throughout their full lifecycle
 - Protects against tampering, privacy violations, unauthorized access or dissemination
- Secure multiparty computation (SMC)
 - Multiple parties can jointly compute some value, based on individually held secret inputs or functions
 - While assuring privacy of their secrets to one another in the process
 - RSA threshold cryptography
 - Several parties (more than a threshold number) must cooperate to encrypt/decrypt data
 - BGW (Ben-Or, Goldwasser and Wigderson) protocol
 - Used to jointly compute a chosen function for shared or private input
- Multi-agent systems (MAS)
 - Distributed computing with intelligent multiple agents—with JADE implementation
- Attribute-based encryption (ABE)
 - One-to-many encryption scheme based on public key
 - Ciphertext-policy attribute-based encryption (CP-ABE)
 - Private key uses ABE and cipher-text specifies an access policy over an attribute set

Results: The Proposed Solution

- Major results
 - Designed and partially developed the APB-SMC scheme
 - Integrated SMC into APB implementation
 - SMC uses RSA threshold cryptography and BGW protocol
 - APB-SMC replaces the centralized TTP with a distributed trust mediator
 - SMC used in constructing and enabling APB
 - Enhanced APB evaporation
 - Enhanced APB apoptosis
 - Integrated ABE and CP-ABE into APB-SMC
 - Provide higher security and fault tolerance
 - Support access right delegation and revocation
- APB creation and enabling algorithms in APB-SMC
 1) APB creation
 - Identify sensitive data
 - Create access policy attributes
 - Create access structure
 - Generate public and master keys
 - Encrypt sensitive data
 - Encrypt metadata
 - Hash and sign the APB
 - Encrypt APB
 - Plan APB itinerary
 2) APB enabling
 - APB host trust verification
 - APB permission
 - APB integrity verification
 - APB policy enforcement
 - APB decryption

Using APB-SMC to protect sensitive data in clouds

- Data Owner
 - Owner requests DA to encrypt the data outsourced to the cloud
 - DA generates the public keys (PK) and master keys
 - DA encrypts the APB using the encryption algorithm that takes as its input the outsourced data, PK, and an access structure
 - DA encrypts the APB-SMC
 - Integrated SMC into APB-SMC
 - SMC replaces the centralized TTP with a distributed trust mediator
 - SMC used in constructing and enabling APB
 - Enhanced APB evaporation
 - Enhanced APB apoptosis
 - Integrated ABE and CP-ABE into APB-SMC
 - Provide higher security and fault tolerance
 - Support access right delegation and revocation

Conclusions

- Current work status
 - Completed design of the APB-SMC scheme
 - Working on modeling, formal model analysis, simulation experiments
- Future work
 - Demonstrate that APB-SMC provides privacy, security, fault tolerance and efficiency
 - Integrate a multi-agent system (MAS) framework into APB-SMC
 - Validate and optimize MAS-based APB-SMC