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Swimming bodies such as flagellum and fishes are found everywhere in liquid 

environment. The research of simulation of swimmers is one of the most important 

branches among the field of biophysics. This study focus on the direct computer 

simulation of self-propelled flexible nanobody in fluid field. 

Two new objectives is studied based on the previous research of Tai-hsien Wu 

and Dewei Qi (2014)[1]. In Wu’s article, the front end of micro swimming body is 

fixed and the migration of swimmers is neglected. For a further study, one of new 

targets is to release the head in 3-D simulation fluid area. Then the swimming body 

will gain thrust through the flapping of the filament. Besides, the flapping mode 

shape with high Reynolds number is worth to study since seldom articles can be 

utilized. Furthermore, another new objective is that two-body system will be 

introduced. In this study, we focus on the tandem configuration and the front 

swimmer influence on the rear one through interaction of flow distribution. 

Simulation results of single fiber and two-body system is in keeping with previous 

studies very well. 

For the theoretical support in this research, Lattice Boltzmann Method, General 

Lattice Spring Model and Immersed-boundary Method are introduced to respectively 

simulate structure of fluid, solid and interaction between fluid and solid.  
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1. Introduction 

Our world is filled with swimming bodies. The research of simulation of 

swimmers is one of the most important branches among the field of biophysics. It is 

a comprehensive research area with biologists, mathematicians, chemists, 

pharmacologists and engineers of chemical, biotechnology, etc engaged on. The 

simulation of microorganism swimmers is applied widely in the area of medicine, 

pharmacology, environment treatment, biotechnology and chemical engineering. 

In 1951, Taylor (1951)[2] firstly explained how microorganisms could propel 

itself using the viscous force and set up the theoretical mathematic model. In 1958, 

the locomotion pattern of flagella-like swimmer was calculated by Machin (1958)[3]. 

In 1977, Purcell (1977)[4] introduced the general “scallop theorem” to provide more 

inside calculations about flagella-like motions. The Scallop theorem states that to 

achieve propulsion at low Reynolds number in Newtonian fluids a swimmer must 

deform in a way that is not invariant under time-reversal. In 1998, Wiggins et 

al.(1998)[5][6] introduced a new theory, elastrohydrodynamics, to compared with the 

experimental results and obtained good agreement between theory and experiment. 

Since then, elastrohydrodynamics played a significant role in the field of 

microorganism swimmers simulation due to predicting the shape pattern and the 

propulsive force of flagella in fluid successfully. 

In addition to the theory development, the experimental observations of 

microorganism swimmers were also preferred elsewhere, such as Wiggins & 

Goldstein (1998)[6] observed the shape pattern and then they proposed the bending 

modul for the flagella; Yu et al. (2006)[7] measured the propulsive force of the 

swimming flagella; Pak et al. (2011)[8] designed a flexible nanowire motor to give 

high-speed propulsion for the flagella; Lagomarsino and Lowe et al. (2003)[9] used 

the slender body theory to simulate the flagellum locomotion and Eric & Powers 

(2009)[10] summarized theoretical and experimental studies for the hydrodynamics 
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of swimming microorganisms. 

However, generally the simulations are based on models that similar to real 

swimmers while the methods of simulations are presented seldom. In this project, a 

numerical experimental method which combines generalized lattice spring model 

(GLSM) and the immersed-boundary lattice Boltzmann method (IBLBM) will be 

applied. 

Moreover, the study of swimming body means much wider field of computer 

simulation --- not only the microorganism swimmers, but also all flapping swimming 

motion. So it is important to found a generalization of swimming bodies. 

Before this study, seldom articles focus on undulation flapping in three 

dimension flow distribution at high Reynolds number. Some researches establish a 

flow field in three dimensions while fail to perform a high Reynolds Number case.[11] 

Some researches only succeed in 2-D flow field.[12] And also, lots of them employed 

the traditional computational fluid dynamics methods (CFD) for fluid simulation. 

Comparing to Lattice Boltzmann method which we use in this study, traditional 

method has simpler governing equations but more difficulty for coding program.  

Two-body system is also studied in this research and results are reported and 

compared with previous study in 2-D flow field by traditional method.[13] Detailed 

information will be given in the section of simulation set-up. 
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2. Theoretical Support 

2.1. Lattice Boltzmann method 

Lattice Boltzmann Method is a relatively new simulation technique for complex 

fluid systems and has several advantages over other conventional computational fluid 

dynamics methods. Instead of solving the Navier–Stokes equations, the discrete 

Boltzmann equation is solved to simulate the flow of a Newtonian fluid with collision 

models such as Bhatnagar-Gross-Krook (BGK). 

In LBM, a group of lattice nodes are used to represent fluid. Each node has 

distribution functions f and discrete velocity 𝐞σ.σis the order number of direction 

which depends on different models and will be discussed in later section. The 

Boltzmann equation with BGK single relaxation time is 

𝑓𝜎(𝐫 + eσ, t + 1) =  𝑓𝜎(𝐫, t) −
1

𝜏
[𝑓𝜎(𝐫, t) − 𝑓𝜎

𝑒𝑞(r, t)] 

where 𝑓𝜎
𝑒𝑞(X, t) is the equilibrium distribution function at position r and time t 

𝑓𝜎
𝑒𝑞 =  ωσ𝜌𝑓{1 + 3(𝐞σ ∙ 𝐮) +

2

9
(𝐞σ ∙ 𝐮)2 −

3

2
(𝐮 ∙ 𝐮)} 

The macroscopic fluid density 𝜌𝑓 and the momentum density are given as 

𝜌𝑓 = ∑ 𝑓𝜎

𝜎

 

𝜌𝑓𝐮 = ∑ 𝑓𝜎

𝜎

𝐞𝜎 

Lattice Boltzmann models can be operated on a number of different lattices, both 

cubic and triangular, and with or without rest particles in the discrete distribution 

function.  

In this study, the D3Q15 lattice model is employed. Here "D3" stands for "3 

dimensions" and "Q15" stands for "15 nodes". Figure 1 shows illustration of D3Q15 

model. 
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Figure 1 D3Q15 lattice model 

In this model, the lattice velocities are defined as 

eσ = {

(0,0,0)
(±1,0,0), (0, ±1,0), (0,0, ±1)

(±1, ±1, ±1)
       

σ = 0
σ = 1
σ = 2

 

and the weight coefficients are given by 

ωσ = {

2/9
1/9

1/72
      

σ = 0
σ = 1
σ = 1

 

and the kinematic viscosity is related to the relaxation time 

υ =
1

3
(τ −

1

2
) 

2.2. Immersed-boundary lattice Boltzmann method 

Immersed-boundary lattice Boltzmann method (IBLBM) is a numerical method 

which combines the lattice Boltzmann method and the immersed-boundary method 

(IBM). The IBM coupled with LBM was presented by Feng & Michaelides (2004) 

[14]and Wu & Aidun (2010) [15]. IBM solves the fluid-solid interaction problem. 

In IBM, fluid nodes are applied to a regular Eulerian grid, so every boundary 

solid node will not coincide with the exactly adjacent fluid node. Then, the fluid 

velocity at the boundary solid node can be derived from the fluid velocity of the 

surrounding fluid nodes, which is given as the discrete Dirac Delta function (Peskin, 

2002) [16] 
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D(𝐫) = {
1

64ℎ3
(1 + cos

𝜋𝑥

2ℎ
) (1 + cos

𝜋𝑦

2ℎ
) (1 + cos

𝜋𝑧

2ℎ
)

0

      
|𝐫| ≤ 2ℎ
|𝐫| > 2ℎ

 

where h is the lattice length. The fluid velocity uf at the position of the solid boundary 

node is given by 

𝐮𝑓(𝐫𝑏 , 𝑡) = ∫ 𝐮(𝐫𝑙, 𝑡)𝒟(𝐫𝑙 − 𝐫𝑏)
Π

𝑑𝐫𝑙 

where Π and 2h mean that fluid nodes are within a spherical volume Π of a radius of 

2h, centered at a given solid node. r
b
 is the boundary solid position and r

l
 is the 

position of the lattice fluid nodes within the sphere as shown in Figure 2. The small 

circles represent fluid particles and the blue small squares represent solid particles; 

large circles represent spheres around their central solid particle; squares with the 

thicker edges are the boundary solid particles which directly interact with their 

surrounding fluid particles within a sphere. For instance, as in Figure 2 b), step 1 

shows that the flow velocities of fluid particles 𝐮(𝐫𝑙, t) are interpolated to their 

central the k
th

 solid particle and step 2 shows that the reaction force of the k
th

 

boundary solid particle on the fluid is interpolated to the surrounding fluid particles. 

The arrows denote the direction of interpolation in step 1 and step 2. Under the 

condition without slipping, the boundary solid node velocity 𝐮𝑠(𝐫𝑏 , t − 1) is equal to 

the fluid node velocity 𝐮𝑓(𝐫𝑏 , t), and thus the difference of velocities represents the 

interaction force F
int

 on the solid boundary over one time step as 

𝐅int(𝐫𝑏, 𝑡) = ρf(𝐮𝑓(𝐫𝑏 , 𝑡) − 𝐮𝑠(𝐫𝑏 , 𝑡 − 1)) 

Then the discrete Dirac delta function is employed again to distribute the reaction 

force to the surrounding fluid nodes 

𝐠(𝐫𝑙, 𝑡) = − ∫ 𝐅𝑖𝑛𝑡(𝐫𝑏, 𝑡)𝒟(𝐫𝑙 − 𝐫𝑏)
Γ

𝑑𝐫𝑏 

where 𝐠(𝐫𝑙, 𝑡) is the distributed reaction force and Γ is a spherical volume of a radius 

of 2h, located at 𝐫𝑙. Force distribution process is illustrated in step 2 of Figure 2 b). 

Finally, the reaction force term is added to the Boltzmann equation as 
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𝑓𝜎(𝐫 + 𝐞σ, 𝑡 + 1) = 𝑓𝜎(𝐫, 𝑡) −
1

τ
[𝑓𝜎(𝐫, 𝑡) − 𝑓𝜎

𝑒𝑞(𝐫, 𝑡)] + 3𝜔𝜎(𝐠 ∙ 𝐞σ) 

 

 
Figure 2 Fluid and solid particles in IB-LBM, and two steps of velocity and force interpolation 

2.3. Generalized lattice spring model 

In microscopic space, the intermolecular force can be regarded as to conform to 

the Hooke’s law. Based on this idea, the concept of lattice spring model (LSM) is 

provided by Buxton et al. (2005)[17] to simulate the elastic structure. The model 

includes two core parts: 1) Mass nodes space regularly initially; 2) Two adjacent 

nodes are linked by harmonic springs. In this way, the spring energy 𝑈𝑖
𝑠 acted on the 

i
th

 node is given by 

𝑈𝑖
𝑠 =

1

2
𝑘𝑠 ∑(𝐫𝑖𝑗 − 𝐫0𝑖𝑗)2

𝑗

 

where 𝑘𝑠  is the spring coefficient; 𝐫0𝑖𝑗  is the equilibrium length of the spring 

between two neighboring particle i and j; j is the nearest neighboring solid particle of 

the i
th

 solid particle; and 𝐫𝑖𝑗 = 𝐫𝑖 − 𝐫𝑗. The spring force is a two body central force 

which allows either extension or compression between two solid particles. However, 

this kind of spring force cannot handle bending deformation precisely; the generalized 

lattice-spring model (GLMS) will be introduced to describe an additional three body 

force among solid particles. The angular energy 𝑈𝑖
𝑎 is shown as 
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𝑈𝑖
𝑎 =

1

2
𝑘𝑎 ∑ ∑ (𝜃𝑖𝑗𝑘 − 𝜃0𝑖𝑗𝑘

𝑘.𝑘≠𝑗

)2

𝑗

 

where 𝑘𝑎 is the angular coefficient; j and k are the nearest neighboring solid particles 

of i
th

 solid particle; 𝜃𝑖𝑗𝑘 is the angle between the bonding vectors rij and the bonding 

vector rik; 𝜃0𝑖𝑗𝑘 is the corresponding equilibrium angle. Then the elastic force Fi on 

the i
th

 solid particle can be computed from the gradient of the total energy. 

𝐅𝑖 = −∇(𝑈𝑖
𝑠 + 𝑈𝑖

𝑎) 

If the solid structure is isotropic, the elastic modulus of the solid body can be 

related to the spring and angular coefficients by 

𝐸 =
𝑘𝑠

𝑟0
 

𝐺 ≈
4𝑘𝑎

𝑟0
2  

where E is the Young’s modulus of the deformable solid body and G is its shear 

modulus. The derivation of the relationship between 𝑘𝑠 and E and the relationship 

between 𝑘𝑎 and G is presented in Wu’s article (2014) [1]. Then the total force drives 

the movement of solid particles 

FT
𝑖 = F𝑖 + F𝑖𝑛𝑡 

     

Figure 3 The illustration of GLSM 

2.4. lattice Boltzmann flexible particle method 

Another numerical simulation method, the lattice Boltzmann flexible particle 

method(LBFPM), has been successfully used to simulate fluid-structure interactions 
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by Qi et al.(2010)[18] and Liu et al. (2011)[19].  

A flapping of a flexible swimming body in fluid flows at a given Reynolds number 

will be simulated by the present method and the results will be compared with those 

by using the Lattice Boltzmann flexible particle method. 
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3. Simulation Set-up 

3.1. Single swimming body 

Essentially, this research studies the locomotion patterns of solid swimming 

bodies in 3-D lattice Boltzmann flow field. In detailed, a self-propelled swimming 

body is driven by the vertical oscillation, and the simulation is performed in a 3-D 

fluid box.  

 

Figure 4 Simulation set-up for single swimming body 

At the initial time, the solid swimming body is set up in the center of the whole 

flow field. For the structure of swimmer itself, as shown in Fig.5, the swimming body 

is constituted by 180 solid particles which are linked each other by spring model. The 

180 particles combine and form a rectangular cuboid sizing 3×3×20 respectively 

corresponding to X, Z and Y directions. The length of the solid body is along with Y 

direction in which we regard as migration direction. The vertical oscillation is set up 

in the Z direction. Since X direction has no contribution to the flapping or migration, 

in this article, any tiny motion in X direction will be ignored.  

Corresponding to setting of three directions, fluid flow box is set up as a 

rectangular box of sizes [0 30], [0 300], [0 90] in X, Y and Z direction. And digits mean 

fluid nodes in LBM. The periodic boundary is introduced to eliminate influence of 

boundary. Then the flow field can be regarded as infinite in a sence. 

The flapping pattern is deducted from equations of harmonic motion, shown as 
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below 

Z(t) = Āsin𝜔𝑡 

where 𝓏  stands for the direction of swing of swimming body; 𝓏0  is the 

amplitude; 𝜔 is the flapping angular frequency and 𝑡 is time. This equation forces 

each particle which combines the whole swimming solid part to the particular place 

and then mimic the real swimming body. Then the maximum of velocity of driven 

point can be described as 

V𝑧
𝑚𝑎𝑥 = Ā𝜔 

To investigate the performance of cases with different physical quantities, such 

as Reynolds number, dimensionless bending rigidity, size of swimming body, 

separation distance and etc., one parameter is varied while keeping others fixed. 

Through the studying of subsequent locomotion patterns, we validate success of this 

research. 

Among different kinds of physical variables which effects on the propulsive 

performance, the flexibility of swimming body is a key influencing factor. In this study, 

three kinds of cases are chosen for one case at low Reynolds number and two cases 

at high Reynolds number. Table 1 shows basic input settings for every case. 

Table 1 Basic input setting of cases with different Reynolds number 

 Re Ā f(Hz) ρs ρf μf 

Case A 5 9.0 0.679775 1.0 1.0 0.16 

Case B 75 9.0 10.196568 1.0 1.0 0.01 

Case C 100 9.0 13.867332 1.0 1.0 0.01 

where Re is Reynolds number, Ā is amplitude, f is flapping frequency, ρs is solid 

density, ρf is fluid density and μf is fluid viscosity. All parameters listed above are in 

LBM units excepting flapping frequency. 

3.2. Two-body system 

Two-body system simulation begins with the initial setup of a tandem 

configuration as figure 5. For each fiber, the setup is exactly same as that of single 

fiber. In this research, we find the optimum solid rigidity in single fiber section and 
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then introduce to two-body tandem system. The separation distance is known as the 

distance between center mass of front and rear swimming bodies. It will be evolved 

along with time period and is the key result for this research. The cases are listed in 

Table 2 Basic input setting of cases with 0⁰ and 90⁰ phase difference 

 Re EI ∆φ Dyi 

Case A 75 0.016 0⁰ a)1.5  b)2  c)2.5  d)3 

Case B 75 0.016 90⁰ a)1.5  b)2.2 c)2.6  d)3  e)4 

where term ∆φ is phase difference. Dyi is the initial separation distance. 

Since all length are normalized by the length of swimming body (which in this 

study is 20). It is easy to derive that when Dyi = 1, two swimming bodies are in 

contact. 

 

Figure 5 Simulation set-up for tandem configuration 

  

Dyi 
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4. Results and Discussion 

4.1. Single swimming body 

4.1.1. Propulsive performances quantification 

To quantify the propulsive performance, some physical parameters are 

introduced as follows. Frist, the migration of center mass functioning of time period 

can visually illustrate the locomotion of swimming body. In this study, since Y 

direction is set up as the migration direction, migration function is as 

Y

L
= 𝑓(t) 

where Y/L means normalized location in which L is the length of swimming body and 

t is the time period in keeping with flapping undulation cycle. 

Second, the Y-velocity Vy is defined as the average velocity of every solid particle 

in direction of migration at each time period, 

Vy = −
1

180
∫ (𝑣𝑦)ds

180

1

 

where vy is velocity of each particle in Y direction and s is index of solid particles. All 

velocity mentioned in this study is normalized by the maximum velocity in Z 

direction. 

Then the Z-velocity Vz is defined in the same way, and known as flapping 

velocity, 

Vz = −
1

180
∫ (𝑣𝑧)ds

180

1

 

And cruising speed Uc is defined as the average migration velocity of swimming 

body after reaching steady state (absence of acceleration). 

𝑈𝐶 = −
1

∆t
∫ (𝑉𝑦)dt

t2

t1

 

Third, drug coefficient Cd for each time step is collected from combining all 
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fluid-on-particles force in Z direction. It is the force calculated by second order 

derivation of migration in essence. 

Cd = −
1

180
∫ (

∂2Z

∂t2
) ds

180

1

 

Power coefficient Cp is defined in another way. It is employed to measure the 

average output power required to produce the forward migration of solid swimming 

bodies. It can be integral as 

Cp = − ∫ (
∂2Y

∂t2
) (

∂Y

∂t
) ds

180

0

 

    In essence, power coefficient is the product of that velocity times force. And the 

average power coefficient in section 4.1.3 is calculated after reaching steady state. 

Then, propulsive efficiency η is simply defined as 

η =
𝑈𝐶

𝐶𝑝
 

At last, for describing the physical properties of solid swimming body, rigidity EI 

and Reynold number Re are introduced and defined as follows 

EI =
𝜋𝐸𝑟𝑎𝑟𝑏

3

3𝑙𝑏
 

Re =
ĀωL

𝜇𝑓
 

where E is Young’s modulus, ra and rb are half of width and height of the swimming 

body, lb is bond length which is 1 in simulation units, Ā is flapping amplitude, ω is 

angular frequency of flapping undulation, L is length of the swimming body and μf is 

fluid viscosity. All parameters should be converted from simulation units of input 

data to real units by unit factors. 

4.1.2. Effects of flexibility on periodic Vy, Vz, Cd and Cp 

Periodic graphs directly indicate the flapping locomotion pattern of swimming 

body in one period after reaching steady state.  

Since the migration of swimming body only occurs in Y direction, average 
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velocity in this direction is introduced to stand for forward velocity Vy. Fig.7 shows 

effects of flexibility on forward velocity for all cases in this research. For each time 

step, velocity is calculated by averaging every solid particle’s velocity at this moment. 

The velocity of each particle is added by two parts, the undulate deformation of 

swimming body and the cruising speed. The swimmer moves forward or backward 

uniformly, so the flapping of swimming body causes the undulation. Graphs a) and b) 

in Figure 6 suggest along with the increasing rigidity, both the relative position and 

undulate range of forward velocity increase while graphs c)&d) and e)&f) in Figure 6 

shows a trend of increasing before a maximum and decreasing then. In other words, 

Either at low or high Reynolds number, a maximum seems existing along with the 

changing rigidity. Actually, these phenomena match with the evolution of cruising 

speed on rigidity very well and will be discussed in next section. 

Average velocity of all solid particles in Z direction is introduced as flapping 

velocity Vz. The patterns of flapping velocity are similar to each other for all cases 

with low or high Reynolds Number (see figure 7). The whole trend is that for the case 

of higher cruising speed, the amplitude of the flapping velocity is higher. This 

connection is obvious that larger range of flapping results into higher propelling and 

then, higher forward speed. It will be discussed in the section of mode shape at full 

length. 

Drug coefficient Cd for each printed time step is collected from combining all 

fluid-on-particles force in Z direction. For cases with same Reynolds number, the 

periodic patterns are similar to each other (see figure 8). The amplitude of drug 

coefficient is in keeping with amplitude of flapping velocity because both of them 

describe undulation of flapping essentially. 
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Figure 6 Effects of flexibility on forward velocity. 

figure a) and b) corresponds to case of Re = 5, which is case A in Table 1, figure c) and d) to 

case B of Re = 75, and figure e) and f) to case C of Re = 100. Same cases corresponding in 

figure 8, figure 9 and figure 10. 
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Figure 7 Effects of flexibility on undulation velocity 
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Figure 8 Effects of flexibility on drug force 

The periodic changing of power coefficient in one cycle has the same trend with 

forward velocity. Figure 9 also shows a possibility of maximum of forward power 

which is confirmed and fully discussed in next section. 
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Figure 9 Effects of flexibility on power coefficient 

4.1.3 Effects of flexibility on Uc, Cp and η 

The evolution of normalized cruising speed along with the increasing flexibility 

known as EI is shown in the Figure 10. And for each case in the figure, the 
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parameters are listed in the Table 1 as the reference. Essentially, for the cases A, B 

and C, we change the flapping frequency f to gain given Reynolds Number. In case A, 

the fluid viscosity is also changed to keep the period steps of swimmers. 

The overall trend in all cases in figure 10 shows a global maximum will be 

achieved at a point which can be regarded as an optimal point. Some similar results 

of the cruising speed depending on rigidity were also reported in the Zhu’s article 

which focused on the 2-D flow area (Zhu, X., 2014) [12] and Lee’s article at low 

Reynolds Number(Lee, J., 2013) [20]. Unfortunately, being limited to the mathematic 

model of Lattice Boltzmann Method which we employed, it is hard to run cases with 

normalized Young’s modulus higher than 0.82. Besides, local maximum of cruising 

speed is also found in case B.  

 

  

Figure 10 Normalized cruising speed as a function of rigidity EI.  

a)case A, b)case B and c) case C in Table 1. 
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Figure 11 Power coefficient as a function of rigidity EI.  

a)case A, b)case B and c) case C. 

For all cases, the graphs of power against EI (see figure 11)have the similar curve 

comparing to the graphs of speed against EI. This is very simple to understand that 

higher propulsive force results into fast forward migration. However, because of 

different efficiency for changing rigidity, the graph of Cp and Uc are not selfsame. 

Case C as an example, the rigidity around EI = 0.15, lower Cp leading to higher Uc 

contrasts with rigidity of EI = 0.02 in which same Cp leading to a negative Uc. 

The propulsive efficiency is the quotient by Uc/Cp. Due to the small changing of 

power coefficient, the graph of efficiency (see figure 12) has similar evolution with 

graph of cruising speed. From the original data, for all cases in this study, rigidity 

which leads to maximum of cruising speed also leads to maximum of efficiency. In 

the cases with Re=100, case of EI=0.065 and case of EI=0.087 have very similar 

cruising speed but different power coefficient, and then maximum of efficiency 
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occurs for EI=0.087. Thus, it is preferred to consider the case with maximum 

efficiency as optimal point. For all graphs in this section, same trends are also 

reported in [12]. 

 

  
Figure 12 Propulsive efficiency as a function of rigidity EI. 

a)case A, b)case B and c) case C. 

4.1.4 Flexibility effects on turning point 

For a direct view of locomotion, the migration of center mass of single 

swimming body is shown to illustrate direction and vibration. Figure 13 is the graph 

of migration against time steps. This section focuses on the turning point of rigidity 

where the solid body travels from backward to forward. Figure 10 is as a reference. 

To most cases in our study, solid bodies swim forward, along with the positive Y 

direction. While to cases with high Reynolds number and low rigidity, the swimmers 

may move backward (see figure 10). The mechanism of forward migration driven by 
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flapping is simple. As in all self-propelling systems, the propulsion of a swimming 

body depends on the fact that the retarding effect of all the tangential force acting 

along the body is compensated by propulsive components of force acting normally to 

the surface of the body (Gray, 1953) [21]. The backward motion in a self-propelled 

flapping system has also been reported previously in [12], [22] and [23]. With low 

rigidity, the mode shape of swimming body (see figure 16 a) and figure 17 a)) is much 

different with a “standard” flapping mode shape (see figure 16 c) and figure 17 c)). In 

the mode shape with low rigidity, the “tail” of swimmer forms overbending and 

pushes fluid forward and then propels itself backward. 

However, for cases with low Reynolds number, the high viscosity of fluid restricts 

the forming of overbending and then backward stage is absent (see figure 10 a) and 

figure 16 a)). 

  

Figure 13 Migration against time steps (initial to 16th time period). 

a) case with Re=75 and b) case with Re=100. 

4.1.5 Resonance 

The role of relation between forcing frequency and natural frequency is very 

important in optimizing performance. Frist, the reduced frequency is defined as the 

ratio between forcing and natural frequency 

𝑓̅ =
𝑓

𝑓0
 

where forcing frequency f is as input frequency and natural frequency f0 is calculated 
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by the formula as 

𝑓0 =
1

2𝜋
(

𝑘1

𝐿
)

2

√
𝐸𝐼

2𝜌𝑠𝜌𝑓
 

where k1=1.8751, L is the length of swimming body, EI is the rigidity, ρs is solid 

density and ρf is fluid density. All parameters are in real units and should be 

converted by the unit factors. 

The reduced frequency is employed to quantify resonance. When the forcing 

frequency equals natural frequency, we consider that resonance occurs in this 

frequency. The evolution of the normalized cruising speed and power coefficient with 

increasing reduced frequency is shown in Figure 14 a) and Figure 14 b) respectively.  

For cases of high Reynolds number (Re=75 or 100), the maxima of Uc and Cp are 

located in the domain around 1 (f=0.7-1.3). The results successfully suggest 

resonance plays a critical role on flapping, which according with many researches in 

the field of aerodynamics or fluid dynamics such as [24]. For the cases of low 

Reynolds number (Re=5), there is no obvious maximum in the executable range. 

However, the original data in this case shows that cruising speed already curves 

down at the left end.  

  
Figure 14 a) The evolution of normalized cruising speed with increasing reduced frequency; 

b) The evolution of power coefficient with increasing reduced frequency 

4.1.6 Effects of flexibility on flapping amplitude and mode shape 

In figure 15, four values of flexibility are chosen to note that the former two of 
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them (EI=0.035&0.141) reslut into large range of Cruising speed and later two of them 

(EI=0.211&0.281) into similar Cruising speed. In other words, with little differences of 

domain, the former two obviously have a much larger range than the later two (see 

fig. ). In figure 16, 17, four values sequentially denote backward stage, 

before-maximum stage, maximum and after-maximum stage (see figure 10). 

Since we fix the amplitude of oscillation of swimming body, the locomotion 

ranges of driven particle in Z direction for all cases are identical. In figure 15, 16 and 

17, the right end of swimmers always achieves same coordinates. This fixed 

amplitude is named as absolute amplitude or set-up amplitude in this article. 

At the same time, the average range of swimming body’s oscillation is shown in 

Vz-Z/L graphs in figure 15, 16 and 17. In this coodinate, both Vz and Z/L are harmonic 

function of time and also have the same frequency. The graph of Vz depending on Z/L 

forms a closed cricle. In this cricle, the horizontal diameter is achieved at Vz = 0 and 

can be regarded as the maximal domain of swimmer’s center mass. To compare with 

the absolute amplitute, the term named relative amplitude is employed to indicate 

this horizontal diameter. In the same way, the vertical diameter which is achieved at 

Z/L = 2.25 is regarded as the maximal range of velocity in flapping direction. With 

comparing the maximal domain and range, we can quantify the level of mode shape 

of swimming body. 

In figure15, the area of closed circles largens with the increasing rigidity. 

Moreover, the changing ratio is completely matching with changing ratio of cruising 

speed and power efficient. (see figure 11) The first two cricles have an obvious 

difference about the area while the second two circles are almost same. Ignoring the 

proplusive efficiency, it then suggests that high intensity of flapping leads to faster 

cruising speed. This is quite in keeping with common sence. 

In figure 16 and 17 since existing of clear maxima, closed cricles have 

corresponding maxima in both horizontal and vertical dimensions. Same 

phenomenon has been reported[12]. 
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Figure 15 The flapping mode shape and the graph of Vz against Z/L (cases Re=5). Graphs a, b, 

c, and d correspond to cases of EI = 0.035, 0.141, 0.211 and 0.281 respectively. The flapping 

mode shape reflects the swimming body’s locomotion in one period. The Vz-Z/L graph 

covers 16 period from first print step. 
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Figure 16 The flapping patterns for one period (case Re=75). Graphs correspond to cases of 

EI = 0.008, 0.04, 0.08 and 0.32 sequentially. 
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Figure 17 The flapping patterns for one period (case Re=100). Graphs correspond to cases of 

EI = 0.004, 0.022, 0.087 and 0.173 sequentially. 
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4.2 Two swimming bodies in tandem configuration 

4.2.1 Equilibrium of separation distance 

Figure 18 shows the evolution of separation distance between two swimmers. It 

is obvious that for both 0⁰ phase difference and 90⁰ phase difference simulation, an 

equilibrium separation distance can be achieved. In other words, for cases with same 

phase degree, the interactions through fluid flow field always push two tandem 

swimmers into a fixed separation distances. The basic physical explanation to this 

phenomenon is that the flow field caused by the front swimmer interferes with the 

rear one. And when two swimmers are close to each other, this kind of effect also 

reflects that the rear swimmer can act on front one.  

For case A in figure 18 a), all cases with ∆φ=0 would achieve a same separation 

approximating 1.1, which we call the equilibrium state. Case with Dyi=1.5 only costs 

24 periods to reach the equilibrium comparing to case with Dyi=3 costing more than 

300 periods. This is because with increasing difference between Dyi and Deq, the 

increasing time periods are needed to accumulate the interaction between two 

fibers to achieve balance. Same phenomenon can be found in Case B where Deq≈1.4. 

The reason why equilibrium gap distance can be achieved is that the rear 

swimming body is influenced by the wake of front swimming body and follows the 

“vortex locking” behavior[12]. The equilibrium gap distance is correlated with the 

streamwise period of the Karman vortex street. [26] [27] 

Besides, two explanations should be pointed out. Frist, the line in figure 18 b) 

seems bold because of the vibrated gap distance. This is because we used center 

mass to locate the whole swimming body, when the phase difference is presence, the 

location vibration caused by the different flapping period cannot be cancelled out 

each other. While the phase difference is absent, the location vibration is very tiny 

and can be ignored (see figure 18 a)). Second, no other equilibrium distances are 

found in this research. The interaction of any cases with a higher initial gap distance 

(Dyi>4) is too weak to observe.  
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Figure 18 Separation distance as a function of time for a)case A and b)case B in Table 2. 

 

4.2.2 Flow field analyses 

  

  

Figure 19 The fluid flow figure for cases with Re=75, EI=0.08, ∆φ=0, Dyi=1.5. 
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Figure 19 shows the fluid flow patterns of in-phase case (which means ∆φ=0) in 

one flapping period. The locomotion of two swimmers in this case is fully synchronal. 

Then two identical flow patterns caused by two swimmers separately are formed. 

Meanwhile, being mentioned in previous section, the front swimmer influences the 

rear one. The evidences shown from the vorticity are, 1) overlapping occurs between 

the vortex at right end of rear swimmer and left end of front swimmer in figure 19 a) 

and c), 2) after the overlapping, the vertex at the right end of rear swimmer is larger 

than vertex at corresponding location of front swimmer (see figure 19 b) and d)), in 

which they should be exactly same if there is no flow-mediated interaction. 

 

  

Figure 20 The fluid flow figure for cases with Re=75, EI=0.08, ∆φ=90, Dyi=1.5. 

Figure 20 graphs the fluid flow patterns for case with ∆φ=90. Similar 

phenomenon is found. Two differences comparing to the in-phase case should be 

point out. First, the overlapping is not as obvious as occurred in the previous sample, 
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which means the rear swimmer receives a weaker flow-mediated interaction. It well 

explains why cases with phase difference cost more time to achieve equilibrium state 

than cases without phase difference do. Second, the comparing between two similar 

flow patterns in this case should be performed between two same mode shapes of 

solid swimming bodies. For instant, the front swimmer in figure 20 b) can be 

compared with the rear swimmer in figure 20 a). 
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5. Conclusions 

Two new objects based on previous research are: a) Release the fixed head of 

bacteria to found new movement pattern; b) introduce more swimming bodies into 

whole simulation system. For the theoretical support in this research, Lattice 

Boltzmann Method, General Lattice Spring Model and Immersed-boundary Method 

are introduced to respectively simulate structure of fluid, solid and interaction 

between fluid and solid.  

Before this study, seldom articles focus on undulation flapping in three 

dimension flow distribution at high Reynolds number. Lots of previous articles 

employed the traditional computational fluid dynamics methods (CFD) for fluid 

simulation. 

Essentially, this research studies the locomotion patterns of solid swimming 

bodies in 3-D lattice Boltzmann flow field. In detailed, a self-propelled swimming 

body is driven by the vertical oscillation, and the simulation is performed in a 3-D 

fluid box. And Two-body system simulation begins with the initial setup of a tandem 

configuration. For each fiber, the setup is exactly same as that of single fiber. 

To quantify the propulsive performance, some physical parameters are 

introduced such as normalized location Y/L, forward velocity Vy, flapping velocity Vz, 

cruising speed Uc, drug coefficient Cd, Power coefficient Cp, propulsive efficiency η, 

rigidity EI and Reynold number Re of solid swimming body. 

In the section of flexibility effecting on periodic Vy, Vz, Cd and Cp, periodic graphs 

directly indicate the flapping locomotion pattern of swimming body in one period 

after reaching steady state.  

In the section of flexibility effecting on Uc, Cp and η, the evolution of Uc, Cp and η 

along with increasing rigidity indicates existing of maximum. For all graphs in this 

section, same trends have been reported in previous article[12]. 

In the section of turning point of rigidity where the solid body travels from 

backward to forward, the results state that the swimming body migrates backward at 
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low rigidity and high Reynolds number. The mechanism of backward movement is 

also reported in [12], [22] and [23]. With low rigidity, the mode shape of swimming 

body is much different with a “standard” flapping mode shape. In the mode shape 

with low rigidity, the “tail” of swimmer forms overbending and pushes fluid forward 

and then propels itself backward. while for cases with low Reynolds number, the high 

viscosity of fluid restricts the forming of overbending and then backward stage is 

absent. 

In the section of resonance, the role of relation between forcing frequency f and 

natural frequency f0 is studied to optimize performance. For cases of high Reynolds 

number (Re=75 or 100), the maxima of Uc and Cp are located in the domain around 1 

(f=0.7-1.3). The results successfully suggest resonance plays a critical role on flapping, 

which accords with many researches in the field of aerodynamics or fluid dynamics 

such as [24].  

In the section of mode shape, graphs of Vz against Z/L are introduced to quantify 

the flapping patterns of solid body. With graphs of mode shape, it is feasible to 

explore the mechanism such as backward movement and existing of maximum of 

cruising speed. 

Two-body system is also studied in this research and results are reported and 

compared with previous study in 2-D flow field by traditional methods[13]. Under the 

tandem configuration, for both 0⁰ phase difference and 90⁰ phase difference 

simulation, an equilibrium separation distance can be achieved. In other words, for 

cases with same phase degree, the interactions through fluid flow field always push 

two tandem swimmers into a fixed separation distances. The reason why equilibrium 

gap distance can be achieved is that the rear swimming body is influenced by the 

wake of front swimming body and follows the “vortex locking” behavior[12]. The 

equilibrium gap distance is correlated with the streamwise period of the Karman 

vortex street. [26] [27] 

The fluid flow patterns of 0⁰-phase-difference case and 90⁰-phase-difference 

case are presented. Fluid flow figures indicate the degree of influence between two 

swimmers. The results state case without phase difference has a stronger interaction 
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than case with 90⁰ phase difference. It explains that the later cost more time period 

to achieve balance gap distance. 

  



 

35 
 

REFERENCES 

 

[1] Wu T, Guo R, He G, Liu Y, Qi D.2013,Simulation of swimming of a exible lament using the 

generalized lattice-spring lattice-Boltzmann method. Journal of Theoretical Biology 22, 349 

(2014) 1-11. 

[2] Taylor G.1951,Analysis of the swimming of microscopic organisms. Pro 209, 447–461. 

[3] Machin K E. 1958,Wave propagation along flagella. J. Exp. Biol. 35. 

[4] Purcell E M. 1977,Lift at low reynolds numb. American Journal of Physics 45. 

[5] Wiggins C H, Goldstein R E.1998,Flexive and propulsive dynamics of elastica at low reynolds 

number. Phys. Rev. Lett. 80. 

[6] Wiggins C H, Chris H, Riveline D, Ott A, Goldstein, Raymond E. 1998,Trapping and wiggling: 

Elastohydrodynamics of driven microfilaments. Biophysical Journal 74. 

[7] Yu, Tony S., Lauga, Eric & Hosoi, A. E. 2006 Experimental investigations of elastic tail 

propulsion at low reynolds number. Phys. Fluids 18. 

[8] Pak, On Shun, Gao, Wei, Wang, Joseph & Lauga, Eric 2011 High-speed propulsion of flexible 

nanowire motors: Theory and experiments. Soft Matter 7, 8169–8181. 

[9] Lagomarsino, M. C., Capuani, F. & Lowe, C. P. 2003 A simulation study of the dynamics of a 

driven filament in an aristotelian fluid. J. Theor. Biol. 224. 

[10] Eric, Lauga & Powers, Thomas R. 2009 The hydrodynamics of swimming microorganisms. 

Rep. Prog. Phys.72. 

[11] Ishikawa, T. Sekiya, G. Imai, Y. and Yamaguchi, T.. 2007. Hydrodynamic Interactions between 

Two Swimming Bacteria. Biophysical Journal Vol.93 2217–2225 

[12] Xiaojue Zhu, Guowei He, Xing Zhang. 2014. Numerical study on hydrodynamic effect of 

flexibility in a self-propelled plunging foil. Computers & Fluids 97 (2014) 1–20 

[13] Xiaojue Zhu, Guowei He, Xing Zhang. 2014. Flow-Mediated Interactions between Two 

Self-Propelled Flapping Filaments in Tandem Configuration. PHYSICAL REVIEW LETTERS, DOI: 

10.1103/PhysRevLett.113.238105 

[14] Feng, Zhi-Gang & Michaelides, Efstathios E. 2004 The immersed boundary-lattice Boltzmann 

method for solving fluid-particle interaction problems. Journal of Computational Physics 195, 

602–628. 

[15] Wu, Jingshu & Aidun, Cyrus K. 2010 Simulating 3d deformable particle suspensions using 

lattice boltzmann method with discrete external boundary force. Int. J. Numer. Meth. Fluids 

62, 765–783. 

[16] Peskin, Charles S. 2002 The immersed boundary method. Acta Numerica pp. 479–517. 

[17] Buxton, Gravin A., Verberg, Rolf, Jasnow, David & Balazs, Anna C. 2005 Newtonian fluid 

meets an elastic solid: Coupling lattice boltzmann and lattice-spring models. PHYSICAL 

REVIEW E 71. 

[18] Qi, Dewei, Liu, Yingming, Shyy, Wei & Aono, Hikaru 2010 Simulations of dynamics of plung 

and pitch of a three-dimensional flexible wing in a low reynolds number flow. PHYSICAL OF 

FLUIDS 22. 

[19] Liu, Yingming, Wu, Tai-Hsien, Guo, Rurng-Sheng, Lee, Yi-Hsuan & Qi, Dewei 2011 Dynamics 

of sedimentation of flexible fibers in moderate reynolds number flows. Computers & Fluids 

48. 

[20] Lee J, Lee S. Fluid-structure interaction for the propulsive velocity of a flapping flexible plate 



 

36 
 

at low Reynolds number. Comput Fluids 2013;71:348-74. 

[21] GRAY J. and G. J. HANCOCK, 1995. The Propulsion of Sea-Urchin Spermatozoa. J Exp Biol 32, 

802-814. 

[22] Spagnolie SE, Moret L, Shelley MJ, Zhang J. Surprising behaviors in flapping locomotion with 

passive pitching. Phys Fluids 2010;22:041903. 

[23] Zhang J, Liu NS, Lu XY. Locomotion of a passively flapping flat plate. J Fluid Mech 

2010;659:43-68. 

[24] Hassan Masoud, Alexander Alexeev. 2012. Efficient Flapping Flight Using Flexible Wings 

Oscillating at Resonance. The IMA Volumes in Mathematics and its Applications. Volume 155, 

2012, pp 235-245 

[25] J. C. Liao, D. N. Beal, G. V. Lauder, and M. S. Triantafyllou, Fish Exploiting Vortices Decrease 

Muscle Activity, Science 302, 1566 (2003). 

[26] L. B. Jia and X. Z. Yin, 2008, Passive oscillations of two tandem flexible filaments in a flowing 

soap film. Phys. Rev. Lett. 100, 228104 (2008). 

 


	Computer Simulations of Propulsion of Self-Propelled Flexible Nanobody
	Recommended Citation

	tmp.1496329027.pdf.DQNfL

