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IMPLEMENTING A LINEAR QUADRATIC SPACECRAFT ATTITUDE CONTROL
SYSTEM

Daniel Kolosa, M.S.E.

Western Michigan University

This thesis implements a linear quadratic attitude control system for a low-thrust space-

craft. The goal is to maintain spacecraft alignment with a time-varying thrust vector needed

for trajectory change maneuvers. A linear quadratic attitude control approach is used

to maintain spacecraft pointing throughout flight. This attitude control strategy uses the

thrust-acceleration input obtained from a linear quadratic optimal trajectory control model

that simulates the trajectory of a spacecraft in orbit maneuvers. This attitude model simu-

lates a CubeSat, a small satellite that is equipped with a low-thrust propulsion and attitude

control system. An orbit raising and a plane change scenario is modelled for this space-

craft. The results of the attitude model show that for the orbit raising maneuver, the attitude

controller exhibits periodic behavior with the same frequency as the calculated spacecraft

thrust acceleration.
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NOMENCLATURE

A = state-vector cost matrix

a = width

a = semi-major axis

B = input cost matrix

b = height

C = direction cosine

E = eccentric anomaly

e = eccentricity

F = thrust acceleration

FR = radial thrust acceleration

F̂R = radial thrust acceleration direction

FS = normal thrust

F̂S = normal thrust acceleration angle

FW = circumferential thrust acceleration

F̂W = circumferential thrust acceleration direction

G = gravitational constant

H = angular momentum

I = identity matrix

Isp = specific impulse
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i = inclination

J = inertia matrix

K = unit vector

K f = final value weight matrix

L = cost function

l = length

M = mean anomaly

m = mass

m1 = mass of central body

ṁ = mass flow rate

N = unit vector points to direction of the ascending node

P = riccati equation

Q = state weight matrix

q = quaternion

R = input weight matrix

r = position vector

T = euler to direction cosine matrix

tP = time of perigee passage

u = input control law

v = velocity vector

x



x = state-vector

αRSW = cosine coefficient of Fourier series

β RSW = sine coefficient of Fourier series

∆v = velocity change

ε = specific orbital energy

φ = angle between thrust for orbit transfers

Ω =right ascension longitude of the ascending mode

ω = argument of perigee

µ = standard gravitational parameter of the Earth

θ = euler angle

θ̇ = angular velocity
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Chapter 1

INTRODUCTION

The dynamics describing the non-linear trajectory and attitude of a spacecraft imple-

menting low-thrust maneuvers can be computationally intensive. This thesis proposes a tra-

jectory and attitude control model that linearizes spacecraft dynamics using Fourier thrust-

acceleration components.

A linear quadratic optimal control model was created to design trajectories for low-

thrust spacecraft for different orbit maneuvers. This model approximates the trajectory of a

spacecraft given an initial and a target state. Then a linear quadratic optimal control attitude

controller was designed to be used on low-thrust spacecraft for modeling an approximation

of its orientation. The objective of this attitude controller was to align the body frame of the

spacecraft with the input thrust-acceleration angles of the trajectory control law. Both of the

linear quadratic models were tested in an orbit raising and a plane change maneuver. This

thesis is focused on implementing these optimal control models for missions that could be

potentially feasible on small satellites.

The motivation for creating a linear quadratic trajectory controller was to express non-

linear spacecraft dynamics as linear secular averaged equations. By creating this linear

controller it is possible to simulate orbits that could be computationally inexpensive rela-

tive to a non-linear trajectory model and yield accurate simulations. After creating a liner

quadratic trajectory controller, a linear quadratic attitude controller was created to model
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the attitude of a spacecraft. The motivation to creating an attitude model is to determine

whether it is possible for a low-thrust spacecraft to execute the necessary orientation.

This thesis will begin by first introducing low-thrust spacecraft and specifically Cube-

Sats. Some key concepts of orbital mechanics are introduced, including the coordinate

systems used and how to transform from one coordinate system to another, as well as a

few simple orbit transfer maneuvers. Also the topic of low-thrust maneuvers such as spiral,

plane change and eccentricity change maneuvers will be discussed.

In section 2, A model simulating the trajectory of a spacecraft in low-thrust spiral orbit

using linear quadratic optimal control is discussed in section six. The non-linear Newtonian

dynamics are linearized using linear quadratic optimal control. The linearized model was

tested using a plane change and orbit raising maneuver.

In section 3, the fundamentals of attitude dynamics will be discussed as well as Eu-

ler and quaternion coordinate systems. Also various attitude control mechanisms will be

reviewed.

In sections 4, 9, and 10, the theory of the linear quadratic attitude control model is dis-

cussed. This includes the parameters that were chosen for the linear quadratic system and

any necessary coordinate transformations. The attitude control model was implemented on

an orbit raising and a plane change orbit maneuver and the results are discussed.

Low-Thrust Spacecraft and CubeSats

This thesis will focus on the targeting maneuvers of a type of satellite called a CubeSat.
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CubeSats are small 10cm by 10cm by 10cm satellites, as shown in Figure 1.1.

Figure 1.1: 1U CubeSat[1]

CubeSats have become popular with universities and start up companies because they

are relatively inexpensive to design, build, and launch. Most They have been designed for

short scientific missions like weather or atmospheric monitoring and recreational projects

like photography and recording videos. Because of the size of these satellites, the propul-

sion and attitude systems must also be quite small and therefore produce little thrust and

moment compared to large satellites. It is uncommon for CubeSats to have an attitude

control or propulsion system because it is difficult to fit these components in a small form

factor or they tend to fly simple missions that do not require sophisticated control. There

have been investigations into implementing a propulsion system to allow far more dynamic

missions and even the possibility for interplanetary travel as proposed by Ames, NASA,

University of Michigan using their CubeSat Ambipolar Thruster[2], and other organiza-

tions.

These small satellites can be equipped with small propulsion systems. These propulsion

systems like to one shown in figure 1.2, produce thrust in the range of micro-Newtons, and
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on the power level of Watts. Generally, low-thrust propulsion use cold gas, nitrogen, or

butane for fuel. Many new propulsion systems for small satellites are in development such

as ion thrusters, electrospray thrusters, and micro-resistojet thrusters[3]. These propulsion

systems have not yet been flown on any CubeSat mission yet.

Figure 1.2: Busek BIT-1 Ion Thruster[4]

These low-thrust propulsion systems and all other propulsion systems use the metric of

specific impulse to measure their performance. The specific impulse, (Isp) in seconds, is

the unit of measurement used to determine the efficiency of a thruster and can be calculated

based on equation (1.1).

Isp =
F
ṁ

(1.1)

Where F is the thrust of the thruster and ṁ is the mass flow rate of the rocket’s propel-

lant. The higher a propulsion system’s Isp the more efficient it is.

Trajectory Dynamics
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Trajectory control is control of a spacecraft’s orbital path. Many orbital mechanics

problems can be modelled as restricted two-body problems, where an object of negligibly

small mass orbits a large central body. This kind of problem assumes that there are no other

bodies affecting this system and other phenomena like air drag are neglected. The orbital

dynamics can be described by Newtonian equations of motion. The orbital dynamics of a

two-body system can be represented by the differential equation:

r̈ = µ

r3 r (1.2)

r =
( rx

ry
rz

)
, is the position in Cartesian coordinates, and µ is the gravitation constant of the

central body.

Coordinate Systems

Orbital mechanics can be expressed using different coordinate systems. One method to

express an orbit state is the keplarian orbital elements. Orbital elements describe the size,

shape, and orientation of an orbit in terms of six elements. The orbital elements are shown

in figure[5].

a = semi-major axis

e = eccentricity

tp = time of perigee passage

Ω = right ascension longitude of the ascending node
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i = inclination of the orbit plane

ω = argument of the perigee

The semi-major axis is the average sum of the periapsis and apoapsis distances. The ec-

centricity describes the shape of the orbit, and ranges from zero to one, with one being a

circular orbit and approaching zero is a more elliptical orbit. The time of perigee passage is

the time when an orbit body is at the closest passing point in the orbit. The ascending node,

is the intersection point between the reference plane and the inclination. The inclination is

the vertical lift of the orbit. The argument of the perigee is the orientation of the orbit in

the orbital plane. These orbital elements are visualized in the figure below:

Figure 1.3: Orbital Elements[6]

An orbit can be transformed from a Cartesian coordinate system to orbital elements using

a set of transformations shown in equation (1.3) below. These transformations may be nec-
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essary when plotting trajectories.

r =
[

rx ry rz

]T

v =
[

vx vy vz

]T

h = r×v

h =
√

h ·h

K̂ = [0 0 1]

N = K̂×h

N =
√

N ·N

i = cos−1(hz
h )

Ω = cos−1(Nx/N)

e = 1
µ
[v×h−µ

r
r ]

ω = cos−1(N · e/Ne)

θ = cos−1(e·r
er )

E = cos−1( e+cosθ

1+ecosθ
)

M = E− esinE

ε = µ

−2a

(1.3)

The position and the velocity vectors can be obtained by solving the differential equa-

tion for the orbital dynamics of a two-body problem, equation 1.2. To obtain the orbital

elements from the position and velocity vector the angular momentum h, is calculated. The
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cross product for the pointing vecotr K and the angular momentum is used to determine the

node line N. Using the node line, angular momentum, and position and velocity vectors,

the eccentricity, inclination, perigee, ascending node, eccentric, and mean anamoly can be

determined.

Orbit Transfers

Orbit transfers are ways in which a spacecraft can change the shape, size, or orientation

of its orbit. Completing an orbit transfer requires energy, whether that be electrical systems

or using chemical combustion. ∆v is the velocity change required for an orbit maneuver.

For a spacecraft with a chemical propulsion system, orbit change maneuvers can be ap-

proximated with instantaneous velocity changes, the ∆v is given in (1.4) below[5].

∆v = v2− v1

∆v =
√

v2
1 + v2

2−2v1v2 cosφ

(1.4)

Where v1 and v2 are the velocities of the spacecraft before and after the thrust impulse,

respectively and φ is the angle between v1 and v2. The higher the ∆v for an orbit maneuver,

the more energy it costs to implement that orbital maneuver. There are many different

types of orbit transfers and depending on the target destination, some orbit transfers are

more efficient than others.

A Hohmann transfer is one of the most energy efficient orbit transfers. In an orbit-
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raising Hohmann transfer, a spacecraft starts in a circular orbit, then thrusts to create an

elliptical orbit where the periapsis is the radius of the initial orbit, and the apoapsis of the

elliptical orbit is the radius of the destination orbit. The spacecraft executes a second thrust

impulse at apoapsis to re-circularize its orbit. A diagram of a Hohmann is pictured below.

Figure 1.4: Hohmann Transfer[6]

Fundamentally, determining the ∆ v for a Hohmann transfer is similar to an impulse maneuver[5].

∆v = ∆v1 +∆v2

∆v1 =
√

2µ

r1
− µ

a −
√

µ

r1

∆v2 =
√

µ

r2
−
√

2µ

r2
− µ

a

(1.5)

Low-thrust Maneuvers
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High-thrust maneuvers use chemical propulsion to make ∆V maneuvers. Electric propul-

sion can not produce as high a thrust as chemical propulsion giving rise to the develop-

ment of low-thrust maneuvers. Low-thrust maneuvers assume that the orbit transfer time

is short relative to the orbital period, and the thrust is modelled as continuous over long

periods of time. To model the trajectory of low-thrust maneuvers, Gauss’s Variational

equations(1.6)can be used [7].

da
dt = 2

√
a
µ
[FR

ae√
1−e2 sinν +FS

a2
√

1−e2

a(1−ecosE ]

de
dt =

√
a
µ

√
1− e2[FR sinν +FS(cosν + cosE)]

di
dt =

√
a
µ

(1−ecosE)√
1−e2 FW cos(ν +ω)

dΩ

dt =
√

a
µ

(1−ecosE)√
1−e2 FW sin(ν +ω)

dω

dt =
√

a
µ

(1−e2)
e [−Fr cosν +Fs(1+ 1−ecosE

1−e2 )sinν ]− cos idΩ

dt

dε

dt =−2
√

a
µ
(1− ecosE)FR +(1−

√
1− e2)(ω̇ + Ω̇)+2

√
1− e2 sin2( i

2)Ω̇

(1.6)

Gauss’s Variational equations provide a convenient way to express non-linear dynamics

of a spacecraft. They are linearized about orbital elements which allow for inexpensive

computation time.

When optimizing low-thrust maneuvers researchers typically optimize for minimum

propellant use or minimum time of flight. Because low-thrust maneuvers have a long trans-

fer time, they are sensitive to small changes in the magnitude and direction of thrust.

Spiral Maneuvers

This thesis focuses on low-thrust spiral orbit maneuvers. These orbit maneuvers require
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a long duration of thrust rather than impulsive. One type of spiral maneuver is an increase or

decrease of the semi-major axis while maintaining a constant eccentricity and inclination.

Figure 1.5: Spiral Out Manuever Normalized About The Radius Of The Earth

From figure 1.5 above, it can be seen that the spacecraft undergoes a large number of

orbits compared to a Hohmann transfer. For the spiral maneuver, the spacecraft starts at a

circular low-earth orbit (LEO). As the spacecraft is orbiting the Earth, it begins to spiral out

by thrusting in small increments, until it reaches its target orbit. A trade off to low-thrust

spiral orbit maneuvers is that they can take a long time to implement.

Plane Change Maneuvers

A plane change maneuver is an orbit maneuver where the inclination of the orbit is

changed without changing the eccentricity or semi major axis as shown in figure 1.6.
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Figure 1.6: A Plane Change Maneuver

A plane change maneuver is made by pointing the thrust vector orthogonality to the

angular momentum vector. For a minimal transfer time, the change in inclination and the

delta v can be expressed as equation (1.7).

∆i = 2∆i
πv1

∆v = 2sin(∆i
2 )
√

1−e2 cos(ω+E)Ma
1+ecosE

(1.7)

The most efficient way to make a plane change maneuver is to thrust at the apogee of

the current orbit along the intersection of the initial and target plane.

Eccentricity Change Maneuvers

The eccentricity change maneuver involves changing the shape of an orbit, either mak-

ing it more elliptical or circular while maintaining the semi major axis a, constant, as shown
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in the figure below.

Figure 1.7: Eccentricity Change Maneuver

The change in eccentricity can be done by aligning the thrust vector in the direction of

the angular momentum, orthogonal to the velocity and position vectors. The eccentricity

change for a minimum transfer time and small thrust can be expressed as (1.8).

de
dt

= 2
√

a
µ

f cosθ (1.8)

Where θ is the thrust vector. There are many other types of orbit maneuvers that are

outside the scope of this paper. The orbit maneuver that will be discussed later in this paper

is based on low-thrust propulsion.
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Chapter 2

LINEAR TRAJECTORY MODEL

The linear quadratic attitude control is based on a previously described trajectory con-

trol method[8]. The trajectory model is a linear approximation of two-body orbital dy-

namics with low-thrust acceleration. They are found by averaging for orbital motion

with thrust expressed as Gauss’s equations (1.6) for orbital motion of a perturbing thrust

acceleration[8].

ȧ = 2

√
a3

µ

[
1
2

eβ
R
1 +

√
1− e2 α

S
0

]
(2.1)

ė =

√
a
µ

√
1− e2

[
1
2

√
1− e2 β

R
1 +α

S
1 −

3
2

eα
S
0 −

1
4

eα
S
2

]
(2.2)

i̇ =

√
a
µ

1√
1− e2

[
1
2
(
1+ e2)cosω α

W
1 −

3
2

ecosω α
W
0 −

1
2

√
1− e2 sinω β

W
1

−1
4

ecosω α
W
2 +

1
4

e
√

1− e2 sinω β
W
2

]
(2.3)

Ω̇ =

√
a
µ

csc i√
1− e2

[
1
2

√
1− e2 cosω β

W
1 +

1
2
(
1+ e2)sinω α

W
1 −

3
2

esinωα
W
0

−1
4

e
√

1− e2 cosω β
W
2 −

1
4

esinω α
W
2

]
(2.4)

ω̇ =

√
a
µ

1
e

[
−1

2

√
1− e2 α

R
1 + e

√
1− e2 α

R
0 +

1
2
(
2− e2)

β
S
1 −

1
4

eβ
S
2

]
− cos iΩ̇(2.5)

ε̇1 =

√
a
µ

[(
−2− e2)

α
R
0 +2eα

R
1 −

1
2

e2
α

R
2

]
+(

1−
√

1− e2
)(

ω̇ + Ω̇

)
+2
√

1− e2 sin2
(

i
2

)
Ω̇. (2.6)
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The Fourier coefficients are a representation of periodic thrust laws.

~F = FRr̂+FW ŵ+FS (ŵ× r̂) (2.7)

FR,W,S =
∞

∑
k=0

[
α

R,W,S
k coskE +β

R,W,S
k sinkE

]
. (2.8)

In [7], it was found that only a finite set of the Fourier coefficients α
R,W,S
k ,β R,W,S

k affect

the average trajectory dynamics. This set is used as the control input u. Since we are

implementing linear quadratic trajectory control, the system dynamics take the state-space

linear form:

ẋ = Ax+Bu (2.9)

u is a thrust acceleration vector in terms of Fourier coefficients, A is a six-by-six zero
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matrix, and B is expressed as:

B =


02,3 B1 02,7

02,3 02,4 B3

B4 02,4 B5



B1 =

al phaβ1R αα0s 0 0

eβ1R eα0s eα1s eα2s



B3 =

0 0 iα0w iα1w iα2w iβ1w iβ2w

0 0 Ωα0w Ωα1w Ωα2w Ωβ1w Ωβ2w



B4 =

ωα0r ωα1r 0

Mα0r Mα1r Mα2r



B5 =

ωβ1s ωβ2s ωα0w ωα1w ωα2w ωβ1w ωβ2w

Mβ2s Mβ2s 0 0 0 0 0



(2.10)

The state vector x is in terms of six orbital elements and the input control law u is in

terms of the fourteen Fourier thrust-acceleration components:

x =

[
a e i ω Ω M

]T

u =

[
αR

0 αR
1 αR

2 β R
1 αS

0 αS
1 αS

2 β S
1 β S

2 αW
0 αW

1 αW
2 βW

1 βW
2

]T (2.11)
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Linear Quadratic Optimal Control

LQ Optimal Control is a subset of optimal control. As the name implies, linear quadratic

optimal control minimizes a quadratic cost function for a linear system. In some cases, this

method can be used for non-linear systems when the system dynamics are linearized about

an operating point.

The state equation for a linear system is modelled as:

ẋ = Ax+Bu

x(0) = x0

(2.12)

and the control law is defined as:

u = φ(x) (2.13)

This control law must minimize a quadratic cost function(2.14). The cost function repre-

sents the total penalty incurred over the entire time span of the simulation. The goal of

using a linear quadratic controller is to minimize the code function.

J(x0,φ) =
1
2

x(t)T K f x(t)+
1
2

∫
∞

0
(xT (t)Qx(t)+u(t)T Ru(t))dt (2.14)

Where Q is a positive semidefinite matrix and R is a positive definite matrix.
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Q =



q1 0 0 . . . 0

0 q2 0 . . . 0

... 0 . . . . . .
...

... . . . . . .
. . . ...

0 . . . . . . . . . qn



R =



r1 0 0 . . . 0

0 r2 0 . . . 0

... 0 . . . . . .
...

... . . . . . .
. . . ...

0 . . . . . . . . . rn



(2.15)

Q and R are weight factor matrices whose values are determined by using trial and error,

and insight. These weight factors are used to incur a penalty on the state x(t), input u(t), or

final value

The principle of linear quadratic optimal control can be stated as:

Assume (A,B) is stabilizable, and (Q,A) is detectable. Then there exists a unique so-

lution S, in the class of positive semidefinite matrices, to the objective Riccati equation.

Furthermore, the closed-loop system matrix A−BR−1BT S is stable.[11]
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The control law that minimizes the cost function can be represented in (2.16)

u(t) =−R(t)T BT (t)P(t)x(t) (2.16)

where P is the solution to the differential Riccati equation over a finite horizon continuous

time, given in (2.17).

Ṗ = AT P(t)+P(t)A+R−P(t)BR−1BT P(t)

P(t f ) = 0
(2.17)

The differential Riccati equation is solved in backwards time t f → t0. The fundamen-

tals of trajectory dynamics and low-thrust maneuvers can be demonstrated in a trajectory

control simulation.

Trajectory Control

The LQ trajectory control was implemented with two different orbit scenarios. The

first orbit scenario is an orbit raising maneuver and the second is a plane change maneuver.

Through trial and error, both orbit maneuvers use the weight factors values given below:
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K f = 1000I6

Q =



.1 0 0 0 0 0

0 .1 0 0 0 0

0 0 .1 0 0 0

0 0 0 .1 0 0

0 0 0 0 .1 0

0 0 0 0 0 0



(2.18)

For Q matrix (2.18), the mean anamoly Q(6,6) is not being targeted. The first scenario is

an orbit raising scenario over a period of five orbits. The initial and target parameters of

the trajectory are given in the tables below.

Table 2.1: Initial Orbit State For Raising Maneuver

Orbital elements Units

a0 6678 km

e0 0.67

i0 20 degrees

Ω0 20 degrees

ω0 20 degrees

M0 20 degrees
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Table 2.2: Target Orbit State For Raising Maneuver

Orbital elements Units

atarg 7345 km

etarg 0.7370

itarg 22 degrees

Ωtarg 22 degrees

ωtarg 22 degrees

Mtarg 20 degrees

The result from the trajectory model is shown below in terms of orbital elements and a 3D

plot.

Figure 2.1: Trajectory In Terms Orbital Elements
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Figure 2.2: 3D Trajectory Of Orbits

Figure 2.1 and figure 2.2 show the trajectory of the spacecraft in orbital elements and a

3D plot in Cartesian coordinates, respectively. The periodic motion in figure 2.1 represents

the orbital element states using a non-linear model, the blue line represents the orbital

element states using averaged secular equations(2.1-2.6), and the star is the target state.

The solutions have the form of time-varying thrust acceleration vectors. The direction

of the thrust-acceleration vectors define attitude angles that will be used in the attitude

controller.

The second scenario is a plane change maneuver. In the plane change maneuver the

initial state inclination is twenty degrees and the target state is ten degrees, the initial and

target states are shown in the tables below.
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Table 2.3: Initial Plane Change Maneuver

Orbital elements Units

a0 6678 km

e0 0.67

i0 20 degrees

Ω0 20 degrees

ω0 20 degrees

M0 20 degrees

Table 2.4: Target Plane Change Maneuver

Orbital elements Units

atarg 7345 km

etarg 0.67

itarg 10 degrees

Ωtarg 20 degrees

ωtarg 20 degrees

Mtarg 20 degrees

The results for this orbit maneuver is shown in the plots below.
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Figure 2.3: Orbital Elements Plane Change Maneuver

Figure 2.4: 3-D Trajectory Plane Change
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It can be seen in Figure 2.3 that the LQ control model does reach the target state but the

non-linear model misses the target state. This issue may be due to any singularities present

in the non-linear function. To find a solution, would require looking outside the scope of

this thesis. Now that the trajectory control has been discussed an attitude model can be

built using the same principles.
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Chapter 3

ATTITUDE DYNAMICS

Attitude control is necessary to control the orientation and the spin of a satellite. In

space, the overwhelming force that acts on a spacecraft is gravity and thrust (neglecting

drag forces). Attitude control is necessary to successfully navigate a spacecraft because

it allows a spacecraft to point to a target orientation for thrusting maneuvers or to point

sensors or cameras at an object.

A basic way to think of attitude control is to first consider that gravity is the only force

present. Another assumption that can be made is that the center of mass is at the center

of the spacecraft, referred to as torque-free motion. In torque-free motion the external

disturbance torques on the spacecraft are zero.

A key component of attitude control is the inertia of the spacecraft and the angular

momentum. The inertia matrix is dependent on the geometry and mass of the spacecraft,

its general form is given in the matrix(3.1).

J =


Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jzy Jzz

 (3.1)

The angular momentum about the body axis of the spacecraft is given as
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H = Jθ̇

θ̇ =


θ̇x

θ̇y

θ̇z


(3.2)

where θ̇ is the angular rotation of the spacecraft body. Spacecraft attitude control sys-

tems typically use Euler angles and quaternions to represent their orientation.

Coordinate Systems

When modeling attitude control typically two major types of coordinate systems are

used. The easier to understand and visualize are Euler angles. Similar to an aircraft, a

spacecraft also can execute roll, pitch, and yaw maneuvers. Euler angles can be expressed

in terms of radians or degrees of rotation about the roll, pitch, and yaw axes as shown in

Figure 3.1 below.
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Figure 3.1: Euler Angle Representation On A Satellite[9]

θ x,y, and z represent the roll, pitch, and yaw respectively

θ =


θx

θy

θz

 (3.3)

Euler angles are not very computationally intensive as compared to quaternions, but can

have singularities or points where the value is undefined at certain angles.

Quaternions are another commonly used coordinate system. Unlike Euler angels, which

can be visualized as roll, pitch, and yaw, quaternions can not be intuitively visualized.

However, quaternions provide a useful mathematical representation of spacecraft attitude

without singularities. Quaternions are more robust than Euler angles because they allow

for more computationally intensive simulations. Quaternions can be expressed as:
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q =



qs

qx

qy

qz


(3.4)

where qx,qy,qz are quaternions along the x, y, and z axis and qs is a scaling factor.

The direction cosine transformation matrix from a vector A to B can be expressed as [5]:

CB/A =


~b1 ·~a1 ~b1 ·~a2 ~b1 ·~a3

~b2 ·~a1 ~b2 ·~a2 ~b2 ·~a3

~b3 ·~a1 ~b3 ·~a2 ~b3 ·~a3

 (3.5)

To convert Euler angles to quaternions, the Euler angles must first be converted into a di-

rection cosine matrix (DCM) [10].

T =


sinθx sinθy sinθz + cosθx cosθz sinθx sinθy cosθz + cosθx sinθz −sinθx cosθy

−cosθy sinθz −cosθy cosθz sinθz

cosθx sinθy sinθz + sinθx cosθz −cosθx sinθy cosθz + sinθx sinθz −cosθx cosθy


(3.6)

From direction cosine matrix the values can then be converted into quaternions.
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qs =
√

1
4(1+T11 +T22 +T33)

qx =
√

1
4(1+T11−T22−T33)

qy =
√

1
4(1−T11 +T22−T33)

qz =
√

1
4(1−T11−T22 +T33)

(3.7)

The spacecraft attitude representation in the Earth-centered inertial reference frame is de-

pendent upon the coordinate location of the spacecraft relative to the center of the Earth as

shown in figure 3.2 below.

Figure 3.2: Earth Inertial Reference Frame [19]

This coordinate system can be derived from the x,y,z coordinates of the spacecraft and

the rotational velocity of the Earth.

In attitude dynamics using the Earth-centered inertial frame may not as be useful. It

is typical to represent the attitude of a spacecraft in the body frame because of on board

sensors and attitude systems. The orientation angles must be transformed from the inertial

frame to the body frame. Putting the orientation Euler angles in the transformation matrix
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(3.8), the orientation is given as a direction cosine matrix.

Rbi =


cosθs cosθw cosθw sinθs −sinθw

cosθs sinθr sinθw− cosθr sinθs cosθr cosθs + sinθr sinθs sinθw cosθw sinθr

sinθs sinθr + cosθs cosθr sinθw cosθr sinθs sinθw− cosθs sinθr cosθr cosθw


(3.8)

The transformation matrix may be converted into quaternions by using(3.9).

qs =
√

1
4(1+Rbi11 +Rbi22 +Rbi33)

qx =
√

1
4(1+Rbi11−Rbi22−Rbi33)

qy =
√

1
4(1−Rbi11 +Rbi22−Rbi33)

qz =
√

1
4(1−Rbi11−Rbi22 +Rbi33)

(3.9)

This paper uses an alternative method to represent the attitude by using the a trans-

formation on the thrust-acceleration vectors of the spacecraft rather than using the body

frame.

Attitude Control Systems

There are various ways to control the attitude of a spacecraft. One way is to use reac-

tion wheels. Reaction wheels use spinning wheels, generating rotational momentum for a

spacecraft. One reaction wheel is used to spin a spacecraft about one axis, so for two or

three axis control, two or three reaction wheels are necessary. The reaction wheels are con-

tained within an enclosure and can be placed anywhere within a spacecraft. These reaction
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wheels can build up momentum over time and become over saturated. Therefore, reaction

wheels are often paired with a magnetorquer to reduce the built up momentum from the

reaction wheels.

The magnetorquer is a component that generates a magnetic field when a voltage is

applied and can be used to decrease a reaction wheel’s momentum. One caveat with using

a reaction wheel and magnetorquer is that they must work with another magnetic field,

(Earth’s magnetic field) so this combination will not be effective at all outside of the range

of planetary magnetic fields, for example during interplanetary missions. In the case where

reaction wheels and magnetorquers can not be used, a thruster can be used as an attitude

control system.

Attitude control thrusters can be used for high orbit and interplanetary missions. These

systems are more complex than using reaction wheels and magnetorquers, and require fuel

tanks, fuel system accessories like valves or pumps, and may require the spacecraft to go

though more rigorous ground testing.

Another attitude controller is a nutation damper. A spacecraft can undergo wobbling,

or rocking motions in the axis of rotation, this is known as nutation. Nutation is dampened

by means of fluid frictional force, and stretching and compression of non-rigid components

which dissipates energy causing the spacecraft to stabilize[6]. Nutation dampers use a tube

filled with viscous fluid, a mass, and a spring as shown in figure 3.3 below.
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Figure 3.3: Diagram Of A Nutation Damper[6]

Another attitude control mechanism is gravity-gradient stabilization. Gravity-gradient

stabilization uses a tethered mass or a boom and a planet’s gravitational field to stabilize

itself, as seen in figure 3.4. The benefits to using this system is that it requires little power

but the spacecraft is limited in mobility.

Figure 3.4: Gravity-Gradient Stabilization On A CubeSat[13]

All of the attitude control mechanisms mentioned above can be implemented on low-

thrust spacecraft. The attitude control laws demonstrated in this thesis could be imple-

mented by any attitude control system that can vary its torque output, such as reaction

wheels or thrusters.
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Chapter 4

ATTITUDE MODEL

Before a LQ attitude control model is discussed, literature on attitude control will be

discussed. Other works use a reduced quaternion model to model the attitude[14]. Yang

also illustrated that an attitude controller can be modelled by linearizing the equations for

attitude mechanics[15]. By using only three quaternion components, Yang was able to

accurately show an analytic model for an attitude controller.

Caulbert and Biggs proposed a singularity-free controller based on a special set of at-

titude relations both globally and uniquely described on the special orthogonal group[16].

Their attitude control model uses a rotation matrix which does not have some of the pitfalls

that Euler angles, or quaternions have but requires more computational overhead[16].

There are some assumptions that must be made for creating an attitude model. The

spacecraft is assumed to have a rigid body, and the spacecraft’s center of mass is located in

the center of the spacecraft[17]. The non-linear dynamics of spacecraft attitude in terms of

quaternions can be described as [17]:

q̇ = 1
2(S(q)+q4I3x3)ω

q̇4 =−1
2ωT q

(4.1)

linearizing these non-linear equations we can then implement LQ optimal control to find
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an approximate solution to the targeting problem.ω̇

q̇

= Ax+Bu

x =
[

ω1 ω2 ω3 q1 q2 q3

]T

A =

 03 03

.5I3 03



B =

J−1

03



(4.2)

where A and B are the state matrix and input matrix, respectively and, 03 and I3 are

three by three zero and identity matrices, respectively. For a linear quadratic system, the

cost function that must be minimized is given as :

L =
1
2

x(t)T K f x(t)+
1
2

∫
∞

0
(xT Qx+u(t)T Ru)dt (4.3)

The weight factors for the state, input, and final parameters, respectively are given in the

matrices below:
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Q = I6

R = I3

K f = I6

(4.4)

A finite-horizon Riccati equation and an input matrix are used to determine the LQ optimal

control:

−Ṗ = AT P+PA−PBR−1BT P+Q (4.5)

P(T ) = K f (4.6)

ut =−R−1BT Px (4.7)

where equation (4.5) is the differential Riccati equation used in optimal control to min-

imize cost. P is integrated in discrete backwards time starting from the final time to the

initial time, (4.7) represents the control torque of the spacecraft.

Linear Quadratic Attitude Control

LQ model was simulated on a CubeSat. The dimensions of the CubeSat that was used

are (10 cm x 10 cm x 30 cm) with a mass of three kilograms. It is assumed that the center of

mass is located at the center of the spacecraft. Assuming that a CubeSat takes a rectangular

shape (non-deployable solar panels) the mass moment of inertia for the x, y, and z axes

respectively can be described as [6, p.417]:
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Jxx =
1
12m(a2 + l2)

Jyy =
1
12m(b2 + l2)

Jzz =
1

12m(a2 +b2)

(4.8)

where m is the mass of the spacecraft, a, b, and l are the spacecraft width (10 cm), height

(10cm), and length (30cm), respectively. An inertia matrix J, can be defined where the

diagonals Jxx, Jyy, and Jzz represent the inertia of a 3-U CubeSat and the off-diagonals are

assumed to be zero.

J =


Jxx 0 0

0 Jyy 0

0 0 Jzz

 (4.9)

The attitude control model uses the direction of the thrust-acceleration components (Fr,Fw,Fs)

and the resultant force vector (Ft) as its target state. The thrust input for this system is used

in the attitude control model and is expressed in an inertial frame[12].

FR = αR
0 +αR

1 cos(E)+αR
2 cos(2E)+β R

1 sin(E)

FS = αS
0 +αS

1 cos(E)+αS
2 cos(2E)+β S

1 sin(E)+β S
2 sin(2E)

FW = αW
0 +αW

1 cos(E)+αW
2 cos(2E)+βW

1 sin(E)+βW
2 sin(2E)

Ft =
√

F2
R +F2

S +F2
W

(4.10)
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The equations in (4.10) give the direction vectors that the attitude controller will use for

solving the attitude targeting problem.

Direction Vector Transformations

The objective of the linear quadratic attitude control is to track the direction of the

thrust acceleration vector throughout the orbit change maneuver. The attitude is tracked by

solving a set of boundary value problems over a continuous time span. The time span is

split into intervals with initial and target conditions. The linear quadratic controller solves

for the final value of the attitude for the interval. The final values are then used as the

initial values for the next interval. The parameters of the boundary value problem are the

direction vector of the resultant thrust-acceleration components. The thrust-acceleration

vectors are expressed as (Fr,Fw,Fs) as expressed in equation (4.10). Each of these vectors

have corresponding direction vectors (r̂, ŵ, ŝ) and a resultant t̂ as defined in equation 4.11.

These direction vectors are the initial and target states for the attitude controller.

r̂ = ~r
|~r|

ŵ = ~r×~v
|~r×~v|

ŝ = ŵ× r̂

t̂ = r̂+ŵ+ŝ
|r̂+ŵ+ŝ|

(4.11)

The direction vectors are expressed as x, y, and z coordinates in the Earth inertial frame. To

determine the angle between the resultant vector and the pointing direction of the space-
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craft, the Euler’s Eigenaxis Rotation Theorem is used. For each interval of the thrust-

acceleration tracking problem the Euler Eigenaxis Rotation is expressed as:

F̂t = Rââ =


0

1

0

 (4.12)

where â is the initial pointing direction. We assume that at the beginning of each time

interval, the spacecraft is oriented with the body y-axis along the initial direction of the

thrust acceleration vector. At the end of each interval, the spacecraft must align with the

new direction of the thrust vector. The transformation vector R represents the required

rotation and both F̂t and â must be unit vectors. By selecting equation (4.12) as the pointing

vector, it can be assumed that the y component is zero. The spin of the spacecraft is not

being tracked, only yawing and pitching movements are. To align to the resultant vector, a

direction cosine matrix R must be determined[18].

R =


1 0 0

0 1 0

0 0 1

+ s(â× F̂t)+(s(â× F̂t)
2(

1− â · F̂t

|â× F̂t |
) (4.13)

where is defined as the skew symmetric matrix. The skew symmetric matrix is a square

matrix where the transpose of the matrix is also its negative. A one-by-three matrix can be

expressed as a skew symmetric matrix in equation (4.14).
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A =

[
a b c

]

s(A) =


0 −c b

c 0 −a

−b a 0


(4.14)

When the rotation matrix is known, the quaternions can be determined by the Eigenaxis

e, and the pointing angle θ :

θ = cos−1( trace(R)−1
2 )

e = 1
2sinθ


R23−R32

R31−R13

R12−R21


q1 = e1 sin θ

2

q2 = e2 sin θ

2

q3 = e3 sin θ

2

q4 = cos θ

2

(4.15)

Where q4 is the scale value. These quaternions give the angles between the resultant

direction and the desired direction to point the satellite for the attitude controller.

Attitude Control Implementation
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The attitude control model is implemented using the quaternions of the thrust-acceleration

vector components in the initial and target states of the attitude. The trajectory for the orbit

raising maneuver was modelled first, followed by the plane change maneuver. The time

span used for the attitude controller is the time from one angle to the other. The spacecraft

will perform twenty orbits. The initial state for the angular velocity is assumed to be zero

(spacecraft is not rotating). The initial orientation state is the initial value of the thrust

direction. The script file of the trajectory and attitude controller is given in the appendix.

The thrust-acceleration of the orbit raising manuever is given in figure 4.1 below.

Figure 4.1: Orbit Raising Thrust-Acceleration

It can be seen from figure 4.1, the thrust acceleration is periodic. The direction vectors of

the thrust-acceleration components FR,FS,FW , are implemented into the attitude controller.
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Figure 4.2 shows the output of the attitude transformations in terms of quaternions as

well as the angular velocity and torque input to the spacecraft, and the thrust-acceleration.

Figure 4.2: Quaternion Output Of Orbit Raising Maneuver

Figure 4.2 shows that the quaternion transformation follows a periodic motion. This

periodic behavior of the orientation is expected because the spacecraft is moving along a

periodic orbit. For the quaternion q2 it can be seen that throughout the flight the value

is zero, assuming the spacecraft is not spinning along its axis. Observing the quaternion

attitude, q3 seems to be affected the most by an orbit-raising maneuver.
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Figure 4.3: Torque Input Of Orbit Raising Maneuver

A snippet of the input torque u shown in figure 4.3. Similarly to theattitude output,

q3 appears to experience the highest input torque and the input torque also has periodic

behavior.

The thrust-acceleration of the plane change manuever is given in figure 4.4 below.
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Figure 4.4: Plane Change Thrust-Acceleration

Figure 4.4 above, shows the thrust-acceleration components for the plane change maneuver.

It can be seen that the thrust-acceleration for the plane change maneuver has a higher mag-

nitude companed to the orbit raising maneuver. Also the thrust acceleration gets smaller

over time, faster than the orbit raising maneuver. The results of the attitude controller for

the plane change maneuver is shown in the figure below.
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Figure 4.5: Attitude Plane Change

Looking at figure 4.5, the output for the attitude of the plane change, the attitude seems

to have similar behavior to the orbit raising maneuver. As expected q2 remains zero for the

entire time span. It can be seen from figure 4.5 that over the time span the magnitude ofq1

decreases. The magnitude decrease may be due to the plane change.
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Figure 4.6: Input Torque For Plane Change

Observing figure 4.6, the input torque for the plane change is similar to the orbit raising

maneuver both in magnitude and periodic behavior.
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Chapter 5

CONCLUSION

A linear quadratic trajectory controller was created to determine the required thrust

accelerations and control torques to execute orbit maneuvers. This trajectory model was

used in two orbit scenarios, an orbit-raising and a plane change maneuver. Then a linear

quadratic attitude controller was developed to control the attitude of a spacecraft to track

the required thrust vector during flight. The attitude controller tracked the direction of the

thrust-acceleration direction vector. The attitude was modelled by dividing the trajectory

output of the spacecraft as individual boundary value problems with initial and target states,

and then solving each of these problems using linear quadratic optimal control. The attitude

controller exhibits periodic behavior with the same frequency as the calculated spacecraft

thrust acceleration.

The LQ trajectory controller models the trajectory of a low-thrust maneuver and then

the attitude controller uses the results from the trajectory controller to model the orienta-

tion of the spacecraft. Possible future work can include integrating the attitude controller

directly with the trajectory controller. The attitude controller can serve as a constraint to

the trajectory controller by forcing the trajectory controller to find a new solution if the

attitude controller can not achieve a given attitude rate.
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APPENDIX

Description of Matlab Code

Below is the Matlab code that was created to produce the results given in the paper. The

main file is driverLQRASEJHudson.m, this file contains the script for the LQ trajectory

control and the function of the LQ attitude controller. The code below initializes the initial

state and target state or the orbit as well as the constants. The semi-major axis a0 and

atarg are normalized with the radius of the Earth. The transfer time indicates the number

of orbits, and the target and initial states are converted from orbital elements to Cartesian

coordinates using the oerv function.

1 %Reframing ASE targeting as an LQ optimal control problem

2 global mu A B Q R Pbig tspan r xT dist u tspan bk

3 % Constants

4 mu = 398600*60ˆ4/REˆ3; %REˆ3/hˆ2

5 RE=6378; % Earth radius to normalize distances

6

7 % Initial State

8 a0 = 6678/RE; %km

9 e0 = 0.67;

10 i0 = 20*pi/180; %rad

11 Omega0 = 20*pi/180; %rad
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12 w0 = 20*pi/180; %rad

13 M0 = 20*pi/180; %rad

14 n0 = sqrt(mu/a0ˆ3);

15 x0 = [a0; e0; i0; Omega0; w0; M0];

16

17 % Transfer Time

18 t0 = 0; % start time

19 ttarg = 2*pi*sqrt(a0ˆ3/mu)*20; % target time;

20 dt = ttarg/500;

21 tspan = 0:dt:ttarg;

22 \end{minted}

23 \begin{minted}[linenos=true,bgcolor=bg]{matlab}

24 tspan bk = ttarg:-dt:0;

25 [r0,v0]=oe to rv(x0, t0);

26 % Target State

27 %atarg = 1.357;

28 atarg = 7345/RE;

29 etarg = .7370;

30 itarg = 22*pi/180;

31 Omegatarg = 22*pi/180;

32 wtarg = 22*pi/180;

33 Mtarg = 22*pi/180;

34 xT = [atarg; etarg; itarg; Omegatarg; wtarg; Mtarg];

The script below declares the state matrix A, input matrices B and u. Input B uses the
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function findGM to convert the orbit elements using Kelper’s laws.

1 icl=x0-xT;

2 Kf = 100*eye(6);

3 Q = .1*eye(6); Q(6,6)=0;

4 R = 1*eye(14);

5 %LF Model Parameters

6 A = zeros(6,6);

7 B = find G M(a0,e0,i0,w0);

8 u = zeros(length(tspan),14);

The script below calculates the Riccati equation using the ode45 function in backwards

time, and then the P matrix is flipped into forward time. Within the for loop the linear

quadratic trajectory model is calculated in ode45 using the ASE2 function and the param-

eters are the time span and the initial state. The function returns the position and velocity

in Cartesian coordinates. The target state is converted from orbital elements to Cartesian

coordinates.

1 %1. Optimize LF Model

2 y0l=[icl; 0];

3 [~,Pbig]=ode45(@findP,tspan bk,Kf(:)); %integrate from tf to t0

4 Pbig=flipud(Pbig); %flip to forward time
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5 for n=1:1

6 [~,Yl]=ode45('ASE2',tspan,y0l);

7 Jl=Yl(end,end);

8 al = Yl(:,1)+atarg;

9 el = Yl(:,2)+etarg;

10 il = Yl(:,3)+itarg;

11 Omegal = Yl(:,4)+Omegatarg;

12 wl = Yl(:,5)+wtarg;

13 Ml=zeros(length(tspan),1);

14 rl = zeros(length(al),3);

15 vl = zeros(length(al),3);

16 for j = 1:length(tspan)

17 nt=sqrt(mu/al(j)ˆ3);

18 Ml(j) = Yl(j,6)+Mtarg+nt*tspan(j); %note fake-out here

19 Ml(j) = rem(Ml(j),2*pi);

20 xl = [al(j) el(j) il(j) Omegal(j) wl(j) Ml(j)];

21 [rl(j,1:3),vl(j,1:3)]=oe to rv(xl,tspan(j));

22 end

The script below calculates the direction vectors of the thrust-acceleration vectors. The

direction vectors and then summed and the resultant direction vector is calculated. The

resultant direction is then used as the input for direction vector transformation.
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1 %calculate the directioqun in terms of the x,y,z

2 rhat = zeros(length(tspan),3);

3 what = zeros(length(tspan),3);

4 shat = zeros(length(tspan),3);

5 that = zeros(length(tspan),3);

6 for k = 1:length(rl)

7 rcv = cross(rl(k,:),vl(k,:));

8 rhat(k,:) = rl(k,:)/norm(rl(k,:));

9 what(k,:) = rcv/norm(rcv);

10 shat(k,:) = cross(what(k,:),rhat(k,:));

11 fthat = rhat(k,:) + what(k,:) + shat(k,:);

12 that(k,:) = fthat/norm(fthat);

13 end

14 %Rotate the direction vector to align with the inertial frame to determine the angle

15 quadDir = dirVecTrans(that)

The script below calculates the magnitude of the Fourier thrust-acceleration vectors. The

true anomaly is calculated using the Kepler equation in a function called myKepler that

takes the inputs of the trajectory target state. Then the true anomaly and the input control

law u, is used to calculate the thrust acceleration components and their resultant vector

Fr,Fw,FS,FT .
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1 % alpha = [a0R a1R a2R b1R a0S a1S a2S b1S b2S a0W a1W a2W b1W b2W]'; %RSW

2 E=zeros(length(tspan),1);

3 FR=zeros(length(tspan),1);

4 FS=zeros(length(tspan),1);

5 FW=zeros(length(tspan),1);

6 FT=zeros(length(tspan),1);

7 for j=1:length(tspan)

8 Pvec = Pbig(j,:);

9 P=zeros(6,6);

10 P(:)=Pvec;

11 u(j,:) = (-inv(R)*B'*P*(Yl(j,1:6)'))';

12 E(j) = my keplerE([al(j); el(j); il(j); Omegal(j); wl(j); Ml(j)], tspan(j), mu);

13 FR(j)=u(j,1)+u(j,2)*cos(E(j))+u(j,3)*cos(2*E(j))+u(j,4)*sin(E(j));

14 FS(j)=u(j,5)+u(j,6)*cos(E(j))+u(j,7)*cos(2*E(j))+u(j,8)*sin(E(j))+u(j,9)*sin(2*E(j));

15 FW(j)=u(j,10)+u(j,11)*cos(E(j))+u(j,12)*cos(2*E(j))+u(j,13)*sin(E(j))+u(j,14)*sin(2*E(j));

16 FT(j)=sqrt(FR(j)ˆ2+FS(j)ˆ2+FW(j)ˆ2); % total force

17 end

18

19 %Attitude LQ control

20 [attitude] = AttMain(quadDir);

The LQ attitude and the LQ trajectory are computed. The LQ trajectory control is then

compared to the non-linear model of the trajectory. The script below begins by setting the

initial conditions for the non-linear model and then using ode45. The non-linear model is
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computed using the function NewtEOM2, setting the time interval as the trajectory time

span, and the initial conditions and the initial state in Cartesian coordinates. The non-linear

model outputs the position and velocity of the trajectory over the entire time span and then

is converted into orbital elements using the rvtoOe function.

1 % Run Trajectory using Newtonian Equations of Motion

2 y0Newt=[r0 v0 0];

3 options = odeset('RelTol',1e-8);

4 [~,YNewt]=ode45('Newt EOM2',tspan,y0Newt,options);

5 J=YNewt(end,end);

6 aNewt = zeros(length(tspan),1);

7 eNewt = zeros(length(tspan),1);

8 iNewt = zeros(length(tspan),1);

9 OmegaNewt = zeros(length(tspan),1);

10 wNewt = zeros(length(tspan),1);

11 thetaNewt = zeros(length(tspan),1);

12 ENewt = zeros(length(tspan),1);

13 MNewt = zeros(length(tspan),1);

14 for j = 1:length(tspan)

15 [aNewt(j),eNewt(j),iNewt(j),OmegaNewt(j),wNewt(j),thetaNewt(j),ENewt(j),MNewt(j)] = rv to oe(YNewt(j,1:3),YNewt(j,4:6));

16 end
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The outputs for the LQ model and the non-linear model in orbital elements are placed in

subplots. Also the thrust-acceleration is converted to milli-Newtons and displayed in a plot,

as well as a 3-d plot showing the trajectory of the spacecraft using the Linear Quadratic

model and the non-linear model.

1 % Plot initial trajectories

2 figure(2);

3 subplot(3,2,1); plot(tspan,al*RE); ylabel('a'); hold all;

4 plot(tspan,aNewt*RE);

5 plot(ttarg,atarg*RE,'r*');

6 subplot(3,2,2); plot(tspan,el); ylabel('e'); hold all;

7 plot(tspan,eNewt);

8 plot(ttarg,etarg,'r*');

9 subplot(3,2,3); plot(tspan,il); ylabel('i'); hold all;

10 plot(tspan,iNewt);

11 plot(ttarg,itarg,'r*');

12 subplot(3,2,4); plot(tspan,Omegal); ylabel('Omega'); hold all;

13 plot(tspan,OmegaNewt);

14 plot(ttarg,Omegatarg,'r*');

15 subplot(3,2,5); plot(tspan,wl); ylabel('w'); hold all;

16 plot(tspan,wNewt);

58



17 plot(ttarg,wtarg,'r*');

18 subplot(3,2,6); plot(tspan,Ml); ylabel('M'); hold all;

19 plot(tspan,MNewt);

20 plot(ttarg,Mtarg,'r*');

21

22

23 figure(1);

24 plot3(rl(:,1),rl(:,2),rl(:,3)); hold all;

25 plot3(YNewt(:,1),YNewt(:,2),YNewt(:,3));

26 legend('Linear Model','Nonlinear Model');

27

28 figure(2);

29 legend('Linear Model','Nonlinear Model','Target');

The script below shows the output for the thrust-acceleration.

1 FRmN=FR*RE*1000/60ˆ4*1000; % Convert to mN

2 FSmN=FS*RE*1000/60ˆ4*1000;

3 FWmN=FW*RE*1000/60ˆ4*1000;

4 FTmN=FT*RE*1000/60ˆ4*1000;

5

6 figure(3);hold off

7 plot(tspan,FRmN,tspan,FSmN,tspan,FWmN,tspan,FTmN);

8 xlabel('Time (h)'); ylabel('Force (mN)'); hold all
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9 legend('F R','F S','F W','F {total}');

This part of the scripts details how the output data from the attitude controller is parsed

and place into plots accordingly

1 %atttiude time(s),w1,w2,w3,q1,q2,q3,J

2 attTime = attitude(:,1)/60ˆ2;

3 q1Att = attitude(:,5); q2Att = attitude(:,6); q3Att = attitude(:,7);

4 u1Att = attitude(:,9)*1000; u2Att = attitude(:,10)*1000; u3Att = attitude(:,11)*1000;

5

6 figure(4)

7 plot(attTime,q1Att,attTime,q2Att,attTime,q3Att)

8 legend('q 1','q 2','q 3')

9 ylabel('quaternion'), xlabel('Time(hr)')

10 xlim([0 32])

11 title('Quadternion Attitude')

12

13 figure(5)

14 plot(attTime,u1Att,attTime,u2Att,attTime,u3Att)

15 legend('u 1','u 2','u 3')

16 ylabel('Torque(mN-m)'), xlabel('Time(hr)')

17 xlim([0 32])

18 title('Input Torque')
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Attitude Controller Function

The following functions do not come packaged with Matlab and will have to be dis-

cussed. The first file that will be discussed is the attitude controller. This function has some

similarities to the main script because they are both using similar methods to generate an

output.

The function takes an input called bodyorientation, this input is a matrix of quaternions

of the direction transformation vector. The first values of this matrix is the initial state of the

first iteration of the attitude controller. The first target state is the second row of the body-

orientation matrix. The inertia matrix is created and an initial angular velocity is initialized.

1

2 function [ output ] = AttMain(bodyorientation)

3 global tspan AAt BAt QAt RAt PbigAt tspanAt xTAt

4 targq1 = bodyorientation(:,1); %roll

5 targq2 = bodyorientation(:,2); %pitch

6 targq3 = bodyorientation(:,3); %yaw

7

8 Jxx= 25.0; Jyy= 25.0; Jzz= 5;

9 wx= 0; wy= 0; wz= 0;

10
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11 %initial state inputs

12 J = [Jxx 0 0; 0 Jyy 0; 0 0 Jzz]; %inertia matrix

13 omega0= [wx ; wy ; wz]*(pi/180);

14

15 %initial State

16 [inistate] = [0;0;0;targq1(1);targq2(1);targq3(1)];

At this point the initial parameters for the trajectory are initialized. The next step is to

set the parameter for the LQ controllers. The weight factors Q, K, and R are initialized, as

well as the state and input vectors.

1 %Target State

2 QAt = .001*eye(6);

3 Kf = eye(6);

4 RAt = 1*eye(3);

5 %Mode Parameters

6 AAt = [zeros(3,3), zeros(3,3); .5*eye(3), zeros(3,3)];

7 BAt = [inv(J) ; zeros(3,3)];

The section of script below initializes the time span, initial, and target states of the

attitude controller. The initial time and final time used here break up the time span that

is used in the LQ trajectory controller into a smaller interval. This interval will then be

evaluated by the attitude controller
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1 %target inputs

2 for (i = 1 : length(tspan))

3 %time

4 ttargAt = tspan(i+1); % target time (seconds)

5 dt = (ttargAt-tspan(i))/1000;

6 tspanAt = (tspan(i):dt:ttargAt)*3600;

7 tspan bkAt = (ttargAt:-dt:tspan(i))*3600;

8 omega target = [0;0;0].*(pi/180);

9 euler target = [targR(i+1),targS(i+1),targW(i+1)];

10 [targstate] = [euler target(1);euler target(2);euler target(3)];

11 x0 = [inistate];

12 xTAt = [omega target ; targstate];

13 icl = x0-xTAt; %initial conditions

The following script calculates the Riccati equation for the given set of the initial and

target states for the time span. The ode45 function is called on state which is the state-space

model of the attitude controller.

When the LQ controller finishes, the torque input is then calculated. When all of the

calculations are completed the new initial state of the next time span is set to the last values

of the LQ controller output

1 %optimize LF model

2 [~,PbigAt] = ode45('findPAt',tspan bkAt,Kf(:));
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3 PbigAt = flipud(PbigAt);

4 %Run the LQR model

5 %y0ini = [omega0;1;1;1]; %[w1;w2;w3;q1;q2;q3]

6 [~,Y1] = ode45('state',tspanAt,[inistate ; 0]);

7 %calculate the input

8 for (j = 1 : length(tspanAt))

9 Pvec = PbigAt(j,:);

10 P=zeros(6,6);

11 P(:)=Pvec;

12 u(j,:) = (-inv(RAt)*BAt'*P*(Y1(j,1:6)'-xTAt))';

13 end

Now the data from the Linear quadratic controller will be concatinated and stroed for

returning back to the main function

1 %Save the input torque and attitude to return to main

2 if (i == 1)

3 Yold = Y1;

4 uold = u;

5 tspanAtOld = tspanAt;

6 else

7 Yfinal = vertcat(Yold,Y1);

8 Yold = Yfinal;
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9 ufinal = vertcat(uold,u);

10 uold = ufinal;

11 tspanAtFinal = [tspanAtOld,tspanAt];

12 tspanAtOld = tspanAtFinal;

13 end

Now the for loop will repeat itself and sets up the next initial values for the linuear

controller. When the for loop finishes, the linear quadratic output is returned to the main

function.

1 %set initial state for next iteration

2 %w1,w2,w3,q1,q2,q3

3 [inistate] = [Y1(end,1),Y1(end,2),Y1(end,3),Y1(end,4),Y1(end,5),Y1(end,6)]';

4

5 end

6

7 output = [tspanAtFinal' Yfinal ufinal];

8

9 end

The calculation for the LQ attitude controller continues until it reaches the end of the

time span of the trajectory controller. At the end of each set of attitude time spans the LQ

controller, and to torque input are outputted into plots.
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Newton’s Equations of Motion

This function is used to calculate the trajectory using Newton’s Equations of Motion

for circular orbits.

1 function dy = Newt EOM2(t,y)

2

3 global mu u tspan

4

5 rx=y(1);

6 ry=y(2);

7 rz=y(3);

8 vx=y(4);

9 vy=y(5);

10 vz=y(6);

11 % F=y(7); %integrated thrust acceleration

12

13 % k = length(FC Ra);

14

15 r=[rx ry rz];

16 v=[vx vy vz];

17 rmag=norm(r);

18 rhat=1/rmag*r;

19 h=cross(r,v);
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20 hmag=norm(h);

21 hhat=1/hmag*h;

22 hrhat=cross(hhat,rhat);

23 evec=1/mu*cross(v,h)-rhat;

24 e=norm(evec);

25 if ((1-e)/(1+e))<0

26 t

27 e

28 end

29 theta=atan2(dot(hhat,cross(evec,r)),dot(evec,r));

30 E=2*atan2(sqrt(1-e)*tan(theta/2),sqrt(1+e));

31

32 if E<0

33 E=E+2*pi;

34 end

35

36

37 alpha=interp1(tspan,u,t,'linear');

38 R=alpha(1)+alpha(2)*cos(E)+alpha(3)*cos(2*E)+alpha(4)*sin(E);

39 S=alpha(5)+alpha(6)*cos(E)+alpha(7)*cos(2*E)+alpha(8)*sin(E)+alpha(9)*sin(2*E);

40 W=alpha(10)+alpha(11)*cos(E)+alpha(12)*cos(2*E)+alpha(13)*sin(E)+alpha(14)*sin(2*E);

41

42 % R=interp1(tspan,FR,t,'linear');

43 % S=interp1(tspan,FS,t,'linear');
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44 % W=interp1(tspan,FW,t,'linear');

45

46

47 thrust=R*rhat+S*hrhat+W*hhat;

48

49 c=-mu/(rmag)ˆ3;

50

51 dy=zeros(7,1);

52

53 dy(1)=vx;

54 dy(2)=vy;

55 dy(3)=vz;

56 dy(4)=c*rx+thrust(1);

57 dy(5)=c*ry+thrust(2);

58 dy(6)=c*rz+thrust(3);

59

60 dy(7)=sqrt(Rˆ2+Wˆ2+Sˆ2);

Linear Quadratic Function

This function is used to calculate the linear quadratic trajectory for a spacecraft. The

state-space model uses the input control law u.

1
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2 %LF Model

3

4 function dxl=ASE2(t,y)

5

6 global A B Q R Pbig tspan xT mu

7

8 x = y(1:6)+xT;

9 % J = y(7);

10

11 Pvec = interp1(tspan,Pbig,t);

12

13 P=zeros(6,6);

14 P(:)=Pvec;

15

16 nt=sqrt(mu/x(1)ˆ3);

17 F=[zeros(5,1); nt];

18

19 u t = -inv(R)*B'*P*y(1:6);

20

21 dx = A*x + B *u t;

22 dJ = y(1:6)'*Q*y(1:6) + u t'*R*u t;

23

24 dxl = [dx; dJ];
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Gaussian Matrix

This function calculates the input matrix for the linear quadratic state-space model. The

Gaussian function consists of fourteen low-thrust Fourier coefficients.

1 %calculates G such that xdot = G*alpha + F, where the 6th element of x is M

2 function G=find G M(a,e,i,w)

3 global mu

4

5 G=zeros(6,14);

6

7 G(1,4)=sqrt(aˆ3/mu)*e; %b1R

8 G(1,5)=2*sqrt(aˆ3/mu)*sqrt(1-eˆ2); %a0S

9

10 %e

11 G(2,4)=.5*sqrt(1-eˆ2); %b1R

12 G(2,5)=-1.5*e; %a0S

13 G(2,6)=1; %a1S

14 G(2,7)=-.25*e; %a2S

15 G(2,:)=G(2,:)*sqrt(a/mu)*sqrt(1-eˆ2);

16

17 %i

18 G(3,10)=-1.5*e*cos(w); %a0W

19 G(3,11)=.5*(1+eˆ2)*cos(w); %a1W
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20 G(3,12)=-.25*e*cos(w); %a2W

21 G(3,13)=-.5*sqrt(1-eˆ2)*sin(w); %b1W

22 G(3,14)=.25*e*sqrt(1-eˆ2)*sin(w); %b2W

23 G(3,:)=G(3,:)*sqrt(a/mu)/sqrt(1-eˆ2);

24

25 %Omega

26 G(4,10)=-1.5*e*sin(w); %a0W

27 G(4,11)=.5*(1+eˆ2)*sin(w); %a1W

28 G(4,12)=-.25*e*sin(w); %a2W

29 G(4,13)=.5*sqrt(1-eˆ2)*cos(w); %b1W

30 G(4,14)=-.25*e*sqrt(1-eˆ2)*cos(w); %b2W

31 G(4,:)=G(4,:)*sqrt(a/mu)*csc(i)/sqrt(1-eˆ2);

32

33 %w

34 G(5,1)=e*sqrt(1-eˆ2); %a0R

35 G(5,2)=-.5*sqrt(1-eˆ2); %a1R

36 G(5,8)=.5*(2-eˆ2); %b1S

37 G(5,9)=-.25*e; %b2S

38 G(5,:)=G(5,:)*sqrt(a/mu)/e;

39 G(5,:)=G(5,:)-cos(i)*G(4,:);

40 %M

41 G(6,1)=-2-eˆ2; %a0R

42 G(6,2)=2*e; %a1R

43 G(6,3)=-.5*eˆ2; %a2R
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44 G(6,:)=G(6,:)*sqrt(a/mu);

45 G(6,:)=G(6,:)+(1-sqrt(1-eˆ2))*(G(5,:)+G(4,:))+2*sqrt(1-eˆ2)*(sin(i/2))ˆ2*G(4,:)-(G(5,:)+G(4,:));

Ricatti Equation

The function inputs are time and an empty vector. The Riccati equation is then com-

puted using the ode45 function and the output is populated.

1 function Pvecdot = findP(t,Pvec)

2

3 global A B Q R

4

5 P=zeros(6,6);

6 P(:)=Pvec;

7

8 Pdot = -(A'*P+P*A-P*B*inv(R)*B'*P+Q);

9

10 Pvecdot=Pdot(:);

Kepler’s Equations

This function takes the inputs of orbital elements, time, and gravitational constant and

outputs the true anomaly.
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1 function nu = my kepler(oe, t, mu)

2 a=oe(1);

3 e=oe(2);

4 i=oe(3);

5 Omega=oe(4);

6 w=oe(5);

7 M=oe(6);

8 % Tau=t-M/sqrt(mu/aˆ3);

9 dx=0;

10 k=.85;

11 del=1e-14;

12 Mstar=M-floor(M/(2*pi))*2*pi;

13 if abs(sin(Mstar))>1e-10 %check that nu~=0

14 sigma=sin(Mstar)/abs(sin(Mstar)); %sgn(sin(Mstar))

15 x=Mstar+sigma*k*e;

16 for count=1:10

17 es=e*sin(x);

18 f=x-es-Mstar;

19 if abs(f)<del

20 E=x;

21 nu=2*atan2(sqrt((1+e)/(1-e))*tan(E/2),1);

22 break

23 else

24 ec=e*cos(x);
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25 fp=1-ec;

26 fpp=es;

27 fppp=ec;

28 dx=-f/(fp+dx*fpp/2+dxˆ2*fppp/6);

29 x=x+dx;

30 end

31 end

32 if count==10 %check that Newton's method converges

33 nu='undefined';

34 end

35 else

36 nu=0;

37 E=0;

38 end

Orbital Elements to Cartesian

This function transforms keplarian orbital elements into Cartesian coordinates.

1 function [r,v] = oe to rv(oe, t)

2 global mu

3 a=oe(1);

4 e=oe(2);

5 i=oe(3);
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6 Omega=oe(4);

7 w=oe(5);

8 M=oe(6);

9 %Determine orbit type

10 if a<0 | | e<0 | | e>1 | | abs(i)>2*pi | | abs(Omega)>2*pi | | abs(w)>2*pi %problem

11 a

12 e

13 i

14 Omega

15 w

16 error('Invalid orbital element(s)');

17 end

18

19 xhat=[1 0 0];

20 yhat=[0 1 0];

21 zhat=[0 0 1];

22 nu=my kepler(oe, t, mu);

23 nhat=cos(Omega)*xhat+sin(Omega)*yhat;

24 % hhat=sin(i)*sin(Omega)*xhat-sin(i)*cos(Omega)*yhat+cos(i)*zhat;

25 rhatT=-cos(i)*sin(Omega)*xhat+cos(i)*cos(Omega)*yhat+sin(i)*zhat;

26 rmag=a*(1-eˆ2)/(1+e*cos(nu));

27 vmag=sqrt(mu/rmag*(2-rmag/a));

28 gamma=atan2(e*sin(nu),1+e*cos(nu));

29 u=w+nu;
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30 rhat=cos(u)*nhat+sin(u)*rhatT;

31 vhat=sin(gamma-u)*nhat+cos(gamma-u)*rhatT;

32 r=rmag*rhat;

33 v=vmag*vhat;

Cartesian to Orbital Elements

The following function converts the given set of Cartesian coordinates into orbital ele-

ments.

1 function [a, e, i, Omega, w, theta, E, M] = rv to oe(r,v)

2 global mu

3 %Input position and velocity vectors, output orbital elements

4 rmag=norm(r);

5 rhat=1/rmag*r;

6 h=cross(r,v);

7 hmag=norm(h);

8 hhat=1/hmag*h;

9 z=[0 0 1];

10 n=cross(z,h);

11

12 if norm(n)<1e-8; %equatorial orbit

13 evec=1/mu*cross(v,h)-rhat;

14 Energy=.5*dot(v,v)-mu/rmag;
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15 a=-mu/(2*Energy);

16 e=norm(evec);

17 i=0;

18 Omega=0;

19

20 if abs(e)<1e-8

21 w=0;

22 else

23 w=acos(evec(1)/norm(evec));

24 end

25 else

26 nhat=n/norm(n);

27 evec=1/mu*cross(v,h)-rhat;

28 Energy=.5*dot(v,v)-mu/rmag;

29 a=-mu/(2*Energy);

30 e=norm(evec);

31 i=acos(dot(z,hhat));

32 Omega=atan2(nhat(2),nhat(1));

33 if abs(e)<1e-8

34 w=0;

35 else

36 w=atan2(dot(hhat,cross(nhat,evec)),dot(nhat,evec));

37 end

38 end
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39

40 if w<0

41 w=w+2*pi; %define w on (0,2*pi)

42 end

43 if Omega<0

44 Omega=Omega+2*pi; %define Omega on (0,2*pi)

45 end

46

47 theta=atan2(dot(hhat,cross(evec,r)),dot(evec,r));

48 E=2*atan2(sqrt(1-e)*tan(theta/2),sqrt(1+e));

49 if E<0

50 E=2*pi+E;

51 end

52 M=E-e*sin(E);

53 if M<0

54 M=M+2*pi; %define M on (0,2*pi)

55 end

Direction Transformation

The input of this function is the resultant direction vector of the thrust-acceleration. The

rotation matrix R, is calculated from the pointing direction vector a, and resultant direction

vector.
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1 function quadDir = dirVecTrans(dirVector)

2

3 q1=zeros(length(dirVector),1);

4 q2=zeros(length(dirVector),1);

5 q3=zeros(length(dirVector),1);

6 q4=zeros(length(dirVector),1);

7 a= [0,1,0]; %assume pointing in the correct direction

8 \end{minted}

9

10 for i = 1 : length(dirVector(:,1))

11 %Calculate the rotation matrix

12 %S is a scaling factor

13 R=eye(3)+skew(cross(a,dirVector(i,:)))+skew(cross(a,dirVector(i,:)))ˆ2*...

14 ((1-dot(a,dirVector(i,:)))/norm(cross(a,dirVector(i,:))));

15 theta=acos((trace(R)-1)/2);

16 e=1/(2*sin(theta))*[R(2,3)-R(3,2),R(3,1)-R(1,3),R(1,2)-R(2,1)];

17

18 %Convert into quaternions

19 q1(i)=e(1)*sin(theta/2);

20 q2(i)=e(2)*sin(theta/2);

21 q3(i)=e(3)*sin(theta/2);

22 q4(i)=cos(theta/2);

23 end

24 quadDir = [q1, q2, q3, q4];
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25 end

Skew Matrix Function

The skew symmetric matrix function first verifies that the matrix is a 1-by-3 matrix.

Then a 3-by-3 zero matrix is created and the matrix is populated with the input. The output

is a 3-by-3 matrix.

1 %given a 3x1 matrix create a 3x3 skew symmetric

2 function S = skew(a)

3 %check if the size of the matrix is 1x3

4 if size(a) == [1, 3]

5 %write a skew matrix

6 S = zeros(3,3);

7 S(1,2) = -a(3);

8 s(1,3) = a(2);

9 S(2,1) = a(3);

10 S(2,3) = -a(1);

11 S(3,1) = -a(2);

12 S(3,2) = a(1);

13 else

14 error('Matrix must be of size 1 x 3')

15 end
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