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ENTANGLEMENT PERTURBATION THEORY FOR ANTIFERROMAGNETIC
SPIN CHAINS
Lihua Wang, Ph.D.

Western Michigan University, 2009

In this dissertation, we use the recently developed Entanglemént Perturbation Theory
(EPT) to solve antiferromagnetic spin chain problems, for both spin 1/2 and spin 1. We
firs use EPT-g (EPT algorithm for ground state) to get the ground state properties. We
calculated precisely energies, magnetization and spin-spin correlations. The precisbion of
the long range spin-épin correlation functions for spin 1/2 chains is uﬁprecedented. Due to
its sbecial structure, we also use EPT-g to calculate the firs excited state properties for spin
i chains. Hence we plotted the phase diagram for spin 1 xxz chains. Also a generalization
of EPT (EPT-¢) for elementary excitation in one dimension determined the spin-triplet
magnon spectrum for spin 1 chain for the firs time for the entire Brillouin zone, including
the Haldane gap at k = w. The spin chains, the 2D&3D Ising models, the 1D&2D Hubbard
models and the Bose-Hubbard rﬁodel whose study by EPT is recently started represent a
variety of strongly correlated many body systems with translational symmetry. Namely |
EPT is a general method for them. On the other hand, the successful application of EPT-¢

indicates EPT’s potential to study the inhomogeneous quantum systems.
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CHAPTER 1

INTRODUCTION

| Slnce the Entanglement Perturbatlon Theor)i (EPT) has been successfully applled to
3 typlcal class1cal stat1st1ca1 systems, 3D&3D Is1ng models [22], and typlcal quantum sys—
' tems 1D&2D Hubbard models [23, 24], it is naturally asked if it can be applled to other |
 systems. More precrsely, we askif EPT is a generally effective. method for macroseoplc

'quantum systems with translational symmetry. The Heisenburg spin chain' an-ideal model K «

~ for th1s purpose, as itis s1mple enough yet adequate to represent broad quantum systems o

| Here we extend the EPT to evaluate both the ground state and the ﬁrs exc1ted state proper- 3
N ties of the spm cha1ns whlle only the ground state propertles have been studied in [23 24] :
1.1' _“He'isenberg'spin chains

j‘Despite thesimple form of its Hamiltonian, the Heisenberg spin chain has fascinated
physicists for generations. ,Many'_ physieist eontributed to itsunderstan_ding. There are _b_oth '
g rigorous solutions, like BetheAnsatz solutions [13,;14’ 15, 3, 4, S]Vand_numerica‘l s1m-
* ulations like oensity Matrix Renormalization Group (DMRG)[29, 28,'730]‘,' Monte Carlo
| method [12,\ 17] and the»semi-classical quantum theory due to P. ‘W. Anderson [201. Euen

’recently workers are still extending the applications to spin chains with impurities [19>]‘,
y .the spln-i-spin-l/2 chain [26] and the spin cham with an1sotrop1c coupling strength in x,

y,Z directlons [10] However our d1scuss1on is mostly restricted to the most fundamental

isotropic antlferromagnetic spin chains in this work. _Extensron to other c1rcumstances is -



natural forEPT after the successful application to this model. For example, the phase dia-
gram for spin 1 xxz chains is achieved as well, ‘whose exten'sionfrom the EPT calculation
' 'for 1sotrop1c spin chains i is s1mple We start below w1th the case of spin 1/2 chams Later
in the chapter 2 we w1ll see that working out the spm-l Helsenberg spin chain by EPT 1s‘
straightforward from the sp1n71/2 case.
 We ﬁrs give theHa'rniltonian of the spin chain and then brieﬂ review eiristihg worl‘<s,
- namely Bethe Ansatz, renormalization group simulation and semi_-classical qliantum the-
ory. We want to discuss that these methods_both share some_ ideas, and differ in someother
‘ aspects. In the following chapters, vs;e'Wi_ll see that EPT also inherits some important con- ‘
cepts fr0rnthe existing rnethods like the spin wave structure of the excitationoperator on
. the ground state, and EPT bears some new ideas. For example, it niakes rnost thorough use
of the‘translational synnnetry. to construct the trial wave function. Now let us look at the

. Hamiltonian of the antiferromagnetic spin chain

H= ’J.‘L‘i (sz- +1 + Sy sz+1 + SZ z+1) 1.1)
iz | ,
where J is the conpiing'strength between the nearest sites, positive for antiferromagnetic
spin chain, othervtlise for ferromagnetic spin.chain. Since the spin 'z-cornponentof c‘fon |
each site has two possible states, |1) for up spin or|]) for down'spin,‘ the basis\_rectors span

a 2L dimensional Hilbert space | o105 - - - o), if the spin chain length is L.

From now on we use the following form of the Hamiltonian
H :‘JZ [5 (S:r S 57 Sz+1) + 57 z+1} - (1.2)
' i=1

The rules governing operators on the basis vectors are illustrated in the following table

2
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Table 1.1- Rules governing operatOrs on the basis vectors

There are two important(symmetries. The firs one is the translational symmetry. ThlS
pfopefty implies the spin wave structure of the wave function, as Bloch-Floquet theorem -

indicates. EPT makes full usc."of the translational symmétry to introduce periodic structure .

\

_ for bofh fhc bpérétor an& thé local wave function, .The éec'ond symihetry is the rotational
Symrﬁetryﬁ ‘abbutl‘on’e specifi axié, for instance, z-axi‘s7 It is, Sz = Z{;l?S;f is éonsef;'e_d.»'
Ther'efofe the Hilbeﬁ space 1s divided into subspaées,,’ The total Spin z-componenf is fhe

| vsa‘me,fo‘r fhe wave Véct()rs' m the séine sﬁbspacé, but diﬁ"erebnt for different vsub‘spé:ce.:vs. be
the ferrbmagnétic spin chain, fhe‘ grbUﬁd state has the méximum total Spin z-coﬁponent and
the ‘l‘dwe‘st éxcited state émefge§ when Qﬁe magnon is excited, Wﬁile the groﬁnd state has
Zero total spi‘ri z-component for the antiféfromagnetic spin cﬁain; and_shéoting in é_pihons.
can egcife the spin chain from the grouhd State to ‘lck_)w:-ly‘ing exciféd statés; |
1.2 Ekistin"g methods

thereva‘rVe‘ some‘ méthods for 'thevvsolution of the spiri c,hains; A‘mong thein, Bethe A.n'sa‘tz>
[13, 14, 15‘]‘ givgs the fi'g’orous résults; A§ mentioned ébove, the ground Stafe has to‘be the
ohc with z_ef‘O total spin 2-componei1t. So  the grqurid state is the superposition of those
Which have r specifi sites svpin’ up_:and r othef sites spin down,r = %L, Lis the»lengt.h
of the chain‘.v Forrconﬁenience, we a'ssvurr').e. Lis an evenjinte"ger'from now orllfv The general

o
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form of the ground state wave function is as follows

W= Y el w03

1< <dp << <L
where | n,,--- ,nr) stands for the vector for which site {n;, - ,nr} have z-compohent v
spin up, and’ }
a(h, Jip) = ) exp Z Kp,n; + 5 Z 979,79,,. o (1.4)
) . R . PGST J<m

The sum P-€ S, is over. all r' permutatlons of the labels {1 2,. r} The phase angles

0;; and the momenta K; have to sat1sfy the followmg Bethe Ansatz equat1ons

0,; '_' K; K,-." T
2col? = cetT‘—cot?, =L . o (15)
LK, = 2n+ Y6y, i=L.x (16
v‘v&‘_fhere
CNef{ol,...,N-1} S an

is the so called Bethe q'uantumfnumher. What remains to be done is to fin those sets
of ‘Béthe quantum numbers,{)\‘l,- Az, ..., X} which yield solutions of the Bethe Ansatz
equations (1.5) and (1.6>).A Notice that those solutions might be real or cofnplex. Every
solution Arepresents an eigenvector with energy‘
E—Ey= JZ l—cosK) S O (1.8)
o =1 R ‘
- with Eq being the energy for all sites zQComponent spin up state. The wave number is

define- by

——i*i - e
2% -
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Figure 1.1  Configurations of Bethe quantum numbers for I, = 32 ground state (top row) and
for one representative of three sets of two-spinon excitations.

Without going into too many details, we directly write out the ground state for antifer-

romagnetic spin-1/2 Heisenberg spin chain as follows
| AY: {\}a=1{1,3,5,...,L—1} (1.10)

If we think the ground state | A) as the reference state for all excited states, the Bethe
quantum number (1.7) is represented by a perfectly regular array on the integer axis as
illustrated in the firs row of Fig.1.1. This array will be interpreted as a physical vacuum.
The low-lying excited states emerge when spinons are shot into this vacuum. As seen in
Fig.1.1, the two-spinon excitations can be sorted into triplet states with S = 1, S5 = 0, £1
and the other singlets, S = 0. It is because unlike magnons, which are spin-1 particles,
spinons are spin-1/2 particles. In a chain with even L, where all eigenstates have integer-

valued S%, spinons occur only in pairs. The spin S; = +1,1 = 1,2 of the two spinons in

5



a two-spinon eigenstate of Hamiltonian can be combined in four different ways to form a
- triplet state or a singlet state, they are described by. distinct configuratio ' of Bethe quantum

~ numbers. In Fig.1.1 rows two to four are three sets of two-spinon excitations with energy

3 E,}g 5%, Each gap in the integer array of rows two and three (green full circles) represents

' ‘a sp'inon.' ‘Each gapv in row four (green open circleé) repreééﬁté ha:lf a S}:)inoﬁ.' Actuélly in
: v~the‘ Béthe qﬁantu;n ﬁumber cénﬁguf;itio ,of rowvyfourv, they are no more all 'reél,ﬁumbers.
in’steévd», fhe b‘lué‘circ‘ile on foW fdur rcbfeseﬁfs thé I‘Bethe‘qvuarvlturrllr nurﬁber assdciated ‘with ‘a‘ ’
| p#ir of complex 'conjuga';e solutions. Whilé, éll black ‘circ‘le's:'in Fig.l.l are associated with
real solutions. -‘ | |
Even th;;ugh the,two-spihon singlets play én »imp:ortant role in fhe zero-tempera‘tv‘ure vspi’n
E dynar'ni‘cs of quasi-1D ahtiferromagnetié‘ compounds[i’4]_, they‘canﬁot be excited directly :
frorﬂ thé gfound vstate by neutrbnsv bécaﬁse 6f Selé&ioh mlés. Héhce w»ei only_ talk about thé
'tWt‘)-spinon' excitation with real Bethe quéntum numbe'rs,: associatea, by tﬁe wave ﬁqmbers
'_ K 1‘,'K2,‘ whlch in turn add up to the_ wave nu‘mber‘of‘ the two-spiﬁoh stateb.relat‘ive to the |
vv‘s‘/a"Ve‘ﬁumber of the grouﬁd staté:- |
‘qEK'i-lf'KQ R o i  ['(1.11)
After definin’ the wave num’ber‘of’ the low-lying eXcit_ed state, oné c.an *calculatg tﬁe
dispersion ‘rel‘ation. We fin fro\m Bethe Ansatz that the excitation eﬁergy varies continu-
ousiy from the gkouhd state with the wave number foi' infinit anfiferrdmagnetic i‘Heiscnbérg
spin-1/2 ch.a’in.‘ Ih contrast, there is a finit gap in the §ﬁergy from ground satc;, to the lowest
e);cit‘éd 'stat‘evforvintege‘r-spin antiferfomagnetic chains, ‘tl"le SO .called Hal_déhe gap [7]. One

6



- of the tasks of our‘v'vobrk is‘to capture this bhenémenpn by_EPT calculation. ) |

Besides the Bethe Ansatz rigorous solutions, P. W. AnderSon".s spiﬁ 'v\l/a,v‘e theory of
‘the antiférl'roma'g‘r‘lbetic _ground stafe[20]>is Serﬁi-classicél, ,’bu’t‘carr'iesb physidally meaningful
idea. The basic assumption in dgriViﬁg the sehi-éléssigal spin waves is that the state of
the antifendmagnétic spin Chain is nof gfeétly different fr.omv'.thvé calssical grovund‘ state in
 which the spins of the one sublattice (cither even sites or odd sites) all point 1to positive

- z-direction while the rest all in the other direction. Mathematically, it can be written as -

o (1.12)
mr-S a3y
(114

If we introduce S, as the classical total spin of an atom with spin quantum number S, we

~ can write the Hamiltonian only in term of the two spin corhponehts Sy and Sy

(8" '53_((5@)2“5;,)2)' S (1.15)

S, = [S(S+1))2 I (B )
. - Write szil in spthave form of the Fourier ‘copntérparthf, ffH, the Hafniltbnian,éari be
w_ritteny in tiw qﬁédratié; form by a canonical transformation, Whic:h can be readily solved.
 ' . Finally; thé_re afe some numerical simqlétioris; émong Which thé ‘dc'ns'ity matrix rén‘or- .
nialization grohp (DMRG) method achicV@s, great accuracy[29, 28]. AiWays workihg ina
much smaller ‘sub‘spacé by tm;lcating the HilBerf space éccording to ‘thc dchsity matrix, one
<-:an>calculate larger and lafg’ér spin chains. However, ébviously 6nc can Ivlotv go for a ,trﬁly' :

7



infinit spin chain this way. Since EPT does not need this Hilbert space truncation, it can -

. go beyond this limitation, which will be discussed in the following chapters.f



- CHAPTER 2
' EPT FOR THE GROUND STATE
21 ‘_ Overvi'evv
;‘ El$T fully’rnakes use of the translational symmetr'yrof the svstem. First EPT intro-
: dnces‘ the 10ca1 trial wave functions and then couples thern hy entanglement to describ_ethe
tranelationally symm_etric wave function. Second it'reachesa general} yet simple al'gehraic
procedute to solvethe local t’rial‘Wave. function, 'dliring vvhich EPT will,‘ utilize the trans-
Hlational ‘s‘yrnn.ietry of the ’Ham(iltonian to greatly simplify the foi'millation. In thesecond :
:.step, we have different ways. to handle the operator.,’y ie., weeither deal vvith the Halrnil-. -
'tonian 1tself or the dens1ty matrix e‘ﬁH In fact at the beg1nn1ng of EPT development it
. was e~PH that was handled for the 2D&3D Ismg models. ThlS algorlthm was given the
| i name EPT-gl Later EPT-g2 algorithm was developed to handle the Hamiltonian d1rectly
-Generally speaking, EPT—g2 formulation is more lengthy We will discuss EPT-gl in the
'followmg Sec 2 2 and then EPT—g2 in Sec 2.3. The comparlson between them is given 1n a
Sec.2.4. However we firs talk about how to introduce the local trial wave functions belovv,
as this step is common to both EPT-gl and EPT-g2. |
We take a ’four-siteé ‘sp»in' chain as an example to illustrate how to write the wave function ‘
_in the prodl_ict.of local trialwave functions. The nur_nber of local spin states is denotedas
z. So z is 2 forﬁ spin 1/2 and 3ifor‘ spin 1. The wave functiOn of this_spin chain is.v’vritten.as
¥ (a1, az, a‘3,va;), which is a 2 diinensional vector. Howevei it can also be ‘regarded'as az

. by 2 matrix 1 (a1, apasas). We then use singular value decomposition (SVD) to rewrite it -
- by : ] g , post ;



as

¢ (a17 a2d30{4) ‘i Aal,a(\aBag'asd4,a n ' ‘ (21)
é A;1~,¢;Ba2a$a4,a' : R g . \(22)

’Where the eigenvalue A, of 1 is abSorbed into Ag, 4 to give A, ,. We then SVD B,',zaé%,; ‘

to separate a, from aza,, we have

Bd2a3a4,a=Ca"2,ab',’7bDa3a4,bv' U . o (23)

= ChwDuas @

We keep ﬁéing SVD until all lattice sites are separated‘ from each other and the eigenvalues .
are properly absdrbed into the corresponding left matrices, which ¢ari noW be regarded as’.,

‘wave functions or vectors of local states a;asaza4. Finally the wave function ends up as -

¥ (a1, 02, a3, a) = A, ,C, bEseFune (25

a1,a = az,a

- The abov'e shoWs ho§v to use SVD to yrewri‘t.e, the wave'functi‘o.n as a successive pro"duct of
locél ones. We boﬁow th.gﬂ tefminoi'ogy ’ éntanglerﬁent" from‘quantuin.'information theory
10 de'nofe the coupling indices abcd in equation (2.5).; NoW_ ;e,call that the spin chain is |
translationally symmetric and has épefiodic bour;dary condition. We should also iritréduce_
~ * some uniform vl‘oca‘l trial wave function £ to représent the local v)ectérs A'C'E' F‘ . Con-
sidering the PQSSiblé T ‘o_r.lTb $pin arranéement for arifife;'fomagr;etic spin chaihs; weneéd |

. two local trial wave functions ¢ 1and €2 to include such bi-site Structurc.‘ Therefore we have

- 10



the SVD-ed Wave function for a general spin chain as follo@s
=l @ ®Cu @l 29
: As' one mighf cémpiéin that thére are too mahy <indice“s‘involved above, let uS now briefl
- clarify th'ém. ‘Tﬁe.subscript of 1 on the shoulder r"efe_rs to }the odd site _of th,é éhéin Wﬁile'
' ~ 2the éven site. The vindiices {a,b,c,d, e} are- the entanglemef;t iﬁdices, which aré infeger's,
' unifbrmly coupling the ‘lo'c_.ali trial wav_'e"funétio‘ns ovef all spin site's.‘ The larger entangle-
ment will: give im'ore» precféé representation of fthe‘nét wave function by lécal friai wav_elb
: ’functi'o‘ns‘. | If it is laréé éno’ugh, the wave fﬁnétion'could lvgg,‘éxéctly- re‘built.‘ However, the _ R
| previous case studies by EPT and the‘ sf)in:‘charﬁn calculations 1n this work all show that one |
can gétcoriv»efgenéev with ehtariglemeht rather qﬁiCkiy. Tﬁeréfdre EPT cal_culatioh has véry | '
- ~high efﬁéién y The rest 50rt 6f indicgs above, {al, as, as, d;;}, account fof the lécral>spin‘
state,’r,unnin.g frorh 1 t02 for spin'1/2, 1 to 3 for spiﬁ 1. We use tl?é Fvig.v2.1 itov é‘fldv dp fhis
/ ‘section, which visual‘l_y ilIustrates how_fhe Wavey flvmct:io'n'.is. expressed 1n term of the local
trial wave funétiqns;' |
22 EPT-gl
Since any eigenstate | 1) of H is also the eigenstate of density matrix e~5H, the ground
~ state now béars fhc largest eigem)alﬁe e“/’EOA. The eigenvalue problém, We try té' solve is as

follows

Sty =) e

11
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Figure 2.1  Schematic figure of the wave function
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" We write the Hamiltonian as the sum of the local bond operatorsvbetweenv two nearest

neigh,bors‘
o H=Y Hea @8
" bond ‘ B ' ' :
~with
Hpong = % (S Sz+1 +57 Sz+1) Szz i+ R ¢ X)) o

* We then choose appropriate small positiile BO<p < 1) to safely ‘separatctﬁé evenand
odd sublattic‘es_in the density matrix o
H e ﬂHbond + O (/82) ~ _vﬁ Zev’e;ero";die_ﬁ Zadd pr‘-nd ) | (2.10) J
bond = ,
Now letus. linearize'e,‘ﬁHb""d, again, due to th¢ fact that 0 < ﬂ K 1‘(

€ EH"""'% ~. 1= (S+S+1+S z+1) ]ﬁ H iz-_n

2.Q6.

‘where ), takes four opcratofs 1, S , S Sz on site i ‘and- O, likéwise_dperators on site

1 M

i+1.So index o runs from 1 to 4. The local density matrix can be written as

(k| e_ﬂ{{b°"d | i7) = faik Ry - @I1D

13



| ‘where, for a spin 1/2 chain, -

h=a=l | e
o= % S @.13)
o 00 |
| 10, -

} ahd S0 on. For a spin 1 chain, f’s and g’s should _be,3 by 3rmbatr_ice"s.
Now let us write down the métrix representatidn of the even and odd bonds in the
d‘énsity"rhat‘rix as  fdllows
: "_'fa®ga®f'y®g'y""‘ v
SRR s R g5
“.Thé vertical alignmeﬁtﬁin' the above means the matrix representations are at the same spin -
 site. The whole density matrix will be written as
K= .,,ga_.fﬂ®f7‘.gﬁ..f
E---Fiﬂ®f‘}h~-f , o . (2.15)
| Fig.2.2 illustrates the ‘de'nsity matrix eig'envalue problem
=up S (2.16)

 714



" Fig»u‘l"e‘ 22 Schematic figure of the density matrix eigenvélue eé;uation

, Thve‘ d'e‘nsit‘yAmatri)‘( eigenvalue problem is equivalent to thé vériationai problem where
‘we vary the following quantity with respect to the trial wave function v and hence ¢! and
62: B

o <¢|>K‘|w>) PR :
|l —————F—]=0 ' . 2.17)
( wlv ) Ehae

where

(¢|,KI¢>_V=T7‘(AL/2‘)' e

wly=Tr(B#) @1

- 15



Figure 2.3  Schematic figure of the ground state energy calculation

and
z 14 4 i
Aml,nl = Z Z Z £3ea1 £2ca2£gfb1 6]2‘db2 F}xﬂ,alaz r%-y,bl ba (220)
aj,az,b1,b2=1le,f=1p0=1
z |4
Bm," = Z Z éietn gcazégfa1 £?da2 (221)

ar,az=1e,f=1

m=CK-1)xp*+(b-1)xp+a
nm=(@-1)xp+(d-1)xp+c
m=(b-1)xp+a

n=(d-1)xp+c

Fig.2.2 illustrates the structure of the above matrices A and B. The variation (2.17)

16



lf:ads to.
AL/ ; (64) = ,LBL_/2—41 . (33) - o (2.-22)"
» The; de’fi’nitio_’ _»of thé ope;fation’ * betWéen two matrices is as folléws |
AxB=YY AyB; e
T E . |
‘ .vWe then diagona!ize‘the matrices A and B:
A=RAL A | (2.24)'
B =3’A’L' | " o - 225
| ‘F’Equatlion 217y is rfurthef rewritten as fc.>‘llows
Z(A')L/2 'L, (64) R, é#Z(A' v (6B) R' - 226 E -
i=1 - ) ) ) i
‘Now we can é;xp»licitly workv out the vériétion with r'espect to the trial local ‘wéVc.: functio’né, :
s for‘ exérhpie, £l ﬁsing e‘qu'abtidn (2.20),'(2.26) léadé toa genefalized éigeflvalue equation‘ .
X (qeél, bfa2)Eisa, ;pyl(aeal, b fas)6isa, S @.27)
: Whére

(aeal? bfa2) - Z Z Z Z ecaagfda‘lraé a1az Pﬁ'y asaq RCd’Y zLaba 11 (A )L/2 !

i=1 a f,y=1 a3,a4=1 c,d=1

o " Q. 28)
(aeal,bfaz)—zlzl ;ﬁem'&ma il m(A')L/z YGoeo  Q29)
i=1 ag=1 c,d=1 _ o . E .
L1kew1se, we get the gencral;zed elgepvalhe equatioh for £2 | -
‘ Ko ve |  ew

17



From above, we see that if we choose two arbitrary trial wave functiond &} and €2 as

the seeds, they will determine two generalized eigenvalue equations . .

xEe-m@de e
X (ghed) €= @msas - ew
- We sol‘vev for the hext { 1 ano §2A_untilv .corliv.orgence.: If 'vwe'koeo looking for thé largest -
eigenvaiuo-and ooﬂespohding eigenveotor, it ’wi'l‘l'arriv"e at the grohhd state energy and the
local ‘ground statc wave functi’on; Otherwisé_, lo,oking fof the sécond‘ largost will bringvv about
the firs excited state energy and the 'oOrresponding Wave .functionf |
23 EPT-g2

: rAs ?héntioned ‘i_n‘ tho' last section; EPT—g2 handlos.tho ﬁamiltoniah di’reotlb};. Thc grouno
: state e‘nei'vgy: and firs excited state enofgy can be solved by looking for ihe'ﬁrs and'secon‘dh_ o

minimum of the quantity

€

<ﬂhfiy> S ew

Now since both the wave functlon and the Hamlltoman are translatlonally symmetnc |

we rewrite (2 33) as follows

LWl Hg Y LW H )
IR

where L is the size of the cham and Hyong has the same deﬁmtlo as (2 9) It has the

‘ (2.34)

standard matrix reproASentation
Fhlbz;a1a2 = <b1 1 (b2 | Hpond | a1>|a2> - “ (235)

18



~ where | a1) and | a) refer to the local basis vectors on two neighboring sites while (b; |

and'(‘bz‘ | are the conjugate counter parts.. Now we are allowed to write (2.34) further as -

/

follows
_ LTr(AY*'B) | LTr(C**'D) 236).
= 2 ~‘T7'(AL/2) 2 TT(AL/Z) . | . -
‘where
Z Z Saeal em2£bfa1£fda2 h , (237) -
al,ag—l e, f=1 N ’ - .
Bm’n = Z Z gaeal eca2£bf61€fdb2r‘blb2 aia 7 - (238) .

,a1 a2 b1,ba=1e,f=1
m=(b-1)xp+a

n=(d—1) x'p+c'

We repeat here that pis the entanglement and z is 2 for sp1n 1/2,3 for sp1n 1. We can . o

‘ wr1te down the matr1x of C and D 11kew1se Fig.2. 3 Schematlcally shows the formatlon of
‘matrrxes A,B,C and D.

If we vary (2.36) with respect to E ! and 52, we‘ will arrive at

L/2-1 - '
eAL/2 t(64) —(53) AL L+ ) BAMET 1(6A) AT
j=1 .
. L 2—1 o ‘ B ' v .
~|—(6D) cL/2 1y Z DCL/2 - 1(50) o 1 (2.39)
j=1 ' ‘ _
We then diagonalize the matrices A a‘nd‘ C:
A=RAL . @40
C=RANL 4

19



'Fig'ure 24 Schematic figure of the formation of matrixes A, B, C and D
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. Eqilation (2.39) is rewritten as ‘follows

| ei (Ai)L/2f1 L (5A) R; |

=1

=3 Li(A)PTN(OB) R+ Y L (M) (D) R} +4 (L, R, A, 6A) + £, (L', R, A, 6C)

i=1 » =1
2.42)
where' :
S S/ pr AL/Z—i ‘_A.L/2’—1/ P2 N ‘
AR A= Y o - > AE?7?) EpnLa (A) Ry,
o = mn=lLm#n Mo T m=1 : S
S P P \L/2-1 _ (A1\L/2=1  P? ' g
‘ , A Y21 (A
R (L,R,N,6C) = ( > ( "%) I &,")v —+ (A;n)L/?-?) FpnLy, (6C) Ry,
s a m,n=1;m#n m "~ {in - m=1 . o : }

" Emn =LnBR,

" Fpn =L, DR,

Like what we did for EPT-g1, we choose two arbitrary trial wave functions £§ and &3 asthe

_seeds and solve the following two generalized eigenval'ue equations

X (8.8) e = (g8 e
X (g.6)e=n(g.8)e

- (243)

@44

We solve for the next ¢* and ¢? until convergence. The smallest eigenvalue and correspond- -

'ing eigenvector give the ground state energy and the local ground state wave function. The

second smallest will bring about the firs ‘excited state energy and the corresponding wave

. function.
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2'.4‘ Summary ,
From the last tow sections", we‘see EPT-gl and EPT—gZ both can solve for the “ground “ :
| state. The EPT-gl is simpler', but the calculation is heavier »because'the matrixiA for'EPT- .
gl has‘larger size than B and D bfor .EPT-gZ.. However, EPT-gl is especiallysuitable 'for‘
infinit systems with transl‘ational symmetry, because only the largest eigenvalue’of A needs
be retained. On the other hand, EPT-g2 has matrices E and containing all the eigenvalues ‘
" and elgenvectors of A, B C, D, hence it becomes slower than EPT—gl for 1nﬁn1t systems.
Actually we used both EPT-gl and EPT—gZ (ﬂ is set to be 10~ for up to thousand sp1n sites) ~
' for ﬁmt spin chains S1nce EPT—gZ does not make any approx1mat10n and the two methods
give exactly the same resnlts and converge with the entanglement atthe same speed, the ‘
" small parameter ﬂ in EPT-gl algorithm is not an iSsue. Later w‘e‘will see 'EPT-gl calculation E '
for infinit spin 1/2 chains giVes very accnrate resultsb. Moreover“EPT-.g_’.s- can be applied’
" to the firsv; excited state' for spin 1 chains as‘v\iell, be‘_cause the firs excitation occurs when
lBloch-Floquet'wave number k = 7 which means the bi;site trial‘ wave function bstructure is
“suitable» to calcu1ate it. On the other hand, the firs excited state_'in_spin .1./2‘chains can not he
_calculated by EP’l’-g.’.s since it does not have this character. To get the elementa_ry excitation

spectrum‘ for spin chains, we 'have developed a new EPT algorithm, named EPT—'e. '
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CHAPTER 3

EPT FOR THE ELEMENTARY EXCITATION IN ONE
DIMENSION

As rhentiened in [25], Feynman’s effort to explain‘ the rotoh, spectrum (an eXémple of
the elementary eXcitattien) ts well known[21]. Itis irrrportant t‘oexplairr fundarhental prop- o
erties of thesuperﬂui‘ “4He [6]. From the Bloch—Floquet theorem, the‘elementary excitation

~ with waye number & t’or the Hamittohian H with translational symmetry is yvritten as :
U=y el g 6

. 1 S 2R ,
EPT for the elementar-y excitati,en‘ in ene dimension fellows this ide’a'.‘ Therefore, L—:is the
total spm site nltrnber for spih eheins and the sumrrretioh‘ over m is over the entire spm
sites."'l 9) 1s the ‘ground’ state. The challehge to use (31) o cel_culat_e spin ché-inl"s excitation ‘
‘speetrunr 1s first the operator © is not determined yet; second,;th‘e'unrehormalvized grorm‘d’
: stéte wave function for an arbitrary spin chain is ndt easy to get by other existing.ntethods k
. like DMRG Due to the 51m11ar dlfﬁcultxe for many other problems there is not much
: progress made along the line of (3 1) since the days of F eynman Now smce EPT-g can
‘ precxsely calculate the ground state wave functlon in an unrenormalized forrh we can focus

| only on the firs difficult , i.e., how to determme e by EPT algorxthm (EPT-e).

EPT-e does thrs by varlatmg the energy of the exc1ted'stete, associated with k, with
resbect tev S | | | |
0B, = 5<—<%|k—|\1|’—k)k> =0 : (3.2)
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Let us write Ej explicitly using (3.1)

—zk(m n) g| emHeL | 9) -
Z e | (0, [ 05 | - ‘ (3.3)

D_ue to the translational symmetry,' (g; | O H @L | g)is only'the function of m — n, So

(3.3) can be simplifie -as

0.H6} | o)
E — L zkl | l ‘ )
£ Z ‘I’k|\11k> . C B
Likewise
Tk | W) =LY e™(gl@Oflg) =~ = 35
So the energy gap is ,
: - —ikl
= By~ E, = DI leL (o] ©u(H — )0} 9
- ‘ Yia e*(g'| ©,6] | g)
_Shie™g|eyH, 6}l lg) ,'(376)

Yiaem*g | 08} |g)
~ where |- - -] .meé‘ms a commutatb’r. The variatidn (3.2) is equivalent to dej, = 0,. withvrvcspect '
»to O, »the‘ cluster ohérator. We pursﬁe ,the'cohvergence witﬁ 're‘sp‘ect to the élﬁéter s‘iz;.'
In g_éheral, for cluster siZe n the n-éluﬁter operator 6, isa linéa‘f éombihation of obépator
| produéts ofn nd x nd Iécai opera‘tdrs, with‘:nd = 2 fqr- spih 1)2 éhd'3 for. ;spin 1. Fo_ri spin- -
: tfiplet exciafion, ’inlthé simplest ‘éavs.e‘wheré‘the size is ‘l,‘ the cluster operator is uniquely.
’ Sl+"for spin 1/2, wﬁiie fof spiﬁ 1it coﬁld Be any linear combination 6f = S+ énd S+Sz
} ‘Nvow-h(~)w abouf the >clust'er size 2;3 énd so on? Let us take the spin 1/2 chains as example
s | to calculate the rér_lk of thé variational space for cluster sizes up‘to 3 Tﬁc triplet exéitgtiori
7 requirés thét O isa linear‘c;')mbination of the 4 loc.a'l exci_tatioh opefagors‘ for cyl‘uster.size 2 "
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S*®1  S§T®S, 189St  S,9St

It is a linear combination of the 15 local excitation operators for cluster size 3: B

-

S+’®ﬁi ®1 8 S+ R1®S, ’1 St ®gS;f ® 1‘ . ST®S, ®,Sz» |
T gstel 1 85t®5  Sestal  saeste S.
1'®1.®,S+ | »i’ég‘s,,.®5+ - S.elest SZ®SZ®S+
ste st ®S4 St ®S @St |  sest o5t
Likewise,. @vl: is a linear combinatipn of »tht':. 56'ldcal cxci_kta'ti‘on opérators_ for_cluster siz§: 4
: ff we de“n_vote. the cééfﬁcieh of these vli‘riea'x" combihétidns by the vecvtor' 5:, then th¢ féhk of Z
vis 1,4,‘ 1‘5 and 56 er éluster siZes' 1,2,3 and 4. So (3.2)is réduéed to a 'ger.;era'l‘ized‘ gigenvalﬁe

problem
Tz =elUz o o , 3.7

The calculation of T’ and U is similar to those in EPT-g. It is only a little more lengthy -
due to the cluster nature and the summation ovér the entire spin sites. We start with small
- cluster size, say, 1 and' then inc_:xjease it until convergencé. The calculation for'spin 1 is the

same. Of course the variational space is largér, with the‘rénk of the & being 2,16,126 and

- 1016 for cluster sizes 1,2,3 and 4.
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CHAPTER 4

'RESULTS

First we use EPT—g to solve for the ground state propert1es for both sp1n 1/2 and' 1
cha1ns EPT—gl and EPT-g2 gave the same convergence speed Those properties 1ncludev
groundstate energy, local magnetizationand spln-spin correlat1ons. Weespeclally inves-
tigatethe long-range behavior of spin-spin correlations for spin 1/2.chains considering a -

'v'_very large entanglement and the 1nﬁn1t size For 1nﬁn1t system EPT—gl is more sultable 3 ,

as mentioned in Sec 24. But for ﬁmt systems EPT—g2 works as good as EPT—gl We R

also plot the phase d1agram for spin 1 xxz chains (below w1thout spec1ﬁ mentlonlng, spln\
_,chams refer to xxx cha1ns) by usrng EPT—g to calculate the firs excited state as well as the -
ground state. Seco_nd we use EPT-e to get the spin tr1ple‘_t excitation shectrum for the We‘ntire j ’
Brillouin zone for bothspin' 1/2 and spin 1 chains, utilizing the precise greund state waye
- function obtained by EPT?g. B'elow we yvill present the results firs for spin 12 and then
sp1n L. Atthe last, we shcw the result of the elementary te)‘(citation spectra.
4.1 Spin 1/2 chains

- We calculated the spin 1/2-chains vyith length l 6; 32,64, 128, 256 and 512. The }cornpar- '
| ison between EPT"and Bethe Ansatz[14] for the ground'state energies is givenin Tab.4:.l.
Our calculation sths that the necessary entanglement'for the convergence to occur in-
‘,creases with the system size. However, F1g41 shows the cenvergence with entanglement ‘ '

for ground'state energy is very quick even for a system as large as 256 sites. We see con-
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" | chain length | EPT result | Bethe Ansatz result :

16 | -04463935 | -0.4463935
64 | -0.4433459 | | -04433485
1256 |-0.4431551 | -0.4431597

-. Table 4.1 CorripariSon of the ground state energiés between Bethe Ansatz and EPT

' ‘v'crge'nce is reached before enténglemeﬁfb = 25. One of thé mérits of EPT is thé.t‘ it can
give precis¢ ‘lo'cal wave functions. .Hencé imany quantitie;s cavnv be-calculated by using‘th»e
lqpal ‘vvsvfa've functvi'ori‘s.‘ Howéver, th to judg¢ the; lqcal. wave fupction’s cénvefge’nce? We »
v,havive‘tq fin a quaritify by '»wh‘ose converggnce w1th entanglement we can‘.safél)./v say that

- {:‘the locél‘ wz.a;ve’ fﬁnction iS COnvérgéd. ‘We found, 'even thbugh thé grou-nc‘i state‘e‘:ﬁe‘rgy, i's’

_‘cohv'erged qu1cklyw1th renté‘riglémcnt-,’ ivt"i‘s not a gvood candidéte. Below we"shc;w t‘he‘ re-

| §ults qu the local magngtizé.tion afid Spin-spin corrélafidns fqr a 2v5’6-s’iAtes chain; Fig;4,2 i§

thc local magnetizatidh.-"Its‘conVerger.)ce’:»can only be aéhi;:ved after :cntangle}mevr)‘tp‘ = 30. -

. Next; we show the s‘p'in-spin correla’tioAr‘ls‘, W(l) = (Sg SE), in Fig;4.3. It. is shown that fhé
o\/érlapping of v(SzSZ) aﬁd H(SZSZ) c}utl've'sAivs a géod indic'atorvfor :the‘;:orivérgcnce‘of W ().
| ‘Entajnglemvent‘ p=35 givc§ the céhvergcnce. 'Therefofe‘, the" spin-spin correlatidns ‘.a‘.sk for
~-the accuraté local waQe' fulnctioin‘vmost sfrictly, then the 1oca1 magnetizat_i’qn. O_Qe”rali, tﬁey
are thc>good indicators for accurate local wave fuﬁctions. Using these indiéators we p}llot
the ventangiemerit ﬁeéessary fo'rb convergence vérsus the systém’ si'z}e,,“a;s' shown in Fig.4.4.

ROughiy spéaking, it-is linear for finit size, although we see a little bit bending when L
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Figure 4.1
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Figure 4.2 Convergence with entangleine_nt of the local magrietizati‘on for a 256-sites spin 172
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Figure 4.3 - Convergence with entanglement of the spin-spin correlations for a 256-sites spin 1/2
chain - : v S ‘ I ' i

be‘co'me'slarg'er. This will help us -eilstvima.te fl;e calculation scale to get a _fu_l‘ly~’cdnvérgev(i n

. Wavé functién, ﬁémely,_éll quanﬁties be éonVer-géd, | |
. The vlivn'ear ﬁ of the log-log plot o_f the épi‘ri-spin éorrclaﬁohs m I'Jig.4‘.5. sho&&s a power
deca& with thé éxpénent of -0.92,>’cor_1‘f"ormivn‘g there lS a‘a,logax;it'hmic féctor of \/M cor-" :
: .rec;[ion‘ to:the —péwer dec_ay of { f1[8].'This linear fi 1s ngf the firs 1’0”1 sites for'a 256#§it¢s 3
chain since the curve bend§ near the c’e'ntiebr of the‘ chain because of the periodic bounda'ry
condition. Fig.4.3 and Fig.4‘.5 show the‘ uhpfece_dehted accurac'y of EPT fq’r the long raﬂgé
| spin-spin cdrrelations of spin .1‘/:2’chains. To fut’thef chcék it;'écpuraéy,we _alsé compar¢ |
in Tab.4.2 EPT with the Bethe Angatz (generating function r_nétho&) [11] f"or‘ the firs seven
‘ sites ‘sepéra’t'ioﬁs,' which is tfie 0nly rigqrous ré_sults available by Bethe Ansati. To compare

“with coﬁformal fiel theory’s prediction of the asymptotic correlation amplitude, a very
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distance EPT Bethe Aniat'z |
1 -0;1,_47'71;58_ 01477157
}2’_ 10.0606715 v0.06067v98’
3 -0._0592196_ 10.0502486
,'4 | 0.0346027 | 0.6}346528
5 00308457 -0.0308904
6 | 0.0243621 | 0.0244467

T ‘;"-‘0.02239'80_v -0.022‘4982‘» |

N Table 4.2 » Compariéon between'EPT and Bethe-'Ansatz over the ﬁrstseven sites

‘ long“sp.in chain has to be calculated. So we have calculated the-,inflnit _,spin l/2jchainby :
EPT-gl.Due to the l‘imi‘tation of the available computing resourcee currently we only cal-. |
‘~ 'culated for entanglement up to 85. | erth such a large entanglement the ground state energy |
is very accurate -0 4431463 versus - l 4431471 from Bethe Ansatz However, (SzSz) and |
, (SES’”) curves do not overlap for the entlre range of the firs 1500 site separatlons only
‘at Whlch the accuracy of -ﬁeld-theor predlctron' seems be checked. Comparing w1th the
_ P = 50 result, Fig.4.6,'indicates a tendency to the convergence around P = 120. wé vvvill
keep working on thls | | | -
42 Spin1chains
Similarly we'calculated the .s‘pin 1 chainsvvith many different lengths. We compare the

' EPT results with DMRG calculation[29]. For example, the ground stateenergy for a 48 site -
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Figure _4.6 Spin-spin correlation functions for an inﬁnite s‘pin_ 1/2 ,c’ha’in

chain is -1;401482 by EPT yersus -l .4014‘84 by DMRG[29]. The energy' gap between the -

t ground state energy and the firs excited state energy for the same cha1n is 0. 41242 by EPT

“and 0. 41232 by DMRG Us1ng the calculated ground sate wave function we calculated the
spin-spin correlations. We seea clear conve‘rgence of the semi-log curve of the‘ covrrelation

_ functions at entanglement p = 18 for a 64-site chain in Fig.4.7. The st'raightline in semi-log f
plot indicates an eXponential decay ot’the spin-spin correlation with the distance; co_nsistant '
yvith the existence of the energybg'ap in spin l.“ chai’ns; Using EPT-g to calculate spin 1 ‘xx'z
chains is especially handy. One only needs slightly yary the operator I‘lr and Fé in (2.'1.5) |
to include the anisotropic spin i-cornponent coupling,b A# 1. Below we show its phase :
diagrarn In Figt4.8, the four phases are prec’isely identiﬁed When )\‘ decreases from a fairly

- large value, the spin 1 xxz chains enter from Neel phase to Haldane phase. At '), _ 1.192,
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- Figui'e 4.9 vAmpliﬁed-' r‘egion vw_hére the transition from Haldane phase to XY phase occurs -

‘the enérgy gap for an inﬁrﬁ’t chain d'isappears.b From vthisi pOiht to /\b = O theré is cner‘gy"
gap‘for all chain léngth; And at/\ =1, the enérgy gap converged to a‘_fmitbl v_a,luf:‘. See'
Fié.4;10» ’Fro‘m_.)\ = Otd A _ —1is thé‘XY ﬁhase; the ihﬁnit ‘spin chain hasrfo ¢ner’gy 'ga'p;
At /\= —1, every fmiv‘t“ chains have no eﬁergy gap. After this boint, it ¢nfers férromagnetic
. phaé'e; where the gréﬁnd stétc is do»ublbly degeherate. Fig.4.9 éhbws that the ‘E.P.T calculation
précisély vcaptul.fcdv :the tﬁans‘iti“on'poin‘t between the XY phéSe and _tvhe‘Haldane phase;. Tﬁe :

phasé diagram by EPT agrees with the fiel }ﬂtheory‘:[‘3 1]. o |
.43 '-S[v)in“triplet excitation~§pectra .

v Wé use EPT-¢ to cal‘cvulate;the:: ;pin triplet excitation spéctrum for spih 1/2 with the bchainkz -
.sizve 5‘12 af;d th:e'clu.st'ellvf size n up to 4. From top to bo'ttdm the;clu‘ster size vafies frdrh 8

to 4. In Fig.4.1_l WC see the agreement is within 1% with the s_olli'd line from Bethe Ansatz
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. Figu_fe. 4.10 ',I‘-Ialdanefgap‘at‘/\_f: 1.0 for spin 1 chains :

B [2] Cons1der1ngthat this calculatlon used the greund state by EPT—g w1th entanglement
| p =20, the dlscrepancy mlght have two poss1ble sources. One is that the ground state w1th '
p= 20 for 512 51tes contams a tmy errTor. Another is that the ultlmate result mlght stlll |

~gain small cbntribution after n increases beyond 4. Pursuing the ground state with larger
entanglement may irnprove the resutt to eer'tain e)rtent without teo vmuch effort. Beyond that
we ha\re tousen =5 or so. We see rnere‘clearly. the role which‘ n and p play in Fig.4.12 for 7
the spin 1 chain, where frorn top to b()’tt(.)bnv.l n varies from 1to3, while p=24. We ’see that -
although nb = 3 result is not quite cenverged, from n = 2to n =3 the preciSion-improves-

: more inﬂspin‘l ealculatidn than ;in spin ‘1/2 ease. It is the larger e’ntanéle_ment that gives

| rnore aeeurate grdund ‘state‘which makes this difference.- Let us discnSs the spin triplet

© spectrum for spin 1 in more details. The Haldane gapat k = 7 'i_s found by EPT to be 0.414
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Figure 4.12  Spin triplet excitation spectrum for 512-sites spin 1 chain
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| : aéreemg with the 'other methods[17 29, 11] The spectrum in the region 0< k/w < 1 /21 1s , |
"'bel1eved to be embedded ina continuum spectrum of a pair of* magnons with the total spin
z-component to be o[1]. Takahashi [I8] used the exact diagonalization metho_d to ca_l'cu‘late 3
the excitation spectra fer a 20-site chain 'showing that the lowe.st excitation atk =0 is ,
1ndeed a spin s1nglet presumably a pair of spin triplet magnons from k = :l:7r[9 11]
Howeverthe_system srze that the diagonahzatiqnmethod can handle is rather limited since )
' the. size of .the rnatrix to be diagcn‘alized increases very“q'uickly. We,belie\ie,that the spin -
ki : triplet magnon spectrurn for spin 1 for the entire Brillouin zone has been'determined fo'r" g
the firs 'time by EPT. Mcrecver EPT can handle otherexcitations such as spin-singlet if
we calculate not only the rnlnlmum but all the eigenvalues cf (3 7. Such entire exc1tation "

spectra have been solved by Bethe Ansatz [1] only for the 1sotrop1c sp1n 112 cham
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CHAPTER 5
CONCLUSION |

Two EPT algdrithms, EPT-gl and EPT—gZ;,havé Beén applied té solve for the ground ;
- sate propéniés' fgir antiferromagnétic spm chai_»ns‘.’ EPT—g canrals“o calculate the firs excitated
state for spin 1, yvhich enabledk- ﬁs to dgte_r;niné the phase diagr'am of the spin 1 xxz chains._ i
‘ vauring, thebcalcu‘latnions, we found EPT has a hith éfﬁcién y f;>r finit ‘spin cha‘ins,: hamely .
fast conve_rgchce with entanglement. Althngh fhe cruvrrer_lt/calculatiénb is not suﬁicién to
| dirécfly-'chegk the singular behavior of an'infint spin 1/2 chain for (Sgsf)‘ and (SgSf}
ip‘redicted ‘byb the fiel theofy 8,  16], when A Variés from 1~ to 1 or from 17to 1, we di‘d’.“
see a ten‘dency. But a further ihyegtigafion j»s'needed.‘ On the othér haha, usmg the. gr‘()hnd‘
staté by EPf—g, the E'I"T‘a‘lgorithm fof elemgnf_ary ’excitation’ in oﬁe diméﬁtidn detgm‘xiﬁed :
:the spin Vtriplet e);citétioﬁ spetré for both Spin 1/2 and vspir‘l 1. In particular tlv1e‘, spin—tﬁplet
magnon sbectrum 'fo; spin 1 chain fo_r the entire Brillouin zone has been;dete‘rmivnedvby'
' -EPT for the firs tirﬁe, ihcludipg the Haldane ga.p‘ atk=r |
EPT agrees with Be-thje An"sati for the ground stafe pfop¢rti¢s of spin 1/2 chainS. Befhe o
Anéatz is rigéréus; .it prec‘is‘elybcalculates sbfne quantities, such as the ground state and low
lying exci_ted states. However, figérousiy c_éaléulable quavntiti'e‘sl a're“ limited. For exarvrlplc,‘
_v{the‘ spin-spin correlatidn funétibns are calculated by Béthé‘An.sétiz only féf a short;distance .
sep‘aratid‘n.‘%EPT‘also ag;'ees with ‘l‘)M-RG édnceming tﬁe ground state energy and Haldane
‘ 'gap in spih 1 chains. While DMRG has seen a remarkab'le sﬁccess in various condensed
ma&er S}{stems, its applicatiori to two space dimensidns has bveen. limited, most likely re-

.. 3



vealing t.h”evfailure of the véfy idea of the Hilbert spéc’e t‘runcatiqnf As for other methods,
‘ “:‘th'eir applic‘ation is either limited §f théy can only calc‘ulat‘e‘specri'ﬁ'. quantities, such as con-
- formal ﬁél‘ thé‘ory [8, 27] gives the asymquic correiation éfnplimdé. On the other hand‘,'
) - EPT sy’stem_aticail‘ly‘solves‘the> épin ch’a.lins_r in that it preéisely' srol‘vevs fﬁe local wave funé-
: inns wivt:h high 'efﬁcien y m an unrenérmalized form. Once one has the wave furyl‘ct‘ior_ls,.
" many other properties can be re'-adily §bwined. |
- The spin vcha‘i‘n stlildyv here along‘ with 'the_previous stu'dy of 2D&3D "Ivsi‘ng ‘models, |
, 1D&2D Hubbard -mod:eyl‘s. and the recently started Bose-HurBard model, show thét IéPT |
is é'gengrél méthod for strongly ébrrelafed quantuni system§ wifﬁ tr’a’ns‘lvational S};mmetry, ‘
' '_ Mbreover, EPT—¢’s Success also indica_teé tﬁat EPT can handle imhbﬁlor’geneous sysfefns‘/

like nano-structures emb‘edded‘ in correlated host materials.
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