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ENTANGLEMENT PERTURBATION THEORY FOR ANTIFERROMAGNETIC 
SPIN CHAINS 

Lihua Wang, Ph.D. 

Western Michigan University, 2009 

In this dissertation, we use the recently developed Entanglement Perturbation Theory 

(EPT) to solve antiferromagnetic spin chain problems, for both spin 1/2 and spin 1. We 

firs use EPT-g (EPT algorithm for ground state) to get the ground state properties. We 

calculated precisely energies, magnetization and spin-spin correlations. The precision of 

the long range spin-spin correlation functions for spin 1/2 chains is unprecedented. Due to 

its special structure, we also use EPT-g to calculate the firs excited state properties for spin 

1 chains. Hence we plotted the phase diagram for spin 1 xxz chains. Also a generalization 

of EPT (EPT-e) for elementary excitation in one dimension determined the spin-triplet 

magnon spectrum for spin 1 chain for the firs time for the entire Brillouin zone, including 

the Haldane gap at k = IT. The spin chains, the 2D&3D Ising models, the 1 D&2D Hubbard 

models and the Bose-Hubbard model whose study by EPT is recently started represent a 

variety of strongly correlated many body systems with translational symmetry. Namely 

EPT is a general method for them. On the other hand, the successful application of EPT-e 

indicates EPT's potential to study the inhomogeneous quantum systems. 
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CHAPTER 1 

INTRODUCTION 

Since the Entanglement Perturbation Theory (EPT) has been successfully applied to 

typical classical statistical systems, 3D&3D Ising models [22], and typical quantum sys­

tems, 1D&2D Hubbard models [23, 24], it is naturally asked if it can be applied to other 

systems. More precisely, we ask if EPT is a generally effective method for macroscopic 

quantum systems with translational symmetry. The Heisenburg spin chain an ideal model 

for this purpose, as it is simple enough yet adequate to represent broad quantum systems. 

Here we extend the EPT to evaluate both the ground state and the firs excited state proper­

ties of the spin chains, while only the ground state properties have been studied in [23,24]. 

1.1 Heisenberg spin chains 

Despite the simple form of its Hamiltonian, the Heisenberg spin chain has fascinated 

physicists for generations. Many physicist contributed to its understanding. There are both 

rigorous solutions like Bethe Ansatz solutions [13, 14, 15, 3, 4, 5] and numerical sim­

ulations like Density Matrix Renormalization Group (DMRG)[29, 28, 30], Monte Carlo 

method [12, 17] and the semi-classical quantum theory due to P. W. Anderson [20]. Even 

recently workers are still extending the applications to spin chains with impurities [19], 

the spin-1-spin-1/2 chain [26] and the spin chain with anisotropic coupling strength in x, 

y, z directions [10]. However, our discussion is mostly restricted to the most fundamental 

isotropic antiferromagnetic spin chains in this work. Extension to other circumstances is 

1 



natural for EPT after the successful application to this model. For example, the phase dia­

gram for spin 1 xxz chains is achieved as well, whose extension from the EPT calculation 

for isotropic spin chains is simple. We start below with the case of spin 1/2 chains. Later 

in the chapter 2 we will see that working out the spin-1 Heisenberg spin chain by EPT is 

straightforward from the spin-1/2 case. 

We firs give the Hamiltonian of the spin chain and then briefl review existing works, 

namely Bethe Ansatz, renormalization group simulation and semi-classical quantum the­

ory. We want to discuss that these methods both share some ideas, and differ in some other 

aspects. In the following chapters, we will see that EPT also inherits some important con­

cepts from the existing methods like the spin wave structure of the excitation operator on 

the ground state, and EPT bears some new ideas. For example, it makes most thorough use 

of the translational symmetry to construct the trial wave function. Now let us look at the 

Hamiltonian ofthe antiferromagnetic spin chain 

••'.".' H = jJ2p*.st,1 + s!-sv+1 + s*.su1) (i.i) 

where J is the coupling strength between the nearest sites, positive for antiferromagnetic 

spin chain, otherwise for ferromagnetic spin chain. Since the spin z-component of a on 

each site has two possible states, |T) for up spin or \\) for down spin, the basis vectors span 

a 2L dimensional Hilbert space | <7i<72 • • • aL), if the spin chain length is L. 

From now on we use the following form of the Hamiltonian 

L n (.1.2). 

The rules governing operators on the basis vectors are illustrated in the following table 



st-
sr 
si 

l . . . T . . . } 
| . . . o - . - ) . 
\---i-) 

. i 1 ---T---- .> 

\---i--) 
! • • • ? • • • ) 

l - . - o - - - ) 
- * 1 - - - i - - - > 

Table 1.1 Rules governing operators on the basis vectors 

There are two important symmetries. The firs one is the translational symmetry. This 

property implies the spin wave structure of the wave function, as Bloch-Floquet theorem 

indicates. EPT makes full use of the translational symmetry to introduce periodic structure 

for both the operator and the local wave function. The second symmetry is the rotational 

symmetry about one specifi axis, for instance, z-axis. It is, Sf. = ^2f=iSf is conserved. 

Therefore the Hilbert space is divided into subspaces. The total spin z-component is the 

same for the wave vectors in the same subspace, but different for different subspaces. For 

the ferromagnetic spin chain, the ground state has the maximum total spin z-component and 

the lowest excited state emerges when one magnon is excited, while the ground state has 

zero total spin z-component for the antiferromagnetic spin chain, and shooting in spinons 

can excite the spin chain from the ground state to low-lying excited states. 

1.2 Existing methods 

There are some methods for the solution of the spin chains. Among them, Bethe Ansatz 

[13, 14, 15] gives the rigorous results. As mentioned above, the ground state has to be the 

one with zero total spin z-component. So the ground state is the superposition of those 

which have r specifi sites spin up and r other sites spin down, r = |L , L is the length 

of the chain. For convenience, we assume L is an even integer from now on. The general 

( • . ' • • 

.3 ' 

file:///---i-
file:///---i--


form of the ground state wave function is as follows 

\if})= 53 a(i1:--- ,v) | nr,--- ,nr).: (1.3). 
l<ii<i2<—<ir<L 

where | ni, • • • , nr) stands for the vector for which site {ni, • • • , nr} have z-component 

spin up, and 

«(ji,--,v)= E exp « E ^ n j + 5 E V m v (i-4) 
V&Sr \ j=l 3<m J 

The sum V £ Sr is over all r! permutations of the labels {1,2,..'., r} . The phase angles 

9ij and the momenta A', have to satisfy the following Bethe Ansatz equations 

ij=l, ,r (1.5) 

i = l , . . , r (1.6) 

1} .0.7) 

is the so called Bethe quantum number. What remains to be done is to fin those sets 

of Bethe quantum numbers {A 1);A2,..., Ar} which yield solutions of the Bethe Ansatz 

equations (1.5) and (1.6). Notice that those solutions might be real or complex. Every 

solution represents an eigenvector with energy 

T 

E,-Eo = J52(l.-caaKj) (1.8) 
j = i . - . . ' • . 

with EQ being the energy for all sites z-component spin up state. The wave number is 

define by 

K = ^-±M (1.9) 

4 

6ij Ki Kj 
2cot—r •= cot—— cot—r, 

2 2 .2 

LKi ••= 2 ^ + ^ % , 

where 

Ve {0,1, . , . '>.-
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Figure 1.1 Configurations of Bethe quantum numbers for L = 32 ground state (top row) and 
for one representative of three sets of two-spinon excitations. 

Without going into too many details, we directly write out the ground state for antifer-

romagnetic spin-1/2 Heisenberg spin chain as follows 

A):{Xi}A = {l,3,5,...,L-l} (1.10) 

If we think the ground state | A) as the reference state for all excited states, the Bethe 

quantum number (1.7) is represented by a perfectly regular array on the integer axis as 

illustrated in the firs row of Fig. 1.1. This array will be interpreted as a physical vacuum. 

The low-lying excited states emerge when spinons are shot into this vacuum. As seen in 

Fig. 1.1, the two-spinon excitations can be sorted into triplet states with ST = 1, ST = 0, ±1 

and the other singlets, ST — 0. It is because unlike magnons, which are spin-1 particles, 

spinons are spin-1/2 particles. In a chain with even L, where all eigenstates have integer-

valued ST, spinons occur only in pairs. The spin Si = ± | , I = 1,2 of the two spinons in 



a two-spinon eigenstate of Hamiltonian can be combined in four different ways to form a 

triplet state or a singlet state, they are described by distinct configuratio of Bethe quantum 

numbers. In Fig. 1.1 rows two to four are three sets of two-spinon excitations with energy 

Eq
T' T. Each gap in the integer array of rows two and three (green full circles) represents 

a spinon. Each gap in row four (green open circles) represents half a spinon. Actually in 

the Bethe quantum number configuratio of row four, they are no more all real numbers. 

Instead, the blue circle on row four represents the Bethe quantum number associated with a 

pair of complex conjugate solutions. While, all black circles in Fig. 1.1 are associated with 

real solutions. 

Even though the two-spinon singlets play an important role in the zero-temperature spin 

dynamics of quasi-lD antiferromagnetic compounds[14], they cannot be excited directly 

from the ground state by neutrons because of selection rules. Hence we only talk about the 

two-spinon excitation with real Bethe quantum numbers, associated by the wave numbers 

Ki, K2, which in turn add up to the wave number of the two-spinon state relative to the 

wave number of the ground state: 

q = Kl + K2 ''.'(1-1.1) 

After definin the wave number of the low-lying excited state, one can calculate the 

dispersion relation. We fin from Bethe Ansatz that the excitation energy varies continu­

ously from the ground state with the wave number for infinit antiferromagnetic Heisenberg 

spin-1/2 chain. In contrast, there is a finit gap in the energy from ground sate to the lowest 

excited state for integer-spin antiferromagnetic chains, the so called Haldane gap [7]. One 

6 '. 



of the tasks of our work is to capture this phenomenon by EPT calculation. 

Besides the Bethe Ansatz rigorous solutions, P. W. Anderson's spin wave theory of 

the antiferromagnetic ground state[20] is semi-classical, but carries physically meaningful 

idea. The basic assumption in deriving the semi-classical spin waves is that the state of 

the antiferromagnetic spin chain is not greatly different from the calssical ground state in 

which the spins of the one sublattice (either even sites or odd sites) all point to positive 

z-direction while the rest all in the other direction. Mathematically, it can be written as 

St ^+S (1.12) 

S*+1*-S (1.13) 

•'••• ( 1 - 1 4 ) 

If we introduce Sc as the classical total spin of an atom with spin quantum number S, we 

can write the Hamiltonian only in term of the two spin components Sx and Sy 

(S2f = S2
c-((S*)2 + (Syf) (1.15) 

Sc = [S(S + 1)]1/2 . • .." (1.16) 

Write S*f+1 in spinwave form of the Fourier counterpart Q*f+i, the Hamiltonian can be 

written in the quadratic form by a canonical transformation, which can be readily solved. 

Finally, there are some numerical simulations, among which the density matrix rertor-

malization group (DMRG) method achieves great accuracy[29, 28]. Always working in a 

much smaller subspace by truncating the Hilbert space according to the density matrix, one 

can calculate larger and larger spin chains. However, obviously one can not go for a truly 

7 



infinit spin chain this way. Since EPT does not need this Hilbert space truncation, it can 

go beyond this limitation, which will be discussed in the following chapters. 



CHAPTER 2 

EPT FOR THE GROUND STATE 

2.1 Overview 

EPT fully makes use of the translational symmetry of the system. First EPT intro­

duces the local trial wave functions and then couples them by entanglement to describe the 

translationally symmetric wave function. Second it reaches a general yet simple algebraic 

procedure to solve the local trial wave function, during which EPT will utilize the trans­

lational symmetry of the Hamiltonian to greatly simplify the formulation. In the second 

step, we have different ways to handle the operator, i.e., we either deal with the Halmilr 

tonian itself or the density matrix, e_/3i/. In fact, at the beginning of EPT development it 

was e~PH that was handled for the 2D&3D Ising models. This algorithm was given the 

name EPT-gl. Later EPT-g2 algorithm was developed to handle the Hamiltonian directly. 

Generally speaking, EPT-g2 formulation is more lengthy. We will discuss EPT-gl in the 

following Sec.2.2 and then EPT-g2 in Sec.2.3. The comparison between them is given in 

Sec.2.4. However we firs talk about how to introduce the local trial wave functions below, 

as this step is common to both EPT-gl and EPT-g2. 

We take a four-sites spin chain as an example to illustrate how to write the wave function 

in the product of local trial wave functions. The number of local spin states is denoted as 

z. So z is 2 for spin 1/2 and 3 for spin 1. The wave function of this spin chain is written as 

•V> (ai, o2,03, CL4), which is a z4 dimensional vector. However it can also be regarded as a z 

' by z3 matrix tp (01,020304). We then use singular value decomposition (SVD) to rewrite it 

9 



as 

i/> (oi, a2a3a4) = AauaXaBa2 

0,30,4,0, . (2-1) 

= •™aiaJ3a2a3a4,a ( ', [A-*-) 

Where the eigenvalue Aa of ip is absorbed into Aaua to give A'ai a. We then SVD Ba2a3aiA 

to separate a2 from a3a4, we have 

^020304,0 = {-/a2,abVb*-Ja,3a4,b \^-^J 

= C'a2,abDa3a4,b ^ " ^ 

We keep using SVD until all lattice sites are separated from each other and the eigenvalues 

are properly absorbed into the corresponding left matrices, which can now be regarded as 

wave functions or vectors of local states aia2a304. Finally the wave function ends up as 

V (ai, o2, a3, a4) = A'auaG'a2abE'a3 (2.5) 

The above shows how to use SVD to rewrite the wave function as a successive product of 

local ones. We borrow the terminology 'entanglement' from quantum information theory 

to denote the coupling indices abed in equation (2.5). Now recall that the spin chain is 

translationally symmetric and has aperiodic boundary condition. We should also introduce 

some uniform local trial wave function £ to represent the local vectors A'C'E'F . Con-

sidering the possible 11 or IT spin arrangement for antiferromagnetic spin chains, we need 

two local trial wave functions £x and £2 to include such bi-site structure. Therefore we have 

10 



the SVD-ed wave function for a general spin chain as follows 

As one might complain that there are too many indices involved above, let us now briefl 

clarify them. The subscript of 1 on the shoulder refers to the odd site of the chain while 

2 the even site. The indices {a, b, c, d, e} are the entanglement indices, which are integers, 

uniformly coupling the local trial wave functions over all spin sites. The larger entangle­

ment will give more precise representation of the net wave function by local trial wave 

functions. If it is large enough, the wave function could be exactly rebuilt. However, the 

previous case studies by EPT and the spin chain calculations in this work all show that one 

can get convergence with entanglement rather quickly. Therefore EPT calculation has very 

high efficien y. The rest sort of indices above, {au a2, a3, a4}, account for the local spin 

state, running from 1 to 2 for spin 1/2, 1 to 3 for spin 1. We use the Fig.2.1 to end up this 

section, which visually illustrates how the wave function is expressed in term of the local 

trial wave functions. 

2.2 EPT-gl 

Since any eigenstate | ipi) of H is also the eigenstate of density matrix e~^H, the ground 

state now bears the largest eigenvalue e_/?E°. The eigenvalue problem we try to solve is as 

follows 

e-?H | i>i) = e-0* I ^ ) (2.7) 

11 



a4-

a3-

e 
i 

d 
7 

a, P 

I * 

| a 

Figure 2.1 Schematic figure of the wave function 
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We write the Hamiltonian as the sum of the local bond operators between two nearest 

neighbors 

' H •= 22 Hbcmd (2-8) 
bond 

with 

H^^t^s^ + SrSl^+jSZSl+i (2.9) 

We then choose appropriate small positive (3 (0 < (3 <S 1) to safely separate the even and 

odd sublattices in the density matrix 

e~m = Yl e~0Hbond + 0(f32) « e~0^^"bonde~l3^oddHi'ond (2.10) 
bond .' ; 

Now let us linearize e~(3Hbond, again, due to the fact that 0 < (3 <C 1 

= • . f i Q ' 0 e a 

where QQ takes four operators l,Si~,S~,Sf on site f and Ga likewise operators on site 

i + 1. So index a runs from 1 to 4. The local density matrix can be written as 

(lk\.e^M^\ij)*ifa#&gaijl (2.11) 

13 



where, for a spin 1/2 chain, 

ft 

ft 

and so on. For a spin 1 chain, / ' s and g's should be 3 by 3 matrices. 

Now let us write down the matrix representation of the even and odd bonds in the 

density matrix as follows 

'••'• - / a ® 5/3 (8) /* (8 )^ - •'• 

The vertical alignment in the above means the matrix representations are at the same spin 

site. The whole density matrix will be written as 

^ • • • r ^ ( 2 ) r ^ - . (2.15) 

Fig.2.2 illustrates the density matrix eigenvalue problem 

• ' K^='erpExl).. ' • 

= ^/> (2 .16) 

14 

i'i-^ 
5i 

0 1 

= i 

= z 

0 1 

0 0 

0 0 

1 0 

(2.12) 

(2.13) 

(2.14) 



r ^ — V —I1 

r^_ —s2 

. i ' V .« 1 = H I 1 

H- — I S * . . . : - - . — - I * 

Figure 2.2 Schematic figure of the density matrix eigenvalue equation 

The density matrix eigenvalue problem is equivalent to the variational problem where 

we vary the following quantity with respect to the trial wave function tp. and hence £J and 

e, 

s{-i^rr0 (2-17) 

where 

^\K\i))=Tr[AL'2) (2.18) 

{if> | tp) = Tr (BL/2) (2.19) 

15 



v-f-v 

and 

Figure 2.3 Schematic figure of the ground state energy calculation 

01,02,61,62=! e , / = l 0=1 

z V 

E>m,n — 2-~i 2-^ >aeaiSeca2S6/aiS/do2 
01,12=1 e , /= l 

m1 = (j — 1) x p2 + (b — l) xp + a 

(2.20) 

(2.21) 

n1 = {a-l)xp2 + (d-l) xp + c 

m — (b - 1) x p + a 

n = (d — 1) x p + c 

Fig.2.2 illustrates the structure of the above matrices A and 5 . The variation (2.17) 

16 



leads to 

AL(2-1-*(8A) = nBL'2-1*(;8B) (2.22) 

The definitio of the operation * between two matrices is as follows 

"A*B=:'£1£AijBji (2.23) 
i j 

We then diagonalize the matrices A and B: 

A=RAL (2.24) 

B=R'ML' (2.25) 

Equation (2.17) is further rewritten as follows 

^ ( ^ M ^ f l , = ^ i : ( A o L / 2 - i L H ^ ) i ? : (2.26) 

Now we can explicitly work out the variation with respect to the trial local wave functions, 

for example, £*. Using equation (2.20), (2.26) leads to a generalized eigenvalue equation 

X1(aea1,bfa2)t,lfa2=nY1(aea1,bfa2)$,lfa2 (2.27) 

where 

4p2 4 z P 

Xi(aeai,bfa2) = '^2 Yl J2 JL £ca3(fdaSl0ma2Tlw3a4Rcd^Laha!i(Ai) 
t = l a/3,7==1 03,04=1 c,d=l 

(2.28) 
p2 z P 

C-2 t 2 D/ ri (\>\L/2-1) 
yi(oca1>*/oa) = 5 : . E E & ^ W V ^ M ' * % « (2.29) 

i = l 03=1 c,d=l 

Likewise, we get the generalized eigenvalue equation for £2 v 

/ x2e=vY2e (2.30) 

17 



From above, we see that if we choose two arbitrary trial wave functiond £Q and £o a s 

the seeds, they will determine two generalized eigenvalue equations 

;-Xi{^,^)e=^Yi{^,^)^-.-, (2.31) 

X2($,^e = M(ti,£je (232) 

We solve for the next £* and £2 until convergence. If we keep looking for the largest 

eigenvalue and corresponding eigenvector, it will arrive at the ground state energy and the 

local ground state wave function. Otherwise, looking for the second largest will bring about 

the firs excited state energy and the corresponding wave function. 

2.3 EPT-g2 

As mentioned in the last section, EPT-g2 handles the Hamiltonian directly. The ground 

state energy and firs excited state energy can be solved by looking for the firs and second 

minimum of the quantity 

lib I H \ x b ) 

^^WW1 ;: <2:33> 
Now since both the wave function and the Hamiltonian are translationally symmetric, 

we rewrite (2.33) as follows 

. _L{^\H^\^) .Lty\H%S\.i>): . 
2 ( V | V > 2 -(V|V>---

where L is the size of the chain and Uhond has the same definitio as (2.9). It has the 

standard matrix representation 

' .*• bib2,aia,2 

<6i | (b2 | Hbmd | a1)-\.a2) (2.35) 

' 18 



where | a\) and | a2) refer to the local basis vectors on two neighboring sites while (&i | 

and (b2 | are the conjugate counter parts. Now we are allowed to write (2.34) further as 

follows 

6 2 Tr(AL/2) 2 Tr(AL/2) V-*) 

where 

z p 

Am,n = 2—i 2^, £aeai£eca2£bfai€fda2 (2-37) 

ai,a,2=l e,/=l 

. z V . ' • • ' • 

Bm,n = 2 ^ 2-^i WaiSeca2^6/6iS/d62^6ifc2,aia2 (2-38) 
01,02,61,62—1 e , / = l 

m = (b — 1) x p +:a 

n = (d—1) x p + e 

We repeat here that p is the entanglement and z is 2 for spin 1/2, 3 for spin 1. We can 

write down the matrix of C and D likewise. Fig.2.3 Schematically shows the formation of 

matrixes A, B, C and D. 

If we vary (2.36) with respect to £* and £2, we will arrive at 

L/2-1 

eAL/2-1(6A)=(5B)AL/2-1+Yl BA1'2'^1 (6A) Aj~x 

j=i 

L/2-1 

+ (SD)CL/2-1+ £ DC^-^iSC)^-1 (2.39) 

We then diagonalize the matrices A and C: 

A=RAL (2.40) 

C=R'A'L' (2.41) 
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Figure 2.4 Schematic figure of the formation of matrixes A, B, C and D 



Equation (2.39) is rewritten as follows 

p 2 • - . . , " • 

e,£(Ai)L/2-1Li(6A)Ri 

p2 P 2 

= £ L, (Ai)^2"1 (*B). IU + £ L'i (Kf'2'1 (SD) R'{ +/: (L, R, A, 5 A) +/2 (I/, # , A', 5C) 
i= i i= i ' 

(2.42) 

where 

( P 2 A i / 2 - l _ A L / 2 - 1 P 2 \ 

E •'". _A" + £ Am/2"2 $mA. ( M J X 
m , n = l ; m # n .• m / V " m = l / 

\m,n=l ;m^ra i V m lyn rri-1 / 

Fmn =L'mDR'n 

Like what we did for EPT-gl, we choose two arbitrary trial wave functions £Q and £Q as the 

seeds and solve the following two generalized eigenvalue equations 

^ ( ^ o K ^ i ^ o ) * 1 ' (2-43)-

x2(a,ii)e=eY2(eo^i)e (2.44) 
We solve for the next £L and £2 until convergence. The smallest eigenvalue and correspond­

ing eigenvector give the ground state energy and the local ground state wave function. The 

second smallest will bring about the firs excited state energy and the corresponding wave 

function. 
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2.4 Summary 

From the last tow sections, we see EPT-gl and EPT-g2 both can solve for the ground 

state. The EPT-gl is simpler, but the calculation is heavier because the matrix A for EPT-

gl has larger size than B and D for EPT-g2. However, EPT-gl is especially suitable for 

infinit systems with translational symmetry, because only the largest eigenvalue of A needs 

be retained. On the other hand, EPT-g2 has matrices E and F containing all the eigenvalues 

and eigenvectors of A, B,C, D, hence it becomes slower than EPT-gl for infinit systems. 

Actually we used both EPT-gl and EPT-g2 (/? is set to be 10 -6 for up to thousand spin sites) 

for finit spin chains. Since EPT-g2 does not make any approximation and the two methods 

give exactly the same results and converge with the entanglement at the same speed, the 

small parameter j3 in EPT-gl algorithm is not an issue. Later we will see EPT-gl calculation 

for infinit spin 1/2 chains gives very accurate results. Moreover EPT-g's can be applied 

to the firs excited state for spin 1 chains as well, because the firs excitation occurs when 

Bloch-Floquet wave number k = ir which means the bi-site trial wave function structure is 

suitable to calculate it. On the other hand, the firs excited state in spin 1/2 chains can not be 

calculated by EPT-g's since it does not have this character. To get the elementary excitation 

spectrum for spin chains, we have developed a new EPT algorithm, named EPT-e. 
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CHAPTER 3 

EPT FOR THE ELEMENTARY EXCITATION IN ONE 
DIMENSION 

As mentioned in [25], Feynman's effort to explain the roton spectrum (an example of 

the elementary excitation) is well known[21]. It is important to explain fundamental prop­

erties of the superflui 4He [6]. From the Bloch-Floquet theorem, the elementary excitation 

with wave number k for the Hamiltonian H with translational symmetry is written as 

L 

1 
ro=l 

^=E^LI«) •;' (3-D 

EPT for the elementary excitation in one dimension follows this idea. Therefore, L is the 

total spin site number for spin chains and the summation over rh is over the entire spin 

sites. | g) is the ground state. The challenge to use (3.1) to calculate spin chain's excitation 

spectrum is: first the operator 0 is not determined yet; second, the unrenormalized ground 

state wave function for an arbitrary spin chain is not easy to get by other existing methods 

like DMRG. Due to the similar difficultie for many other problems, there is not much 

progress made along the line of (3.1) since the days of Feynman. Now since EPT-g can 

precisely calculate the ground state wave function in an unrenormalized form, we can focus 

only oh the firs difficult , i.e., how to determine 6 by EPT algorithm (EPT-e). 

EPT-e does this by variating the energy of the excited state, associated with k, with 

respect to 8 

SEk-s (*k\M ~° a 2 ) 

• 2 3 • 



Let us write Ek explicitly using (3.1) 

Ek= ^ e^ (m^).(gIem f f (9t |g> ( 3 3 ) 

m , n = l \ ^ * I ^ f c / 

Due to the translational symmetry, (g | Gm /f6^ | <?) is only the function of m — n, So 

(3.3) can be simplifie as 

^ L ^ - J g | e ^ | g ) V \ (3.4) 

.(*k | ¥fc> = L ^ e - ^ ( f f | 0,0+ \g) (3.5) 

Likewise 

£ 

So the energy gap is 

efc .= Ek — E„.' = 9 Ef=ie-iWV|e;eSu) 

(3.6) 

where [• • • ] means a commutator. The variation (3.2) is equivalent to Sek = 0 with respect 

to 0;, the cluster operator. We pursue the convergence with respect to the cluster size. 

In general, for cluster size n the n-cluster operator 0; is a linear combination of operator 

products of n nd x nd local operators, with nd = 2 for spin 1/2 and 3 for spin 1. For spin-

triplet exciation, in the simplest case where the size is 1, the cluster operator is uniquely 

S+ for spin 1/2, while for spin 1 it could be any linear combination of = S+ and S+Sz. 

Now how about the cluster size 2, 3 and so on? Let us take the spin 1/2 chains as example 

to calculate the rank of the variational space for cluster sizes up to 3. The triplet excitation 

requires that 0/ is a linear combination of the 4 local excitation operators for cluster size 2: 

" 2 4 



S+®1 S+®SZ 1®S+ . 5,(815+ 

It is a linear combination of the 15 local excitation operators for cluster size 3: 

....... S+®1®1 S+®1®SZ S+®SZ®1 S+®SZ®SZ 

1®S+®1 1®S+®SZ SZ®S+®1 SZ®S+®SZ 

i®i®s+ i®sz®s+ sz®i®s+ sz®sz®s+ •;...•; 

s+®s+®s~ s+®s-.®s+ s~®s+®s+ 

Likewise, 0j is a linear combination of the 56 local excitation operators for cluster size 4. 

If we denote the coefficien of these linear combinations by the vector x, then the rank of £ 

is 1,4,15 and 56 for cluster sizes 1,2,3 and 4. So (3.2) is reduced to a generalized eigenvalue 

problem 

Tx = ekUx (3.7): 

The calculation of T and U is similar to those in EPT-g. It is only a little more lengthy 

due to the cluster nature and the summation over the entire spin sites. We start with small 

cluster size, say, 1 and then increase it until convergence. The calculation for spin 1 is the 

same. Of course the variational space is larger, with the rank of the x being 2,16,126 and 

1016 for cluster sizes 1,2,3 and 4. 
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CHAPTER 4 

RESULTS 

First we use EPT-g to solve for the ground state properties for both spin 1/2 and 1 

chains. EPT-gl and EPT-g2 gave the same convergence speed. Those properties include 

ground state energy, local magnetization and spin-spin correlations. We especially inves­

tigate the long-range behavior of spin-spin correlations for spin 1/2 chains, considering a 

very large entanglement and the infinit size. For infinit system EPT-gl is more suitable 

as mentioned in Sec.2.4. But for finit systems EPT-g2 works as good as EPT-gl. We 

also plot the phase diagram for spin 1 xxz chains (below without specifi mentioning, spin 

chains refer to xxx chains) by using EPT-g to calculate the firs excited state as well as the 

ground state. Second we use EPT-e to get the spin triplet excitation spectrum for the entire 

Brillouin zone for both spin 1/2 and spin 1 chains, utilizing the precise ground state wave 

function obtained by EPT-g. Below we will present the results firs for spin 1/2 and then 

spin 1. At the last, we show the result of the elementary excitation spectra. 

4.1 Spin 1/2 chains 

We calculated the spin 1/2 chains with length 16,32,64,128,256 and 512. The compar­

ison between EPT and Bethe Ansatz[14] for the ground state energies is given in Tab.4.1. 

Our calculation shows that the necessary entanglement for the convergence to occur in­

creases with the system size. However, Fig.4.1 shows the convergence with entanglement 

for ground state energy is very quick even for a system as large as 256 sites. We see con-
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chain length 

16 

64 

256 

EPT result 

-0.4463935 

-0.4433459 

-0.4431551 

Bethe Ansatz result 

-0.4463935 

-0.4433485 

-0.4431597 

Table 4.1 Comparison of the ground state energies between Bethe Ansatz and EPT 

vergence is reached before entanglement p = 25. One of the merits of EPT is that it can 

give precise local wave functions. Hence many quantities can be calculated by using the 

local wave functions. However, how to judge the local wave function's convergence? We 

have to fin a quantity by whose convergence with entanglement we can safely say that 

the local wave function is converged. We found, even though the ground state energy is 

converged quickly with entanglement, it is not a good candidate. Below we show the re­

sults for the local magnetization and spin-spin correlations for a 256-sites chain. Fig.4.2 is 

the local magnetization. Its convergence can only be achieved after entanglement p = 30. 

Next, we show the spin-spin correlations, W(l) — {S^Sf), in Fig.4.3. It is shown that the 

overlapping of (SZSZ) and (SXSX) curves is a good indicator for the convergence of W(l). 

Entanglement p = 35 gives the convergence. Therefore, the spin-spin correlations ask for 

the accurate local wave function most strictly, then the local magnetization. Overall, they 

are the good indicators for accurate local wave functions. Using these indicators we plot 

the entanglement necessary for convergence versus the system size, as shown in Fig.4.4. 

Roughly speaking, it is linear for finit size, although we see a little bit bending when L 
• • • • • i • • • • •• 
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Figure 4.3 Convergence with entanglement of the spin-spin correlations for a 256-sites spin 1/2 
chain 

becomes larger. This will help us estimate the calculation scale to get a fully converged 

wave function, namely, all quantities be converged. 

The linear fi of the log-log plot of the spin-spin correlations in Fig.4.5 shows a power 

decay with the exponent of -0.92, conforming there is a a logarithmic factor of \fkil cor­

rection to the power decay of Z-1[8]. This linear fi is over the firs 101 sites for a 256-sites 

chain since the curve bends near the center of the chain because of the periodic boundary 

condition. Fig.43 and Fig.4.5 show the unprecedented accuracy of EPT for the long range 

spin-spin correlations of spin 1/2 chains. To further check its accuracy, we also compare 

in Tab.4.2 EPT with the Bethe Ansatz (generating function method) [11] for the firs seven 
• | . . . . ' • • • • • • • 

sites separations, which is the only rigorous results available by Bethe Ansatz. To compare 

with conformal fiel theory's prediction of the asymptotic correlation amplitude, a very 
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distance 

1 

2 

3 

4 

' 5 ; ' 

6 

7 

EPT 

-0.1477158 

0.0606715 

-0.0502196 

0,0346027 

-0.0308457 

0.0243621 

-0.0223980 

Bethe Ansatz 
/ 

-0.1477157 

0.0606798 

-0.0502486 

0.0346528 

-0.0308904 

0.0244467 

-0.0224982 

Table 4.2 Comparison between EPT and Bethe Ansatz over the first seven sites 

long spin chain has to be calculated. So we have calculated the infinit spin 1/2 chain by 

EPT-gl. Due to the limitation of the available computing resources, currently we only cal­

culated for entanglement up to 85. With such a large entanglement, the ground state energy 

is very accurate, -0.4431463 versus -1.4431471 from Bethe Ansatz. However, (SZSZ) and 

(SXSX) curves do not overlap for the entire range of the firs 1500 site separations, only 

at which the accuracy of field-theor prediction seems be checked. Comparing with the 

p = 50 result, Fig.4.6, indicates a tendency to the convergence around p, = 120. We will 

keep working on this. 

4.2 Spin 1 chains 

Similarly we calculated the spin 1 chains with many different lengths. We compare the 

EPT results with DMRG calculation[29]. For example, the ground state energy for a 48 site 
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Figure 4.6 Spin-spin correlation functions for an infinite spin 1/2 chain 

chain is -1.401482 by EPT versus -1.401484 by DMRG[29]. The energy gap between the 

ground state energy and the firs excited state energy for the same chain is 0.41242 by EPT 

and 0.41232 by DMRG. Using the calculated ground sate wave function, we calculated the 

spin-spin correlations. We see a clear convergence of the semi-log curve of the correlation 

functions at entanglement p = 18 for a 64-site chain in Fig.4.7. The straight line in seini-log 

plot indicates an exponential decay of the spin-spin correlation with the distance, consistant 

with the existence of the energy gap in spin 1 chains. Using EPT-g to calculate spin 1 xxz 

chains is especially handy. One only needs slightly vary the operator T1 and T2 in (2.15) 

to include the anisotropic spin z-component coupling, A ^ 1. Below we show its phase 

diagram In Fig.4.8, the four phases are precisely identified When A decreases from a fairly 

large value, the spin 1 xxz chains enter from Neel phase to Haldane phase. At A = 1.192, 
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Figure 4.9 Amplified region where the transition from Haldane phase to XY phase occurs 

the energy gap for an infinit chain disappears. From this point to A = 0 there is energy 

gap for all chain length. And at A = 1, the energy gap converged to a finit value. See 

Fig.4.10 From A = 0 to A = —1 is the XY phase, the infinit spin chain has no energy gap. 

At A = —1, every finit chains have ho energy gap. After this point, it enters ferromagnetic 

phase, where the ground state is doublly degenerate. Fig.4.9 shows that the EPT calculation 

precisely captured the transition point between the XY phase and the Haldane phase. The 

phase diagram by EPT agrees with the fiel theory [31]. 

4.3 Spin triplet excitation spectra 

We use EPT-e to calculate the spin triplet excitation spectrum for spin 1/2 with the chain 

size 512 and the cluster size n up to 4. From top to bottom the cluster size varies from .1 

to 4. In Fig.4.11 we see the agreement is within 1% with the solid line from Bethe Ansatz 
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Figure 4.10 Haldane gap at A.— 1.0 for spin 1 chains 

[2]. Considering that this calculation used the ground state by EPT-g with entanglement 

p = 20, the discrepancy might have two possible sources. One is that the ground state with 

p = 20 for 512 sites contains a tiny error. Another is that the ultimate result might still 

gain small contribution after n increases beyond 4. Pursuing the ground state with larger 

entanglement may improve the result to certain extent without too much effort. Beyond that 

we have to use n = 5 or so. We see more clearly the role which n andpplay in Fig.4.12 for 

the spin 1 chain, where from top to bottom n varies from 1 to 3, while p = 24. We see that 

although n = 3 result is not quite converged, from n = 2 to n = 3 the precision improves 

more in spin 1 calculation than in spin 1/2 case. It is the larger entanglement that gives 

more accurate ground state which makes this difference. Let us discuss the spin triplet 

spectrum for spin 1 in more details. The Haldane gap at k = n is found by EPT to be 0.414 
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agreeing with the other methods[17,29,11]. The spectrum in the region 0 < k/n < 1/2 is 

believed to be embedded in a continuum spectrum of a pair of magnons with the total spin 

z-component to be 0[1]. Takahashi [18] used the exact diagonalization method to calculate 

the excitation spectra for a 20-site chain, showing that the lowest excitation at A; = 0 is 

indeed a spin singlet, presumably a pair of spin triplet magnons from k = ±ir[9, 11]. 

However the system size that the diagonalization method can handle is rather limited since 

the size of the matrix to be diagonalized increases very quickly. We believe that the spin 

triplet magnon spectrum for spin 1 for the entire Brillouin zone has been determined for 

the firs time by EPT. Moreover, EPT can handle other excitations such as spjn-singlet, if 

we calculate not only the minimum but all the eigenvalues of (3.7). Such entire excitation 

spectra have been solved by Bethe Ansatz [1 ] only for the isotropic spin 1 /2 chain. 
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CHAPTER 5 

CONCLUSION 

Two EPT algorithms, EPT-gl and EPT-g2, have been applied to solve for the ground 

sate properties for antiferrornagnetic spin chains. EPT-g can also calculate the firs excitated 

state for spin 1, which enabled us to determine the phase diagram of the spin 1 xxz chains. 

During the calculations, we found EPT has a high efficien y for finit spin chains, namely 

fast convergence with entanglement. Although the current calculation is not sufficien to 

directly check the singular behavior of an infint spin 1/2 chain for (SQS*) and (SfiSf) 

predicted by the fiel theory [8, 16], when A varies from 1" to 1 or from 1+to 1, we did 

see a tendency. But a further investigation is needed. On the other hand, using the ground 

state by EPT-g, the EPT algorithm for elementary excitation in one dimention determined 

the spin triplet excitation spetra for both spin 1/2 and spin 1. In particular the spin-triplet 

magnon spectrum for spin 1 chain for the entire Brillouin zone has been determined by 

EPT for the firs time, including the Haldane gap at k = ir 

EPT agrees with Bethe Ansatz for the ground state properties of spin 1/2 chains. Bethe 

Ansatz is rigorous, it precisely calculates some quantities, such as the ground sta^e and low 

lying excited states. However, rigorously calculable quantities are limited. For example, 

the spin-spin correlation functions are calculated by Bethe Ansatz only for a short-distance 

separation. EPT also agrees with DMRG concerning the ground state energy and Haldane 

gap in spin 1 chains. While DMRG has seen a remarkable success in various condensed 

matter systems, its application to two space dimensions has been limited, most likely re-
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vealing the failure of the very idea of the Hilbert space truncation. As for other methods, 

their application is either limited or they can only calculate specifi quantities, such as con-

formal fiel theory [8, 27] gives the asympotic correlation amplitude. On the other hand, 

EPT systematically solves the spin chains in that it precisely solves the local wave func­

tions with high efficien y in an unrenormalized form. Once one has the wave functions, 

many other properties can be readily obtained. 

The spin chain study here along with the previous study of 2D&3D Ising models, 

1D&2D Hubbard models and the recently started Bose-Hurbard model, show that EPT 

is a general method for strongly correlated quantum systems with translational symmetry. 

Moreover, EPT-e's success also indicates that EPT can handle imhomorgeneous systems 

like nano-structures embedded in correlated host materials. 
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