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My doctoral research for the past three years is presented in this report. My 
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systems to improve the performance of wireless communications. In the second part 
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extensive research on positioning technology for wireless networks using knowledge 

of the estimation theory in signal processing. 
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CHAPTER 1 

INTRODUCTION 

The research area of wireless networks contains tons of interesting topics to study. To 

start with, we decided to study communications of wireless networks and investigate 

some advanced technologies, such as the Single Carrier, Turbo Equalization, etc. This 

gave birth to the idea of the chapter 2 " Frequency-Domain Turbo Equalization for 

Single-Carrier Mobile Broadband Systems", whose abstract is presented below. 

Mobile broadband communications, which undergo time-varying radio channels 

with large multipath delay spread, are investigated in this chapter. Considering that 

single-carrier (SC) modems with frequency domain equalization have similar perfor

mance and complexity as orthogonal frequency-division multiplexing (OFDM), yet 

less sensitive to radio frequency (RF) impairments, we adopt single-carrier modula

tion at the transmitter to combat inter-symbol-interference (ISI) resulted from the 

multipath delay. Space-time block transmission is employed as the transmitting di

versity scheme. At the receiver, we propose the Turbo equalization consisting of 

minimum mean-square error (MMSE) equalization in frequency domain and channel 

decoding. Moreover, to cope with faster time-varying characteristics of the mobile 

channel, the data frame can be partitioned into smaller units, or blocks, for space-time 

block transmission and the linear equalizer. All processed blocks are then combined 

back to a frame as the input of the channel decoder. Simulation results show good 

performance of the proposed scheme with feasible computational complexity. 

After research on specific wireless communications technologies, we moved on to 

systematically study the performance of wireless communications from the perspective 

of information theories and analyze the capacity of cooperative communications where 

1 



multiple antennas are adopted at multiple cooperative users. The results are reported 

in the chapter 3 "Realization and Capacity Analysis of Cooperative Communications 

based on Multiplexing", whose abstract is presented below. 

Cooperative communication (CC) techniques, which form virtual multiple input 

multiple output (MIMO) systems through cooperation among users, have been pre

vailing in current academic research. Two scenarios that have been mostly considered 

are one source to one destination with help from a relay node and two sources to 

one destination with cooperation among sources, i.e. cooperation for multiple access 

channels. In either case, single antenna is employed at each node. In this chapter, I 

propose to realize cooperation based on multiplexing for a broadcast channel where 

there is one source equipped with multiple antennas and two destinations with single 

antenna. One of the destinations experiencing better channels helps the other desti

nation under worse channel conditions by serving as a relay. Such a channel is referred 

to as a multiple input single output (MISO) cooperative broadcast channel (CBC). 

Further, I consider the capacity analysis for the MISO CBC where additive white 

Gaussian noise (AWGN) presents (MISO AWGN CBC), which is not easy because 

MISO AWGN channel, as a vector Gaussian channel, is generally not degraded. I de

rive an outer bound on the capacity region of MISO AWGN CBC to provide insights 

into its information transmission limit. 

The purpose of research is to solve the problems raised in the real world. Research 

in previous parts armed us with advanced technologies and theories, and we are 

ready to apply them for solving some practical problems. We selected to investigate 

the problems of positioning in wireless networks. We proposed our own positioning 

algorithms after extensive literature survey and study of existing positioning methods 

and algorithms. Furthermore, we implemented our algorithm on ZigBee devices for 

testing in real environments. Details can be found in the chapter 4 "Implementing 

Indoor Positioning System via ZigBee Devices", whose abstract is presented below. 

A wireless indoor positioning system is implemented with the ZigBee technology 

that has applications in smart office and home, and in industrial automation and 
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control. We propose an effective cooperative localization algorithm that is tailored to 

the ZigBee profiles. It combines multidimensional scaling with maximum likelihood 

estimation, and overcomes their inherent drawbacks. ZigBee devices with chipset ref

erence designs or design-in modules are used for hardware implementation. An indoor 

positioning testbed is developed to evaluate the algorithm and check the positioning 

accuracy based on various channel measurements. 

The positioning algorithm proposed in the chapter 4 can be improved by using 

Bayesian estimators instead of classical estimators. The new and better positioning 

algorithm is proposed and compared with other existing algorithms in the chapter 5 

"MMSE Cooperative Positioning in Wireless Networks", whose abstract is presented 

below. 

The Global Positioning System (GPS) is not always available, accurate enough or 

cost efficient for locating nodes in wireless networks, which motives extensive studies 

on a variety of none-GPS positioning algorithms. All these algorithms can be classi

fied as non-cooperative methods or cooperative methods. The cooperative methods, 

though more complicated, achieve better performance since the position estimation 

for any node is based on information concerning all nodes altogether. In this work, 

we proposed and derived an minimum mean squared error (MMSE) cooperative po

sitioning method based on the power decays between each pair of wireless nodes. 

Log-normal power distribution is assumed and verified by the actual field measure

ments by ZigBee equipments. MMSE positioning based on log-normal power distri

bution involves complicated multiple integrals, which have no closed form solution. 

We adopted Simpon quadrature or Monte Carlo numerical methods to obtain the 

needed integrals. For improved performance, we proposed several variations of our 

basic MMSE cooperative positioning algorithm. The MMSE positioning algorithm in 

this work can also be carried out in a non-cooperative way and provides better initial 

position estimates for some existing iterative positioning approaches. The proposed 

MMSE cooperative positioning algorithm is optimum in terms of the Root Mean 

Square Error (RMSE). This is guaranteed by theoretical analysis and is also veri-
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fied by the numerical results in comparison with several popular existing cooperative 

methods. 

An iterative and computationally efficient method based on the MMSE positioning 

algorithm proposed in previous chapter is proposed and compared with other existing 

algorithms in the chapter 6 "Iterative Cooperative Positioning in Wireless Network", 

whose abstract is presented below. 

The previously proposed MMSE position estimator is a promising cooperative 

positioning method among all of positioning algorithms due to its excellent accuracy 

in terms of RMSE. However, direct calculation of the multiple integrals present in 

MMSE formulas via numerical methods has high computation burden and thus re

strict its practical application to a small number of unknown nodes. To overcome 

this complexity obstacle, we propose an innovative MMSE Adaptive Iterative Coop

erative (AIC) method, whose mechanism resembles a turbo engine. This MMSE-AIC 

positioning method avoids direct calculation of the multiple integrals via adaptive 

iterative estimation, and its performance is approximately the same as the perfect 

performance of the exact original MMSE in terms of RMSE. The proposed MMSE-

AIC is a practical solution and extends the application of MMSE estimator to large 

size wireless networks. 
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CHAPTER 2 

FREQUENCY-DOMAIN TURBO EQUALIZATION FOR SINGLE-CARRIER 
MOBILE BROADBAND SYSTEMS 

2.1 Introduction 

Single carrier (SC) modulation and orthogonal frequency-division multiplexing 

(OFDM) are two major techniques to combat the inter-symbol-interference (ISI) char

acterizing the dispersive channels in wireless broadband systems. Much work has been 

done to compare these two approaches [1] [2] [3]. Although OFDM has already been 

applied in many practical applications, SC has been gaining greater popularity due to 

the disadvantages inherent in OFDM and the fact that when combined with frequency 

domain equalization, the SC approach delivers performance similar to OFDM, with 

essentially the same overall complexity [4]. In addition, SC modulation uses a single 

carrier, instead of the many sub-carriers typically used in OFDM, so the peak-to-

average ratio (PAR) of transmitted power for SC-modulated signals is smaller. This 

means that the power amplifier of an SC transmitter requires a smaller linear range 

to support a given average power, and thus SC can use cheaper power amplifiers than 

a comparable OFDM system. 

Diversity transmission using Alamouti's space-time block-coding (STBC) scheme [5] 

has been proposed in several wireless standards due to its many attractive features. 

It achieves full spatial diversity at full transmission rate for two transmit antennas, 

without requiring channel state information at the transmitter. And the maximum 

likelihood decoding for Alamouti's STBC requires only simple linear processing. 
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Therefore, in this chapter, we consider multi-antenna wireless broadband systems, 

where STBC with cyclic-prefix (CP) is applied with SC at the transmitter. Convolu

tional encode is adopted as the forward error control (FEC) scheme. 

At the receiver, we propose a frequency domain Turbo equalization to detect the 

transmitted information bit stream. The Turbo equalization, first proposed in [6], 

borrowed the idea of Turbo code-decoding to detect iteratively the original informa

tion bits impaired by ISI. The outer code is usually a convolutional code and the ISI 

channel, equivalent to the inner code, is considered as a rate one convolutional code 

in real Galois field [7]. The extrinsic information transfer (EXIT) chart is used as a 

theoretical tool for performance analysis. It is well demonstrated that such an iter

ative scheme provides a significant performance gain. In this chapter, our proposed 

Turbo equalizer is composed of a linear minimum mean-square error (MMSE) in fre

quency domain and a soft-input-soft-output (SISO) decoder. The received data are 

converted to frequency domain and partitioned into blocks before fed into the linear 

MMSE, and the original information bits are decoded in an iterative and feedback 

way. 

MMSE space-frequency equalization for SC multiple-input multiple-output (MIMO) 

systems over frequency-selective channels is proposed in [8], but it can not be im

plemented iteratively to form Turbo equalization because it assumes fixed statistics 

about the transmitted signals. Borrowing ideas from MMSE using A priori informa

tion [9], we proposed frequency-domain MMSE equalizer based on dynamic a priori 

information to cooperate with the SISO outer decoder to realize the Turbo equal

izer, a priori information is updated at each iteration by the SISO decoder. Perfect 

channel state information (CSI) is assumed to be known to the receiver. 

Bit-error-rate (BER) curves and EXIT charts obtained through simulations show 

excellent performance and validate our proposed approach. 

The remaining of this chapter is organized as follows. In section 2.2, the system 

model is described mathematically. Then, the algorithms of frequency domain Turbo 

equalizer at the receiver, which is the focus of this chapter is stated in details in the 
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Channef 
Encoder 0 TT D Modulator 

,M2k),8(2k+1)> Space-Time 
Block 

Transmission 

Figure 2.1. Transmitter baseband block diagram: channel encoding 
and space-time block transmission. 

section 2.3. Numerical results through simulations are presented in the section 2.4. 

Conclusions are made in the section 2.5. 

2.2 System Model 

2.2.1 Space-Time Transmission 

Figure 2.1 depicts the block diagram of a wireless transmitter with two antennas. 

The binary bit stream b is encoded using a convolutional code and becomes code data 

c, which are then randomly interleaved in order that the influence of error bursts is 

reduced at the input of the channel decoder at the receiver. The interleaved code 

bits are then modulated and mapped to symbols s to compose a frame of length M, 

which is then partitioned into smaller units, termed blocks, of length N. A pair of two 

blocks are transmitted through the two antennas using Alamouti's space-time block 

transmission scheme. Suppose Ps pairs (two blocks) are obtained from partition, 

then we have N = M/(2P3). N can be set to be larger or smaller to be adaptive to 

slower or faster time-varying mobile channels. The transmission uses a single carrier 

frequency. In this chapter, we assume a coherent symbol-spaced receiver frontend 

with perfect symbol timing and describe the system with an equivalent discrete-time 

baseband model. 
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Let s(2k) and s(2A; + 1) denote two consecutive symbol blocks as 

s(2fc) = [s(2kN),s(2kN + l),..., 

s(2kN + N-l)]T (2.1) 

s(2fc + l)" = [s({2k + l)N),s((2k + l)N + l),..., 

s((2k + l)N + N-l)]T (2.2) 

These two symbol blocks are transmitted through the two antennas in the following 

form analogous to the Alamouti space-time code, 

-» time 
(2.3) 

i space 

•s(2fc) -Ps*(2£; + 1) 

s(2fc + l) Ps*(2A;) 

where P is a permutation matrix that is drawn from a set of permutation matrices 

|p(n) J.JV-̂ 1 Each P(") performs a reverse cyclic shift, such that when it is applied to a 

Nxl vector s = [s(0),... , s(N- 1)]T, the p-th entry of P ( n )s is s((N-p+n) mod N). 

For example 

P<% = [ s ( i V - l ) , s ( A r - 2 ) , . . . , s ( 0 ) ] T . ' (2.4). 

P (1 )s = [s(0),s(N-l),s(N-2),...,S(l)]
T (2.5) 

Suppose that the transmit filter, the broadband channel with inter-symbol interfer

ence, and the receive filter can be represented by a discrete-time linear filter with 
• V • 

finite-length impulse response (FIR) of length L. The FIR filter can be determined 

by the sequence hM = [h^O),..., h^L — 1)]T, where [i = 1,2 indicates the trans

mit antenna. For multiple transmitter-receiver antenna pairs with different channel 

memory, L is the longest filter length. As shown in Figure 2.2, a cyclic prefix (CP) of 

length L is added to each transmitted block. Therefore, the inter-block interference 

can be eliminated by removing the CP at the receiver. 



TXi CP s(2k) CP -Ps*(2k+1) 

CP 

i— 

-"-" ~--̂ __ 
s(2k+1) 

Block 2k : ) 

CP 

< 

P s*(2k) i 

Block 2k+1—-— - » 

Figure 2.2. Transmitted sequence through two antennas. 

2.2.2 Channel Modeling 

When the receiver synchronizes to the symbol blocks, the received data in two 

consecutive blocks are given by 

x(2fc) = Hi2fc)s(2/fc) + l42fe)s(2£; + 1) 

4-n(2Jfc) 

x(2fc + l ) = -H(
1

2fe+1)Ps*(2it + l ) 

+H|2fe+1)Ps*(2A;) + n(2A; + l ) 

(2.6) 

(2.7) 

where n is the zero-mean Gaussian noise vector with covariance matrix cr^I. It is 

assumed that the channel is block-invariant, which means the channel stays constant 

within the transmission of a block. With the removal of CP at the receiver, the 

channel H/r ,where j = 2k, 2k + 1 denotes the j-th symbol block, can be represented 

by an N x N circulant matrix as 

h^iO) 0 ••• / ^ ( l ) 

/#>(2) 

A ^ ( L - l ) 

0 

0 

0 

4j)(l) 

hPiL-2) 

0 

^ ( 0 ) 

/ # ' ( £ - 3 ) 

hf{L-2) 

ft^(L-l) 

0 

(2.8) 



Hence, Hj, has an eigen-decomposition as 

H « = FHAjf)F (2.9) 

where F is the orthonormal discrete Fourier transform (DFT) matrix whose (k, l)—th 

entry is Ffci; = -j=e~j(27'/N)kl (k,l = 0 , . . . , N — 1). AJr is a diagonal matrix whose 

(k, k)—th entry is given by the A;-th DFT coefficient of the first column of HJr. In 

addition, the circulant matrix has the following property when operating with the 

permutation matrix P [10], 

PHj')*P = HJ?)/r (2.10) 

As depicted in Figure 2.3, the receiver divides the symbol blocks to generate x(2fc) 

and Px*(2A; +1), which are then passed through FFT modules to be converted to the 

frequency domain. The resulted outputs are given by 

' • Fx(2A;) 

FPx*(2A;+l) 

X(2fe) 

S{2k) 

, S(2fc + 1) 
-1-

1 

N 

A(2 f e) A(2 f c) 

A(2fc+1)* _ A (2 f c+ l )* 

A(2fc) 

Fn(2k) 

FPn*(2fc + l) 
(2.11) 

W(2fc) 

where S(j) = Fs(j), j = 2k,2k + 1. The filtered noise W(2A;) remains white with 

the same covariance matrix cr^I. 

The output of the space-time combiner is further fed into a frequency-domain 

minimum mean square error (MMSE) equalizer to obtain the frequency domain es

timates S(2A;) and S(2A; + 1), which are brought back to the time domain via IFFT 

modules. Finally, the code bits are detected and decoded to the information bits. 

The details will be explained in the next section. 
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I fx(2k), x(2k+1)( 

x(2k) 

Px-(2k+1) 

Space-Time 
Linear 

Combiner 

MMSE 

Equalizer 

S(2k) 

S(2k+1) 
•| IFFT | — • 

Calculator 
& 

Combiner 

Ue<s) 

B-
Channel. 
Decoder 

L(b|dec) 

•ffl 
Le(c) 

L{c|dec) 

Figure 2.3. Receiver baseband block diagram: space-time combining 
and Turbo equalization. 

2.3 Frequency-Domain Turbo Equalization 

2.3.1 Receiver Structure 

As shown in Figure 2.3, the receiver consists of a space-time linear combiner, 

followed by the Turbo equalizer. The Turbo equalizer has two stages: the frequency-

domain linear MMSE equalizer and the SISO channel decoder. The two stages are 

separated by a deinterleaver (a block labeled "TT - 1 " ) and an interleaver (a block 

labeled ' V ) . The a priori log-likelihood ratio (LLR) of the symbol bit is fed 

back to the MMSE equalizer, and the equalizer outputs the a posteriori LLR of 

the symbol bit. For simplicity, the block index (2 

X = X(2/fc), A = A(2fe), W = W(2ib). Also, let S = 

i) is dropped from now on, i.e. 

S(2fc) 

S = 
F O 

O F 

s(2Jfc) 

s(2A; + 1) 

S(2fc + 1) 

= Fs 

, thus 

(2.12) 

Then, Eq. (2.11) can be rewritten as 

X - AS + W (2.13) 

11 



BPSK is considered in this chapter. Therefore, the a priori LLR is given by 

The a posteriori LLR is given by 

L(SW|X) = l n p [ s ( . ) = _ i | x ] (2.15) 

Using Bayes' rule, it can be written as 

where Le(s(i)) is the extrinsic information. The extrinsic information of all blocks of 

length N at the output of the MMSE equalizers is calculated and combined back into 

a frame of length M before being deinterleaved to generate the a priori LLR of the 

code bit for the channel decoder. The decoder outputs an update of the LLR of the 

code bit and the information bit. The extrinsic information of the code bits based on 

the code constraints is interleaved and fed back to the corresponding linear MMSE 

equalizer as the priori information in the next iteration. The a posteriori LLR of the 

information bit is used to make hard decision at the last iteration. Note that the 

extrinsic information from the MMSE equalizers and from the decoder are statisti

cally independent at the first iteration, but become more and more correlated in the 

subsequent iterations. Therefore, the improvement through iteration will diminish. 

2.3.2 Frequency-Domain Linear MMSE Equalizer 

It is assumed that perfect channel estimation is available at the receiver, or in 

another word, the exact channel matrix is known to the receiver. Then, according to 

the well-known MMSE formula, the frequency domain estimation S at the output of 

MMSE equalizer can be obtained as 

S = [ C x x C X S ] " ( X - £ ( X ) ) + i<;(S) 

= [(ACssA
H + all)-1ACss}

H(X-AE(S)) 

+E(S) (2.17) 
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where Cxx,Qxs and Css are covariance matrices, defined as C x y = Cov(x, y) = 

E(xyH) - E(x)E(yH). According to Eq. (2.12), E(S) = FE(s) with the t-th element 

E(s(i)) depending on the a priori LLR L(s(i)) as 

E(s(i)) = Y, k-P[s(i)=k] 
fce{+i,-i} 

= tanhfimSf;^;! 
\2 P[s(i) = -1] 

= tanh ( ^ ] , (2.18) 

Due to the the independence of the interleaved symbols {s(i)} and with the BPSK 

assumption, the covariance matrix Css can be calculated as 

— *- FT 

Css = FCSSF 

- Fd»a« / ( ( l - | £ ( s ) | 2 ) )F" (2.19) 

where the i-th element of l-E^s)!2 is \E(s(i))\2, calculated as shown in Eqi (2.18). The 

a priori LLR L(s(i)) is updated in each iteration, so the MMSE estimator must be 

recomputed for each iteration. 

Once the symbol values in the frequency domain are estimated, the time-domain 

values can be obtained by performing the inverse DFT as 

s = F H S (2.20) 

At the first Turbo iteration, it is assumed that s(i) is equally likely +1 or —1 

which yields E(S) = E(s) = 0 and CSs = I- The MMSE estimator as shown in Eq. 

(2.17) can be simplified as 

S = [(AA" + aliy'AfX (2.21) 

Assume that the probability density function p[s(i)\s(i) = k], k — ±1 is Gaussian 

with mean jiitk = E{s(i)\s(i) = k} and variance afk = cov{s(i), s(i)\s(i) = k}. The a 
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posteriori LLR L{s(i)\s{i)), which is an approximation of L(s(i)\X), can be expressed 

as 

L(«(.)|»(0) = In = _ +In = (2.22) 
* v i ' < v ' 

£,«(*(»)) L(s(i)) 

The extrinsic information Le(s{i)) can be calculated as 

exp(-|g(»)-A*i,+i|2/g?,+i) 
Le(fl(0) - lnexp(-|«W-Mi,-1|2/^-r) 

|s(t)-A*t,-i|2- I«(*) _Mi,+if 
CT"-1 * i ,+ l 

(2.23) 

Let A = [(ACSSAW + aft)-1 ACSS]
H• Prom (2.17) and (2.20), we have 

s{i) = uiF
H(A(AS-AE(S) + W) + E(S)) (2.24) 

where u, = [0, . . . , 0,. 1 ., 0 , . . . , 0]. Therefore, it can be derived that 

^ ^ ^ ( F ^ A A F d ^ + ^ s ) ) (2.25) 

o\k = m (fHA ^AFCssls{i)=kF
HAH + <x„2l) A * F ) Ui

H (2.26) 

where 

d^ = [0,...Ak-E(s(i)l,0,...,0f 

ith 

and 

Css|s(i)=fe = Cov(s,s\s(i) = k) 

= C s s + diagffl,.... 0,2E(s(i))(E(s(i)), - k) 
N * ' 

• i ' * 

, 0 , . . . , 0 ) . 

At the first Turbo iteration, Eq. (2.25) and (2.26) are simplified as 

^k = kM^HAA¥uiH (2.27) 

ulk = ni{¥HA{AAH + an
2l)AHf)ui

H (2.28) 
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2.3.3 SISO Channel Decoder 

The SISO channel decoder takes the a priori LLRs of the code bits as input and 

outputs the updated LLRs of the code bits Z(c(^)|decoding), as well as the LLRs of 

the information bits L(b(i)\decoding) based upon the code constraints. 

We use the log maximum a posteriori probability (Log-MAP) decoding algorithm 

to calculate the a posteriori LLRs of the code bits and the information bits. The a 

posteriori LLRs of the code bits can be written as [11] 

P[c(i) = +l]|decoding] 
L(c(i) |decoding) = In 

= In 

P[c(i) = — l]|decoding] 

E(s',s)6£+ Pfo = S'' g'+l = *! 

(2.29) 

while the a posteriori LLRs of the information bits can be written as 

P[b(i) = +1] | decoding] 
L(b(i) | decoding) = In 

= In 

P[b(i) = -1] | decoding] 

T,(3>,s)eu+ Pisi = s'' *m = sl 

T,(3',s)eur Pisi = s'> s<+i = s) 
(2.30) 

where Sj1"1 and E;""1 are the sets of all state pairs sj = s' and s^+1 = s that correspond 

to the code bit c(i) = +1 and c(i) — — 1, respectively. (7;
+1 and Uj^1 are the sets of 

all state pairs si — s' and si+i = s that correspond to the information bit b(i) = +1 

and b(i) = — 1, respectively. 

2.4 Numerical Results and Analysis 

The performance of our proposed approach is evaluated through simulations. As 

mentioned in sections 2.2 and 2.3, in order to cope better with the time-varying 

characteristics of the mobile channel, we partition a frame of encoded date of length M 

into multiple blocks of length N for the linear equalization and then combine all blocks 
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to form a frame for the channel decoder. This can also improve the computational 

efficiency. Specifically in our simulations, M = 216 BPSK modulated symbols are 

partitioned into Ps = 256 pairs of blocks of length N — 128. Each of these blocks 

is processed through the linear MMSE frequency-domain equalizer and the outputs 

are combined back into a 216 bit frame to be fed into the deinterleaver and the 

convolutional decoder. 

EXIT chart at Es/N0 = —5.2dB, where Es is the energy of the transmitted sym

bol, is plotted in Figure 2.4. It illustrates the mutual information transfer characteris

tics for the SISO decoder. Figure 2.5 presents the BER performance of each iteration 

versus Eb/No, where E^ is denned as the energy of the information bit. As shown 

in these figures, the output transfer information increases with each iteration, which 

indicates more accurate decoding. Correspondingly, BER becomes smaller with more 

iterations. 

Our proposed scheme is designed to deal with ISI caused by frequency selective 

broadband multi-antenna channel. As for the Alamouti's STBC adopted in this chap

ter, it's a system of two transmit antennas and one receive, which is labeled as 2 x 1. 

To make comparison, the case of frequency-flat or ISI free 2 x 1 channel and the case 

of frequency-selective broadband single antenna channel, labeled as 1 x 1, are also 

considered. The comparison of BER performance at the fourth iteration is shown 

in Figure 2.6. It is shown that our proposed algorithm can achieve comparable per

formance to flat channel, which indicate that the proposed frequency domain Turbo 

equalization with STBC over single carrier is an effective way to combat ISI. Better 

performance obtained in 2 x 1 multi-antenna channel than l x l single antenna chan

nel is resulted from the diversity gain brought by STBC. 
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Figure 2.5. BER performance at different iterations. 

2.5 Conclusions 

A frequency-domain Turbo equalization approach is proposed for space-time block 

transmission over single-carrier broadband channels. The Turbo equalization is im-
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Figure 2.6. BER comparison at the 4th iteration. 

plemented through a priori information based linear MMSE detector, whose trans

formation matrix is updated in each iteration according to the updated a priori 

information fedback from the SISO convolutional decoder. Comparison with non-ISI 

channels through simulations well demonstrates that the proposed frequency domain 

turbo equalization for single carrier mobile systems is a promising way to combat the 

distortion caused by ISI channels. Better performance with two transmit antennas 

than single antenna case is achieved due to the diversity gain resulted from STBC 

transmission. Furthermore, by partitioning the frame of modulated symbols stream 

into blocks, the proposed approach is able to deal with faster time-varying mobile 

channels, because it is only required that the channel should remain constant over 

the period of a block. 

2 x 1 (ISI Channel) 
1 x 1 (ISI Channel) 
2 x 1 (Non-ISI Channel) 
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CHAPTER 3 

REALIZATION AND CAPACITY ANALYSIS OF COOPERATIVE 
COMMUNICATIONS BASED ON MULTIPLEXING 

CHARACTERISTICS 

3.1 Introduct ion 

Cooperative communication (CC) receives lots of attentions and efforts in aca

demic research nowadays. While we are working on profound theories of CC, we may 

not realize that we have already been enjoying this technique in real life. For exam

ple, P2P, which provides us with high speed download over Internet, is a typical CC 

technique, where a user downloads the message from source with the help of other 

users who send the source message to that user while they are downloading their own 

messages from the source. The situation gets complicated for wireless CC (WCC), 

where channel environment is adverse. Over 30 years ago, the relay channel model, 

which built the foundation for CC, came to people's view through the papers [12,13]. 

Another milestone paper [14] was written by Thomas M. Cover et al who proved four 

capacity theorems for the relay channel. The paper [15] provides a comprehensive 

analysis for relay channel capacity as well as coding schemes which consists of decode-

and-forward (DF) and compress-and-forward (CF) coding. The papers [16,17] trigger 

intensive interests in user cooperation based on relay channel. Among lots of works 

on user cooperation, the paper [18] presents an overview of CC, a more popular term 

to refer to user cooperation. An extended work focusing on turbo code to implement 

CC is studied in the paper [19]. The essence of-CC is to form virtual MIMO via 

cooperation among users with single antenna and exploit the diversity provided by 
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MIMO to combat the fading channel and increase reliability over communications. 

Several protocols have been proposed in papers [20,21] to realize a high spatial diver

sity gain.-A complete protocol set is presented in the paper [22], where the authors 

further propose a new protocol which is best among the existing protocols for the 

single-relay fading channel. At the same time, some special cases are studied in other 

papers [23,24]. In the paper [23], a cluster model is studied to achieve higher spatial 

diversity and the paper [24] investigates asynchronous space-time cooperative com

munications for sensor and robotic networks. Most models mentioned above can be 

classified into one of the four types illustrated in Figure 3.1, where (a) is the classical 

relay model, (b) is the multiple access relay (MAR) system, (c) is the classical CC 

system and (d) is extended version of CC. "S" , "R" and "D" stand for the source 

node, the relay node and the destination node, respectively. Please note that the 

relay node simply helps the communication between the source and the destination, 

and does not have its own messages to receive. 

As revealed in Figure 3.1, the focus of typical CC systems is on cooperation 

among multiple sources, or multiple access cooperation. Cooperation can also be 

implemented in a broadcast channel, where one source communicates with multiple 

cooperating destinations. Pioneer works on capacity analysis for broadcast channels 

without user cooperation can be found in works by Thomas M. Cover et al [25-

28], which build the foundation for broadcast channel analysis and introduce the 

degraded Gaussian channel, a concept particular to the broadcast channel. As for 

broadcast channels with cooperation, intensive study has been done in papers [29,30] 

by Liang et al, where the authors derive the capacity region of the degraded Gaussian 

relay broadcast channel and inner/outer bound of the non-degraded Gaussian relay 

broadcast channel. 

All types of existing CC systems discussed before have one thing in common, that 

is, single antenna is used at all nodes, including source, relay and destination nodes. 

We can also employ antenna array at some or all of nodes to further improve the 
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Figure 3.1. Cooperative/relay communication system. 

system performance. A relay system with antenna arrays at the source, relay and 

destination nodes, as shown in Figure 3.2, is proposed and studied in the paper [31]. 

In this chapter, I consider a broadcast channel with one source and two desti

nations. The destination under better channel conditions, called the stronger desti

nation, serves as a relay for the other destination, called the weaker destination. I 

propose to adopt multiple antennas at the source node. Single antenna is still em

ployed at both destination nodes. Thus multiple input single output (MISO) channel 

exists between the source and each of the destination. Such a channel is referred to as 
r 

MISO cooperative broadcast channel (CBC). I further consider MISO CBC corrupted 

by the additive white Gaussian noise (AWGN), called MISO AWGN CBC, and derive 

an outer bound on its capacity region. 

The capacity analysis of broadcast channels is more complicated than that of the 

multiple access channel, even without cooperation taken into consideration. Using 

multiple antennas at the source adds to the difficulty, since MISO AWGN channel, 

which corresponds to a vector Gaussian channel, is generally non-degraded. A corner 

stone work for MIMO broadcast capacity analysis is done by Caire-Shamai [32] who 

investigate the achievable region of MIMO broadcast channel by using the "dirty-

paper" precoding technique [33]. An innovative way which considers the duality 

between uplink and downlink is studied in the papers [34,35]. As for MISO CBC 
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Figure 3.2. MIMO relay system. 

studied in this chapter, which is a multi-antenna broadcast channel with cooperation, 

the capacity analysis has not been done yet. In my work, the outer bound derivation 

is based on the work on general single antenna relay broadcast channel given in the 

paper [30]. 

The remaining of this chapter is organized as follows. In section 3.2, the model 

for general MISO broadcast cooperative channel is introduced and the mathematical 

representation of the received signals over AWGN channels is given. The outer bound 

on the capacity region of MISO AWGN CBC is addressed in section 3.3. The conclu

sion is made in section 3.4. The proof for the outer bound is outlined in the appendix. 

Last but not least, my thanks to my wife are presented in acknowledgments section. 

Throughout this chapter, for a matrix A, diag(A) denotes the vector composed of 

all diagonal elements of A. For a vector a, diag(a) denotes a diagonal matrix with a 

as its diagonal elements. All vectors are column vectors except for the channel fading 

vectors, which are the row vectors for simpler notations. 

3.2 System Model 

The model for general MISO CBC, where cooperation is realized between two 

destinations, is illustrated in Figure 3.3. Without the loss of generality, I assume 
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Figure 3.3. MISO CBC. 

that the first destination is the stronger destination and thus serves as a relay for the 

second destination. 

For MISO AWGN CBC, the channel coefficients are considered to obtain general 

results. Suppose there are M antennas at the source. The received signals at two 

destinations can be presented as 

Y, ^h.X + W, 

Y2 = h 2X + hsXx + W2 

where X = [X^^X^, • •• ,X(-M"']T is the transmitted signal vector from the source, 

Xi is the relay signal, h, = [ha, hi2, • • • , /^M] (i = 1,2) is the channel vector from 

the source to the z-th destination, and /13 is the channel from the relay to the second 

destination. Wt (i = 1,2) is AWGN with i.i.d. CAf(0, N0). 

For Rayleigh fading, the entries in hi, h2 and /i3 are CAf(0,£i), CAf(Q,£2) and 

CA/"(0, £3), respectively. As mentioned before, Yi is assumed to experience better 

channels than Y2, which indicates that £\ > £2. AWGN channels with fixed channel 

coefficient are equivalent to AWGN channels with fading conditioned on a realization 

of channel fadings. 

The power constraints are imposed and can be presented as E (||X||2) < P for 

the total transmission power from all antennas at the source, and E (|Xi|2) < Pi for 

the relay. Let Qx be the auto correlation matrix for X and q x ^ be the correlation 
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vector between the source X and the relay X\. The power constraint for the source 

can also be represented as trace(Qx) < P-

3.3 An Outer Bound on the Capacity Region of MISO AWGN CBC 

The information rate of the private messages from the source to the first destina

tion and the second destination are Ri and i?2, respectively. If common messages are 

transmitted from the source to both destinations, the rate is R0. In our work, I do 

not consider common messages, and thus Ro = 0. 

If the channel side information (CSI) is known both to the transmitter and the 

receiver, the following theorem gives the corresponding outer bound on the capacity 

region. 

Theorem 1. An outer bound on the capacity region of the MISO AWGN CBC, 

denoted as C^°\ conditioned on channel realization h1; h2 and /i3, is given by 

( p ^ r ( "yhiQxhf A 

o<y<i R2 < min J max. C ( ^ ) , log (det (l + ^HQxfi") ) 
trace(Qx)<P [ [ IqxxJ^^AdiagCQx) 

(3.2) 

where diag(Qx) is the vector composed of all diagonal elements of Qx- And h2 = 

h2 /i3 ], H = 
hi 

h2 

, and Q = (the correlation matrix of 
Qx qxx! 

qx*, ^1 

[XT, Xi]T). Also, a = l — a, <p = l — (p and C(x) = log(l + x) (for complex 

signals). 

Proof: See Appendix A for the outline of the proof. D 

Remark 1: The outer bound for general MISO CBC given in the proof is obtained 

by a straightforward extension of the outer bound for general single antenna partially 

cooperative relay broadcast channel (RBC) given in the paper [30] and thus there is 
) 

no need to prove it again. 

Remark 2: While it is straightforward to extend the outer bound for general sin

gle antenna partially cooperative RBC to general MISO CBC, the results for single 
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I 

antenna AWGN partially cooperative RBC in the paper [30] CAN NOT be extended 

to the MISO AWGN CBC due to the non-degradedness nature of the multi-antenna 

broadcast channel. Indeed, in the paper [30], the derivation of the results for single 

antenna AWGN partially cooperative RBC is based on the equivalent degraded rep

resentation of Y2 as the degraded version of a newly defined output, but there is no 

way for such manipulations to work for the MISO system, which is neither degraded 

nor equivalent to be degraded. 

Remark 3: In the proof, I extend considerations to the complex field. 

When CSI is known only at the receiver (CSIR), I allocate power equally over all 

transmit antennas. If independence is required among all transmitted substreams, I 

have Qx = ;pl and the region given in (3.2) is reduced to: 

Corollary 1. An outer bound on the capacity region of the MISO AWGN CBC with 

CSIR (Qx = M-Q' denoted as C^gIR, conditioned on channel realization hi, h2 and 

h3, is'.given by 

Ki< c Ufhihf+W 

c, (o) 
CSIR u 

0<a,¥><l R2 < min m a x ^ 1 —TT C ( 5 # £ ) , ] 0 g ( d e t ( l + ^ H H " ) ) ' 

(3.3) 

where Q 
^ 1 qx*! 

qg* Pi 

3.4 Conclusions 

An outer bound is derived in this chapter for the capacity region of MISO AWGN 

cooperative broadcast channels, where the source employs an antenna array to com

municate with two single antenna destinations and the stronger destination serves 

as relay to the weaker destination. With the derived outer bound, we can analyze 

the lower bound for the outage probability, based on which the diversity-multiplexing 

tradeoff, defined and studied in the seminal paper [36,37], can be obtained. This has 

been left to my future work. Also, I am going to consider half-duplex cooperative 
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communication, which is more practical than full-duplex cooperative communication 

assumed in this chapter. 
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CHAPTER 4 

IMPLEMENTING INDOOR POSITIONING ALGORITHM VIA ZIGBEE 
DEVICES 

4.1 Introduction 

Indoor positioning has many applications in smart offices and homes, and in indus

trial automation and control. Although it is very common to use GPS for positioning 

in the open field wherever you are hiking in the mountain or driving on the highway, 

it is very difficult to apply GPS inside the buildings, because the GPS signals cannot 

penetrate most roofs covering the buildings. When wireless networks are present, 

cooperative positioning, which is to estimate the location via the relative distance 

between two nodes, is emerging as a promising quickly-deployed indoor positioning 

technology that exploits the ad-hoc network structure. Therefore, the relative dis

tance between nodes plays a crucial role in cooperative positioning. In [38], it claims 

that there are four physical variables, i.e. the received signal strength indicator (RSSI), 

the angle of arrival (AOA), the time of arrival (TOA) and the time-distance of ar

rival (TDOA), to determine the relative distance or range measurements. In most 

applications of indoor positioning, RSSI obtained by measuring the received wireless 

signal and TOA obtained by detecting the ultra-sound waves are quite often used to 

obtain the locations of nodes. 

RSSI rather than TOA is studied in this chapter to obtain the relative distance 

since it does not always be guaranteed that the line-of-sight path exists between 

nodes in indoor environments. There are three algorithms to computer the coordi

nates with the help o°f these relative distance data. One algorithm is called classical 

Multidimensional Scaling (MDS), a technique that captures the intercorrelation of 
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high dimensional data at low dimension. MDS has been found in a variety of appli

cations, not limited to computer science or electrical engineering areas [39]. However, 

for both non-iterative and iterative methods, the classical MDS is sub-optimal be

cause it does not consider the channel statistics and usually measurements of longer 

distance have larger errors [40]. Another algorithm is called Maximum Likelihood 

Estimation(MLE) which can achieve the optimum estimation for indoor positioning 

based on the received signal power, whose distribution is assumed to be known [41]. 

Due to its computational complexity to obtain closed-form solutions, gradient meth

ods are usually used to iteratively find the global maximum. However, these methods 

are sensitive to the initial values. We combine MDS and MLE methods by applying 

MDS to obtain coarse initial values for the MLE iterations. The initial values ob

tained by MDS are expected with certain confidence to be able to converge to the 

global maximum. 

After introducing the technology of indoor positioning algorithms, we should find 

a protocol to implement them. As a popular and standard wireless protocol, ZigBee 

[42,43] is designed as a low-cost, low-power and low-data rate networking technology 

for Industrial-Scientific-Medical(ISM)-band radio that welcomes even the simplest 

home and industrial end devices into wireless connectivity. In this work, we set up 

an indoor positioning system using ZigBee devices. The related work has been done 

in [44], where the authors claimed to have built a model for monitoring the positions of 

mobile nodes in an indoor environment according to IEEE 802.15.4 (ZigBee) by using 

RSSI. But the authors did not point out how to combat the in-building signal fading. 

A practical ZigBee model for indoor positioning system is provided in [45], which 

employed both the RSSI and TOA to compensate each other to get the accurate 

distance for indoor positioning. However, it did not solve how to determine the 

location if there is no line-of-sight path. 

Furthermore, ZigBee technology can determine crucial parameters, such as path 

loss exponent (e.g.,n,7,etc.) in a classical statistical log-normal indoor channel model 

[46] which is adopted in our simulations. In order to provide convincing simulation 
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results, our channel model used in the simulation is based on real measurements 

obtained by our lab's ZigBee system evaluation devices, and we also developed our 

own ZigBee codes for real-time indoor channel RSSI measurements. 

The whole project goes like this: The first step is to find an effective and effi

cient algorithm via simulations. Then, some crucial parameters in channel model to 

support simulations are obtained from the real measurements reported by ZigBee de

vices. Finally, a hardware ZigBee testbed is built to evaluate the indoor positioning 

algorithms, softwares and hardwares. To respond to this procedure, the remaining of 

this chapter is organized as follows. In the section 4.2, three positioning algorithms 

including the proposed algorithm in this chapter are described and compared . How 

to evaluate the goodness of an algorithm is presented in the section 4.3. After a 

classical statistical log-normal indoor channel model is introduced, some real mea

surements from ZigBee devices for indoor channel model is shown in the section 4.4. 

In the section 4.6, a testbed is described in detail. Simulation results are provided in 

the section 4.5. Last but not least, future work and conclusion are addressed in the 

section 4.7. 

4.2 Positioning Algorithms 

The cooperative positioning problem is to estimate the coordinates a ^ j i=l of 

the N network nodes, given imperfect knowledge of pair-wise range measurements 

and the coordinates of the reference nodes. 

4.2.1 Classical-MDS 

This algorithm is derived from the classical multidimensional scaling algorithm 

in [40]. First of all, we need the true Euclidean distances between N nodes: 

dij = d(xi, Xj) = J(xi - Xj)'r{xi - Xj), i,j = 1 . . . N (4.1) 
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The squared distance matrix can be denned as D = [d?-]. In order to get the solution 

from this matrix by singular value decomposition (SVD), we need to define H as 

H = I — eeT/N, where e is an iV-dimensional all-ones vector. Next, a matrix B is 

introduced for solving the equation: 

B' = -HDH = 2HXTXH = (V2X H)T (V2X H). 

Then, the floating coordinates can be obtained as solutions to the following problem: 

min | |5 ' -YTY\\F (4.2) 

where \\.\\F is the Frobenius norm. The solution of (4.2) is given by 

X = diag(\l/2,...,\%2)UT/V2 (4.3) 

where \x , . . . , Xp and U are from SVD decomposition of B' as: 

B' = Udiag(\{/2,..., \%2)UT 

Although this classical MDS would involve much computation mainly due to SVD 

operation in a large dimension network where there many nodes for position estima

tion, its performance is not bad for small scale estimation. As a rule of thumb, small 

scale refers to the number of nodes to be estimated being less than 6. It enlightens 

us that the classical MDS is a good initial estimation because it is a linear estimation 

and it does not need the initial value on its own. Figure 4.1 shows the positioning 

results using the classical MDS. In this figure, the red dots are the real nodes loca

tions, black diamonds are the mean value of the estimated nodes locations, red dash 

circles are the Cramer-Rao bound and black ellipses are the variance of the estimated 

nodes locations. The blue squares denote the locations of known nodes. The number 

marked on the figure is the average of all estimation variances. Cramer-Rao bound is 

the most famous lower bound for, unbiased variance [47]. It can be used a benchmark 

to help us evaluate the potential of an estimator. 

As well known, CR bound is by far prevailing boundary for MVUE compared 

with other variance bounds [48]. In [49], there is a perfect derivation of CR bound 
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for indoor positioning. Here, a very brief derivation is provided according to [48,49]. 

A Fisher Matrix can be obtained by: 

1(0) = 
^ x x •'•xy 

yT T 
x x y x y y 

(4.4) 

We can find the variance of x and y by: var(8i) > [I 1{@)}n and apply the equation 

for inverse of matrix as follow: 

(4.5) 
A U 

V D 

{A - UD-XV)~X 

{U-AV-lD)~l 

-(V-DU-'A)-1 

{D-vA-^uyv 
[50] Therefore, from (4.4)(4.5), we can get: 

(4.6) - \(I - I I - 1 I - T)-1]-

— [\1-xx x x y i y y •'•xy ) \n 

"Hv.-'yy — •'•xy J-xx I x y j \ii 

CR-bound provide a frontier of most estimation for indoor positioning as well 

as some interesting conclusions, among which one of the most important is that 

even more unknown nodes can still improve the accuracy of indoor estimation by 

cooperative way. 

The classical MDS solution is floating and can not point out the location of nodes 

directly. We propose an approach which contains three steps to convert the floating 

solution to fix solution. Details are described in the section 4.3. 

4.2.2 Iterative-MDS 

Besides the classical MDS, we can use the iterative approach to solve the MDS 

problem as well as Eq. (4.2). Firstly, a cost function defined in [39] is as follows: 

l<i<n Kj<n 

(4.7) 

-«-:«, where dij is the actual Euclidean distance as defined in (4.1) and the r\? is measured 

distance at t-th iteration. 
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Figure 4.1. Estimated by classical-MDS. 

S can be rewritten as 

s=X> + c 
i=\ 

(4.8) 

where 5, is the local cost function and c is a constant which has nothing to do with 

cost function. According to [51], Si can be expressed as 

Siixt) = Vr + AX) - 2p(X). (4.9) 

Define Ti(x,y) as: 

Ti(xuyi) = Vf + rl
2(X)-2p(X,Y) (4.10) 

where p(X,Y) is 

P(x,Y) = Y,ii(xi-Xj)T(yi-yj) 
j = i ij 

According to Cuachy-Schwarz inequality, it is obtained that 

d = dij(X)<iij(y) > {Xj - Xj)T{yj - Vj) 

dii(Y) dij(X) 

(4.11) 

(4.12) 
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Figure 4.2. Procedure of iterative-MDS algorithm. 

Obviously, in order to find Ti(x,y), the Si needs to be minimized by a majorizing 

algorithm: 
dTi{xi,yi) 

dxi 
= 0 

We can derive a location of node i through (4.13) 

xf+l) = a{dixi + Xkbk
i), 

where, a is N — 1 and bi is obtained iteratively. 

The detailed procedure is shown in Figure 4.2. 

(4.13) 

(4.14) 

4.2.3 Maximum Likelihood Estimation 

In this section, we reintroduce the main point of the paper [41] about the Maxi

mum Likelihood formulation for indoor positioning without considering the threshold. 

Here, we have a likelihood function L. 

(4.15) 
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Figure 4.3. Estimated by MLE. 

where pij represents the power received by device i that was transmitted from device 

j and pij is the postulated received power. The ML coordinates are given by 

X,Y = avgmm[f(xk,yk)} (4.16) 

/fe^^EE1^ (417)-
where, 

a = 10n/(ln(10)adB) 

We can use the iterative methods, say conjugate gradient or Newton-Raphson it

eration [48], to solve (4.17). MLE is a very powerful estimator which provides near 

CR-bound estimation for indoor positioning using the proper initial estimation. How

ever, like everything has two sides, MLE has its own drawback. For instance, it is 

sensitive to initial estimated values. Figure 4.3 shows the localization results using 

the MLE with random initial guess. You may see that MDS alone or MLE with ran

dom initial value alone works not very well. We should figure out a new and better 

algorithm for indoor positioning. 
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Figure 4.4. Estimated by combination algorithm. 

4.2.4 Combination Algorithm 

We combine the above algorithms for better performance, i.e. the MDS is used to 

obtain the initial values for the MLE. In the implementation, we divide the unknown 

nodes into groups. With the reference nodes, each group is applied the classical MDS, 

which does not need any initial values. This approach can ease the computation of 

performing SVD on large B'. The coordinates estimated using MDS are fed to the 

MLE as the initial guess. 

4.3 Evaluations 

Almost every paper on indoor positioning needs to find a standard to evaluate 

their algorithm in order to claim their results. Most of them prefer to select or design 

some fix points to be reference points [52-54]. However, which points are selected or 

how those points are selected can affect the final conclusions very much. Actually, in 

a real indoor radio propagation environment, it is very difficult to define a standard 

statistics fix point distribution to be accepted byyother researchers. So the theories 
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Figure 4.5. Position error. 

or algorithms are not very convincing if they are based on the particular fix point 

model. In some cases, we just care the structure of the nodes. It is a task for us to 

find an easy, fast, and objective approach to evaluate indoor positioning algorithms. 

We proposed a quick way to carry out the evaluation by obtaining the Root 

Mean Square Error (RMSE) of estimated distance. The procedure of that RMSE 

evaluation is that we calculate the floating solution by SVD again to get the distance 

distribution matrix. Compared with direct position error, RMSE of distance provides 

a quick evaluation without losing the key information although it is not a direct way. 

Figure 4.6 shows the RMSE of distance and Figure 4.5 shows the direct position 

error. We observe that they look very similar in shape though the values at y-axis 

are different. However, some people do not like this indirect evaluation because they 

want to get some accurate benchmark. 

The challenge of comparing the floating solution lies in the issue of topology. In 

most of existing works, the authors Use some fix or known points as their evaluation's 

anchor or reference points. In this proposal, we proposed another innovative evalua

tion method without using the fix or known points so that we can improve efficiency. 
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Figure 4.7. Original nodes location. 

This evaluation includes three steps. Firstly, we obtain the floating solution by SVD 

or by iteration and find the mass centric point of original location and calculated 

location by calculating the mean value of x and y coordinator. After we adjust their 

mass centric point to original point, we get the Figure 4.7 and Figure 4.8. 
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Figure 4.9. After rotating. 

In the second step, we connect each point with the original point and find their 

angle and calculate the average angle. By comparing the two average angles, we get 

the angle difference to be a rotation angle. See Figure 4.9. 
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Figure 4.10. After rotating and flipping. 

Finally, in the third step, we check whether it needs the mirror flipping. In some 

cases, we do not need to flip the floating solution but in other cases, we must flip 

them. See Figure 4.10. 

Comparing the Figure 4.10 and Figure 4.7, we find that they look almost the same, 

which indicates the the floating solution is extremely accurate and this is because the 

floating solution is obtained without any noise and interference. We also know that 

this innovative evaluation can provide us a quick answer for the similarity between 

the original location and solved location. 

4.4 Channel Model 

This section is focusing on the implementation of indoor positioning by ZigBee 

devices. There are a lot of statistical channel models, such as Okumura Model [55] and 

Hata Model [56], etc. Here are two famous channel. The one is the TOA channel: Let 

Tij be the measured TOA between nodes i and j in seconds. Assume that Titj is 

Gaussian distributed, i.e. 

Tij~M(dij/-c,(4), (4.18) 
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where c is the speed of light and-of. is a constant which does not vary with dij, the 

distance between nodes i and j . Then, the MLE based on TOA is given by 

N-l N 

§ = &vgram^2 ^2 {cTij - di:j)
2 (4.19) 

The other is LOG-NORMAL channel: We adopt a log-normal distribution channel 

model [57], by assuming that there are plenty of objects between two nodes and 

considering central limit argument. Among all cases, the log-nomal channel is the 

hardest. So, the log-normal is focused in this thesis. A very classical statistical 

channel model in [46] was presented as follows : 

Pij(dBm)^N(Pij(dBm),a2
dB) 

Pij{dBm) = P0(dBm) - 10nplogw(dij / do) (4.20) 

where P -̂ is the mean value of received decibel power corresponding to a specific 

distance dij and a2 is the variance of degradation. PQ and do are the reference power 

and distance respectively. np, called pass loss exponent, is a crucial parameter which 

will be discussed in detail later. It is not very hard to get the estimation d^ of real 

distance d^ by the maximum likelihood estimator: 

di:i = d010(fl,-'p«)/(10n») (4.21) 

Define Xa = P^ — Py, then X„ ~ JV(0, o2). Rewrite the (4.21), and we can get: 

X„[dB\ = Wnlogfe) - lOnlogfe) (4.22) 
«o «o 

di:j = dij10x'K10n>) (4.23) 

Equation (4.23) is a basic mathematic description for model used in this work. Al

though the range of nv can be found in many textbooks [58], we need a specific value 

of rip to support convincing simulations. 

ZigBee devices provide a good platform to obtain the indoor wireless channel 

measurements and thus we use the ZigBee devices as fundamental hardware devices 
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for indoor positioning to estimate distance between the transmitter and the receiver 

based on the received signal power, since the received signal strength indicator (RSSI) 

can be linearly related to a ZigBee parameter, the link quality indicator (LQI). For 

example, using the Jennie JN5139 module, 

H6RSSI = {{u8LQI * (880000000/255))/10000000) - 98 (4.24) 

where, H6 and u8 denote 16-bit integer and 8-bit unsigned integer, respectively, in 

the C programming language. According to (4.24), power levels below about -101 

dBm and above -14 dBm are not differentiated. The accurate range is checked from 

-98 dBm to -10 dBm. In reality, the LQI is a coarse and quantized indicator, and 

the localization accuracy is greatly deteriorated by the harsh indoor channel condi

tions due to walls, irregular room shapes, and other obstacles. Sophisticated ZigBee 

codes are required for LQI with unreliable range measurements, yet its complexity 

is restricted in order to fit the simple ZigBee profile. For indoor wireless channel 

measurement, we have tested a 20m x 20m hall many times. The results are listed as 

a table in Figure 4.11, where LQI_A to LQLD are LQI values measured at the same 

specified distance. The variation in the values are due to the indoor shadowing. The 

probabilities of LQI_A to LQIJD are 0.35,0.35,0.2 and 0.1. So the average LQI (in 

the same row) is calculated as: 

LQI = 0.35 * LQIA + 0.35 * LQIB + 0.2 * LQIC + 0.1 * LQID (4.25) 

According to (4.23),(4.24) and (4.25), np=3.5767 is obtained by selecting distance 

lm and 2m to calculate the follows: 

pi - ((159.3 * (880000000/255))/10000000) - 98 

p2 = ((128.1 * (880000000/255))/10000000) - 98 

np = {pl-P2)./W./logw(2/l) 

As shown in Figure 4.12, the red curve based on (4.23), (4.24) and (4.25) is a good 

match with the black curve of actually measured indoor LQI. 
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Figure 4.11. LQI measurements. 
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Figure 4.12. Distance vs LQI. 

4.5 Numerical Results and Analysis 

Now, we have built a convincing channel model based on real measurements. With 

that channel model and an innovative evaluation approach proposed by us, we can 

conduct some research to get some significant conclusions to direct our future work. 
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Figure 4.13. Distance error versus channel variance. 

In Simulation One (Figure 4.13), the x-axis is channel variance and y-axis is the 

distance error. We may see that it is very steep in the first part and quite flat in 

the second part. This means the distance error is very sensitive to channel variance. 

Whatever channel measurement you use, such as UWB [59], Ultra-sonic [60] and radio 

signal, if you can not guarantee the accuracy of the measurement, you can not obtain 

the accurate position whatever advanced algorithms you employ. 

The definition of x-axis and y-axis for Figure 4.14 are the same as in Simulation 

One Figure 4.13. The red curve is the performance of Iterative-MDS algorithm, and 

blue curve is the performance of the classical-MDS algorithm. We may see that 

the classical-MDS algorithm is a little better than the iterative-MDS in the steep 

part and they are very close in the flat part. Therefore, although the classical-

MDS performs better than the iterative-MDS, considering the algorithm complexity, 

we choose Iterative-MDS in practice to avoid large dimension matrix decomposition 
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Figure 4.14. Comparison of classical-MDS and iterative-MDS. 

needed in the classical-MDS. Besides, the iterative-MDS can be applied in many 

real-time systems. 

The estimation performance of all algorithms is compared in Figure 4.15. It 

shows that as the number of unknown nodes increases, on average, the MDS outper

forms the MLE with random initial values. The proposed combination algorithm, i.e. 

MDSMLE, works well for the indoor environments, as its estimation performance is 

close to the CR bound. 

4.6 Testbed 

We developed a ZigBee testbed for indoor positioning experiment. See Figure 4.16. 

The program running in laptop computer is coded by Visual C++ to verify positioning 

algorithms. The red square marks the running window and details are shown in 

Figure 4.17. The window that displays the LQI data sent from ZigBee coordinator 

is highlighted by a black oval. Green square denotes the ZigBee coordinator and 

ZibBee end nodes are marked by blue circles. All LQI data from ZigBee coordinator go 

through the serial cable and reach the laptop computer. See the yellow circle. Laptop 
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Figure 4.15. Comparison of positioning algorithms. 

computer plays a role as a central processor and monitor. The ZigBee testbed is 

running in the lab as shown in Figure 4.18. The testbed consists of an ad-hoc network 

of the ZigBee coordinator and end nodes marked by the red circles. The coordinator is 

connected with a laptop computer which can display the calculated relative positions 

in real-time (Figure 4.17). In its first phase, the cooperative algorithm is centralized 

and installed in the laptop. The ZigBee coordinator collects the LQIs among network 

nodes and sends them to the laptop. In later phases, the cooperative algorithm will 

be implemented in the coordinator equipped with ZigBee design-in modules and be 

distributed to mesh nodes with ZigBee chipset reference designs. 

In addition to evaluating the algorithms mentioned in this chapter, this testbed 

can provide an ideal platform to verify and compare other indoor positioning algo

rithms. Moreover, it has paved the road to create a real industrial product for indoor 

positioning via ZigBee devices. 
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Figure 4.16. Structure of testbed. 
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Figure 4.17. Screen of testbed. 

4.7 Conclusions and Future Work 

We developed an indoor positioning system that uses wireless ZigBee devices. It 

implements the cooperative localization algorithm and uses the RSSI as node pair-

wise range measurement. 
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Figure 4.18. Testbed is running. 

Using the testbed, the LQIs of the network were measured in several indoor en

vironments. The measurement data were used to examine the lognormal channel 

model, and calculate model parameters for each particular indoor environment. We 

proposed a cooperative localization algorithm that combines MDS with MLE for op

timal performance. In our future work, we will develop the real-time aspect of the 

system to estimate node positions based on measurement data, and more accurate 

positioning algorithm to the network. 
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CHAPTER 5 

MMSE COOPERATIVE POSITIONING ALGORITHM IN WIRELESS 
NETWORKS 

5.1 Introduction 

Positioning via GPS is also quite challenging in some hostile environments where 

the GPS signals could be jammed. So, quite extensive work has been done to study 

non-GPS positioning methods to locate a node in a wireless network. There are two 

classes of non-GPS positioning methods: non-cooperative methods or cooperative 

methods. In non-cooperative methods, the position of an individual node is esti

mated without taking into consideration the information related to other nodes. A 

traditional non-cooperative method that can be traced back to ancient times is to 

locate an unknown node using its distance with three anchor nodes. The obtained 

estimated positions can be polished using fuzzy mathematics as proposed in [61]. In 

cooperative methods, the position of any node is estimated based on the complete in

formation concerning all nodes. Obviously, the cooperative position estimator makes 

the best use of all available information and thus is superior to the non-cooperative 

estimator. So, we focus our study on cooperative positioning approaches. 

Estimating positions based on Multi-Dimension-Scaling (MDS) techniques [39] is 

a well known cooperative positioning method. MDS captures the intercorrelation of 

high dimensional data at low dimension. It has many applications "not only in the 

areas of computer science and electrical engineering but also in a variety of other 

areas, such as chemical modeling, political science, etc. In MDS positioning method, 

the coordinates of all unknown positions are solved as the least square solutions 

to an overdetermined equation set formed using all distances between each pair of 
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nodes. The singular value decomposition (SVD) is commonly used to obtain the MDS 

solutions. Details of solving MDS via SVD can be found in our previous work [62]. 

Another very popular cooperative positioning method is the Maximum Likelihood 

Estimation (MLE) estimator which has been studied extensively in [41,49,63,64]. An 

online program can be found in [65] as a supplement to these works. It has been shown 

in these works that MLE is an asymptotic unbiased estimation that is asymptotically 

efficient since its variance is close to the Cramer-Rao bound (CRB). Due to the 

complicated likelihood expression, no analytical formulas can be established for the 

maximizer of the likelihood function, so the MLE position estimator has to be solved 

iteratively via numerical methods, such as the conjugate gradient or the Newton-

Raphson technique [66]. However, since this is not a convex optimization problem, 

it is not guaranteed that global maximizer can be achieved starting with any initial 

estimation [67]. Details are described in our previous work [62]. 

One thing common to MDS and MLE is that they are classical estimators and 

do not take into consideration the a priori distribution of the true positions. Better 

estimators can be obtained via Bayesian estimation by treating the true positions 

as random unknown parameters distributed according to a priori Probability Den

sity Function (PDF). This motivates our search for Bayesian cooperative positioning 

algorithms. In this work, we proposed a cooperative position estimator that mini

mizes the Bayesian mean squared error (MSE). The proposed estimator is thus called 

MMSE cooperative position estimator. 

The positioning algorithm based on the Extended Kalman Filter (EKF) [48] also 

belong to Bayesian estimators. Some variations of the extended Kalman method can 

be found in [68]. While the EKF estimators are applied to track the position of a 

single moving node using the updated state information, our MMSE estimator is used 

to locate multiple nodes in a cooperative way. 

Detailed derivation for the proposed MMSE estimator is provided in this work. 

Its performance is thoroughly studied in terms of the bias, variance and MSE, and is 

compared with the performance of MLE and MDS, two most popular existing position 
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estimators introduced previously. The CRB is also computed and used to evaluate 

the MMSE estimator's performance. We also proposed several variations of the basic 

MMSE estimator to improve performance. For wireless networks of a large number 

of nodes, the proposed MMSE cooperative estimator can be integrated with other 

estimators, such as MLE, to achieve excellent performance at low computation cost. 

This chapter is organized as follows. The system model, especially the channel 

model, is described in the section 5.2. A very classical channel model is adopted and 

its important parameters are obtained based on real measurements. In the section 

5.4, the proposed MMSE cooperative positioning algorithm is derived and studied. 

Based on study in the section 5.4, several variations of the original MMSE estimator 

are proposed in the section 5.5. The superior performance of the proposed MMSE 

estimator and its variations is further verified by the simulation results presented 

in the section 5.6. Future work and conclusion of this chapter are addressed in the 

section 5.7. 

5.2 System Model 

Consider a wireless network of N unknown nodes and M anchor nodes. The posi

tion for any unknown node i, 1 < i < N, is described by its coordinates (xi, yi). The 

power degradation between any pair of nodes is observed to estimate the coordinates 

of unknown nodes. 

Let Pij denote the power loss between the node i and the node j , whose distance 

is denoted as d^. P^ usually varies for the same value of d^, therefore it is treated 

as random. As in [57], we adopt the classical log-normal distribution [46], which is 

based on the assumption that there are plenty of objects between two nodes and is 

thus justified by the central limit theorem. Thus, we have 

Pij(dB)^Af{Pij(dB),a2
dB) (5.1) 

where P^ (dB) is the expectation corresponding to the specific d\j and the variance a\B 

keeps the same for any distance. Suppose the average power degradation at distance 
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d0 is P0(dB). P0 and do are called the reference power and distance respectively. 

According to [46], we have 

PijidB)^ P0(dBY-10nplog10 (^) , (5.2) 

where np is the path loss exponent. 

After suffering laborious field tests, np=3.5767 is acquired eventually. Details can 

be found in our previous work [62]. It is also noted that the model (5.2) matches the 

field measurements very well. 

5.3 M A P Cooperative Positioning 

Depending on different cost functions, the Bayesian estimators consist of two 

major estimators, one of which is MAP, the other is MMSE, discussed by following 

next section. 

It is not very hard to prove that famous MLE is equivalent to MAP. The proof is 

given as follows: 

Proof 
MAP =max(PosteriorPDF) 

= max[/(0|P)] 

max 

— ^map max 

= max 

8""" d?. 

n£iiW<»p(i'"af)] 
max(LikelihoodPDF) 

MLE 

where, Cmop is a constant value and equals to / - / i C i n ^ e x p hln^ \dd 

(5.3) 

,dl 
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Since the MLE is intensively studied by others now, we may jump over the MAP 

in this thesis. 

5.4 MMSE Cooperative Positioning 

5.4.1 Basics 

In general, for Bayesian estimators, the mean square error (MSE) between un

known random parameter X and its estimation X is defined as 

MSE = E[ (X-X) 2 ] , (5.4) 

where the expectation is taken with respect to both X and X. MSE defined above 

is also referred to as Bayesian MSE in [48] to distinguish from the MSE of classical 

estimators, denoted as MSE(X) and defined as 

MSE(X) = E[(X - X)2\X], .-' (5.5) 

where the expectation is taken with respect to X. It is easy to see that MSE = 

E[MSE(X)]. . 

It is well established that, given the a priori distribution for X, the conditional 

mean of X conditioned on the given observation sample Y minimizes the MSE among 

all estimators, including linear and nonlinear estimators [48]. That is, the minimum 

MSE (MMSE) estimator for X, denoted as XMMSE, is 

*MMSE = E[X\Y]. (5.6) 

Obviously, the MMSE estimator is a Bayesian estimator. 

5.4.2 MMSE Cooperative Position Estimator 

Let Oi = (xi, yi) and its estimate is &i = (xi,yi). Then the MSE for the unknown 

vector parameter 6 = (0i, - • • , 6^) is defined as 

WE = ±JTE[(x-xi)
2+ (*-&)*]. (5.7) 
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We need to find (xi, yi, • • • ,XN, VN) to minimize the total MSE. Since Xi is inde

pendent from yi for any i and estimators for different node i are independent from 

each other, it is obvious that minimizing the total MSE is equivalent to minimize 

E[(x — oti)2] and E[(y — yi)2] respectively for any i. The observation is all power 

degradation measurements. According to the previous part, it is straightforward to 

conclude that by particularizing the general formula (5.6) to our positioning problem, 

we can obtain the MMSE coordinates estimator (£i,MMSE;yi,MMSE) expressed as 

HMMSE = E[xi\P] - . - . . . ' ,_ 0[ 
, t = l,--- ,N (5.8) 

&.MMSE = E[y»|P] 

where P represents the collection of power degradations between each pair of N 

unknown nodes and between each unknown node and the M anchor nodes, which can 

be mathematically expressed as 

P = (Pij\l<i<N,i + l<j<N + M),' (5.9) 

with the node j with j = N + 1, • • • , M referring to one of the anchor nodes. 

The MMSE position estimation in (5.8) is a cooperative method, since the esti

mated position for any individual unknown node is obtained based on information 

concerning other unknown nodes. In contrast, a non-cooperative version of (5.8) 

would be only conditioned on power degradations between the current node and the 

anchor nodes, i.e. P,j with j = N + 1, • • • , N + M and thus would have nothing to 

do with any other unknown nodes. 

As in [69] and [70], it is assumed that a node appears randomly with equal prob

ability at any position within a given area and the possible position of any node is 

independent from that of other nodes. This means that the a priori distribution for 0 

is assumed to be independent uniform distribution. Suppose the node i may appear 

within a rectangular box centered at (0»x, OiV) of 2At long along x-axis and 2Bi long 
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along y-axis. Then, for x{ € (Oix - A , Oix + At), y* € (Oiy - Bi, Oiy + Bi), 1 < i < N, 

the a priori PDF f(6) is expressed as 

f(0) = / ( x i , y i , - - - ,xN,yN) 

= f(xi)f(yx)---f(xN)f(yN) (5-10) 

As derived in Appendix B.l, with the independent uniform a priori distribution 

(5.10) and the log-normal distribution for power degradation (5.1), the MMSE coop

erative position estimator for node i, 1 < i < N, is given as 

N N+M / ji \ 

I'-JxiU U exp - f l n 2 f )dev-ddN 
_ SN Si i=lj=i+l \ « / 

3?t,MMSE - - JV N+M 7 T \ 

I I U n exp - f l n 2 ^ )ddyddN 
SN Si i= l j=i+l \ ij / 

N N+M I « 
a i„2 a.» I--fyiU n exp - f i n 2 ^ \dev-ddN 

SN Si i=lj=i+l v "• ' 
2/i,MMSE = N N+M 

(5.11) 

N N+M / rz \ 
/ • / n n exp - f i n 2 f)ddv..deN 

SN Si «=1 j=i+l \ *i J 

where In is the natural logarithm and 

f-ddi= f I-dxidyi. (5.12) 

Si is the integral region for fy = (xi, j/j), expressed as 

Si = { (xi,yi) 
Xi £ \ ( -S ix ^ii {Jix ~r Ai) 

Vi € (Oiy- Bi,Oiy + Bi) 
} . (5.13) 

~ l = & 5 > ' <514) 

and 
Ml 

dy = do(j£J • (5.15) 

Obviously, d2j = (XJ — Xj)2 + (?/»— yj)2. The notation dy is used for the expression in 

(5.15) because (5.15) can be interpreted as the maximum likelihood estimation for d^ 

which maximizes the likelihood distribution f(Pij\dij). When (5.11) is implemented 
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in actual wireless networks, P^ is reported by the wireless nodes and (5.15) is used to 

compute dij. For computer simulations, since P^ contributes to MMSE cooperative 

position estimation (5.11) only throughd^, once {x%,yi), i = 1, • • • ,N are randomly 

generated, dy- can be obtained according to 

dy=dylO I O"pG . (5.16) 

where G ~ AA(0,1) is a standard Gaussian random variable. See Appendix B.2 for 

derivation. 

The expression (5.11) looks intimidating since it involves complicated multiple 

definite integrals which have no closed-form solutions. We are able to compute these 

integrals via numerical methods. One of the popular numerical methods for comput

ing complicated definite integrals is the Simpon quadrature method [66]. However, 

Simpon quadrature function in Matlab can only deal with up to three fold multiple 

integral. Since each node has two parameters to be estimate, Simpon quadrature 

method is limited to the special case with N = 1, that is, single node positioning. 

For multiple nodes positioning (iV > 1), Monte Carlo method [66] is adopted. 

A non-cooperative version of the proposed MMSE estimator can be obtained by 

forcing N = 1 and applying the estimator (5.11) with N = 1 to each of the unknown 

nodes respectively while ignoring all other unknown nodes. That is, (xt, fa) is simply 

based on P^ with j = N +1,- •• ,N + M (M anchor nodes). In this way, though the 

advantages of cooperative methods are lost, the estimator is still optimum in MSE 

sense among all non-cooperative estimators. Thus, the performance of some existing 

iterative positioning approaches, such as MLE, can be improved if the estimates 

achieved via non-cooperative version of the proposed algorithm are used as initial 

positions. An example is the MMSE-MLE mentioned above and to be presented 

later. 
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Table 5.1 
Symbol Explanation for Figures 5.1^5.3 

Symbol 

blue square 

red dot 

blue asterisk 

black diamond 

black ellipse 

red ellipse 

Meaning 

anchor nodes 

the true position 

estimated position 

the mean ol the estimated 

positions for a true position 
uncertainty ellipse 

CRB ellipse 

5.4.3 Performance and Properties 

Without loss of generality, from now on, we focus on the simplest special case of 

the a priori PDF (5.10) where all unknown nodes take position independently and 

uniformly within the same square area of unit length centered at (1/2,1/2), that is, 

(OiX, Oiy) — (1/2,1/2) and Ai = Bi = 1/2 for any i. There is one anchor node at each 

of the four corners. This model is also employed in [40,63]. Actually, many practical 

situations, such as storage rooms, play grounds and offices, fit in this square model. 

Please note that all coordinates share the same unit, therefore it is unnecessary to 

assign a specific unit to the coordinates. Now, the MMSE estimator (5.11) is reduced 

to 

£i,MMSE = 

N N+M f ,2 \ 

ffxtU I I exp - f l n 2 ^ )d0yd0N 

ViMUSE = 

I-
s 

$ • • 

s 

N N+M / 

III n ^p 
AT 

•IviU 
S i = l 

N+M 

11 exp 
j=i+i 

- a i n 2 ^ 
8 47 

( - * * * 

dBv-

) < » i -

•dON 

••dON 

(5.17) 

N N+M / ^2 

/ • • • / n n exp ( - f i n " * 
s s t=i j=»+i \ 

2f\dBydBN 
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Figure 5.1. MMSE estimator for different true positions. See Table 
5.1 for symbol explanations. 

for any i from 1 to TV, where a and dij are expressed in (5.14) and (5.15) respectively, 

and 

S = {(xi,yi)\0<xi<l,0<yi<l}. 

Since MSE has the meaning of average squared distance error, to indicate the 

average distance error instead, the root mean squared error (RMSE), defined as 

RMSE = VMSE, is often used in practice as a measure for goodness of the esti

mator. To gain more insights into the behavior of the proposed MMSE estimator, 

we also study how different true positions contribute differently to the average MSE. 
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Figure 5.2. Comparison of MMSE, MLE and MDS position estimators 
for the side position (x, y) = (0.2,0.9). See Table 5.1 for symbol 
explanations. 
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Figure 5.3. MMSE cooperative position estimator. See Table 5.1 for 
symbol explanations. 

This property can be characterized by RMSE(x, y), the RMSE for a particular true 

position (x, y), which is expressed as 

RMSE(x, y) = sjE[{x - if + (y - §)*\(x, y)], (5.18) 

where the expectation is taken only with respect to (x, y). 

While RMSE measures the overall performance of an estimator, the standard 

deviation, the square root of the variance, is also of interest since it tells the "stability" 

of an estimator. In practical positioning applications, the wireless channel usually 

does not change fast enough for one to obtain different observations, thus taking 

the mean of different estimated positions as the final estimate is not quite practical. 

Under such circumstances, among estimators that achieve approximately the same 

RMSE, an estimator with a smaller standard deviation is more desirable. For unbiased 

estimators, the RMSE equals the standard deviation. And the well known Cramer-

Rao bound (CRB) expresses a lower bound on the standard deviation or the RMSE of 

unbiased estimators. Detailed derivation for CRB expression for position estimators 

can be found in [49]. 
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Figures 5.1, 5.2 and 5.3 to be presented in the following illustrate the properties 

of the proposed MMSE estimator. The symbols used in these figures are summarized 

in Table 5.1. 

In Figure5.1, the performance of the MMSE estimator for different true positions 

is illustrated. A position close to the a priori center, near a corner and besides a side 

are called a center position, a corner position and a side position, respectively. We 

study RMSE(x,y) for these three different types of positions via simulations. As an 

example, in Figure5.1, three positions are picked at the a priori center (0.5,0.5), near 

the corner (0.2,0.9) and near a side (0.1,0.5). 

Firstly, as shown in Figure5.1, RMSE of the MMSE estimator is smaller than the 

CRB, the lower bound on the RMSE of all unbiased estimator. This is generally true 

for any N as verified by the simulation results shown later. Since the existing popular 

position estimators, such as MLE and MDS, can only achieve near-CRB performance, 

the CRB is virtually considered as a limit for the performance of a positioning esti

mator. With the proposed MMSE estimator, CRB is not an unreachable limit any 

longer. It is also seen that the uncertainty ellipse (black dashed ellipse) is quite small, 

even smaller than CRB ellipse (red dashed ellipse). This indicates that MMSE esti

mator is quite stable, which makes the MMSE positioning algorithm more attractive. 

It is obvious that MMSE is a biased estimator, but it achieves a delicate trade-off 

between the bias and the variance and obtain position estimates even better than the 

CRB. 

It is also shown in Figure5.1 that the RMSE for the center positions is smaller than 

that for those positions further away from the a priori center. This is expected since 

MMSE generally works better when true value gets closer to the expectation [48]. 

Furthermore, among the positions far away from the a priori center, the RMSE for 

corner positions is smaller than that for side positions. Intuitive explanations are the 

MMSE estimator for a corner position is inherently restricted into a smaller area than 

that for a side position and is thus subject to smaller possible errors. 
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The MMSE estimator is compared with MLE and MDS for the same corner posi

tion (x,y) = (0.2,0.9) in Figure 5.2, whereFigure 5.1(b) is the same as Figure 5.1(b) 

and copied here for convenience. An obvious and significant difference of MMSE es

timator from MLE and MDS is that MMSE estimated positions always fall within 

the possible range for the unknown position, however MLE or MDS estimated posi

tions are very likely to violate the possible position range. In other words, MMSE 

estimated positions are always valid for the given restrictions on the positions, while 

MLE or MDS estimated positions are not guaranteed to be valid and thus sometimes 

are apparently ridiculous. Actually, the fact that MMSE estimated value, can never 

be out of range can be easily proved using the general formula (5.6), and such a prop

erty of MMSE estimator partially explains why MSE of MMSE estimator is smaller 

than other estimators. Please note that though for the example (x,y) — (0.2,0.9), 

RMSE(x, y) of MMSE is smaller than that of MLE and MDS, we are not trying to say 

that RMSE(x,y) of MMSE is the smallest for any(x,y). Actually, for true positions 

near the center, RMSE of MMSE is smaller than that of MLE, but for true positions 

away from the center, RMSE of MMSE is bigger than that of MLE. MMSE achieves 

the minimum MSE in an average sense. In terms of the standard deviation, the MLE 

and MDS are obviously worse than CRB and much worse than MMSE. 

To have a complete picture about how the MMSE estimator performs, 500 po

sitions are randomly picked as the true positions for JV = 1 case and the result is 

shown in Figure 5.3, where as before, each true position is represented by a red dot 

and different estimated positions for each true position are shown as blue asterisk and 

their means are shown as black diamonds. It is noticed that though the true positions 

are uniformly distributed among the whole square, the estimated positions tend to 

fall within a squeezed-box shape area as covered by the blue or the black diamonds. 

This means that the bias of MMSE estimator is much larger for those side positions. 

This observation motivates two variations of the MMSE estimator, MMSE-MAP and 

MMSE-Double, which will be presented in the next section (Section 5.5.2). 
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5.5 Variations of MMSE Cooperative, Positioning Algorithms 

Based on studies on the proposed MMSE cooperative positioning algorithm in the 

previous section, we proposed in this section three variations of the original MMSE 

estimator. 

5.5.1 MMSE-Big 

According to the section 5.4.3, better RMSE is achieved by the original MMSE 

estimator for nodes that are closer to the a priori center. This enlightened the thought 

that if we could "push" all nodes closer to the center then the overall performance 

may be improved. Since the a priori PDF for the true positions (named actual a priori 

PDF) is fixed, we can not actually push the nodes for them to be closer to the center. 

However, we can consider a larger square for the a priori PDF used for computing the 

conditional mean (named virtual a priori PDF). This equivalently brings all nodes 

appear relatively closer to the center. Specifically, as sketched in Figure 5.4, though 

the true position (x, y) is distributed according to uniform distribution within an 1 

by 1 square (solid line), the uniform distribution within a larger 1 + 2d by 1 + 2d 

square (dashed line) is used instead for computing integrals for the conditional mean. 

The resulting MMSE estimator is named MMSE-Big estimator, which is obtained 

according to (5.11) with 

Si = {{xhyi)\ - d < Xi <l + d,-d<yi< l.+ d},Vt. 

An empirical value for d is one quarter of the side length. In our case, d = 0.1. 

MMSE-Big improves the RMSE performance (as shown by the simulation results 

later) without any extra computation burden. It is noted that in the original MMSE 

estimator, the actual a priori PDF is the same as the virtual a priori PDF. 

62 



Figure 5.4. MMSE-Big estimator uses the larger square (dashed line) 
for the virtual a priori PDF, while the smaller square (solid line) is 
for the actual a priori PDF. 

5.5.2 MMSE-Mapping and MMSE-Double 

Figure5.3 in the section 5.4.3 revealed that though the true positions are scattered 

all over the whole square area, the positions estimated by the original MMSE esti

mator fall within a squeezed-box shape area. Based on this observation, we proposed 

to map the MMSE estimated position to a new position so that the area covered 

by the estimated positions after mapping can overlap with the area covered by the 

true positions as much as possible. Intuitively, this would bring the mean estimated 

positions closer to the true position and thus reduce the bias and the RMSE. The 

obtained estimator is named MMSE-Mapping. 

The mapping is illustrated in Figure 5.5, where the square, the original area where 

all nodes appear, is divided into four regions marked by 1 to 4, and the circumcircle is 

introduced for mapping. P at (x, y) is the original MMSE estimated position arid P* 

at (x*,y*) is the new estimated position after mapping. An auxiliary line, connecting 
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\ P2 

* P.") 

Figure 5.5. Proposed mapping. 

the center point Q at (1/2,1/2) and P, intersects the square at Pi and the circumcircle 

at P2. We choose P* so that 

d(P*,Q) ^d(P2,Q) 

d(P,Q) d(PuQY l ° ' i y j 

where d(A, B) stands for the distance between the point A and the point B. Ob

viously, d(P2, Q) = >/2/2, the radius of the circumcircle. Let k be the slope of the 

auxiliary line, thus k = ^Pf. The coordinates of Pi, (xp1,yp), which are needed to 
x 2 

compute d(P\,Q), are 

( | + ^r, 1) if Pi is in the region 1 

(a*i.!/ft) 
(0,1 - | ) if Pi is in the region 2 

(1, 5 + I) if Pi is in the region 3 

( | — 5^, 0) if Pi is in the region 4 

According to the mapping rule in (5.19), it is easy to derive that 

X ~ 2 ~+" 2 d(Pi,Q) C 0 S " 

y 2 ^ 2 d(P1,Q)blIla 

(5.20) 

(5.21) 

where, d(P, Q) = ^{x-1/2^ + {y - l/2)\ d(PuQ) = y/(XPl - 1/2)2 + (yPl - 1/2)2 

with (xp^ypj obtained according to (5.20), and 0 = argtan^Pf-, which is the angle 
x 2 

of the auxiliary line. 
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Performance can be further improved if we apply the MMSE estimation method 

again, assuming that each true position is uniformly distributed within a new smaller 

square whose center is the corresponding MMSE-Mapping\ estimator, i.e. the esti

mated position after mapping. Empirically, the length of the smaller square can 

be chose as one fifth of the length of the original square. The obtained new esti

mator is named MMSE-Double, since,we apply MMSE twice. To put it precisely, 

the MMSE-Double estimator is obtained using (5.11), where At — Bi = 0.2 and 

(OiX,Oiy) = {x*,y*) with (x*,y*) being obtained according to (5.21) (the mapping 

step) from the original MMSE estimator (xi,yi). The MMSE-Double works like a 

turbo engine. After the first time MMSE is implemented, mapping is carried out to 

tune up the estimated positions. These new estimated positions are used to determine 

the centers of smaller square areas so that MMSE can be implemented again with the 

new virtual a priori PDF. 

5.5.3 MMSE-MLE 

The well known MLE positioning estimator, which is solved iteratively, is quite 

sensitive to the initial estimation. On one hand, it is a disaster if the initial estimation 

is randomly generated as shown in Figure 5.6(a) ; on the other hand, if the perfect 

initial estimation, i.e. the true position, is used, MLE works extremely well as shown 

in Figure 5.6(b). True positions are unknown and to be estimated, so MLE with 

perfect initial estimation is an ideal and impractical situation. Fortunately, a very 

good initial estimation can be obtained quickly by applying the proposed MMSE 

algorithm to each of the nodes respectively in a non-cooperative fashion, as mentioned 

in the section 5:4.2. The obtained MMSE initial estimation is then fed into the 

iterative algorithm for MLE. The resulting estimator is then named MMSE-MLE. 

To improve the accuracy of initial estimator, we can implement certain variation 

of MMSE, such as MMSE-Big (Section 5.5.1), instead of the original MMSE. The 

performance of MMSE-MLE using MMSE-Big is shown in Figure 5.6(c). It can 

65 



Ljt.. 
RMSE»0.29 

vVj 

* . . . ; • • • • 

•4*?-

! . • • 

; 

% • 

•5*-*C 

« > • ;• 

....*; m 
v*i*-

:* 

RMSE»0.06 

# 

$? 
v; 

: 

<fe.i 
• • • » 

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

(a) MLE with Random Initial Estima- (b) MLE with Perfect Initial Estimation 

tion 

: RMSE=0.06 

: ., ! ¥ $ 
; <e .L.^i ....* .... 

• § » . . * * 

k...H i 

^ 

**- ^ 

0 0.2 0.4 0.6 0.8 1 
X 

(c) MLE with MMSE-Big Initial Estima

tion (MMSE-MLE) 

Figure 5.6. MMSE-MLE performs as well as MLE with perfect initial 
estimation (N = 20). Same symbols as given in Table 5.1 are used. 

be seen that MMSE-MLE performs as well as MLE with perfect initial estimation. 

In [62], we also proposed to use MDS estimator as the initial estimation for MLE 

(MDS-MLE). Since MDS is inferior to MMSE, it can be expected that MDS-MLE 

works worse than MMSE-MLE as verified by the simulation results shown in the next 

section. 

Compared with MMSE, MMSE-MLE requires less computation at the cost of 

worse MSE performance. It is observed that the performance advantage of MMSE 

over other estimators diminishes fast as the size of the network N increases. Therefore, 

MMSE-MLE is preferable for large size networks, considering that the benefits of 
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MMSE are not worth its huge computation burden, and MMSE-MLE is able to 

achieve near CRB performance. For small size networks, the computation speed 

difference between MMSE and MMSE-MLE is not too much, thus MMSE is chosen 

for purpose of better performance. 

As a summary, we compare all MMSE and its variations with existing popular 

algorithms MLE, MDS in terms of the standard deviation (STD) and the RMSE. 

The results for N = 1 are listed in Tab. 5.2 where "MLE" refers to the regular MLE 

with random initial estimation and "MLE-Ideal" refers to the MLE algorithm with 

the true positions as the perfect initial estimation, which is the ideal case for MLE. 

The CRB is also provided for comparison. For unbiased estimators, RMSE and STD 

are equal and thus sometimes are not discriminated in some works. However, RMSE 

and STD represent different meanings and are different for biased estimators. For 

positioning problems, while RMSE reflects the average distance error between the 

true and the estimated positions, STD shows how stable an estimator can be. For 

overall evaluation of estimator performance, RMSE is more significant than STD. The 

STD of MLE-Ideal is close to CRB, the lower bound for STD of unbiased estimators. 

In the sense of RMSE, since MMSE is better than CRB, MMSE are better than any 

unbiased estimator. 

5.6 Numerical Results and Analysis 

In Figure5.7 and Figure 5.8, the RMSE and the standard deviation for N = 5 ~ 7 

are respectively shown for the proposed MMSE cooperative estimator (MMSE), its 

variation MMSE-Big, MDS, MLE with random initial estimation (MLE), MLE with 

MDS used as the initial estimation (MDS-MLE). CRB is also provided. It can be 

seen that MMSE-Big brings obvious performance improvement over MMSE for any 

N and they both are better than the CRB. 

Roughly speaking, the power degradation between two nodes are inversely pro

portional to the distance between them. While the MMSE and MLE are based on 
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Table 5.2 
Comparison of Different Estimators 

Estimator 

MDS 

MLE 

MDS-MLE 

MLE-Ideal 

RMSE 

0.2571 

0.2031 

0.1959 

0.1928 

STD 

0.2505 

0.1989 

0.192 

0.188 

CRB=0.1811 

MMSE 

MMSE-Mapping 

MMSE-Big 

MMSE-Double 

0.1515 

0.142 

0.1344 

0.1329 

0.0832 

0.1271 

0.0965 

0.1115 
MLE : MLE with random initial estimation 

MLE-Ideal : MLE with true positions as initial estimation 
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Figure 5.7. RMSE of different algorithms. 
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Figure 5.9. RMSE of different algorithms for large size networks. 

the power degradation and thus incur small errors for small distance, MDS is based 

on the distance and brings larger error to small distance. This reveals the underlying 

reason for the bad performance of MDS. 

69 



For wireless networks of large size, we can partition the whole group of nodes 

into smaller group and apply our MMSE estimator without losing much performance 

compared to applying MMSE to the whole large size network. Another solution 

for large size network is MMSE-MLE, which sacrifices performance for computation 

complexity. As shown in Figure 5.9, MMSE-MLE achieves near CRB performance, 

which is the best performance MLE can achieve for any possible initial estimation. 

5.7 Conclusions and Future Work 

For the sake of application of Bayesian estimation in wireless networks in coop

erative way, it is obligated to find a simple way to calculate the multidimensional 

integration of Bayesian MMSE. This is a our future work for MMSE. 

To the best of our knowledge, this chapter is the first to present an outline of 

MMSE estimation for 'nodes cooperative positioning in wireless network . Starting 

from a channel verified by real measurement, this chapter addresses a complete deriva

tion for MMSE estimation and other variation versions. Armed with those theoretical 

analysis and equations, we find some numerical solutions to realize MMSE. Further

more, from this chapter, we may acquire a thorough point of view for MDS,MLE, 

MAP, MMSE and CR-bound for node cooperative positioning in wireless network. 

Considering the preeminent performance of MMSE, MMSE must have been taking 

up more and more share for nodes cooperative positioning in wireless network appli

cations. 
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CHAPTER 6 

ITERATIVE COOPERATIVE POSITIONING ALGORITHM IN WIRELESS 
NETWORKS 

6.1 Introduction 

From the previous chapter, it is known that MMSE cooperative positioning algo

rithm has distinct advantages over the classical positioning algorithms such as MDS or 

MLE. However, it is not practical to apply MMSE cooperative positioning to networks 

of a large number of unknown nodes due to high computation burden of calculating 

the multiple integrals present in its formulas Eq. (5.11). In this chapter, we propose 

an adaptive iterative cooperative (AIC) positioning algorithm, which enables us to 

efficiently get an approximate solution to the exact MMSE position estimator. The 

accuracy is almost the same as that of the results obtained by directly calculating 

the multiple integrals via numerical methods, while the computation cost is highly 

decreased so that the proposed method is practical for applications in real world. 

After the detailed scheme of MMSE-AIC is presented, the performance analysis 

and numerical results are also provided in this chapter. Finally, all of the positioning 

algorithms studied in previous three chapters are put together and compared side-

by-side. 

This chapter is organized as follows. The system model is described in the section 

6.2. In the section 6.3, the proposed MMSE-AIC cooperative positioning algorithm is 

described in detail. The superior performance of the proposed MMSE-AIC estimator 

is further verified by the numerical results with some analysis presented in the section 

6.4. Overall comparison of all positioning algorithms is presented in the section 6.5. 

Conclusion of this chapter is addressed in the section 6.6. 
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Figure 6.1. Uniform fixed distribution for TV — 36 unknown nodes. 

6.2 System Model 

The system model given in previous two chapters is also adopted in this chapter 

with only one difference, which is the distribution of unknown nodes. In previous 

chapters, a random distribution of unknown nodes are consided. In this chapter, given 

the number of unknown nodes, they take positions uniformly within the considered 

area. Unlike in chapter 5 where the number of unknown nodes is small, in this 

chapter we are dealing with large size wireless networks, where it is not practical 

and not necessary to evaluate the performance using random distribution. Therefore 

as in most of current works, we evaluate our estimator using uniformly distributed 

unknown nodes. 

The uniform distribution for 36 unknown nodes, as well as the anchor nodes, is 

illustrated in Figure 6.1, where the unknown nodes are red diamonds. The complete 

explanation for different symbols has been given in Tab. 5.1. 

Last but not least, we would like to point out that we do not have to acquire 

all pair-wise measurements for our system model. In other words, our cooperative 

72 



positioning algorithm can work well with partial pair-wise measurements hardly at 

any cost of accuracy. 

6.3 Adaptive Iterative MMSE Cooperative Positioning 

The proposed MMSE-AIC algorithm is carried out as follow. Firstly, the unknown 

node position is estimated solely based on the anchor nodes. Secondly, for each of the 

unknown nodes, we re-estimate its position assuming that all other unknown nodes 

are anchor nodes. This step should be carried out for all unknown nodes. This second 

step, which applies from the, first to the last unknown nodes, is repeated iteratively 

until convergence when RMSE stops decreasing. 

One of our important findings is that the number of needed iteration can be 

determined as a function of the number of unknown nodes. Suppose the number of 

unknown nodes is N. Empirically, the iteration number is 3\/N, For example, when 

TV = 25, 3\/25 ~ 15 iterations need to be run before convergence. 

As defined previously, for MMSE estimation, a virtual a priori PDF is assumed 

for the possible area within which an unknown node may appear. And we assume 

uniform random distribution within a square as this virtual a priori PDF. During 

the iteration, the size of this square, or the edge length of the square, is not fixed 

but adaptively changed as the iterations proceed. This is why our algorithm is an 

adaptive method. The edge length of the square is referred to as step size for our 

iterative algorithm. How to select iterative step size for different iterations is crucial 

to our algorithm. And it is a very delicate job. If choosing a big area for next iteration 

of estimation, we speed up the iteration but lose the accuracy. And if small area is 

used, the convergence speed is slowed down and higher accuracy is not guaranteed 

to be achieved either. The empirical step size is the reciprocal of iteration numbers 

for the first several iterations and keeps the reciprocal of root square of number of 

unknown nodes, i.e. 1/y/N, for the remaining iterations. Take the previous example 
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Figure 6.2. The bound of MMSE-AIC positioning. 

of N = 25. The step sizes from the first iteration are 1/1,1/2,1/3,1/4,1/5,1/5... of 

one unit. 

6.4 Numerical Results and Analysis 

We propose two standards to evaluate the performance of MMSE^AIC: MMSE 

upper bound obtained using random distribution (MMSE-Random) and MMSE lower 

bound obtained using center unknown nodes (MMSE-Center). The bounds are shown 

in Figure6.2. For the case of single unknown node, the starting point of the MMSE-

Random is obtained as the worst case for MMSE (random distribution) and the 

starting point of the MMSE-Center is obtained as the best case (center position). 

Then each of the two curves is extended to the case of more nodes by multiplying the 

CRB curve by the MMSE-over-CRB ratio corresponding to single unknown node. 

In Figure6.3, we can see that RMSE is decreasing with more iterations. At each 

iteration, the RMSE does not keep decreasing as the number of nodes increases. This 

is because MMSE based algorithm is sensitive to the position of unknown nodes, 

which is the essential characteristics of MMSE estimators. 
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Figure 6.3. RMSE of MMSE-AIC positioning algorithm at different iterations. 

6.5 Overall Comparison of Different Positioning Algorithms 

As mentioned in the section 6.2, for large size networks, the uniform fixed distri

bution should be used if we want to make a fair comparison among all algorithms. 

Illustration of estimated positions for the same group of uniform distributed unknown 

nodes using different algorithms is shown in Fig 6.4. Their RMSE performance is pre

sented in Figure6.5. 

Based on Figure6.5, we can reach the conclusions about how well different algo

rithms work in terms of complexity and RMSE, as listed in the following Tab. 6.1. 

6.6 Conclusions 

In this chapter, we provide a pratical solution for MMSE cooperative positioning. 

The numerical results verifies that, according to RMSE criterion, MMSE-AIC outper

forms any other cooperative positioning algorithms, such as MDS and MLE, and it 

beats the original solution to MMSE, which directly calculates multiple integrals, in 

terms of complexity. Moreover, it is a good example to enlighten us how to solve the 
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Figure 6.5. RMSE performance of different positioning algorithms. 

Table 6.1 
Overall Comparison of Different Positioning Algorithms 

Algorithm 

MDS 

MLE 

MDS-MLE 

MMSE-MLE 

MLE-Ideal 

MMSE-AIC 

Complexity 

low 

medium 

low medium 

medium 

low medium 

upper medium 

RMSE 

acceptable 

very poor 

good 

better 

better 

best 

intimidating mathematical multiple integrals and obtain perfect engineering results 

in practice. 
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CHAPTER 7 

SUMMARY 

7.1 Primary Contributions 

The contributions accomplished by our work presented in this dissertation can be 

summarized as follows: 

1. Turbo equalization with Alamounti codes working in frequency domain: We 

are the first research team to propose and study this scheme that applies turbo 

equalization in frequency domain and integrates it with Alamounti codes based on 

multiple (usually two) antennas. Most other similar research works focus on the time 

domain and single antenna. On one hand, frequency domain turbo equalization we 

proposed can be used for single carrier and combat inter-symbol-interference (ISI) 

better than the time domain equalization. On the other hand, adoption of antenna 

array for Alamounti code brings further performance enhancement over single antenna 

system. 

2. A new channel capacity bound for MISO cooperative communications: The 

channel capacity bound for MIMO cooperative communications is a well recognized 

world-wide difficult problem. So far, no one, including some famous professors, can 

provide a complete solution for this problem. We start with a simpler but crucial 

problem, that is, the capacity bound for MISO cooperative communications. To ex

plore this problem is one of the unavoidable steps on the way to solve the final problem 

of MIMO cooperative communications. We derive our own capacity outer bound for 

MISO cooperative communications. We are very glad to make some contribution to 

solve that world-wide difficult problem even though we can not obtain the complete 

solutions. _ 
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3. An improved classical positioning algorithm MDS-MLE to be implemented on 

a Zig-bee hardware platform: MLE is an existing classical positioning method pro

posed by a prestigious research team, however we find that there is a problem with 

initialization of the original algorithm. Through the independent research and hard 

work, we propose to combine another classical positioning algorithm MDS with MLE 

to fix the problem. Furthermore, we built a real wireless system using Zig-bee devices 

and implement the proposed MDS-MLE positioning algorithm on this platform. We 

chose Zig-bee devices because it is suitable for our positioning algorithm due to many 

of its own features, such as low-cost, flexible applications. No one else has ever used 

Zig-bee system for indoor positioning. 

4. An MMSE positioning algorithm that can break through the CR bound : The 

CR bound is the final frontier for classical positioning algorithm. There are a large 

number of published papers where new ideas, schemes or algorithms are proposed 

simply to get close to the CR bound. In our work, we propose and derive an MMSE 

algorithm, which is a new positioning algorithm based on the Bayesian theory. The 

proposed MMSE positioning algorithm breaks through the CR bound, which can be 

proved theoretically and verified by simulation results. An issue with the proposed 

MMSE algorithm is that the computation burden for calculating multiple integrals 

via numerical methods gets unaffordable when the number of unknown nodes is very 

large. This motivates our next step which is to find the a practical solution for MMSE 

algorithm. 

5. A practical solution for MMSE algorithm: As mentioned in the item 4, we 

need to a practical solution for MMSE algorithm, that is, to find a computation 

efficient method to obtain MMSE estimated positions. With this motivation, we 

make further study on MMSE and propose the innovative MMSE Adaptive Iterative 

Cooperative (AIC) method, which works iteratively as a turbo engine without losing 

much accuracy. Without any exaggeration, this MMSE-AIC is the best positioning 

algorithm among existing positioning algorithm in term of RMSE. 
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7.2 Future Work 

For each of the topics mentioned above, there is still some work left to be done in 

the future: 

1. Turbo equalization with Alamounti codes working in frequency domain: Al

though simulations have proved this scheme is better than others, there is a small 

gap between the simulation results and theory. Our future work on this topic is to 

do more research work to prove the gap is caused by the simulation system error. 

2. A new channel capacity bound for MISO cooperative communications: We have 

just obtained the outer capacity bound for MISO cooperative communications. It is 

still a long way to fulfill our final target that is to derive the channel capacity bound 

for MIMO cooperative communications. 

3. An improved classical positioning algorithm MDS-MLE to be implemented on a 

Zig-bee hardware platform: We should try to use other wireless system platforms than 

Zig-bee system or explore some new features of Zig-bee wireless system platform to 

be exploited by the positioning algorithm. We should keep an eye on the development 

of wireless hardware maturefacured by various factories to seek suitable platforms for 

positioning algorithm . 

4. An MMSE positioning algorithm that can break through the CR bound : Though 

closed-form expression for MMSE position estimator is an impossible mission today, 

we never give up the hope that, using more advanced mathematics , it is possible 

to obtain the close-form expression, or at least, to obtain certain approximate close-

form expressions, for MMSE positioning algorithm. Our future work is to explore 

newly developed mathematics theory and tools to solve the multiple integrals problem 

existing in MMSE positioning algorithm. 

5. A practical solution for MMSE algorithm: Through simulation and logic anal

ysis, we provide the upper and lower bound for this practical solution. In the future, 

we should do more mathematic work to derive stricter upper and lower bounds. 
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Appendix A 

Outline of Proof for Theorem 1 

The paper [30] gives an outer bound on the capacity region of general single antenna 

partially cooperative RBC in terms of Ro, Ri, R2- Examination of its proof reveals 

that it is straightforward to extend this theorem to the general MISO CBC. As 

mentioned before, I am only interested in the private messages, that is RQ = 0. 

Hence, I can conclude that the capacity region of a general MISO CBC is outer 

bounded by the region with (i?1? R2) that satisfies 

R,< mmiliU'MX^IiXMMMXJ} 

R2< min{I(U,X1;Y2),I(U;Y1,Y2\Xl),I(X;Y1,Y2\U',X1)} 

for some joint distribution p(u, u', X\, x)p(j/i, y2, |x, x\) that satisfies two Markov chain 

conditions: X\ —>[/—> X and X\ —> U' —* X. The auxiliary random variables U 

and U' are bounded in cardinality by \U\ < \X\ -\X\ + 2 and \U'\ < \X\ • \X\ + 2, 

respectively. 

In the following, I present the derivation of (3.2) (Theorem 1) by specializing 

(A.l) to AWGN channel for any given channel realization. 

I derive the expression for the capacity outer bound region for any fixed Qx and 

qxATj • The union of the obtained regions over all valid Qx and qxxj gives us the 

entire outer bound as given in Theorem 1 (3.2). 

81 



A. l Proof of outer bound for Ri in Theorem 1 

Let us start with /(X; Yi, Y21U, Xi), where 

/ (X j^ . ^ i ^xo =h(y1,y2 |t/,x1)-h(r1,y2 |x,^ lx1) 
(^)h(y1,y2|c/>x1).-h(K1,y2|x,x1) ( 

< h ( y i ) y 2 | X i ) - h ( y 1 , y 2 | x , X i ) • 

= /(x ;y1 ,y2 |x1j,.-.-

where (la) follows from the fact that conditioned on (X\,X.), (Yi, y2) is independent 

of U. Thus, the bound for i?i in (A.l) becomes 

R^mmiliU'^X^JiX-^Y^)}. (A.3) 

Although the specific expression for the maximal /(X; Yi, Y2|Xi) can be obtained as 

shown later, it is not necessary here. In fact, 

/(Xjyx.yai^o -/([/ ' ; YiiXj) = h(y1,y2|x1) - h(y1,y2|x,x1) - (h(y1|x1) - h(y1|t/',x1)) 
= h(y1 |x1) + h ( Y 2 | Y 1 , x 1 ) - h ( T y 1 , w 2 ) - h ( y 1 | ^ i ) + h(y1|f/' 

= h(Y2\Y1,x1) + b(Y1\u',x1)-h(w1,w2) 
> h(y2|y1,x1,x) + h(y1 |c/ ',x1,x)-h(^1,^2) 
= h(W2) + h(W1)-h(Wi,W2) 

• = o , . 

(A.4) 

which means that /(X; Yi, Y"2|Xi) > /(£/'; Yi|Xi). So, (A.3) becomes 

i?x < / ( [ / ' ; y iX i ) . (A.5) 

Next, I consider I{U'\Yi\Xi) where 

/(c/';y1|x1) = h(y1|x1)-h(y1|c/')x1) (A.6) 

The techniques used in the following are quite similar to the ones to deal with 

I{U; Yi\Xi) in the paper [30], but it gets a little more complicated due to the vector 

nature of the transmitted signal and the involvement of the channel coefficients. 
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and 

For the second item in (A.6), there is 

h(y1 | t / ' ,x1) <h(Yi) 

= h(hiX + Wi) (A.7) 

< log (TrehiQxhf + TreÂ o) 

hiYip^XJ >h(Y1\U',X1,X) 

= h (Wi) (A.8) 

= log (7reAT0) 

Combining (A.7) and (A.8), it is established that there exists a 6 [0,1] such that 

h (YW, Xi) = log (TreahiQxhf + 7reAf0) (A.9) 

For the first item in (A.6), there is 

h(F1|X1) ^ ( W , * ! ) 

= log (7reah1Qxhf + TreN0) 
(A.10) 

Also, 

h(y1|x1) =h(h1x + w1\x1) 
<log(7reVar(hiX + Wi|Xi)) 

= log (vreVar ( h i X ^ i ) + TreÂ o) 

= log (ire [E (|hjX|2) - E (|E (hiX|X0 |2)] + ireN0) 

= log (ire [hxQxhf - h ^ ( E ( X | * 0 E ( X | X X ) " ) h f ] + 7reJV0) 

= log (vre [hxQxhf - hiQECxix,)*1"] + ™No) , 

(A.11) 

where E f E (X|XX) E (X|Xi) 1 is the auto correlation matrix of the random vector 

E (X|Xi) and thus, according to the notation definition given before, can be notated 

as QE(X|X!)-

From (A.10) and (A.11), I have 

h i Q x h f - hjQEpqxjhf > a ^ Q x h f , (A.12) 
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and thus 
(d) 

ShjQxhf > hxQepcixohf > °> (A-13) 

where (d) is obvious since hiQE(x|xx)hf = EXl (|E(hiX|A"i) |2). So, there exists 

ip 6 [0,1] such that 

hiQecxixohf = ^ h i Q x h f , (A.14) 

which leads to 

hi [QE(X|X,) - <paQx] h f = 0. (A. 15) 

Since (A. 15) is true for any given hi , it follows that 

QE(X|XX) = ^<5Qx- (A. 16) 

Plugging (A.16) (or (A.14)) into (A.ll), I obtain 

h (Vi|Xi) < log {ite{a + a ^ ) h i Q x h f + 7reiV0). (A. 17) 

Then plugging (A. 17) and (A.9) into (A.6), I obtain 

I{U'; Yi \Xi) < log (?re(a + av?)hiQxhf + 7reAT0) - log (7reahiQxhf + 7reAT0) 

loe (i + ayhiQxhf \ 

From (A.5) and (A. 18), I obtained 

(A.18) 

Rl<C[ ^ f \ T )• (A l 9) 
\ « h i Q x h f + 7V0/

 v ; 

A.2 Proof of outer bound for R2 in Theorem 1 

Let us start with I(U,Xi;Y2), where 

I(U, Xi; Y2) = h (Y2) - h (Y2\U, XJ (A.20) 
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For the first item in (A.20), there is 

h(y2) = h(h2X + h3X1 + W2) 

< log (ire [Var (h2X + /i3Xi) + N0]) 

Qx qxxi 

< & * Pi 

= log (Treh^Qhf + 7reAf0) 

< log 7re[ h 2 /i3 
hf + ?reiVo 

(A.21) 

Qx qxx! 

Pi ox* 
where h2 = [ h2 h3 } and Q = 

lation matrix of [XT,Xi]T. 

For the second item in (A.20), there is 

. It is obvious that Q is the corre-

h(y2|t/,Xi) >h(Y2\u,x1,x) 

= h (W2) = log (TreA^o). 
(A.22) 

Remark: During my derivation, I found that I could introduce £ € [0,1] and give a 

tighter expression h (Y2\U,Xi) > log (7re£(l — <pa)h2Qxh2 + •neN0). However, since 

£ is not used by any other items in the bounds, to obtain the union of the complete 

bound over £ is the same to minimize h(F2|f7, Xx) over £, and I have £ = 0 and 

h (Y2\U, Xi) > log (ireN0), which can actually be obtained via a simpler argument as 

shown in (A.22). 

Plugging (A.21) and (A.22) into (A.20), I obtain 

/ reh9QhJ? + ireNn ) - log (7reNn) 
(A.23) 

I(U, Xi; Y2) < log (7reh 2Qhf + ireN^j - log (TreA ô) 

= C \ N0 ) 

Since q x x i has nothing to do with Ri, the expression above for R2 can be maxi

mized over valid qxjri- Let QxXi,i be the i-th element of qxxi- Then 

\qxxj2 = IE (XWX1) |2 = |E (XfE (X«|Xf)) 

^Ed^HEOE^WlXOl2) 
< -PI[QE(X|XI)]J,J 

(A.24) 
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where [QE(X|;TI)]M is the i-th. diagonal element of QE(X|XI)- Plugging (A.16) into the 

expression above, I have 

l«xxi,»|2 < ^ A [ Q x k i , 

or in the vector form 

\qxxt I2 < <paPid\ag ( Q x ) , 

where djag (Qx) is the vector composed of all diagonal elements of Qx-

Using (A.26), I can maximize the expression in (A.23) and obtain 

'h2Qhf\ 

(A.25) 

(A.2.6) 

I(U,X1;Y2)< max C 
qxx^lqxx! |2<¥>«pidiag(Qx) Nn 

(A.27) 

Next, Lconsider I (U ̂ Y^Xr) and IQL;YUY2\U'\X{). I obtain 

I^Y^Y^X,) = h(Y1,Y2\X1)-h(Y1,Y2\U,X1) 

< h (Y1} y2 |Xi) - h (Yu Yi\U, Xlt X) 

= h(Y1,Y2\X1)-h(Y1,Y2\X1,X) 

= /(x;y1,y2|x1), 

(A.28) 

and 

(A.29) / ( X ^ y a l t / ' . X O < IfrYuYilX!) 

where the same arguments as those for I(K;Yi,Y2\U, Xi) in (A.2) are used, since it 

is obvious that U and U' are reciprocal. 

Since 

/(Xjyj.YalXi) = / ( X ; h 1 X + W1 ,h2X + / i 3^i + ^ 2 |X 1 ) 

= I(X;h1X + Wl,h2X + W2\X1) (A.30) 

= / (X;Y|X 1) 

hx 

h2 

x + 
wt 

h2 

where Y = X + * and I(X; Y|Xi) stands for the mutual information, 

conditioned on X\, of a 2 x 2 MIMO system with channel matrix H = 
hi 

h2 

I can 
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obtain I(X.;Yi,Y2\Xi) in similar ways to calculate unconditional MIMO capacity by 

applying singular value decomposition (SVD) to H. 

Let H = U g E g V g be the SVD of H where Eg is a diagonal matrix with at 

being the i-th diagonal element, then transmission from X to Y is equivalent to 

transmission over a number of parallel channels (2 parallel channels in my case) as 

(vgY)i = <xi(VpCj. + wi,(i = l,2),\ (A.31) 

where (-^ is the i-th entry of the specified vector. It is easy to obtain that Wi 

(i = 1,2) is still i.i.d. CJ\f(0,N0). For maximal mutual information, V g X needs to 

have independent entries, which means its correlation matrix Qy^x = V g Q x V g is 

diagonal. Let Pi be its i-th diagonal element, then 

Qvgx = V f Q x V g = diag(A, P2). (A.32) 

Also, let QEfv»x|Xi) ^ e *^e correlation matrix of E ( V g X | X i ] , then 

QE(vgx|x,) = E ( E ( v g X l ^ ) E ( v f X l X ) " ) 

= VgE(E(X|X1)E(X|X1) / /)v f i 

= V | Q E W x 1 ) V g
 ( A ' 3 3 ) 

® ^aVgQxVg 
(=c) <pafag(Px,p2) 

where (26) is obtained by plugging (A. 16) and (2c) is obtained by plugging (A.32). 

So, 

/(X; Y\X,) = £ t i / ( ( V | X ) . ; ( U | Y ) . \XX) 

<Z--1logfl I l^|2(E^VgX^|2)"^|E^VgX^|Xl)|2))) 

= E t 1 i o g ( i + w 2 V 5 A ) ) (A-34) 

=log ( n ^ x i + i i = ^ f i 1 ^ ) • 

( ^ l o g ( d e t ( l + ^ H Q x H f f ) ) 

where (2d) follows from the fact that i+Lkz&£fi i s the eigenvalue of I + ^ H Q X H " . 
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Appendix B 

MMSE Cooperative Positioning 

B.l Derivation for MMSE Cooperative Position Estimator (5.11) 

Recalling form the section 5.4.2 that 0 = (xi,yi, • • • ,XN,VN) stands for all un

known coordinates to be estimated, and P = (Pij\l <i<N, i+1 < j < N+M) repre

sents the collection of power degradations between each pair of N unknown nodes and 

between each unknown node and the M anchor nodes. A node j , j = N+l, • • • , N+M 

refers to one of the M anchor nodes. 

Let f(0\P) be the posterior PDF of 6 given the observation P . Then, according 

to (5.8), there is 

£«,MMSE = / Xif(0\P)dQ 
Sf , (B.l) 

&,MMSE = / yif{0\P)dff 

where J -dO is a short hand for multiple integrals with respect to X\,y\,...,x^j,y^ and 

So is the integral region for 0. 

Since 

/ ( W - J * / ( P I W W ' - ( R 2 ) 

and the a priori PDF has been given in (5.10), we only need the likelihood function 

/ (P |0 ) to compute the posterior PDF / ( 0 |P ) . 

The coordinates of the anchor nodes (j = N+l, • • • , N+M) are known and fixed. 

Then, given the coordinates of all unknown nodes 6, entries in P are independent 

from each other. Thus, we have 

/(p|o) =nf=1nf=tfi/(^i0) ( B 3 ) 

88 



where (a) follows from the fact that P^ is only dependent on the distance between 

the node i and node j , which can be determined once their coordinates (xi, y^) and 

(xj,yj) are given, and thus P^ is independent from the coordinates of other nodes. 

From the log-normal distribution for Ptj ((5.1) and (5.2)) and the relation Pij(dB) = 

10 log10 Pij, we have 

f {Pij\{xi,yi),{xj,yj)) 

f(Pij(dB)\(xi,yi),(xj,yj)) dPjjjdB) 

dPu 

_ 10/ In 10 

Pii 

10/In 10 

™>i \llito\ 
exp 

Pii\P^L 
exp 

(lO'ogio^+lOrcp'ogio^-)2 

2 ^ B 

In2 

<£ 

(B.4) 

where In is the natural logarithm, and a and dij are expressed in (5.14) and (5.15) 

respectively. For completeness, they are repeated here 

10n„ 
a = 

dij — do ( — 

adB In 10 

l/rip 

(Xi, yi) and (XJ, yj) contribute to the likelihood function via dfj = (a;,—Xj)2+(yi — yj)2 

Plugging (B.4) into (B.3), we obtain 

N N+M l n / , 1 n _« ln2 4 
. 8 4J 

(B.5) 
i=lj=i+lPij\/^^dB 

Now, we are ready to compute the posterior PDF. Plugging the given a priori 

P D F (5.10) and the derived likelihood function (B.5) in (B.2), the final expression 

for / ( 0 | P ) is 

N+M 

/ ( » | P ) 

i = i n j = i + i e x p 

4nf=1nSfiexP 

- ^ l n 2 ^ 
8 U1 S. 

- ^ l n 2 ^ 
8 m d?. 

(B.6) 

dd 

for 6 € Se where Se can be easily obtained as 

Xi 6 [yJix ~ A-i, Uix + Ai) 
Se=(8 

y% e (Oiy - Bh Oiy + Bi) 
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Plugging (B.6) in (B.l), we obtain the MMSE cooperative position estimator as 

J s ^ n ^ i r W i e x p 

^i.MMSE = 

•2 1n2 | i 
8 1 U &. 

dd 

r TrJV TTN+M 
4 lL=i n j = i + i exp 

JSe Vi IL=i l l^ i+1 exp 
2/i,MMSE 

- ^ l n 2 ^ 
8 U 1 d2 

8 m d2. 

dd 

dd 
(B.8) 

Js0 Ui=i U^i+i exp - ^ l n 2 ^ 
8 m <£. 

d0 

To emphasize that the definite integrals in (B.8) are multiple integrals, we intro

duce / • dOi as a shorthand for J f • dxidyi as given in (5.12) and the integral region 

for 6i — {xi,yi) is denoted as Si as expressed in (5.13), which is repeated here 

Vi E (0iy- BuOiy + Bi) 

Then, the final MMSE cooperative position estimator as expressed in (5.11) is ob

tained. 

Si = < (xi,Vi) 

B.2 Derivation for d^ expression (5.16) 

From (5.15), we obtain 

1 P 
10 log10 ̂  = —10 log10 -~ + 10 log10 d0 

Tip ±ij 

- — (P0(dB) - Pij(dB)) + 101og10d0 
Tip 

According to (5.1) and (5.2), there is 

PiiidB) ~ M (Po(dB) - 10nplogw (&\ , a\B 

Then, 

10 log10 dij ~ M f 10logwdij, 
ril 

(B.9) 

f • 

Let G be a standard Gaussian random variable, i.e. G ~ A/"(0,1), then 

logio dij = l°9iodij + ——G, 
10n„ 

which leads to dy = dylO10"" (5.16). 
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