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Western Michigan University, 2016 

Structures such as beams and steel plates can produce potentially high levels of unwanted 

vibrations and noises in the environment. A method of improving the vibration and acoustic 

characteristics of beams based on introducing dimples on its surfaces will be presented in this 

study. This method focuses on creating two dimples in the same and opposite direction on beam’s 

surface where the effect of dimples on the change in beam’s natural frequencies is the problems of 

interest. 

A boundary value model (BVM) is developed for a beam with two dimples and subjected 

to various boundary conditions using Hamilton’s Variational Principle. Differential equations that 

describe the equations of motion of each segment are derived. Beam natural frequencies and mode 

shapes are obtained using a numerical solution of the differential equations. Four examples will be 

presented in this research. Two cases will be presented, first case is by creating two dimples in the 

same direction on beam’s surface and the other case is by creating another beam model with two 

dimples in the opposite direction. A finite element method (FEM) is used to model the dimpled 

beam and verify the natural frequencies of the BVM. Both methods are also validated 

experimentally. The experimental results show a good agreement with the BVM and FEM results. 

The change in the natural frequencies of the beam with two dimples in the same direction 

exhibits a different trend than positioning two dimples in the opposite direction. Various boundary 

conditions are studied, and the effect of dimple locations and angles are investigated. Earlier 

studies demonstrated that the natural frequencies of each model represent a greater sensitivity to 

changes in dimple angle for dimples placed at high modal strain energy regions of a uniform beam. 

This study confirms the same behavior for both cases (beams with dimples in the same and 

opposite directions). Finally, conclusions have been drawn from both the analytical and 

experimental results for the two cases. 
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CHAPTER 1 

 INTRODUCTION AND OBJECTIVES 

1.1 Overview 

Most of mechanical and civil engineering use beams heavily in structural design and commercial 

construction applications. Since beams are often subjected to dynamic excitations or moving loads 

and masses, reducing the vibration of these structures is a topic of interest and has been 

investigated by many researchers in engineering. Shifting the natural frequencies of a structure 

away from the frequency range of the excitation force is a significant method to improve the 

dynamics of the structure. Many methods can be used to reduce the vibration of structures. One of 

the newly emerging techniques is that of introducing dimples onto structure's surfaces. One or 

more dimples can be created on structure's surface to not only shifting the natural frequencies but 

also changing the mode shapes of the structure.  

1.2 Dimpled Beams 

Figure 1.1 represents an illustration of a single dimple connected to two straight segments on each 

side.  

Figure 1.1: A beam with two straight segments and one arch segment. 

When more than one dimple is present, it is assumed that each dimple is connected to a straight 

segment on each side [1]. The focus of this thesis is on the study of a beam with one and two 



 

 

2 

 

dimples. It is noted that in previous publications by others the word “dimple” may be referred to 

an “arch” or a “ring segment.” Leissa [2], defines the dimple as an open circular cylindrical shell 

which means that the radius of the dimple is assumed to be constant. Furthermore, throughout this 

study, terminologies “convex” and “concave” are used to define two types of dimples where the 

top view is considered the reference view (e.g., looking at the dimpled beam from the top view). 

The convex and concave referenced in this study refer to the type shown in Fig. 1.2. Using the 

terminology of Merriam-Webster [3], a “convex” is defined as curved or rounded outward like the 

exterior of a sphere or circle whereas “concave” is curved or rounded like the inside of the bowl 

which is curving inward. 

 

 

Figure 1.2: A dimpled beam with two dimples (convex and concave). 

 

1.3 Research Motivation 

The original motivation of this thesis was to extend the work of Myers [1] to investigate the 

change in natural frequencies of beams by creating two dimples in opposite direction on the beam’s 

surface. Since Myers’ work focused primarily on beams with dimples in one direction, in this 

thesis we will investigate the effect of creating two dimples in opposite direction (one concave and 

one convex) on shifting beam natural frequencies. This could conceivably be extended to the case 

of 𝑁 dimples consisting of a mix of concave and convex direction. Another key point is to 

understand the “curvature effect” that is used to explain significant trends in natural frequencies 

of using two dimples in the same directions and using two dimples in the opposite directions and 

then comparing the natural frequencies for the two cases. 
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An important part regarding the modal strain energy arose during the study of the dynamics 

of dimpled beams with two dimples in the same and opposite direction. Al-shabatat [4] and Myers 

[1] suggested that the regions of high and low strain energy of a uniform beam ( abeam without 

dimples) could use to design optimal dimpled beams where the dimples placed in these areas would 

exhibit a maximization, minimization, or no change in the natural frequencies for different dimple 

angles. The significant of using the modal strain energy could be utilized as a measurement to 

investigate the optimum dimples placement. Therefore, in this thesis, this concept will be used to 

understand the behavior of natural frequencies when two dimples in the same direction or opposite 

direction are placed in the areas of high or low modal strain energy of a uniform beam. The earlier 

studies focused on the fundamental frequency of beams with more than one dimple in the same 

direction. In this thesis, we will focus on the first five natural frequencies to investigate the change 

in the natural frequencies between the beam with two dimples in the same direction and the beam 

with two dimples in the opposite direction. The reason for focusing on the first five natural 

frequencies is that some boundaries may not exhibit a change in natural frequencies between the 

two cases mentioned previously. So, with investigating the higher modes, we can investigate the 

difference between the two cases mentioned above.   

1.4 Thesis Objectives 

The aim of this study is to study the change in natural frequencies of beams by creating two dimples 

in the opposite direction on the beam’s surface. A stamping technique is used to create dimples in 

order to change the vibration characteristics of beam structures. The main objective of this method 

is to shift the natural frequencies away from the frequency of the excitation force by creating two 

dimples in the opposite direction on beam’s surface. Also, this thesis will investigate the 

percentage change in the natural frequency by creating two dimples in the same and opposite 

direction on beam’s surface. An analytical model of a beam with two dimples in the same and 

opposite direction is developed to predict the beam natural frequencies and mode shapes, also 

considering different boundary conditions. This can be obtained by using Hamilton’s Variational 

Principle to develop an analytical model (i.e., a boundary value model, BVM) with two dimples. 

The notations used in this study are borrowed heavily from Dr. Myers who developed most of the 

equations presented here for his PhD dissertation [1].  Modeling and analysis of dimpled beams 
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are performed using 𝑀𝐴𝑇𝐿𝐴𝐵® and ANSYSⓇ. Furthermore, the beam dimpling approach is 

validated experimentally, and all methods are compared in terms of the natural frequency results. 

1.5 Thesis Organization 

Chapter 2 presents a literature study relevant to this thesis. Chapter 3 contains a derivation of a 

boundary value model for a beam with two dimples. In Chapter 4 the results of the natural 

frequencies of the analytical model (BVM) will be checked using Finite Element Method (FEM). 

This will be followed by validating the results of natural frequencies for uniform and dimpled 

beams, which is obtained using BVM and FEM, experimentally. Next in Chapter 6, additional 

investigation on the analytical model will be studied. Finally, Chapter 7 contains a conclusions 

and the author’s view of future work. 
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CHAPTER 2 

 PERTINENT LITERATURE 

 

2.1 Overview of Hamilton’s Principle 

The importance of using a boundary value model is to describe a system governed by the equation 

of motion with various boundary conditions. Hamilton's Principle depends on formulating the 

kinetic and strain energy of the system. It is utilized to formulate a boundary value model of a 

dimpled beam. The reader can find some good references on Hamilton's Principle such as 

Meirovitch [5] and Rao [6] in which several examples are given on the transverse and longitudinal 

vibration of beams [5]. Rao [6] presents some excellent basic definitions such as a variational 

operator in Hamilton's Principle and gives some examples of using it.  Moreover, Han et al. [7] 

examined four approximate models for a beam vibrating transversely: the Euler-Bernoulli, 

Rayleigh, shear, and Timoshenko models. Hamilton's Variational Principle was used to develop 

the equation of motion, boundary conditions and then inserting them into the Lagrangian. Then, 

the frequency equations are obtained and solved for the four boundary boundaries. Myers [1] also 

used Hamilton's Principle to develop an analytical model for a dimpled beam with any number of 

dimples. The dimpled beam is made of two types of segments: a straight and dimpled segment 

where the equations of motion for each segment is derived by Myers [1]. In one example, a fixed-

fixed beam model is presented [8]. Then, Hamilton’s principle is used to derive the equations of 

motion. A coefficient matrix for a beam with one dimple is formulated. The natural frequency and 

mode shapes are then found numerically. 
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2.2  Vibrations of Curved Structures 

Many investigators have studied the vibrations of curved beams, Petyt and Fleischer [9] have 

investigated various boundary conditions in the free vibration of a curved beam. Chidamparam 

and Leissa [10] have presented many studies on vibrations of curved beams, arches, and rings 

where a-bout 407 studies were collected. Lee and Hsiao [11] have analyzed the free vibration of 

curved non-uniform beams where they examined the effect of the center angles, taper ratio, and 

arch length on the beam natural frequencies. Henrych [12] also presented a study on development 

of mechanics and dynamics of arches and frames. Rao [13] also have published a study on the 

effect of transverse shear and rotary inertia on the coupled twist bending vibrations of circular 

rings. Also, the extensional and inextensional vibration of complete and incomplete rings were 

studied by Lang [14]. An equilibrium approach was used to develop the equations of motion of 

complete circular rings. In addition, a method was developed for uncoupling the equation of 

motion where his study considered free and forced vibration. Myers [1, p. 36]  borrowed most of 

Lang’s notation when he presented the process of obtaining the general solutions of equations of 

motion for dimple segments.  

2.3  Literature on Dimpled Beams  

Recently dimples and beads play a crucial role to improve the vibroacoustic of structures 

(beams, plates, shells). In one recent study of changing the natural frequencies of beams using the 

dimpling technique, Cheng et al [15] studied the shifting of the natural frequencies of beams to 

prescribed values. They used a series of cylindrical dimples on the beam’s surface. They divided 

the dimpled beam into two kinds of structural segments: a curved beam which was modeled as a 

dimple and a straight beam. This study was based on finding combinations of dimple angles and 

locations to “tune” all natural frequencies to designated values using an impedance matching 

technique. The mass of the beam is assumed to be constant before and after creating dimples so 

the dimple segment is thinner than the straight segment. They presented an example of a simply 

supported beam and showed that its fundamental natural frequency decreased for all combinations 

of dimple angles and locations. They attributed this drop in the fundamental frequency to the 
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dimple thinning. Their stipulation was that the thinning of the dimple area resulted in a reduction 

in overall beam bending stiffness. 

Cheng et al. [16] also presented a study that showed one could minimize the sound radiation 

from a vibrating beam. In their study, they used a finite element model of dimpled beams to 

calculate its natural frequencies and mode shapes. Their study showed a minimization in radiation 

efficiency of the dimpled beam compared to the beams without dimples. 

Alshabatat published two studies [17], [18] on vibration and acoustic properties of dimpled 

beams and plates where the finite elements method (FEM) was used to calculate the beam and 

plate vibration characteristics. The dimpling technique was used to alter the local stiffness of the 

beam with considering constant mass. ANSYS (finite element software package) was used to build 

the dimpled beam models and then to calculate the natural frequencies and mode shapes of the 

dimpled beams. An optimization technique based on genetic algorithm (GA) was used to design 

optimum dimpled beams. The results of the simulation were also compared to the experimental 

results where they showed a good agreement. The study suggested some manufacturing limitations 

must be taken into consideration such as “material capacity to deform plastically without cracking” 

[4]. Various boundary conditions were studied, for the case of simply supported and free-free 

beams, the fundamental natural frequencies decreased by creating dimples on its surface while the 

fundamental frequencies of fixed-fixed beams might be increased.  

Myers et al. also published two studies [1], [8] on vibroacoustic properties and optimization 

of vibrating dimpled beams. Boundary Value model (BVM) was used for calculation of all 

vibration properties. It also was used to calculate the natural frequencies and mode shapes of 

dimpled beams in free transverse and longitudinal vibrations. A model was developed to describe 

the vibrations in the transverse and longitudinal displacement for the straight segment and also the 

tangential and radial displacement for the dimple (arch) segment. Natural frequencies and mode 

shapes were computed analytically for beams with any number of dimples (in the same direction) 

for various boundary conditions. He validated the accuracy of BVM by different ways. The 

dimpled beam was approximated as a uniform beam by letting the dimple angle about zero, and 

the results showed good in agreement to exact values. Moreover, Myers modeled an arch by 

considering a beam with one dimple where the straight segment length considered very small. The 

results were good comparing to arch studies.  
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It is evident from the literature that the studies conducted to date all treat the dimples in the 

same directions. Thus, there is a need to investigate the effect of creating dimples in the opposing 

directions on a beam surface with different boundary conditions. The natural frequencies and mode 

shapes obtained will then be compared to a straight beam (i.e., no dimples and beams with the 

dimples in the same direction. Modifications to the Boundary Values Model equations of the 

dimple segment is needed to account for a concave dimple as shown in the next chapter. 
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CHAPTER 3 

 ANALYTICAL MODEL OF VIBRATING BEAMS 

 

In this study, the equations of motion, boundary conditions, and continuity conditions for a beam 

with a single straight segment connected to a dimple segment is derived using Hamilton’s 

Variational Principle. In Section 3.2, a dimpled beam model with two dimples in opposing 

direction is developed. In Section 3.3, the general solutions to the equations of motion are given. 

Then, the formulation of the coefficient matrix of a beam with one dimple (concave) is presented 

in Section 3.4. This formulation relies heavily on Myers’ research [1]. Finally, in Section 3.5, 

sample results of natural frequency and mode shape are given for two beam models with and 

without dimples.  

3.1 The Boundary Value Model 

The objective of this study is to investigate the change in natural frequencies of beams by 

creating dimples on beam’s surface. An analytical model (i.e., a boundary value model, BVM) 

with any number of dimples in the same direction was developed by Myers [1]. The work presented 

here focuses on developing an analytical model with two dimples in opposite direction. The natural 

frequencies of a dimpled beam in transverse and longitudinal vibration will be computed. The 

model will describe the vibrations of the transverse and longitudinal displacement in the straight 

segments and the tangential and radial displacement in the dimples. In general, shear force and 

rotary inertia have an effect on the natural frequencies, but these effects are considered negligible 

and are neglected in this study. The notation used in this section is borrowed heavily from Dr. 

Myers who developed most of the equations presented here for his PhD’s dissertation [1]. He 

derived equations of motion, boundary conditions, and continuity conditions for any combination 

of straight segments and N dimples.  
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This study derives the equations of motion, boundary conditions, and continuity conditions for 

a beam with two dimples in opposite direction. The equations of motion, boundary conditions are 

still the same for the beams with dimples in the opposite direction as the beams with dimples in 

the same direction, except for the continuity conditions. In Section 3.1.1, the two-segment model 

of Myers [1] will be shown, and in the following Sections 3.1.3 and 3.1.4, the derivation of 

equations of motion and boundary conditions originally presented by Myers [1] will be presented. 

Continuity conditions will be derived for two models in Sections 3.1.5.1 and 3.1.5.2. These are a 

straight segment connected to one dimple (convex) and respectively a straight segment connected 

to one dimple (concave). As we mentioned before, continuity conditions will be different for the 

case of using a straight segment connected to a dimple (convex) than the case of using a straight 

segment connected to a dimple (concave). 

3.1.1 Dimpled Beam Model  

 Myers [1] derived the equations of the model which consists two segments, a straight segment 

connected to dimple segment. Figure 3.1 shows a schematic of a dimpled beam consisting of three 

segments where the lengths 𝑙1and 𝑙2 is connected to an arched segment (dimple) with chord 

length 𝑙1̅. Also, 𝑢1, 𝑢2, 𝑦1, 𝑦2, 𝑣1, 𝑣2, 𝑤1, and 𝑤2 define the eigenfunctions in the straight and 

dimple segments, respectively.  

 

Figure 3.1: Schematic of a three-segment model: two straight segments and one dimple. 

 

The dimple is defined by two parameters: a constant radius 𝑅 and dimple angle 𝛼. It is assumed 

that the straight segment thickness ℎ and the dimple segment thickness ℎ̅ are uniform as shown in 

Fig. 3.2. Also, the beam width 𝑏 is constant [1].  
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Figure 3.2: Isometric view of a three-segment model. 

 

 𝑢 (𝑥, 𝑡), 𝑦 (𝑥, 𝑡)   0 ≤  𝑥 ≤  𝑙 , 

𝑣 (𝜃, 𝑡), 𝑤 (𝜃, 𝑡)   0 ≤  𝜃 ≤  𝛼 , 

  

(3.1) 

 

Equation (3.1) [1] represents the Eigen-functions in the straight segment (longitudinal and 

transverse) and the dimple (tangential and radial) which is defined over a local coordinate system. 

The coordinate systems as shown in Fig. 3.1 illustrates the positive directions.  

The thickness of the dimple is defined such that the mass of the beam does not change. As 

such the relationship between the thickness of the straight segment and the dimple is defined as  

 

 
ℎ̅ =

2 sin(𝛼/2) 

𝛼
 ℎ , (3.2) 

 

where ℎ and ℎ̅ represent the original thickness of the beam and of the dimpled beam. Throughout 

this study, the dimple thickness is assumed to be uniform to simplify the mathematical model. In 

manufacturing process, dimple thickness (ℎ̅) is not uniform (the dimple is thicker at its center) .  

3.1.2 Formulation of the Lagrangian 

Hamilton's Principle is used to derive the equations of motion of the model [5, p. 44] 

 

 

 

 

 

𝛿 ∫ ( 𝒯 − 𝒱 

𝑡2

𝑡1

) 𝑑𝑡 = 0 , 

 

(3.3) 
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where 𝒯 and 𝒱 are kinetic and strain energy functional, respectively. The total kinetic energy for 

the model shown in Fig 3.1, is equal to the kinetic energy of a straight segment [6, p. 652] and 

kinetic energy of the dimple [19],  which is given by [1] 

    

 𝒯(𝑡) = 𝑇(𝑡) +  �̅�(𝑡) , (3.4a) 

 

where 

 

 

�̅�(𝑡) =  
1

2
 𝜌𝑆̅𝑅 ∫ (

𝜕𝑣

𝜕𝑡
)

2
 𝛼

0

+  (
𝜕𝑤

𝜕𝑡
)

2

𝑑𝜃. 
 

(3.4c) 

 

Also, the total strain energy is the sum of the strain energy from the straight segment [6, p. 652] 

and dimple [19], [1], 

 

 𝒱(𝑡) = 𝑣(𝑡) +  �̅�(𝑡) , (3.5a) 

 

 

where  

 

𝑣(𝑡) =
1

2
𝐸𝐼 ∫ (

𝜕2𝑦

𝜕𝑥2
)

2𝑙

0

𝑑𝑥 +
1

2
𝐸𝑆 ∫ (

𝜕𝑢

𝜕𝑥
)

2
𝑙

0

𝑑𝑥 , 

 

(3.5b) 

 

 

�̅�(𝑡) =
1

2

𝐸𝐼 ̅

𝑅 3
∫ (

𝜕𝑣

𝜕𝜃
 +  (

𝜕2𝑤

𝜕𝜃2
))

2𝛼

0

𝑑𝜃 +
1

2

𝐸𝑆 ̅

𝑅
∫ (

𝜕𝑣

𝜕𝜃
− 𝑤)

2
𝛼

0

 𝑑𝜃 . 
 

(3.5c) 

 

Now, inserting equations (3.4)-(3.5) into equation (3.3) to formulate the Lagrangian for the two-

segment model [1]. Then, applying the first order variation δ to each term and commutative 

property can be used yields [6, p. 89], [1], 

 

𝑇(𝑡) =  
1

2
 𝜌𝑆 ∫ (

𝜕𝑦

𝜕𝑡
)

2
𝑙

0

+ (
𝜕𝑢

𝜕𝑡
)

2

𝑑𝑥 , 

 

(3.4b) 
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∫ {𝜌𝑆 ∫
𝜕𝑦

𝜕𝑡

𝑙

0

𝜕

𝜕𝑡
 (𝛿𝑦) +  

𝜕𝑢

𝜕𝑡

𝜕

𝜕𝑡
(𝛿𝑢) 𝑑𝑥 +  𝜌𝑆̅𝑅 ∫

𝜕𝑣

𝜕𝑡

𝛼

0

𝜕

𝜕𝑡
 (𝛿𝑣)

𝑡2

𝑡1

+   
𝜕𝑤

𝜕𝑡

𝜕

𝜕𝑡
(𝛿𝑤) 𝑑𝜃 −  𝐸𝐼 ∫

𝜕2𝑦

𝜕𝑥2

𝑙

0

𝜕

𝜕𝑥2
 (𝛿𝑦) 𝑑𝑥

− 𝐸𝑆 ∫
𝜕𝑢

𝜕𝑥

𝜕

𝜕𝑥

𝑙

0

 (𝛿𝑢) 𝑑𝑥

−
𝐸𝐼 ̅

𝑅 3
∫ (

𝜕𝑣

𝜕𝜃
+

𝜕2𝑤

𝜕𝜃2
)

𝛼

0

(
𝜕

𝜕𝜃
(𝛿𝑣) +

𝜕2

𝜕𝜃2
 (𝛿𝑤)) 𝑑𝜃

−
𝐸𝑆̅ 

𝑅
 ∫ (

𝜕𝑣

𝜕𝜃
− 𝑤)

𝛼

0

 (
𝜕

𝜕𝜃
 (𝛿𝑣) −  𝜕𝑤 )  𝑑𝜃} 𝑑𝑡 = 0 . 

 

 

 

 

 

 

(3.6) 

 

By integrating each variation by parts where we have to integrate each variation a number of times 

which equal the operator acting on. Equation (3.6) can be integrated and similar variations grouped 

yields 

  

∫ 𝛿ℒ 𝑑𝑡 = 0 ,
𝑡2

𝑡1

 

 

(3.7) 

 

where 𝛿ℒ  is the Lagrangian functional which is given by [1] 

 

 
𝛿ℒ =  ∫ [−𝜌𝑆

𝜕2𝑦

𝜕𝑡2
− 𝐸𝐼

𝜕4𝑦

𝜕𝑥4
]

𝑙

0

𝛿𝑦 𝑑𝑥 

+ ∫ [−𝜌𝑆
𝜕2𝑢

𝜕𝑡2
+ 𝐸𝑆

𝜕2𝑢

𝜕𝑥2
]

𝑙

0

𝛿𝑢 𝑑𝑥 

∫ [−𝜌𝑆̅𝑅
𝜕2𝑣

𝜕𝑡2
+

𝐸𝐼 ̅

𝑅3
(

𝜕2𝑣

𝜕𝜃2
+  

𝜕3𝑤

𝜕𝜃3
)

𝛼

0

+ ⋯ 
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− 
𝐸𝑆̅

𝑅
(

𝜕𝑤

𝜕𝜃
+  

𝜕2𝑣

𝜕𝜃2
)] 𝛿𝑣 𝑑𝜃 

+ ∫ [−𝜌𝑆̅𝑅
𝜕2𝑤

𝜕𝑡2
−

𝐸𝐼 ̅

𝑅3
(

𝜕3𝑣

𝜕𝜃3
+  

𝜕4𝑤

𝜕𝜃4
)

𝛼

0

+ ⋯ 

+ 
𝐸𝑆̅ 

𝑅
 (

𝜕𝑣

𝜕𝜃
− 𝑤) ] 𝛿𝑤 𝑑𝜃 

+  [− 𝐸𝐼 
𝜕2𝑦

𝜕𝑥2
 

𝜕

𝜕𝑥
(𝛿𝑦) +  𝐸𝐼

𝜕3𝑦

𝜕𝑥3
 (𝛿𝑦) − 𝐸𝑆 

𝜕𝑢

𝜕𝑥
 𝛿𝑢] | 

𝑥 = 𝑙

𝑥 = 0
 

+ [−
𝐸𝑆̅

𝑅
(

𝜕𝑣

𝜕𝜃
− 𝑤) 𝛿𝑣 +

𝐸𝐼 ̅

𝑅3
(

𝜕2𝑣

𝜕𝜃2
+

𝜕3𝑤

𝜕𝜃3
) 𝛿𝑤 + ⋯ 

−
𝐸𝐼 ̅

𝑅2
(

𝜕𝑣

𝜕𝜃
+

𝜕2𝑤

𝜕𝜃2
)

1

𝑅
(𝛿𝑣 +

𝜕

𝜕𝜃
(𝛿𝑤))] |

𝜃 = 𝛼

𝜃 = 0
  . 

 

 

 

(3.7a) 

Now, we can obtain the equations of motion, boundary conditions and continuity conditions from 

Eq. (3.7a) 

3.1.3 Equations of Motion 

Inspections of Eq. (3.7a), it is shown that the expressions in brackets inside each of the four 

integrals are all zero. Thus, the equations of motion of the two-segment beam are given by 

 

 
𝜌𝑆

𝜕2𝑦

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑦

𝜕𝑥4
= 0 , (3.8) 

   

 
𝜌𝑆

𝜕2𝑢

𝜕𝑡2
− 𝐸𝑆

𝜕2𝑢

𝜕𝑥2
= 0 , (3.9) 

 

 
𝜌𝑆̅𝑅

𝜕2𝑣

𝜕𝑡2
−

𝐸𝐼 ̅

𝑅3
(

𝜕2𝑣

𝜕𝜃2
+

𝜕3𝑤

𝜕𝜃3
) −

𝐸𝑆̅

𝑅
(

𝜕2𝑣

𝜕𝜃2
−

𝜕𝑤

𝜕𝜃
) = 0 , (3.10) 

 

 
𝜌𝑆̅𝑅

𝜕2𝑤

𝜕𝑡2
+

𝐸𝐼 ̅

𝑅3
(

𝜕3𝑣

𝜕𝜃3
+

𝜕4𝑤

𝜕𝜃4
) −

𝐸𝑆̅

𝑅
(

𝜕𝑣

𝜕𝜃
− w) = 0 . (3.11) 
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Equation (3.8) defines the free transverse vibrations of the straight segment [6, pp. 236, 325]. It is 

obvious that shear deformation and rotary inertia are negligible in this equation. Equation (3.9) 

defines the longitudinal vibrations of the straight segment [6, pp. 236, 325]. Equations (3.10) and 

(3.11) governs the free tangential and radial vibrations of the dimple. Both Eqs. (3.10) and (3.11) 

are coupled differential equations, which means the variable (𝑣) and (𝑤) appear in each equation. 

The uncoupled equations can be obtained by algebraic manipulation of the differential operators 

acting on (𝑣) and (𝑤) [14]. Therefore, the uncoupled equations are given by [1] 

 

 𝜕6𝑣

𝜕𝜃6
+ 2

𝜕4𝑣

𝜕𝜃4
−

𝜌𝑅2

𝐸

𝜕6𝑣

𝜕𝑡2𝜕𝜃4
+

𝜕2𝑣

𝜕𝜃2
+

𝜌𝑅2

𝐸

𝜕4𝑣

𝜕𝑡2𝜕𝜃2
 

+
𝜌𝑆̅𝑅4

𝐸𝐼 ̅

𝜕4𝑣

𝜕𝑡2𝜕𝜃2
−

𝜌𝑆̅𝑅4

𝐸𝐼 ̅

𝜕2𝑣

𝜕𝑡2
−

𝜌2𝑆̅𝑅6

𝐸2𝐼 ̅

𝜕4𝑣

𝜕𝑡4
= 0 , 

 

 

(3.12) 

 

 𝜕6𝑤

𝜕𝜃6
+ 2

𝜕4𝑤

𝜕𝜃4
−

𝜌𝑅2

𝐸

𝜕6𝑤

𝜕𝑡2𝜕𝜃4
+

𝜕2𝑤

𝜕𝜃2
+

𝜌𝑅2

𝐸

𝜕4𝑤

𝜕𝑡2𝜕𝜃2
 

+
𝜌𝑆̅𝑅4

𝐸𝐼 ̅

𝜕4𝑤

𝜕𝑡2𝜕𝜃2
−

𝜌𝑆̅𝑅4

𝐸𝐼 ̅

𝜕2𝑤

𝜕𝑡2
−

𝜌2𝑆̅𝑅6

𝐸2𝐼 ̅

𝜕4𝑤

𝜕𝑡4
= 0 , 

 

 

(3.13) 

 

3.1.4 Boundary Conditions at 𝑥 = 0 and 𝜃 = 𝛼 

By inspections of equation (3.7), the boundary conditions of the two-segment beam model can be 

demonstrated. So, the boundary conditions can be obtained at 𝑥 = 0 (the left edge of the straight 

segment [1]  

 

 
[𝐸𝐼 

𝜕2𝑦

𝜕𝑥2
 

𝜕

𝜕𝑥
(𝛿𝑦) − 𝐸𝐼

𝜕3𝑦

𝜕𝑥3
 𝛿𝑦 + 𝐸𝑆

𝜕𝑢

𝜕𝑥
 𝛿𝑢] |

𝑥=0

= 0. (3.14) 
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Because of the fact that the first order variations of the eigenfunctions are arbitrary over their 

domains and independent of each other, all of the three terms should be zero [1]. As a result, two 

boundary conditions are needed for transverse motion and one boundary condition is needed for 

longitudinal motion [1] 

 

 
[𝐸𝐼 

𝜕2𝑦

𝜕𝑥2
 

𝜕

𝜕𝑥
(𝛿𝑦)] |

𝑥=0

= 0 , (3.15a) 

 

 
[𝐸𝐼

𝜕3𝑦

𝜕𝑥3
 𝛿𝑦] |

𝑥=0

= 0 , (3.15b) 

 

 
[𝐸𝑆

𝜕𝑢

𝜕𝑥
 𝛿𝑢] |

𝑥=0
= 0 , (3.15c) 

 

where it is obvious that from Eq. (3.15), at 𝑥 = 0, either 𝐸𝐼 (𝜕2y/𝜕𝑥2) (the bending moment), or 

(𝜕𝑦/𝜕𝑥) (the bending slope) is zero. Also,  𝐸𝐼( 𝜕3𝑦/𝜕𝑥3) (the shear force) or transverse deflection 

is zero. In addition, 𝐸𝑆(𝜕𝑢/𝜕𝑥) (axial force) or the longitudinal deflection is zero. From Eq. (3.7), 

three boundary conditions on the dimple at 𝜃 = 𝛼 are computed by setting the last bracket term 

equal to zero [1]. Similarly, each of the three terms is equal to zero because the variations are 

arbitrary over their domains and independent of each other [1]. As a result, three equations are 

defined under these conditions [1]: 

 ℳ𝛿𝜓|𝜃=𝛼 = 0 , (3.16a) 

 

where:  ℳ = bending moment and 𝛿𝜓 = bending slope. 

 𝒬𝛿𝑤|𝜃=𝛼 = 0 , 

 

(3.16b) 

where: 𝒬 = radial shear and 𝛿𝑤 = radial deflection. 
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 𝒫𝛿𝑣|𝜃=𝛼 = 0 , 

 

(3.16c) 

where: 𝒫 = tangential force and 𝛿𝑣 = tangential deflection. 

In addition: 

 
𝜓 =  

1

𝑅
(𝑣 +

𝜕𝑤

𝜕𝜃
) , (3.17) 

 

 
ℳ =

𝐸𝐼̅

𝑅2
(

𝜕𝑣

𝜕𝜃
+

𝜕2𝑤

𝜕𝜃2
) , (3.18) 

 

 
𝒬 =

𝐸𝐼 ̅

𝑅3
(

𝜕2𝑣

𝜕𝜃2
+

𝜕3𝑤

𝜕𝜃3
) , (3.19) 

 

 
𝒫 =

𝐸𝑆̅

𝑅
(

𝜕𝑣

𝜕𝜃
− 𝑤). (3.20) 

 

3.1.5 Continuity Conditions at 𝑥 = 𝑙  

In this section, continuity conditions at 𝑥 = 𝑙 are obtained for two models. First, a model of a beam 

with combination of straight segment and dimple (convex) segment (see Fig. 3.3) is derived. 

 

Figure 3.3: Isometric view of the two-segment model, straight segment and dimple (convex). The 

dashed line represents the location where the straight segment and dimple meet. 

 

 Next, a model of a beam with a combination of straight segment and dimple (concave) segment 

as shown in Fig. 3.4 is derived.  
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Figure 3.4: Isometric view of the two-segment model, straight segment and dimple (concave), the 

dashed line represents the location where the straight segment and dimple meet. 

 

3.1.5.1 Continuity Conditions at 𝑥 = 𝑙 (Convex dimple) 

Figure 3.1 illustrates that the straight segment at 𝑥 =  𝑙 is joined to the dimple at 𝜃 = 0 where six 

continuity conditions are needed at this location. So, the solutions to the Eqs. (3.8), (3.9), (3.12), 

and (3.13) must satisfy these conditions of continuity. To find the conditions of continuity, we 

have to set sum of the bracketed portion in Eq. (3.7) terms evaluated at 𝑥 =  𝑙 and 𝜃 = 0  [1], such 

that  

 
[−𝐸𝐼 

𝜕2𝑦

𝜕𝑥2
 

𝜕

𝜕𝑥
(𝛿𝑦) + 𝐸𝐼

𝜕3𝑦

𝜕𝑥3
 𝛿𝑦 − 𝐸𝑆

𝜕𝑢

𝜕𝑥
 𝛿𝑢] |

𝑥=𝑙

 

+ [
𝐸𝐼 ̅

𝑅2
(

𝜕𝑣

𝜕𝜃
+

𝜕2𝑤

𝜕𝜃2
)  𝛿𝜓 −  

𝐸𝐼 ̅

𝑅3
(

𝜕2𝑣

𝜕𝜃2
+

𝜕3𝑤

𝜕𝜃3
) 𝛿𝑤

+  
𝐸𝑆̅

𝑅
(

𝜕𝑣

𝜕𝜃
− 𝑤) 𝛿𝑣]|

𝜃=0

= 0 . 

 

(3.21) 

Equation (3.21) contains six different variations (𝛿𝑢, 𝛿𝑦, 𝛿𝑦′, 𝛿𝑣, 𝛿𝑤, 𝛿𝑤′), where prime means the 

slope. Three different variations can be eliminated using three geometrical conditions of continuity 

(i.e. horizontal and vertical deflection, slope). Figure 3.1 illustrates how the straight and dimple 

segments are connected both horizontally and vertically at all times. The geometrical conditions 

are inserted into Lagrangian functional to obtain three natural conditions (moment, axial and shear 

force). Thus, the following relation [1] is obtained 
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{

𝑢(𝑙, 𝑡)

𝑦(𝑙, 𝑡)
} = [

𝑐𝑜𝑠 (𝛼/2) 𝑠𝑖𝑛 (𝛼/2)

−𝑠𝑖𝑛 (𝛼/2) 𝑐𝑜𝑠 (𝛼/2)
] {

𝑣(0, 𝑡)

𝑤(0, 𝑡)
} . (3.22) 

 

The above equation demonstrates a clockwise rotation of (𝛼/2) degrees in horizontal and vertical 

directions. Moreover, the bending is continuous [1] , so  

 

 
𝑦′(𝑙, 𝑡) ≡

𝜕𝑦(𝑙, 𝑡)

𝜕𝑥
=

1

𝑅
(𝑣(0, t) + 𝑤′(0, t)), (3.23) 

 

governs the slope. By substituting of expressions 𝑦(𝑙, 𝑡), 𝑦′(𝑙, 𝑡) and 𝑤(0, 𝑡) into equation (3.21) 

and grouping similar remaining variations in 𝛿𝑢(𝑙, 𝑡), 𝛿𝑣(0, 𝑡), 𝛿𝑤′(0, 𝑡), three equilibrium 

conditions are computed. The following equation [1]  represents equilibrium of moment force at 

𝑥 = 𝑙 𝑎𝑛𝑑 𝜃 = 0, 

 
𝐸𝐼

𝜕2𝑦(𝑙, 𝑡)

𝜕𝑥2
=

𝐸𝐼 ̅

𝑅2
(𝑣′(0, 𝑡) + 𝑤′′(0, 𝑡)). (3.24) 

 

Also, Eq. (3.25) represents equilibrium of axial force at 𝑥 = 𝑙 𝑎𝑛𝑑 𝜃 = 0, where the radial shear 

force in the dimple is transformed by a rotation matrix into force components in the horizontal and 

vertical directions [1]. 

 
𝐸𝑆

𝜕𝑢(𝑙, 𝑡)

𝜕𝑥
=

𝐸𝑆̅

𝑅
(𝑣′(0, 𝑡) − 𝑤(0, 𝑡)) 𝑐𝑜𝑠 (

𝛼

2
)

−
𝐸𝐼 ̅

𝑅3
(𝑣′′(0, 𝑡) + 𝑤′′′(0, 𝑡)) 𝑠𝑖𝑛 (

𝛼

2
) . 

(3.25) 

 

In addition, the following equation defines equilibrium of shear force at 𝑥 = 𝑙 𝑎𝑛𝑑 𝜃 = 0, where 

the tangential shear force in the dimple is transformed by a rotation matrix into force components 

in the horizontal and vertical directions [1]. 
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𝐸𝐼

𝜕3𝑦(𝑙, 𝑡)

𝜕𝑥3
=

𝐸𝑆̅

𝑅
(𝑣′(0, 𝑡) − 𝑤(0, 𝑡)) 𝑠𝑖𝑛 (

𝛼

2
)

+
𝐸𝐼 ̅

𝑅3
(𝑣′′(0, 𝑡) + 𝑤′′′(0, 𝑡)) 𝑐𝑜𝑠 (

𝛼

2
) , 

(3.26) 

 

where primes indicate derivatives with respect to 𝜃. For instance, 𝑣′ = (𝜕𝑣/𝜕𝜃), 𝑣′′ =

(𝜕2𝑣/𝜕𝜃2)  and 𝑣′′′ = (𝜕3𝑣/𝜕𝜃3) . 

3.1.5.2 Continuity Conditions at 𝑥 = 𝑙 (Concave dimple) 

Similarly, we need the continuity conditions where the straight segment meets the dimple segment 

at 𝑥 = 𝑙 and 𝜃 = 0 as shown in Fig. (3.5).  

 

Figure 3.5: Schematic of a two-segment model: one straight segment and one dimple (second 

model). 

 

We need six continuity conditions at this location. To find the conditions of continuity, we have 

to set sum of the bracketed portion in Eq. (3.7) terms evaluated at 𝑥 =  𝑙 and 𝜃 = 0 , such that  

 

 
[−𝐸𝐼 

𝜕2𝑦

𝜕𝑥2
 

𝜕

𝜕𝑥
+ 𝐸𝐼

𝜕3𝑦

𝜕𝑥3
 𝛿𝑦 − 𝐸𝑆

𝜕𝑢

𝜕𝑥
 𝛿𝑢] |

𝑥=𝑙

 

+[ℳ𝛿𝜓 −  𝒬𝛿𝑤 +  𝒫𝛿𝑣 ]|𝜃=0 = 0. 

 

(3.27) 
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Equation (3.27) contains six different variations (𝛿𝑢, 𝛿𝑦, 𝛿𝑦′, 𝛿𝑣, 𝛿𝑤, 𝛿𝑤′), where prime means the 

slope. Figure 3.5 illustrates how the straight segment and dimple are connected both horizontally 

and vertically at all times. Thus, the following relation is obtained 

 
{

𝑢(𝑙, 𝑡)

𝑦(𝑙, 𝑡)
} = [

𝑐𝑜𝑠 (𝛼/2) 𝑠𝑖𝑛 (𝛼/2)

𝑠𝑖𝑛 (𝛼/2) −𝑐𝑜𝑠 (𝛼/2)
] {

𝑣(0, 𝑡)

𝑤(0, 𝑡)
}.  (3.28) 

   

As shown in Fig. 3.5 the relative orientations of the eigenfunctions are essential for writing the 

equations of continuity where the two segments meet. As a check, note that when the dimple 

becomes flat (𝛼/2 goes to zero), the radial and transverse components align in opposite direction, 

as do the tangential and longitudinal components. This means, the matrix reduces to [
1 0
0 −1

] 

because the transverse displacement (𝑦) and radial displacement (𝑤) are in opposite direction. 

Moreover, the slope due to the bending is continuous because the connection is assumed to be 

rigid. Thus, the slope due to the bending can be obtained using the following equation, 

 

 
𝑦′(𝑙, 𝑡) ≡

𝜕𝑦(𝑙, 𝑡)

𝜕𝑥
= −𝜓(0, 𝑡) . (3.29) 

   

The physical meaning of this equation is apparent. For instance, if the radial displacement (𝑤) at 

a point just to the right of another point is larger, 𝑤2(𝛼 + 𝑑𝛼) > 𝑤1(𝛼) , the dimple will deflect 

up. So, the slopes are opposite, and that’s why we need a negative in the front of Eq. (3.29). 

Furthermore, it follows from the slope that the dimple moment (3.24) needs a negative in front of 

it. The following three equilibrium conditions are obtained as the same criterion mentioned in 

Section 3.1.5.1: 

 
𝐸𝐼

𝜕2𝑦(𝑙, 𝑡)

𝜕𝑥2
= −ℳ(0, 𝑡), (3.30) 

 

 
𝐸𝑆

𝜕𝑢(𝑙, 𝑡)

𝜕𝑥
= 𝒫(0, 𝑡) 𝑐𝑜𝑠 (

𝛼

2
) − 𝒬(0, 𝑡) 𝑠𝑖𝑛 (

𝛼

2
) , (3.31) 
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𝐸𝐼

𝜕3𝑦(𝑙, 𝑡)

𝜕𝑥3
= −𝒫(0, 𝑡) 𝑠𝑖𝑛 (

𝛼

2
) − 𝒬(0, 𝑡) 𝑐𝑜𝑠 (

𝛼

2
) . (3.32) 

 

In summary, the two-segment model needs to be described by four equations of motions (two for 

each segment) which are given by Eqs. (3.8-3.11). Six boundary conditions are required where Eq. 

(3.15) is given for the straight segment, and Eq. (3.16) is given for the dimple. The total numbers 

of continuity conditions that exist at x = l and 𝜃=0 are six. The continuity conditions for the convex 

dimple are given in Eqs. (3.22)-(3.26) [1]. The continuity conditions for the concave dimple are 

given in Eqs. (3.28)-(3.32). Therefore, twelve un-determined coefficients can be obtained in 

general solution for the two segment model.   

3.2 Analytical Model Development (Dimpled Beam Model) 

The purpose of this section is to generalize the equation developed in section 3.1 to describe a 

beam with two dimples. This study considers a beam with two dimples (N=2) in the opposing 

direction as shown in Fig. 3.6.  

 

Figure 3.6: Schematic of a beam with two dimples. 

 

The model can be defined by the longitudinal displacements (𝑢1 ), (𝑢2 )  and (𝑢3 ) and by 

transverse displacements (𝑦1), (𝑦2) and (𝑦3 ) where this model can be defined locally over 0 ≤

𝑥1 ≤ 𝑙1 , 0 ≤ 𝑥2 ≤ 𝑙2 and 0 ≤ 𝑥3 ≤ 𝑙3 for the three straight segment. Similarly, the tangential and 

radial displacement 𝑣1, 𝑣2 , 𝑤1 and 𝑤2 are defined locally over 0 ≤ 𝜃1 ≤ 𝛼1 and 0 ≤ 𝜃2 ≤ 𝛼2 , 

respectively for the two dimple. Formulation of the Lagrangian for this model is follows the same 

procedure that was given in Section 3.1. The total kinetic and strain energy for the model shown 

in Fig. 3.6, is equal to ten integrals. Five integrals for straight segments and dimple segments given 
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by the form of Eqs. (3.4b)-(3.4c) are needed to describe the kinetic energy. Similarly, to compute 

the strain energy of the straight segments and dimple segments, five integrals given by the form of 

Eqs. (3.5b)-(3.5c) are required. Then, Equation of motions, boundary conditions, and continuity 

conditions can be obtained by using the Lagrangian (𝒯 − 𝒱) where additional terms will be added. 

The following sections are heavily borrowed from Myers [1] where this study also derived the 

same equations for the model of a beam with two dimples in opposite direction. Unlike the 

equations of motion and boundary conditions, conditions for continuity are different when creating 

dimple (concave) on it comparing to the continuity conditions in the case of beam with a dimple 

(convex).  

3.2.1 Equations of Motion 

The equations of motions that govern the straight segments where 𝑖 = 1,2, …  𝑁 + 1, with N 

dimples in general are given by  

 
𝜌𝑆

𝜕2𝑦𝑖

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑦𝑖

𝜕𝑥𝑖
4

= 0 , (3.33) 

 

 
𝜌𝑆

𝜕2𝑢𝑖

𝜕𝑡2
− 𝐸𝑆

𝜕2𝑢𝑖

𝜕𝑥𝑖
2

= 0 . (3.34) 

 

In this thesis, we consider a beam with two dimples (𝑁 = 2). In other words, Eqs.(3.33)-(3.34) 

will be repeated for 𝑖 = 1,2,3 to describe the equations of motion for all three straight segments. 

Furthermore, the uncoupled equations of motion that govern the 𝑖𝑡ℎdimple where 𝑖 = 1, 2,… 𝑁 (in 

this thesis: 𝑁 =2) are given by  

 𝜕6𝑣𝑖

𝜕𝜃𝑖
6 + 2

𝜕4𝑣𝑖

𝜕𝜃𝑖
4 −

𝜌𝑅𝑖
2

𝐸

𝜕6𝑣𝑖

𝜕𝑡2𝜕𝜃𝑖
4 +

𝜕2𝑣𝑖

𝜕𝜃𝑖
2 +

𝜌𝑅𝑖
2

𝐸

𝜕4𝑣𝑖

𝜕𝑡2𝜕𝜃𝑖
2 

+
𝜌𝑆�̅�𝑅𝑖

4

𝐸𝐼�̅�

𝜕4𝑣𝑖

𝜕𝑡2𝜕𝜃𝑖
2 −

𝜌𝑆�̅�𝑅𝑖
4

𝐸𝐼�̅�

𝜕2𝑣𝑖

𝜕𝑡2
−

𝜌2𝑆�̅�𝑅𝑖
6

𝐸2𝐼 ̅

𝜕4𝑣𝑖

𝜕𝑡4
= 0 , 

(3.35) 
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 𝜕6𝑤𝑖

𝜕𝜃𝑖
6 + 2

𝜕4𝑤𝑖

𝜕𝜃𝑖
4 −

𝜌𝑅𝑖
2

𝐸

𝜕6𝑤𝑖

𝜕𝑡2𝜕𝜃𝑖
4 +

𝜕2𝑤𝑖

𝜕𝜃𝑖
2 +

𝜌𝑅𝑖
2

𝐸

𝜕4𝑤𝑖

𝜕𝑡2𝜕𝜃𝑖
2 

+
𝜌𝑆̅𝑅𝑖

4

𝐸𝐼�̅�

𝜕4𝑤𝑖

𝜕𝑡2𝜕𝜃𝑖
2 −

𝜌𝑆�̅�𝑅𝑖
4

𝐸𝐼�̅�

𝜕2𝑤𝑖

𝜕𝑡2
−

𝜌2𝑆�̅�𝑅𝑖
6

𝐸2𝐼 ̅

𝜕4𝑤𝑖

𝜕𝑡4
= 0 . 

(3.36) 

   

Myers throughout his study [1] assumed that the straight segments have the same thickness unlike 

the thickness of the dimple segments is not the same because each dimple has different geometry 

(see Eq. (3.2)).  

3.2.2 Boundary Conditions at 𝑥1 = 0 and 𝑥3 = 𝑙3 

This study considers that the dimples are located between two straight segments. Thus, six 

boundary conditions are required, three at  𝑥1 = 0  and three at 𝑥3 = 𝑙3 These are previously 

derived for the straight segment in Section 3.1.4, 

 
[𝐸𝐼 

𝜕2𝑦1

𝜕𝑥2
 

𝜕

𝜕𝑥
(𝛿𝑦1) = 𝐸𝐼

𝜕3𝑦1

𝜕𝑥3
 𝛿𝑦1 = 𝐸𝑆

𝜕𝑢1

𝜕𝑥
 𝛿𝑢1 ]|

𝑥=0

= 0 , (3.37) 

 

 
[𝐸𝐼 

𝜕2𝑦3

𝜕𝑥2
 

𝜕

𝜕𝑥
(𝛿𝑦3) = 𝐸𝐼 

𝜕3𝑦3

𝜕𝑥3
 (𝛿𝑦3) = 𝐸𝑆

𝜕𝑢3

𝜕𝑥
 𝛿𝑢3] |

𝑥=𝑙3

= 0 ,   (3.38) 

 

Different boundary conditions are considered in this study and listed below for convenience.  

1- Fixed: 𝑢 = 𝑦 = 𝑦′ = 0. 

2- Free: 𝑢′ = 𝑦′′ = 𝑦′′′ = 0. 

3- Pin support: 𝑢 = 𝑦 = 𝑦′′ = 0. 

4- Pin support on roller (horizontal motion): 𝑢′ = 𝑦 = 𝑦′′ = 0. 

The primes indicate derivatives with respect to 𝑥, and each function should be evaluated at 

either boundary,  𝑥1 = 0 or 𝑥3 = 𝑙3 . 
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3.2.3 Continuity Conditions at 𝑥1 = 𝑙1 and 𝑥2 = 0  

The reader is referred to Section 3.1.5.1. for the derivation of the continuity conditions for the 

beam with one straight segment connected to dimple (convex). Equations (3.22)-(3.26) describes 

the continuity conditions where the right end of a straight segment meets the left end of the first 

dimple (convex). Also, there is another set of six conditions exist on the right end of this dimple 

with −𝛼/2. In the next section, the continuity conditions for the second dimple (concave, Fig. 3.6 

) will be derived in details.  

3.2.4 Continuity Conditions at 𝑥2 = 𝑙2 and 𝑥3 = 0  

The continuity conditions on the right end of a straight segment when it meets the left end of the 

dimple segment are presented here. The beam with one straight segment connected to dimple 

(concave), which was presented in Section 3.1.5.2 is considered in this section. It is assumed that 

the dimples are located between two straight segments. These conditions can be applied to the 

model of a beam with two dimples at 𝑥2 = 𝑙2 𝑎𝑛𝑑 𝜃2 = 0. Therefore, the following conditions for 

continuity are given by 

 

 
{

𝑢2(𝑙2, 𝑡)

𝑦2(𝑙2, 𝑡)
} = [

𝑐𝑜𝑠 (𝛼2/2) 𝑠𝑖𝑛 (𝛼2/2)

𝑠𝑖𝑛 (𝛼2/2) −𝑐𝑜𝑠 (𝛼2/2)
] {

𝑣2(0, 𝑡)

𝑤2(0, 𝑡)
} ,  (3.39a) 

 

 𝜕𝑦2(𝑙2, 𝑡)

𝜕𝑥
= −𝜓2(0, 𝑡) , (3.39b) 

 

 
𝐸𝐼

𝜕2𝑦2(𝑙2, 𝑡)

𝜕𝑥2
= −ℳ2(0, 𝑡) , (3.39c) 

 

 
𝐸𝑆

𝜕𝑢2(𝑙2, 𝑡)

𝜕𝑥
= 𝒫2(0, 𝑡) 𝑐𝑜𝑠 (

𝛼2

2
) − 𝒬2(0, 𝑡) 𝑠𝑖𝑛 (

𝛼2

2
) , (3.39d) 
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𝐸𝐼

𝜕3𝑦2(𝑙2, 𝑡)

𝜕𝑥3
= −𝒫2(0, 𝑡) 𝑠𝑖𝑛 (

𝛼2

2
) − 𝒬2(0, 𝑡) 𝑐𝑜𝑠 (

𝛼2

2
) , (3.39e) 

 

where bending slope(𝜓2), bending moment (ℳ2), radial shear (𝒬2), and tangential force (𝒫2) 

are given below for convenience. 

 
  𝜓2 =  

1

𝑅2
(𝑣2 +

𝜕𝑤2

𝜕𝜃
) , (3.40) 

 

 
        ℳ2 =

𝐸𝐼2̅

𝑅2
2 (

𝜕𝑣2

𝜕𝜃
+

𝜕2𝑤2

𝜕𝜃2
) , (3.41) 

 

 
          𝒬2 =

𝐸𝐼2̅

𝑅2
3 (

𝜕2𝑣2

𝜕𝜃2
+

𝜕3𝑤2

𝜕𝜃3
) , (3.42) 

 

 
𝒫2 =

𝐸𝑆2̅

𝑅2
(

𝜕𝑣2

𝜕𝜃2
− 𝑤2) . (3.43) 

 

At the right side of the dimple, another set of six continuity conditions describes the 

connection to the straight segment. Similarly, these conditions are derived in a similar manner as 

the previous set of continuity conditions by considering the differential Lagrangian at 𝜃2 = 𝛼2 and 

𝑥3 = 0. Replacing (𝛼2/2) in Eq. (3.39a), (3.39d) and (3.39e) with (−𝛼2/2). With this substitution, 

the continuity conditions are given by  

 

 
{

𝑢3(0, 𝑡)

𝑦3(0, 𝑡)
} = [

𝑐𝑜𝑠 (𝛼2/2) −𝑠𝑖𝑛 (𝛼2/2)

−𝑠𝑖𝑛 (𝛼2/2) −𝑐𝑜𝑠 (𝛼2/2)
] {

𝑣2(𝛼2, 𝑡)

𝑤2(𝛼2, 𝑡)
} ,  (3.44a) 

 

 𝜕𝑦3(0, 𝑡)

𝜕𝑥
= −𝜓2(𝛼2, 𝑡) , (3.44b) 
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𝐸𝐼

𝜕2𝑦3(0, 𝑡)

𝜕𝑥2
= −ℳ2(𝛼2, 𝑡) , (3.44c) 

 

 
𝐸𝑆

𝜕𝑢3(0, 𝑡)

𝜕𝑥
= 𝒫2(𝛼2, 𝑡) 𝑐𝑜𝑠 (

𝛼2

2
) + 𝒬2(𝛼2, 𝑡) 𝑠𝑖𝑛 (

𝛼2

2
) , (3.44d) 

 

 
𝐸𝐼

𝜕3𝑦3(0, 𝑡)

𝜕𝑥3
= 𝒫2(𝛼2, 𝑡) 𝑠𝑖𝑛 (

𝛼2

2
) − 𝒬2(𝛼2, 𝑡) 𝑐𝑜𝑠 (

𝛼2

2
) . (3.44e) 

 

In the summary, we need  4𝑁 + 2 equations of motion to describe a beam with N dimples, so 

ten equations of motion are needed to describe our model (𝑁 = 2). Moreover, there are six 

boundary conditions and 12𝑁 continuity conditions (six on each side of the dimple), meaning that 

there are 12𝑁 + 6 model coefficients need to be determined. As a results, since the model beam 

used in this thesis consists three straight segments which are connected to two dimples (Fig. 3.6), 

30 unknown coefficients are needed to be determined.  

3.3 Solutions to the Equations of Motion 

In this section, the solutions to the equations of motion are presented. In Section 3.3.1, the general 

solutions to Eqs. (3.33)-(3.34) governing the transverse and longitudinal motion of the straight 

segment are given, Then, Section 3.3.2 presents the general solution to Eqs.(3.35)-(3.36) governing 

the tangential and radial motion of dimples.  

3.3.1 Straight Segments 

Since Eq. (3.33) involves a second-order derivative with respect to time and a fourth order 

derivative with respect to 𝑥, two initial conditions and four boundary conditions are needed for 

finding a unique solution for 𝑦𝑖(𝑥, 𝑡 ). Equation (3.33) is separable, and the vibration is harmonic 

in time with frequency 𝜔. Therefore, a solution of the form  
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 𝑦𝑖(𝑥, 𝑡) = 𝑌𝑖(𝑥)𝑒𝑗𝑤𝑡, (3.45) 

 

is valid for 𝑖𝑡ℎ segment. Insertion of Eq. (3.45) into Eq. (3.33) yields 

 

 𝑑4𝑌𝑖

𝑑𝑥4
− 𝛽4𝑌𝑖 = 0 . (3.46) 

 

The equation is satisfied if  

 
𝛽 = (

𝜌𝑆

𝐸𝐼
𝜔2)

1/4

 , (3.47) 

 

where 𝛽 is the transverse frequency parameter, which is the same for all straight segments. For the 

solution of Eq. (3.46), we assume  

  𝑌𝑖(𝑥) = 𝐴𝑒𝑞𝑥 , (3.48) 

 

where 𝐴 and 𝑞 are constants, and derive the auxiliary equation as  

 𝑞4 − 𝛽4 = 0 .  (3.49) 

 

The roots of this equation are 

            𝑞1 = +𝛽         ,        𝑞2 = −𝛽, 

              𝑞3 = +𝑗𝛽       ,        𝑞4 = −𝑗𝛽 . 

Hence, the solution of Eq. (3.46) becomes 

 𝑌𝑖(𝑥) =  𝐴𝑖1
′ 𝑒𝛽𝑥 + 𝐴𝑖2

′ 𝑒−𝛽𝑥 + 𝐴𝑖3
′ 𝑒𝑖𝛽𝑥 + 𝐴𝑖4

′ 𝑒−𝑖𝛽𝑥 . (3.50) 
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Equation (3.50) can also be expressed as 

 

 𝑌𝑖(𝑥) =  𝐴𝑖1
′ 𝑐𝑜𝑠𝛽𝑥 + 𝐴𝑖2

′ 𝑠𝑖𝑛𝛽𝑥 + 𝐴𝑖3
′ 𝑐𝑜𝑠ℎ𝛽𝑥 + 𝐴𝑖4

′ 𝑠𝑖𝑛ℎ𝛽𝑥 . (3.51) 

 

Also, Eq. (3.50) can also be written in the exponential form as 

 

 

𝑌𝑖(𝑥) = ∑ 𝐴𝑖𝑘𝑒𝑞𝑘𝑥 .

4

𝑘=1

 (3.52) 

 

This form is more convenient for formulating the coefficients in a matrix form and will be 

presented in Section (3.4). The modal coefficients 𝐴𝑖𝑘will be determined from the boundary and 

continuity conditions. 

      The solution of Eq. (3.34) is derived in a similar manner. After a separation of variables, an 

ordinary an ordinary differential equation is obtained, 

 

 𝑑2𝑈𝑖

𝑑𝑥2
+ 𝛾2𝑈𝑖 = 0 , (3.53) 

 

 where the longitudinal frequency parameter 𝛾 is defined as 

 

 
𝛾 = (

𝜌

𝐸
𝜔2)

1/2

 . (3.54) 

 

The longitudinal frequency parameter 𝛾 is the same for the two segments, and the general solution 

is given by 
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𝑈𝑖 = ∑ 𝐶𝑖𝑘𝑒𝑟𝑘𝑥 ,

2

𝑘=1

 (3.55) 

 

where 𝐶𝑖𝑘 is modal coefficients and roots 𝑟1 = 𝑗𝛾 and 𝑟2 = −𝑗𝛾. 

3.3.2 Dimpled Segments 

The notation used in this section is borrowed heavily from Myers [1] where the reader is referred 

to Lang [14] for an excellent background on the underlying theory. The general solutions of Eqs. 

(3.35)-(3.36) are of the form 

 𝑣𝑖(𝜃, 𝑡) = 𝑉𝑖(𝜃)𝑒𝑗𝑤𝑡 , (3.56) 

and 

 𝑤𝑖(𝜃, 𝑡) = 𝑊𝑖(𝜃)𝑒𝑗𝑤𝑡 . (3.57) 

 

Since Eqs. (3.35) - (3.36) are not separable; a harmonic solution can be assumed. Inserting Eq. 

(3.56) into Eq. (3.35) yields 

 

 𝑑6𝑉𝑖

𝑑𝜃6
(2 + 𝑝𝑖𝜁𝑖)

𝑑4𝑉𝑖

𝑑𝜃4
+ (1 − 𝑝𝑖𝜁𝑖 − 𝜁𝑖)

𝑑2𝑉𝑖

𝑑𝜃2
+ (𝜁𝑖 − 𝑝𝑖𝜁

2)𝑉𝑖 = 0 . (3.58) 

 

Similarly, inserting Eq. (3.57) into Eq. (3.36) yields 

 𝑑6𝑊𝑖

𝑑𝜃6
(2 + 𝑝𝑖𝜁𝑖)

𝑑4𝑊𝑖

𝑑𝜃4
+ (1 − 𝑝𝑖𝜁𝑖 − 𝜁𝑖)

𝑑2𝑊𝑖

𝑑𝜃2
+ (𝜁𝑖 − 𝑝𝑖𝜁

2)𝑊𝑖 = 0 , (3.59) 

 

where the frequency parameter for the  𝑖𝑡ℎ dimple is defined as 
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         𝜁𝑖 =

𝜌𝑆�̅�𝑅𝑖
4

𝐸𝐼�̅�

𝜔2 . (3.60) 

 

In general, the parameters are different because each dimple has a different geometry. Also, a 

parameter associated with the extensional vibration of the dimple is defined as 

 

 
𝑝𝑖 =

𝐼�̅�

𝑆̅𝑅𝑖
2 , (3.61) 

 

where this parameter is required to satisfy force equilibrium [1]. The general solutions of Eqs. 

(3.58) and (3.59) are of the form  

 

 𝑉𝑖(𝜃) = 𝐵𝑒𝑠𝜃 , (3.62) 

 

 𝑊𝑖(𝜃) = 𝐷𝑒𝑠𝜃 . (3.63) 

 

The tangential coordinate is considered, insertion of Eq. (3.62) into Eq. (3.58) yields  

 

 𝑠6 + (2 + 𝑝𝑖𝜁𝑖)𝑠4 + (1 − 𝑝𝑖𝜁𝑖 − 𝜁𝑖)𝑠2 + (𝜁𝑖 − 𝑝𝑖𝜁
2) = 0 . (3.64) 

 

Equation (3.64) describes the characteristic equation for the dimple, so six roots are computed per 

dimple, 𝑠𝑖1, … , 𝑠𝑖6 . Those roots are used to formulate the general solutions to Eqs. (3.58)-(3.59) 

given by  

 
𝑉𝑖(𝜃) = ∑ 𝐵𝑖𝑘𝑒𝑠𝑖𝑘𝜃 ,

6

𝑘=1
 (3.65) 

 



 

 

32 

 

 
𝑊𝑖(𝜃) = ∑ 𝐷𝑖𝑘𝑒𝑠𝑖𝑘𝜃 

6

𝑘=1
. (3.66) 

 

In general, since the constants 𝐵𝑖𝑘 and 𝐷𝑖𝑘 can be related by a multiplicative constant 𝜆𝑖𝑘 [1], for 

instance, 𝐷𝑖𝑘 = 𝜆𝑖𝑘𝐵𝑖𝑘 , as a result 

 
    𝑊𝑖(𝜃) = ∑ 𝜆𝑖𝑘𝐵𝑖𝑘𝑒𝑠𝑖𝑘𝜃  

6

𝑘=1
. (3.67) 

 

Equations (3.65) and (3.67) represent the mode shape for the 𝑖𝑡ℎ dimple written in exponential 

form where the multiplicative constant 𝜆𝑖𝑘 is given by 

 
𝜆𝑖𝑘 =

𝑝𝑖𝜁𝑖 + (𝑝𝑖 + 1)𝑠𝑖𝑘
2

𝑠𝑖𝑘 − 𝑝𝑖𝑠𝑖𝑘
3   , (3.68) 

 

This relation illustrates that total of six unknown modal coefficients are required not twelve 

because six boundary conditions are needed for an arch (three at each side). The reader is referred 

to reference [1, p. 39] for an excellent background on underlying details.  

3.4 Formulation of the Coefficient Matrix  

For the sake of brevity, although this thesis presents a model with two dimples, this section presents 

a formulation of the coefficient matrix for a beam with a single dimple (concave). The general 

solutions developed in Section 3.3 with boundary and continuity conditions are given in Section 

(3.2.2)-(3.2.3) are needed to formulate the coefficients matrix. As a result, a system of 12𝑁 + 6 

homogenous algebraic equations given by: 

 

 [𝒜(𝜔)]{𝒳} = {0}   , (3.69) 
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where  [𝒜(𝜔)] is the coefficient matrix which depends on natural frequency 𝜔, and {𝑥} defined 

as column vector of modal coefficients given by {𝐴𝑖𝑘, 𝐵𝑖𝑘, 𝐶𝑖𝑘}𝑇. In this thesis, the coefficient 

matrix is derived for a fixed-fixed beam with a single dimple (𝑁 =  1). This means, two straight 

segments connected to one dimple (concave) segment will be considered (Fig. 3.7).  

 

Figure 3.7: Schematic of a beam with two straight segments and one dimple segment. 

 

In this case, there are 18 conditions to satisfy. Three boundary conditions are needed on each side 

of the model (the total is six), and six continuity conditions are required at left and right side of the 

dimple (the total is 12). Equations (3.70)-(3.73) represent the general solutions for each coordinate 

 

 

𝑦𝑖(𝑥, 𝑡) =  𝑒𝑗𝜔𝑡 ∑ 𝐴𝑖𝑘𝑒𝑞𝑘𝑥 

4

𝑘=1

, 
 

(3.70) 

 

 

𝑢𝑖(𝑥, 𝑡) =  𝑒𝑗𝜔𝑡 ∑ 𝐶𝑖𝑘𝑒𝑟𝑘𝑥

2

𝑘=1

, 
 

(3.71) 

 

 

𝑣𝑖(𝜃, 𝑡) =  𝑒𝑗𝜔𝑡 ∑ 𝐵𝑖𝑘𝑒𝑆𝑖𝑘𝜃

6

𝑘=1

, 
 

(3.72) 

 

 

𝓌𝑖(𝜃, 𝑡) =  𝑒𝑗𝜔𝑡 ∑ 𝜆𝑖𝑘𝐵𝑖𝑘𝑒𝑆𝑖𝑘𝜃 

6

𝑘=1

. 
 

(3.73) 
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The roots 𝑞𝑘 = ±𝛽, ±𝑗𝛽 and 𝑟𝑘 = ±𝑗𝛾. The frequency parameter for the straight segments, 𝛽, 𝛾, 

are obtained using Eqs. (3.47) and (3.54). The dimple roots 𝑆𝑖𝑘 are found using Eq. (3.64), where 

the parameters 𝜁𝑖 and extensional parameters 𝑝𝑖 for each dimple are computed using Eqs. (3.60) 

and (3.61). The modal parameter 𝜆𝑖𝑘 is found using Eq. (3.68).  

      To start the process of formulating the coefficients matrix. The boundary conditions for fixed-

fixed beam (𝑢(0, 𝑙) = 𝑦(0, 𝑙) = 𝑦′(0, 𝑙) = 0). Eqs. (3.70)-(3.73) are inserted into these boundary 

conditions. Then, the following six equations are obtained 

  

∑ 𝐶1𝑘 = 0 

2

𝑘=1

, 

 

(3.74) 

  

  ∑ 𝐴1𝑘 = 0 

4

𝑘=1

, 

 

(3.75) 

  

 ∑ 𝑞𝑘𝐴1𝑘 = 0  ,

4

𝑘=1

 

 

(3.76) 

  

∑ 𝐶2𝑘e𝑟𝑘 𝑙2 = 0 ,

2

𝑘=1

 

 

(3.77) 

  

  ∑ 𝐴2k e
𝑞𝑘 𝑙2 = 0 ,

4

𝑘=1

 

 

(3.78) 

  

∑ 𝑞𝑘𝐴2𝑘e𝑞𝑘 𝑙2 = 0 

4

𝑘=1

. 

 

(3.79) 

 



 

 

35 

 

Substituting the general solution into twelve continuity conditions yields 

 ∑ 𝐶1𝑘𝑒𝑟𝑘𝑙1 − ∑ 𝐵1𝑘(𝑐𝑜𝑠 (
𝛼1

2
) + 𝜆1𝑘 𝑠𝑖𝑛 (

𝛼1

2
)) = 0 

6

𝑘=1

2

𝑘=1

. (3.80) 

 

The above equation describes the continuity of horizontal deflections at 𝑥1 = 𝑙1,𝜃1 = 0 , see Eq. 

(3.39a). Also, from Eq. (3.39a) we can describe the continuity vertical deflections at 𝑥1 = 𝑙1, 𝜃1 =

0 using 

  

∑ 𝐴1𝑘𝑒𝑞𝑘𝑙1 − ∑ 𝐵1𝑘(sin (
𝛼1

2
) − 𝜆1𝑘 𝑐𝑜𝑠 (

𝛼1

2
)) = 0 

6

𝑘=1

4

𝑘=1

. 

 

(3.81) 

 

The continuity slope (see Eq. (3.39b)) at 𝑥1 = 𝑙1, 𝜃1 = 0 can be described as 

  

 

∑ 𝑞𝑘𝐴1𝑘𝑒𝑞𝑘𝑙1 −
1

𝑅1
∑(−𝐵1𝑘(1 + 𝑠1𝑘𝜆1𝑘)) = 0

6

𝑘=1

4

𝑘=1

 , (3.82) 

 

moreover, the Eq. (3.83) describes the equilibrium of moment (see Eq. (3.39c)) 

 at 𝑥1 = 𝑙1, 𝜃1 = 0,  

 

𝐸𝐼 ∑ 𝑞𝑘
2𝐴1𝑘𝑒𝑞𝑘𝑙1 −

𝐸𝐼1̅

𝑅1
2 ∑(−𝐵1𝑘(𝑠1𝑘 + 𝑠1𝑘

2 𝜆1𝑘)) = 0 .  

6

𝑘=1

4

𝑘=1

 (3.83) 

 

Moreover, the following Eq. (3.84) describe the equilibrium of axial force (see Eq. (3.39d)) 

at 𝑥1 = 𝑙1, 𝜃1 = 0 ,  
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𝐸𝑆 ∑ 𝑟𝑘𝐶1𝑘𝑒𝑟𝑘𝑙1  – ∑ 𝐵1𝑘 (
𝐸𝑆1̅

𝑅1

(𝑠1𝑘 − 𝜆1𝑘) 𝑐𝑜𝑠 (
𝛼1

2
)

6

𝑘=1

2

𝑘=1

−
𝐸𝐼1̅

𝑅1
3

(𝑠1𝑘
2 + 𝑠1𝑘

3 ) 𝑠𝑖𝑛 (
𝛼1

2
)) = 0 , 

(3.84) 

 

and Eq. (3.85) describes equilibrium of shear force (see Eq. (3.39e)) at 𝑥1 = 𝑙1, 𝜃1 = 0,  

 

𝐸𝐼 ∑ 𝑞𝑘
3𝐴1𝑘𝑒𝑞𝑘𝑙1  – ∑ 𝐵1𝑘 (−

𝐸𝑆1̅

𝑅1

(𝑠1𝑘 − 𝜆1𝑘) 𝑠𝑖𝑛 (
𝛼1

2
)

6

𝑘=1

4

k=1

−
𝐸𝐼1̅

𝑅1
3

(𝑠1𝑘
2 + 𝑠1𝑘

3 ) 𝑐𝑜𝑠 (
𝛼1

2
)) = 0   . 

(3.85) 

The continuity of horizontal deflection (Eq. (44a)) at 𝑥2 = 0, 𝜃1 = 𝛼1, vertical deflection (Eq. 

(3.44a)) at 𝑥2 = 0, 𝜃1 = 𝛼1, and slope (Eq. (3.44b)) at 𝑥2 = 0, 𝜃1 = 𝛼1 are described by the 

following equations, respectively 

 

∑ 𝐶2𝑘 − ∑ 𝐵1𝑘 (𝑐𝑜𝑠 (
𝛼1

2
) − 𝜆1𝑘 𝑠𝑖𝑛 (

𝛼1

2
)) 𝑒𝑠1𝑘𝛼1 = 0 

6

𝑘=1

2

𝑘=1

, (3.86) 

 

 

∑ 𝐴2𝑘 − ∑ 𝐵1𝑘 (− 𝑠𝑖𝑛 (
𝛼1

2
) − 𝜆1𝑘 𝑐𝑜𝑠 (

𝛼1

2
)) 𝑒𝑠1𝑘𝛼1 = 0 ,

6

𝑘=1

4

𝑘=1

 (3.87) 

 

 

∑ 𝑞𝑘𝐴2𝑘 −
1

𝑅1
∑(−𝐵1𝑘(1 + 𝑠1𝑘𝜆1𝑘)𝑒𝑠1𝑘𝛼1) = 0 .  

6

𝑘=1

4

𝑘=1

 (3.88) 

 

In addition, equilibrium of moment (Eq. (3.44c)) at  𝑥2 = 0, θ1 = 𝛼1, axial force (Eq. (3.44d)) at 

𝑥2 = 0, 𝜃1 = 𝛼1, and shear force (Eq. (3.44e)) at 𝑥2 = 0, θ1 = α1 can be described by Eqs. (3.89)-

(3.91) as following 
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𝐸𝐼 ∑ 𝑞𝑘
2𝐴2𝑘 −

𝐸𝐼1̅

𝑅1
2 ∑(−𝐵1𝑘(𝑠1𝑘 + 𝑠1𝑘

2 𝜆1𝑘)𝑒𝑠1𝑘𝛼1) = 0 ,

6

𝑘=1

4

𝑘=1

 (3.89) 

 

 

𝐸𝑆 ∑ 𝑟𝑘𝐶2𝑘 – ∑ 𝐵1𝑘 (
𝐸𝑆1̅

𝑅1

(𝑠1𝑘 − 𝜆1𝑘) 𝑐𝑜𝑠 (
𝛼1

2
)

6

𝑘=1

2

𝑘=1

+
𝐸𝐼1̅

𝑅1
3

(𝑠1𝑘
2 + 𝑠1𝑘

3 𝜆1𝑘) 𝑠𝑖𝑛 (
𝛼1

2
)) 𝑒𝑠1𝑘𝛼1 = 0  , 

(3.90) 

 

 

𝐸𝐼 ∑ 𝑞𝑘
3𝐴2𝑘 − ∑ 𝐵1𝑘 (

𝐸S̅1

R1
2

(s1k − λ1k) sin (
α1

2
)

6

𝑘=1

4

𝑘=1

−
EI1̅

R1
2 (s1k

3 λ1k) cos (
α1

2
) es1kα1) = 0 .   

 

(3.91) 

 

 

The coefficients in front of each modal coefficient 𝐴1𝑘, 𝐴2𝑘, 𝐵1𝑘, 𝐶1𝑘, 𝐶2𝑘 are assembled 

into 18 × 18 coefficients matrix [𝒜 (𝜔)] using Eqs. (3.74)-(3.91). The coefficient matrix for a 

fixed-fixed beam with single dimple (concave) is assembled using 𝑀𝐴𝑇𝐿𝐴𝐵®. Moreover, 

𝑀𝐴𝑇𝐿𝐴𝐵® is used to assemble a coefficient matrix for a beam with 𝑁 dimples for various 

boundary conditions. For the analytical model of this study, a 30 × 30 coefficients matrix [𝒜(𝜔)] 

is formulated for a beam with two dimples in the opposing direction (see Fig. 3.6) and considered 

for different boundary conditions. Myers [1] also formulated the coefficient matrix for a beam with 

N dimples in the same direction whereas this study considers a beam with two dimples in opposite 

direction. 

Equations (3.80)-(3.91) are repeated two times by replacing the straight segment and 

dimple number with the following segment number when we need to assemble the coefficient 

matrix for a beam with two dimples. Furthermore, the coefficients in six rows of the matrix can be 

modified to use the same matrix with different boundary conditions. Then, Eq. (3.69) is solved 

numerically to calculate the natural frequencies 𝜔 and mode shapes {𝑥} using an iterative 

procedure, and it depends on a frequency (𝜔). Frequencies that produce a very small determinant 
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of this matrix are natural frequencies. A better way to find the natural frequency is to plot the 

magnitude of the determinant against range of frequencies and to see where the magnitude reaches 

a local minimum. An example of this method is shown in Fig. 3.8, a fundamental frequency for a 

beam with one dimple.  

 

 

Figure 3.8: A range of frequencies vs. determinant magnitude. 

. 

In the next section, sample results of natural frequency are given where the mode shape is also 

plotted.  

 

3.5 Sample Results of Natural Frequency and Mode Shape 

Cantilever and fixed-fixed beams are used as examples below in order to obtain their 

natural frequencies and mode shapes using the BVM. The natural frequencies are computed using 

𝑀𝐴𝑇𝐿𝐴𝐵®, for a beam without dimples and a beam with two dimples in the same and opposing 

directions as shown in Figs.3.9 (a) and (b). 
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Figure 3.9: A beam with two dimples in the same (a) and opposing (b) directions.  

3.5.1 Cantilever Beam 

Consider a steel cantilever beam with a length of 0.2210 m, width 0.026 m, thickness 

0.00118 m, dimple chord length 0.03 m, elastic of modules 200 GPa, and density 7870 kg/m3 

(Table 3.1). Two cases are considered here: a cantilever beam with two dimples in the same 

direction (Fig.3.9a) and a cantilever beam with two dimples in the opposing directions (Fig.3.9b). 

Also, the mathematical analysis of cantilever beam without dimples is presented (straight beam). 

 

Table 3.1: Parameters for cantilever dimpled beam (𝑁 = 2). 

Parameter Value 

First segment length, 𝑙1 0. 055 m 

Dimple cord segment length, 𝑙1̅ 0.03 m 

Second segment length, 𝑙2 0.062 m 

Dimple cord segment length, 𝑙2̅ 0.03 m 

Third segment length, 𝑙3 0.044 m 

Dimple angle, 𝛼1 135° 

Dimple angle, 𝛼2 135° 
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3.5.1.1 Free vibration of a Uniform cantilever beam  

For a uniform cantilever beam subjected to a free vibration where its mass is considered as 

distributed. The equation of motion is given [5] by 

  

𝑑2

𝑑𝑥2  
{ 𝐸𝐼(𝑥)

𝑑2𝑌(𝑥)

𝑑𝑥2
 } =  𝜔2𝑚(𝑥)𝑌(𝑥) , 

 

(3.92) 

 

where, 𝐸 is young’s modules, 𝐼 is the area moment of inertia of beam cross section, 𝑌(𝑥) is the 

displacement in y direction with respect to distance 𝑥 from the fixed end, 𝜔 is the circular natural 

frequency, 𝑚 is the mass per unit length of beam. Refereeing to Eq. 3.47 which can be written as  

 

𝜔 = 𝛽2√
𝐸𝐼

𝜌𝑆
   , 

 

(3.93) 

 

where the values of 𝛽2 here for the first five modes is given in Table 3.2. 

Table 3.2: Values of transverse frequency parameter for the uniform cantilever beam [6]. 

Mode 𝛽2 

1 3.52 

2 22.03 

3 61.69 

4 120.90 

5 200.01 

 

Also, the natural frequency (in Hz) can be obtained using 
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𝑓 = 𝜔/2𝜋 . (3.94) 

 

In general, the mode shapes for a continuous cantilever beam is given as [6] 

 

 𝑓𝑛(𝑥) = 𝐴𝑛 {(sin 𝛽𝑛𝐿 − sinh 𝛽𝑛𝐿)(sin 𝛽𝑛𝑥 − sinh 𝛽𝑛𝑥) +

(cos 𝛽𝑛𝐿 − cosh 𝛽𝑛𝐿) ( cos 𝛽𝑛𝑥 − cosh 𝛽𝑛𝑥)} , 

 

 

(3.95) 

where the constant 𝐴 is arbitrary,  𝑛 = 1,2,3, …,∞, and 𝛽𝑛𝐿 = 𝑛𝜋.  

As a result, the natural frequencies of the cantilever beam (described by Table 3.1) are 

calculated (see Appendix (A)) and given in Table 3.3. 

 

Table 3.3: Natural frequencies for the cantilever beam without dimples (uniform beam). 

Mode Frequency [Hz] 

1 19.7 

2 123.3 

3 345.3 

4 676.6 

5 1118.3 
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3.5.1.2 Natural frequencies of a Cantilever Dimpled Beam 

The first five natural frequencies of a cantilever beam with two dimples in the same and 

opposite directions are given in Table 3.4 where the percentage change between the two cases can 

be obtained by 

 

% 𝐶ℎ𝑎𝑛𝑔𝑒 =  
(𝑓𝑠𝑎𝑚𝑒 − 𝑓𝑜𝑝𝑝)

𝑓𝑠𝑎𝑚𝑒
∗ 100  , (3.96) 

 

where 𝑓𝑠𝑎𝑚𝑒 is the natural frequency of a dimpled beam with two dimples in the same direction 

and 𝑓𝑜𝑝𝑝 the natural frequency of a dimpled beam with two dimples in the opposite direction.  

 

Table 3.4: Comparison between natural frequencies of a uniform cantilever beam against one 

with two dimples in the same or opposite directions.  

Frequency 

[Hz] 

Beam without dimples 

(uniform beam) 

Dimples are in the 

same direction 

Dimples are in the 

opposite direction 
% Change  

𝑓1 19.7 17.20  17.19  0.06% 

𝑓2 123.3 107.38 107.70 - 0.3% 

𝑓3 345.3 254.46 227.60 10.6% 

𝑓4 676.6 398.78 554.19 - 39.0% 

𝑓5 1118.3 677.27 591.92 12.6% 

 

In general, creating two dimples in the same direction or in the opposite direction on beams 

may increase or decreases the natural frequencies of beams. The results demonstrate that creating 

two dimples on a cantilever beam decreases its first five natural frequencies. The change in the 
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first two natural frequencies is very small. However, by creating two dimples, third natural 

frequency of the beam with two dimples in the same direction increased by 10.6% more than the 

one with two dimples in the opposing direction. The fourth natural frequency of the beam with 

two dimples in the same direction decreased by -39.0% lower than the beam with two dimples in 

the opposite direction. In contrast, the fifth natural frequency of the beam with two dimples in the 

same direction increased by 12.6% greater than the natural frequency of the one with two dimples 

in the opposite direction. More detailed investigation of the effect of introducing dimples in 

opposing directions is presented in Chapter 5. 

3.5.2  Fixed-Fixed Beam 

In this section, a fixed-fixed beam is considering as an example to predict its natural frequencies 

using the BVM method. A fixed-fixed beam with length of 0.2170 m and  𝑁 = 2 (𝐸 = 200 GPa, 

𝜌 = 7870 kg/m3,  ℎ = 0.00118 m) is presented to investigate the effect of adding two dimples 

to beams in the same and opposite directions. Table 3.5 lists the beam dimensions which used in 

this study. 
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Table 3.5: Parameters for fixed-fixed dimpled beam (𝑁 = 2). 

Parameter Value 

First segment length, 𝑙1 0.04 m 

Dimple cord segment length, 𝑙1̅ 0.03 m 

Second segment length, 𝑙2 0.062 m 

Dimple cord segment length, 𝑙2̅ 0.03 m 

Third segment length, 𝑙3 0.055 m 

Dimple angle, 𝛼1 135° 

Dimple angle, 𝛼2 135° 

 

3.5.2.1 Uniform Fixed-Fixed Beam 

The first five natural frequencies of the fixed-fixed beam (Specified in Table 3.5) without dimples 

is given in Table 3.7, and its first three mode shapes are plotted in Fig. 3.10. These mode shapes 

clearly reflect the fixed-fixed conditions as both beam ends are constrained. The following 

equation governs the mode shapes of the fixed-fixed beam [20] 

 

 𝑓𝑛(𝑥) = 𝐴𝑛 {(sinh 𝛽𝑛𝑥 − sin 𝛽𝑛𝑥) + 𝜎𝑛(cosh 𝛽𝑛𝑥 − cos 𝛽𝑛𝑥)} , 

 

(3.97) 

 



 

 

45 

 

where 𝜎𝑛 =  (sinh 𝛽𝑛𝐿 − sin 𝛽𝑛𝐿)/ (cos 𝛽𝑛𝐿 − cosh 𝛽𝑛𝐿) and 𝛽𝑛𝐿 values have been tabulated in 

Table 3.6. The constant 𝐴 is chosen arbitrary (𝐴 = 0.35) such that the maximum amplitude is 

about 0.057.  

 

Table 3.6: Values of parameters 𝛽𝑛𝐿 for the uniform fixed-fixed beam [6]. 

Mode 𝛽2 

1 4.73 

2 7.85 

3 11.00 

4 14.14 

5 17.26 

  

 

Figure 3.10: First three mode shapes of the uniform fixed-fixed beam. 
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3.5.2.2 Fixed-Fixed Dimpled Beam 

The following table (Table 3.7) represents a comparison between the fixed-fixed beam with 

two dimples in the same and opposite direction. The percentage change between the two cases is 

calculated by Eq. 3.96. 

 

Table 3.7: Comparison between natural frequencies of a uniform fixed-fixed beam against one 

with two dimples in the same or opposite directions. 

Frequency 

[Hz] 

Beam without dimples 

(uniform beam) 

Dimples are in the 

same direction 

Dimples are in the 

opposite direction 
% Change  

𝑓1 130.4 127.7 123.6 3.2% 

𝑓2 359.5 282.8 411.4 - 45.4% 

𝑓3 704.8 672.4- 589.6 12.3 % 

𝑓4 1165.1 1011.0 885.5 12.3% 

𝑓5 1740.6 1140.0 1104.4 3.1% 

 

The results show that the natural frequencies of the fixed-fixed beam model can be 

modified by creating two dimples which may increase or decrease the natural frequencies of fixed-

fixed beams. The natural frequencies of the two cases given above have a different trend. The 

change in the fundamental frequency of the two cases is small (about 3.2%). The change in the 

second frequency, which is - 45.4 % is the most significant of all the natural frequencies shown. 

The change in the third and fourth natural frequencies of the beam with two dimples in the same 

direction, which is about 12.3%, are higher than the natural frequencies of the beam with two 

dimples in the opposing direction. There is a small change in the fifth natural frequency between 

the beam with two dimples in the same direction and the beam with two dimples in the opposing 

direction. 
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The first three mode shapes for the two cases are shown in Figs. 3.11 and 3.12, respectively 

where these figures show that the nodal points (zero crossings) for second and third mode shapes 

have shifted drastically (see Table 3.8).   

 

 

Figure 3.11: First three mode shapes (fixed-fixed, a beam with two dimples in the same direction). 
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Figure 3.12: First three mode shapes (fixed-fixed, a beam with two dimples in the opposing 

direction). 

 

Table 3.8: Comparison between the first three modes of the uniform fixed-fixed beam against 

one with two dimples in the same or opposite directions in terms of shifting the nodal points 

(zero crossings). 

Mode 
Beam without dimples 

(uniform beam) 

Dimples are in the 

same direction 

Dimples are in the 

opposite direction 

1 N/A N/A N/A 

2 0.108 m 0.0935 m 0.106 m 

3 
0.077 m  

0.139 m 

0.089 m 

0.170 m 

0.049 m 

0.136 m 

 

The mode shapes are plotted using 𝑀𝐴𝑇𝐿𝐴𝐵® where these mode shapes are eigenfunctions 

obtained from the BVM. In Fig. 3.12, there are three straight segments, so three longitudinal and 
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three transverse eigenfunctions are needed. For the first mode, the first two eigenfunctions are 

defined locally over 0 ≤ 𝑥 ≤ 0.04 and given by  

 

 𝑌1(𝑥) = −0.43 ∗ cos(21.30𝑥)  +  0.40 ∗ sin(21.30𝑥)  

+  0.430 ∗ cosh(21.30𝑥)  +  −0.40

∗ sinh(21.30 ∗ 𝑥) . 

(3.99) 

 

The second straight segment can be described by the following eigenfunctions 

 

where it defines locally over  0 ≤ 𝑥 ≤ 0.132 and globally over 0.07 ≤ 𝑥 ≤ 0.132. The 

eigenfunctions of the third straight segment are given by  

  𝑌3(𝑥) = 0.20 ∗ cos(21.30𝑥) +  −0.51 ∗ sin(21.30𝑥) +  0.15

∗ cosh(21.30𝑥) +  0.09 ∗ sinh(21.30𝑥) , 
(3.103) 

 

defined locally over 0 ≤ 𝑥 ≤ 0.216. Globally, this segment lies in the beam domain 0.162 ≤ 𝑥 ≤

0.216.  

        𝑈1(𝑥) = 6.3 ∗ 10−07 ∗ cos(0.15𝑥) +  0.007 ∗ sin(0.15𝑥), 

 

(3.98) 

 𝑈2(𝑥) = 0.028 ∗ cos(0.15𝑥)  +  0.0041 ∗ sin(0.15𝑥), 

 

(3.100) 

  𝑌2(𝑥) = 0.40 ∗ cos(21.30𝑥) +  0.40 ∗ sin(21.30𝑥) +  0.15

∗ cosh(21.30𝑥) − 0.10 ∗ sinh(21.30𝑥) , 
(3.101) 

  

𝑈3(𝑥) = −2.93 ∗ 10−05 ∗ cos(0.15𝑥)  +  0.0034 ∗ sin(0.15𝑥), 

 

 

(3.102) 
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             For the dimple segments, we need two tangential and two radial eigenfunctions which are 

defined locally over 0 ≤ 𝜃 ≤ −135° and 0 ≤ 𝜃 ≤ 135°. The first two tangential eigenfunctions 

are given by 

 

 𝑉1(𝜃) = 0.30 ∗ cos(1.10𝜃) − 0.04 ∗ sin(1.10𝜃) +  0.01 ∗

cos(0.88𝜃) +  0.14 ∗ sin(0.88𝜃) − 0.1 ∗ cos(0.16𝜃)  +  0.10 ∗

sin(0.16𝜃), 

(3.104) 

 

 𝑉2(𝜃) = −0.11 ∗ cos(1.10𝜃) +  0.13 ∗ sin(1.10𝜃) − 0.44

∗ cos(0.88𝜃) +  0.16 ∗ sin(0.88𝜃) +  0.01

∗ cos(0.16𝜃) − 0.57 ∗ sin(0.16𝜃), 

(3.105) 

 

where defined globally over 0.04 ≤ 𝑥 ≤ 0.07 and 0.132 ≤ 𝑥 ≤ 0.162, respectively. Also, the 

radial eigenfunctions within the second dimple segment are 

 𝑊1(𝜃) = −0.05 ∗ cos(1.10𝜃) − 0.33 ∗ sin(1.10𝜃) +  0.12 ∗

cos(0.88𝜃) − 0.01 ∗ sin(0.88𝜃)  +  0.01 ∗ cos(0.16𝜃)  +

 0.02 ∗ sin(0.16𝜃) , 

(3.106) 

 

 𝑊2(𝜃) = 0.14 ∗ cos(1.10𝜃) +  0.12 ∗ sin(1.10𝜃) +  0.14 ∗

cos(0.88𝜃) +  0.40 ∗ sin(0.88𝜃) − 0.09 ∗ cos(0.16𝜃) − 0.001 ∗

sin(0.16𝜃). 

(3.107) 

 

These segments can be defined globally in the beam domain 0.04 ≤ 𝑥 ≤ 0.07 and 0.132 ≤ 𝑥 ≤

0.162, respectively (this domain is important to plot the mode shape of a dimpled beam). Appendix 

(B) illustrates how to plot the mode shapes of a dimpled beam using multiple eigenfunctions given 

from the BVM. The reader is referred to reference [1, p. 148] for an excellent background on 

plotting the mode shape of dimpled beams.  
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The results presented previously (natural frequencies) are checked and verified using the 

finite element method (FEM) in the next chapter in Chapter 4, two examples of modeling the 

dimpled beams using finite element method are presented and the results are compared to those 

obtained from BVM. In Chapter 5, the beam dimpling approach is validated experimentally (using 

Impact testing). 
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CHAPTER 4 

 FINITE ELMENT MODEL 

 

The objective of this chapter is to show the accuracy of the analytical solution by comparing 

the results obtained against those of finite element method. Two examples are presented here to 

compare the natural frequencies obtained using these two methods. In this study, finite element 

modal analysis of dimpled beam is performed using ANSYS®. In particular, the ANSYS Parametric 

Design Language (APDL) is used to model the dimpled beams. APDL is a powerful scripting 

language that allows us to parametrize the model and automate common tasks. APDL enables the 

user to build a model in terms of parameters (i.e., model dimensions, material properties of beams, 

and the locations of dimples are defined as variables). This chapter starts with basic of modeling 

of the dimpled beam using finite element method (Section 4.1), followed by an example of 

cantilever dimpled beam model (Section 4.2 ). In Section 4.3, the fixed-fixed dimpled beam model 

is presented as an example. Finally, a comparison between the natural frequencies obtained using 

the analytical model and finite element model (FEM) is presented in Section 4.4. 

4.1 Dimpled Beam Modeling 

As mentioned before, the dimple is positioned between two straight segments where the dimpled 

beam can be modeled as shown in Fig. 4.1. Along with the chord length 𝑙,̅ 𝑅 represents the constant 

radius, and 𝛼 represents the angle. The distance between the dimple center and the left beam 

boundary is assumed to be 𝑥. 
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Figure 4.1: Schematic representation of a dimpled cantilever beam. 

 

Assuming the constant mass, the mathematical relation between the dimple and straight segment 

thicknesses is given by Eq. (3.2). All straight segments and dimples have uniform thickness where 

ℎ and ℎ̅ represents the thickness of the beam and the dimple thickness, respectively. Also, the 

mathematical relation between the beam dimple radius 𝑅, the dimple cord length, and the dimple 

angle can be approximately by [4] 

 

𝑅 =  
𝑙�̅�

2 sin(𝛼𝑖/2)
     , (4.1) 

 

 the height of the dimple 𝐻 is also given by [4] 

 

𝐻 =  𝑅𝑖 (1 − 𝑐𝑜 𝑠 (
𝛼𝑖

2
)). (4.2) 

 

The ANSYS Parametric Design Language (APDL) is used to model the dimpled beams 

where the dimple locations and geometric parameters can be defined as variables. In this finite 

element study, a beam element is used (ANSYS Beam3 (2D elastic beam)). The beam element is 

defined by two nodes. This element has three degrees of freedom at each node: two translations in 

the nodal 𝑥 and 𝑦 directions and one rotation about the nodal 𝑧-axis. Figure 4.2 shows the 

geometry, node locations, and the coordinate system for this beam element.  
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Figure 4.2: ANSYS Beam3 (2D elastic beam) element. 

 

            The APDL code which is used to build a cantilever beam with two dimples in opposing 

directions is given in Appendix (C). The natural frequencies are calculated using a modal analysis 

(ANTYPE, 2). Also, the results of the natural frequencies for two examples, cantilever, and fixed-

fixed dimpled beams, are given at Sections 4.2 and 4.3 where the convergence study for the finite 

element mesh used to model the dimpled beam is given at the end of each section. 

4.2 Cantilever Beam Model 

In this section, two beam models are presented. A cantilever beam with two dimples in the same 

direction and a cantilever beam with two dimples in the opposite direction, respectively. Also, the 

modal of a uniform cantilevered beam is given as well. Figures 4.3 (a) and (b) show the 3D 

rendition of the cantilever beam models with two dimples in the same and opposite directions, 

respectively.  
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(a)                                                                     (b) 

Figure 4.3: 3D structure of a cantilever beam with two dimples in the same (a) and opposite 

directions (b). 
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4.2.1 Geometrical and Material Properties 

A dimpled cantilever beam is considered with the properties lists in Table 4.1. 

 

Table 4.1: Parameters for cantilever dimpled beam (𝑵 = 𝟐). 

Parameter Value 

Beam length, 𝐿 0.2210 m  

First distance between the dimple center and 

the beam boundary, 𝑥1 

0.07 m  

Dimple cord segment length, 𝑙1̅ 0.03 m 

Second distance between the dimple center and 

the beam boundary, 𝑥2 

0.1620 m 

Dimple cord segment length, 𝑙2̅ 0.03 m 

Width, 𝑏 0.0260 m 

Thickness, ℎ 0.00118 m 

Dimple angle, 𝛼1 135° 

Dimple angle, 𝛼2 135° 

Elastic modulus, 𝐸 200 GPa 

Density, 𝜌 7870 kg/m3  
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4.2.2 Uniform Cantilevered Beam Model  

Figure 4.4 illustrates a uniform beam model for the cantilever boundary condition where finite 

element method (see Appendix (D)) is used to build the model. The first natural frequencies of the 

cantilevered beam without dimples are calculated and tabulated in Table 4.2.  

                

Figure 4.4: Cantilever beam without dimples (uniform beam). 

 

4.2.3 Calculation of Natural Frequencies for the Cantilever Dimpled Beam 

In the cantilever beam boundary condition, one end is constrained while the other end is 

free. After discretizing this beam into 81 equal elements (82 nodes), the results of the first five 

natural frequencies are evaluated numerically using Finite Element method. Figure 4.5 represent 

the cantilever beam models with two dimples in the same and opposite directions where the first 

five natural frequencies for these two models are computed.  
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(a) 

 

(b) 

Figure 4.5: Cantilever beam with two dimples in the same (a) and opposite (b) directions. 

 

The first five natural frequencies of the dimpled cantilever beam with two dimples in the 

same and opposite directions are given below in Table 4.2 where the percentage change between 

these two cases are calculated by Eq. (3.96) and given in the far right column.  

 

Table 4.2: A comparison between natural frequencies for a cantilever beam with two dimples for 

the two cases with and without dimples. 

Frequency 

[Hz] 

Beam without 

dimples 

(uniform beam) 

Dimple are in the 

same direction  

Dimple are in the 

opposite direction  

The change in the 

natural frequency 

(%) 

𝑓1 19.67 17.20 17.19 0.06 

𝑓2 123.29 107.43 107.75 -0.3 

𝑓3 345.21 254.57 228.06 10.8 

𝑓4 676.42 400.01 554.77 -38.6 

𝑓5 1118.1 678.16 593.59 12.4 
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The results show that there can be a significant difference between the natural frequencies 

results for the two models. The fundamental and second frequencies results for the two cases are 

closed to each other while the third, fourth, and fifth natural frequencies have a large change in the 

natural frequency. In the third mode, the natural frequency of a cantilever beam with two dimples 

in the same direction is about 10.8 larger than the natural frequency of a cantilever beam with two 

dimples in the opposite direction. In contrast, the fourth natural frequency of the cantilever beam 

with two dimples in the opposite direction is decreased by -38.6% less than the fourth natural 

frequency of the cantilever beam with dimples in the same directions. The fifth natural frequency 

of the beam with two dimples in the same direction is 12.4% higher than the natural frequency of 

the beam with two dimples in the opposing direction. As a result, the effect of creating two dimples 

in the same direction in shifting the natural frequencies of dimpled beams has a different trend 

comparing to creating two dimples in the opposite direction. Some detail and explanations for this 

comparison will present in Chapter 5 where the two models will validate experimentally. also, we 

can see that the addition of two dimples (with same or opposite direction) clearly changes the 

natural frequencies of the uniform beam.  

With a low number of elements (i.e., 12 elements), or an unreasonably coarse mesh, 

ANSYS does not build the required dimpled beam. Instead, a V-notch is formed on the beam (see 

Fig. 4.6).  

 

 

Figure 4.6: Two V-notch formed on a cantilever beam. 

 

As a result, with coarse mesh, ANSYS does not calculate the natural frequencies of the 

cantilever beam with two dimples (arches) accurately. In other words, a high number of elements 

must be taken into consideration when the dimpled beam is modeled to get precise results of natural 

frequencies, and that is why about 81 elements are considered to build the model. The following 

section presents a convergence study of a cantilever beam with two dimples in the opposite 

direction with a different number of elements.  
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4.2.4 Convergence Study 

 As we increase the number of elements of the model, our mesh is refined and the results of 

the natural frequencies converge to the solution. Table 4.3 shows the convergence of the natural 

frequencies of the cantilever beam with two dimples in the opposite directions with a different 

number of elements.  

 

Table 4.3: Convergence of the natural frequencies for the cantilever dimpled beam, (dimples are 

in the opposite direction), with a different number of elements. 

 
Mode 

Number 

Number of Elements 

5 12 81 121 1189 2376 3395 11878 

𝑓1 1 18.431 17.510 17.195 17.188 17.184 17.207 17.099 12.045 

𝑓2 2 115.74 109.97 107.75 107.70 107.68 107.68 107.68 104.76 

𝑓3 3 298.86 246.40 228.06 227.70 227.50 227.50 227.50 226.65 

𝑓4 4 647.34 578.50 554.77 554.25 553.97 553.97 553.97 553.37 

𝑓5 5 1096.30 661.48 593.59 592.34 591.64 591.63 591.63 591.32 

 

             As we can see from the table, the results of the fundamental frequency converge to 17.195 

at about 81 elements, and the natural frequency results converge about that value till the number 

of elements is increased about 11878 elements where the fundamental frequency starts to decrease 

due to numerical errors. The other natural frequencies behave in a similar manner as well. Thus, 

this a good check to make sure the results of the natural frequencies are adequate to use them to 

validate the BVM results.  

4.3 Fixed-Fixed Beam Model 

Two fixed-fixed dimpled beam models will be presented in this section to compare the results of 

the natural frequencies of the two models. The first model is that a beam model with the fixed-
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fixed boundary condition, (i.e. the motion of the end of the fixed boundary is fully constrained), 

which has two dimples in the same direction whereas the second model is that a fixed-fixed beam 

model with two dimples in the opposite direction. Also, the natural frequencies of the uniform 

cantilevered beam model are calculated here for convenience.  

4.3.1 Geometrical and Material Properties  

For the numerical analysis, consider a dimpled fixed-fixed beam with the properties which 

tabulated in Table 4.4 

4.3.2 Uniform Fixed-Fixed Beam Model  

This section explores the free vibration of a fixed-fixed beam modeled with 2D elastic beam 

element. The first five natural frequencies of a clamped uniform beam (beam without dimples) are 

computed using FEM (see Table 4.5).  

4.3.3 Calculation of Natural Frequencies for the Fixed-Fixed Dimpled Beam 

To calculate the natural frequency of the fixed-fixed beam with two dimples in the same direction 

as well as, the opposite direction, APDL is used to build and model the dimpled beam. The beam 

is modeled using 81 elements to make sure the results of the natural frequencies are converging to 

the solution. A modal analysis (ANTYPE,2) is used to solve for the natural frequencies.  
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Table 4.4: Parameters for the fixed-fixed dimpled beam (𝑵 = 𝟐). 

Parameter Value 

Beam length, 𝐿 0.2170 m  

First distance between the dimple center and 

the beam boundary, 𝑥1 

0.055 m  

Dimple cord segment length, 𝑙1̅ 0.03 m 

Second distance between the dimple center and 

the beam boundary, 𝑥2 

0.147 m 

Dimple cord segment length, 𝑙2̅ 0.03 m 

Width, 𝑏 0.0260 m 

Thickness, ℎ 0.00118 m 

Dimple angle, 𝛼1 135° 

Dimple angle, 𝛼2 135° 

Elastic modulus, 𝐸 200 GPa 

Density, 𝜌 7870 kg/m3  
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The results of the natural frequencies computed by ANSYS for the two models are tabulated in 

Table 4.5. The change in the natural frequencies between the beam with two dimples in the same 

direction and the beam with two dimples in the opposite direction are calculated by Eq. (3.96) and 

given in the far right column. 

 

Table 4.5: A comparison between natural frequencies for a fixed-fixed beam with two dimples 

for the two models. 

Frequency 

[Hz] 

Beam without 

dimples 

(uniform beam) 

Dimple are in the 

same direction 

Dimple are in the 

opposite direction 

The change in the 

natural frequency 

(%) 

𝑓1 129.85 127.79 123.70 3.2% 

𝑓2 358.02 282.94 411.33 - 45.37% 

𝑓3 702.32 672.91 590.09 12.30% 

𝑓4 1162.8 1011.9 887.09 12.33% 

𝑓5 1742.1 1142.8 1106.4 3.18% 

 

The results show that the natural frequencies of the fixed-fixed beam with two dimples in 

the same direction can be drastically different from the results of the natural frequencies of the 

fixed-fixed beam with two opposing dimples. A detailed discussion of these results will be in 

Chapter 5 where the numerical and analytical results are validated and compared to the 

experimentally measured values.  
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4.3.4 Convergence Study 

The concept of the convergence that is used here is to increase the number of elements 

gradually and see how the natural frequencies vary. When the natural frequencies do not change, 

we have reached convergence and can select our mesh. A fixed -fixed beam with two dimples in 

opposite directions is considered as an example. Table 4.6 illustrates the results obtained.  

 

Table 4.6: Convergence of the natural frequencies of the fixed-fixed dimpled beam, (dimples are 

in the opposite direction), with a different number of elements. 

 

Mode 

Number 

Number of Elements 

5 16 42 81 468 1169 3338 5839 

𝑓1 1 129.82 124.70 123.85 123.70 123.65   123.64 123.65 123.62 

𝑓2 2 328.18 408.65 411.13 411.33 411.40 411.40 411.40 411.40 

𝑓3 3 684.22 601.87 591.82 590.09 589.40 589.38 589.38 589.37 

𝑓4 4 1150.5 921.38 891.93 887.09 885.15 885.10    885.10 885.09 

𝑓5 5 1923.5 1151.6 1112.6 1106.40 1104.0 1103.9   1103.9 1103.9 

 

The fundamental frequency tends to converge about 123 Hz whereas the second natural 

frequency tends to converge about 411 Hz. Also, the other frequencies follow the similar manner 

which means the numerical results of the natural frequencies are accurate with 81 elements.  

4.4 BVM Results vs. FE Results 

This section compares the results of the natural frequencies for two models with two boundary 

conditions: cantilever beam and fixed-fixed beam. The natural frequencies of a cantilevered and 

fixed-fixed beams with two dimples in the same direction and opposite direction are computed 

analytically using BVM and numerically using the finite element method. In Sections 4.4.1 and 
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4.4.2, a comparison between the results of the natural frequencies computing by BVM and finite 

element method is made for the two models.   

4.4.1 Cantilevered Beam 

The natural frequencies of the cantilevered beam with two dimples in the same and opposite 

directions are compared in Table 4.7 and Table 4.8 respectively. The percentage error between the 

two methods can be defined as 

 

% Difference  =  𝑎𝑏𝑠 (
𝑓𝐵𝑉𝑀 − 𝑓𝐹𝐸𝑀

𝑓𝐵𝑉𝑀
)  100 ,  (4.3) 

 

where 𝑓𝐵𝑉𝑀 is the natural frequency computed using BVM and 𝑓𝐹𝐸𝑀 is the natural frequency 

calculated using finite element method. 

 

Table 4.7: First five natural frequencies for the cantilevered beam with two dimples in the same 

direction (BVM vs. FEM). 

Frequency [Hz] BVM FEM Difference (%) 

𝑓1 17.20  17.20 0.0% 

𝑓2 107.38 107.43 0.04% 

𝑓3 254.46 254.57 0.04% 

𝑓4 398.78 400.01  0.3% 

𝑓5 677.27 678.16 0.1% 
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Table 4.8: First five natural frequencies for the cantilevered beam with two dimples in the 

opposite direction (BVM vs. FEM). 

Frequency [Hz] BVM FEM Difference (%) 

𝑓1 17.19  17.19 0.00% 

𝑓2 107.70 107.75 0.05% 

𝑓3 227.60 228.06 0.20% 

𝑓4 554.19 554.77  0.10% 

𝑓5 591.92 593.59 0.28% 

 

Although there is a small difference between the BVM and FEM, the agreement is good between 

them. 

4.4.2 Fixed-Fixed Beam 

A fixed-fixed beam with two dimples in the same and opposite directions is used as an 

example so the natural frequencies obtained using BVM could be compared to those obtained 

using FEM. These results are listed in Tables 4.9 and 4.10.  
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Table 4.9: First five natural frequencies for the fixed-fixed beam with two dimples in the same 

direction (BVM vs. FEM). 

Frequency [Hz] BVM FEM Difference (%) 

𝑓1 127.7 127.8 0.08% 

𝑓2 282.8 282.9 0.04% 

𝑓3 672.4 672.9 0.07% 

𝑓4 1011.0 1011.9 0.09% 

𝑓5 1140.0 1142.8 0.25% 

 

 

Table 4.10: First five natural frequencies for the fixed-fixed beam with two dimples in the 

opposite direction (BVM vs. FEM). 

Frequency [Hz] BVM FEM Difference (%) 

𝑓1 123.6 123.7 0.08% 

𝑓2 411.4 411.3 0.02% 

𝑓3 589.6 590.1 0.08% 

𝑓4 885.5 887.1 0.18% 

𝑓5 1104.4 1106.4 0.18% 

 

These results show a good match between the natural frequencies computed by BVM and 

the natural frequencies obtained by FEM. The following chapter (Chapter 5) will present an 

experimental validation of these results for two examples: cantilevered and fixed-fixed beams.  
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CHAPTER 5 

 
 EXPERIMENTAL VALIDATION 

 

In this chapter, cantilever, and fixed-fixed beams are used as examples to compare their natural 

frequencies to those found using the BVM and the finite elements methods. All measurements 

were conducted at Western Michigan University’s Noise and Vibration Laboratory. 

5.1  Manufacturing Process of Dimpled Beam  

The manufacturing of dimpled beam is done in the Western Michigan University’s machine shop. 

After taking the required beam and the dimple dimensions, dimple is created in the beams by 

stamping technique. In particular, the stretching process is used. The die and the punch that are 

used in the stamping process were manufactured by Alshabatat [4] and are shown in Fig. 5.1. 

 

 

Figure 5.1: The die and the punch which are used in the manufacturing of the dimpled beams [4]. 
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The following steps illustrate the dimple forming: 

Step 1) In Figs. 5.2 (a) and (b) the beam is clamped into the die with suitable clamping 

force to ensure that the clamped metal is not drawn during the pressing process.  

 

 

                        (a)                                                        (b) 

            Figure 5.2: The beam is clamped well into the die, (a) and (b). 

 

Step 2) Using a punch, the dimple shape is pressed on the beam. Figures 5.3 (a), (b), 

(c) and (d) show the steps of the pressing process where the punch is used to press the 

die onto the beam to create dimples on the beam’s surface.  
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(a)                                                     (b) 

 

                                        (c)                                                       (d) 

Figure 5.3: Manufacturing process of dimpled beam in four steps, (a), (b), (c), and (d). 

 

5.2 Equipment and Specifications   

The equipment that used for this experiment is prepared as shown in the following Table 5.1. 
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Table 5.1: Experiment equipment. 

Equipment  Function  

Three beam models. 

 

The material of the experiment model 

is steel where the uniform and 

dimpled beams have the same 

material properties. 

Impact hammer model (PCB piezotronic/model 

208C02), with rubber tip. 

  

To generate the impulse force, that is 

used as the excitation to the beam.  

A single axis accelerometer (PCB piezotronic/ model 

352C22) and Petro wax. 

                   

 A single axis accelerometer is 

used to measure the 

acceleration. 

 

 Petro wax is used to attach the 

accelerometer to the test 

beam. 

A four-channel (NI -9234) data acquisition card and 

M+P International Smart Office Analyzer Software. 

               

 A four-channel (NI -9234) 

data acquisition card to 

collect the data. 

 

 M+P International Smart 

Office Analyzer Software to 

analyze by M+P International 

Smart Office.  
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The M+P International Smart Office Analyzer is a software package used for dynamic signal 

measurements and processing. This software can analyze the time and frequency domain, Fast 

Fourier Transform (FFT), and modal and impact testing. A rubber impact tip is used with the 

impact hammer to determine the impulse shape (amplitude and duration) and the bandwidth of the 

excitation. The National Instrument Data Acquisition system (NI DAQ) with the Smart Office is 

used to collect and analyze the data where a four-channel (NI-9234) data acquisition card is 

connected to a computer using USB port. The measurements can be exported in 𝑀𝐴𝑇𝐿𝐴𝐵® for 

future analysis which can be also used to plot frequency response functions for all results obtained.  

5.3 Experiment Setup and Measurement Procedure 

This section describes the experimental setup for measurement of dimpled beam natural 

frequencies using the equipment listed in Table 5.1. The entire experimental arrangement is 

depicted in Fig. 5.4.  

 

 

Figure 5.4: Experiment arrangement and instruments. 
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The displacement, velocity, and acceleration can be obtained through the acquisition of the 

Frequency Response Function (FRF) between an excitation point (hammer impact) and response 

(accelerometer). In this study, the input to the structure is an impulse force which is generated 

using an impact hammer (PCB piezotronic /model 208C02). The output response is the 

acceleration which is measured using a single-axis accelerometer (PCB piezotronic/ model 

352C22) where this accelerometer measures the transverse vibration of the beam. It is fixed at the 

third segment with petro wax. The beam is impacted at 3 points (left side, middle, and right side 

of the beam) using the impact hammer as shown in Figs. 5.5 (a), (b), and (c). 

 

Figure 5.5: Three possible places where the dimpled beam is excited using the impact hammer, (a) 

indicates point (1), (b) indicates point (2), and (c) indicates point (3). 
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Each location is impacted three times, and results averaged. The more time we strike at a particular 

position; the better results we acquire (because that will average out the extraneous noise). Since, 

the accelerometer is located at a third location, this point is excited from the other side (underside 

of the beam). To ensure transverse vibration only, the beam must be struck along its centerline. In 

this experiment, two channel were used, one for impact hammer and the other for a single axis 

accelerometer as shown in Fig.5.6.  

 

 

Figure 5.6: A four-channel (NI -9234) data acquisition card. 

 

This experiment was executed in three steps: First, the experiment was carried out for a 

uniform beam (beam without dimples). Then, the experiment was performed once using a beam 

with two dimples in the same direction and then using a beam with two dimples in opposite 

direction as shown in Figs. 5.7 (a), (b), and (c), respectively. 
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(a) 

 

(b) 

 

(c) 

Figure 5.7: There beam models, a beam without dimples, a beam with dimples in the same 

direction, and a beam with dimples in opposite direction. 

 

Each experiment was set up for two boundary conditions. First, cantilever beam (anchored 

at one end and free at the other end) as shown in Fig.5.8. 

 

 

(a) 

 

(b) 

Figure 5.8: Cantilever beam vibration excitation without (a) and with dimples (b). 



 

 

76 

 

Beam geometrical and material properties are given in Table 5.2. The overall beam length 

is 22.1 cm. This experiment was repeated but with a beam with two dimples in opposing direction.  

 

Table 5.2: Parameters for the cantilever dimpled beam (𝑵 = 𝟐). 

Parameter Value 

First segment length, 𝑙1 0.055 m 

Dimple cord segment length, 𝑙1̅ 0.03 m 

Second segment length, 𝑙2 0.062 m 

Dimple cord segment length, 𝑙2̅ 0.03 m 

Third segment length, 𝑙3 0.044 m 

Width, 𝑏 0.026 m 

Thickness, ℎ 0.00118 m 

Dimple angle, 𝛼1 135° 

Dimple angle, 𝛼2 135° 

Elastic modulus, 𝐸 200 GPa 

Density, 𝜌 7870 kg/m3 
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Second, the fixed-fixed beam boundary condition was tested, as shown in Fig. 5.9 (a) and (b).  

 

 

(a) 

 

(b) 

Figure 5.9: Fixed-fixed beam model, (a) with two dimples in the same direction (a) and (b) two 

dimples in the opposing direction. 

 

The beam fixed-fixed geometrical and material properties are given in Table 5.3. 
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Table 5.3: Parameters for the fixed-fixed beam (𝑵 = 𝟐). 

Parameter Value 

First segment length, 𝑙1 0.04 m 

Dimple cord segment length, 𝑙1̅ 0.03 m 

Second segment length, 𝑙2 0.062 m 

Dimple cord segment length, 𝑙2̅ 0.03 m 

Third segment length, 𝑙3 0.055 m 

Width, 𝑏 0.026 m 

Thickness, ℎ 0.00118 m 

Dimple angle, 𝛼1 135° 

Dimple angle, 𝛼2 135° 

Elastic modulus, 𝐸 200 GPa 

Density, 𝜌 7870 kg/m3  

 

This experiment was repeated using the beam- with two dimples in opposite directions as shown 

in Figure 5.9 (b). 

The results of natural frequencies of the beam with dimples in the same direction are 

compared to the results of the natural frequencies of the beam with dimples in the opposite 

direction for the two boundaries conditions in Section 5.4. These results are compared to the 

experimental natural frequencies of the uniform beam (beam without dimples).  
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5.4 Experimental Results 

This section presents two different examples of beams with two boundaries: cantilever (fixed-free) 

and fixed-fixed beams. The results of the experimental vibration analysis (finding the natural 

frequencies) for both cases of dimples in the same and opposite direction are presented. Also, 

natural frequencies of a uniform beam are compared to these results. Then, the experimentally 

obtained natural frequencies are compared to the analytical (BVM) results.  

5.4.1 Cantilever Beam  

This section shows and explains the cantilever beam vibration analysis. The Frequency Response 

Function (FRF) before and after dimpling is presented, and then a comparison of natural frequency 

values for using two dimples on the beams in the same and opposite direction are shown. As shown 

from the results in Table 5.4, creating two dimples at the cantilever beam decreases all of its first 

five natural frequencies. 

 

Table 5.4: Comparison between natural frequencies for a cantilever beam with 𝑁 = 2 with and 

without dimples. 

Frequency 

[Hz] 

Uniform 

beam  

Dimpled beam (dimples 

are in the same direction) 

Dimpled beam (dimples are 

in the opposite direction) 

𝑓1 18   17.3  17.1 

𝑓2 112 105.7 103.6 

𝑓3 316 270.1 244.2 

𝑓4 620 444.9 534.5 

𝑓5 1028 644.8 610.2 
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The beam is impacted at three measurements locations and three possible places where the 

response can be measured. In this experiment, the response was measured at the third place, and 

the beam was excited at three different locations as shown previously in Fig. 5.5. The sample rate 

is 2048 Hz, averaging =3, and ∆𝑓 = 1 𝐻𝑧.  

Figure. 5.10 illustrates the FRF curves for the cantilever beam before and after dimpling. 

It is obvious that from Fig. 5.10 that each curve shows five main peaks corresponding to the first 

five transverse natural frequencies of the uniform and the dimpled cantilever beam models for the 

two cases (the cantilever beam with two dimples in the same direction and the cantilever beam 

with two dimples in the opposite direction). 

 

 

Figure 5.10: The FRF of the cantilever beam before and after dimpling for two the cases (the 

cantilever beam with two dimples in the same direction and the cantilever beam with two dimples 

in the opposite direction). The beam was excited at the first point and the acceleration response 

measured at the third point, (see Fig. 5.5a). 

 

Thus, it is evident that there is a significant difference in the first five natural frequency 

values between the two cases (with dimples in the same and the opposite direction). The results 

show that the first two natural frequencies of the two cases are close (within 1.15% and 2.0% of 

each other, respectively). In contrast, the last three natural frequencies exhibit a “switching” 

behavior. The third natural frequency of the beam with two dimples in the same direction is higher 
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than the third natural frequency of the one with two dimples in the opposing direction (9.5%). The 

fourth natural frequency of the latter is much higher than the beam with two dimples in the same 

direction (-20.1%). Also, the changes in the fifth natural frequency of the one with two dimples in 

the same direction is higher than the change in the natural frequency of the beam with two dimples 

in the opposing direction, which is about 5.2%. Therefore, the highest change of the natural 

frequency between the two cases has occurred at the fourth frequency. In general, creating two 

dimples on the cantilever beams decrease the first five natural frequencies. There is a significant 

difference in using two dimples in the same direction and the opposite direction.  This experiment 

confirms that creating two dimples in the same direction on cantilever beams shift the natural 

frequencies significantly different than the case of creating two dimples in opposite direction.  

5.4.2 Fixed-Fixed Beam 

This section presents the experimental vibration analysis of fixed-fixed beams. The 

Frequency Response Function (FRF) of the uniform and dimpled beams is presented and natural 

frequencies of these beams are extracted. The results are shown in Fig. 5.11 where the five curves 

indicate the first five natural frequencies for each case.  

 

 

 



 

 

82 

 

 

Figure 5.11: The FRF of the fixed-fixed beam before and after dimpling for two the cases (the 

beam with two dimples in the same direction and the beam with two dimples in the opposite 

direction). The beam was excited at the first point and the acceleration response measured at the 

third point, (see Fig. 5.5a). 

 

Table 5.5 lists a comparison of these first five natural frequencies. In this section, we obtain the 

first five natural frequencies where the sample frequency is 3200 Hz, the averaging = 3, and ∆𝑓 =

0.78 𝐻𝑧.  
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Table 5.5: Comparison between natural frequencies for fixed-fixed beam (𝑁 = 2) with and 

without dimples. 

Frequency 

[Hz] 

Uniform 

beam  

Dimpled beam (dimples 

are in the same direction) 

Dimpled beam (dimples are 

in the opposite direction) 

𝑓1 127.50 122.7  126.2 

𝑓2 355.0 282.7 400.6 

𝑓3 680.0 627.3 650.6 

𝑓4 1141.3 970.9 890.3 

𝑓5 1727.5 1257.0 1147.5 

 

It is obvious that there is a drastic change in the first five natural frequencies of the fixed-

fixed beam between the two cases. Referring to Table 5.5, the change in the fundamental frequency 

for the two cases is about -2.8% (negative means the fundamental of the beam with two dimples 

in the same direction is lower than the fundamental in the beam with two dimples in the opposing 

direction), which is small difference comparing to the other frequencies. The change percentage 

for the second frequency of the two cases is about –41.7% which represents the highest change in 

frequency comparing for the first five frequencies. Also, the change in the third natural is about –

3.6%. The change in the fourth natural frequency exhibits a “switching” behavior where the fourth 

frequency of the beam with two dimples in the same direction is increased by 8.7% comparing to 

the one with two dimples in the opposing direction. Also, the changes in the fifth natural frequency 

of the one with two dimples in the same direction is higher than the change in the natural frequency 

of the beam with two dimples in the opposing direction, which is about 9.5%. As a result, the first 

three natural frequencies of the beam with two dimples in the opposing direction is much higher 

than the first three frequencies in the beam with two dimples in the same direction. On the contrary, 

the fourth and fifth natural frequency of this beam is greater than the fourth and fifth natural 

frequency of the one with two dimples in the opposing direction.  
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5.5 Comparison of BVM, FEM, and Experimental Results 

To check the accuracy of the BVM, FEM was used and the natural frequencies obtained by the 

BVM were compared to FEM for two examples which were given in Chapter 4. In this section, 

the natural frequencies of a cantilevered beam and fixed-fixed beam with two dimples for the two 

cases which were calculated using the BVM and those obtained from FEM will be validated 

experimentally.  

5.5.1 Cantilever Beam  

The first five natural frequencies of a cantilever beam with two dimples in the same direction are 

tabulated in Table 5.6 lists a comparison of these first five natural frequencies. The percentage 

error is calculated for the BVM with respect to experimental results. 

 

Table 5.6: First five natural frequencies of the cantilever beam with two dimples in the same 

direction. Experiment vs. BVM vs. Finite Element. 

Frequency [Hz] Experimental BVM Finite Element % Error 

𝑓1 17.3 17.2 17.2             0.5% 

𝑓2 105.7 107.4 107.4              -1.6% 

𝑓3 270.1 254.5 254.5            5.7% 

𝑓4 444.9 398.8 400.0             10.3% 

𝑓5 644.8 677.3 678.2            -5.0% 

 

The first natural frequency agrees to within 0.5% and the second natural frequency agrees 

to within 1.6%. The percentage error in third natural frequency is increased which is about 5.7%. 
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Also, the percentage error in the fourth and fifth natural frequencies are 10.3% and 5.0% 

respectively.  

The experimental results of the cantilevered beam with two dimples in the opposite 

direction, agreed well with the BVM and FEM results. However, there is a small error between all 

methods. The first five natural frequencies for a cantilever beam with two dimples in the opposite 

direction are tabulated in Table 5.7. 

 

Table 5.7: First five natural frequencies of the cantilever beam with two dimples in the opposite 

direction. Experiment vs. BVM vs. Finite Element. 

Frequency [Hz] Experimental BVM Finite Element % Error 

𝑓1 17.1 17.2 17.2 0.5% 

𝑓2 103.6 107.7 107.8 -4.1% 

𝑓3 244.2 227.6 228.1 6.8% 

𝑓4 534.5 554.2 554.8 -3.6% 

𝑓5 610.2 592.0 593.6 2.9% 

 

The results show that the fundamental is agree within 0.5% where the same percentage error 

occurred in the beam with two dimples in the same direction. The percentage error between the 

experimental results and BVM and FEM results is about 4.1% and 6.8% in the second and third 

natural frequency. The percentage error in the fourth and fifth natural frequencies is about 3.6% 

and 2.9% respectively with comparing to those found from experimental.  
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5.5.2 Fixed-Fixed Beam  

As we have seen from the results in Table 5.5, creating two dimples in the same direction on the 

fixed-fixed beam decreases its first fifth natural frequencies. This is different from the results 

obtained for creating two dimples in the opposing direction where creating two dimples (convex 

and concave) decreased the fundamental, third, fourth, and fifth natural frequencies. The second 

natural frequencies of the beam with two dimples in the opposing direction increased.  

In Table 5.8, a comparison between the frequencies obtained experimentally, from BVM, 

and from FEM is given for a fixed-fixed beam with two dimples in the same direction. The results 

show that the percentage error in the fundamental frequency between the BVM results and the 

experimental results is about 4% where the second natural frequency agrees to within 0.03%. The 

percentage errors in the third and fourth natural frequencies between the experimental results and 

BVM results are about 3.3% and 4.1% respectively. The percentage errors in the fifth natural 

frequency is about 9.1%. This error is larger than the first fourth natural frequencies. 

 

Table 5.8: First five natural frequencies of the fixed-fixed beam with two dimples in the same 

direction. Experiment vs. BVM vs. Finite Element. 

Frequency [Hz] Experimental BVM Finite Element % Error 

𝑓1 122.7 127.6 127.8 4.0% 

𝑓2 282.7 282.8 282.9 0.03% 

𝑓3 650.6 672.4 672.9 - 3.3% 

𝑓4 970.9 1011.0 1011.9 - 4.1% 

𝑓5 1255.0 1140.0 1142.8 9.1% 
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Furthermore, the first five natural frequencies for a fixed-fixed beam with two dimples in the 

opposite direction are tabulated in Table 5.9. As shown, the percentage error between the 

experimental and BVM results in the fundamental and second frequencies agree to within 2.1% 

and -2.7% where the percentage error in the third natural frequency is about 6.0%. The percentage 

error between the experimental results and BVM results in the fourth natural frequency is very 

small, which is about 0.5%. The percentage error between the BVM and the experimental results 

in the fifth natural frequency is large, which is about 13.2%. 

 

Table 5.9: First five natural frequencies of the fixed-fixed beam with two dimples in the opposite 

direction. Experiment vs. BVM vs. Finite Element. 

Frequency [Hz] Experimental BVM Finite Element % Error 

𝑓1 126.2 123.6 123.7 2.1 % 

𝑓2 400.6 411.4 411.3 - 2.7% 

𝑓3 627.3 589.6 590.1 6.0% 

𝑓4 890.3 885.5 887.1 0.5 % 

𝑓5 1272.6 1104.4 1106.4 13.2% 

 

Although there is a small discrepancy with the experiment results, the agreement is good 

between the three methods. With respect to the experimentally measured natural frequencies, the 

deviation between the BVM, FEM, and experimental results could be due to the following reasons: 

1) Beam geometry, i.e. the uniform dimple thickness assumption used in the BVM and 

FEM models. In practical manufacturing application, the dimple thickness is not 

uniform (the center of the dimple is the thickest) [4].  

2) Experimental errors, i.e. boundary conditions and experiment equipment. 
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CHAPTER 6 

 INVESTIGATION OF EFFICIENCY OF THE ANALYTICAL MODEL 

The purpose of this chapter is to use an analytical model to investigate various configurations of 

beams and dimples. In previous sections, a comparison between adding two dimples to beams in 

same and opposing directions (cantilever and fixed-fixed boundary conditions) was made where 

the natural frequencies were shown to shift away from the values of natural frequency of the 

uniform beam. Adding dimples to a beam may increase or decrease its natural frequencies. Many 

factors that may affect the change in the natural frequencies of beams, for instance, boundary 

condition, dimple location, and dimple angle. All these are considered for beams with two dimples 

in the same and the opposite direction. The following text gives an investigation of these effects. 

6.1 Boundary Condition 

In this section, two boundary conditions that were not discussed previously are considered: pin-

pin and pin-pin roller (axial motion allowed). Consider a beam with length of 0.2170 and  𝑁 = 2 

dimples (𝐸 = 200 GPa, 𝜌 = 7870 kg/m3,  ℎ = 0.00118 m). The other beam parameters were 

given previously in Table 3.5 and will be used here again.  

6.1.1 -Example 1: Pin-Pin Beam Model 

Table 6.1 and 6.2 respectively show the results of the natural frequencies of a pin-pin beam with 

two dimples in the same and opposing direction.  
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Table 6.1: First five natural frequencies for the pin-pin beam with two dimples in the same 

direction. 

Frequency 

[Hz] 

Uniform Beam 

(BVM) 

Dimpled Beam 

(BVM) 

Dimpled Beam 

(FEM) 

𝑓1 57.5 62.7 62.6 

𝑓2 230.2 170.2 170.4 

𝑓3 517.8 474.4 475.0 

𝑓4 920.6 750.3 751.0 

𝑓5 1438.5 1136.2 1140.0 

 

 

Table 6.2: First five natural frequencies for the pin-pin beam with two dimples in the opposing 

direction. 

Frequency [Hz] Uniform Beam 

(BVM) 

Dimpled Beam 

(BVM) 

Dimpled Beam 

(FEM) 

𝑓1 57.5 46.0 46.0 

𝑓2 230.2 265.5 265.3 

𝑓3 517.8 463.4 463.5 

𝑓4 920.6 774.2 775.0 

𝑓5 1438.5 901.6 902.9 

 

 

The fundamental frequency of the beam with two dimples in the same direction increased (about 

9%) with respect to the uniform beam. On the contrary, the fundamental frequency of the pin-pin 

beam with two dimples in the opposing direction decreased by 20% lower than the uniform pin-

pin beam. The second natural frequency of the beam with two dimples in the same direction 

decreased (about 26%) lower than the uniform beam whereas the beam with two dimples in the 

opposing direction shows a different behavior where the natural frequency of dimpled beam is 

increased about 15.3% higher than the uniform beam. The frequencies of the higher modes (the 
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third, fourth, and fifth) decreased with respect to the pin-pin beam without dimples for the both 

cases.  

6.1.2 Example 2: Pin-Pin Roller Beam Model 

In this example, the change in the natural frequencies for a pin-pin roller beam is investigated. 

Two cases (the beam with two dimples in the same direction and opposing direction) are compared 

against a uniform beam. 

Table 6.3: First five natural frequencies for the pin-pin roller beam with two dimples in the same 

direction. 

Frequency 

[Hz] 

Uniform Beam 

(BVM) 

Dimpled Beam 

(BVM) 

Dimpled Beam 

(FEM) 

𝑓1 57.5 45.7 45.7 

𝑓2 230.2 169.2 169.3 

𝑓3 517.8 361.0 363.0 

𝑓4 920.6 556.2 557.1 

𝑓5 1438.5 755.5 756.5 

 

 

Table 6.4: First five natural frequencies for the pin-pin roller beam with two dimples in the 

opposing direction. 

Frequency 

[Hz] 

Uniform Beam 

(BVM) 

Dimpled Beam 

(BVM) 

Dimpled Beam 

(FEM) 

𝑓1 57.5 45.8 45.8 

𝑓2 230.2 156.9 157.1 

𝑓3 517.8 424.5 425.0 

𝑓4 920.6 558.9 560.1 

𝑓5 1438.5 779.7 780.6 
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The results show that the change in the natural frequency of the first five modes (Table 6.3) of 

dimpled pin-pin roller with two dimples in the same direction has decreased monotonically 

comparing to the pin-pin roller without dimples. Similarly, creating two dimples in the opposing 

direction in the pin-pin roller beam decreases the first five natural frequencies (Table 6.4).   

6.2   Effect of Dimple Location 

In Section 6.1, the location of two dimples is held constant for the two examples (pin-pin and pin-

pin roller beams) to examined the percentage change of the natural frequency for each boundary 

condition. In this section, two examples of dimples in the same and opposite directions are 

considered (see Table 6.5 for beam material and geometric properties) in order to investigate the 

effect of dimple location on the natural frequencies. In all cases, one dimple is held fixed, and the 

other dimple moved along the beam. 

 

Table 6.5: Parameters for dimpled beams. 

Parameter Value 

Total beam length, 𝐿 100 cm 

Width, 𝑏 5 cm 

Thickness, ℎ 1 cm 

Dimple cord length, 𝑙 ̅ 10 cm 

Elastic modulus, 𝐸 200 GPa 

Density, 𝜌 7870 kg/m3 

 

6.2.1 Example 1: Pin-Pin Beam 

In this example two cases are considered: a pin-pin beam with two dimples in the same direction 

and a pin-pin beam with two dimples in the opposite direction. The dimple to the far left is fixed 

(held at that location) while the second dimple is moved along the beam length as shown in Figs. 

6.1 (a) and (b). 
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                                   (a)                                                                      (b) 

Figure 6.1: Pin-pin beam with two dimples in the same (a) and opposite (b) direction. 

 

6.2.1.1 Pin-Pin Beam with Two Dimples in Same Direction 

Table 6.6. consist of six different group set where each set represents one of six different 

locations for the stationary dimple while the other dimple is moved along the beam length at the 

location indicated. For example, the first set (set 1) correspond to the stationary dimple being 

placed as close to the left boundary as possible (𝑥1=0.055 m) and the roving dimple is positioned 

at different locations on the beam (𝑥2 =  0.16, 0.2, … , 0.945). The percentage change in the 

fundamental frequency for each location is calculated. For all cases, the dimple angle is held 

constant at 𝛼 = 80° for both dimples.  The percentage change in dimpled beam fundamental 

frequency 𝑓𝑖 with respect to the uniform beam fundamental frequency 𝑓𝑖 
∗
 is defined by [1] 

 

    ∆𝑓𝑖  [%] = ((𝑓𝑖 − 𝑓𝑖 
∗)/ 𝑓𝑖 

∗) ∗ 100 , (6.1) 

so that a positive change indicates that the fundamental frequency of the dimpled beam being 

higher than the fundamental frequency of the uniform beam. 
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Table 6.6: Change in the fundamental frequency of pin-pin beam with two dimples in the same 

direction with respect to dimple location. 

Set 1 𝑥1= 0.055 (m) 

𝑥2 (m) 0.16 0.2 0.3 0.4 0.5 0.7 0.8 0.945 

The change (%) 0.8 0.8 1.6 

 

2.3 

 

2.3 

 

1.6 

 

0.8 

 

0.03 

 

Set 2 𝑥1= 0.15 (m) 

𝑥2 (m) 0.26 0.3 0.4 0.5 0.7 0.8 0.945  

The change (%) 3.9 3.9 5.4 

 

5.4 

 

3.9 

 

3.1 

 

0.8 

 

Set 3 𝑥1= 0.25 (m) 

𝑥2 (m) 0.36 0.4 0.5 0.7 0.8 0.945  

The change (%) 7.8 9.3 9.4 

 

7.0 

 

4.6 

 

1.5 

 

Set 4 𝑥1= 0.35 (m) 

𝑥2 (m) 0.46 0.5 0.7 0.8 0.945  

The change (%) 11.8 11.8 9.3 6.2 1.6 

Set 5 𝑥1= 0.45 (m) 

𝑥2 (m) 0.56 0.7 0.8 0.945  

The change (%) 13.4 10.2 7.0 

 

2.3 

 

Set 6 𝑥1= 0.5 (m) 

𝑥2 (m) 0.66 0.8 0.945  

The change (%) 11.8 7.0 2.3 

 

 

 

Myers [1] and Alshabtat [4] observed that placing dimples at locations that corresponded 

to high modal strain energy resulted in a significant change on corresponding mode’s frequency. 

Myers [1] investigated the effect of placing a single dimple at different locations along the length 

of the fixed-fixed and pin-pin beam. He observed that fundamental frequency of the pin-pin beam 
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is most sensitive to the placement of the dimple at the middle of the beam and insensitive when 

the dimple is located at boundaries. He explained this relation using the concept of modal strain 

energy (MSE) where the MSE of the uniform pin-pin beam is largest at beam center and zero at 

boundaries (fundamental mode). 

 The same behavior for natural frequency of the beam with two dimples in the same 

direction is observed here. From Table 6.6, it is apparent that The change in fundamental frequency 

is positive which means the fundamental frequency of the uniform beam increased after adding 

two dimples in the same direction to the beam (𝑓1 > 𝑓1 
∗). Also, the largest variation (13.4%) in 

fundamental frequency occurs when the two dimples are placed close to the beam center (𝑥1 =

0.45 m and 𝑥2 = 0.56 m) as shown in Fig. 6.2.  

 

 

Figure 6.2: Pin-pin beam with the highest change in the fundamental frequency (two dimples in 

the same direction). 

 

If each dimple is moved towards the boundaries, the change in fundamental frequency begins to 

decrease. For instance, if the first dimple is located at 𝑥1 = 0.055 m and the second dimple is 

placed at 𝑥2 = 0.945 m(see Fig. 6.3), the change in fundamental frequency is minimum which is 

about 0.03%.  
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Figure 6.3: Pin-pin beam with the lowest change in the fundamental frequency (two dimples in the 

same direction). 

 

This is important which indicates that adding two dimples to beams do not guarantee a 

change in beam natural frequency for some combination of angles and locations. Myers also found 

that certain combinations of dimple location and dimple angle yield no change in the beam 

fundamental frequency at all. This was demonstrated for fixed-fixed beam and a pin-pin beam with 

one dimple [1].  

Myers [1] suggested that the shape of the modal strain energy curve of the uniform beam 

plays a crucial role in determining which dimple locations are most influential. Therefore, by 

examining the modal strain energy (MSE) obtained from the mode shape of the fundamental mode 

of the uniform beam, the trend for change in these frequencies can be described. The mode shapes 

of a uniform pin-pin beam [6] are given by   

 

𝑌𝑖(𝑥) = sin(𝑘𝜋𝑥/𝐿) , (6.2) 

and the MSE is given as 

 

¥𝑘(x) = sin2 (
𝑘𝜋𝑥

𝐿
) . (6.3) 
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Figures 6.4 and 6.5 respectively show the first three mode shapes and MSE of a uniform 

pin-pin beam where each plot is symmetric because of the symmetric of boundary conditions.  

 

Figure 6.4:  First three mode shapes of a uniform pin-pin beam.  

 

 

Figure 6.5:  Modal strain energy, modes 1-3 (uniform pin-pin beam). 
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As we can see from Fig. 6.5, the MSE for the first mode (MSE 1) is largest at the beam 

center (𝑥 = 0.5 m) and zero at boundaries. Recall from results (Table 6.6) that the fundamental 

was most sensitive to change at the beam center (largest MSE) and least sensitive when the two 

dimples were located at the boundaries (zero MSE). Therefore, the fundamental exhibits maximum 

change if the two dimples are placed in a region of maximum MSE and minimum change if the 

two dimples are positioned at boundaries where the MSE is zero.  

For modes 2 and 3 in Fig. 6.5, a region of high and low MSE occurs at different locations. 

So, this can explain why the change in frequency of the second mode and third mode are different 

than the first mode for the same dimple locations. Myers also noticed this when he studied the 

effect of the dimple location with respect to dimple angle [1, p. 91]. According to Fig. 6.5, the 

maximum modal strain energy of the second mode (MSE 2) is at 𝑥 = 0.25 m and 𝑥 = 0.75 m (the 

anti-nodes).  

Figure 6.6 shows the change in the second frequency of the pin-pin beam with two dimples 

in the same direction. One dimple is held at 𝑥1 = 0.25 m and the second dimple is moved along 

the beam length (𝑥1 and 𝑥2 represents the center of the first and second dimples, respectively). 

 

 

Figure 6.6:  Change in the second frequency of pin-pin beam with two dimples in same direction 

(𝑥1 = 0.25 𝑚 and 𝑥2 is moved along the beam length) vs. dimple location. 
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Therefore, if two dimples in the same direction are placed at 𝑥1 = 0.25 𝑚 and 𝑥2 = 0.36 𝑚 

(see Fig. 6.7), so, the change in the natural frequency of the second mode at these location has the 

highest values (12.5%, largest increase, see Fig. 6.6) where MSE is maximum.  

 

 

 Figure 6.7:  Pin-pin beam with the highest frequency for second mode, MSE 2 (red dashed line). 

 

Similarly, if the dimples are placed at 𝑥1 = 0.25 𝑚 and 𝑥2 = 0.75 m as shown in Fig. 6.8 

(high MSE), the change in frequency is large (about -7.2% largest decrease, see Fig. 6.6). In other 

words, the largest decrease in the second frequency occurs at these locations where the modal 

strain energy (MSE 2) is the maximum. 

 



 

 

99 

 

 

Figure 6.8: Pin-pin beam with two dimples in the same direction for the second mode (a beam with 

two dimples in the same direction), 𝑥 = 0.25 𝑚 and 𝑥 = 0.75 𝑚, the maximum MSE 2 red dashed 

line. 

 

The converse is also true: the second frequency exhibits minimum sensitivity to change in 

the region of zero MSE at the two boundaries and 𝑥 = 0.5 m. For example, if the two dimples are 

placed at 𝑥1 = 0.5 m and the second dimple placed at 𝑥2 = 0.61 m (both dimples occupy the entire 

region of zero MSE 2 (see Fig. 6.9), then the natural frequency of the second mode exhibits a small 

variation of 0.08% (Table 6.7). This means that there is negligible change in second frequency 

(𝑓2 ≅ 𝑓2 
∗) when placing dimples at the location of zero modal strain energy (MSE 2 = 0).  
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Figure 6.9:  Pin-pin beam with the lowest change in frequency for the second mode. Areas of low 

MSE are indicated using the blue dashed lines. 

 

Table 6.7: Change in the second frequency of pin-pin beam with two dimples in the same direction 

with respect to dimple location, 𝒙𝟏 = 𝟎. 𝟓 𝐦, and the second dimple is moved along the beam 

length. 

Set  𝑥1= 0. 5 (m) 

𝑥2 (m) 0.61 0.65 0.7 0.75 0.8 0.85 0.9 0.945 

The change (%) -0.082 0.30 1.06 

 

1.06 

 

0.68 

 

0.30 

 

-0.46 

 

-0.8 

 

 

In addition, placing one or both dimples also to the beam yields minimal change in the 

frequency for the second mode because of the MSE is zero at these locations. It is apparent that 

the dimple location has an effect on natural frequencies and the increase or decrease in these 

frequencies coincides with a region of high and low MSE. Myers [1] explained that region of high 

MSE corresponds to areas where the curvature (𝑌′′) is large because the bending slope is rapidly 

changing in these areas. Therefore, in high MSE region, the internal moment is large. As a result, 

when dimples are placed at high bending moment areas, they have a significant effect on the beam 

dynamics. On the contrary, there is little effect on natural frequencies when dimples are located at 

areas corresponding to small internal bending moment (small MSE).  
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6.2.1.2 A Pin-Pin Beam with Two Dimples in Opposite Direction. 

As before, a pin-pin beam with two dimples in opposing direction considered is as an example. 

Table 6.8 shows six sets of results in which one dimple is held constant while the location of the 

second dimple is moved along the beam length. 
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Table 6.8: Change in the fundamental frequency of pin-pin beam with two dimples in the 

opposing direction with respect to change in dimple location. 

Set 1 𝑥1= 0.055 (m) 

𝑥2 (m) 0.16 0.2 0.3 0.4 0.5 0.7 0.8 0.945 

The change 

(%) 

- 0.7 - 1.5 - 1.5 - 0.7 - 0.7 - 1.5 - 1.5 - 0.73 

Set 2 𝑥1= 0.15 (m) 

𝑥2 (m) 0.26 0.3 0.4 0.5 0.7 0.8 0.945  

The change 

(%) 

- 3.0 - 3.0 - 3.8 - 3.8 - 3.00 - 2.3 - 0.7 

Set 3 𝑥1= 0.25 (m) 

𝑥2 (m) 0.36 0.4 0.5 0.7 0.8 0.945  

The change 

(%) 

- 5.2 - 5.2 - 5.2 - 4.5 - 3.7 -1.5 

Set 4 𝑥1= 0.35 (m) 

𝑥2 (m) 0.46 0.5 0.7 0.8 0.945  

The change 

(%) 

- 6.7 - 6.7 - 6.0 - 4.5 -1.5 

Set 5 𝑥1= 0.45 (m) 

𝑥2 (m) 0.56 0.7 0.8 0.945  

The change 

(%) 

-7.3 - 6.4 - 4.6 - 1.0 

Set 6 𝑥1= 0.5 (m) 

𝑥2 (m) 0.66 0.8 0.945  

The change 

(%) 

- 6.4 - 4.7 - 1.0 
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The results indicate that the change in the fundamental for the all six location set has a 

negative effect on the fundamental frequency of the dimpled beam (the dimpled values are lower 

than the fundamental frequency of the uniform Beam). In other words, creating two dimples in the 

opposing direction in the pin-pin beam decrease its fundamental frequency in certain values. 

Several observations can be made by examination of Table 6.8. In terms of the fundamental 

frequency, it shows that the largest variation in fundamental frequency (about -7.3%, negative 

means 𝑓1 < 𝑓1 
∗) occurs at beam center. This is expected because the MSE for the first mode (Fig. 

6.5) is large at beam center. The same observation is noted in the beam with two dimples in the 

same direction where the fundamental frequency is having a maximum change when the two 

dimples were placed at middle of the beam.  Recall that the variation in fundamental frequency of 

the beam with two dimples in the same direction is positive while in the one with two dimples in 

the opposing direction the variation is negative. In the first case both dimples are in the same 

direction but in the second case, both dimples are in the opposing direction, that is, the slope and 

bending moment equations of one dimple have negative signs (Eqs. 3.38b and 3.38c) because this 

dimple is in the opposite side of the beam.  

A comparison for the previously two cases (pin-pin beam with two dimples in the same 

direction and pin-pin beam with two dimples in opposing direction, is made. Figure 6.10 illustrates 

the comparison between the both cases, (also, see Tables 6.6 and 6.8), where one dimple is placed 

at 𝑥1 = 0.45 m while the other dimple is positioned at different locations on the beam. 
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Figure 6.10:  Change in the fundamental frequency vs. dimple location (pin-pin beam), 𝑥1 =
0.45 𝑚, and 𝑥2 is moved along the beam length, and 𝛼1= 𝛼2= 80°. 

 

Figure 6.10 shows that the largest variation in fundamental occurs when the two dimples 

are placed at beam center (𝑥1 = 0.45 m and 𝑥2 = 0.56 m). As the second dimple is moved 

towards the right boundary, the fundamental begins to decrease with the smallest change in 

fundamental frequency occurring at boundary (MSE 1= zero).  It should be noted that the change 

in fundamental frequency of the two cases represent the same behavior where the change in the 

beam with two dimples in the opposing direction is negative. Recall that in the pin-pin beam with 

two dimples in the opposing direction, so the slope and bending moment equations are negative 

(Eqs. 3.38 (b) and (c)) which affect the percentage change in the fundamental frequency (negative 

change means fundamental is lower than that of the uniform beam (𝑓1 < 𝑓1 
∗). Because of the 

symmetry of pin-pin boundary condition, Fig. 6.10 is shown for only half of the beam length. So, 

percentage change is same at the other half boundary of the pin-pin beam where the variation is 

the largest at the beam center and it is minimum at the boundary. 
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Thus far, the analysis been limited to the fundamental frequency. Next, we will explore the 

question: how does the second mode behave when one dimple is fixed at a region of high MSE 

(𝑥1 = 0.25 m) and the second dimple is moved along the beam length? Figure 6.11 shows the 

behavior of the second frequency for both cases, a beam with two dimples in the same direction 

and opposing direction. 

 

 

Figure 6.11:  Change in the second frequency vs. dimple location (pin-pin beam), 𝑥1 = 0.25 𝑚, 

𝑥2 is moved along the beam length, and 𝛼1= 𝛼2= 80°. 

 

The modal strain energy of the second mode for uniform pin-pin beam exhibit some regions 

where the modal strain energy is large or equal to zero. The increase and decrease in the second 

frequency of the dimpled pin-pin beam correspond to these locations of high or zero modal strain 

energy. From Fig. 6.11, the largest variation in second frequency for case of both dimples in the 

same direction is about 12.5%, occurs at 𝑥1 = 0.25 𝑚 and 𝑥2 = 0.36 m (highest MSE 2). The 

largest decrease in the second frequency, which is - 7.2%, occurred when two dimples were located 

at 𝑥1 = 0.25 m and 𝑥2 = 0.75 m (highest MSE 2). Similarly, placing two dimples at 𝑥1 =

0.25 𝑚 and 𝑥2 = 0.75 m (anti-nodes of the second mode, largest MSE 2) will have the largest 
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effect on the second frequency, which is 13.7% (pin-pin beam with two dimples in the opposing 

direction). Also, if both dimples are placed at 𝑥2 = 0.25 m,  𝑥2 = 0.36 m, the largest decrease in 

the second mode will be about - 5.2% (pin-pin beam with two dimples in the opposing direction). 

As we mentioned before, modal strain energy is zero at boundary and beam center, so the change 

in the second frequency at these regions exhibits a small percentage change. The fundamental and 

second natural frequency variations will be discussed more in the Section 6.3 where different 

angles will be considered.  

6.2.2 Example 2: Fixed- Fixed Beam Model 

As before, a fixed-fixed beam is considered with properties given in Table 6.5. Combination 

locations of dimple centers (𝑥1 and 𝑥2) are set where two cases are considered: a fixed-fixed beam 

with two dimples in the same direction and a fixed-fixed beam with two dimples in the opposite 

direction. Tables 6.9 and 6.10 respectively summarize the results of the percentage change in 

fundamental frequencies of both cases in which one dimple is placed at a fixed place while the 

other dimple is moved along the beam length.  
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Table 6.9: Change in the fundamental frequency of fixed-fixed beam with two dimples in the 

same direction with respect to dimple location. 

Set 1 𝑥1= 0.055 (m) 

𝑥2 (m) 0.16 0.2 0.3 0.4 0.5 0.7 0.8 0.945 

The change (%) 8.5 3.8 - 3.3 

 

- 6.3 

 

-6.7 

 

-2.8 

 

2.3 

 

18.8 

 

Set 2 𝑥1= 0.15 (m) 

𝑥2 (m) 0.26 0.3 0.4 0.5 0.7 0.8 0.945  

The change (%) - 1.3 - 1.7 - 2.8 - 2.8 - 1.8 0.2 6.4 

Set 3 𝑥1= 0.25 (m) 

𝑥2 (m) 0.36 0.4 0.5 0.7 0.8 0.945   

The change (%) 0.73 1.2 1.8 0.2 - 0.8 - 0.8 

Set 4 𝑥1= 0.35 (m) 

𝑥2 (m) 0.46 0.5 0.7 0.8 0.945  

The change (%) 7.0 7.0 2.8 - 0.8 - 4.8  

Set 5 𝑥1= 0.45 (m) 

𝑥2 (m) 0.56 0.7 0.8 0.945  

The change (%) 10.1 4.3 - 0.8 - 6.3 

Set 6 𝑥1= 0.5 (m) 

𝑥2 (m) 0.66 0.8 0.945  

The change (%) 6.4 - 0.8 - 6.8 

 

 

 

 

 

 

 

 



 

 

108 

 

Table 6.10: Change in the fundamental frequency of fixed-fixed beam with two dimples in the 

opposing direction with respect to dimple location. 

Set 1  𝑥1= 0.055 (m) 

𝑥2 (m) 0.16 0.2 0.3 0.4 0.5 0.7 0.8 0.945 

The change (%) - 2.8 - 0.8 4.8 10.1 13.3 5.9 - 0.3 - 8.2 

Set 2 𝑥1= 0.15 (m) 

𝑥2 (m) 0.26 0.3 0.4 0.5 0.7 0.8 0.945  

The change (%) 0.2 1.2 3.8 4.8 1.8 -1.3 - 3.3 

Set 3 𝑥1= 0.25 (m) 

𝑥2 (m) 0.36 0.4 0.5 0.7 0.8 0.945  

The change (%) - 0.8 - 0.8 - 0.8 - 0.8 - 0.3 2.8 

Set 4 𝑥1= 0.35 (m) 

𝑥2 (m) 0.46 0.5 0.7 0.8 0.945  

The change (%) -3.8 -3.8 -2.3 0.7 9.0 

Set 5 𝑥1= 0.45 (m) 

𝑥2 (m) 0.56 0.7 0.8 0.945  

The change (%) - 4.8 - 2.3 1.8 12.8 

Set 6 𝑥1= 0.5 (m) 

𝑥2 (m) 0.66 0.8 0.945  

The change (%) -3.8 1.8 12.8  

 

The results show that the largest increase in fundamental frequency of the beam with two 

dimples in the same direction occurred when each dimple was located at the boundary (𝑥1 =

0.55 m and 𝑥2 = 0.945 m, see Fig. 6.12) (about 18.8%). Also, if both dimples are placed at the 

boundary (𝑥1 = 0.055 m and 𝑥2 = 0.16 m), the fundamental frequency is large, which is about 

8.8%, but not as large as when placing each dimple at 𝑥1 = 0.055 m and 𝑥2 = 0.945 m. 
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Figure 6.12: Fixed-fixed beam with the highest change in fundamental frequency (the beam with 

two dimples in the same direction). 

 

In contrast, when one dimple was placed at the boundary and the second dimple was placed 

at the beam center, this resulted in the largest decrease in the fundamental frequency (the beam 

with two dimples in the same direction) (about -6.8%). Before we discuss the change in frequencies 

of the beam with two dimples in the opposing direction, it is important to examine the modal strain 

energy of the fixed-fixed beam to understand the reason why the change in frequencies is affected 

by the dimples location. 

For the uniform fixed-fixed beam, the MSE is given by [1] 

 

¥𝑘(x) =
1

4
 [− cos 𝛽𝑖𝑥 − cosh 𝛽𝑖𝑥 +  𝐷𝑖(sin 𝛽𝑖𝑥 + sinh 𝛽𝑖𝑥)]2, (6.4) 

 

where the constant 𝐷𝑖 is given by 

 (cos 𝛽𝑖𝐿 − cosh 𝛽𝑖𝐿)

(cos 𝛽𝑖𝐿 − cosh 𝛽𝑖𝐿)
 . 

 

(6.5) 

 



 

 

110 

 

The values of 𝛽𝑖𝐿 and 𝐷𝑖 are given in Table 6.11 [21].  

Table 6.11: Modal strain energy parameters (fixed-fixed beam). 

Mode 𝛽𝑖𝐿 𝐷𝑖 

1 1.730 0.9825 

2 7.853 10008 

3 10.996 1.000 

 

Figure  6.13 shows the modal strain energy curves of the first three modes of a uniform 

fixed-fixed beam. The modal strain energy per length for the first mode has the maximum value 

at the boundary, and is relatively large at the beam’s center. The MSE is zero at 𝑥 = 0.22 m and 

𝑥 = 0.77 m. The Second and third modes represent different behavior of MSE. The modal strain 

energy for mode 2 is large at the boundary and relatively large at 𝑥 = 0.3 𝑚 and 𝑥 = 0.7 m. It is 

zero at 𝑥 = 0.13 m, 𝑥 = 0.5 m and 𝑥 = 0.87 m. Mode 3 exhibits a very different MSE curve as 

shown in Fig. 6.13. 

 

Figure 6.13:  Modal strain energy, modes 1-3 (uniform fixed-fixed beam). 
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Thus, now it is apparent that the fundamental, second, and third frequencies each have 

maximum MSE at the boundary and relatively large or zero MSE at different locations along the 

length of the beam. More observation can be made by examination of Figure 6.14 which shows 

the effect of dimple locations against the percentage change of the fundamental frequency. One 

dimple is held at 𝑥1 = 0.055 m and the second dimple is moved along the beam length. The plots 

represent a fixed-fixed beam with two dimples in the same direction (the beam with two dimples 

in the same direction) and a fixed-fixed beam with two dimples in the opposing direction (the beam 

with two dimples in the opposing direction).  

 

Figure 6.14:  Change in the fundamental frequency vs. dimple locations (fixed-fixed beam), with 

𝑥1 = 0.055 𝑚, 𝑥2 is moved along the beam length, and 𝛼1= 𝛼2= 80°. 

 

From Fig. 6.14, it is apparent that various combinations of dimple locations can increase 

or decrease the fundamental frequency with respect to the uniform beam when the two dimple 

angles are 80 degrees. Figure 6.14 shows that the largest increase in the fundamental frequency 

(dimples are in the same direction), which is about 18%, occurs when each dimple is placed at 

each boundary 𝑥1 = 0.055 m and 𝑥2 = 0.955 m, high MSE. Also, the largest decrease in 

fundamental frequency (the beam with two dimples in the same direction) occurs when each 

dimple is located at 𝑥1 = 0.055 m and 𝑥2 = 0.5 m, relatively large MSE. In addition, locating 
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each dimple at 𝑥1 = 0.22 m and 𝑥2 = 0.77 m (zero MSE) exhibits no change in the fundamental 

frequency. It was observed that the fundamental frequency of the fixed-fixed beam with two 

dimples in the same direction begins to decrease when one dimple is fixed at the left boundary and 

the second dimple is moved towards the beam center. At certain location (beam center), the 

fundamental frequency starts to increase.  

 The largest decrease, which is about − 8.2%, in fundamental frequency for the beam with 

two dimples in the opposing direction occurs when each dimple is placed at each boundary (largest 

MSE, Fig. 6.13). Also, the largest increase in the fundamental frequency, which is about 13.3%, 

occurs when one dimple is fixed at the boundary (the largest MSE), and the other dimple is placed 

at beam center (low MSE). The least amount of variation of fundamental frequency occurs where 

both dimples are placed at 𝑥 = 0.22 m and 𝑥 = 0.77 m (zero MSE) respectively. The examples 

presented here have demonstrated that both cases exhibit the same trend; the effect of creating two 

dimples is significant when dimples are placed at the area of high strain energy as shown in Fig. 

6.13. In other words, the fundamental frequency exhibits a large variation (increasing or decreasing 

in frequency with respect to that of a uniform fixed-fixed beam) in regions of high MSE and small 

variation at regions of low or zero MSE.  

6.3    Effect of Dimple Angle 

In this section, the effect of dimple angle on the first three modes is studied. The two examples 

presented before will be investigated again by changing the dimples’ angles. Fixed-fixed and 

pin-pin beams are known to be axially restricted boundary conditions.  

6.3.1 Example 1: Pin-Pin Beam Model 

In the previous section, the change in fundamental frequency with respect to the uniform 

beams natural frequency was shown for constant angle values. In this section, the same example 

given in Section 6.2.1 will be presented but now different angles are considered. The percentage 

change in fundamental frequency of a pin-pin is shown in Fig. 6.15. 
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Figure 6.15: Change in fundamental frequency vs. dimple location, five different dimple angles 

for the pin-pin beam with two dimples in the same direction, 𝑁 = 2 with 𝑥1 = 0.055 m and the 

second dimple is moved along the beam length. 

 

The percentage change in fundamental frequency is plotted against dimple locations where 

each curve corresponds to different dimple angles. The plots are shown for a 1 m beam length 

where one dimple is placed at 𝑥1 = 0.055 m and the second dimple is moved along the beam 

length.  All angles represent a variation between − 15.5% when 𝛼 = 180° (largest decrease), and 

2.1% when 𝛼 = 50° (largest increase). As mentioned in the previous sections, the modal strain 

energy for a uniform pin-pin beam is largest at the beam center and zero at boundary. Therefore, 

it is shown from Fig. 6.15 that the fundamental frequency is very sensitive to change in dimple 

angles for one dimple located at the boundary and the second dimple placed at beam center.  It is 

also apparent that if the second dimple is moved towards the boundary, the percentage change of 

fundamental frequency begins to increase with certain angles or decrease for other angles. 

Moreover, from Fig. 6.15 it can be seen that there is a small variation between the curve of 𝛼 =

50° and 𝛼 = 100° where both of them increase the fundamental frequency of the pin-pin beam 

with two dimples in the same direction. The other angles (150°-180°) decrease the fundamental 

frequency of the pin-pin beam with two dimples in the same direction.  

Location (Dimple centers) [m] 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h

e
 p

e
rc

e
n

ta
g

e
 c

h
a

n
g
e

 i
n

 f
u

n
d

a
m

e
n

ta
l 
fr

e
q
u

e
n

c
y
 [

%
]

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

50

100

150

170

180



 

 

114 

 

Figure 6.16 shows that the change in fundamental frequency of a pin-pin beam with two 

dimples in the opposing direction against dimple locations for five different dimple angles.  

 

Figure 6.16: Change in fundamental frequency vs. dimple locations, five different dimple angles 

for the pin-pin beam with two dimples in the opposing direction, 𝑁 = 2 with 𝑥1 = 0.055 m and 

the second dimple is moved along the beam length. 

 

Figure 6.16 illustrates that the percent change in fundamental frequency for all angles is 

negative which means the fundamental frequency of dimpled pin-pin beam is lower than the 

uniform pin-pin beam. For the dimple angles shown, the variation behaves in a similar trend as in 

the first case (pin-pin beam with two dimples in the same direction). The results demonstrated that 

adding two dimples in the opposing direction to the pin-pin beam with a combination of various 

dimple angles and locations decreased the fundamental frequency of the pin-pin beam more than 

creating two dimples on the pin-pin beam in the same direction.  

Next, the percent change in fundamental frequency of the pin-pin beam with two dimples 

in the same and opposite direction with changing dimple angle is investigated. In Figs. 6.17 and 

6.18, three dimples locations are considered: each dimple is located at the left and right boundary, 

both dimples are placed near the beam center, and one dimple is positioned at beam center, and 
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the other dimple is placed at the boundary. These locations are interesting due to the effect of MSE 

on the fundamental frequency in these regions.  

 

 

Figure 6.17: Change in fundamental frequency vs. dimple angles, three different dimple locations 

(pin-pin beam with two dimples in the same direction). 
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Figure 6.18: Change in fundamental frequency vs. dimple angles, three different dimple locations 

(pin-pin beam with two dimples in the opposing direction). 

 

 Recall from Fig. 6.5 that the fundamental frequency was most sensitive to changes in 

dimple angle at beam center (largest MSE) and least sensitive when dimples were located at the 

boundaries. As a result, comparing the sensitivity of the maximum and minimum change in 

fundamental frequency at these locations for both cases, the fundamental frequency is most 

sensitive to changes in dimple angle when both dimples are placed close to each other at beam 

center, 𝑥1 = 0.45 𝑚 , 𝑥2 = 0.56 m (largest MSE). Also, the fundamental frequency exhibits a 

moderate sensitivity to dimple angles occurring when one dimple is located at 𝑥1= 0.055 m (the 

left boundary, zero MSE) and the other dimples is placed at the beam center (largest MSE). A 

comparatively very small sensitivity to dimple location is observed when each dimple is located 

at each boundary (zero MSE). For the dimples placed at the left boundary and at the beam center 

(𝑥1 = 0.055 m and 𝑥2 = 0.5 m, the beam with two dimples in the same direction), there is also 

an initial increase and decrease of the fundamental frequency, although the peak change in natural 

frequency is not as large compared to the dimples placed at beam center. In addition, it is observed 

that the variation of 
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 the fundamental frequency of the pin-pin beam with two dimples in the opposing direction 

is negative which indicates that the fundamental frequency of dimpled pin-pin beam is lower than 

the fundamental frequency of the uniform pin-pin beam.  

Thus far, in the previous section, an example of the pin-pin beam with two dimples was 

presented. Next, the same example will be presented with five different angles to investigate the 

behavior of the change in the natural frequency of the second mode (the beam with two dimples 

in the opposing direction). To illustrate, one dimple is fixed at 𝑥1 = 0.055 m and the other dimple 

is moved along the beam length.  

 

Figure 6.19: Change in second frequency vs. dimple locations, five different dimple angles 

for pin-pin beam with two dimples in the opposing direction, 𝑁 = 2 with 𝑥1 = 0.055 m 

and the second dimple is moved along the beam length. 

With reference to Fig. 6.19, each curve represents the change in the second frequency against the 

dimples locations. The variation is between 4% (at 𝛼 = 50° and 𝛼 = 100°) and -26% (at 180°) where 

the change in second frequency of these angles 𝛼 = 50° and 𝛼 = 100° is small. Also, the percentage 

change in the second frequency is small when one dimple is placed at left boundary, and the other 

dimple moved towards the beam center where the MSE of the second mode is zero at beam center and 

boundaries.  
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Next, the analysis of the second frequency is investigated using the same beam with two 

dimples in the same and opposite direction where the regions of high and low modal strain energy 

are selected to locate the dimple. In Figs. 6.20 and 6.21, the change in second frequency of a pin-

pin beam with two dimples in the same and opposite direction is plotted against dimple angle.  

 

Figure 6.20: Change in second frequency vs. dimple angles, four different dimple locations (pin-

pin beam with two dimples in the same direction). 
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Figure 6.21: Change in second frequency vs. dimple angles, four different dimple locations (pin-

pin beam with two dimples in the opposing direction). 

 

For comparison, four different locations are chosen as shown in Figs. 6.20 and 6.21. Comparing 

the sensitivity of the second frequency at the four locations (max (∆𝑓2) − min (∆𝑓2)), we observed 

that for the dimples placed at 𝑥1 = 0.25 m and 𝑥2 = 0.75 m (high MSE), the second frequency is 

most sensitive to change in dimple angles where the beam with two dimples in the same direction 

exhibits a negative change for all dimple angles. Also, for the dimples placed at 𝑥1 = 0.25 m and 

𝑥2 = 0.75 m, the beam with two dimples in the opposing direction (Fig. 6.21) illustrates that there 

is a rapid rise in the second frequency, followed by a rapid decrease. The least sensitivity occurs 

for the dimples approximately placed at zero MSE (𝑥 = 0.055 m, 𝑥 = 0.945 m, and 𝑥 = 0.5 m) 

for both cases. 
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6.3.2 Example 2: Fixed-Fixed Beam Model 

For a fixed-fixed beam, two cases are studied, a fixed-fixed beam with two dimples in the 

same direction and a fixed-fixed beam with two dimples in the opposing direction.  Both plots 

(Figs. 6.22 and 6.23) demonstrate the change in fundamental frequency with different dimples 

angles.  

 

Figure 6.22: Change in fundamental frequency vs. dimple location, five different dimple angles 

fixed-fixed beam (the beam with two dimples in the same direction). 

 

The variation in fundamental frequency can be understood by examining the MSE for the first 

mode. In both cases, one dimple is placed at the left boundary while the other dimple is moved 

along the beam length.  

For the beam with two dimples in the same direction (Fig. 6.22), the percentage change in 

fundamental frequency decreases with increase in the dimples angles. The results show that the 

highest increase (20%) in fundamental frequency occurs when 𝛼 = 100° while the highest 
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decrease (−34 %) occurs when 𝛼 = 180°. The increasing and decreasing in fundamental 

frequency can corresponds to a region of high and low MSE as mentioned before. 

 

Figure 6.23: Change in fundamental frequency vs. dimple location, five different dimple angles 

fixed-fixed beam (the beam with two dimples in the opposing direction). 

 

For the fundamental frequency of the beam with two dimples in the opposing direction 

(Fig. 6.23), the highest increase (13%) in fundamental frequency occurs when 𝛼 = 100° and the 

highest decrease (−37 %) occurs at 𝛼2 = 180°. With one dimple fixed at left boundary and the 

other dimple moved to beam center, the change in the fundamental frequency increases for certain 

angles (𝛼 = 50° and 𝛼 = 100°) then begins to decrease when the second dimple moves towards 

the right boundary. In addition, some combination of dimples locations and angles have very small 

effect on the fundamental frequency, i.e. at  𝑥1= 0.055 m and 𝑥2= 0.22 m when 𝛼1 = 100° and 

𝛼2 = 100°, therefore, there is a negligible change in the fundamental frequency of the uniform 

beam at these locations and angles. 

Next, four different locations as shown in Figs. 6.24 and 6.25 are examined to get a better 

understanding of the effect of dimples locations on the change in the fundamental frequency. Two 
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cases are considered: a fixed-fixed beam with two dimples in the same direction and a fixed-fixed 

beam with two dimples in the opposing direction.  

 

 

Figure 6.24: Change in fundamental frequency vs. dimple angle, four different dimple locations 

(fixed-fixed beam with two dimples in the same direction). 
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Figure 6.25: Change in fundamental frequency vs. dimple angle, four different dimple locations 

(fixed-fixed beam with two dimples in the opposing direction). 

  

By observing the MSE for the first mode of a fixed-fixed uniform beam (see Fig 6.13), the 

highest MSE occurs at the boundaries. The MSE is relatively high at beam center, and it is zero at 

𝑥 =  0.22 m and 0.77 m, respectively. The observation of Figs. 6.24 and 6.25 show that the 

fundamental frequency is the most sensitive to changes in dimple angle if one dimple is placed at 

left boundary and the second dimple is located at beam center, for the beam with two dimples in 

the same direction. For the beam with two dimples in the opposing direction, the fundamental 

frequency is the most sensitive to changes in dimple angle when the two dimples are placed at 

each boundary (𝑥1= 0.055 m and 𝑥2= 0.945 m, the largest MSE). The fundamental frequency 

demonstrates less sensitivity at dimples locations  𝑥1= 0.45 m and 𝑥2= 0.56 m for the beam with 

two dimples in the same direction. Also, at the dimples locations 𝑥1= 0.055 m and 𝑥2 = 0.5 m 

(relatively large MSE), the fundamental frequency exhibits a moderate sensitivity to changes in 

dimples angles for the beam with two dimples in the opposing direction. The least sensitivity in 

the fundamental frequency for both cases occurs at 𝑥1= 0.22 m and 𝑥2 = 0.77 m (MSE is zero at 
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these regions). In other words, dimples placed at 𝑥1 = 0.22 m and 𝑥2= 0.77 m exhibit very small 

change in the fundamental frequency for all angles. 

In Fig. 6.26, the second frequency with different angles illustrates a different trend since 

the region of high and low MSE for the second mode occurred at different locations (see Fig. 6.13) 

where all modes have the maximum MSE at boundaries.  

 

 

Figure 6.26: Change in second frequency vs. dimple location, five different dimple angles fixed-

fixed beam (the beam with two dimples in the opposing direction). 

 

           The variation in second frequency is between 13% when 𝛼 = 100° and -26 % when 𝛼 =

180°. From Fig. 6.26, it is apparent that the second natural frequency has less sensitivity to change 

in region of zero MSE which is occurred at 𝑥 = 0.12 𝑚, 𝑥 =  0.5 m, and 𝑥 = 0.88 m (see Fig. 

6.13).  
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CHAPTER 7 

 CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

The goal of this study was to investigate the effect of dimples on the change in beam natural 

frequencies. To this end, a boundary value model was developed for a beam with two dimples in 

the same direction and a beam with two dimples in the opposite direction and subjected to different 

boundary conditions. The formulation of the coefficients matrix for the fixed-fixed beam with one 

dimple (concave) was shown. 

Hamilton’s Principle is used to develop a boundary value model (BVM) of a dimpled beam. 

The dimpled beam consisted of two dimple segments connected to three straight segments. The 

differential equations of motion for each segment were derived where their solution satisfied the 

beam boundary conditions and continuity conditions. A coefficient matrix of 30×30 was 

formulated and the numerical solution of the differential equations yields the natural frequencies 

of the dimpled beam. The mass of the dimpled beam was assumed to be constant before and after 

adding dimples. The dimple thickness was less than the straight segment, the dimple thickness 

assumed to be uniform while in manufacturing application, the dimple center was the thickest due 

to the pressing process. The results showed that the efficiency of dimpling technique to decrease 

first five natural frequencies of the cantilevered beam. The first five natural frequencies of the 

fixed-fixed beam demonstrated a different behavior where in first mode, the natural frequency was 

decreased for the two cases, (a beam with two dimples in the same direction and a beam with two 

dimples in the opposite direction). In the second mode, the natural frequency of the first case, the 

beam with dimples in the same direction, was decreased, while in the second case, the beam with 

two dimples in the opposite direction, was increased. The higher modes represented a decrease in 

the natural frequencies for both cases. 

A finite element model was developed using ANSYS Parametric Design Language 

(APDL) to check the accuracy of the analytical solution. The first five natural frequencies of the 
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beam without dimples (uniform beam) and dimpled beam were calculated using this FEM model. 

Comparison of these results showed FEM was in excellent agreement with the results found using 

BVM.   

The effect of adding two dimples to a beam on its natural frequencies were investigated 

experimentally in order to validate the analytical results. Stamping process was used in order to 

create dimples in the beam model where this process was repeated different times in order to reach 

the approximate maximum dimple height before material failure. The experiment was carried out 

for two boundary conditions: a cantilever beam and fixed-fixed beam. Two cases were considered, 

a beam with two dimples in the same direction and a beam with two dimples in the opposite 

direction. A cantilever and fixed-fixed beams were excited by impact hammer and the acceleration 

was measured using a single axis accelerometer. A four channel (NI-9234) data acquisition card 

and (M+P) international Smart Office software were used to collect and analyze measured data. 

The Frequency Response Function (FRF) were plotted where each curve indicated a main peak 

corresponding to each natural frequency of the beam. The results of the natural frequencies were 

compared to those found using BVM and FEM and the results were found to be in agreement.  

The efficiency of the analytical model was investigated by examining the boundary 

conditions, dimples locations, and dimples angle. In terms of the boundary condition, two 

examples were given: a pin-pin beam and a pin-pin roller beam with two dimples. As before, the 

two dimples cases were considered. The results illustrated that adding two dimples to pin-pin and 

pin-pin roller beams may increase or decrease the natural frequencies. Next, the location of each 

dimple was studied by fixing one dimple location and moving the other dimple along the beam 

length. Pin-pin and fixed-fixed beams were used as examples. The results showed that the 

fundamental frequency exhibited large sensitivity to changes in dimples angles when dimples 

placed at high modal strain energy (MSE) regions. In contrast, dimples placed at zero modal strain 

energy (MSE) exhibited the least sensitivity to changes in dimple angles. 

7.2 Future Work 

This study has led to greater understanding of how adding two dimples in opposite 

direction has a significant effect on beams natural frequencies than adding two dimples in the same 

direction. However, some factors were not considered in this investigations. 
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In this study, the dimple thickness was assumed to be uniform. In reality, the dimple is 

thicker at the dimple center. The research area should seek to develop an analytical model with 

dimples having a non-uniform thickness. Also, future research could explore MSE using many 

dimples in same and opposite directions.  

In addition, future research would explore the possibility of tailoring beam vibrations 

(frequency and mode shape) to desired values. This could be accomplished using many dimples 

and could be used to reduce the sound radiated from vibrating beam. 
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         MATLAB CODE (UNIFORM CANTILEVER BEAM) 
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%MATLAB SAMPLE CODE TO CALCULATE THE NATURAL FREQUENCIES OF %THE 

UNIFORM CANTIELEVRED BEAM 

 

clc;clear all; 

 

  
E  = 200e9; 
b =0.026; 
h = 1.18e-3; 
rho =7870; 
L =0.2210; 
beta =  [3.5160  22.0345 61.6972   120.9019 200.0] 
I =(b*h^3)/12; 

  

  
for ii= 1:length(beta) 
    w(ii)= beta(ii)*(sqrt((E*I)/(rho*b*h*L^4))); % Circular frequency 

     
    f(ii)=w(ii)/(2*pi) % The natural frequency 
end 
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          PLOTTING MODE SHAPES OF DIMPLED BEAM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

133 

 

The following steps explain how to plot the mode shape of a dimpled beam.  

1) A beam without vibration is considered where it discretizes into uniformly spaced 

points into x-direction as shown in Fig. (B1). 

 

 
Figure B.1: A discretized beam with one dimple 

 

𝐻 represents the maximum high of the dimple and �̅�0(𝜃) is the vertical height of any point on the 

dimple. The following equation [1] describes the relationship between the local 𝑥-coordinates of 

the dimple �̅�0 and the angular coordinates 𝜃, 

 

 
�̅�0 =

𝑙 ̅

2
− 𝑅 sin(

𝛼

2
−  𝜃) , (B.1) 

 

where the radius of the dimple is given by Eqn. (4.1). Also, the following equation [1] calculate 

the location of any points located vertically on the dimple and is used to plot the undisplaced 

dimple  

 

�̅�0(𝜃) =
1

2
 ( 𝐻 −  

𝑙 ̅

4𝐻
) + 𝑅 cos(

𝛼

2
−  𝜃) (B.2) 
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where 𝑙 ̅is the dimple chord, 𝛼 is the dimple angle, and the height of the dimple is given by Eq. 

(4.2). 

2) The following relations [1] defines the transformation needed for the eigenfunctions 

𝑉𝑖(θ), 𝑊𝑖(θ) of the dimple, 

 

 

{
�̅�𝑖(𝜃)

�̅�𝑖(𝜃)
} = [

𝑐𝑜𝑠 (
𝛼

2
− θ) 𝑠𝑖𝑛 (

𝛼

2
− θ)

−𝑠𝑖𝑛 (
𝛼

2
− θ) 𝑐𝑜𝑠 (

𝛼

2
− θ)

] {
𝑉𝑖(θ)

𝑊𝑖(θ)
} , (B.3) 

 

where �̅�𝑖(𝜃), �̅�𝑖(𝜃) represents the horizontal and vertical displacements with assuming that a 

clockwise rotation and the downward is positive direction.  

3) Now, we can plot the mode shape by adding the local horizontal and vertical 

displacements to the global coordinates of displaced beam. So, for the straight segment, 

global x-coordinate of the displaced beam =  𝑋 + �̅�𝑖(𝑥)  and for the dimple segment, 

x-coordinate of the displaced beam = 𝑋 + �̅�𝑖(𝜃). Similarly, global y-coordinate of the 

displaced beam in the straight segment =  −𝑌𝑖(𝑥)  and in the dimple segment, y-

coordinate =  �̅�0𝑖(𝜃) − �̅�𝑖(𝜃), (for convex dimple). The y-coordinate of the displaced 

beam =  �̅�0𝑖(𝜃) + �̅�𝑖(𝜃), (for the concave dimple).  
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   FINITE ELEMENT CODE (DIMPLED CANTILEVER BEAM) 
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! Sample ANSYS code for a cantilever beam with two dimples (beam element in the opposite 

direction) 

 

! Define the dimensions of the beam 

/PREP7                               ! Enter preprocessor 

*SET,L,0.2210                   ! Beam.length (m)       

  

*SET,b,0.026                     ! Beam.Width              (m) 

*SET,h,1.18e-3                  ! Beam.Thickness       (m) 

*SET,D,0.03                      ! Beam.ChordLen         (m) 

*SET,X1,0.0700                ! Length to first dimple center  (m) 

*SET,X2,0.1620                ! Length to second dimple center (m) 

*SET,alpha1, 2.356194490192345  ! Beam.DimpAngle         = pi/180*[150] (rad) 

*SET,alpha2, 2.356194490192345  ! Beam.DimpAngle         = pi/180*[-150]  (rad) 

*SET,R1, 0.016235883004386      ! Beam.DimpRadius 1      = 

beam.ChordLen./(2*sin(beam.DimpAngle1/2));   (m) 

*SET,R2,- 0.016235883004386     ! Beam.DimpRadius 2      = 

beam.ChordLen./(2*sin(beam.DimpAngle2/2));     (m) 

*SET,H1,0.010022679568790       ! Height of the dimple 1 = R1*(1-cos(alpha1/2))  (m) 

*SET,H2,-0.010022679568790      ! Height of the dimple 2 = R2*(1-cos(alpha1/2))  (m) 

*SET,hd1,  0.784213303576537    ! Beam.DimpThickness  1  = 

2*sin(beam.DimpAngle1/2)/beam.DimpAngle1*beam.Thickness; (m) 

*SET,hd2, 0.784213303576537     ! Beam.DimpThickness  2  = 

2*sin(beam.DimpAngle2/2)/beam.DimpAngle2*beam.Thickness; (m) 

*SET,A,h*b                           ! Cross sectional area of the beam          (m^2) 

*SET,A1,h*hd1*b                 ! Cross sectional area of the dimple 1    (m^2) 

*SET,A2,h*hd2*b                 ! Cross sectional area of the dimple 2     (m^2) 

*SET,rho,7870                       ! Density   (kg/m^3) 

*SET,E,200e9                        ! Elstic modulus    (Gpa) 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
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! Select the element type and properties 

!*   

ET,1, BEAM3                         ! ELEMENT TYPE 1 IS BEAM3 

!*   

R,1,A,(1/12)*b*(h)**3,h,,,,     ! REAL CONSTANTS:  ( AREA, INERTIA, THICKNESS) 

R,2,A1,(1/12)*b*(h*hd1)**3,h*hd1,0,0,0,    ! REAL CONSTANT  

R,3,A2,(1/12)*b*(h*hd2)**3,h*hd2,0,0,0,    ! REAL CONSTANT  

   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

! Define the material properties   

MPTEMP,,,,,,,,   

MPTEMP,1,0   

MPDATA,EX,1,,E     ! SPECIFY ELASTIC MODULUS 

MPDATA,PRXY,1,,.3  ! poisson's ratio 

MPTEMP,,,,,,,,   

MPTEMP,1,0   

MPDATA,DENS,1,,rho ! SPECIFY DENSITY  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

! Plot the dimpled beam  

FLST,3,8,8   

FITEM,3,0,0,0    

FITEM,3,L,0,0    

FITEM,3,X1+(D/2),0,0 

FITEM,3,X1-(D/2),0,0 

FITEM,3,X1,H1,0  

FITEM,3,X2+(D/2),0,0 

FITEM,3,X2-(D/2),0,0 

FITEM,3,X2,H2,0  

K, ,P51X 

 

LSTR,1,4    ! PLOT LINE FROM 1 TO 4  
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LSTR,3,7    ! PLOT LINE FROM 3 TO 7  

LSTR,6,2    ! PLOT LINE FROM 6 TO 2  

LARC,4,3,5  ! PLOT ARC FROM 4 TO 3 TO 5 FOR FIRST DIMPLE 

LARC,7,6,8  ! PLOT ARC FROM 7 TO 6 TO 8 FOR SECOND DIMPLE  

 

FLST,2,5,4,ORDE,2    

FITEM,2,1    

FITEM,2,-5   

LGLUE,P51X   

FLST,5,3,4,ORDE,2    

FITEM,5,1    

FITEM,5,-3   

CM,_Y,LINE   

LSEL, , , ,P51X  

CM,_Y1,LINE  

CMSEL,S,_Y   

!*   

!*   

CMSEL,S,_Y1  

LATT,1,1,1,,,,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

CM,_Y,LINE    ! DEFINE COMPONENT NAMED _Y 

LSEL,,,,4     

CM,_Y1,LINE  

CMSEL,S,_Y   

!*   

!*   

CMSEL,S,_Y1  
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LATT,1,2,1,,,,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

CM,_Y,LINE   

LSEL,,,,5  

CM,_Y1,LINE  

CMSEL,S,_Y   

!*   

!*   

CMSEL,S,_Y1  

LATT,1,3,1,,,,    

CMSEL,S,_Y   

CMDELE,_Y    

CMDELE,_Y1   

!*   

ESIZE,0.003,0,    !USE 0.003 INCREMENTAL POINTS FOR MESH WHICH 81 ELEMENTS 

PER LNIE 

FLST,2,5,4,ORDE,2    

FITEM,2,1    

FITEM,2,-5   

LMESH,P51X   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

!solve the model  

/SOLU    

ANTYPE,2 !Modal analysis 

MODOPT,LANB,5   

EQSLV,SPAR   

MXPAND,5, , ,0   

LUMPM,0  
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PSTRES,0 

MODOPT,LANB,10,0,10000, ,OFF  

 

!*  Define boundary Conditions for the Cantilever beam 

FLST,2,1,4,ORDE,1    

FITEM,2,1    

  

/GO  

DK,P51X, ,0, ,0,ALL, , , , , ,   

SOLVE    

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Read the first five natural frequencies!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

FINISH   

/POST1   

SET,FIRST  

SET,FIRST  

SET, NEXT 

SET, NEXT 

SET, NEXT 

SET, NEXT 

SET,LIST 

*GET,f1,MODE,1,FREQ  

*GET,f2,MODE,2,FREQ  

*GET,f3,MODE,3,FREQ  

*GET,f4,MODE,4,FREQ  

*GET,f5,MODE,5,FREQ  

 

!Sample listing frequencies : 

 

 *****  INDEX OF DATA SETS ON RESULTS FILE  ***** 
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   SET   TIME/FREQ    LOAD STEP   SUBSTEP  CUMULATIVE 

     1)  17.195                           1                    1                     1 

     2) 107.75                            1                    2                     2 

     3)  228.06                           1                    3                     3 

     4) 554.77                            1                    4                     4 

     5) 593.59                            1                    5                     5 
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   FINITE ELEMENT CODE (UNIFORM CANTILEVER BEAM) 
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FINISH 

/CLEAR 

/TITLE, Uniform Cantilever Beam 

 

! Define the dimenstions of the beam  

*SET,b,0.026 

*SET,t,1.18e-3 

*SET,A,t*b  

        

/PREP7 

 

!Plot Beam  

K,1,0,0 ! Enter keypoints 

K,2,0.2210,0 

L,1,2 ! Create line 

 

 

! Select the element type and properties 

ET,1,BEAM3 ! Element type 

R,1,A,(1/12)*b*(t)**3,t,,,,  ! Real Const: area,I,thickness 

 

 

! Define the material properties   

MP,EX,1,200e9 ! Young's modulus 

MP,PRXY,1,0.3 ! Poisson's ratio 

MP,DENS,1,7870 ! Density 

LESIZE,ALL,,,50 ! Element size   

LMESH,1 ! Mesh line FINISH 

 

 

!solve the model  

/SOLU 

ANTYPE,2 ! Modal analysis 

MODOPT,SUBSP,5 ! Subspace, 5 modes 

EQSLV,FRONT ! Frontal solver  

MXPAND,5 ! Expand 5 modes 

DK,1,ALL ! Constrain keypoint one   # Boundary conditions  

 

SOLVE 

FINISH 

!!!! Natural Frequencies!!!! 

/POST1 ! List solutions 

SET,LIST 
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