
Western Michigan University Western Michigan University 

ScholarWorks at WMU ScholarWorks at WMU 

Dissertations Graduate College 

12-2008 

Calculations of K-Shell Fluorescence Yields and Photoabsorption Calculations of K-Shell Fluorescence Yields and Photoabsorption 

Cross Sections for Carbon Ions at the K-Edge Cross Sections for Carbon Ions at the K-Edge 

Muhammet Fatih Hasoglu 
Western Michigan University 

Follow this and additional works at: https://scholarworks.wmich.edu/dissertations 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Hasoglu, Muhammet Fatih, "Calculations of K-Shell Fluorescence Yields and Photoabsorption Cross 
Sections for Carbon Ions at the K-Edge" (2008). Dissertations. 776. 
https://scholarworks.wmich.edu/dissertations/776 

This Dissertation-Open Access is brought to you for free 
and open access by the Graduate College at 
ScholarWorks at WMU. It has been accepted for inclusion 
in Dissertations by an authorized administrator of 
ScholarWorks at WMU. For more information, please 
contact wmu-scholarworks@wmich.edu. 

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/dissertations
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/dissertations?utm_source=scholarworks.wmich.edu%2Fdissertations%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=scholarworks.wmich.edu%2Fdissertations%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/dissertations/776?utm_source=scholarworks.wmich.edu%2Fdissertations%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/


CALCULATIONS OF K-SHELL FLUORESCENCE YIELDS AND PHOTOAB-
SORPTION CROSS SECTIONS FOR CARBON IONS AT THE K-EDGE 

by 

Muhammet Fatih Hasoglu 

A Dissertation 
Submitted to the 

Faculty of The Graduate College 
in partial fulfillment of the 

requirements for the 
Degree of Doctor of Philosophy 

Department of Physics 
Dr. Thomas W. Gorczyca, Advisor 

Western Michigan University 
Kalamazoo, Michigan 

December 2008 



UMI Number: 3340188 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

® 

UMI 
UMI Microform 3340188 

Copyright 2009 by ProQuest LLC. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 E. Eisenhower Parkway 

PO Box 1346 
Ann Arbor, Ml 48106-1346 



Copyright by 
Muhammet Fatih Hasoglu 

2008 



ACKNOWLEDGMENTS 

I would like to express my sincere gratitude to my advisor Prof. Thomas W. Gorczyca. 

I am in debt to him for his guidance, helpful comments, and his support during my disser­

tation. Without his support and encouragement, this work would not be possible. I would 

also like to thank Prof. Zikri Altun at Marmara University who guided me in atomic physics 

and persuaded me to come to WMU. I am grateful to my dissertation committee members 

for reviewing this dissertation and their valuable comments. I have learned a lot from Prof. 

Dean Halderson from the classes that he taught and valuable discussions on quantum and 

atomic physics. I also thank Prof. Steven Manson and Prof. Nigel Badnell for playing an 

important role in our fluorescence studies, Prof. Kirk Korista for his collaboration in our 

atomic physics research as an astrophysicist, and for discussing the important astrophysical 

phenomenon, and Prof. Nora Berrah for stimulating our interest in K-shell processes from 

an experimental point of view. I also want to thank my office mates Shahin Abdel-Naby 

and Dr. Dragan Nikolic for sharing their knowledge and their valuable comments. 

The greatest thanks goes to, first, my parents and relatives for their continuous support, 

and second and most importantly, my lovely wife Nazik for her infinite patience while 

taking care of our two young twin boys during this long road for obtaining my Ph.D. 

Muhammet Fatih Hasoglu 

ii 



TABLE OF CONTENTS 

ACKNOWLEDGMENTS ii 

LIST OF TABLES v 

LIST OF FIGURES vii 

CHAPTER 

I INTRODUCTION 1 

1.1 Overview 1 

1.2 K-Shell Fluorescence Yields 3 

1.3 K-Shell Photoabsorption Cross Sections 6 

II THEORETICAL METHODOLOGY 9 

2.1 Many-Body Atomic Description 10 

2.1.1 Non-Relativistic Hamiltonian, Wave Function, and Schrodinger 
Equation 10 

2.1.2 Relativistic Corrections 15 

2.1.3 Relevant Atomic Transitions: Auger and Radiative Rates 18 

2.2 Approximate Many-Body Wave Functions 21 

2.2.1 Exchange, Antisymmetry, and Slater Determinants 21 

2.2.2 Variational Method 22 

2.2.3 Hartree-Fock and Hartree-Slater Methods for Bound States 24 

2.2.4 Configuration Interaction 29 

iii 



Table of Contents - Continued 

CHAPTER 

2.2.5 Distorted Wave Approximation for Continuum Orbitals 31 

2.3 Multi-Configuration Breit-Pauli Method 32 

2.4 R-Matrix Method 33 

2.4.1 Smith Time-Delay Method 39 

III RESULTS AND DISCUSSIONS 40 

3.1 K-Shell Fluorescence Yields for Isoelectronic Sequences 40 

3.1.1 Li-Like: Importance of Configuration Interaction 40 

3.1.2 B-Like: Breakdown of Configuration-Average Approximation... 44 

3.1.3 C-Like: Anomalous Behavior 48 

3.1.4 Comprehensive 2nd-Row Isoelectronic-Sequence Calculations... 56 

3.2 Carbon K-Shell Photoabsorption Cross Section Results 59 

3.2.1 C: Abundant in the Interstellar Medium 59 

3.2.2 C+: Comparison with Laboratory Experiment 64 

3.2.3 C2+: Importance of Auger Broadening 72 

IV SUMMARY AND FUTURE DIRECTIONS 79 

APPENDICES 

A Atomic Units 81 

B Z-Scaling of Relevant Physical Variables 83 

BIBLIOGRAPHY 89 

iv 



LIST OF TABLES 

3.1 Fluorescence yield UIK VS. nuclear charge Z for the intermediate-coupling, 
Cl-mixed Li-like ls2s2(2Si/2) state 44 

3.2 Comparison of radiative rates in length and velocity gauge results of MCBP 
and MCDF calculations for ten levels of the ls2s22p3 C-like ions with 
selected nuclear charge, Z 52 

3.3 The total K-shell radiative and Auger rates for the ls2s22p5 O-like isoelec-
tronic sequence 58 

3.4 Criterion for determination of C+ physical Is, 2s, and 2p orbitals and cor­
relation (or pseudo) 3s, 3p, and 3d orbitals 60 

3.5 Comparison of Auger widths for the 17 C+ autoionizing target states above 
the K-shell threshold 62 

3.6 Comparison of energies of the relevant C and C+ states involved in the 
present investigation 63 

3.7 Criterion for determination of C2+ physical Is, 2s, and 2p orbitals and 
correlation (or pseudo) 3s, 3p, and 3d orbitals 65 

3.8 Comparison of energies of the relevant C+ and C2+ states involved in the 
present investigation 67 

3.9 Same as Table 3.8, showing the C+ metastable ground and K-shell excited 
states 68 

3.10 Comparison of Auger widths for the relevant C2+ target states above the 
K-shell resonantly-excited states 70 

3.11 Criterion for determination of C3+ physical Is, 2s, and 2p orbitals and 
correlation (or pseudo) 3s, 3p, and 3d orbitals 73 

3.12 Comparison of energies of the relevant C2+ and C3+ states involved in the 
present investigation 73 

v 



List of Tables -Continued 

3.13 Same as Table 3.12, showing the C2+ metastable ground and K-shell ex­
cited states 74 

3.14 Auger width results obtained from different methods for the thresholds 
above the K-shell excited states 75 

VI 



LIST OF FIGURES 

1.1 Relevant K-shell X-ray processes 2 

1.2 Hydrogenic behavior of the K-shell fluorescence yield as a function of nu­
clear charge Z for three typical values of the ratio a 4 

1.3 Observed X-ray spectrum of the bright extra-galactic X-ray source Blazar 
Mkn 421 near the carbon K-edge obtained from the Chandra X-ray Obser­
vatory 7 

3.1 Calculated fluorescence yields (circles) and fit formula (dashed line) for 
K-shell vacancy Li-like ions 43 

3.2 LSJ-dependent fluorescence yields for K-shell vacancy B-like ions. Com­
parison of fluorescence yields for 2D3/2 and 2D5/2 states 46 

3.3 LSJ-dependent fluorescence yields for K-shell vacancy of C-like ions 49 

3.4 Calculated MCDF (left) and MCBP (right) radiative rates Ar for the ten K-
shell vacancy levels ls2s22p3(2S+l Lj) of the C-like isoelectronic sequence. 51 

3.5 Calculated MCDF (left) and MCBP (right) Auger rates Aa for the ten K-
shell vacancy levels ls2s22ps(2S+1Lj) of the C-like isoelectronic sequence. 51 

3.6 The anomalous behavior of the fluorescence yields for 35i and ZP\ levels... 54 

3.7 Calculated K-shell photoabsorption cross section of carbon at the K-edge 
in length and velocity gauges are compared to IP approximation results. . . . 61 

3.8 The Is —• 2p photoabsorption for an admixture of 80% ground-state and 
20% metastable state C+ ions 69 

3.9 Calculated K-shell photoabsorption cross section for the ground state of 
C+ at the K-edge compared to the oft-used, resonance-omitted, IP approx­
imation results 71 

vn 



List of Figures - Continued 

3.10 Experimental measurements and present and earlier R-matrix theoretical 
calculations of Is —• 2p and 3p absorption resonances of C2+ ions 77 

3.11 Present R-matrix results with and without Auger broadening effects for the 
ground state photoabsorption of C2+ at the K-edge 78 

vm 



CHAPTER I 

INTRODUCTION 

This dissertation describes the theoretical atomic physics research performed over the 

past five years devoted to improving the atomic data needed by astrophysical plasma mod­

elers in their studies of the chemical composition and the evolution of the universe. In 

fact, a majority of funding for this work was received from NASA's Astronomy Physics 

Research and Analysis (APRA) and Solar and Heliospheric Physics (SHP) Supporting Re­

search and Technology (SR&T) programs. As such, the relevance to astrophysical studies 

and the role of theoretical atomic physics are discussed before outlining the two main areas 

of research for this dissertation: the fluorescence yields of K-shell vacancy states and the 

K-shell photoabsorption spectra. 

1.1 Overview 

Since we are primarily concerned with the studies of photoionized plasmas - those in 

which low-temperature (energy) electrons and ions are subject to X-ray absorption and 

emission - there are two fundamental processes of interest for determining the physical en­

vironments of any photoionized astrophysical plasma. These are 1) the X-ray absorption 

itself, which is predominantly a K-shell process, and 2) the X-ray emission probabilities 

(fluorescence and Auger yields) from K-shell-vacancy states. All relevant K-shell pro­

cesses are depicted in Fig. 1.1. 
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Figure 1.1 Relevant K-shell X-ray processes: a) Emission of an X-ray photon via radiative 
decay to a K-shell vacancy state, b) Emission of an Auger electron via Auger decay to a K-shell va­
cancy state, c) Photoexcitation of a K-shell electron via X-ray photoabsorption, d) Photoionization 
of a K-shell electron via X-ray photoabsorption. 
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The primary focus of this dissertation work is on the second process, specifically the 

calculation of the various probabilities for radiative (see Fig. 1.1a) vs. Auger (see Fig. 1. lb) 

decay of the K-shell vacancy ions; these are predominantly produced in X-ray photoionized 

plasmas. The probabilities of these competing processes are crucial for determination of the 

fundamental characteristics of an astrophysical plasma, notably the ionization balance and 

the photoemission spectra. These data are of particular importance for the interpretation 

of the spectra of photoionized plasmas such as those produced in active galactic nuclei 

(AGN) and X-ray binaries, as well as for supernova remnants (SNR) under non-equilibrium 

ionization conditions. 

The secondary part of this dissertation, initiated less than two years ago, involves the 

computation of the photoabsorption cross sections. These absorption features are ubiqui­

tous in K-shell (or X-ray) astrophysical spectra [1] and aid in interpreting the elemental 

abundances in the Interstellar Medium (ISM). 

1.2 K-Shell Fluorescence Yields 

The K-shell fluorescence yield, from a given inner-shell-vacancy state, is a measure of 

the relative probability of spontaneous radiative (photon emission) decay vs. autoionization 

(electron emission): 

Here Ar is the total radiative rate and Aa is the total radiationless Auger decay rate of 

the K-shell vacancy state. Thus, the value of UJK is obviously bounded between 0 and 1: 

0 < WK < 1. 
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Since the hydrogenic ^-scaling [2] (see also Appendix B) of the decay rates Ar = 

AriZ
4 and Aa = AaiZ° is smooth, the resulting fluorescence yield can be written as 

" K = ( 1 + ^ ) _ 1 ' (1.2) 

where we have defined a = Ar\/Aai. In general, this hydrogenic model exhibits mono-

tonically increasing behavior 0 < u^^^l (see Fig. 1.2 for behavior using typical ra­

tios 10~7 < a < 10~5). Of course, the non-hydrogenic screening leads to additional 

H=— o=io"s 

10 15 20 
Nuclear Charge Z 

Figure 1.2 Hydrogenic behavior of the K-shell fluorescence yield as a function of nuclear charge 
Z for three typical values of the ratio a. 

Z-dependent effects, but the smooth behavior depicted in Fig. 1.2 and Eq. 1.2 is generally 

found in most of our results (see Sec. 3.1). 

The primary presently-recommended source of these data is the compilation of Kaastra 

and Mewe published in 1993 [3]*. This comprehensive database considers the sequential 

multiple electron and/or photon ejections for all stages of all ls-vacancy ions in the periodic 

table up through Zn -the heaviest cosmically-abundant element. Those data are based upon 

single-particle central-field atomic calculations for singly-ionized atoms [4, 5, 6, 7, 8], and 

*Our main aim is to update this database [3] with more reliable results. 



extrapolated for the remainder of each isoelectronic sequence. In that database, the electron 

and photon emission yields were computed using radiative and autoionization rates that 

were then configuration-averaged (see Sec. 3.1.2) over possible terms, and the fluorescence 

yield was then reported as a ratio of the averaged radiative rate to the sum of the averaged 

radiative and Auger rates. Those data are still used in various astrophysical modeling codes, 

e.g., CLOUDY [9], XSTAR [10] and the SNR code of Borkowski [11]. 

In an earlier work initiated at Western Michigan University, that in fact precipated 

the entire present line of study, the accuracy of that widely-used fluorescence and Auger 

database [3] was investigated for Be- and F-like ls-vacancy sequences [12], and it was 

shown that the configuration-averaged method is incorrect for astrophysical and fusion-

research-related plasma modeling purposes. In subsequent studies, that database [3] is 

shown to be inaccurate due to several deficiencies, as explained in Sec. 3.1. 

We compute K-shell fluorescence yields for Li-, Be-, B-, C-, N-, O-like, and F-like ls-

vacancy isoelectronic sequences up through Zn with nuclear charge Z = 30 (see Sec. 3.1). 

For these cases, only single electron or photon emission processes need to be considered 

due to the L-shell simplification that there are no other inner-shells that can also make a 

transition to the K-shell. We first perform multi-configuration Breit-Pauli (MCBP) cal­

culations using the atomic structure and collision package AUTOSTRUCTURE [13] and 

demonstrate the significance of properly including such physical effects as correct configu­

ration averaging and semi-relativistic (i.e., spin-orbit (S.O.)) effects. Thus, we demonstrate 

that the extant database [3] in current use by CLOUDY [9] and XSTAR [10] is largely 

inaccurate and/or inapplicable for astrophysical modeling purposes. 
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1.3 K-Shell Photoabsorption Cross Sections 

The ISM - that which fills the space between stars and other cosmic objects - is com­

posed of mainly gas (99%) and also dust particles, and has a very low density, typically 

about 10~17 — 10~19 times that of the air we breathe. Astronomers use bright back­

ground X-ray sources to probe the physical conditions and elemental abundances of gas 

clouds within the ISM of our galaxy. The inner-shell excitation and ionization features 

of the elements in the ISM can be easily detected in the X-ray spectra. The advent of 

new orbiting X-ray telescopes with high-spectral resolution has opened a new window to 

study the ISM. For instance, photoabsorption features found in the cosmologically abun­

dant carbon through iron ions fall into the spectral range of data obtained from the Chan­

dra (http://chandra.harvard.edu/) and XMM-Newton (http://xmm.vilspa.esa.es/) X-ray tele­

scopes. Therefore, astrophysicists need reliable photoabsorption predictions to study the 

high-resolution X-ray spectra transmitted through the ISM. Also, it is suspected that neu­

tral carbon within the detectors exhibits spectral features [1], Therefore, the neutral carbon 

photoabsorption spectrum is needed for the calibration of X-ray spectra from the Chan­

dra and XMM-Newton space telescopes (see, for example, the recently-observed Chandra 

X-ray spectra in the energy region below the carbon K-edge in Fig. 1.3). 

The observed flux density, I, which is related to the emission flux density I0 as 

1(A) = /0(A) exp [-aPA(E)N] , (1.3) 

is shown in Fig. 1.3. Here A is the wavelength that is related to photon energy as E = hc/X 

(h is Planck's constant and c is the speed of light), aPA is the photoabsorption cross section, 
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and N is the number of absorbers per unit area, known as the column density. In this figure, 

each dip in the observed flux, I, corresponds to a resonance peak in the photoabsorption 

cross, <rPA (see, for example, Fig. 3.7). 

0.0010 

T 0.0008 
•< 
CM 

I 

E 
° 0.0006 

T 
en 
w 

I 0.0004 
o 

JZ 

0.0002 

42.0 42.5 43.0 43.5 44.0 44.5 45.0 
Wavelength [A] 

Figure 1.3 Observed X-ray spectrum of the bright extra-galactic X-ray source Blazar Mkn 421 
near the carbon K-edge obtained from the Chandra X-ray Observatory [1]. For these sources with 
a hydrogen ISM column density of about Nu — 1.5 x 1020 cm~2, the edge absorption features 
are predominantly due to the instrument (in particular, a polyimide filter), but there is an expected 
~ 10% contribution from the ISM. The observational data are shown as the black line, the blue 
curve is a smoothed representation of the data, and the red curve is the latest model [1] using 
various sources of data including semi-empirical approximations (http://chandra.harvard.edu/). 

In an earlier work at WMU, K-shell photoabsorption cross sections of neon [14,15] and 

oxygen [16, 17] ions were computed. Those results were compared to high-resolution X-

ray spectroscopy of ISM gas clouds [14, 18] to determine their abundances of oxygen and 

neon ions. We have calculated photoabsorption cross sections using an optical potential R-
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matrix method (see Sec. 2.4). This method was shown to be successful in describing both 

experimental synchrotron measurements [15,19, 20] and Chandra high-resolution spectro­

scopic observations [14, 16, 18]. The photoabsorption cross section of carbon, specifically 

the Is —> np (see Fig. 1.1c) absorption features and np —> ep (see Fig. l.ld) above-

threshold photoionization edge, has not, to our knowledge, been previously studied either 

theoretically or experimentally. 
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CHAPTER II 

THEORETICAL METHODOLOGY 

This part of the dissertation is devoted to explaining the theory behind the computa­

tional atomic physics codes that we have used in our calculations. First, as a background, 

the description of many electron systems is discussed briefly. 

For computation of K-shell fluorescence yields, we use the multi-configuration Breit-

Pauli (MCBP) perturbative method. Specifically, the atomic structure and collision code 

AUTOSTRUCTURE [13], an extension of SUPERSTRUCTURE [21], is utilized. This 

program calculates energy levels, autoionization rates, and radiative rates within a multi-

configuration Breit-Pauli (MCBP) framework. The bound, resonance, and continuum atomic 

orbitals are generated internally within the AUTOSTRUCTURE code from a Slater-type of 

Hartree model potential (see Sec. 2.2.3). This approach has been further generalized to the 

use of non-orthogonal orbital bases, therefore including important Is relaxation effects that 

occur due to K-shell photoexcitation and/or ionization. The MCBP perturbative method is 

presented in Sec. 2.3. 

For our computation of K-shell photoabsorption cross sections, on the other hand, we 

have found it more efficient and accurate to rely on the close-coupling R-matrix method [22, 

23, 24] as implemented for many-channel atomic physics [25, 26]. Specifically, we use 

the R-MAX suit of codes [27] that has been further developed to eliminate unphysical 

pseudoresonances, which otherwise would appear when including important orbital relax­

ation effects via addition of pseudoorbitals [28], and spectator Auger decay broadening, 
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via an optical potential, which otherwise would not account for near-K-edge features cor­

rectly [19]. The application of standard R-matrix theory to many-electron systems in a 

non-relativistic LS-coupling scheme is presented in Sec. 2.4. 

In the photoabsorption cross section calculations, the radial orbitals are generated by 

using Hartree-Fock (HF) and multi-configuration Hartree-Fock (MCHF) variational meth­

ods [29, 30, 31, 32], as discussed in Sees. 2.2.2 and 2.2.3. 

We use atomic units (H = m = e = ke = 1, see Appendix A) except where specified in 

our mathematical derivations and equations. 

2.1 Many-Body Atomic Description 

2.1.1 Non-Relativistic Hamiltonian, Wave Function, and Schrodinger Equation 

In the absence of external fields and relativistic effects, the Hamiltonian of an N-

electron atomic system in SI units is given by 

Here the first term is the sum of kinetic energies of each electron, the second term is the 

Coulomb electron-nucleus interaction, and the third term is the electrostatic interaction 

between all two-electron pairs, where the restriction i < j on the summation is imposed to 

avoid double counting of electron pairs. 

In atomic units, these terms becomes less clear, but mathematically free of physical 

constants, and reads as 

10 



The time-independent Schrodinger equation for an N-particle system, subject to this Hamil-

tonian, is 

?A%1, 92, • • • , QN) = Eip(qi, q2, • • • , qN) , (2.2) 

where <& = {ri, Xi} denotes the spatial and spin degrees of freedom of each of the N elec­

trons. From a quantum mechanical point of view, because our Hamiltonian is symmetric 

upon interchange of any two electrons, mathematical solutions with certain even or odd 

parity are expected [33]. Furthermore, considering the Pauli exclusion principle, we de­

sire solutions that are antisymmetric with respect to interchange of any two electrons: a 

corollary is that no two electrons can occupy the same quantum state. 

As is known from one-electron hydrogenic systems, a one-electron wave function can 

be described by quantum numbers n, I, mi, and ms (s = 1/2) as 

(f>nlsmims (r, X) = fnlrm (f)Xm3 = — V " (fi)Xm8 • (2-3) 

Here Pni(r) are the radial orbitals, YJm'(f2) are normalized spherical harmonics, and Xma 

are the spin states (x± = X±i/2, where the + stands for spin-up states and the — stands for 

spin-down states). These quantum numbers are related to physical operators that commute 

with the one-electron Hamiltonian. Here n is the principal quantum number that quantizes 

the energy, / and mi are the total and ^-component orbital angular momenta, and s and 

ms correspond to the total and z-components of the spin. For the more complicated multi-

electron case, due to the electron-electron interaction term, analytic solutions do not exist 

even for the simplest two-electron He case, and approximations must be made in order to 
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find approximate physical solutions of the system. The approximation methods used in our 

calculations are presented in Sec. 2.2. 

We need to know the "good" quantum numbers describing our system from which we 

will build our wave functions. It is well known that, neglecting relativistic (spin-orbit, etc.) 

interactions, the total orbital angular momentum L = Ylh a n^ total spin 5 = J2 $i °f the 
i=i »=i 

system both commute with our Hamiltonian: 

[L,H] = [S,H] = [L,S}=0. (2.4) 

The commutation relations between the components of orbital angular and spin momenta 

are given as 

[Li,Lj] = iSijkLk and [Si,Sj] = iSijkSk , (2.5) 

where e%jk is the Levi-Civita symbol [34]. Thus our wave function can be expanded in terms 

of eigenstates of H, L2, Lz, S2, and Sz simultaneously. At this point, even though the non-

relativistic Hamiltonian is independent of spin, we still need to consider the spin of each 

electron in order to fulfill the requirements for identical fermion systems (for Sj = 1/2, or 

half-integer, the Pauli Exclusion Principle). Such quantum states can be written in Dirac 

bra-ket notation as \aLSMLMs) with eigenvalues of L2, S2, Lz, and Sz that are L(L + 1), 

5(5+1), ML, and Ms, respectively. Here a is an index representing additional information 

required to specify the state unambiguously, such as the radial part of the wave function, 

the parity, the (dominant) electronic configuration, etc. 

The total wave function \aLSMLMs) can be obtained by coupling the orbital and spin 

angular momenta of each electron. This gives a linear combination of products of un-

12 



coupled states with coupling coefficients that are obtained from angular momentum alge­

bra [2, 35, 36, 37]. This coupling method is known as LS, or Russell-Saunders, coupling, 

and is usually sufficient for describing most properties of lighter atoms, where the Coulom-

bic interaction is far greater than any relativistic effect, predominantly the spin-orbit inter­

action. However, as we will see, spin-orbit effects can nevertheless be prominent in many 

cases. The spectroscopic notation for this LS-quantum state is 2S+1L, where 25 + 1 is the 

spin multiplicity and L is the total orbital angular momentum of the system. A Slater de­

terminant form can now be used to construct an antisymmetric wave function for the state 

\O.LMLSMS) with appropriate coupling coefficients that ensure orthogonality. 

Electron states with quantum numbers n* and lt are referred to as sub-shells. The num­

ber of possible states for a particular nl shell is 2(21 + 1); note that ms = ±1/2 and 

—I < mi < I. A set of njj is known as an electron configuration of an iV-electron system 

and is written as an expansion 

(n1l1)
wi(n2l2r*...(nmlrn)

w™ , (2.6) 

where Wi denotes the total number of electrons occupying the sub-shell nj/j, giving a total 

number of electrons 

m 

a=l 

Electrons occupying the same shell are said to be equivalent electrons. The orbital angular 

momentum quantum number of a shell usually uses the following letter code: 
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Value of I: 0 1 2 3 4 5 6 7 8 9 ... 

Designation: s p d f g h i j I m ... 

Another important quantum number for an electron configuration is the parity 7r, which 

is denned as TT = (-i)Wl*ll(-i)waXl*...(-l)WmXlm. States with parity of TT = +1 are said 

to be even and those with IT = — 1 are said to be odd. 

Up to now, the determination of the total wave function for an iV-electron system is de­

scribed within a non-relativistic approximation. At this point, let us look at the expectation 

value of the energy for the system. Our atomic Hamiltonian can be partitioned into one-

and two-body operators via 

JV JV 

where the one-body and two-body operators are given by 

/(*) = —^- a n d 9(i,j) = •- _ -.., 

respectively. 

By invoking Slater determinant properties [2, 37, 38], we obtain the expectation value 

of the Hamiltonian in terms of one- and two-body operator matrix elements: 

N N 

(H) = X>«(l)l/(l)l¥>«(l)> + E [(^(lK(2)W,2)k(lK(2)> 

-5mSimSj (^(1)^ . (2) | 5 (1 ,2) |^ . (1)^(2)) ] . (2.7) 

Here the first term represents the kinetic energy of the electrons and the electrostatic inter­

action of the electrons with the nucleus. The second term is called the Coulomb interaction 
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between all pairs of electrons. The third term is known as the exchange interaction origi­

nating from the indistinguishability of any two electrons, and exists only between electrons 

with the same spin, m3i = mSj. 

The operators f(i) and g(i,j) carry both radial and angular dependence. The operator 

g(i, j) can be expanded using the addition theorem of spherical harmonics [34], 

1 °° A ^ k 

\K _ fj = J2 2kTl ^ ZkTIYkm{ni)Ykm(fl2), (2.8) 
1 1 2 | fc=o m=-fc > 

where the smaller of rx and r2 is r< and the larger one is r>. By using this expansion 

in Eq. 2.7, and considering the angular and spin algebra, the energy of the system can be 

shown to be composed of one- and two-electron radial integrals along with the appropri­

ate angular coefficients. But the radial orbitals are yet to be determined. Approximation 

methods for determining the bound radial orbitals are described in Sec. 2.2.3. 

2.1.2 Relativistic Corrections 

In the previous section, the treatment of atomic systems in a non-relativistic framework 

was discussed. Although a non-relativistic approximation is good for light atoms, relativis­

tic effects should be considered for heavier atomic systems to get a fuller description of 

the system. The importance of relativistic effects increases quickly for heavy atoms as Z4 

for the predominant spin-orbit effects (see Appendix B). To treat relativistic effects prop­

erly, a fully-relativistic Dirac equation should be solved. This is a very time consuming 

and difficult task due to the increased dimensionality caused by the presence of four com­

ponents [39]. For our calculations of astrophysical interest, it is sufficient to consider the 

first-order corrections via perturbing the non-relativistic Hamiltonian [21]. We have com-
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pared our MCBP perturbative method results and other available fully relativistic MCDF 

results for fluorescence yield calculations [40, 41, 42] (see also Sec. 3.1). We have found 

good agreement between the two calculations, showing that inclusion of relativistic correc­

tions perturbatively is sufficient for light atomic systems, Z < 30. 

These additional relativistic effects can be derived by expanding the relativistic many-

electron equation in powers of av to order of a2, where a = 1/c « 1/137.036 is known 

as the fine-structure constant and v is the speed of the electron. The resulting Hamiltonian, 

including corrections to order of a2, is known as the Breit-Pauli Hamiltonian [21, 30, 38] 

V.BP = HNR + 'H.ReX • (2.9) 

The relativistic correction operator can be divided into two parts: a relativistic shift 

operator and a fine-structure operator, Hftei = HRS + 7~CFS-

The relativistic shift operator includes five terms as follows: 

Tins = HMC + 7~LDI + "HDI + Ti-oo + Ussc-

Here HMC is the mass correction term 

HDI and Hm are the one- and two-body Darwin terms 
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Hssc is the spin-spin contact term 

Hssc 

and Hoo is the orbit-orbit term 

87ra2 

^2 (si-Sj)Kfl-fj) , 

2 N 

Hoo = —~- X! 
«<j=i 

«<j=i 

Pi-Pj + laifiyP^Pi 

ij 

The fine-structure operator consists of three terms 

HFS = "^so + Hsoo + Ws5 • 

The first term is the spin-orbit interaction 

Hso 
a2Z N 1 - ^ 

i = l 

the second term is known as the spin-other-orbit interaction 

2 N -

the third terms is known as the spin-spin interaction 

N 1 

Hss = a2 E ~3 Si*Sj O 
\Si-rij)\sj-rij) 

r2-

In the relativistic Hamiltonian HR^U the one-body operators scale as Zia2 while the two-

body operators scale as Z3a2. 

The relativistic shift Hamiltonian commutes with total orbital angular momentum L 

and spin angular momentum S, just like the non-relativistic Hamiltonian, whereas the fine-

structure operator HFS does not. However, it does commute with the total angular momen­

tum of the system, J = L + S ([HFS, J] = 0). Consequently, considering fine-structure 
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effects in the Hamiltonian L, S, ML, and Ms are no longer good quantum numbers. To 

include Tips in our Hamiltonian, we need to recouple from \LSMLMS) states to | JMj) 

states. This can be achieved by addition of total angular L and spin S momenta as follows: 

\JMj) = J2 {LSMLMs\JMj)\LSMLMs), (2.10) 
Mj=ML+Ms 

where {LSMLMS \ JMj) are known as Clebsch-Gordan coefficients. This coupling method 

is called intermediate coupling (IC) [2, 37]. 

2.1.3 Relevant Atomic Transitions: Auger and Radiative Rates 

Transitions between quantum states may take place due to a perturbing potential H'. In 

quantum mechanics, the transition rate, IV*/, for a particular transition from an initial state 

\i) to a final state | /) can be determined using Fermi's golden rule [33, 37, 43] that can be 

derived from first-order time-dependent perturbation theory as 

r w = 27r|(/|H'|i>|2p(/)- (2.11) 

Here p(f) is the density of final states (the number of states per unit energy, which is usually 

taken to be one by normalizing the continuum wave functions appropriately*) and (f\7i'\i) 

is the transition matrix element. 

Radiative Rates 

We are interested in the radiative transitions that occur between two atomic states, lead­

ing to the emission of a photon accompanied by an atomic transition from a higher-energy 

state to a lower-energy state, or conversely, absorption of a photon accompanied by an 

*Note that it can be shown [44] that p(f) = 1 «• / Pei(r)P(>t>(r)dr = Su>5(e - e'). 
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atomic transition from a lower state to a higher state. This follows from the well-known 

principle of detailed balance. In the electric dipole approximation, the radiative rate, A^f, 

from an initial state \i) to a final state | / ) , due to a weak field (assuming that the square of 

the vector potential is negligible, A2 « 0), is given by Fermi's golden rule with quantiza­

tion of electromagnetic field considerations [33, 43, 44]: 

• t 4 a 3 O O 

Arf = ^-w3\(f\V\i)\\ (2.12) 

Here w is energy of the photon, defined as the difference between the initial and the final 

state energies, w — wj — Wi, and V = J2f=i ?i *s t n e electric dipole operator. (Note that, 

in SI units, 5Zi=1 efj is readily identified as the electric dipole moment). In this transition, 

since f is a tensor of rank one, the initial and final L must satisfy the triangular inequality 

\Li — Lf\ < 1 (neglecting S.O. interactions), and since the electron-photon operator is 

independent of spin and has odd parity, we have the following dipole selection rules [2]: 

LS-coupling: < 

ATT = ± 1 

AS = 0 AMS = 0 

AL = 0,±1 AMi = 0,±l 

AL = l i fL i = 0 , 

Similarly, for IC-coupling, 

IC-coupling: < 

ATT = ± 1 

AJ = 0,±1 AM/ = 0,±1 

AJ=l i f J ; = 0 . 
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In a non-relativistic (LS) approximation, and by using appropriate commutation rela­

tions, the dipole matrix element, V^ = (f\f\i), can be expressed in various forms as 

( / l E i i ^ N ) Length Form 

VV=\ -£</l£i!*Vi | i> Velocity Form 

^( / IZ)i I iVjV| i ) Acceleration Form . 

The dipole matrix element can be calculated by using any of these forms. We typically 

compute only length and velocity forms of the dipole operator, allowing for comparison 

in output radiative data, and usually report results determined from the length form of the 

dipole operator. Comparison between different forms is an important consistency check 

for the quality and completeness of the wave function. The closer they are, in general, 

the better the wave functions are (it is a necessary, but not sufficient, condition) [2, 43]. 

Here we have only presented the different forms of the dipole operator in an LS-coupling 

scheme. In an IC-coupling scheme, the dipole operator can also be expressed in length, 

velocity, and acceleration forms. 

Auger Rates 

An alternative process involving the transition between atomic states from an inner-

shell-vacancy state is the so-called Auger decay. In this process, an outer electron may 

fill the inner-shell vacancy, instead of emitting a photon, and the additional energy can be 

transferred to another electron that departs the atom. The Auger rate from an initial atomic 

state \i) to a final |/} is also given by Fermi's golden rule [2, 33, 38] as 

AiTf = 2TT / 
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Note that, since \fm — fn\~
l is a scalar, then, in either LS- or IC-coupling schemes, both 

\i) and \j) atomic states must have the same symmetry. If E0 is the energy of the outer 

electron, Ev is the inner-shell vacancy energy, and E\, is the energy of the initial, then the 

vacated Auger electron is ejected with kinetic energy k2/2 = E0 — Ev — Eb. 

We treat the computation of radiative rates (in both length and velocity forms) and 

Auger rates, in both LS- and IC-coupling schemes, as follows. Following the determination 

of orbitals given in Sec 2.2.3, we then perform a configuration-interaction (CI) expansion 

for the wave functions (see Sec. 2.2.4). Since our relevant observables, for LS-terms and 

IC-levels, are unaligned states, we average over initial ML and Ms, or Mj, magnetic levels, 

and sum over final ML and Ms, or Mj, magnetic levels to get our term/level dependent, 

statistically-averaged rates. 

2.2 Approximate Many-Body Wave Functions 
2.2.1 Exchange, Antisymmetry, and Slater Determinants 

Complications due to the non-local electron-electron interaction term in the Schrodinger 

equation for an iV-electron Hamiltonian in Eq. 2.1 can be overcome by using a model cen­

tral potential. In this Central Field Approximation, it is assumed that the electron moves in 

an averaged, spherically-symmetric potential due to the nucleus and all other (N — 1) elec­

trons, simplifying the eigenvalue problem into JV separable equations [2, 37, 38]. We then 

seek one-electron wave function solutions as given in Eq.2.3, yielding a radial equation for 

each orbital as 

(£* - ^ ^ - 2V5(r) + 22*) Pn^r) = 0. (2.14) 
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A multi-electron wave function is then constructed as a product of single-electron wave 

functions with individual quantum numbers A; = {rii, k, m^, rasJ. However, antisymme­

try is not, in general, satisfied by a single product wave function. Instead, Slater determi­

nants [2, 37, 38] are used to construct antisymmetric multi-electron wave functions that 

satisfy the Pauli Exclusion principle, 

*l>(<luQ2,--' ,QN) 
<f>Xa{Ql) 0A2(tf2) 0A2(<?iv) 

(2.15) 

where 4>\{qj) is the one-electron wave function of the electron occupying quantum state 

A» = {riijliym^,mSi] (see Eq. 2.3) with j t h space and spin coordinates fj and Xj, re­

spectively. Since determinants are antisymmetric with respect to interchange of any two 

columns or rows, we are guaranteed a completely antisymmetric wave function. This de­

terminant also can be written in a shorthand notation with permutation operator, P, as 

^(9i,92,-•• ,QN) = -^y^(-i)p^<Mgi)<K2(g2)---</>AJV(*v), (2-16) 
ViV! o 

where the summation is over all permutations. 

2.2.2 Variational Method 

Given a trial wave function ip which, in general, must be a linear combination of Slater 

determinants to ensure that it is also an eigenfunction of our iV-electron Hamiltonian, we 

now proceed to seek solutions to our wave function. The optimization of our individual 
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orbitals (p^idj) are obtained by using the variational principle for the "best" orbitals, as 

follows. Consider the energy of the system to be 

We seek solutions ip such that the energy is stable under any infinitesimal variations 8ip, 

that is 

8E 
l i m — = 0. (2.18) 

5il>^0 dip 

Given that 

(ip + Sip\n\Sip + ip) (ip\n\ip) 
8E = E{ip + Sip) - E{ip) = 

{ip + 5ip\8ip + ip) (ip\ip) 

+ W 2 ) , (2.19) 

where we have imposed the variational condition {8tp\ip) = 0, we must have that 

(8il>\H - E\ip) = 0 . (2.20) 

Here we have introduced a Langrange multiplier to ensure orthogonality of our trial wave 

function to infinitesimal variations, and this Langrange multiplier is easily identified as 

the total energy of the system. This is the most general variational principle that we use 

in treating both bound (E<0) and continuum (E > 0) states. A similar derivation for 

continuum states can be performed, resulting in the same equation [25, 45]. 
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2.2.3 Hartree-Fock and Hartree-Slater Methods for Bound States 

Hartree-Fock Method 

Our aim is to find the radial orbitals Pni(r) in Eq. 2.3 satisfying the orthonormality 

conditions; orbitals with different principal quantum number and the same orbital angu­

lar quantum numbers must be orthonormal, J0°° Pnl(r)Pnn(r)dr = 5nn>. For simplic­

ity, we deal with the spatial part of the wave functions, <fi(r) in Eq. 2.3, rather than 

the radial orbitals, Pmhir). Then the orthonormality condition is given as (<p%\<Pj) = 

f <Pi(r)<Pj(r)<Pr = 5id. 

We want the total energy of the system to be stable under variations of the single-

electron orbitals, with the orthonormality conditions stated above. This can be achieved 

by using the variational method with Lagrange multipliers, as discussed in Section 2.2.2. 

As can be shown [30], our variational Eq. 2.20 takes a more general form considering 

Langrange multipliers Ay to impose orthogonality conditions, 

N 

8{{H)- Y, A«^«(l)bi(l)> + ^m . iAy<^(l) |V j-(l)» = 0J 

i<j=l 

where a variation with respect to the orbital |<#) is considered. This can be rewritten as 

E{<M(i)i/(i)N(i)> + (^(i)i/(i)i^(i)» + 
N 

J2 {(<V*(1)^(2)|<7(1,2)|^(1)^(2)) + (^(1)^(2)^(1,2)|^(1)^(2))} -

N 

J2 {(^(1)^(2)1^(1,2)1^(1)^(2)) + (^(1)^(2)15(1,2)1^(1)^(2))} = 

N N 

J2A4(^(l)|^(l)) + (^(1)|^(1))} + Y ^^^(^(1)1^(1)) , 
i=l i<j=l 
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that can be further split into two terms that are complex conjugate of each other, giving 

/(1)M1)> + ^ { ( ^ ( 2 ) | 5 ( l , 2 ) | ^ ( 2 ) ) | ^ ( l ) ) 

~ ^ S i m s . (^ (2) | 5 ( l ,2 ) |^ (2) ) | ^ ( l ) )} 

JV 

= A ^ ( l ) } + J2 ^m.tm.iAij\v>j{l)) • (2.21) 

If Ay represents elements of the matrix A, and since A^ = Ay, then A is Hermitian. 

Thus, there exists a unitary transformation that diagonalizes the matrix of Lagrange multi­

pliers, UAU'1 = e, where £ is a diagonal matrix with eigenvalues s^ Our wave function 

transforms as \I> = Uip. This transformation of spin-orbitals doesn't alter the Slater de-

terminantal wave function due to unitarity. Therefore, this equation is invariant under the 

above unitary diagonalizing transformation, and this operation will eliminate non-diagonal 

Ay terms. In this new representation, Eq. 2.21 now reads as 

N 

/ ( i )Mi)> + £{(<M2)|<?(i,2)|^(2)>|^(i)) 

- ^ r o s . ( ^ ( 2 ) | 5 ( l , 2 ) | ^ ( 2 ) ) | ^ ( l ) ) } = ei\yi{l)). (2.22) 

These are the well-known Hartree-Fock equations [30, 31, 32, 46, 47, 48]. A further sim­

plification arises if we define the following operators 

I(l)|c/?i(l)) = (^(1)1/(1)1^(1)) the one-electron operator, 

Jj(l,2)|^i(l)) = ((pj(2)\g(l,2)\(pj(2))\(pi(l)) the direct/Coulomb operator, 

Kj(l, 2)\<pi(l)) = ((pj(2)\g(l, 2)\<pi(2))\<pj(l)) the exchange operator. 

Here, 1(1) represents the kinetic energy and electron-nucleus interaction operator, Jj(l, 2) 

can be interpreted as the electrostatic potential of the electron i due to electron j , and 
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Kj(l,2) has no classical interpretation and owes it's existence to the required antisym­

metry of the wave function (or, equivalently, the indistinguishability of the electrons). In 

terms of these operators, the Fock operator is defined as T(l) = 1(1) + X^»{^?(1> 2) — 

<Wms Kj(l,2)}, and Eq 2.22 becomes an eigenvalue equation for all one electron energies 

^(1)1^(1)) = £ ^ ( 1 ) ) , 

with eigenvectors <fi(l). Since the Hartree-Fock method is based on a variational principle, 

it only provides an upper limit to the energy of the state. And since the HF equations 

are coupled, non-linear integro-differential equations, they can only be solved numerically 

by using iterative methods. This requires an initial "seed" of basis orbitals, and these are 

chosen to be hydrogenic. In the iterative procedure, 1(1), Jj(l, 2), Kj(l, 2), and .F(l) are 

first calculated, and with these calculated values, Eq. 2.23 is solved for new e^ and new 

ifi. The new spin-orbitals are now used as the initial orbitals in a new iteration and a new 

energy is computed, continuing until desired convergence is obtained. This general method 

of solution is known as the Hartree-Fock self-consistent field (HF-SCF) method [30]: each 

electron is an eigensolution of a potential due to the nucleus and the charge distribution of 

all other (N-l) electrons. 

Hartree-Slater Method 

Followings Zener's pioneering work on the analytic wave functions with variational 

parameters [49], Slater developed an empirical approximation for the screening of electrons 

in an atom that can then be used to determine the radial orbitals [50]. The spin orbital of an 
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electron in a shell i = {rij/j} can be written as 

Pi(r) = cp?e^2, (2.23) 

where c is a normalization factor and pt = 2zir/rii. The effective charge seen by the 

electron in the i-shell is given by 

, = Z-I=!fi!-5>. (2.24) 

Here, Z is the nuclear charge, Wj is the number of electrons occupying the j t h shell, and 

thus the second term represents the approximate screening of all other wt — 1 equivalent 

electrons, each of which screens on average by a charge of 1/2. The third term with the 

j < i restriction represents the full approximate screening from all more tightly bound 

electrons. Note that we assume the average energies and radii are ordered numerically 

(Ei < Ei+1 and (n) < <rm)) . 

Using these orbitals, the effective spherical potential for an electron due to the nucleus 

and all other electrons can be determined as follows [21, 51, 52, 53]. The screening at 

any radius r due to an electron j can be calculated by using the charge density of the 

electron,/ \(fj(r)\2dCl — Pf(r). The total screening due to all other electrons then can be 

written as 

/ N " r PHr')dr' + r / ° ° r'-lPHr')dr' 

Si(r) = J2 r°°T>(.\,, ' (2"25) 

ii^x Jo Pj(r')dr' 

where the two terms are attributed to inner (r' < r) and outer (r' > r) screenings, respec­

tively. The relation between effective nuclear charge and the potential for one electron can 
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be written as 

Vi{r). _^!M . _(z-*H). a26) 

The screening factors are now determined for each shell by evaluating the integrals* in 

Eq. 2.25 by using the orbitals from Eq 2.23 with the screening parameters from Eq. 2.24. 

The effective potential, including the influence of the nuclear charge and the other electrons 

for electron i, is determined as 

-, ( r 2rij—1 . . 

r 
v. 3 

2n, •*—' m 
•> m=o 

a local potential that is used to determine the radial orbitals within the central-field approx­

imation. 

To gain greater flexibility and control over the determination of the radial orbitals, scal­

ing parameters [51] can be defined for the STO-Hartree-Slater potentials, V*(C) = V*(r, a*). 

These parameters are defined as 

c--
ati 

and can be used as additional variational parameters in the energy-optimization procedure. 

In our calculations, we have opted not to use scaling parameters, but instead we use c^ = 1. 

In order to determine the bound orbitals, Pi(r), this STO-Hartree model potential may 

be replaced with the electron-nucleus and electron-electron Coulomb potentials in Eq. 2.1 

as demonstrated in Sec. 2.2.1 within a central-field approximation. The radial equation for 

* / Fm(x)e~axdx = ~s-~- HfcLo m
ak » where Fm(x) is a polynomial function of x of degree m 

and F^(x) is the kth derivative of Fm(x) with respect to x. 
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any given i = nl shell orbital described by Pni(r) is 

Pm(r) = 0. (2.27) 
d2 1(1 +1) 2ZeJf(r) n r i ' 

\ ) + nl \ ) + 2 ^ dr2 r2 

Let us now look for the solutions of this equation near the origin (r —» 0) and at asymptotic 

(r —• oo) values. The solution of the equation at large r values is 

lim Pnl(r) = zr^^e-2^1 

where Ent = —-^r and z = Z^{f(oo) = Z - (JV - 1), where N - 1 is the number of other 
nl 

electrons. The solution in the neighborhood of the origin is 

hmPnKr) = P „ K 0 y + 1 | l - ^ ^ + O ( r 2 ) | , 

with normalization condition 

Jo 
Pni(r)Pnl(r)dr = 1 . 

The orbitals Pni(r) can be determined by matching asymptotic (r —> oo) and inner-region 

(r —• 0) solutions at intermediate r, yielding an eigenvalue equation for the allowed bound 

states Eni < 0, thereby quantizing energies according to nodal behavior (n — I + 1) and 

angular behavior encompassed in the Y™1 (fi) term and the 1(1 + l) /r2 centrifugal term for 

Pni(r). This iteration procedure is terminated when desired convergence is obtained for 

Enl-

2.2.4 Configuration Interaction 

Up to this point, we have considered only what is know as a single-configuration (SC) 

approximation: the wave function is a single Slater determinant for simpler cases but a 
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linear combination of Slater determinants involving permutations within one set of config­

uration orbitals. For instance, the exicted state ls2s(1S) in He is described as 

^sc(ls2sCS)) = ± { J_ 
V2 

+ V2 
<haX+0) <t>isx+(i) 

02sX-(2) <h.X-V) 

Note that these all include the single configuration permutations of spatial Is and 2s space 

and x+,- spin assignments within the configuration. 

However, there also exist the important configuration interaction (CI). For instance, the 

ground state of Be-like ions is described as ls22s2 in a SC description whereas the most 

important CI involves the 2s2 — 2p2 intra-shell correlation, giving a CI wave function 

^CI(ls22s2(15)) = Cl ^ sc(ls22s2(15)) + c2 ^
sc(ls22p2)(15)) , 

where we find that the mixing ratio |c2/ci|2 « 0.08 in our calculations along the isoelec-

tronic sequence 4 < Z < 30 . 

In general, CI wave functions can be taken as a mixture of states from different config­

urations with me same final symmetry as 

K 

** = ^2^3 ' Where CV = (V>.?'l^)-
. 7 = 1 

(2.28) 

Here, c^ are the mixing coefficients and ^ are the eigenfunctions of the Hamiltonian, 7i. 

Hence, they are orthonormal: {ipi\ipj} = <%. 

One can include these (sometimes very important, see Sec. 3.1) additional configura­

tions in one of two ways. In the multi-configuration Hartree-Fock (MCHF) approach, the 
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expansion coefficients Q, in addition to the orbitals <pi(r), are optimized simultaneously. 

As a second approximation, the orbitals are determined from HF or HS methods, and then 

further variations are only considered for the mixing coefficients, as follows. The variation 

with respect to mixing coefficients c^, to minimize the energies Et, yield the following 

eigenvalue equations 

K 

2_^(Hij — 6ijEi)cij — 0 , (2.29) 

where iJ^ = {tpi\H\'ipj). The energies Ei can be determined from the determinantal equa­

tion 

\Hij — Ei5ij\ = 0. 

These energies Ei are then used in Eq. 2.29 to solve for the mixing coefficients ĉ -. In our 

calculations, the CI expansion is considered for both LS- and IC-coupling wave functions. 

2.2.5 Distorted Wave Approximation for Continuum Orbitals 

In the so-called distorted wave approximation, the continuum (scattered) electron is as­

sumed to move in a spherically symmetric potential due to the (N — 1)-electron target elec­

trons and the nucleus ("distortion" refers to the short-range, non-Coulombic inter-electron 

interaction). In our MCBP calculations, this potential is chosen to be a STO-Hartree po­

tential as given in Eq. 2.27. The radial equation for a continuum electron with angular 

momentum U and wavenumber ki can be written as 

£-yj£iu„(r)+1? Fkik(r) = 0. (2.30) 
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where the index i is used to define the electron configuration of the target state, Vi(r) is the 

local potential due to the nucleus and all (N — 1) target electrons, fc, is the wavenumber, 

defined as kf = IE > 0, and E is the energy of the continuum electron. The asymptotic 

solutions of these equations are 

limFkili(r) = Fkili(0)rk+1 

r—»0 

Hm FW i( r) = k~1/2 sin {fcr + % ln(2^r) - l-f + arg 1 ^ + 1 - g) + 5} 

where 2; is the ionic charge defined as z = Z—(N— 1) and the 8 is the distorted-wave phase-

shift. Note that, for a purely Coulombic potential, Vi(r) = (Z — N + l) /r , the distorted 

wave phaseshift is zero, 6 = 0. As we have described in Sec. 2.2.3 for bound states, these 

continuum distorted wave solutions are determined by using a similar integration method 

and imposing the orthogonality conditions (-FlyJ-Pnii) = 0. 

2.3 Multi-Configuration Breit-Pauli Method 

In our multi-configuration Breit-Pauli method, the iV-electron Hamiltonian includes 

both non-relativistic and additional relativistic terms as given in Eq. 2.9. The final wave 

functions are described in an IC-coupling scheme (see Eq. 2.10) and taken in the form of a 

multi-configuration expansion to include electron correlation effects 

Here, the SC states ipiljJMj) are determined from a HS method in a non-orthogonal 

basis*, Nc is the number of states included in the expansion, and c^ are the mixing co-

* A separate non-orthogonal set of orbitals is used tor each configuration, thereby accounting for orbital 
relaxation effects. 
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efficients. The energies and mixing coefficients are obtained from the minimization of 

the energy with respect to the mixing coefficients (see Sec. 2.2.4 for CI), yielding the CI 

form of the variational equation as given in Eq. 2.29. If we define c as a Nc x Nc matrix 

whose elements are the mixing coefficients c^ and H as a Nc x iVc matrix whose elements 

are the Hamiltonian matrix elements, H^ = {ip('yiJMj)\7iBp\ip('yjJMj)), the variational 

equation reads as 

( H - E I ) c = 0, (2.32) 

where I is the Nc x iVc unit matrix. The eigenvalues Ei are determined from the determi-

nantal equation, |H — EI | = 0 , giving eigenvectors in the columns of the matrix c. 

In our calculations, the code AUTOSTRUCTURE calculates the energies of these CI-

levels (terms in an LS-coupling scheme) and the corresponding mixing coefficients. Then, 

level to level dipole transition rates, using both length and velocity forms of the dipole 

operator (see Sec. 2.1.3), and Auger transition rates are computed. 

Another challenge of our calculations is in the use of non-orthogonal sets of orbitals, 

one set for each configuration. Thus, relaxation effects due to different screening in the ini­

tial and final states are taken into account. In this method, the only approximation involved 

is that overlap integrals are assumed to be unity or zero, /0°° Pni(r)Pi'i(r)^r ^ < W ' w n e r e 

i defines the configuration for which the orbital is optimized. 

2.4 R-Matrix Method 

The R-matrix method was first introduced to study the resonance reactions in nuclear 

physics [22,23] and subsequently developed and widely used in nuclear physics [24]. Later 
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application to atomic physics was pioneered by Burke and coworkers [25, 26, 27, 54, 55, 

56]. 

In this method, configuration space is divided into two regions by a sphere of radius 

r = a, where r, for electron-ion interactions, refers to the position of the scattering electron 

relative to the nucleus. The R-matrix boundary, r — a, is chosen such mat all electron 

orbitals in the target vanish at the boundary, r = a. In the internal region r < a, the 

interaction between the scattering electron and the target electrons is the strongest and 

the most complicated. In the external region r > a, on the other hand, the interaction 

between the scattering electron and all target electrons is given by a simple long-range 

multiple potential of the target. The wave functions are solved in both regions, and inverse 

logarithmic boundary conditions (continuity of inner and outer R-matrices) are used to 

match the inner and outer solutions in order to determine the scattering or bound wave 

functions. 

The wave function ty(qi,q2,-- • , QJV+I) for the (N + l)-electron system, including N-

electron target states coupled to the scattered electron, is a variational approximation to the 

Schrodinger equation 

HN+ly(qi,q2,--- ,qff+i) = E*(q1,q3,---,qN+1), (2.33) 

where HN+1 is the (N + l)-electron Hamiltonian (JV is replaced with N + 1 in Eq. 2.1). 

Let us first look at the iV-electron target and the (N + l)-electron scattering solutions 

in the inner region. The wave functions for iV-electron targets state are considered in the 
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form of a CI expansion in terms of a chosen basis of configurations as 

$t(9i> 92, • • • , ?JV) = Yl bii ^'tei> ^2, • • • , QN) • (2.34) 
i 

Here, <j>j are the SC electron wave functions of Slater determinant form as discussed in 

Sec.2.2.1. The mixing coefficients bij can be determined from the following eigenvalue 

equation along with the energies 

<$i|W*%> = SnE? , (2.35) 

where HN is the iV-electron Hamiltonian given in Eq. 2.1 (here we use HN to distinguish 

from the (JV + l)-electron Hamiltonian, HN+l). 

For the solutions \I>, we need to solve Eq. 2.33 in this region. However, due to the 

surface terms that are involved due to the J^ kinetic energy operator, the Hamiltonian 

HN+l is non-Hermitian for the interval 0 < r < a, that is, HN+l ± HN+l\ To cancel 

these surface terms, the Bloch operator [24, 57] is introduced as 

' i 6 - 1 L*«-£i,(r(-.)(£ 
where b is an arbitrary constant, and can be used in conjunction with HN+l to yield a 

Hermitian-operator eigenvalue equation 

(HN+1 + LN+1 - E)V = LN+1V. (2.36) 

In order to solve this equation, we look for solutions that satisfy the following eigenvalue 

equation, 

{il>i\HN+1 + L^ 1 !^-) = EiSii . (2.37) 
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Since we must have an antisymmetric wave function with respect to interchange of 

two electrons, we antisymmetrize, and include additional (N + l)-electron "correlation" 

configurations as 

i>k = AY]cijk$i(qi,q2, • • • ,qN;qN+1) Uij(rN+i) + Y]d,fc©j(<7i,q2,--- ,qN+i) , 
rN+1 i 

where A is the antisymmetrization operator. The channel wave functions $; are constructed 

by coupling target wave functions <&j to a scattered electron orbital Uij(r). The 6 j are 

additional (N + l)-electron wave functions constructed from the bound Pni(r) basis, and 

are included to compensate for the enforced orthogonality condition (Pni\uu) — 0. The 

continuum/valance basis orbitals tty(r) for each angular momentum k are typically taken 

to satisfy the physically-motivated model-potential equation 

( ^ - ^ 7 T ^ + ^(r) + 4 ) Uij(r) = £ AinlPnl(r) , (2.38) 

with the following boundary conditions, 

My(0) = 0, 

dujj(r) 
= b . (2.39) 

KUij{a)) V dr 

Here Ain; are Langrange multipliers used to ensure the orhogonality between the contin­

uum and the bound orbitals, (Pni\uu) = 0, and b is an arbitrary constant. The expansion 

coefficients c ^ and dik are determined from the eigenvalue equation (Eq. 2.37). We note 

that this M x M equation constitutes 2M linearly-independent solutions, but given the 

\I> —• 0 boundary conditions, we only have M remaining. 
r—>0 
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Following Wigner's one channel case [22], computation of the R-matrix can be gener­

alized to M channels [24] as follows. Surface amplitudes are defined as the projection of 

the basis functions on the target states, a^Wik = (^\tpkYr=a, where the prime is used to 

indicate that the integrals are limited to bound orbitals in the target state. In terms of the 

surface amplitudes, the R-matrix is analytically shown to take the simple form 

^E)-Yr2-. Ek-E ' (2-40) 

fc 

where the sum is taken over each channel fc. In the outer region, since the scattered electron 

and the target electrons interact weakly, the outer solution can be written without antisym-

metrization in the form of a CI expansion as 

*out(9i, Q2, ••• , QN\ QN+I) = y~] $»(gi, 92, • • • , QN; QN+I) Fi(rN+1) . (2.41) 

We seek solutions by substituting tyout into the Schrodinger equation, yielding the follow­

ing radial equation for each channel i: 

Here, fc, is the channel energy and defined in terms of the target energies as fc? = 2(E — 

Ef), and V^ is the potential matrix, determined from the electrostatic Coulomb potential 

induced by the target states as 

N 1 

^ i r N + i 

The external solutions F,j (r) are obtained by solving Eq. 2.42 subject to the following 
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F^r) 
1 >00 

asymptotic solutions 

k'1'2 \8in{0i) + cos^Kij] k2 > 0 open channels 

e^l5ij k2<0 closed channels , 

where K is defined as the reactance matrix, and 0$ and fa are defined as 

Oi = hr - \k + irf: In 2ktr + arg T(h + 1 - if:) 

fa = \h\r - ^\n(2\ki\r) . 

Here z is the ionic charge defined as z — Z — N. 

Since the R-matrix must match smoothly between the inner and outer regions solutions 

at the boundary r = a, we have 

Rin(E, r = a) [aVout(E, a)} = Vout(E, a) . (2.44) 

This boundary condition gives us the solution for the reactance matrix K, from which the 

scattering matrix is determined as 

S - i ± ^ . (2.45) 
1 — zK 

Knowledge of S-matrix-normalization of the continuum states tyf allows the photoabsorp-

tion cross section [58] to be computed from an initial state \J>, as 

^A(E) = ^\(^f\V\%)\2 . (2.46) 

For E < 0, on the other hand, we get an eigenvalue equation for the binding energy and 

the wavefunction \f j of the initial state. 
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2.4.1 Smith Time-Delay Method 

The method we use for determining the Auger width of a decaying resonance from our 

R-matrix calculations relies on studying the analytical properties of the Smith time-delay 

matrix [59]. In this method, the lifetime matrix Q is defined in terms of the scattering 

matrix S in Eq. 2.45 as 

Q = - i S . § . (2.47, 

The trace of this matrix has an analytic Lorentzian form 

TrW(g)}>-^+(ir 
where T is the width of the decaying resonance and ER is the position of the resonance. 

We have used the R-matrix method to study the scattering of electrons from an iV-electron 

target state to determine the decay widths of the corresponding (iV+l)-electron resonances. 

By using the computed reactance matrix K in Eq. 2.45, the S matrix is determined, from 

which the Q matrix is computed using Eq. 2.47. The Auger width V is then determined 

from the Lorentizan fit of Tr{Q} for a particular resonance near it's position ER, as given 

in Eq. 2.48. In this method, identification of the resonance and determination of T can be 

difficult when overlapping resonances occur. In such cases, multi-resonance fitting must be 

considered. 
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CHAPTER III 

RESULTS AND DISCUSSIONS 

3.1 K-Shell Fluorescence Yields for Isoelectronic Sequences 

We have calculated the fluorescence yields of the 2nd row-like ions up through Zn. 

MCBP calculations are carried out using the atomic structure code AUTOSTRUCTURE [13] 

The wave functions are described in a non-relativistic framework (see Sec. 2.1.1) and sub­

sequently recoupled to an IC-coupling scheme to include additional relativistic effects as 

described in Sec. 2.3. The atomic states are taken in the form of non-orthogonal config­

uration expansions to treat important orbital relaxation and electron correlation effects as 

described in Sec. 2.2.4. By using these multi-configuration wave functions, level to level 

radiative and Auger rates are calculated (see Sec. 2.1.3 and Sec. 2.3). By using these level 

to level transition data, we have found the total radiative and Auger rates for a particular 

level of interest that influences the fluorescence yields as given in Eq. 1.1. Our results for 

each of the Li-like, B-like, and C-like isoelectronic sequences are presented in a subsec­

tion for each (see Sec. 3.1.1, 3.1.2, and 3.1.3). The rest of the series is not treated in this 

dissertation, but future plans for the entire series are discussed in Sec. 3.1.4. 

3.1.1 Li-Like: Importance of Configuration Interaction 

Following the initial survey of Be-like and F-like isoelectronic sequences [12], it be­

came apparent that the Li-like case might be an important sequence as well. This was the 

first theoretical and computational problem addressed in this dissertation work. In the ab­

sence of electron correlation, the Li-like K-shell vacancy system is often described by a 

40 



single-configuration (SC) description 

Vsc = ls2s2(2S1/2) . (3.1) 

Such states are formed either by K-shell ionization of the four-electron ls22s2 Be-like 

system or by inner shell Is —> 2s excitation of the three-electron ls22s Li-like system. 

Since the wave function contains no p-electrons, decay via an ordinary (electric dipole) 

transition is not allowed. Thus, the K-shell fluorescence yield is zero at this level of ap­

proximation * 

UJS
K

C = 0 . (3.2) 

Indeed, the widely-used database [3] reports a value of zero for the fluorescence yield of 

every Li-like (K-shell ionized Be-like) ls2s2 (2Si/2) state. 

However, considering many-body interactions in the form of configuration interaction 

(CI), a more accurate wavefunction is obtained by including the important intra-shell mix­

ing of ls2s2 and ls2p2configurations, 

* c / = ci ls2s2(2S1/2) + c2 ls2p2(2S1/2) . (3.3) 

The crucial aspect of this deviation from the single-configuration wavefunction is that 

the mixing coefficient c2 is not small compared to unity. Using AUTOSTRUCTURE [13], 

our calculations reveal that the mixing coefficient c2 varies from 0.34 for Be+ to 0.32 

for Zn27+. It is of interest to note that the mixing is nearly constant over a broad range 

*Note that a highly-forbidden magnetic dipole transition is in fact possible, but the probability is so 
small that it is essentially ignorable in this situation. 
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of ions along the isoelectronic sequence. The result of this significant mixing with the 

ls2p2 configuration is that now there can be a substantial probability for this state to decay 

radiatively via ls2p2 —* ls22p radiation, i.e., OJ^1 ^ 0. 

The results of our calculations for the K-shell fluorescence yield, uK, are shown in 

Fig. 3.1 and tabulated in Table 3.1. Our results show that at the low-Z end, the fluores­

cence yield remains negligible, although not quite zero. With increasing nuclear charge Z, 

UJK is no longer negligible, rising to a value of almost 0.18 for Zn27+. In addition, a sig­

nificant value of 0.118 is seen for the astrophysically important Fe23+ ion. This is in good 

agreement with the multi-configuration Breit-Pauli result of 0.116 [60] using the same code 

AUTOSTRUCTURE and in fair agreement (« 10%) with the multi-configuration Dirac-

Fock (MCDF) result of 0.105 [61]. These results are in stark contrast to the currently-used 

values [3], which are all zero. 

We have also developed a two-parameter fitting formula to our theoretical results for 

easy usage in astrophysical purposes [40] (see also Fig. 3.1 and Table 3.1). The physics 

underlying the Z-dependence of CJK, seen in Fig. 3.1, can be explained by considering 

the modification of expected high-Z scaling of the radiative rate Ar and the Auger rate 

Aa by significant spin-orbit mixing [2]. To begin with, the Auger rate, Aa, is approx­

imately independent of Z whereas the radiative rate, Ar, scales as ~ ZA, within the 

framework of LS-coupling [2] (see also Appendix B for the derivation of the Z-scaling 

of the relevant physical variables). With increasing Z, however, the spin-orbit interac­

tion becomes increasingly important, and perturbs the ZA dependence of Ar with a small, 

negative contribution which scales as ~ Z~''. This suggests that the fluorescence yield, 
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Figure 3.1 Calculated fluorescence yields (circles) and fit formula (dashed line) for K-shell 
vacancy Li-like ions. Available data from other theoretical sources [16, 60, 61] are also shown, 
indicating the generally-good agreement between our complete-series results and the selected ions 
computed by other theorists. 

UJK = Ar/(Ar + Aa) = (1 + 1/lAr/Aaiy1, can be well approximated by the fitting for­

mula 

UJ 
fit 
K (1 + 

aZ4 - bZ7 r1 
(3.4) 

Fitting the above functional form to our calculated UJ^1, we obtain a = 3.57 x 10 -7 and 

b = 3.2 x 10~12. The resulting or£* is shown in Fig. 3.1 and tabulated in Table 3.1. The 

agreement with J^ is seen to be quite good except at very low Z where the fluorescence 

yield is negligible anyway. This disagreement occurs because the approximate scaling is 

invalid at such low Z. It should be emphasized that this fitting is based on the important 

physics for Z < 30; for higher Z, the above perturbative approach for the spin-orbit inter­

action is inaccurate and the fitting formula, Eq. 3.4, breaks down. In any event, since the 

ls2p2 —»• ls22p radiative rate eventually dominates the Auger rate, the asymptotic Z —» oo 
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fluorescence yield, UJK, is equal to unity, in sharp contradiction to the latest database in use 

that reports all these values as zero [3]. 

Table 3.1 Fluorescence yield UJK VS. nuclear charge Z for the intermediate-coupling, Cl-mixed 
Li-like ls2«s2(251/2) state. 

7 i Pl , Slt 

4 0.000076 0.000091 

5 0.000210 0.000223 
6 0.000459 0.000462 

7 0.000874 0.000854 

8 0.001512 0.001453 
9 0.002437 0.002322 
10 0.003718 0.003526 
11 0.005427 0.005138 
12 0.007640 0.007235 
13 0.010427 0.009897 
14 0.013859 0.013201 
15 0.018000 0.017224 
16 0.022906 0.022041 

17 0.028623 0.027714 

7 , <C! , ,/4i 

18 0.035187 0.034299 

19 0.042622 0.041837 
20 0.050939 0.050354 

21 0.060142 0.059855 

22 0.070221 0.070327 
23 0.081161 0.081733 
24 0.092939 0.094012 

25 0.105530 0.107081 
26 0.118905 0.120832 
27 0.133037 0.135136 
28 0.147898 0.149844 
29 0.163462 0.164787 
30 0.179705 0.179781 

3.1.2 B-Like: Breakdown of Configuration-Average Approximation 

The five-electron K-shell vacancy ls2s22p2 state can couple to one of four LS-terms. 

These are approximately energy-ordered according to Hund's rule as iP2D,2P and 2S. 

Furthermore, the 2P term can couple to the J = 1/2 or 3/2 IC-levels, the 2D can couple 

to the J = 3/2 or 5/2 IC-levels, the 4 F term can couple to the J = 1/2, 3/2, or 5/2 

IC-levels, and the 2S LS-term can only couple to the J = 1/2 IC-level. Thus, the ls2s22p2 

configuration can be in any of eight LSJ-levels. The possible radiative and autoionization 
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decay pathways for these states are 

ls2s22p\2S+1Lj) ^ ls22s22p(2P],) + hv 

^ ls22p3([4^,2
JD,2P]J0 + ^ 

^ l522s2(150) + e-

^ ls22s2p(ll3P?„) + e" 

^ l s V a ^ P / D W + e-. (3.5) 

Within a single-configuration description, the radiative rate Ari equals zero for the initial 

4Pj level due to spin conservation for electric dipole transitions, and the radiative rate A-2 

is zero for all LSJ initial levels since this involves a two-electron transition. Also, in the 

single-configuration approximation, the partial Auger rate Aa\ equals zero for the initial 

4Pj and 2Pj levels due to parity conservation. 

We have calculated these decay rates by including 2s2 —• 2p2 intrashell correlation -

the most important CI effect - as well as semi-relativistic effects, such as the all-important 

spin-orbit interaction. Our results revealed that the forbidden decay pathway Ar\ becomes 

non-negligible when we take configuration-interaction and semi-relativistic effects into ac­

count. Also, we have showed that the fluorescence yields of the eight K-shell vacancy 

states are strongly LSJ-dependent over the entire isoelectronic sequence [12, 40, 41] (see 

also Fig. 3.2). To emphasize the strong state dependence, we look at Z = 20. The lowest 

fluorescence yield is close to zero, while the largest is seen to be about 0.6. Considering 

that the fluorescence yield can only vary between 0 and 1, this amounts to an extremely 

large difference. 
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Fortunately, other calculations have been performed, allowing us to check the accuracy 

of our calculations: the fully relativistic MCDF calculations [62] and other MCBP cal­

culations [63], that were performed for certain members of the five-electron isoelectronic 

sequence. Good agreement is found with MCDF and other MCBP results both qualitatively 

and quantitatively (see Fig. 3.2 for the particular 2D3/2 and 2D5/2 states). 

Note that there is nothing special about the five-electron K-shell-vacancy system. The 

same general phenomenology should be true for other isoelectronic sequences with fewer 

than ten electrons (see, for example, Fig. 3.3 for the C-like isoelectronic sequence). The 
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Figure 3.2 LSJ-dependent fluorescence yields for K-shell vacancy B-like ions. Comparison of 
fluorescence yields for 2D-i^2 and 2D5/2 states. 

widely used data compilation [3] contains configuration-averaged fluorescence yields, and 

these are quite inappropriate for most astrophysical situations. For use in astrophysical 

modeling codes, then, fluorescence yields, and the radiative and Auger rates associated 

with them, need to be given for individual LSJ-states; these data can be combined as ap­

propriate for each astrophysical situation. Our aim for future astrophysics-related atomic 

physics calculations is the compilation, publication, and electronic database creation of all 
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such rates for all ions of all isoelectronic sequences through the 2nd-row elements. This is 

because, for a given situation, if configuration averages are sought they cannot be general 

but must be tailored to the specific astrophysical situation being considered. 

For example, we can create a B-like K-shell vacancy state by photoexcitation of Is —> 

2p in B-like ions or by photoionization of Is —• ep in C-like ions. To the emphasize 

importance of specific configuration-averaging, let's consider the population of K-shell 

states following X-ray absorption. For the sake of simplicity, a single-configuration, non-

relativistic LS-coupling scheme is considered. 

The population of final K-shell vacancy states after Is —* 2p photoexcitation of B-like 

ions, and Is —> ep photoionization of ground state of C-like ions, yields the following: 

Photoexcitation of B — like Ions : 

hv + ls22s22p[2P]° - • ls2s22/[25, 2P, 2D] (3.6) 

Photoionization of C — like Ions : 

/w + ls22s22p2[3P] -• ls2s22p2(2'4P)ep[3D, 3P, 35]° . (3.7) 

Here the ground state of B-like ions and C-like ions are the 2 P and 3 P terms, respectively. 

Because a photon is absorbed in either process, the change in total angular momentum of 

the system will be ±1 or 0 and total spin is conserved (see Sec. 2.1.3 for dipole selection 

rules). For photoexcitation, the 4 P term cannot be populated, and specific configuration-

averaging should be done over only the doublet terms. For photoionization, only 4 P and 

2 P K-shell-vacancy terms can be populated, and specific configuration-averaging should 

likewise be considered over only these terms. 
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3.1.3 C-Like: Anomalous Behavior 

For C-like K-shell vacancy states, the relevant electronic configuration is \s2s22p3. In 

an intermediate-coupling scheme, this can be found in one of the ten lP°,3P£x 2, ^D^, 

3D° 2 3> SS°, and 5<S'| levels. The possible decay pathways of these states are 

ls2s22p3(3'5S°j, l'3P°j, lflD°j) ^ ls22s22p2({lD, x 5 , 3P]j>) + hu 

AJZ ls22p\[ 1S, lD, 3P\j.) + hv 

^ ls22s22p(2P%) + e~ 

^ ls22s2p2([2S, 2 '4P, 2D)j,,,) + e~ 

^ ls22p3([2P, 2D, 4 5 ] » + e" . (3.8) 

Similar to the B-like case, if many-body interaction effects are neglected, some of the decay 

channels are closed due to selection rules for angular momentum and/or parity; Ari equals 

zero for the initial 5S% level due to spin conservation, Ar2 is zero for all initial LSJ levels 

due to the fact that a two-electron transition is forbidden via an electric dipole interaction, 

and Aai is zero for the intial 3'5Sj levels due to parity conservation. In our calculations, 

we have included the strongest electron correlation such as the Is —>• 2s, ls2s —*• 2p2, and 

2s2 —> 2p2 promotions. We have performed calculations for all initial levels of the C-like 

K-shell-vacancy isoelectronic sequence (see Fig. 3.3). The fluorescence yields of each level 

are again strongly LSJ-dependent, similar to the case of the B-like isoelectronic sequence. 

For fluorescence yields of C-like K-shell vacancy states, monotonically increasing smooth 

curves as a function of nuclear charge Z are found as expected (see Fig 1.2) except for the 

48 



0.8 

0.6 

0.4 

0.2 

1 ' r 
+ — •— s. 

D 
1,2,3 _ o ' ° 

— A—'n A^-.A-—* 

o " ^ / * • 

2 ^ . ^ » * 

< r ^ 
^ . * * * * 1-9^:*,*-*-*' n n L f A » i » < : f r * i . i , i 

-n—' 1 ' r 

-•-—. 0,1,2 

• " rf?y 

n1 

•miSaimagS^. 
rP *-* 

,̂ 1 

S\ 

• • H a t . * . * - * - * 1 * 

10 15 20 25 30 10 15 
Nuclear Charge Z 

20 25 30 

Figure 3.3 LSJ-dependent fluorescence yields for K-shell vacancy of C-like ions. 

3 Pi and 3Si states (see Fig. 3.3). The 3Pi and 35i results exhibit anomalous behavior as a 

function of nuclear charge Z [42]. This anomalous behavior is more pronounced in the Ar 

and Aa rates of these states (see Fig. 3.4 and Fig. 3.5). 

Before proceeding, a second, independent multi-configuration Dirac-Fock (MCDF) 

method was used to calculate the Ar and Aa rates for some members of the K-shell va­

cancy C-like ions [64]. These calculations were performed using an improved code [65] 

to treat the low-Z region better [42]. As this approach is based on the full Dirac-Fock 

equation, including large and small component wave functions, it implicitly includes all 

one-electron and two-electron relativistic effects. In addition to all relativistic corrections 

that are introduced perturbatively in the MCBP method, the MCDF method also accounts 

for the frequency-dependent generalized Breit interaction, and quantum electrodynamics 

(QED) corrections. For heavy elements, our present MCBP approach using non-relativistic 

wave functions will be inappropriate since not all relativistic effects can be treated pertur­

batively. 
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The new MCDF calculations are carried out using an extended-averaged level scheme [65, 

66] for the initial and final states separately, including the same CI expansion from the 

n = 2 complex as is used for the MCBP calculations (all possible 2s*2p7 configurations are 

included in the CI of both initial and final states of the system). In this extended-averaged 

level scheme, the orbital wave functions are obtained by minimizing the statistical-weight-

averaged energy of all the levels in the MCDF expansion. Since the initial and final states 

are treated separately, relaxation effects are included in this method as well as the MCBP 

method. The transition energies and eigenvectors also include contributions from the gen­

eralized Breit interaction and quantum electrodynamic corrections. For the lighter elements 

of astrophysical importance, Z < 30, we have found that these two approaches are usually 

in quite good agreement for fluorescence yield calculations [12, 40, 41] and dielectronic 

recombination of numerous ions (see, for example, Refs. [67, 68, 69]). 

We have found that our MCBP results and the new MCDF results exhibit the same 

qualitative behavior (see Fig. 3.4 and Fig. 3.5). Furthermore, at higher Z, the MCBP and 

MCDF results for Ar and Aa differ by not more than about 5%. Since relativistic effects 

become increasingly important as Z is increased, this suggests strongly that the inclusion of 

relativistic effects perturbatively in the MCBP approach works well for Z < 30. However, 

larger differences at lower Z are found. We attribute this discrepancy to differences in the 

specifics of the wave functions employed. 

A useful measure of the quality of multi-configuration calculations of radiative rates 

can be obtained by performing the calculations in both "length" and "velocity" gauges [70] 

(see Sec. 2.1.3) which must be equal for exact wave functions. Usually, the closer they are, 
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Figure 3.4 Calculated MCDF (left) and MCBP (right) radiative rates Ar for the ten K-shell 
vacancy levels ls2s22pi(2S+iLj) of the C-like isoelectronic sequence. Note that Ar is scaled by 
IIZ4 to factor out the strong Z4 dependence. 
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Figure 3.5 Calculated MCDF (left) and MCBP (right) Auger rates Aa for the ten K-shell va­
cancy levels ls2,s22p3(2S+1L,/) of the C-like isoelectronic sequence. 

the more accurate the calculation. This has been done for both the MCBP and MCDF re­

sults, and comparison between the two is performed (see Table 3.2) for five selected values 

of Z from 7 to 30. For Z = 7, it is found that the MCBP rates differ by up to about 10%, 

while the MCDF values show up to about 70% discrepancies. At the higher values of Z, 

the comparison improves in both calculations; the length-velocity agreement for the MCBP 

rates is within about 5%, and for the MCDF rates, it is seen to be better than 10%. Unfor-
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tunately, while this length-velocity agreement is a good indicator for calculations based on 

the Schrodinger equation, such as our MCBP method, it is less useful for calculations based 

Table 3.2 Comparison of radiative rates (s^1) in length and velocity gauge results of MCBP and 
MCDF calculations for ten levels of the ls2s22p3 C-like ions with selected nuclear charge, Z. 
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on the Dirac equation, such as the MCDF method, where it is known that the velocity form 

is generally to be preferred [71] and that length-form convergence is slow. As corroboration 

of these ideas, note that in almost every case shown in Table 3.2, the MCDF-velocity result 
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is in much better agreement with the MCBP results than the MCDF-length rates. In any 

case, based upon the comparison of length and velocity gauges, it appears that the MCBP 

results are reasonably accurate. 

To understand the physics behind this anomalous behavior - the non-smooth behavior 

of the 35i and 3PX radiative and Auger rates- we note first that the two states exhibiting 

anomalous behavior are both J = 1 states. Since they have the same J — 1 values for 

total momentum, these states can interact via the spin-orbit interaction. But, the spin-orbit 

coupling matrix element increases rapidly with increasing Z (see Appendix B). This sug­

gests that any effect arising from spin-orbit coupling between the states should be largest 

at the highest Z, which is not what is seen. However, from a perturbation theory point 

of view, the full mixing coefficient is related to the overlap matrix element divided by the 

energy difference of two unmixed states, J&CL , thus suggesting that the anoma-E2—E1 

lous behavior is due to abnormally-strong spin-orbit mixing due to an energy crossing, 

as a function of Z, of the LS-energies of the two levels, similar to the well-known Von 

Neumann-Wigner [38, 72] avoided crossings phenomena. In fact, there is an energy cross­

ing between the ls2s22p3(3P) and ls2s22p3(3S) LS-states. It is very interesting that the 

energy crossing doesn't appear in the single-configuration (SC) calculations. The energy 

of the SC ls2s22p3(3S) term lies below the energy of the SC ls2s22p3(3P) term along the 

sequence. We should note that after the inclusion of CI effects, the energy of the 3S CI state 

stays about same as the 3S SC energy whereas the 3P CI energy gets lower and causes the 

crossing (see Fig. 3.6a). 

53 



0.03 

>. 
cd 

T3 

/—s 

P4 
-̂̂  

» 
3 
W 
< 

+ 

o 
w 
c 

ci
e 

ffi
 

CD 
O 

o 
D) 
c 

0.02 

0.01 

0.00 

0.02 

0.01 

0.00 

0.8 

0.6 

0.4 

0.2 

0} 

03 

c 
<D 
O 

£ o 
3 

0.0 

0.8 

0.6 

0.4 

fr 0.2 

0.0 

~^ \—• T T I — • i — 
a ) ls2s22p3(3P) 
* - • - • - • _ LSSC 

- • - • - LSCI 

- • - • - •—• 

Crossing 

T * ~ * T * * - T 

+>=c |3P > + c |3S > + ... 
1+1 1 2+1 1 

c) 

No Mixing ; 50% Mixing 

d ) - ° - < » i A ) n o S O 

- • - c o / S , ) SO 

-*-coK ( 3P t ) SO 

- A - <aK(3Pj) no SO 

JO" 

^/ 
_ / 

^ 

^ - A ' 
^ A / A ' 

.AH 

-S*" ^ 
> • 

x > " , A 
/ A ' 

/ A ' 

n-Q: - O ' _ A - A ^ V f A ^ - ^ -

_ A -

• A - A - A -
10 15 20 

Nuclear Charge Z 
25 30 

Figure 3.6 The anomalous behavior of the fluorescence yields for 3S\ and 3P\ levels. 
a) (E(3P) — E(3S))/Z within the ls2s22p3 configuration at the nonrelativistic single configura­
tion (LSSC) and configuration interaction (LSCI) levels, b) Same as a) with nonrelativistic LSCI 
(dashed line) and full calculation including CI and relativistic effects in an intermediate coupling 
scheme (ICO, solid curve), c) Mixing coefficients for the relativistically (spin-orbit) mixed 3 Pi 
and 3S'i states of the Ls2s22p3 configuration, d) Fluorescence yields excluding and including spin-
orbit effects for the ls2s22p3(3Pi) and ls2s22p3(35i) states. The anomalous fluorescence yield 
behavior is seen to occur once there is appreciable spin-orbit mixing c 2

+ < c2
+ . 
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To explain the occurrence of this energy crossing quantitatively, it is sufficient to con­

centrate on the interaction of the ls2s22p3(3P) SC state and the two-electron, 2s2 —• 

2p2, intra-shell promotion. In a SC description, we denote the two states as |3P-} <-* 

ls2s22p3(3P) and |3P+) <-> ls2p5(3P) that interact through the electron-electron repul­

sion term in the Hamiltonian. In this Cl-mixed representation, we get 

\3P±)CI = a±\3P±)+b±\3P±). 

Our calculated results show that the mixing coefficients are approximately constant along 

the isoelectronic sequence, that is a <-» a± ~ 0.99 and b <-* ±b± « 0.1. The energies of 

these mixed states will be 

E^Pg1) = a2E(3P±) ± 2a6(3P_|]T—|3P+) + b2E(3P±). 

Considering the hydrogenic energy scaling (E+ — EJ) ~ Z, a perturbative approximation 

gives cb/ca = (3P_\YJ^:\3P+)/\(E+ - EJ)\ w 0.1, independent of Z. And since the 
i<jrtl 

non-diagonal matrix element scales as Z, our calculated results have verified the linear Z 

dependence of this matrix element. Because the second term dominates the third term, if 

we Z—scale the change in the energies then we should get a constant energy shifting along 

an isoelectronic sequence. This behavior is shown in our computed results (see Fig. 3.6a). 

Furthermore, with the inclusion of relativistic effects, there is a non-zero matrix element 

between the 3Pi and 35i states, principally through the spin-orbit interaction. This, of 

course, leads to an avoided crossing, as shown in Fig. 3.6b; note the striking similarity 

with Fig. 10-2 of Ref. [2]. Considering two spin-orbit-mixed states interacting through the 

(relatively weak) spin-orbit interaction, |±) = ci±|35i) -I- c2±|3Pi), we obtain the (non-

55 



perturbative) determinants equation for the eigenvalues E± and eigenvalues ci±: 

( 
E(3S1) - E± Vso 

^ Vso £?(3Pi) -E± ) 

^ ^ 

V C 2 ± 7 

V 
\°J 

For closely degenerate, unperturbed states, the eigenvalues of the mixed states, assum­

ing 5 = £(3Pi) - £(3Si) « 0, and with e = £(3p '>f(3Sl), are given by E± = t ± Vso/2. 

For this perturbed energy, our determinantal equation yields approximate 50-50 mixing 

between the closely degenerate states, that is, cf± « 1/2. 

Our computed mixing coefficients are shown in Fig. 3.6c, where it is evident that there is 

essentially no mixing of these two states at low-Z and nearly 50-50 mixing around Z = 20, 

the well-known result for near-degeneracy. In this region, the maximum mixing of 3Si and 

3Pi signatures in each state occurs and, therefore, a "sharing" of radiative and Auger rates 

and a strong deviation from the otherwise-smooth behavior results (the sum remains smooth 

by unitarity, as can also be inferred from Fig. 3.4 and Fig. 3.5). 

Finally, we have recalculated the fluorescence yields by excluding spin-orbit interac­

tions and obtained well-behaved curves for the 3Si and 3Pi levels (see Fig. 3.6d). It is 

found that the anomalous behavior in the fluorescence yields occurs when there is an ap­

preciable mixing due to spin-orbit effects. 

3.1.4 Comprehensive 2nd-Row Isoelectronic-Sequence Calculations 

As a completion of the present fluorescence yield investigation, we have calculated 

level energies and level to level radiative and Auger decay rates for the K-shell-excited 

states of all Li-like through F-like 2nd-row isoelectronic sequences (equivalently, K-shell-
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photoionized states of all Be-like through Ne-like ions). This amounts to a total number of 

ions in terms of the number of electrons in the ion, Ne, and the nuclear charge, Z, that is 

9 30 
N™ ~ ] £ ^ 1 = 168. (3.9) 

Ne=3 Z=Ne+l 

Furthermore, for each series of these ionic K-shell vacancies there exists multiple radia­

tive and/or Auger decay processes, leading to an "astronomical" number of energies and 

transition rates. These complete 2nd-row computed energies and transition rates have been 

systematically evaluated [73] and comprehensively tabulated [74] for future publications. 

As a simple example, we tabulate the total radiative and total Auger rate results along 

with the comparison with earlier theoretical calculations [63], for the 3P2, 3Pi, 3PQ, and 

1Pi K-shell vacancy states of the ls2s22p5 oxygen-like isoelectronic sequence in Table 3.3. 

From these rates, one can compute the fluorescence yields, wK, for any states using Eq. 1.1. 
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Table 3.3 The total K-shell radiative and Auger rates for the ls2s22p5 O-like isoelectronic 
sequence. 

Radiative Rates Ar (s ') Auger Rates Aa (s ') 
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4.96 x 1 0 " 

5.3037 x 1 0 " 

5.5200 x 1 0 " 

5.54 x 1 0 " 

5.7247 x 10" 

5.9180 x 1 0 " 

6.01 x 1 0 " 

6.1009 x 1 0 " 

6.2741 x 1 0 " 

6.10 x 1 0 " 

6.4389 x 1 0 " 

6.5962 x 1 0 " 

6.7473 x 1 0 " 

6.8930 x 10" 

7.0340 x 1 0 " 

7.1711 x 1 0 " 

6.99 x 1 0 " 

7.3045 x 10" 

7,1343 x 10" 

7.5605 x 1 0 " 

7.6831 x 1 0 " 

a Present MCBP results. 
b Recent MCBP results [75]. 
c Earlier MCBP results [63]. 
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3.2 Carbon K-Shell Photoabsorption Cross Section Results 
3.2.1 C: Abundant in the Interstellar Medium 

For photoabsorption of neutral carbon, the particular atomic processes of interest are 

the following: 

hv + ls2s22p2{3P) <=> ls2s22p2[2S,2 £>,2'4 P] {np, ep}(3D3 P3 S)° 

/ \ 
ls22/3 + e~ \s22l2np + e" 
ParticipatorAugerDecay SpectatorAugerDecay. (3.10) 

Note that there are two fundamentally different Auger decay pathways. First, there is par­

ticipator Auger decay, which involves the outer, valance np electron and therefore scales as 

n - 3 . This is routinely incorporated into the standard R-matrix implementation by includ­

ing the appropriate ls22l3 + e~ channels in the close-coupling equations [45]. The second, 

more problematic pathway is the spectator Auger decay that instead involves core Auger 

decay and is therefore independent of n: spectator Auger decay dominates at the Rydberg 

limit n —> oo. Indeed, spectator Auger decay can dominate by orders of magnitude at even 

the lowest n [15,76]. 

We use the Hartree-Fock [31] and multi-configuration Hartree-Fock [32] atomic struc­

ture program packages to generate radial target C+ orbitals for our calculations. The op­

timization procedure (HF or MCHF) that we have used to generate C+ orbitals is summa­

rized in Table 3.4 for each orbital. Single and double electron promotions are considered 

to account for orbital relaxation effects due to Is—vacancy. 

The core (spectator) Auger widths are calculated by performing R-matrix calculations 
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Table 3.4 Criterion for determination of C+ physical Is, 2s, and 2p orbitals and correlation (or 
pseudo) 3s, 3p, and 3d orbitals. 

Is, 2s, and 2p From a HF (single-configuration) calculation for the ls22s22p (2P) 

term. 

3s, 3p, and 3d From a MCHF (multi-configuration) calculation for the lowest K-

shell vacancy ls2s22p2 (4P) term including single and double n = 

2 —»• n = 3 promotions. 

for the electron scattering off the four electron C2+ target states. Auger widths are de­

termined using the Smith time-delay method (see Sec. 2.4.1). These values are used in a 

Feshbach projection-operator, optical potential methodology, within our R-matrix calcu­

lations, to include Auger broadening effects. Cross sections are calculated in length and 

velocity gauges and agreement between the calculations is within 6.2%, which is a mea­

sure of the completeness of our wave functions (see Sec. 2.1.3). These photoabsortion 

cross section results are compared with those obtained using an independent-particle (IP) 

approximation [77] in Fig. 3.7. As is clearly seen, our background cross section is in good 

agreement with the IP results, but we also include the important Is —» np absorption fea­

tures that are necessary for understanding abundances in the ISM, as discussed earlier in 

Sec. 1.2 (see Fig. 1.3). 
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A comparison of Auger widths of the lowest 17 autoionizing C + target states is shown in 

Table 3.5 between the two theoretical results. Table 3.6 shows our R-matrix results for the 

ground state energy of C, the first 25-target threshold energies, and the resonantly-excited 

K-shell vacancy state energies compared to results from fluorescence yield calculations for 

B-like and neutral C and and also to the available NIST critically evaluated data. Also 

shown in Table 3.6 are the photon energies with respect to the ground state of C. Overall, 

good agreement between our R-matrix and AUTOSTRUCTURE results is found. 

Table 3.5 Comparison of Auger widths for the 17 C+ autoionizing target states above the K-shell 
threshold (see Table 3.6). 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

State 

l.s2,s22p2 (4P) 

Ls2s22p2(2D) 

l,s2.532p2 (2P) 

ls2.s22p2 (25) 

ls2s(1S)2p3 (4S) 

ls2s(3S)2p3 (4D) 

l.s2.s(3S)2p3 (4P) 

l.s2.s(15)2p3 (2D) 

l.s2.s(1S)2p3 (2P) 

ls2s(iS)2p3 (4S) 

ls2s(3S)2p3 (2L>) 

ls2s(3S)2f (2S) 

ls2s(3S)2p3 (2P) 

ls2p* (4P) 

U2pi C-D) 

ls2p4 (2P) 

ls2p4 (25) 

Present" 

6.45E -

9.UE -

4.93E -

8 ME -

l.5r,E -

4.60E -

SME -

7.21E -

6.42E -

4.57E -

7.78E -

1.49E -

6.56E -

S.S9E -

7.24E -

•i.mE -

4.90E -

-02 

-02 

-02 

-02 

-02 

-02 

-02 

- 02 

-02 

-02 

-02 

- 02 

-02 

- 03 

-02 

-02 

-02 

AUTOb 

8.61P-

l.WE-

5.19P-

1.Q2E -

2.06E -

6.42E -

4.87E -

9ME -

7.77E -

7.15P -

1.18P-

1.25P-

1.01P-

6ME -

1.Q8E-

6.69E -

1.36£ -

-02 

-01 

-02 

-01 

-02 

-02 

-02 

-02 

-02 

-02 

-01 

-02 

-01 

-02 

-01 

-02 

-01 

MCDF 

6.68E -

8.62£ -

4.75E -

1A9E -

5ME -

4.77E -

3.73E -

9ME -

H.Q1E-

2.49E -

8.23E -

8.89E -

7.13E-

5.18E-

8.16E-

5.0SE -

5ME -

-02 

-02 

-02 

-04 

-02 

-02 

-02 

-02 

-02 

-02 

-02 

-03 

-02 

-02 

-02 

- 02 

-02 

a Present R-matrix results. 
b MCBP AUTOSTRUCTURE results. 
c MCDF results [62]. 
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Table 3.6 Comparison of energies of the relevant C and C+ states involved in the present inves­
tigation. The term energies are given relative to the ls22s22p (2P) ground state of C+. The photon 
energies are given relative to the ls22s22p2 (3P) ground state of C. 

i 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

State 

ls22s22p2 (3P) 

l,s22S
22p(2P) 

ls22s2p2 (4P) 

ls22s2p2 (2D) 

ls22«2p2 (25) 

ls22.sV (2P) 

ls22p3 (4S) 

ls22p3(2D) 

l.s22p3 (2P) 

ls2s22p'! (3£>) 

ls2*22p3 (3S) 

ls2s22p3 (3P) 

l.s2.s22p2 (4P) 

l«2s22p2 (2D) 

l.s2s22p2 (2P) 

l.s2.s22p2 (2S) 

ls2s(15)2p3 (45) 

l«2*(36')2p3 (4D) 

l6'2*(3S)2p3 (4P) 

ls2.s(15)2p3(2D) 

ls2s( lS)2p3(2P) 

Ls2s(3S)2p3 (4S) 

l.s2.s(3S)2p3 (2D) 

ls2s(3S)2p3 (2S) 

l.s2s(35)2p3(2P) 

ls2p4 (4P) 

ls2p4 (2D) 

ls2p4 (2P) 

ls2p4 (25) 

Term Energy (Ry) 

Present" 

-0.8493 

0.0000 

0.3814 

0.7128 

0.9850 

1.0450 

1.3104 

1.4311 

1.6792 

20.0536 

20.0894 

20.1566 

20.9133 

21.1651 

21.1899 

21.3351 

21.4753 

21.5097 

21.6908 

21.8446 

22.0355 

22.0847 

22.1103 

22.2898 

22.3180 

22.4901 

22.6795 

22.7300 

23.0860 

AUTOb 

-0.7189 

0.0000 

0.3746 

0.7574 

0.9589 

1.1134 

1.3095 

1.5151 

1.7233 

20.3330 

20.3528 

20.4082 

20.9723 

21.2193 

21.2280 

21.3339 

21.4898 

21.5616 

21.7240 

21.9353 

22.0975 

22.2193 

22.2616 

22.3968 

22.4238 

22.5995 

22.8489 

22.8578 

23.2212 

OTHER"1 

-0.8277"-' 

0.0004° 

0.3922r 

0.6828c 

0.8793° 

1.0083° 

1.2942° 

1.3711° 

1.5377° 

Photon Energies (eV) 

Present* 

0.0000 

11.5555 

16.7449 

21.2537 

24.9568 

25.7738 

29.3841 

31.0267 

34.4025 

284.4008 

284.8885 

285.8022 

296.0976 

299.5236 

299.8609 

301.8369 

303.7442 

304.2117 

306.7575 

308.7688 

311.3602 

312.0362 

312.3834 

314.8255 

315.2095 

317.5512 

320.1276 

320.8157 

325.6586 

AUTOb 

0.0000 

9.7810 

14.8782 

20.0853 

22.8279 

24.9295 

27.5976 

30.3957 

33.2282 

286.4270 

286.6974 

287.4509 

295.1257 

298.4867 

298.6048 

300.0456 

302.1662 

303.1433 

305.3528 

308.2281 

310.4357 

312.0922 

312.6681 

314.5076 

314.8745 

317.2659 

320.6580 

320.7795 

325.7238 

OTHERS' 

0.0000° 

11.2671° 

16.5977° 

20.5522° 

23.2256° 

24.9810° 

28.8710° 

29.9170° 

32.1832° 

296.07 ± 0.2d 

a Present R-matrix results. 
b MCBP AUTOSTRUCTURE results. 
c NIST data. 
d Experimental data [78]. 
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3.2.2 C+: Comparison with Laboratory Experiment 

The specific processes of interest for K-shell photoabsorption of ground state C+ are 

the following: 

hv + ls22s22p(2P°) -»• \s2s22p {np, ep) (2D2 P2 S) . (3.11) 

These K-shell-vacancy excited states can relax via one of the following Auger processes 

ls2s22pnp —> ls22sl2pje£ (i +j = 2) participator Auger decay , (3.12) 

—> ls22sl2pinpel (i + j = 1) spectator Auger decay. (3.13) 

We have found that K-shell Is —> 2p photoexcitation of C+ has been studied ex­

perimentally [79], but no higher Is —> np(n = 3, oo) experimental studies have been 

performed to our knowledge. These measurements were performed using an electron-

cyclotron-resonance ion source at the Advanced Light Source (ALS) to produce the pho­

toexcitation cross section for the energy region hv =287 - 291 eV. Theoretical calculations 

were also carried out by using an R-matrix pseudo-state (RMPS) method [79, 80]. The 

metastable-ion fraction in the ion beam was found to be (20 ± 5)% by comparing the 

experimental data with the theoretical cross sections. Thus, we have also studied the pho­

toabsorption of C+ metastable states. 

Metastable states are excited states that cannot decay via normal (electric dipole) ra­

diative interactions and are therefore relatively long-lived. The metastable state of C+ 

is ls22s2p2(4P°) and, since decay of a quartet state to the doublet ground state is spin-

forbidden (see Sec. 2.1.3), the quartet state has a much longer lifetime than the doublet 
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excited states. Radiative decay of these metastable states occurs only via S.O. mixing. 

Population of metastable states is possible via thermal excitation of C+ or by photoioniza-

tion of the 2s shell of the ground state of C. 

In the K-shell (Is —> 2p) photoexcitation processes of C+, considering that the 2p 

subshell is initially occupied, we expect no participator Auger broadening effects for n = 2 

excited states. And since we are interested in metastable states only for comparison with 

experimental results, we are not concerned with Auger broadening effects. Instead, we 

artificially broaden the ls2s2p2(4S,i P,4 D) resonances with a significantly large width 

and found that it has no noticeable effect as expected in this energy region due to the broad 

natural, predominantly participator Auger, widths. 

Our procedure used to determine the C2+ radial orbitals, using HF [31] and MCHF [32] 

optimizations, is shown in Table 3.7. 

Table 3.7 Criterion for determination of C2+ physical Is, 2s, and 2p orbitals and correlation (or 
pseudo) 3.s, 3p, and 3d orbitals. 

1 s and 2,s HF on 1 s2 2s2 (1S) term. 

2p HF on ls22s2p(iP) term with frozen-core approximations for Is 

and 2s. 

3s, 3p, and M MCHF calculation for the lowest K-shell vacancy ls2s22p (3P) 

term including single and double 2 —»• 3 promotions. 

In these calculations, an inspection of energies is often a first indicator of the accuracy 

of the wave function representation. We show relative energies and corresponding photon 

energies for those states involved in ground state and metastable state photoabsorption cal-
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culations in Table 3.8 and Table 3.9, respectively. Furthermore, a comparison of photon 

energies for B-like and Be-like C fluorescence yield calculations in LS-coupling, and ear­

lier published experimental and theoretical results, is shown. Good agreement is obtained 

between our R-matrix and AUTOSTRUCTURE results. The earlier theoretical and experi­

mental results predict the order of the resonantly-excited states of metastable configuration 

as 4D4P, and 4S (lowest to highest energy), whereas our results, using two different theo­

retical methods, give the order as 4S4D, and 4S. We tracked down these states in neutral 

C photoabsorption calculations, where our C+ target states are for the e~ + C+ continuum; 

here we also found that the order is 4S4D, and 4P (see Table 3.6). 

In Fig. 3.8, a comparison of our present results with recent experimental and theoretical 

cross section results is shown for the energy region hv =287 eV-291 eV. Our present results 

predict more accurately the positions of the resonances at lower region to within 0.5 eV. 

Our present and the earlier R-matrix results both overestimate the oscillator strengths of 

the 2P and 2D states compared to experimental data. As for the background cross section, 

good agreement is found between experimental data and the two theories; this implies that 

the Is and 2s photoionization processes are treated adequately in the present calculations. 

For our ground state photoabsorption calculations, we considered Auger broadening for 

the 8-target states above the the first K-shell ionization threshold (see Table 3.8). The Auger 

lifetimes of these states are calculated by applying the Smith time-delay method [59] to 

electron scattering on the 5-electron system within R-matrix theory. These values are also 

readily available from our Be-like carbon fluorescence yields calculations. In Table 3.10, 

a comparison between present R-matrix, MCBP [41], and MCDF [62] Auger width results 
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Table 3.8 Comparison of energies of the relevant C+ and C2+ states involved in the present 
investigation. The term energies are given relative to the Is22s2 (lS) ground state of C2+. The 
photon energies are given relative to the ls22s22p (2P) ground state of C+ . 

Term Energy (Ry) Photon Energies (eV) 

State Present" AUTOb OTHER11 Present" AUTOh OTHERc Earlier11 Experiment." 

1 ls22*22p(2P) -1.7977 -1.7125 -1.7921" 0.0000 0.0000 0.0000" 

2 1»22A'2 {lS) 

3 ls22s2p(3P) 

4 ls22s2p(1P) 

«22p2(3P) 5 Is 

6 ls22p*(lD) 

7 U-22p2 C-S) 

0.0000 0.0000 0.0000' 24.4594 23.2997 24.3835" 

0.4745 0.5088 0.4777<L 30.9148 30.2227 30.8827'! 

0.9570 1.0378 0.9327" 37.4803 37.4200 37.0736" 

1.2049 1.3090 1.2528" 41.6698 41.1102 41.4287" 

1.3630 1.4625 1.3293" 43.0041 43.1979 42.4700" 

1.7881 1.8126 1.6632" 48.7879 47.9619 47.0133" 

8 ls2s22p2(2D) 

9 ls2s22p2(2P) 

10 l*2«22jr (25) 

19.3645 

19.4001 

19.5509 

21.2193 

21.2280 

21.3339 

287.9289 

288.4137 

290.4649 

312.0049 

312.1230 

313.5638 

287.96 

288.63 

289.97 

287.93 ± 0.03 

288.40 ± 0.03 

289.90 ± 0.03 

11 1s2s22p(3P) 

12 ls2s22p(1P) 

13 ls2.s(15)2p2 (3P) 

14 ls2*(3S)2p2(3D) 

15 ls2,s(3S)2p2 (LD) 

16 U2s{3S)2pi (3S) 

17 U2s(3S)2pi (3P) 

18 ls2s(3S)2p2 (lP) 

19 U2sCS)2p2(LS) 

20 l.s2p3 (3D) 

21 ls2p3 (3S) 

22 l s2 ; / (lD) 

23 ls2p 3 ( 3P) 

24 ls2p3(1P) 

21.3622 

21.5849 

21.9689 

21.9997 

22.3201 

22.3269 

22.4088 

22.5674 

22.6511 

22.6802 

22,7780 

22.8708 

22.9926 

23.1865 

21.4315 

21.6197 

22.0065 

22.0721 

22.4594 

22.3359 

22.5559 

22.6623 

22.7227 

22.7892 

22.8081 

22.9786 

23.0742 

23.2637 

315.1086 

318.1394 

323.3637 

323.7827 

328.1429 

328.2346 

329.3490 

331.5073 

332.6456 

333.0421 

334.3724 

335.6354 

337.2918 

339.9309 

314.8919 

317.4533 

322.7163 

323.6083 

328.8780 

327.1971 

330.1908 

331.6378 

332.4600 

333.3647 

333.6218 

335.9417 

337.2421 

339.8205 

a Present R-matrix results. 
b MCBP AUTOSTRUCTURE results. 
c NIST data. 
d Earlier R-matrix results [79]. 
e ALS Experimental data [79]. 
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Table 3.9 Same as Table 3.8, showing the C+ metastable ground and K-shell excited states. 

1 

2 

3 

4 

5 

6 

State 

ls22,s2p2(4P) 

ls22s2p(3P) 

l.s22p2 (3P) 

Is2s2p3 ClS) 

Is2s2p3 (4D) 

Is2.s2p3 (4P) 

Term Energy (Ry) 

Present11 

-1.8871 

0.0000 

0.7905 

19.2225 

19.2371 

19.4267 

AUTOb 

-1.8467 

0.0000 

0.8002 

19.2684 

19.3402 

19.5026 

OTHERc 

-1.8777' 

o.ooocr 

0.7751° 

Present* 

0.0000 

25.6759 

36.4309 

287.2130 

287.4120 

289.9923 

Photon Energies (eV) 

AUTOb 

0.0000 

25.1260 

36.0135 

287.2880 

288.2650 

290.4746 

OTHERc 

0.0000' 

25.5469'' 

36.0929c 

Earlier'1 

287.73 

287.29 

289.46 

Experiment." 

287.25 ± 0.03 

289.42 ± 0.03 

7 l.s2s22p(3P) 20.8877 20.9226 

8 l.s2s(35)2p2(5P) 21.0101 21.0044 

9 ls2s(1S)2p2(3P) 21.4944 21.4977 

10 ls2.s(35')2p2 (3D) 21.5252 21.5633 

11 l.s2.s(35)2p'2 (3S) 21.8524 21.8270 

12 ls2pi{r'S) 21.9228 21.9204 

13 ls2s(iS)2jr(3P) 21.9343 22.0471 

14 ls2p3 (•'£») 22.2058 22.2804 

15 l.s2p3(35) 22.3036 22.2992 

16 l,s2p3(3Pj 22.5181 22.5653 

309.8698 309.7952 

311.5350 310.9080 

318.1248 317.6196 

318.5438 318.5116 

322.9958 322.1004 

323.9531 323.3703 

324.1101 325.0940 

327.8032 328.2680 

329.1336 328.5250 

332.0529 332.1454 

a Present R-matrix results. 
b MCBP AUTOSTRUCTURE results. 
c NIST data. 
d Earlier R-matrix results [79]. 
e ALS Experimental data [79]. 
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Photon Energy (eV) 

Figure 3.8 The Is —• 2p photoabsorption for an admixture of 80% ground-state and 20% 
metastable state C+ ions. Experimental measurements are performed with a spectral resolution of 
120 meV and 65 meV, whereas the theoretical cross sections are summed incoherently for an 80% 
ground-state and 20% metastable state admixture and then convoluted with a FWHM Gaussian of 
the same experimental width. 

is shown. As seen, the Auger width of the ls2p3(3S) state is identically zero in our calcu­

lations. Considering the selection rules for Auger decay (see Sec. 2.1.3), it is found that no 

decay channels are coupled to the ls2p3(3S) state in a non-relativistic LS-approximation, 

whereas a fully-relativistic MCDF calculation gives a non-zero rate (but it is two orders 

of magnitude smaller than all other rates). Good agreement is found between all three 

theoretical approaches. In our calculations, we have artificially broadened this series with 

a width of T = 13.605 x 10 - 3 eV, which is smaller than the best spectral resolutions of 

3rd-generation synchrotron experiments and/or astrophysical observations. 
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Table 3.10 Comparison of Auger widths for the relevant C2+ target states above the K-shell 
resonantly-excited states (see Table 3.8). 

] 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

State 

ls2s22p (3P) 

ls2s22p{1P) 

ls2s(lS)2p2(iP) 

ls2s(3S)2p'2 (JD) 

ls2s(3S)2p2 P-D) 

U2s(3S)2p2 (3S) 

ls2.s(35)2p2 (3P) 

Ls2.s(3S*)2p2 ( 'P) 

ls2s(lS)2p2(1S) 

ls2p3 (3Z>) 

ls2p:i (3S) 

ls2p:i (lD) 

l.s2p3 (3P) 

LsVl1^) 

Present11 

7.18E-

5.46E -

1.10E-

4.76P -

9.07E -

2.61E-

4.64E -

1.70E -

7.46E -

5.76E -

5.99E -

3.56E -

3.60E -

-02 

-02 

-02 

-02 

-02 

-02 

-02 

-02 

-02 

-02 

-

-02 

-02 

-02 

AUTO1' 

7.93E -

5.30E -

1.38E-

5.17E-

1.14E-

2.39E -

5.92E -

1.17E-

7ME -

7.15E-

7.19E-

4.19E -

3.90E -

-02 

-02 

-02 

-02 

-01 

-02 

-02 

-02 

- 02 

-02 

-

-02 

- 02 

-02 

MCDP 

6.72E -

4.76E -

2.47E -

4.29E -

1.13E-

2.17E -

4.91E -

7.96E -

8.36E -

6.08E -

1.17E-

6.02E -

3.67E -

3.53E -

-02 

-02 

-02 

- 02 

-01 

-02 

-02 

-03 

-02 

-02 

-06 

-02 

-02 

-02 

a Present R-matrix calculations. 
b MCBP AUTOSTRUCTURE calculations. 
c MCDF calculations. [62] 

A comparison of our present R-matrix results to the independent-particle approximation 

results, for the ground-state photoabsorption cross section of C+ , is shown in Fig.3.9. Good 

agrement is obtained between the present results using both length and velocity forms of 

the dipole operator, implying that the wave functions used to describe the atomic system 

are fairly converged. 
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3.2.3 C2+: Importance of Auger Broadening 

The specific process of interest for K-shell photoabsorption of ground state C2+ is the 

following: 

hv + ls22s2(1P) -»• ls2s2 {np,ep} ^P0) . (3.14) 

These K-shell excited states, as usual, can relax via two Auger processes: 

ls2s2np —»• ls22se£ participator Auger decay , (3.15) 

—*• ls2npe£ spectator Auger decay. (3.16) 

K-shell photoexcitation of C2+ has been studied experimentally [81] using an electron-

cyclotron-resonance ion source at the ALS. It was found that the C2+ ion beam used in the 

experiment consists of an admixture of 62% of the (ls22s2 1S) ground state and 38% of the 

(ls22s2p 3P°) metastable state. Thus, we have also studied the Is —• 2p photoabsorption 

of the C2+ metastable state. 

The Hartree-Fock [31] and multi-configuration Hartree-Fock [32] atomic structure pro­

gram packages are used to generate radial target C3+ orbitals for our calculations. The 

optimization procedure (HF or MCHF) that we have used to generate C3+ orbitals is sum­

marized in Table 3.11 for each orbital. 

In Table 3.12, we show the relative term energies and corresponding photon energies 

for the states involved in the ground state calculations compared to our MCBP results (in 

LS-coupling) and other available experimental and theoretical data. In Table 3.13, the term 

energies involved in the present metastable calculations are compared to other existing 
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Table 3.11 Criterion for determination of C J + physical Is, 2s, and 2p orbitals and correlation 
(or pseudo) 3s, 3p, and 3d orbitals. 

Is and 2s HF on ls22s (2S) term. 

2p HF on ls22p (2P) term with frozen-core approximation for Is and 

2s orbitals. 

3s, 3p, and 3d MCHF calculation for the lowest C2+ K-shell vacancy Is2s2p (4P) 

term including single and double 2 —> 3 promotions. 

values. Good agreement between our present R-matrix and MCBP calculations is found 

for the state energies. 

Table 3.12 Comparison of energies of the relevant C2+ and C3+ states involved in the present 
investigation. The term energies are given relative to the ls22s(2S) ground state of C2+. The 
photon energies are given relative to the ls22,s-2 (15) ground state of C2+. 

I 

2 

3 

4 

5 

State 

lsWPS) 

U22s (2S) 

ls2s22p> ( 'P) 

ls2s23pl 0 P) 

Term Energy (Ry) 

Present" 

-3,5264 

0.0000 

0.5903 

18.0492 

20.1745 

AUTOb 

-3.5068 

0.0000 

0.6253 

18.1128 

20.1796 

OTHER 

-3.5197 

0.0000 

0.5883 

Present1' 

0.0000c 

47.9798° 

56.0108': 

293.9240 

322.8400 

Photon Energies (eV) 

AUTOb 

0.0000 

47.7127 

56.2210 

294.1516 

322.2721 

OTHER" Earlierrt 

0.0000° 

47.8882° 

55.8921° 

294.08 

322.84 

Experiment.'' 

293.94 ± 0.03 

322.93 ± 0.04 

U2s2 (2S) 21.3887 21.3849 

7 ls2.s(15')2i-(2iJ) 22.0009 22.0294 

8 ls2s(3S)2p(2P) 22.2608 22.3689 

9 ls-2p2(2D) 22.4955 22.5704 

10 ls2p2(2P) 22.5767 22.5955 

11 1S2JJ2(2.9) 23.0266 23.0505 

339.3608 338.6710 

347.6898 347.4403 

351.2252 352.0598 

354.4195 354.8012 

355.5240 355.1431 

361.6445 361.3332 

a Present R-matrix results. 
b AUTOSTRUCTURE results. 
c NIST data. 
d Earlier R-matrix results [81]. 
e ALS Experirimental data [81]. 
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Table 3.13 Same as Table 3.12, showing the C2+ metastable ground and K-shell excited states. 

State 

1 ls22s2pf3P) 

2 1**28 (25) 

3 ls 22p( 2P) 

Terra Energy i 

Present11 AUTO1' 

-3.0499 -2.9981 

0.0000 0.0000 

0.5903 0.6253 

(Ry) 

OTHER 

-3.0420>: 

0.0000° 

0.5883c 

Present" 

0.0000 

41.4963 

49.5273 

Photon Energies (eV) 

AUTOh OTHER Earlier*1 

0.0000 0.0000c 

40.7916 41.3889' 

49.2998 49.3929c 

Experiment." 

4 ls2s(15)2p2 (3P) 18.4423 18.5000 292.7890 292.4984 292.97 292.98 ±0.03 

5 ls2s(iS)2pi (3D) 18.4624 18.5652 293.0620 293.3856 292.78 292.80 ±0.03 

6 U2s(3S)2p2(3S) 18.7927 18.8289 297.5560 296.9744 296.73 296.62 ± 0.2 

7 l«2,s(3S)2p2 (3P) 18.8845 19.0494 298.8054 299.9736 

8 ls2s2(2S) 21.3887 21.3849 332.8773 331.7499 

9 ls2s([iS)2p(iP) 21.5576 21.5661 335.1741 334.2159 

10 ls2s(15)2p(2P) 22.0009 22.0294 341.2063 340.5192 

11 ls2p2(4P) 22.2378 22.2662 344.4290 343.7417 

12 \s2s(3S)2p(2P) 22.2608 22.3689 344.7417 345.1387 

13 \s2p2i2D) 22.4955 22.5704 347.9360 347.8801 

14 U2p2(2P) 22.5767 22.5955 349.0405 348.2220 

15 1*V(2S) 23.0266 23.0505 355.1610 354.4121 

a Present R-matrix results. 
b MCBP AUTOSTRUCTURE results. 
c NIST data. 
d Earlier R-matrix results [81J. 
e ALS Experimental data [81]. 

Theoretical calculations and experimental measurements for the total cross sections are 

in good agreement in terms of the positions of the 3P, 3D, and XP° resonances. Further­

more, both theoretical results show fair agreement for the line strength of the ls2s22p 1P° 

resonance. 

Having analyzed our results for each partial cross section, we found the two low-lying 

resonances to be in energy order 3P and 3D, as shown in Fig. 3.10a. The earlier published 

RMPS results [81], on the other hand, order them as 3D and 3 P. Our MCBP (in LS-
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coupling scheme) calculation for the B-like C fluorescence yield also gives the order as 3P 

and 3D (see Table 3.12). Furthermore, the coupling of the Is2s2p2 configuration gives two 

3P terms; the first one comes from the ls2s (3S) parent whereas the second one comes 

from the ls2s ( :5) parent. We have studied the angular momentum algebra of the Is —> 

2p dipole excitation of the ls22s2p (3P) term to see if any of these states are forbidden 

and found that the ls2s(3S)2p2 (4P)3P term can not be populated in a SC description, 

but instead is populated through CI effects. We have detected this resonance in our cross 

section and found it strong enough to be observed with both 133 meV or 200 meV spectral 

resolutions (see Fig. 3.10c). 

The Auger widths from R-matrix and MCBP calculations, for the six autoionizing tar­

get states above the K-shell ionization threshold, are shown in Table. 3.14. These R-matrix 

results are obtained using the Smith-time delay method (see Sec. 2.4.1) with the electron 

scattering from C3 + target states. The resonances unaccounted for in our MCBP calcula-

Table 3.14 Auger width results obtained from different methods for the thresholds above the 
K-shell excited states (see Table 3.12). 

State Present'1 AUTOb 

1 ls2s2(2S) 6 .99£-02 7.12£ - 02 

2 ls'2s(lS)2p (2P) 3.95E - 03 

3 ls2s(3S)2p (2P) 3.64E - 02 

4 ls2p2(2D) 5A8E-02 6.07E-02 

5 Is2p2 (2P) 

6 ls2p2(2S) 8 .76£-03 5.22E - 03 

a Present R-matrix results. 
b MCBP AUTOSTRUCTURE results. 
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tions are due to neglect of the coupling between the continuum and the target states within 

a DW calculations (see Sec 2.4 and Sec. 2.2.5). The R-matrix width results are used for the 

broadening of the Is —»• 2p resonance series attached to these target states. 

The present R-matrix results, using both length and velocity forms of the dipole opera­

tor, are found to be in good agreement. We have also calculated our cross sections without 

considering broadening to emphasize the effect of Auger broadening on the cross sections. 

A comparison of these two results is shown in Fig 3.11. The importance of the broadening 

is seen even at low n = 3 value, where the resonance profile is obviously qualitatively 

affected (see Fig. 3.10c and 3.11). 
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350 

300 

250 

—200 h 
c 
.o 
$1501-

O 100 

50 

a) 
- i — i — i — i — i — i — i — i 

• Experiment 
Earlier R-Matrix 
Present R-Matrix 

1s2p^2p 62% 

1s2s2p2 38% 

1s2s2p 

292.5 293.0 293.5 
Photon Energy (eV) 

i i ii i • i i i i i i i i i i i i i i i i i i i i i i i I 

294.0 294.5 

296.5 297.0 297.5 298.0 298.5 299.0 322.5 
Photon Energy (eV) 

323.0 323.5 

Figure 3.10 Experimental measurements and present and earlier R-matrix theoretical calcula­
tions of Is —*• 2p and 3p absorption resonances of C 2 + ions. Theoretical curves are determined by 
considering an admixture of 68% of the ground-state and 32% of the metastable state. These mixed 
cross sections are convoluted with a FWHM Gaussian given by the experiment spectral resolution. 
a) Comparison between Is2s2p2 (^P, 3D) and ls2s22p2 (1P) absorption cross sections at a spec­
tral resolution of 68 meV. b) Comparison between the Is2s2p2 (3S) and ls2s(3S)2p3 (SP) absorp­
tion cross sections at a spectral resolution of 133 meV. c) Comparison between the ls2s23p ( i F ) 
absorption cross sections at a spectral resolution of 200 meV. The black curve shows our results 
without Auger broadening (see Fig 3.11) 
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CHAPTER IV 

SUMMARY AND FUTURE DIRECTIONS 

The majority of funding for this research was provided by NASA APRA and NASA 

SHP SR&T programs. Thus, this dissertation focused on two astrophysically important 

atomic processes, K-shell X-ray photoemission (or Auger transition) and K-shell X-ray 

photoabsorption. Through these studies, much information has been gained both in the 

underlying theoretical atomic physics processes and in the necessary effects that need to 

be considered for computing reliable astrophysical transition rates. Such modeling by as­

trophysicists/astronomers aids in the interpretation, among other things, of the chemical 

evolution of the universe. Interesting theoretical atomic physics findings, and the necessary 

considerations for reliable application to astrophysics, have been discovered. 

Following earlier WMU studies [12] on K-shell fluorescence yields that first investi­

gated the presently-recommended database [3], we have conducted three new investiga­

tions aimed at producing the most reliable fluorescence yields of individual Auger and 

radiative rates for all 2nd-row ions. In these calculations, our results show good agree­

ment with other sparsely-available theoretical results, giving us confidence in the accuracy 

of our comprehensive computed rates for the entire 2nd-row isoelectronic sequences up 

through ten-electron systems. In these studies, inclusion of several important effects, such 

as spin-orbit interaction, CI effects, initial-state populations of a K-shell vacancy state, and 

avoided-crossing phenomena are found to be crucial for producing reliable atomic parame­

ters for astrophysical plasma modeling. This has resulted in three publications [40,41,42]. 
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Two future publications are in progress: the first is a survey of fluorescence yields of 2nd-

row ions [73], and the second is a comprehensive computation and tabulation of all transi­

tion data [74]. 

A secondary project, aimed at computing carbon K-shell photoabsorption cross sec­

tions, was undertaken in order to provide neutral carbon data for determining ISM abun­

dances and the instrumental calibration [1]. Here we have used a more sophisticated R-

matrix method, yielding, to our knowledge, the first carbon K-shell photoabsorption cross 

section spectra. Further, we continued to compute photoabsorption cross sections for the 

additional C+ and C2+ isonuclear members, for which synchrotron-facility measurements 

at the ALS had already studied the lowest Is —• 2p, Sp resonance transitions in C+ and C2+: 

favorable agreement is found between our present results and the experimental measure­

ments except for one puzzling case, which is still unresolved. In addition to these lowest 

resonances, we have studied the higher Is —> np resonance features that are also impor­

tant for astrophysical studies. Publication of these studies along the complete isonuclear 

sequence is in progress [82]. 
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Appendix A 

Atomic Units 
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For theoretical simplicity, atomic units are the most used system for describing the 

electron-ion systems. Atomic units yield the simplification that h = m = e = 1 and like­

wise based on the typical dimensions of a hydrogen atom. These are tabulated in Table A.l 

(Note that fine-structure constant a = k e2/(Hc) = 1/137.03599967). 

Table A.l Fundamental atomic units and conversion factors 
Physical Quantity 
Mass 

Angular Momentum 

Charge 

Electrostatic force constant 

Length 

Velocity 

Time 

Energy 

Unit 
m 

h = h/2ix 

e 

ke = (47T£„)-1 

a„ = h/(mca) 

ac 

a„/(ac) 

Eh = m(ca)2 

Name 
Electron rest mass 

Planck's constant divided by 2n 

Charge of proton and electron 

Coulomb's constant 

Borh radius 

Hydrogen ground state elec­
tron speed 

Hydrogen ground state elec­
tron period 

Twice the binding energy for 
the electron in the ground 
state of hydrogen. 

SI Value 
9.10938215 x l f r " kg 

1.05457162 x 10 3I J.s 

1.60217648 x l(r1 0 C 

8.9875518 x 10° N.m2/C2 

0.52917720 x lO"10 m 

2.18769125 x 10c m/s 

2.41888432 x lfr17 s 

4.359743 x 10~18 J = 27.211 eV 
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Appendix B 

Z-Scaling of Relevant Physical Variables 



In order to derive Z-scaling of the physical variables for hydrogenic systems with arbi­

trary nuclear charge, Z, let us look at the reduced form of Schrodinger equation for the ra­

dial orbitals (one-electron wave functions are considered in the form of Eq. 2.3) [2,38,70]. 

I d 2 1/(1 + 1) Z • 
'2dr2 2 r2 r nl Pm(r) = 0 . 

Here the bound solutions Pni(r) must be normalized according to expression 

Jo 
P*nl{r)Pnl{r)dr = l. 

To factor out the Z-dependence, we consider the transformation p — Zr. 

Bound Orbitals 

(B.l) 

(B.2) 

To understand the Z-dependence of the radial orbitals Pni(r), we define the p-dependent 

function fni(p) by Pni(r) = Cnifni(p). Here, Cni which can be determined from the nor­

malization requirement in Eq. 2.26 as a function of Z by considering that 

/"OO 

/ P*nl{r)Pnl{r)dr = l, so that 
Jo 

J™ C*nlF*nl{p)CnlFnl{p)^ = 1 , and 

(B.3) 

\Cnl 
|2 /.oo poo 

/ \Fnl(p)\2dp=l 
Jo 

The normalization of Fni(p) thus shows the Z-dependence is Cni = Z1//2, and therefore, 

Pnl(r) ~ Z1/2. 
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Energies 

In order to find the Z-dependence of the energy, E„i, let us start with Eq B.l. First, we 

multiply both sides by Pni(r) and integrating from 0 to oo as follow: 

POO /"OO 

Enl P*nl(r)Pnl(r)dr = / P^r) 
Jo Jo 

ld?_ 11(1 + 1) Z 
2dr2 + 2~~r2 7 

Pm{r)dr 

Using the normalization in Eq. B.3 of the radial orbitals, 

1 / d2 l{l + l)\ Z />oo 

Enl = / P*^) 
Jo 

Pni(r)dr, 
2 \dr2 

and since we know how r and Pni(r) scale with Z, we can get the Z-scaling of the energy: 

/•oo 

Enl = / Z 1 ' 2 ^ 
JO 

Z^£_ Z2 1(1 + 1) Z2 

rt T O - ! -

2 dp2 2p2 Z>»FJ£, 

f 
Jo 

nl 
ld?_ 1(1 + 1) _ 1 
2dr2 + 2p2 ~ p 

Fnidp (B.4) 

The Z-independent integral expression gives us the hydrogenic (Z = 1) energy, E^ = 

— 2̂ 2 a.u (this, of course, is within a non-relativistic framework).We see that Eni = Z2E^l ~ 

Z2. 

Continuum Orbitals 

In contrast to bound orbitals, continuum orbitals are denned as a function of energy 

Pen(r). Also, normalization of continuum orbitals is given instead by 

Jo 
Pd(rYPe'i(r)dr = 8(e-e). 
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Applying the p = Zr transformation and considering radial orbitals transform as Pei(r) = 

CeiFEi(p). In the preceding section under such transformation, we showed that energy 

behaves as e ~ Z2. Performing a transformation for continuum orbitals, the normalization 

is instead 

f™ C*ElFEl(PyFm(p)CEl^ = 8{Z2{E - E'}) = ±6(E - E') , 

| O - 1 
•'Ell 

/"OO 1 

J FEl(p)*Fm(p)dp = —5(E-Ef), (B.5) 

CEl = Z-1'2 => Pd(r) ~ Z-V2 . 

Auger Decay Rates 

Although, Auger processes do not occur for the one-electron hydrogenic systems, we 

assume that the radial orbitals in a many-electronic system scale as similar to hydrogenic 

orbitals, which is true considering nuclear charge as the effective charge, Z —> Ze^, in 

the Central Field Approximation. Let us consider an allowed Auger process that occurs 

when an electron makes a radiationless-transition from a bound state <f)ni to a continuum 

states 4>ei> while another electron makes a transition from a bound state <pn'i> to a second 

bound state 4>n"i". By using Eq. 2.13, the Auger decay rate of this particular process can 

be written as 

Aa ~ / <t>n"l"(rl)^(r2) 0 n Y ( r i ) < ^ ( r 2 ) t f V l t f V 2 . 
J ?"12 

Using the addition theorem of spherical harmonics, defined in Eq. 2.13, and recalling that 

the angular and spin integrals are independent of Z, this reduces to the two dimensional 
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radial integral 

A, 
0 0 />oo /-oo k 

E / / Pn"i" ( r i)P^( r2) ^ f i Pn'i'(ri)Mr2)dridr2 

J2z1/2z~ 1/2 

fe=0 

Zfc+1 
Z 1 / 2 Z 1 / 2 Z - 1 Z - 1 = z°. (B.6) 

Thus, the Auger rate Aa is (roughly) independent of the nuclear charge, Z. 

Radiative Decay Rates 

The radiative decay rate of a dipole-allowed transition with energy ui from a bound state 

4>ni to another bound state </>nY *s given in Eq 2.12. This expression is proportional to the 

radial integral between these two states as follows: 

Ar ~w 3 / <l>n'l'(r)r(t>nl(r)dS 

/>oo 

u;3 / PWll{r)rPnl(r)d> 
Jo 

Z 6 | Z 1 / 2 Z - 1 Z 1 / 2 Z - 1 | 2 = Z (B.7) 

Spin-Orbit Interaction 

We now consider the Z-dependence of the spin-orbit interaction presented in Sec. 2.1.2. 

This can be determined by looking at the expectation value of this operator. Because the 

states are normalized, we only need to consider the Z-dependence of the operator Hso-

7~tso ~ Z — = Z Z = Z . (B.8) 
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In this appendix, we have considered hydrogenic scaling, which is exact for hydrogenic 

systems but only an approximation for many-electron systems. For non-hydrogenic sys­

tems with nuclear charge of Z, a more rigorous approximation can be done by defining 

effective charge as ZeJ/ = Z — Sni, where Sni is the "screening parameter" due to all other 

electrons [30]. 
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