
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Dissertations Graduate College

4-2008

A Proof of Concept for Oppnets and Its Resource Utilization A Proof of Concept for Oppnets and Its Resource Utilization

Techniques with QOS Constraints Techniques with QOS Constraints

Zill-E-Huma Kamal
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/dissertations

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kamal, Zill-E-Huma, "A Proof of Concept for Oppnets and Its Resource Utilization Techniques with QOS
Constraints" (2008). Dissertations. 778.
https://scholarworks.wmich.edu/dissertations/778

This Dissertation-Open Access is brought to you for free
and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Dissertations by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/dissertations
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/dissertations?utm_source=scholarworks.wmich.edu%2Fdissertations%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fdissertations%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/dissertations/778?utm_source=scholarworks.wmich.edu%2Fdissertations%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

A PROOF OF CONCEPT FOR OPPNETS AND ITS RESOURCE UTILIZATION
TECHNIQUES WITH QOS CONSTRAINTS

by

Zill-E-Huma Kamal

A Dissertation
Submitted to the

Faculty of The Graduate College
in partial fulfillment of the

requirements for the
Degree of Doctor of Philosophy

Department of Computer Science
Dr. Ajay Gupta, Advisor

Western Michigan University
Kalamazoo, Michigan

April 2008

A PROOF OF CONCEPT FOR OPPNETS AND ITS RESOURCE UTILIZATION
TECHNIQUES WITH QoS CONSTRAINTS

Zill-E-Huma Kamal, Ph.D.

Western Michigan University, 2008

The increased number of embedded devices/systems in our environment and the

evolution of the internet as a service oriented network connote two things: the demand for

ubiquitous computing, and, the abstraction of users as consumers and applications as

services, as in Service Oriented Computing (SOC) and Web Service domains.

This Thesis studies Class 2 Opportunistic Networks, Oppnets—in short. Oppnets

propagate dynamic interconnection of heterogeneous devices/networks/systems and the

integration of their resources or services-such as computation, communication, sensing,

actuation, and storage - irrespective of the discrepancies in hardware, software,

protocols, or standards employed, to enable ubiquitous computing. The novelty of

Oppnets lies in its ability to grow into a larger network and leverage resources of the new

heterogenous devices/networks/systems as though they were part of the initial network.

The first contribution of this research is the design and implementation of a small-

scale Oppnet, called MicroOppnet, which not only acts as a proof-of-concept for Oppnets

but can also be extended to be a testbed for experimentation and pilot implementation of

Oppnet architectures and their components.

Since the Oppnet idea is still in its infancy, there are numerous challenges

confronting Oppnets, amongst them is resource utilization. We present a novel Service

Location and Planning (SLP) mechanism that enables resource utilization in Oppnets.

The second contribution of this Thesis, is the definition and implementation of the

novel SLP problem as a mathematical model that can be solved optimally for small-scale

networks. We also solve SLP problem for large networks using Lagrangean Relaxation.

The SLP mechanism meets consumers' requests, by installing the requested

service on a node, that not only minimizes service installation costs, but also promotes

service federation (i.e. multiple services installed on a node), and abides by consumer-

defined quality of service (QoS) and realistic network parameters. This realistic modeling

accounts for consumer-defined QoS constraints of throughput and delay, the underlying

network link layer bandwidth capacities, and the important factor of cost to the provider.

In this Thesis, we show feasibility of Oppnets, with the design and

implementation of MicroOppnet and discuss the SLP mechanism and its implementation

and application to Oppnets.

© 2008 Zill-E-Huma Kamal

UMI Number: 3303468

Copyright 2008 by

Kamal, Zill-E-Huma

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3303468

Copyright 2008 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

ACKNOWLEDGMENTS

This dissertation has been like a journey, whose map was given to me by my

parents, Mohammed Anwar and Naheed Kamal. Their inspiration and support have been

instrumental in my achievements. I dedicate this dissertation to them.

Despite having a map, I could not have reached this final destination without the

supervision and guidance of my "GPS System", my advisor, Dr. Ajay Gupta. The

dedication he has shown and efforts he has made to help me succeed are profoundly

moving. I would also like to thank all my committee members, Dr. Ala Al-Fuqaha, Dr.

Leszek Lilien, Dr. Ikhlas Abdel-Qader and Dr. Matt Mutka and professors, such as Dr.

Dionysios Kountanis, Dr. Nelson and Dr. Kaminiski, for their consideration, assistance

and support. During this journey I have also had the pleasure of meeting and working

with phenomenal peers like Vijay Bhuse and Osama Awwad.

Furthermore, without a companion, embarking on a journey can be daunting. I

found my companion for this journey and my life in my husband, Mohammad Ali

Salahuddin, without his encouragement and support this journey would have been

impossible. My brother, Muneeb Kamal, is as always, my partner in fun. The support of

my in-laws, Hashim Ali Khan and Shakera Hashim, was also vital in making this

dissertation possible.

I am forever indebted to all those mentioned and many more for making this

journey a dream come true for me.

Zill-E-Huma Kamal

11

TABLE OF CONTENTS

ACKNOWLEDGMENTS ii

LIST OF TABLES vi

LIST OF FIGURES vii

CHAPTER

1. INTRODUCTION 1

1.1 Motivation 1

1.2 Thesis Statement 3

1.3 Thesis Outline 4

2. BACKGROUND 5

2.1 Categories of Opportunistic Networks 5

2.2 Class 2 Opportunistic Networks (Oppnets) 6

2.3 Basic Oppnet Ideas and Operations 8

2.4 Control Flow of Oppnet 14

2.5 Open Issues and Challenges in Oppnets 16

2.6 Service Location and Planning (SLP) Problem 18

2.7 Oppnets and Service Location and Planning (SLP) Problem 20

3. RELATED WORK 24

3.1 A Review of Related Technologies to Oppnets 24

3.2 Qualitative Comparison of Related Technologies with Oppnets 34

iii

Table of Contents—continued

CHAPTER

3.3 Literature Review for Service Location-Planning (SLP)

Problem 40

4. MICROOPPNET - A SMALL-SCALE OPPNET 45

4.1 Overview of MicroOppnet 45

4.2 Design Choices 48

4.3 Design of MicroOppnet 49

4.4 Implementation of MicroOppnet 52

4.5 Challenges in Developing MicroOppnet 56

4.6 Sample Application Scenarios for MicroOppnet 57

5. THE SERVICE LOCATION-PLANNING (SLP) PROBLEM 59

5.1 Service Location and Planning Problem - A Formal

Definition 59

5.2 Methodology Overview 60

5.3 Assumptions in the Formulation of the SLP Problem 61

5.4 Problem Formulation as an Integer Linear Programming

Problem (ILP) 66

5.5 Discussion of the ILP Formulation 71

5.6 Service Location and Planning in Oppnets 73

5.7 Service Location and Planning in Generic Networks 77

5.8 Flexibility of Service Location and Planning (SLP) Problem.... 83

6. SLP PROBLEM FOR LARGE-SCALE NETWORKS 85

6.1 An Introduction to Lagrangean Relaxation 85

iv

Table of Contents—continued

CHAPTER

6.2 An Illustrative Example for Lagrangean Relaxation Using the
Adapted CMU Technique 90

6.3 Lagrangean Relaxation of Service Location and Planning
Problem 94

6.4 Test Scenarios and Results 95

7. CONCLUSION 97

7.1 Summary 97

7.2 Contributions Overview 98

7.3 Future Work 99

REFERENCES 101

APPENDICES

A. OVM Primitives 111

B. MicroOppnet Code 116

C. ILP Formulation Code 146

D. Lagrangean Relaxation Code 167

E. SLP Sample Scenario Input and Output Files 181

v

LIST OF TABLES

1. Service Installation Costs for Devices in Expanded Oppnet of Fig. 2 21

2. Comparison of Features of Selected Networks Part-1 [25] 34

3. Comparison of Features of Selected Networks Part-II [25] 37

4. Requirements of MicroOppnet, Design Criteria and Decisions [53] 49

5. Scenarios and Number of Variables. 81

6. ILP Cost and LR Lower Bound Comparison 96

VI

LIST OF FIGURES

1. Seed Oppnet ([3], [4]) 8

2. Expanded Oppnet ([3], [4]) 11

3. Basic operations of an Oppnet 15

4. Structure of MicroOppnet v.2.2 47

5. Flow of control in the MicroOppnet v.2.2 51

6. Flow of control for the remote Java server 54

7. Flow of control for cell phone MIDlets 55

8. Load-Delay Lookup Tables for bandwidths of 100, 300, 600 and 1000
Mb/sec 65

9. A home equipped with an Oppnet-enabled laptop 74

10. Resource utilization in Oppnets using Service Location-Planning
technique 76

11. A carrier's nation-wide IP backbone network topology [48].. 77

12. Resource utilization in generic networks using Service Location-Planning
technique 79

13. Number of constraints vs. number of variables inanILP 82

14. Execution times vs. number of variables in ILP 83

15. CMU Lagrange Relaxation Technique [46] adapted for binary
minimization problems 90

16. Comparison of number of constraints with ILP vs. LR of SLP problem 96

vn

CHAPTER 1

INTRODUCTION

This chapter discusses Pervasive Service Oriented Computing and Class 2

Opportunistic Networks as an example of a Pervasive Service Oriented Computing

network. We briefly discuss challenges in this paradigm and give motivation for the

research in this Thesis.

1.1 Motivation

The Internet has evolved from a simple, restricted network allowing

communication between fixed points to a mesh of global internetworking technology.

With this evolution various computing paradigms have sprouted up, ranging from Mobile

Computing to Wireless Sensor Networking to Pervasive Computing to the emerging and

still evolving Web Services and Service Oriented Computing.

A closer look at any of these paradigms and technologies will give insight into the

direction of research for that paradigm and its demands. For example, Mobile

Computing. Its goal is simple, that is, to remain connected to the global Internet

untethered and still have the ability to perform the various tasks and operate applications

as though connected to the Internet traditionally (physically). The demand from Mobile

Computing is simple: seamless ubiquitous connectivity. The research in that paradigm is

1

2

continuously trying to meet this demand via research into optimal coverage schemes,

connectivity speeds, mobile wireless internet standards, etc.

Similarly, consider Pervasive Computing. Its goal is to "converge computers,

communication, consumer electronics, content and services, such that devices interact

over two underlying layers, namely, service and standards" [1]. The service layer

establishes infrastructure for computing, communication, content, access, etc. The

standards layer allows information and application exchange (e.g. standards include,

Java, XML, HTML, etc.) [1]. The demand from Pervasive Computing is simple: seamless

ubiquitous computing and communications. The research for this paradigm is

continuously trying to achieve the above mentioned goals.

Let's consider the evolving Service Oriented Computing (SOC), where services

provide a higher-level abstraction to traditional applications and users are considered as

consumers of the services. Consumers lookup, via registries, providers/producers of these

services. The goal again is to meet the demand for ubiquitous computing through a

higher-level abstraction of applications as services.

Therefore, it can be seen that the current demand from this evolving global

internetworking technology is the same - seamless, untethered, ubiquitous computing and

communication, which is continuously being explored and marketed.

Meeting this demand is in essence a two-fold approach: first, developing a

ubiquitous environment, and second, developing a mechanism for mapping consumers to

providers/producers.

3

Bearing in mind this demand and the two-fold approach to meet this demand, this

research discusses a new computing paradigm that can provide the ubiquitous

environment, and a service location-planning approach that defines and solves the

problem of mapping providers/producers with consumers.

The new computing paradigm discussed in this Thesis, termed Opportunistic

Networks (Oppnet), is a seamless integration of heterogeneous devices, networks, and

systems operating on or using disjoint communication media into a new network-an

Opportunistic Network (Oppnet). However, an Oppnet is not only an integration of

hardware; it is also the integration of the resources of the independent devices, networks,

and systems, this enables the Oppnet to "grow" into a larger network with every new

device, network, and system that is integrated into the Oppnet. This integration of

resources can then be used to collaboratively execute tasks that may not have been

feasible for any independent device, network, and system in the Oppnet.

A detailed discussion of Opportunistic Networks (Oppnets) will be presented

shortly.

1.2 Thesis Statement

The contribution of this research is to present the design and implementation of a

small-scale Oppnet that will not only act as a proof of concept but also as a simple

Oppnet prototype. Using this small-scale prototype to establish feasibility of an Oppnet,

this research tackles the second aspect, namely, mapping producers to consumers. This is

4

attained by defining a Service Location-Planning (SLP) Problem that is solved optimally

for small-scale networks and solved approximately with near-optimal results for large-

scale networks.

1.3 Thesis Outline

The rest of the Thesis is organized as follows. Chapter 2 first presents and

discusses Oppnets: their categories, basic ideas and operations, and control flow. It is

followed by a discussion of the service-level abstraction of applications and the Service

Location-Planning (SLP) problem. Chapter 3 first gives the literature review of other

technologies and standards for developing the ubiquitous environments we discussed. It

is followed by a review of various similar optimization problems that occur in different

fields and their comparison with Service Location-Planning (SLP) Problem researched in

this Thesis. Chapter 4 presents the design and implementation of the small-scale Oppnet,

called MicroOppnet, built during this research. The Thesis continues with presentation

and definition of the Service Location-Planning (SLP) Problem, an Integer Linear Model

(Integer Linear Programming Problem) to solve the SLP optimally for small-scale

networks in chapter 5. In chapter 6 first the Lagrangean Relaxation approximation

technique is discussed and then used to solve SLP for large-scale networks. Chapter 7

concludes with the thrust of the research of this Thesis and presents a summary of the

contributions and future work.

CHAPTER 2

BACKGROUND

The first mention of the idea of Opportunistic Sensor Networks was made by

Lilien [5]. Later Lilien et al. further investigated, researched, and developed

Opportunistic Networks in [3, 4, 6]—to mention a few. Below is a reproduction of

relevant text to discuss categorization of Opportunistic Networks, definition of Class 2

Opportunistic Networks (Oppnets), their basic ideas, operations, control flow, etc. [3, 4,

6, 25].

Following this detailed discussion of Oppnets, the Service Location-Planning

(SLP) problem is discussed.

2.1 Categories of Opportunistic Networks

Over the years, numerous technologies enabling pervasive computing have been

proposed, researched and experimented with, to meet demands for ubiquitous

communication, computation, data processing, storage, etc. Various technologies have

emerged, such as P2P computing networks, grid networks, mesh networks, ambient

networks, and, most recently, opportunistic networks.

In Class 1 Opportunistic Networks [3], opportunism is quite restricted, usually

limited to opportunistic connectivity that is, establishing communications when devices

are within each other's range [2]. In contrast, in the new paradigm and technology called

5

6

Class 2 Opportunistic Networks, enables not only opportunistic communication but also

an opportunistic growth of networks and opportunistic use of resources gained by this

growth [4].

Effectively, Oppnets leverage their capabilities by exploiting the wealth of

resources available on all kinds of pervasive devices that are within their reach—crossing

communication, hardware and software barriers.

Class 1 Opportunistic Networks extend communication capabilities while Class 2

in addition provides services that they are able to discover (also via true discovery, not

just a directory lookup).

Opportunistic data dissemination techniques [15-17] might be considered "Class

1.5" Opportunistic Networks.

2.2 Class 2 Opportunistic Networks (Oppnets)

Each Class 2 Opportunistic Network grows from a seed Oppnet, or simply a seed,

which is a set of nodes employed together at the time of the initial Oppnet deployment. A

seed can be wireless—with nodes communicating via radio channels, and ad hoc—with

nodes not carefully pre-positioned but, for instance, thrown out of a plane or a moving

car in the deployment area. Seed nodes for demanding applications, e.g. for emergency

operations, could be quite powerful, such as powerful mobile

communication/computing/sensing hosts mounted on heavy all-terrain trucks or

7

amphibious vehicles, or in parachute-dropped containers. For less demanding

applications, seed nodes could even be arbitrarily lightweight.

After the seed self configures and becomes operational, its first task is to detect a

set of "reserve" nodes and "foreign" entities—devices, node clusters, networks, and other

systems—which it deems useful. Reserve nodes are those that are already pre-configured

with Oppnet-enabled code, whereas foreign nodes are those that do not have any a priori

information about oppnets protocols. Detected entities are candidates for becoming

helpers for the Oppnet. Each such candidate helper {candidate) has a potential to provide

Oppnet with some communication, computing, sensing, or other capabilities or resources.

Candidates are evaluated by the Oppnet, and those that can help in achieving the

goals of the Oppnet are ordered or invited to join the Oppnet (see Section 2.3.3 for

discussion of when candidates are invited or ordered to join Oppnet). Invited candidates

can either accept or refuse the invitation.

It is important to note that by admitting helpers an Oppnet can leverage all kinds

of resources it needs that are available in its environment. This is Oppnet growth, and is a

mechanism to obtain a lot of help at a very low cost. This Oppnet growth mechanism

distinguishes Oppnet from other Opportunistic Networks and other pervasive computing

technologies.

Oppnets can be envisioned in numerous scenarios from the mundane to military

applications. Oppnets are also a fit for Emergency Preparedness and Response (EPR)

applications that are currently in the limelight due to the tragic events of September 1 \x ,

8

Hurricane Katrina, California Wildfires, and alike. In the sections that follow Oppnets are

discussed in terms of an EPR application scenario, which is one sample application area.

2.3 Basic Oppnet Ideas and Operations

This section presents a detailed discussion of basic Oppnet ideas, operations and

terminology and heavily borrows from our earlier preliminary work in [3, 4, 6].

2.3.1 Seed Oppnets and Oppnet helpers

Seed Oppnets: Each Oppnet starts as a seed Oppnet—a set of nodes employed

together at the time of the initial network deployment, as illustrated in Fig. 1. The seed is

predesigned, and can be viewed as a network in its own right. It might be very small, in

the extreme consisting of a single node.

IW *'f Internet

Common
Nodes Controller

(distributed)

Figure 1. Seed Oppnet ([3], [4])

A subset of seed nodes constitutes a distributed Control Center (CC). CC can

grow admitting other nodes, and can shrink expelling any of its nodes. Admitted nodes

are called helpers. We can have both regular helpers and lightweight helpers or lites

(such as a smoke detector). Lites are Oppnet-enabled, that is equipped with inexpensive,

9

simple means of standard Oppnet communications. In this way, even lites can be

triggered to operate in the Oppnet mode when needed and commanded to do so by a CC

or regular helpers.

Summarizing, a node belongs to one of the four categories: (i) CC nodes; (ii)

"seed nodes," which really are the seed nodes that are not CC nodes; (iii) "helpers,"

which really are the regular helpers with reasonable computing and communication

capabilities that are not lites; and (iv) lites.

Potential helpers and their discovery: In general, the set of potential helpers for

Oppnets is very broad, including communication, computing and sensor systems, both

wired and wireless, both free-standing and embedded. As pervasive computing

progresses, the candidate pool will continue increasing dramatically: in infrastructures,

buildings, vehicles, appliances, etc.

More densely populated areas will have, in general, a denser coverage by

potential helpers. Thus, it will be easier to leverage capabilities of an Oppnet in such

areas. This is a desirable property in, for example, disaster recovery applications: more

resources become available in areas with a possibility of more human victims and more

property damage.

Before a seed Oppnet can grow, it must discover its own set of potential helpers

available to it. In addition to a mere lookup of a previously prepared information (e.g., a

directory), which is often referred to as "discovery," we mean also much more

challenging true discovery. True discovery could involve an Oppnet node scanning the

10

spectrum for signals or beacons, and collecting enough information to contact their

senders.

Utilizing helpers: Oppnets can utilize resources of helpers to significantly

enhance their capabilities. This has the form of leveraging of all kinds of resources and

"skills" (provided by smart or intelligent software) that new helpers bring with them. In

this way, Oppnets obtain a lot of help effectively and efficiently (even for free in

emergency situations, as discussed later).

Use of helper functionalities can be innovative in at least two ways. First, Oppnets

are able to exploit dormant capabilities of their helpers. For instance, even entities with

no obvious sensing capabilities can be used for sensing: (a) a desktop can "sense" its

user's presence at the keyboard; (b) a smart refrigerator monitoring opening of its door

can "sense" presence of potential victims at home in a disaster area. As another example,

the water infrastructure sensornet (sensor network) with multisensor capabilities, which is

positioned near roads, can be directed to sense vehicular movement, or the lack thereof.

Second, helpers might be used in novel combinations of existing technologies, as

in the following scenario [3] and illustrated in Fig. 2.

A seed Oppnet is deployed in a metropolitan area after an earthquake. It finds

many potential helpers, and integrates some of them into an expanded Oppnet. One of the

nodes of the expanded Oppnet, a surveillance system, "looks" at a public area scene with

many objects. The image is passed to an Oppnet node that analyzes it, and recognizes one

of the objects as an overturned car. Another node decides that the license plate of the car

11

should be read. As the Oppnet currently includes no image analysis specialist, a helper

with such capabilities is found and integrated into the Oppnet. It reads the license plate

number. The license plate number is used by another newly integrated helper to check in

a vehicle database whether the car is equipped with the vehicular communication system,

e.g. OnStar™ [7]. If it is, the appropriate vehicular center facility is contacted, becomes a

helper, and obtains a connection with the OnStar™ device in the car.

Satellite

• «)
Appliance

(refrigerator)

SEED

S\ Common
Nodes Controller

(distributed)

Cellphone
Tower

Microwave
Relay

' ^ % ;

Overturned
car with
OnStar™

Computer Network

Figure 2. Expanded Oppnet ([3], [4])

The OnStar device in the car becomes a helper and is asked to contact BANs

(body area networks) on and within bodies of car occupants. Each BAN available in the

car becomes a helper and reports on the vital signs of its owner. The reports from BANs

12

are analyzed by scheduling nodes that schedule the responder teams to ensure that people

in the most serious condition are rescued sooner than the ones that can wait for help

longer. (Note that with the exception of the BAN link that is just a bit futuristic—its

widespread availability could be measured in years not in decades—all other node and

helper capabilities used in the scenario are already quite common.)

2.3.2 Growth of seed Qppnet into expanded Oppnet

A seed Oppnet grows into an expanded Oppnet after admitting new helpers. For

example, the expanded Oppnet in Fig. 2 admitted these helpers: (a) a computer network,

contacted via a wired Internet link; (b) a cell phone infrastructure (represented by the cell

phone tower), contacted via Oppnet's cell phone peripheral; (c) a satellite, contacted via a

direct satellite link; (d) a home area network, contacted via an intelligent appliance (e.g.,

a refrigerator) with a wireless link; (e) a microwave network, contacted via a microwave

relay; (f) BANs of occupants of an overturned car, contacted via OnStar.

Helpers are either invited or ordered to join. In the former case, contacted

candidates are free to either join or refuse the invitation. In the latter case for emergency

situations, they must accept being conscripted in the spirit of citizens called to arms.

2.3.3 Asking or ordering helpers and Oppnet reserve

Ordering candidate helpers to join may seem controversial, and requires

discussion. First, it is obvious that any candidate can be asked to join in any situation.

13

Second, any candidate can be ordered to join in life-or-death situations. It is an

analogy to citizens being required by law to assist with their property (e.g., vehicles) and

labor in saving lives or critical resources.

Third, some candidates can always be ordered to become helpers in emergencies.

They include many kinds of computing and communication systems serving police,

firefighters, the National Guard, etc. Also, the federal/local governments can make some

of their systems available upon an order from any EPR (Emergency Preparedness

Response) Oppnet.

Once they sign up, they are "trained" for an active duty: facilities assisting

Oppnets in their discovery and contacting them are installed on them. For example,

standard Oppnet Virtual Machine (OVM) software is installed on them (cf. Appendix A).

The "training" makes reservists highly prepared for their Oppnet duties.

Such Oppnet reserve is not necessary for the Oppnet paradigm but very helpful

for at least two reasons. First, Oppnet reservists in an incident area increase the pool of

candidates that can be ordered—rather than asked—by an Oppnet to join it. Second,

having "trained" reservists (e.g., OVM-equipped ones) significantly simplifies discovery

of candidates. Specifically, it facilitates finding by an Oppnet the very first contact in an

incident area, which is always most difficult. Once a reservist joins an Oppnet, reservist's

own contacts become easy next-wave contacts for the Oppnet.

For EPR applications, we have assumed that at least one reservist survives an

incident. With numerous reservists in practically every area of the country—the more

14

reservists the more densely populated is an incident area—we are practically guaranteed

that some reservists will survive (and some of the reservists' contacts will survive).

In general, by employing helpers working for free as volunteers or conscripts,

Class 2 Opportunistic Networks can be extremely competitive economically in their

operation. Full realization of this crucial property requires determining the most

appropriate incentives for volunteers and enforcements for conscripts.

To protect critical operations of Oppnets and of helpers joining an Oppnet,

Oppnets must obey the following principles:

• Oppnets must not disrupt critical operations of potential helpers. In particular,

they must not take over any resources of life-support and life-saving systems.

• For potential helpers running non-critical services, risk evaluation must be

performed by an Oppnet before they are asked or ordered to join the Oppnet.

This task may be simplified by potential helpers identifying their own risk

levels, according to a standard risk level classification.

• Privacy and security of Oppnets and helpers must be assured, especially in the

Oppnet growth process.

2.4 Control Flow of Oppnet

The control flow in Oppnets, thai is, the basic sequence of Oppnet operations is

shown in Fig. 3. Oppnets first deploy a seed Oppnet (cf. Fig. 1), which may be viewed as

a pretty typical ad hoc network. It self-configures, and then works to detect "foreign"

15

devices or systems using all kinds of communication media—including wired Internet,

WiFi, cell phones, RFIDs, satellites, etc. At this stage, Oppnets start to differ from typical

networks.

Deploy
seed Oppnet

™ W P ^

GROWTH .
.A YES

^k_JL i .

Admit candidates
into Oppnet

"'A

..•".«

(Decentralized)
Command Center

Integrate helper's
resources

Collaborative
processing

Restore helpers'
states & release

YES

+T"

Figure 3. Basic operations of an Oppnet

Detected systems are identified and evaluated for their usefulness and

dependability as candidates for joining the Oppnet. The best candidates are invited into

the expanded Oppnet. A candidate can accept or reject the invitation (but it might be

ordered to join during disaster response operations). Upon accepting the invitation,

a candidate is admitted into the Oppnet, becoming its helper. The resources of the helper

16

are integrated with the Oppnet, and Oppnet's tasks can be offloaded to or distributed

amongst this and all other helpers (collaborative processing).

A decentralized (distributed) command center—either augmenting human

operators or fully autonomous—presides over the operations of the Oppnet throughout its

life. If the Oppnet needs more resources to achieve its goal, the process repeats, and once

the goal of the Oppnet has been achieved, the helpers are restored and released. It is the

goal of the Oppnet to restore helpers' state to the state that the helper was found in before

admittance to the Oppnet. This way, Oppnet is minimally intrusive to helpers.

2.5 Open Issues and Challenges in Oppnets

The preceding sections discuss the Oppnet paradigm conceptually, but there are

various open issues and challenges in the Oppnet paradigm that must be studied before

Oppnets can be realistically implemented. Some of these issues are delineated below [55,

25]:

1. Optimizing the seed Oppnet infrastructure. By developing measures and

criteria for quantitative specification of Oppnet features such as

communication, computation, sensing, storage, energy resources, etc.

2. Developing methods for detecting helpers with useful resources and facilities.

An integrated solution to detect devices by all diverse technologies, rather

than using traditional localization, GPS, or ultra-sound, etc techniques.

17

2.1 Designing integrated communication media for Oppnets. Provide

seamless communication across disjoint communication media.

3. Designing methods for inviting candidate helpers, and methods for controlling

helpers. Develop primitives and protocols for inviting and admitting helpers.

4. Developing methods/technique for:

a) Deciding which tasks should be "offloaded" by Oppnet to its

helpers.

b) Coordinating helper tasks by Oppnets. Conjure protocols and

primitives for collaborating and delegating tasks amongst Oppnet

nodes.

5. Proposing ways of

a) Managing Oppnets.

b) Control of privacy and security problems in Oppnets. Algorithms

for monitoring Oppnet nodes to detect and identify suspicious or

ineffective members of the Oppnet.

6. Analyzing performance of Oppnet algorithms and protocols, including the

ones for localization, invitation, task offloading and coordination. Develop

measure and metrics for evaluating efficiency and effectiveness.

It would be overwhelming to study all these aspects. Therefore, our research

direction and the thrust of this Thesis can be stated as:

18

i. Developing a proof of concept. This is a fast way to demonstrate feasibility of

Oppnets.

ii. Developing a mechanism for providing services in an Oppnet by solving the

Service Location-Planning (SLP) problem. This will contribute towards

Challenge 4(a) (stated above), by allowing Oppnet components (seed nodes,

helpers and lites) to utilize and pool resources of all nodes in an Oppnet.

Before we show in more detail how the Service Location and Planning (SLP)

problem contributes towards overcoming Challenge 4(a) (from above) we will

discuss the SLP problem briefly.

2.6 Service Location and Planning (SLP) Problem

In any computing paradigm, which abstracts traditional computer applications to

the level of services, the challenge lies in advertising these services and optimally

matching consumers, users/requesters of these services, to producers,

providers/advertisers of such services. Numerous service discovery protocols, e.g. Jini,

Salutation, etc. and standards, such as XML, WSDL, OWL, etc., are in existence to

achieve such service advertisement and service invocation goals.

We investigate a novel service location and planning methodology that not only

provides a mechanism for service mapping but also accounts for consumer-defined

quality of service (QoS) parameters of throughput and delay. This is a unique

19

methodology since to the best of our knowledge, QoS requirements have not been

factored into service discovery protocols and standards.

The service location and planning methodology can be used in various computing

paradigms, ranging from Cisco's latest Application Oriented Network (AON) technology

[8], to the newer computing paradigm of Opportunistic Networks, to more traditional

paradigms of Pervasive Computing, Service Oriented Computing, and Mobile

Computing.

Let's consider an Oppnet with m nodes requesting a total of t tasks (services). In

such a case, the seed in the Oppnet can poll/survey the reachable nodes in the network,

indicating the QoS parameters for each of the services being requested. The QoS

parameters, the cost of each service installation on every node in the network, and the

underlying link layer capacities are input to the generic Service Location-Planning (SLP)

Problem. The output from the SLP problem will identify the total cost of service

installation to meet the demands of the network and the optimal service installation

location within the network.

The SLP problem can be briefly stated as follows. Given is a network of nodes

and a set of services that are being requested by nodes in the network. Associate a service

installation cost with every service that is to be installed in the network to meet the

requirements. These installation costs vary from one node to another. The goal is to

minimize the total service installation cost, promote service federation (i.e., install

20

multiple services on a node), meet quality of service (QoS) requirements, e.g., throughput

and delay.

2.7 Oppnets and Service Location and Planning (SLP) Problem

Now, after having discussed Oppnets and the SLP problem, let us see how the

SLP problem can contribute towards the challenge of optimal utilization of resources and

facilities of Oppnet helpers. Let us consider the expanded Oppnet of Fig. 2 and recall that

we discussed briefly how the expanded Oppnet could utilize the resources, for example,

of the OnStar™ system or a Vehicular Ad-hoc Network (VANET) in the overturned car.

However, the current mechanisms of service discovery and invocation cannot be applied

"as is" to the Oppnet paradigm since these mechanisms require a prior or code

installation on the devices. This is a feature that not only inhibits Oppnet "growth" but

also inhibits most pervasive computing technologies.

With the SLP problem discussed it is possible to devise a mechanism that

provides services in an Oppnet, so that the resources of the Oppnet can be utilized. For

example, during Oppnet configuration when devices are being discovered by the seed or

after configuration, the seed could probe Oppnet for the devices. Given that there is a

device classification scheme, the services offered by each device can be abstracted from

such a classification scheme, and then used as the input for the SLP problem. For

example, in the Bluetooth medium there are methods for getting a major device class

number and a minor device class number. This number identifies the device, e.g., as a

21

computing device (using the major class device number), and as a laptop, computer, etc.

using the minor class device number. Such a classification scheme could be extended so

that devices in an Oppnet could not only be identified as the class they belong to but also

their resources could be identified with such a scheme.

Once the device and its resources (services) have been identified by, for example,

the seed, a table of service installation costs can be inferred. For example, let us consider

the expanded Oppnet of Fig. 2, and assume that the seed used a classification scheme that

enabled it to identify the devices in the Oppnet and their resources. Then, based on this

information, the seed could tabulate the service installation costs as presented in Table 1.

In realistic scenarios, the service installation costs would be determined based on

numerous parameters such as, distant (e.g. in terms of number of hops), link bandwidth

capacities, capability of device (e.g. if the device is resource—processing, storage,

battery powered— constrained), line of sight (in the case of satellite communication), etc.

Table 1

Service Installation Costs for Devices in Expanded Oppnet of Fig. 2

Node in
Oppnet

Refrigerator
in a HAN1

A node in a
Microwave

Network

Primary resources
provided by node

Communication (Internet)

Communication
(Microwave Relay)

Service Installation Cost for Node

Communication

70

100

Processing

500

1000

Storage

500

500

1 HAN: Home Area Network

22

Table 1 - Continued

Node in
Oppnet

Satellite

A node in a
Computer
Network

Overturned
Car

A node in
Cellular

Infrastructure

Primary resources
provided by node

Communication (Satellite)

- Computation
- Communication via
Internet
- Storage

Communication (via
VANET2)

Communication (Cellular)

Service Installation Cost for Node

Communication

110

20

50

40

Processing

1000

20

500

100

Storage

1000

20

500

100

The costs presented in Table 1 are however for illustrative purposes hypothetical

numbers so that it can be easily inferred to which resources on which selected devices are

best to be utilized by Oppnet. For example, it would be cheapest to store data/information

on the computer network compared to any of the other devices, networks and systems of

the Oppnets. Storing information on the cellular infrastructure will be the second

cheapest system. Storing data/information on the other devices, networks and, or systems

in the expanded Oppnet (cf. Fig. 2) would be more expensive than in the computer

network or the cellular infrastructure since: (a) they are not intended to be used for

storage, so some code installation would need to take place to enable interpreting data

2 VANET: Vehicular Ad-hoc Network

23

storage and retrieval commands by the devices; and (b) in the case of non-trivial devices,

like the satellite, transmission of signals would take too long and hence this delay is

captured in the higher cost of service installation. Similar justifications can be made for

the rest of the service installation costs that are hypothetically chosen and depicted in

Table 1.

In this way, the seed is equipped with all the necessary network information such

that it can map a consumer requesting a certain service, with a producer providing a

certain service. For example, if there is a survivor with a bluetooth-enabled cell phone in

the overturned car (in Fig. 2), she may first try calling a rescuer or emergency service,

however, in the case that she does not get a cellular signal her phone would be useless to

her. However, with an Oppnet operating in the area, she could search for the Oppnet and

initiate a connection with Oppnet using the bluetooth capabilities of her cell phone and

the bluetooth medium. She could request for communication services from the Oppnet,

with this communication service, she could email her loved ones and assure them that she

is alive and also convey the message that she needs help. In such a case, the Oppnet

facilitates the communication by identifying the cheapest way to provide the

communication, e.g. via the computer network.

In this manner, the service location and planning mechanism can improve

utilization of resources in an Oppnet and thus contributes towards solving one of the

challenges confronting Oppnets.

CHAPTER 3

RELATED WORK

In this chapter, first technologies related or similar to Oppnets are presented,

discussed and contrasted with Oppnets, such that the novelty of Oppnets is demonstrated.

Next, a review of service discovery/invocation protocols and standards, and optimization

and graph theory problems that seem similar to the Service Location and Planning (SLP)

problem are presented and the SLP problem is distinguished from them.

3.1 A Review of Related Technologies to Oppnets

Manish et al. [25] review technologies related to Oppnets. In this subsection we

reproduce the relevant text to present a through overview of related technologies to

Oppnets.

Networks can be categorized as those designed for:

• Resource-sharing, e.g. peer-to-peer and grid networks

• Monitoring and control, e.g. wireless sensor networks

• Connectivity, e.g. MANETs, mesh, ambient networks

In this section, we present a brief review of such networks.

A. Peer-to-Peer (F2P) Networks

Peer-to-peer or P2P is a subclass of distributed networks, where resource (data,

bandwidth or computing power) sharing is achieved by direct exchange between the

24

25

peers, rather than depending solely on centralized servers. On the basis of the level of

intermediation of central servers, P2P networks can be broadly divided into pure P2P

networks - those which have no central server or routers; and hybrid P2P networks -

those which depend partially on central servers and routers to manage the network. In

pure P2P networks the role of clients and servers is completely merged making peers

with equal standing which can act as a server, client or both at the same time. In hybrid

P2P networks, central servers—called supernodes or strong nodes—are used to manage

information about data on peers and respond to requests for that information.

Oppnets follows similar decentralized pattern, where Oppnet-enabled devices can

act as a service provider, or as a user, or as both depending on its position in a particular

Oppnet hierarchy. What distinguishes Oppnets from P2P systems is the implicit

heterogeneity of Oppnets due to which all the peers can not be of equal standing. Devices

with limited resources and capacity (lites) such as sensing devices can perform very

limited functions and can only be ordered to perform their typical task. Seeds, on the

other hand, having more communicative and computing powers, may be providing

entirely different range of functionalities than helpers or lites. In addition, in P2P,

exchange of resources between peers is the primary goal, whereas commonality of the

goal for an entire Oppnet demands much deeper coordination and collaboration among

the nodes. To grow, Oppnets may follow similar methods as P2P networks, i.e. "grow by

joining," however the growth of a P2P network is measured by the number of nodes

26

joining the network, whereas the growth of an Oppnet is determined by the enhancement

in the potential of the Oppnet to solve the problem at hand.

B. Grid Computing

In the beginning Grid Computing was an effort to integrate various super

computers around the world but now this term has much wider implications. A

computational grid basically unifies distributed computers to a single computing

resource, providing users with a transparent access to the entire set of resources [9]. Users

have access to the complete resource pool but not to the individual peers. IBM defines

grid computing as the ability, using a set of open standards and protocols, to gain access

to applications and data, processing power, storage capacity and a vast array of other

computing resources over the Internet [10]. "A grid is a type of parallel and distributed

system that enables the sharing, selection, and aggregation of resources distributed across

'multiple' administrative domains based on their (resources) availability, capacity,

performance, cost and users' quality-of-service requirements" [11]. The term Grid as used

here, is indicative of an analogy with electrical grids which provide dependable and

transparent access to electricity irrespective of its origin.

Oppnets share the following characteristics with Grids [9]:

• Multiple administrative domains and autonomy: resources in an Oppnet,

similar to Grids, may be owned by different administrative domains or

different organizations. Even if they agree to be the part of an Oppnet, the

27

autonomy of these resource owners must be honored and their local

resource management and usage policies must be taken care of.

• Scalability: As the size of grid (and Oppnet) network grows, the problem

of potential performance degradation may arise. Consequently,

applications that require a large number of geographically located

resources must be designed to deal with latency and bandwidth problems.

• Dynamicity or adaptability: Distributed networks like grid or Oppnet

depend heavily on foreign resources so probability of resource failure may

be high. As such applications must tailor their behavior dynamically and

use the available resources and services efficiently and effectively.

• CPU-Scavenging: It is the process of creation of a "grid" from the unused

resources in a network of participants in a grid network. To reduce burden

on the volunteer helpers, Oppnets must follow similar resource utilization

policies.

Although Oppnets share many features with Grids, the priorities and context of

application for the two networks differ. While Grids are designed to focus primarily on

computationally-intensive operations and work in homogeneous environment, Oppnets

are being developed to predominantly deal with real life situations in a physical world

and collaborate in heterogeneous environment. As a direct implication of this, while

Grids allow remote sites to join or leave the environment whenever they choose, Oppnets

may force candidate helpers to join the network in emergency situations.

28

C. Wireless Sensor Networks (Sensornets)

Wireless sensor networks usually consist of hundreds or thousands of tiny sensor

nodes deployed across a geographical area to collectively monitor physical or

environmental conditions. The nodes are small devices having one or more sensing

capabilities but with very small memory and processing powers. They are also equipped

with communication capabilities- usually a radio transceiver, and a power source, usually

a battery. They collectively and collaboratively collect and process information, and

forward it to base stations. Sensor networks are now increasingly used in environmental,

military, health and home applications [12].

In typical situation, nodes are scattered in random fashion over the area to be

monitored. While this allows for the deployments in inaccessible terrains, it requires that

the protocols and algorithms have to be designed to provide self organizing capabilities.

Due to the limitation of power sources, which may be irreplaceable, algorithms also tend

to focus on high power conversion power management, in order to prolong network

lifetime. Apart from these constraints, other important factors affecting the design of

sensor networks are fault tolerance, scalability, operating environment, transmission

media etc [12].

While lot of current research is going on in this area, little has been done to

combine sensor networks with other existing networks. Since Oppnets originated from

the idea of Opportunistic Sensor Networks, it is evident that Oppnets will have interfaces

29

to sensor networks which promise to integrate their sensing and actuation capabilities to

the applications when needed.

P. MANETS

Mobile ad- hoc networks consist of mobile nodes which also support routing (to

cooperatively make up for the absence of fixed routing infrastructures). Transient

connections are established among nodes within range and may be broken down without

any prior notice or consent of all parties. Because of the dynamicity and unpredictably

introduced by rapidly changing topology of the network, coupled with absence of any

centralized authority, distributed operation and continuous self configuration become an

essential characteristics of MANETs [13]. Due to a similar distributed nature and helper

participation, continuous self configuration is also essential for Oppnets. In fact, the

nature of self management in Oppnets may be more challenging as the goals of the nodes

are much more than just facilitate routing. Yet another feature where Oppnets differ from

traditional ad hoc networks is the level of heterogeneity. Though these networks enable

heterogeneous devices or networks to communicate with each other via the common

largest network, the Internet, they do not enable devices in heterogeneous communication

media to communicate with each other, where as Oppnets facilitate communication

across disparate communication protocols.

E. Mesh Networks

Mesh Networks [14, 18] are similar to ad hoc networks but these are supported by

an infrastructure backbone provided by stationary but wireless routers. As in the case of

30

mobile ad hoc networks, mesh networks are also self configuring and self-healing.

Multiple paths ensure that mesh networks do not have to depend on any single

communication link. Even if some of the connections are broken, a mesh network can

still operate forming a reliable networking system. As a result, a very reliable network is

formed [19].

Mesh networks can either employ full mesh topology —where each node has

direct connections with all other nodes; or partial mesh topology —where every node is

connected only to the nodes with which they exchange most of their data.

Typically these networks have two kinds of nodes: mesh routers and mesh clients.

Although clients can also perform routing, separation of clients and routers, added by

immobility of routers, make the design of protocols much simpler and cost effective as

compared to mobile ad hoc networks. However, building a large-scale routing backbone

is often a challenge due to scalability problems. In spite of the scalability issues,

additional reliability provided by mesh networking makes it a good candidate for

utilization in emergency Oppnet applications.

The contrasting feature of resource integration and utilization of Oppnets is

missing in Mesh networks.

F. Ambient Networks

Ambient Networks (AN) is a European-Commission-sponsored project which

aims to develop a software-driven network infrastructure that will run on top of all

current or future physical network infrastructures to provide a way for devices to connect

31

to each other, and through each other to the outside world [20]. As opposed to

networking technologies mentioned above, ambient technologies do not deal with the

communication link and interfaces between individual nodes but with the interfaces at the

underlying network technology boundaries. The moment network boundaries are

encountered; interfaces are realized by instant negotiation of agreements based on

preconfigured policies.

The way Ambient Networks aim to provide end-to-end communication

capabilities in heterogeneous internetworking environments may resemble how Oppnets

try to integrate devices, networks or systems and manage Oppnet resources through a

distributed command center. However, the following features distinguish the two efforts

[20,21,22]:

• AN is a global, universal network intended as a replacement for the Internet

(beyond 3G) and all communication networks, whereas the Oppnet is a

local/wide area network meant to serve specific applications.

• AN requires heavyweight primitives whereas Oppnet requires no or only

lightweight primitives.

• AN is completely pre-designed, AN is aware of the location of all sub-ANs,

all its facilities are built-in or add-on, and only networks that have the needed

primitives can be "composed" into ambient networks, whereas Oppnet is

mostly ad hoc system that has to discover helper devices.

32

• ANs contact each other so that any sub-AN can initiate connections, whereas

Oppnets have a mechanism where the seed Oppnet nodes initiate discovery of

devices.

G. Delay Tolerant Networks

Delay tolerant networking (a.k.a. disruption tolerant networking) aims to improve

connectivity between regional networks when connectivity is not continuous and prone to

disruptions leading to large delays. DTN started as an effort to deal with delays in the

interplanetary internet (floating nodes in space), where large distances cause much larger

delays than in the earth-bound Internet, and links are disrupted for minutes or hours. The

idea has been extended to other networks having similar characteristics, e.g. , terrestrial

mobile networks, military battlefield networks, etc.

DTNs overcome the problems associated with large delays by adapting store-and-

forward message switching [23]. DTNs also enable interoperability between different

regional networks having different characteristics by providing interfaces. The storage

places are capable of holding the messages for indefinite periods as opposed to holding

messages for just a few milliseconds in Internet routers. In Oppnets, similar delays are

expected due to two reasons. Firstly, due to high heterogeneity of the Oppnet,

communication capabilities of different devices may be at diverse levels. Secondly,

helpers may get disconnected due to their own constraints and workloads.

33

H. Class 1 Opportunistic Networks

Class 1 Opportunistic Networks (e.g., [2]) can be viewed as a generalization of

the Mobile Ad hoc NET working (MANET) paradigm.

In Class 1 Opportunistic Networks, there is no notion of utilizing resource of the

nodes in the network to perform a network task. In contrast, in class 2 opportunistic

networks, the network not only provides a communication backbone but can provide

computing, sensing, actuating, storage, or other resources or services. Also, Oppnets can

grow dynamically by admitting needed helpers, which facilitates execution of more

challenging tasks. Such tasks are either beyond capabilities of traditional networks, or are

much more difficult to achieve even in Class 1 Opportunistic Networks. As shown in

Appendix A, Oppnets provide higher-level primitives to facilitate building of complex

applications.

Class 1 Opportunistic Networks are a proper subset of Class 2 Opportunistic

Networks or Oppnets.

I. Spontaneous Networks

Spontaneous networking is a relatively new area of research focusing on a small

subspace of ad hoc networks. Aim of the network is not just providing connectivity but

supporting the collaborative activity of a group of devices supported by wireless

communication [24]. They resemble Oppnet in some of their features, including

heterogeneity of nodes and collaboration among the participants. However, hierarchy of

nodes in Oppnets and administrative capabilities of seed nodes is not found in

34

spontaneous networks. Also, while spontaneous networks are based on the physical

proximity of a restricted number of nodes located nearby each other, Oppnets may grow

considerably according to the needs of their tasks.

3.2 Qualitative Comparison of Related Technologies with Oppnets

In this section, a qualitative comparison of the related technologies discussed in

the previous section is presented. The tables originally appeared in Lilien [17] and

Manish etal. [25].

Table 2

Comparison of Features of Selected Networks - Part I [25]

Feature
subfeatures

(if any)

Distinguishing Features
(w.r.t. other ad hoc nets)

Deployment

Configuration

Rapid

incremental

limits on
minimal
required
configuration
Nodes
join/leave

P2P
Systems

domination
of peer
nodes (over
clients or
servers),
resource
aggregation

Yes

in principle,
yes

starts with a
seed

often (even
w/o
warning)

Computational
Grids

lightweight
nodes with
sensors,
energy-
constrained,
densely
deployed

Sensornets

Virtual pool
of resources,
users have
access or
knowledge of
the pool and
not of nodes

Yes yes
Yes possible

Co-ordination no
among nodes
required

no

MANETS

rapidly
changing
topologies,
lack of
centralized
entity

yes

yes

no

often (even
w/o
warning)

Mesh
Networks

some hosts are
also routers, lack
of centralized
entity, very
reliable

yes

yes

No

infrequently (once
established)

35

Table 2 - Continued

Feature

Operation

subfeatures
(if any)

self-organizing

standalone/
connected to
Internet

centralized
entities

resource
aggregation

Node Types

N o d e
Characteristic;

Node Example

lightweight
nodes
software
heterogeneity
hardware
heterogeneity
Limited
energy

s

P2P
Systems

Yes

Yes/Possible

some (e.g.,
DNS)

Yes

"pure" peer
nodes,
supernodes
or super-
peers and
client peers
No

low

high

No

desktop,
laptop

Computational Sensornets
Grids

Yes Yes

Yes/Possible no (requires
remote task
manager)/
yes

in the form of sinks or base
Administrative stations,
hierarchy gateways
Yes No

base station or
sink, sensor
nodes (possibly
with routing
capabilities)

No

No

Possible

No

mote, Internet
gateway node

Computation
al devices
creating pool
of
computationa
1 resource
mostly

No

No

Yes

super, cluster
and ordinary
computers/la
ptops, PDA

MANETS

yes

Yes/Possible

None

No

mobile,
stationary
(few)

possible

low

high

some

pedestrians,
soldiers,
unmanned
robots,
vehicles,
buildings

Mesh
Networks

yes (routers)

Yes/Possible

None

No

mesh routers,
mesh clients,
conventional
clients

as clients

Low

High

Possible

desktop, laptop,
PDA, WiFi IP
phone, RFID
reader

36

Table 2 - Continued

Feature

Node
Mobility

Communication

subfeatures
(if any)

Stationary
nodes
Mobility of
combined
hosts/routers
Mobility of
separate hosts
(clients/peers)
Mobility of
separate
routers
wireless/wired

Limited
bandwidth for
some nodes
persists once
established
connection to
Internet
limited node
transmission
radius
most
communicat­
ion
between
nearby nodes
routing by

interoperability

P2P
Systems

yes

D.N.A.

possible

D.N.A.

yes/yes

yes

no

typical

yes if
wireless

yes

by
underlying
network
(e.g.,
Internet)

no

Computational Sensornets
Grids

possible Yes

No No

possible D.N.A.

possible

yes/yes

No

Yes

Mostly

yes

no

By underlying
network

possible

D.N.A.

yes/gateways
to wired
yes

yes

possible, via
base station
yes

yes

usually, by
base stations
or cluster
heads; by
sensor nodes
also possible
usually via
gateways

MANETS

possible

high

D.N.A.

D.N.A.

yes/possible

yes

no

possible

yes

yes

all nodes

possible

Mesh
Networks

Possible

D.N.A.

Yes

Minimal

yes/possible

Yes

Yes

possible

yes (wireless
mesh routers)

Yes

by mesh routers

Possible

37

Table 2 - Continued

Feature

Topology

subfeatures
(if any)

arbitrary
time varying

typical size
[in nodes]
typical area
covered

P2P
Systems

yes
highly

even
millions
MAN,
countrywide

Computational
Grids

Yes
Yes

K*10-k*1000

LAN-like or
MAN-like

Sensornets

yes
yes (mostly
due to using
up energy,
jamming or
noise,
moving
obstacles)
even millions

LAN-like or
MAN-like

MANETS

yes
highly

k*100-
k* 1,000
MAN,
countrywide

Mesh
Networks

yes
limited

arbitrary

LAN, MAN

Table 3

Comparison of Features of Selected Networks - Part II [25]

Feature subfeatures
(if any)

Distinguishing Features
(w.r.t. other ad hoc nets)

Deployment Rapid
incremental

Ambient
Networks

no
administrative
infrastructure,
human
interaction and
proximity
leveraged for
configuration
D.N.A.
D.N.A

DTN

Interoperation
of
heterogeneous
networks
major goal,
deals with
technology
boundaries

Yes
yes

Class 1
Opportunistic

Networks
no
administrative
infrastructure,
human
interaction and
proximity
leveraged for
configuration
yes
yes (from the
seed)

Spontaneous
Networks

tactical resource
aggregation,
high software
heterogeneity,
high
interoperability

yes
yes

Oppnets

no
administrative
infrastructure,
human
interaction and
proximity
leveraged for
configuration
yes
yes (from the
seed)

38

Table 3- Continued

Feature

Configuration

Operation

subfeatures
(if any)

limits on
minimal
required
configuration
nodes
join/leave

Self-
organizing
standalone/
connected to
Internet
centralized
entities

resource
aggregation

Node Types

N o d e
Characteristic

Node Exampl

lightweight
nodes
software
heterogeneity
hardware
heterogeneity
limited
energy

es

Ambient
Networks

D.N.A

D.N.A

no/
Yes

some (e.g.,
DNS)

no

peer nodes

possible

high

high

No

laptop, PDA,
high-end
mobile phone

DTN

Should
support
packet
switching
Yes

—

yes/
No

None

no

"pure" peer
nodes,
supemodes or
super-peers
and client
peers
No

No

possible

possible

Does not deal
with nodes

Class 1
Opportunistic

Networks
starts with a
seed

mostly during
growth or
dismantling

yes

yes/
possible

none or
in the seed

no

peer nodes

possible

high

high

infrequent

laptop, PDA,
high-end mobile
phone

Spontaneous
Networks

no

infrequently
(except at
session/
subsession
beginning/
end)
yes

yes/
no

none

no

seed nodes,
helpers

no

no

possible

no

desktop, laptop,
PDA, WiFi IP
phone, mote,
RFID reader

Oppnets

starts with a
seed

mostly during
growth or
dismantling

yes

yes/
possible

none or
in the seed

yes

peer nodes

possible

high

high

infrequent

laptop, PDA,
high-end mobile
phone

39

Table 3 - Continued

Feature

Node
Mobility

Communication

Topology

subfeatures
(if any)

stationary nodes

mobility of
combined
hosts/routers
mobility of
separate hosts
(clients or peers)
mobility of
separate routers

wireless/wired

limited
bandwidth for
some nodes
persists once
established
connection to
Internet
limited node
transmission
radius
most
communication
between nearby
nodes
routing by

interoperability

arbitrary
time varying

typical size
[in nodes]
typical area
covered

Ambient
Networks

Possible

Possible

Possible

possible

Yes/
yes

D.N.A

D.N.A

typical

Yes if wireless

no

By underlying
network

yes

Yes
yes

even millions

planetary

DTN

no

No

yes

yes

Yes/
No

yes
(connection in
bits)
no

no

yes

Not necessary

All nodes

No

yes
possibly

few

interplanetary

Class 1
Opportunistic

Networks
yes

yes

yes

yes

yes/
yes

yes

yes

possible

yes if wireless

maybe

by most nodes
or by routers

high

yes
mostly during
growth or
dismantling

arbitrary

MAN

Spontaneous
Networks

yes (when in
use)
no (when in use)

D.N.A.

D.N.A.

yes (short-range
for session
establishment,
then regular)
/unlikely
yes (session
setup)/no
(session)
yes

unlikely

yes

yes

all nodes

no

yes
mostly at the
beginning or end
of session or
subsession

small to medium

one room

Oppnets

yes

yes

yes

yes

Yes/
yes

yes

yes

possible

yes if wireless

maybe

by most nodes
or by routers

high

yes
mostly during
growth or
dismantling

arbitrary

MAN

40

3.3 Literature Review for Service Location-Planning (SLP) Problem

In this section we discuss various optimization problems that are related to or

similar to the SLP problem.

The Capacitated Facility Location (CFL) problem can be stated as follows [56],

given a set of facilities F and a set of clients C, each c e C has a demand dc that must be

serviced by one or more open facilities. There is a facility cost fi for opening facility i e

F and a service cost si,c for facility i to service one unit of demand from client c. No

facility may service more than U units of demand. The goal is to service all clients at

minimum total cost (i.e. sum of facility and service costs). The CFL problem is NP-Hard

even in the case where U = GO, known as the Uncapacitated Facility Location (UCFL)

problem [26, 27, 56].

In the SLP problem, there is another dimension to the problem, the QoS constraint

to meet delay. This makes the SLP problem more complex than the Facility Location

(FL) problems.

Other problems of interest, such as optimal placement of gateways in wireless

mesh networks [28], [29] and service selection to minimize cost or maximize QoS [30],

are also considered variants of the Facility Location problem.

Aoun, et al. [28] consider the problem, that given a wireless mesh network, how

do we place gateways optimally that connect to Access Points (AP), such that the number

of gateways are minimal, subject to delay, throughput, bandwidth. The authors factor,

41

delay as number of hops, throughput is simplified to congestion and bandwidth to cluster

size. They use a cluster approach so that nodes are encompassed in disjoint clusters.

However, the mesh gateway placement problem does not take into account

communication delay or other constraints such as the underlying link layer constraints

that are contained in the SLP problem.

Bejerano [29] considers the same mesh gateway placement problem [28],

however the solution approach is different, as the author solves gateway placement cost

and clustering separately.

The authors in [30] approach a similar problem, rooted at FL problem, from a

service selection point of view, such that requests are "binded" to services that minimize

cost, or maximize QoS constraints. Again, the freedom of service placement on location

makes our problem different. Also, authors in [59] study various approximation

algorithms for the facility location problems, that seem to be the root of related work

presented here, that most closely resembles our problem.

From Graph Theory related optimization problems, it seems that the Vertex Cover

problem and its variants are similar to the SLP problem. However, a close look at the

Vertex Cover problems shows that firstly, it does not allow formulation of QoS

constraints. Secondly, Vertex Cover problems in undirected graphs [31] cannot help in

the formulation of the SLP problem since they are in undirected networks.

However, Vertex Cover problems in directed graphs [32] can be considered in

future work as the basis for heuristic and meta-heuristic programming for SLP problem.

42

Furthermore, these problems cannot be used to guarantee optimal solutions for the SLP

problem, where as the Integer Linear Programming (ILP) model of the SLP problem (that

we formulate and discuss in this thesis) gives optimal solutions for the SLP problem

(shown in later chapters).

A review of Networking related optimization problems shows that those problems

pertaining to service or content replication are similar to the SLP problem. For example,

Jin and Wang [57] reduce communication overhead by replicating content and services in

differently from the traditional pull mechanism practiced. In the pull mechanism,

replicates of an object are proportional to the popularity of the object. This approach can

be used in future work to analyze the tradeoff between service replication and service

installation.

Another alternate to service replication is service composition as studied in [58].

However, in SLP we account for service composition through service federation

constraints.

Other technologies, e.g. Service Discovery Protocols (SDP) from Pervasive

Computing and Service Oriented Computing paradigms, can be studied to gain insight for

resource utilization and invocation. Zhu and et el. [33] present a comparison of existing

protocols that implement service discovery and communication—JiniTM, UPnPTM and

Bluetooth Service Discovery ProtocolTM (SDP)—to mention a few. A striking

difference, however, between all these service discovery protocols and those needed in

the more recent networking technologies such as those of Oppnets, AONs, etc. is the

43

need for pre-configuration of the devices with the common protocols. Oppnet is

facilitation by "training" but able to function with any pre-configuration other than the

seed Oppnet pre-configuration. This restriction also inhibits creating truly pervasive and

ubiquitous computing environments.

What is lacking in these optimization problems, graph-theory problems and

service discovery protocols necessitates consequentially the novel Service Location-

Planning problem. The new problem not only meets consumer demands for services with

QoS parameters but minimizes service installation cost for the producers. All this while

operating within the limits of the underlying network link layer bandwidth capacities.

The Service Location-Planning (SLP) technique can be used in the latest

technology in Service Oriented Computing of Application Oriented Networks (AON),

launched by Cisco Systems, a leading communications technology and infrastructure

provider. The AON Technology enables relocation of application services from end

nodes (end-points) in the network to the routers and switches in a network [8]. This is a

huge impact technology since it allows application-level message intelligence at the

router level.

This has two obvious fundamental consequences. First, AON routers can route

application-layer messages, such as stock quotes, weather and news alerts, etc., to the

appropriate application service rather than an arbitrary IP address. This is done through

"bladelets", a set of operations, which are applied to application messages. Second,

services can be installed on AON routers. This enables faster satisfaction of service

44

demand requests, as these requests are not propagated to the end-points (outside) of the

network, rather interpreted and satisfied within the network.

CHAPTER 4

MICROOPPNET - A SMALL-SCALE OPPNET

We have published the design and implementation of the small-scale Oppnet,

called MicroOppnet [25]. I reproduce the relevant text in this chapter to discuss the

design and implementation of MicroOppnet and a sample scenario that benefits from

MicroOppnet.

4.1 Overview of MicroOppnet

The current version of the MicroOppnet, is a small-scale proof of concept and test

bed for Class 2 Opportunistic Networks, since it not only allows opportunistic

communications but also opportunistically accesses sensornet (sensor network) nodes to

perform sensing. Since sensing is the only "class 2" activity, it is rudimentary in its class

2 opportunism. Hence the prefix "micro" in the name "MicroOppnet."

The MicroOppnet is a platform on which functional components, such as, Oppnet

components, primitives, protocols, and architectures are or will be implemented, tested,

and fine-tuned. Non-functional parameters, including quality of service (QoS)

parameters, such as throughput, delay, reliability, accuracy, scalability, etc., can also be

investigated on the MicroOppnet.

Figure 4, shows the structure of the seed Oppnet in the MicroOppnet consists of

Workstation A with a Bluetooth (BT) adapter and a serial port connection to Sensornet

45

46

Base Station BS_1. The seed searches for BT devices and initiates a connection with

them. Alternatively, a BT-enabled device—a cell phone labeled Victim in our example—

can find the seed and initiate a connection once a connection has been established, the

Victim cell phone can send a message to the seed, for example, the help message.

This message is then forwarded via Base Station BS_1, and then through the

sensor network. In the MicroOppnet, the sensornet consists of 10 Mica2 Motes and 6

Stargates, which are sensornet gateways. Some of the gateways are also connected to

Mica2 Motes.

Base Station BS_2 at the other end of the sensornet is connected to Laptop B.

Once the help message is propagated via BS_2 to Laptop B, a Java TCP/IP client socket

connection is initiated with a remote Java server. The help message and the location of

the device that sent it are logged on this server.

The Java server can be queried by remote users employing either traditional

computing devices or Java-enabled devices. In our example, we employ cell phone with

T-Mobile™ Virtual Private Network (VPN) connection, labeled as Responder.

The seed can broadcast to the sensornet a variety of messages in addition to

help—e.g., start_sensing, log_sensing, retrievejog. The messages can be used, for

instance, to start temperature sensing, to log temperature in the EEPROM of the sensor,

or to retrieve the logged data from the sensor network. The retrieved temperature

readings can be logged at the Java server. Then, they can either be queried by remote

users via wireless Internet, or be broadcast by the seed on the BT channels.

47

*'**!' ': -GHz
K^Spi i'iuetooth

Victim

SEED

\ • .*" • * " • • " "

t * L

BS 1

911
Sei;

133

pa*' ••*•

reless
>rk

2 'M /pr 1

B

:*•#•

BS 2

i i ' N or
V, ireless ' \ cl Internet

\

/

f j

Responder

Wireless /
"iternet

tffc-

Remote Java Server

Figure 4. Structure of MicroOppnet v.2.2

48

The current version of the MicroOppnet, integrates only three disparate

communication media and frequency ranges, namely, BT (2.4 GHz), a sensor network

(916/896/433MHz), and the wireless Internet 802.11b and 802.1 lg (2.4 GHz [13], the

same frequency as BT).

4.2 Design Choices

There were numerous design choices in the design and implementation of

MicroOppnet. For example, we have considered a number of technologies, such as

Wired/Wireless Internet, InfraRed, Microwave, WiMAX, Satellite, Cellular networks,

unrestricted and standardized Bluetooth medium and the radio frequency of 916 MHz of

the Wireless Sensor Network, etc., that could have been used in the implementation of

the MicroOppnet. Our decision criteria were ease of operation and availability.

With these design criteria in mind, the obvious choice would include the

traditional wired Internet and its wireless counterpart. The readily available hardware

(e.g. USB Bluetooth adapters/converts, Bluetooth enabled devices, etc.), protocols and

standards (e.g. Java Bluetooth API, JSR-82, Atinav AveLink Bluetooth Protocol Stack

[34]), and good technical support and documentation for Bluetooth medium made it an

easy and economical choice for experimentation. Similarly, the availability of sensornet

devices and my experience with sensornet programming made this technology a

component for MicroOppnet experimentation.

49

A summary of the project goals, evaluation criteria and decisions made are

presented in Table 4 [53].

Table 4

Requirements of MicroOppnet, Design Criteria and Decisions [53]

1

2

3

Project Goals
Integrate
disjoint
communication
media, protocol
and, or
standards

Minimal a priori
code installation

Class 2
opportunism-
leverage
resources

Evaluation Criteria
• Availability

• Ease of Use

• Dependability

• Acceptability

• Popularity

• Flexibility

• Reusability

• Ease of use

• Availability

Design Choices
• Wireless Internet
• Wired Internet
• Infrared
• Bluetooth
• WiMAX
• Sensornet
• Satellite
• OnStar™
• Cellular Network
• Telephony/VoIP
• SDP3 Protocols -

Jini, Salutation,
etc.

• Naming Schemes
• Data Formats

• Computation
• Sensory
• Actuation
• Storage

Decision
• Wireless Internet

• Wired Internet

• Bluetooth

• Sensornet

• Cellular Network

• Bluetooth SDP

• Existing naming
and addressing
schemes and data
formats

• Sensory actions
and records, since
sensornet is used

4.3 Design of MicroOppnet

In this section, we present the flow of control for the MicroOppnet of Figure 4 in

terms of the Oppnet Virtual Machine (OVM) primitives. The OVM is a standard

implementation framework for Oppnet applications, so that there is interoperability of

3 SDP - Service Discovery Protocols

50

application programs, hardware devices, environments and tools [6]. (See Appendix A,

for a detailed discussion of the OVM and its primitives)

The flow of control, illustrated in Figure 5, can begin with: (a) an active

discovering of candidates—using the OVM primitive SEED_discover; (b) with a

passive wait—using SEED_listen, when candidates search for and initiate connection

with the seed; or (c) with dispatching a task for the sensornet—using SEED_sendTask.

In the MicroOppnet, communication for (a) and (b) is only over the Bluetooth medium.

Messages received from nodes wishing to use the MicroOppnet are processed,

and tasks are delegated to the appropriate helpers. In the MicroOppnet, there are only two

sets of helpers: the set of nodes in the sensornet, and the remote server.

Messages from a user such as Victim in Figure 4 can be forwarded from the seed's

sensornet Base Station (SBS) BS_1 to the helpers using the SEED_sendTask primitive.

The nodes in the sensornet process the message using HLPR_processMsg and then

perform the task (currently, only sensing or communication) using

HLPR_runApplication. If the task is sensing, then the sensornet nodes (SNNs) will start

or stop sensing as required. Otherwise, they will forward either the received message or

their temperature sensor readings as directed. When the message is received by another

sensornet gateway or another base station (e.g., by BS_2), it is logged on a remote server.

If the task was to retrieve sensor-measured temperature, then BS_2 aggregates sensornet

readings and floods the result back through the sensornet to BS_1.

C START

LISTEN

SEED listen
set BT profile to DISCOVERABLE

SENSORNET
OPERATION

SEED_processMsg
h e l p message received

T SEEDsendTask
• PC forwards message to SBS (serial connection)

SEED sendTask
• SBS broadcasts message over its radio

HLPR_processMsg & HLPR_validate
• process and validate command received from

51

J^JS^fJVER^

SEED discover
use BT Service Discovery Protocol to discover

other BT devices^nd record them

SEED_report
• report list of devices discovered to

command center (CO

SEED_processMsg & SEED_validate
• CC can send message to a specific device or to

all devices discovered over OBEX

• send message to selected device(s)

HLPR_runApplication
• toggle yellow LED if msg from SBS
- toggle green LED if msg from SNN
- prepare message to be re-broadcast

HLPR_runApplication
- toggle yellow LED if message from SBS

- start/stop sensing
- record temperature reading

- create message with temperature reading

HLPR runApplication
- send message

HLPR_processMsg & HLPR_runApplication
- accept connection and if message is r e t r i e v e _ l o g

then reply with log history T
C STOP 3

Figure 5. Flow of control in the MicroOppnet v.2.2

52

Devices such as Responder (cf. Fig. 4) can send the message retrieve_log to the

remote helper server, which is in a listening mode with the HLPR_Iisten primitive. This

allows the remote server's log to be queried for specific tasks and retrieve the

appropriate messages. The server can process any TCP/IP socket connection.

Summarizing, the MicroOppnet supports only two categories of tasks: (i)

communication tasks - flooding messages and retrieving sensor readings; and (ii) sensing

tasks - starting and stopping sensing.

All these tasks rely on opportunism. In more detail, the following is the

exhaustive list of all tasks using resources opportunistically:

• Communication in the BT medium

• Communication in the sensornet medium

• Communication using TCP/IP in wired or wireless Internet

• Temperature sensing using sensornet nodes

The first three tasks use Class 1 opportunism, and only the last task relies on Class 2

opportunism—by leveraging the sensing resources of MicroOppnet helpers. Thanks to

the last task, we can claim that MicroOppnet is a Class 2 Opportunistic Network, albeit a

rudimentary one (exploiting only one type of non-communication resources).

4.4 Implementation of MicroOppnet

A USB Bluetooth (BT) dongle equips the seed with a BT infrastructure. To

exploit the BT communication framework, we use the BT software protocol stack

53

provided by Atinav AveLink [34]. In this way, we can invoke the BT Service Discovery

Protocol (SDP) using the API of the protocol stack to detect BT devices, and to either

initiate connections with BT devices or to receive connections from BT devices.

The BT communication infrastructure consists of profiles that are built on top of

layers/protocols to define further high-level functionality. There are numerous profiles

that exist and, moreover, there are close dependencies between profiles. The lowest-level

profile that most common BT Profiles are dependent on is the Generic Access Profile,

which is used to establish a basic connection. After establishing an initial connection, we

use Generic Object Exchange Profile, which uses the Object Exchange (OBEX) layer to

exchange objects. Alternatively, we can use Logical Link Control and Adaptation

Protocol (L2CAP) and RFCOMM protocol (uses Serial Port Profile) for packet and

stream data, respectively [35].

Our sensor network consists of Crossbow's Mica2 Motes and Stargate gateways

[36]. The Mica2 Motes run UC Berkley's TinyOS [37] operating system, and are

programmed with nesC [38]. The nesC code is compiled on a workstation and is flushed

onto the Motes using Crossbow's programming boards.

The remote server, developed in Java using socket connections, runs on a Linux

machine. Its flow of control is illustrated in Figure 6.

Cell phone programming is accomplished with Java MicroEdition (J2ME) and

JSR-118 Mobile Information Device Profile (MIDP) 2.0 for resource-constrained

54

devices, such as cell phones and PDAs. Java applications for such devices are called

MIDlets.

CSTART)
+

Create socket on port 8000 and wait
for connections to that port

Accept connections

I
Log messages - in log file

Create socket on port 9000 and wait for
connections to that port

1
Accent connections

T —
Reply with appropriate entries from

log file

C STOP)
Figure 6. Flow of control for the remote Java server

Figure 7 illustrates the flow of control in the MIDlet of the Responder (cf. Fig. 4).

It should be noted that the Victim (cf. Fig. 4) does not need any priori code installation.

Java-enabled phones, specifically Nokia 6600 (equipped with Symbian OS), Nokia 6103,

and Motorola RAZR were used in this implementation. And it was found that Nokia 6600

is stronger than the other two models when it came to initiating BT connections with the

seed or TCP/IP connections with the server.

55

C START)

User enters remote server IP address and
port number and the message to be sent to

the server

T
Create a Socke tConnec t ion with

server on the IP address and port number

, i ,
Open OutputSt ream and write

message bytes to server

, i ,
Display message received from server

C S T O P)

Figure 7. Flow of control for cell phone MIDlets

In this version of the MicroOppnet, a MANET routing approach is used, in which

every node in the Oppnet is a router.

The footprint (in Kilobytes) of the individual applications that are installed on the

various devices depicted in the MicroOppnet are as follows [53]:

1. Code on the Victim cell phone: There is no code installation on the Victim cell

phone, since any cell phone with a Bluetooth connection can use the Bluetooth

Service Discovery protocol (already installed in all Bluetooth-enabled phones) to

search for other Bluetooth devices. This service discovery is able to show Oppnet

Seed as one of the potential devices, and then ask the user of the Victim cell

phone whether connection should be initiated with the seed.

2. Oppnet Seed code:

56

a. Laptop A: 17 KB, and

b. Sensornet base station BS_1: 18.4 KB

3. Oppnet he lper code:

a. Wireless Sensor Network nodes: 19.6 KB

b. BS_2: 18.4 KB, and

c. Laptop B: 2 KB

4. Code for Remote Java Server: 2 KB

5. Code on the Responder cell phone: 4 KB

The MicroOppnet code is given in Appendix B.

4.5 Challenges in Developing MicroOppnet

In this section we delineate the hardware and software challenges we met in

implementing the MicroOppnet.

4.5.1 Hardware Challenges

Nokia 6600 was a much more robust cell phone, probably due to its Symbian OS,

since MIDlets that created sockets or streams were not allowed on Nokia 6103, locked by

T-Mobile and Motorola RAZR was not equipped to receive text messages over

Bluetooth, invalid format errors.

4.5.2 Software Challenges

1. T-Mobile WAP (Wireless Application Protocol) and GPRS (General Packet

Radio Service) connections do not allow unrestricted access to the Internet,

57

instead T-Mobile Virtual Area Network (VPN) was used to allow unrestricted

MIDlet access to the Internet.

2. The remote server should not be behind any firewall to allow MIDlet access to

the server.

4.6 Sample Application Scenarios for MicroOppnet

To illustrate use of the MicroOppnet, let us consider an emergency scenario,

namely a fire in a large office building. Suppose that some workers were unable to

evacuate. Most of them tried to use their cell phones to call for help. Many succeeded but

many failed to get a connection since the cell phone infrastructure is overloaded with

calls being made by thousands of workers still gathered outside of the building.

The firefighters can put a MicroOppnet (or, maybe, a MiniOppnet) to use. They

deploy around the office building the MicroOppnet seed, consisting of laptops and

networks connecting them. Now, the Bluetooth (BT) Class 1 connectivity (BT Class 1

has the range of approx. 100 meters) becomes an essential communications capability,

with the MicroOppnet using it to discover all kinds of BT-enabled helpers. An owner of

any such helper, that is an owner of a BT-equipped cell phone, PDA, laptop, etc., is now

able to communicate with the firefighters via the extended MicroOppnet (consisting of

the seed MicroOppnet plus all helpers that joined it).

This only illustrated Class 1 opportunistic capabilities of the MicroOppnet. To

show how Class 2 opportunistic capabilities of the MicroOppnet can be used, suppose

58

that the MicroOppnet is now commanded to contact and query for temperature readings

from all sensing nodes within the building (they include a multitude of Oppnet-enabled,

in this case BT-enabled, smoke detectors with add-on multisensor capabilities). These

temperature readings, aggregated at a Java server, are used to plot the heat profile for the

building. The profile, together with location information gathered by BT-equipped

helpers before, can be used by the firefighters to find the best routes for reaching the

workers trapped in the building by fire.

Note that many other pervasive communications technologies could be used in

parallel with BT.

CHAPTER 5

THE SERVICE LOCATION-PLANNING (SLP) PROBLEM

A page on the Service Location and Planning (SLP) problem, for small-scale

networks presented in this chapter has been published in [40]. We reproduce the relevant

text here to discuss the SLP problem.

5.1 Service Location and Planning Problem - A Formal Definition

The Service Location and Planning (SLP) Problem can be defined as follows.

Given: A network graph G~(V, E) and a set of services S, where V is set of

vertices/nodes and E is the set of edges. There exists a set of consumers, Vc <zV, such

that all nodes v eVc are requesting a service(s), sf e S,i = l..\s\ and have a throughput

and delay demand associated with each request. There is also a service installation cost

associated with each service s on a node n in the network G and a service discount Y is

given to promote service federation, that is, multiple service installations on the same

node.

The cost of installing a service s on a node n can include: (i) cost of accessing the

node, i.e. either physically/manually or in terms of number of hops, (ii) storage capacity

of the node, (iii) processing capacity of the node, (iv) installing the application (i.e. the

service s) on the node n, etc.

59

60

Installing multiple services on a node is promoted because based on the service

installation costs, it will be beneficial to a producer/?, if its service si is installed on node

n at the same time when another producer q's, service s2 is being installed on n. This

way, at the least the cost of accessing n is shared between the two producers, which can

be formulated as a discount in the service installation cost.

Problem: Install services on a set of producers VF c V, such that the service

installation cost incurred is minimal and all throughput and delay requirements are

satisfied, while also satisfying the underlying link layer capacities. Note: producers can

also be consumers of services => Vp n Vc * 0 .

5.2 Methodology Overview

Mathematical formulation of research problems as optimization problems is a

research methodology that is used in diverse areas of research and study ranging from

economics to physics to computer science. When a research problem can be successfully

formulated as a mathematical problem/model, it can be expressed and defined

unambiguously and solved accurately.

However, often hard or complex formulations cannot be solved effectively or are

computationally intensive. Furthermore, some mathematical formulations can only be

solved on a small-scale and when large-scale scenarios are considered, the problem

becomes too large or complex to be solved using traditional ILP/LP solve engines (e.g.

61

CPLEX, LpSolve [39], etc.). In such cases, approximation techniques are used to solve

the problem.

The methodology adapted for this phase of the research is as discussed above.

First, a formal definition of the problem, followed by the definition of a mathematical

model to represent the problem precisely, accurately and unambiguously, in the form on

an Integer Linear Programming (ILP) Problem. Next, solving this ILP using traditional

ILP/LP solve engines to achieve optimal results for small-scale networks and then

application of Lagrangean Relaxation technique for the approximation of the SLP

problem for large-scale networks.

5.3 Assumptions in the Formulation of the SLP Problem

Delay in a network is attributed to queuing delay at intermediate nodes,

propagation delay and transmission delay. These can be formulated as

T = 1 T data size
queuing i • t *. i i i • 1 ' transmission t • i •>,

link capacity - load on link link capacity

Tpropagate ~—0/ > where c is speed of light and the queuing delay is for M/M/l
/2>c

queues [54]. Consequentially, end-to-end delay formulation is non-linear, due to the non-

linearity in end-to-end queuing delay. Note accounting for transmission and propagation

delay is trivial and not part of our formulation.

We use an approximation technique to formulate linear queuing delay constraints.

The technique is simple. We use a load-delay lookup table to compute the non-linear

62

queuing delay at a link, by calculating the load on the link, and looking up the delay

value for that load on that link in a load-delay lookup table. In Fig. 8 we illustrate a load-

delay lookup tables for bandwidth capacities of 100, 300, 600 and 1000, this implies that

as long as the maximum bandwidth capacity in the network being considered is 100, 300,

600 or 1000 Mb/s we can approximate the queuing delay at the respective link by looking

up the load on that link.

The entries in the load-delay lookup table are computed by adapting the queuing

(1 "l
delay equation presented above T m = . For example,

\ link capacity - load on link)
when link bandwidth capacity is 100 Mb/s and there is a load of 50 Mb on this link, then

J 1 _ 1
link capacity - load on link 100 - 50 50

the queuing delay is, Tqueuing = — ;— ; 7r-r = ——— = — = 0.02 sec . We

modify this queuing delay equation so as to avoid working with decimal numbers, by

computing queuing delay according to T ing = — ~ ;—~ 7r~rx 10,000. In
link capacity - load on link

this case, the queuing delay on a link with capacity of 100 Mb/s and 50 Mb, is

L f K = x 10000 = x 10000 = — x 10000 = 200 sec.
,ueu,ng l i n k c a p a c i t y _ l o a d o n l i n k 1 0 0 - 5 0 5 0

Note, that when the load on a link is maximum, e.g. link capacity 100 Mb/s and load

100 Mb, then queuing delay, according to our modified Tqueuing equation is

"" x 10000 = — x 10000 = nan, an undefined number. However, logically
«"•""* 100-100 0

any link can support maximum capacity, though the delay on such a link would be large,

63

largest of queuing delays of all loads less than maximum capacity. Thus, we arbitrarily

specify this maximum queuing delay to be 500 sec. on any link with maximum capacity

load.

So, now for a link with bandwidth capacity 1000 Mb/s and load 50, the queuing

delay can be approximated as 9 sec. In this case of the load-delay lookup table of Fig. 8,

the load lookup interval is 50. This implies, that if, a link with capacity 100 Mb/s had a

load of 30, the delay would be undefined, since the table only delineates delay for loads

of 0, 50 and 100 (for 100 Mb/s link). We round up the load on a link to the nearest lookup

value, so that such cases are defined. For example, for a link with bandwidth capacity of

600 Mb/s and load of 137, in the ILP formulation we round up the load so that the delay

on this link is equivalent to the delay with load of 150, that is 22 s.

Therefore, there is a tradeoff between bandwidth wastage and lookup table

storage. If the lookup table has unit increments of load then the lookup table will be huge

to allow lookup for all loads ranging from 0,1,2...max_bandwidth, since maxjbandwidth

also caps maximum load on a link in the network. On the other hand, if lookup table is in

increments of, say 100, then we are wasting bandwidth since delay for load of 225 will be

undefined and load will have to be rounded up to 300 for a load-delay lookup in the table.

However, to overcome the nonlinearity in delay formulations we compromise

with bandwidth wastage. Some of the load-delay lookup tables used in our

implementations are illustrated in Fig. 8, with load interval of 50 in the delay lookup

table.

64

Consequentially, we realize that bandwidth resources are wasted, if a link with

load=225 is rounded up and delay for load 300 is assigned to this link. However, this is a

tradeoff we make to formulate linear delay constraints. Furthermore, the bandwidth

wasted is directly proportional to the scale used in the lookup table, which in turn is

directly proportional to the storage required for the lookup table.

A second assumption we make to allow local service installation is that all nodes

have a zero-cycle loop with maxjbandwidth of 1000 Mb/s. In this case, when needed

services can be stored locally.

Link bandwidth capacity =100
Load

0

50

100

Delay

0

200

500

(a)

Link bandwidth capacity = 600
Load

0

50

100

150

200

Delay

0

18

20

22

25

Link bandwidth capacity = 300

Load

0

50

100

150

200

250

300

(1

Delay

0

40

50

67

100

200

500

3)

Link bandwidth capacity = 1000

Load

0

50

100

150

200

Delay

0

9

10

11

12

65

250

300

350

400

450

500

550

600

29

33

40

50

67

100

200

500

250

300

13

14

800

850

900

950

1000

50

67

100

200

500

(d) (c)

Figure 8. Load-Delay Lookup Tables for bandwidths of 100, 300, 600 and 1000
Mb/sec

We promote service federation, so that if the cost of installing service 1 of a node

X is 100 and the cost of installing service 1 on a node Y is 80. Also assume a service 2 is

already installed on node X for a cost of 60. Assume there is a "discount" of 20 given for

multiple services installed on a node.

In this case, if we install service 1 on node Y and service 2 on node X, then the

total cost of service installation: 60+20 (on node X) + 80+20 (on node Y) = 180.

However, if service 1 and service 2 are installed on node X, then the total cost of service

installation: 60+80+20 (on node X) = 160. This implies, though the cost of service

installation on node Y for service 2 is less than that on node X, the total cost of service

installation is less when service 1 and 2 are installed on node X.

The motivation behind service federation is that if a node X must be manipulated

to offer a certain service then it is more feasible to enhance it simultaneously for another

service rather than to manipulate another node to equip it for the same service. Simply

66

stated, consider calling a plumber to fix a leaking kitchen sink and then calling another

plumber to fix the bathroom, rather, it is more logical, feasible, and economical to call

one plumber that can fix both the kitchen and bathroom problems.

5.4 Problem Formulation as an Integer Linear Programming Problem (ILP)

In this section we present a detailed discussion of the formulation of the ILP

model, the known (given) input, the variables and the output. The ILP formulation code

is given in Appendix C.

5.4.1 Input

The inputs of the problem can be listed as follows:

1. n = number of nodes in the network, i.e. |V|.

2. s - maximum number of services requested.

3. p = maximum number of useful paths in the network.

4. e = total number of links/edges in the network, i.e. |E|.

5. Path-link matrix L is a binary/? x e dimensional that indicates whether a link is used

in a path or not.

6. Bandwidth vector B is e dimensional that gives capacity of a link/edge and bmax is

maximum link capacity (in the entire network), where bi is the bandwidth of link /.

7. Service installation cost matrix C, is n x s dimensional that quantifies the cost for

installing a service on a node.

8. Discount T is given if multiple services are installed on node.

67

9. A three dimensional binary routing matrix, R that indicates the path used between a

source-destination pair in the network.

10. A throughput demand matrix T that gives the throughput required for a service at a

consumer.

11. A delay demand matrix D that is the maximum delay allowed for a service at a

consumer.

12. A load-delay lookup table Q that approximates the delay, due to queuing,

transmission and propagation, on a link given the load on the link, qmax is maximum

load lookup and q is the interval of load values in Q.

5.4.2 Variables and their definitions

The variables for the problem can be defined as follows:

1. A binary service location matrix X, is n x s dimensional, that indicates whether a

service is installed on a node or not.

2. A path-service capacity matrix, Z is p x s dimensional, that quantifies the capacity

of a service on a path.

3. An n dimensional service installation indicator vector U that indicates whether

multiple services are installed on a node.

4. A binary service-path indicator (normalized Z) matrix Y is p x s, and indicates if a

service uses a path or not.

5. An e dimensional link load vector V that quantifies the load on a link.

6. An e dimensional link-delay vector G that gives the delay on a link.

68

7. Ap dimensional path delay vector H, gives the total end-to-end delay on a path.

8. An indicator variable r is n x n x s x p, such that

f 1, if / provides service k to j via path m
ij, w \o,otherwise

Variable X is also the output of the problem since it gives the optimal service

installation configuration.

5.4.3 The ILP Formulation

Based on the inputs and variables we formulate the ILP model as follows, with

constraints in canonical form, for easy implementation during Lagrangean Relaxation.

Minimize the cost of service installation

n s

min
./=1 k=l 1=1

subject to:

Service installation cost and location constraints:

i) XfeKp-*«-tf,*o, vi</<«
*=1

2) - Z f e) + ^ 0 , Vl</<«

Throughput Constraints

3) ~'ZJlRu,n,-Zm,t<-TJ:k, Vl<i<n,l<k<s

k=\

n p

=1 m=\

69

« p
4) * a - l 2 X > - ^ 0 > Vl</<«,1<*<5

y=l m=I

5) -p-bmm-Xik+YtRlJ,m-Zm,<(i, Vl<i<n,l<k<s
j=l m=\

Network Link Capacity Constraint

6) HIL-J-Z.***!. \fl<l<e

Delay Constraints:

8) F m i - Z m i < 0 , V l ^ m ^ l ^ s

rounding load on links to match up with lookup table:

m=\ *=1

lO)-V,+±±{LmJ-Zmj!)<0, V l< /<e

l l ^ - ^ a , <0, Vl< /<e

12) -F / +g-o / <0 , Vl< /<e

finding index to be looked up in the delay table:

n)V,-q.i-{bm+qJ)-c,^, V l < / < e , l < / < ^ + l
1

U)-Vl+q.i-(bm3K + qmJ.cu<0, \/l<l<e,l<i<^ + \

70

1 5) y c / ; < ^ V l < / < e
M ' q

I6)kn+cn<l, V l < / < e , l < / < ^ + l

17) -kn-cn<\, \/\<l<e,l<i<^- + l
q

looking up delay in lookup table and computing delay on link and path:

1 8) G / - X (^ . - a) < 0 ! Vl</<e
/=!

19)-G / +2i(^-e,)<0, Vl< /<e
1=1

20)Hm-fj(LmrGl)<0, Vl<m<p
/=i

2\)-Hm+YJLmrG)<0, Vl<m<p

meeting delay requirement:

21)-R,,j,m-Ym,-rIJJt,m<-\, y\<ij<n,\<k<s,\<m<p

23) Ru,m • YmJc + rijAm < 1 VI < /, j < n, 1 < k < s, 1 < m < p

^)Hm-q^-rijXm<DjM \/\<i,j <n,\<k<s,\<m< p

to make sure only those paths offer a service capacity that are between a

producer and a consumer:

25) - </max • pf, t KJm, ^ -TLk Vl<j<n,l<k<s
(=1 m=l

71

« p 2 6) I 2 X ^ *TJ* y\<j<n,\<k<s
i=\ m=l

5.5 Discussion of the ILP Formulation

Here we interpret the constraints presented in the above mathematical

formulations [40]. The constraints relate to; service installation and location, meeting

throughput, factoring underlying network link layer capacity, discretization of load,

approximating delay for load by performing a lookup in a load-delay table, computing

end-to-end delay on a path and meeting delay requirements.

In the service location problem, our goal is to install service(s) on nodes in the

network that meet throughput and delay requirements for requests, while minimizing the

service installation costs and promoting service federation. Therefore, the objective

function is to minimize the service installation cost and give a discount for multiple

service installations, captured by the service installation indicator vector U. We capture

service installation location details in constraints (1) and (2) where

jl, if service k is installed on i

[0, otherwise

Constraint (3) ensures that the sum of service capacity provided across all paths

leading to destination y (consumer/) with throughput demand of 7, k for service k is met.

Constraint (4) and (5) ensure that the paths providing the service capacity come from

nodes where the service is installed, that is from a service provider i.

72

Constraint (6) captures the network link layer capacity and restricts the service

capacity on a path so that it does not exceed the underlying individual link capacity of the

links in a path. Constraint (7) and (8) compute the service-path indicator, a binary

\l,ifZmk>l
variable Ym k =<

[0, otherwise

The first six constraints allow us to meet throughput requirements while

minimizing service installation costs. However, our SLP problem meets QoS

requirements of throughput and delay. Therefore, we next discuss the constraints to meet

the delay requirements.

Constraints (9) and (10) compute the load on a link as the sum of service capacity

p n , .

across all paths using the link and are equivalent to V, =]T ^ \ L m l • Zmk). Constraint (11)
m=l Jt=l

ensures that load on the link, Vi is defined in the load-delay lookup table Q with load

V
interval q, with a,=— (equivalent to (11 and 12)). Constraints (13), (14) check whether

q.

there is a difference between load on a link and the respective lookup load in the table for

a given link. Constraint 15 ensures that there is at least one entry in the lookup table that

matches the load on the link, indicated by 0. Constraints (16) and (17) compute l-cij, so

that the lookup can be performed, which will be achieved by multiplying &/_, with Qt in

the respective row that matches the maximum bandwidth of the link. Constraints (18) and

(19) compute the delay on a link G\ as Gl
;=1

v=i(va)-

73

End-to-end delay of a path is computed as the sum of the delay across all links in

the path, that is, Hm =^{LmJ G) (equivalent to (20) and (21)). Constraints (22), (23)

and (24) ensure that the end-to-end delay of a path does not exceed the delay requirement

Djtk- That is, every path between a service provider / and consumer j for service k must

not exceed delay requirement of consumer for service k, equivalent to

R"j • Ymk • Hm < DJk. However, this is nonlinear, therefore, constraints (22) and (23)

{i m.e T)mY = 0
lJ m'k , so if rt jkm = 1, then the path delay

0, otherwise

and delay requirement comparison is not valid, however, if rjjkm = 0, then we want to

ensure that the path delay does not exceed delay requirement, this is captured in

constraint (24). Two safety constraints, constraints (25) and (26) are added to ensure that

only those paths carry services or offer services that lead from a provider to a consumer.

5.6 Service Location and Planning in Oppnets

Let us consider a home equipped with an Oppnet-enabled laptop, webcam and a

smart fire detector, as illustrated in Fig. 9. Now, assume that you were not home and were

concerned about a fire or robbery in your home. In the case of a fire scare, it would be

beneficial if you could initiate a connection between your cell phone (that you are

carrying) and your laptop at home through the wireless Internet infrastructure of your

cellular service provider. Once initiated, the laptop can detect and connect with the

74

webcam and smart fire detector, through the Bluetooth and Internet of the Home Area

Network (HAN), respectively.

Q\
i

Figure 9. A home equipped with an Oppnet-enabled laptop

Now, the laptop (in this case the seed) in the Oppnet can process images captured

by the webcam (in this case, this is an Oppnet helper) and interpret the smoke

concentration levels recorded by the fire detector, which is also an Oppnet helper, and

inform you that there is no fire, based on the smoke concentration levels and the image

captured by the webcam that shows everything to be normal.

The Service Location-Planning (SLP) technique can help realize this theoretical

Oppnet. In this section, we will illustrate how SLP can be used in Oppnets.

Firstly, an Oppnet is configured, illustrated in Fig. 10(a), starting with the seed,

the Oppnet-enabled laptop (labeled as node 1 in Fig. 10(a)), which detects and

incorporates the webcam (node 2) and smart fire detector (node 3), as Oppnet helpers

using Oppnet primitives (cf. Appendix A). The data rates of 3 Mb/s and 36 Mb/s

75

illustrated in Fig. 10(a) are typical data exchange rates in the Bluetooth and Internet

medium.

Then the seed can probe the Oppnet helpers for their resource capabilities and

construct a table of Service Installation Costs, presented in Fig 10(b). Let us assume that

the Oppnet can offer only four services- capturing images, collecting smoke

concentration levels, communication and processing, depicted as Service A, B, C and D

in Fig. 10(b), respectively. Figure 10(c) captures the fact that the laptop needs to 2 units

of Service A, i.e. capture images, and 20 units of Service B, i.e. collecting smoke

concentration levels., with no later than 10 seconds of delay.

These input parameters passed to the ILP model of the SLP problem, yields the

output presented in Fig. 10(d), concurring with our theoretical output, that is use Images

captured by the webcam, i.e. install Service A on Node 2, and collect smoke

concentration levels from the smart fire detector, i.e. install Service B on Node 3. Note, in

this scenario, Service A and Service B do not need to be installed on Nodes 2 and 3, they

can just be used; this is also captured in the lower Service Installation Costs of Service A

on Node 2 and Service B on Node 3 and very high Service Installation Cost of Service A

and B on Node 1.

76

(a) A small Oppnet

Node

1

2

3

Service A

5000

20

5000

Service B

5000

5000

40

Service C

10

5000

5000

Service D

10

5000

5000

(b) Input parameter: table of service installation costs for 2 services for the above topology

Node

1
2
3

Throughput
Requirement (units)

Service A

2
0
0

Service B

20
0
0

Delay Requirement (s)

Service A

10
0
0

Service B

10
0
0

(c) The input parameters, of the SLP problem

(d) The output/solution to the above SLP problem

Figure 10. Resource utilization in Oppnets using Service Location-Planning
technique

77

In this way the Service Location-Planning technique enables resource utilization

in small-scale Oppnets.

5.7 Service Location and Planning in Generic Networks

We used lp_solve [39] as the ILP solve engine that uses the simplex method to

solve integer linear programs. All our test scenarios are based on the topology of a

carrier's nationwide IP backbone network topology illustrated in Fig. 11. For small-scale

networks, we can abstract smaller topologies from this large-scale network. For example,

a six-node network can be abstracted from this topology, highlighted in yellow in Fig. 11

and renumbered and illustrated in Fig. 12(a).

Figure 11. A carrier's nation-wide IP backbone network topology [48]

78

In Fig. 12 we use this generic small-scale network to illustrate how our ILP

formulation of the SLP problem optimally installs services in this generic network to

meet service requests and QoS parameters. The input for the ILP formulation of the

small-scale network is shown in Fig. 12(b) and 12(c), the output for the problem is given

in Fig. 12(d).

~ 100Mb/s

100 Mb/s 100 M

100 M 800 Mb/s

(a) A sample 6-node topology scenario (also appears in [48])

Node

1

2

3

4

5

6

Service A

110

120

';" ipp !£:
aisioojii

-Jd^-Q0$jj^

Service B

100

100

100

120

100

110

Service C

100

150
*:>i*m:K

120

110

90

(b) Input parameter: table of service installation costs for 3 services for the above topology

Node

1
6
3

Throughput Requirement (units)

Service A
137
0
0

Service B
0

180
0

Service C
0
0

850

Delay Requirement (s)

Service A

1000
0
0

Service B
0

1000
0

Service C

0
0

100

(c) The input parameters, of the SLP problem

79

(d) The output/solution to the above SLP problem

Figure 12. Resource utilization in generic networks using Service Location-
Planning technique

In this scenario, as Fig. 12(d) shows, it is optimal to install Service A on Node 3

and Service B on Node 5. Furthermore, service splitting occurs since all link bandwidths

are 100 Mb/s, so 100 units of Service A are provided via the direct path (3,1) and the

indirect path (3,2,1) provides 50 units of Service A (as indicated with arrows in Fig.

12(d)). The delay for both of these paths meets the delay requirements of 1000 seconds

since the direct path has a delay of 500 seconds, and the indirect path has a total delay of

400 seconds (200 seconds delay on link 2-3 and 200 seconds on link 2-1). Also note that,

the service provided exceeds the throughput requested of 137 units by 13 units, since the

delay lookup table in Fig. 8 was used, which is enumerated for loads of increments of 50

units. Thus, instead of providing 37 units on the indirect path, 50 units are provided. It is

true that some bandwidth is wasted however the tradeoff is linear computation of delay.

80

Similarly, 200 units of Service B are provided from Node 5 directly to Node 6,

200 units via the direct path (5,6) with a delay of 16 seconds, which is less than the

consumer-defined delay requirements of no more than 1000 seconds.

We also meet the request of Node 3 for 850 units of Service C with a delay of no

more than 100 seconds. Firstly, note that Service C is cheapest from Node 3. Secondly,

since node 3 already has a previous service installed on it, i.e. Service A, therefore

installation of Service C, another service on Node 3, entitles it to a discount of 20.

Without this discount, the cost of installing Service A and C on Node 3 would have been,

220. However, with the service federation discount, the cost of installing Service A and C

on Node 3 is 200. Thus it is cost-effective to install Service C on Node 3. Hence, 850

units of Service C is provided to Node 3 locally, through the zero-cycle loops, with a

delay of 67 seconds.

In this manner, the ILP formulation achieves optimal service installation costs for

a small-scale network. However, for the SLP problem discussed in this paper, it is

obvious that there are various levels of complexity. The dimensions of complexity in a

SLP can be delineated in terms of:

• number of nodes, n,

• number of services, s,

• number of paths, p,

• links/edges, e,

• bandwidth capacity, bi (cf. ILP formulation)

81

• lookup table interval, q (defined in 5.4.1).

Increasing any of these dimensions causes the problem to grow tremendously. For

example, for a problem with 6 nodes, 2 services and 22 paths, the number of variables is

480, where as a problem with 6 nodes, 3 services and 22 paths has 538 variables. This is

an increase of 58 variables for just an increase by one service in the SLP problem.

The numbers of variables for different scenarios of the SLP problem are presented

in Table 5 as xn-ys-zp, where x, y and z are the number of nodes, services and paths,

respectively. If two scenarios have the same label then the difference is in the bandwidth

capacities of the underlying links. We keep the number of edges (e) constant across

scenarios with the same n, s, p dimensions. Also, the same lookup table is used in all

scenarios.

Table 5

Scenarios and Number of Variables

Scenario

6n-2s-22p
6n-3s-22p
6n-3s-22p
10n-2s-26p

Number of variables in ILP

480
538
598
762

10n-2s-26p 826
15n-2s-66p 1239
20n-3s-82p
24n-2s-58p
24n-2s-58p
24n-2s-32p

1896
1907
1937
1910

82

In Fig. 13 and 14 we illustrate the growth in the number of constraints in an ILP

and the execution times with respect to the number of variables in a SLP problem. The

execution times (in seconds) are computed based on the Windows XP platform running

on a Pentium IV, 3.0 GHz laptop with 384 MB of RAM.

4500

4000

3500 f^

3000 -f-

I 2500 ~̂ -

g 2000 —/-

1500 .x*-" —

1000 +—— "*""

500

0 -I 1 1 1 1 . 1 1 1 1

480 538 598 762 826 1239 1896 1907 1937 1910

Number of variables in ILP

Figure 13. Number of constraints vs. number of variables in an ILP

83

Figure 14. Execution times vs. number of variables in ILP

5.8 Flexibility of Service Location and Planning (SLP) Problem

It should be evident from the formulation and the test scenarios and results, that

the solution of the SLP is generic enough to be adapted for any network.

For example, consider the service location and planning problem in terms of

Cisco's AON technology that enables relocation of application services from end nodes

(end-points) in the network to the routers and switches in a network [8]. This is a

huge-impact technology since it allows for application-level message intelligence at the

router level.

AON has two obvious fundamental consequences. First, AON routers can route

application-layer messages, such as stock quotes, weather and news alerts, etc., to the

appropriate application service rather than to an arbitrary IP address. Second, services can

84

be installed on AON routers. This enables faster satisfaction of service demand requests,

as these requests are not propagated to the end points of the network, rather interpreted

and satisfied within the network (at the router/switch level).

Consider an AON with n nodes in a network requesting s services with pre­

determined throughout and delay parameters. The goal is to install services within the

network to meet the requests and satisfy the QoS parameters, while minimizing service

installation costs. In such scenarios, the Service Location and Planning (SLP) problem

can be solved to minimize service installation costs and meet consumer's requests.

CHAPTER 6

SLP PROBLEM FOR LARGE-SCALE NETWORKS

6.1 An Introduction to Lagrangean Relaxation

Hard or complex optimization problems can be simplified or approximated by

making various relaxations or approximations, for example, Linear Programming (LP)

relaxation, Lagrange Relaxation, etc. With LP relaxation, the integer constraints of a

linear program are ignored. However, generally the solution to an LP relaxed problem

does not fulfill all the discrete requirements [41].

In constrained optimization problems, LR proves particularly useful for separable

nonlinear programming problems or for integer linear programming problems [43].

Separable nonlinear programming problems are those that contain some linear

parameters/constraints, and removing them from the problem leaves a problem involving

only nonlinear parameters [44]. Integer Linear Programming (ILP) problems, are those

that consist of linear functions/constraints and integer variables.

A useful observation of hard problems is that they can often be viewed as easy

problems complicated by a relatively small set of side constraints [45]. By "dualizing"

the complicating constraints, a simpler (compared to the original problem), easy to solve

Lagrangean problem is obtained [45].

Thus, we are interested in Lagrangean Relaxation of ILP problems, where

multipliers, also known as Lagrangean Multipliers, are attached to the complicating
85

86

constraints and moved into the objective function [44]. In this way, the multipliers are

used to control the Lagrangean dual such that when a solution to the problem violates the

complicating constraint, the multipliers are used to penalize the objective function for

ILP. The optimal value of the Lagrangean dual ILP objective function gives a lower

bound for minimization problems and an upper bound for maximization problems, if

multipliers are always positive.

6.1.1 Illustration of Lagrangean Relaxation technique

Let's briefly illustrate the Lagrangean Relaxation technique. Consider for

example, an ILP minimization problem L defined as follows.

L - min fx

subject to:

Ax<b (1)

Cx = d (2)

* = {0,l} (3)

Where, x is the problem variable and f, A and C are problem dependent input

parameters and b and d are constants. Note, that the third constraint makes this a

combinatorial problem.

Let us assume that the first constraint is the complicating constraint.

A straight-forward relaxation approach would be to remove the complicating

constraint (1) and solve the problem without the complicating constraint and if the

solution satisfies the complicating constraint then it is optimal for the original problem

87

[52]. However, using the Lagrangean Relaxation for ILP problems, we formulate a

Lagrangean dual L that is defined below and takes into account the complicating

constraint(s).

£ = mm(jx + Ai (Ax - b))

subject to:

Cx = d (2)

* = {0,l} (3)

Where, A] is the Lagrangean multiplier.

Therefore, for a valid solution for x and for Ai > 0,

=> Ax < b, since for valid solution x, constraint (1) must be met, i.e. Ax < b

=> Ax-b<0

=^Ay(Ax-b)^0, given Ai>0

=>L <L, Note: L =L is not guaranteed

This is how, the Lagrangean multipliers are used to control the solution x and

penalize the objective function when a solution to x violates the complicating

constraint(s).

Again, note that the Lagrange relaxation dual forms a lower bound for

minimization problems, provided that the multipliers are not negative. In other words, we

try to find the highest lower bound of the Lagrangean dual for close-to-optimal solution

of the original problem. However, if the multipliers are allowed to be negative, then

L > L or L <L could still hold true, in the case where the negative multipliers are small

88

in magnitude. Thus, if the multipliers are not bounded to be positive the Lagrangean dual

will not produce a bound for the problem, instead it will just converge to a valid solution

irrespective of the cost.

Nonetheless, goal of the Lagrange relaxation technique is to iteratively update the

Lagrange multipliers through different algorithms, such as subgradient, surrogate

gradient [43], [44], a technique we refer to as the CMU technique (Carnegie Mellon

University technique) [46], etc. However, irrespective of the technique used, the

multipliers are updated such that they represent the cost of violating the constraints they

represent. Therefore, we only briefly review some of the Lagrangean Relaxation

techniques, namely, the subgradient, surrogate gradient and the CMU techniques.

6.1.2 Different Lagrange Relaxation Techniques

a) Subgradient and Surrogate Gradient Methods for Updating Lagrange
Multipliers

For simplicity mathematical proofs and theorem are omitted and we briefly

discuss the intuition behind subgradient and surrogate gradient methods and refer readers

to [43] for a more detailed discussion.

The Lagrangean dual is nondifferentiable at an optimal point, but

subdifferentiable everywhere else [45]. Thus, the subgradient method is an adaptation of

the gradient method in which the gradient is substituted with the subgradient [3]. In the

subgradient method, the multipliers are updated according to the equation

Ak+1 = Ak +skgk, where Ak - is the multiplier, sk is the step-size and gk is the subgradient

89

of the dual Lagrangean function at iteration k. To compute the subgradient requires a

solution of all the subproblems [43]. The step-size is an application dependent variable

and can be computed according to a mathematical formula. However, an easier rule that

has performed well empirically is to set sk to 2 and halved whenever L fails to increase

after some fixed number of iterations [45].

In an effort to reduce the time consumption of the subgradient method, where all

subproblems have to be solved to get the subgradient at an iteration, the surrogate

gradient method updates the multipliers in a similar manner to the subgradient method,

however, does not require a solution to all subproblems, hence reducing the time

consumption at every iteration and reducing the total time for optimizing the Lagrangean

dual.

b) CMU Technique for Updating Lagrange Multipliers

In the multiplier update method of [46], which we termed CMU (Carnegie Mellon

University) method, time consumption is shortened significantly as the need to compute

any subgradient or surrogate gradients is eliminated and a very straight forward approach

is used to update the multipliers. We adapted this algorithm for minimization problems

and present it in Fig. 15. In short, the multipliers are updated by a constant k, in each

iteration based on whether they violate or give slack to a constraint.

90

For a binary linear minimization problems and with all constraints in canonical form
1. Begin with each X at 0, with step size k (problem dependent value)
2. Solve the Lagrangean dual to get current solution x.
3. For every constraint violated by x, increase corresponding X by k.
4. For every constraint with positive slack relative to x, decrease the corresponding X by k.
5. If m iterations have passed since the best relaxation value has increased, cut k in half.
6. Go to 2.
Figure 15. CMU Lagrange Relaxation Technique [46] adapted for binary

minimization problems

Provided all these different techniques for implementing Lagrange relaxation, two

properties are important in evaluating which relaxation technique to use, the sharpness of

the bounds produced and the amount of computation time required to obtain these bounds

[44]. Usually, there is a tradeoff between these two properties [44].

Our goal is simplicity, in terms of computationally intensity, thus we adapt the

CMU Lagrangean Relaxation technique to extend the SLP model for large-scale

networks.

Scrutiny of the CMU technique yields the fact that this Lagrange relaxation

technique only works for binary linear integer programming problems. Next, we illustrate

this technique on a small binary minimization optimization problem and later discuss

how this technique can be adapted to our integer linear service location and planning

problem, which is not a binary problem.

6.2 An Illustrative Example for Lagrangean Relaxation Using the Adapted CMU
Technique

In this section, we demonstrate the CMU Lagrangean Relaxation technique that

has been adapted for binary linear minimization problems (cf. Fig. 15).

91

Consider the simple minimization problem defined below in its canonical form.

Z= min 4x, + 5x2 + 6x3 + 7x4

subject to

2xl + 2x2 + 3x3 + 4x4 < 7

x, - x2 + x3 - x4 < 0

(1)

(2)

(3) -x1-x2<-2

x,e{0,l},Vl<7<4

The optimal solution to this minimization problem is 9, with xj = X2 - 1. Below,

various iterations of the CMU technique are illustrated for exemplification of the

Lagrangean Relaxation of this small binary linear minimization problem. If all constraints

are to be relaxed, that is, consider all the constraints as complicating constraints, then the

Lagrangean dual would be defined as follows.

Z =min^

4x, + 5x2 + 6x3 + 7x4

+ ̂ (constraint l)

+ /l2(constraint2)
[+ /^(constraints)

, . t t x ;e{0,l},Vl<y<4
subject to ; 1 ' ;' •>

min«

Z

4x, + 5x2 + 6x3 + 7x4

+ \ (2xi + 2x2 + 3x3 + Ax4 - 7)

+ ^(-xl-x2+2)

subject to
xye{0,l},Vl<7<4

92

Now, given, step size k = 0.5 and m = 5 and Z as above.

In iteration 1, all X, = 0, 1 < / < 3,

4x{ + 5x2 + 6x3 + 7x4

+0(2xt + 2x2 + 3x3 + 4x4 - 7)

+0(xi -x2+x3-xA-0)

+ 0 (- x 1 - x 2 + 2)

mins = min Ax\ + 5x2 + 6x3 + 7x4

Thus, the bound is 0, with all x, = 0, 1 <j < 4. This solution gives positive slack to

constraint (1), just meets constraint (2), and violates constraint (3), thus the

multiplier are updated and are X] = -0.5, X2 = 0, and X3 = 0.5.

In iteration 2, the Lagrangean dual becomes

mim

4xl + 5x2 + 6x3 + 7x4

0.5(2JC, + 2x2 + 3x3 + 4x4 - 1)

+ 0 .5 (-x 1 -x 2 +2)

= min 2.5x^3.5x2+4.5x3+5x4+4.5

The optimal solution to this dual is x}• = 0, 1 <j < 4 with bound = 4.5 and

multipliers are updated to X] = - 1 , %2 - 0 and X3 = 1. Since the current solution to

the LR dual gives positive slack to constraint (1), violates constraint (3) and still

meets constraint (2).

In this manner, we play with the multipliers until iteration 14 when the bound, the

value of the LR dual, has failed to increase in 5 (m = 5) iterations. In this case, we cut the

step size, k, of 0.5 in half, to get k = 0.25 and at which point the multipliers are Ai = -2, A2

= -0.5 and A3 = 3. And we continue to update the multipliers as demonstrated in iterations

1 and 2, above.

93

In iteration 16, we find a higher bound of 14.25, and in iteration 21, when the

bound fails to increase any further, we cut the step size in half, yielding the new step size

of k= 0.125.

We continue in this manner to iteration 23, where the bound of 14.5 is achieved,

and when the bound fails to increase in the next 5 iterations, in iteration 28 we cut the

step size to 0.0625. And in iteration 33, the bound doesn't increase any further and again

we cut the step size to half, to get k = 0.03125.

In our program, our termination criterion is k < 0.05. Thus, we terminate the

Lagrange relaxation technique in 33 iterations. At which point, the solution is xj=l, X2=\,

X3=X4=0 and the bound=14.5.

This solution set is the optimal solution set, and when substituted into the original

objective function (Z) we get the optimal objective value of 9. The Lagrange multipliers

at this termination stage are Aj = -1.875, A2 = 0.4375, and A3 = 3.

In this manner, we get the optimal solution of xj= 1, X2 = 1, X3 = X4 = 0 with a

bound=14.5 (the LR dual value), which is higher than the optimal objective function

value. In this case, the LR bound did not provide a lower bound of the original problem;

this is because we allowed the multipliers to be negative.

Furthermore, scrutiny of this simple CMU technique yields the fact that this

Lagrange relaxation technique only works for binary linear integer programming

problems. Therefore, we will further adapt it for our SLP problem that is an Integer

Linear Programming (ILP) problem.

94

6.3 Lagrangean Relaxation of Service Location and Planning Problem

As discussed earlier, ILP models can be solved for small-scale networks

efficiently. For larger-scale networks relaxations techniques, approximation techniques

and other heuristics and meta-heuristics have to be used. They may yield suboptimal

results, but obtain solutions for larger-scale networks, which cannot be handled by

LP solve engines (solvers).

Recall that Lagrange relaxation techniques are used to remove/relax complicating

constraints from the ILP model, making the model simpler, and associating a multiplier

with the relaxed constraint (the removed constraint) so that the cost of violating or

removing the constraint is captured by the multiplier.

Also recall that we wanted to use the simple and straight-forward approach of the

CMU technique. We adapted the CMU technique for binary linear minimization

problems in Fig. 15. However, the technique is applicable only to binary linear

minimization problems, and our SLP problem is a non-binary integer linear minimization

problem. Therefore, we only relax/remove those constraints that are constituted of binary

variables, such as constraints (1), (2) and (17) in the ILP formulation of Chapter 5.4.3.

We will show significant reduction in the number of constraints in the Lagrangean dual

of the SLP problem even with relaxing just the above mentioned three constraints.

The Lagrangean Relaxation code is presented in Appendix D and sample input

and output files for a sample Lagrangean Relaxation (LR) scenario is presented in

Appendix E.

95

6.4 Test Scenarios and Results

Using the Lagrangean relaxation technique we compare the reduction in the

number of constraints in a SLP problem in Fig. 16 also tabulated in Table 6. This

illustrates the improvement with Lagrangean relaxation over the ILP formulation of the

SLP problem. Fig. 16 illustrates a reduction of 15 - 18% (at the least 15.6% and at the

most 18.8%) of the total constraints, that is, an average improvement of 17.42% (cf.

Table 6). This yields reductions of upto 729 constraints in a 24 node, 2 service and 58

path network setup. We reduce the complexity of the problem by only utilizing useful

alternate paths (with a minimum number of edges traversed), rather than all possible

paths between all source and destination pairs, which in itself is a hard problem.

The scenarios delineated in Fig. 16 and Table 6 as xn-ys-zp, where x, y and z are

the number of nodes, services and paths respectively. If two scenarios are labeled the

same, then the difference is the bandwidth capacity of an underlying link(s). We keep the

number of edges (e) constant across scenarios with same n, s, p dimensions. Also, the

same lookup table is used in all scenarios.

Table 6 shows how Lagrangean relaxation bounds the ILP objective function

value. It should be noted that the Lagrangean dual does not always represent a lower

bound on the optimal solution (ILP cost) for all scenarios since we allowed multipliers to

be negative. These results can be further increased by relaxing more binary constraints

from the SLP model in the Lagrangean Relaxation.

96

4500

4000

tn J I A W
C
"H 2500

2000

-#ILP constr

-#LRcortstr

• ^ f g g = ^ • J S ^ * * ^

6n-2s-22p 6n-3s-22p 6n-3s-22p 10n-2s-26p 10n-2s-26p 14n-2s-66p 20n-3s-38p 24n-2s-58p 24n-2s-58p 24n-2s-58p

scenarios

Figure 16. Comparison of number of constraints with ILP vs. LR of SLP
problem

Table 6

ILP Cost and LR Lower Bound Comparison

Scenario

6n-2s-22p
6n-3s-22p
6n-3s-22p
10n-2s-26p
10n-2s-26p
15n-2s-66p
20n-3s-82p
24n-2s-58p
24n-2s-58p
24n-2s-32p

ILP cost

240
340
340
240
180
60
100
160
280
160

LR lower
bound
219.62
324.93

298
220
168
48
68

236
320
220

constraints
in ILP

940
1038
1158
1528
1656
2395
3594
3810
3872
3819

constraints
inLR

778
876
966
1250
1346
2001
3050
3095
3143
3104

% improvement in
constraints

17.23
15.61
16.58
18.19
18.72
16.45
15.14
18.77
18.83
18.72

Average improvement = 17.42
LR = Lagrangean Relaxation

CHAPTER 7

CONCLUSION

7.1 Summary

The new computing paradigm discussed in this Thesis, termed Class 2

Opportunistic Networks (Oppnets) can be considered to be the next level in the

continuously evolving computing paradigms that are trying to achieve the demand for

seamless, untethered, ubiquitous computing. Oppnets bridge heterogeneous devices,

networks, or systems under one umbrella, so that all their resources, such as computation,

communication, sensing, actuation, storage, etc. can be integrated crossing boundaries

imposed by technological discrepancies, such as programming language, hardware

linguistics and communication medium. The distinguishing characteristic of Oppnets is

the growth mechanism that is the incorporation of the resources of the devices, networks

or systems. This way a task that could not be performed by a single device earlier, can

now be accomplished by the Oppnet by delegating the task amongst the nodes with the

resource capabilities to process the task (or sub-tasks).

This research entailed the design and implementation of a small-scale Oppnet

named MicroOppnet, which not only serves as a proof of concept but is currently being

extended as a testbed for designing, testing and implementing: (a) Oppnet primitives (cf.

Appendix A); (b) routing, privacy and security protocols; and (c) Oppnet and ad hoc

architectures.

97

98

The next research goal was the formulation of a Service Location and Planning

(SLP) problem that can optimize use of services not only in Oppnets, but also in broader

domains, such as traditional Service Oriented Computing (SOC) environments, and the

more recent Cisco's AONs.

The novel SLP problem not only satisfies consumers' requests but also meets QoS

guarantees of throughput and delay, and does it within the limits of underlying network

link layer bandwidth capacities, and-most important to the providers- minimizing the

service installation costs.

We have shown that the adapted Lagrangean Relaxation technique of the Service

Location-Planning model yields a reduction of 17% on average in the number of

constraints in the ILP model of the SLP problem.

7.2 Contributions Overview

The contributions of this research can be summarized as follows:

• Design and implementation of a small-scale Oppnet, called MicroOppnet

• Developing a proof-of-concept for Oppnets, which shows the feasibility of

Oppnet

• Refining the idea of Oppnets

• Definition of a novel SLP problem

• SLP problem incorporates QoS constraints of throughput and delay

99

• SLP model is realistic as it incorporates underlying network link layer

constraints, traffic splitting, service installation and local service

installations

• Mathematical formulation of SLP as an Integer Linear Programming

problem for small-scale networks

• Lagrangean Relaxation of the ILP formulation of the SLP problem for

larger-scale networks, with the reductions of the number of constraints in

ILP due to Lagrangean Relaxation by 17.42% on average.

7.3 Future Work

Future work on MicroOppnet includes: (a) extending the Class 2 opportunism

communication by incorporating other communication media (cf. Table 4, Section 4.2)

and the growth mechanism that's intrinsic to Oppnets; (b) designing privacy and security

primitives and protocols; (c) scrutinizing and implementing opportunistic routing

protocols of [63, 64]; (d) developing a Rapid Application Development (RAD)

environment [47] for Oppnets.

Future work for SLP problem includes: (a) accounting for other QoS parameters

such as reliability, security, adaptability, efficiency, etc; (b) developing a non-linear

model for the SLP and comparing results with the ILP model; (c) further reducing the

number of constraints by re-modeling the ILP formulation of the SLP problem in terms of

binary variables; (d) comparing results from different Lagrangean relaxation techniques

100

in terms of accuracy and complexity in implementation and execution time; (e)

developing a simulation model for experimentation and validation of constraints and

solutions of the ILP model for SLP; and (f) using evolutionary or genetic programming

techniques as a meta-heuristic or heuristic for approximating SLP model for large-scale

networks and comparing results with Lagrangean Relaxation approximation.

REFERENCES

[1] U. Hansmann, L. Merk, M. S. Nicklous and T. Stober, Pervasive Computing, 2nd

Edition. Springer-Verlag Berlin Heidelberg, New York, NY, 2003.

[2] L. Pelusi, A. Passarella, and M. Conti, "Opportunistic Networking: Data

Forwarding in Disconnected Mobile Ad Hoc Networks," IEEE Communications,

Vol. 44(11), Nov. 2006, pp. 134-141.

[3] L. Lilien, Z. H. Kamal, V. Bhuse, and A. Gupta, "The Concept of Opportunistic

Networks and Their Research Challenges in Privacy and Security," book chapter

in: Mobile and Wireless Network Security and Privacy ed. by K. Makki et al.,

Springer Science+Business Media, Norwell, Massachusetts, 2007.

[4] L. Lilien, Z. H. Kamal, V. Bhuse, and A. Gupta, "Opportunistic Networks: The

Concept and Research Challenges in Privacy and Security," Proc. Intl. Workshop

on Research Challenges in Security and Privacy for Mobile and Wireless

Networks (WSPWN2006), Miami, Florida, March 2006.

[5] B. Bhargava, L. Lilien, A. Rosenthal and M. Winslett, "PervasiveTrust," IEEE

Intelligent Systems, vol. 19(5), Sep./Oct.2004, pp. 74-77.

[6] L. Lilien, A. Gupta, and Z. Yang "Opportunistic Networks for Emergency

Applications and Their Standard Implementation Framework," Proc. The First

Intl. Workshop on Next Generation Networks for First Responders and Critical

Infrastructure (NetCri07), New Orleans, Louisiana, April 2007.

[7] OnStar Corp., "On Star Explained," 2007. Last accessed on October 5, 2007.
101

102

Online: http://www.onstar.eom/us_english/j sp/explore/index.j sp

[8] Cisco Systems Inc., "Introducing Cisco Application-Oriented Networking—A

CIO Brief," 2006. Last accessed on October 5, 2007.

http://www.cisco.com

[9] M. Baker, R. Buyya, and D. Laforenza, "Grids and Grid technologies for wide-

area distributed computing," Software—Practice & Experience, Vol. 32(15), Dec.

'02, pp. 1437-1466.

[10] IBM, "IBM Solutions Grid for Business Partners—Helping IBM Business

Partners to Grid-enable applications for the next phase of e-business on demand,"

International Business Machines Corporation 2002, Austin, TX, 2002.

[11] Wikipedia contributors, "Grid computing," Wikipedia, The Free Encyclopedia, 28

June 2007. Last accessed October 5, 2007.

http://en.wikipedia.org/w/index.php?title=Grid_computing&oldid=:141246324

[12] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor

networks: a survey," Computer Networks, Vol. 38, 2002, pp. 393-422.

[13] P. Papadimitratos and Z. J. Haas, "Securing Mobile Ad Hoc Networks," In: Ilyas,

M. (Hrsg.), Handbook of Ad Hoc Wireless Networks, CRC Press. 2002

[14] I.F. Akyildiz, X. Wang, and W. Wang, "Wireless mesh networks: A survey,"

Computer Networks, Vol. 47(4), March 2005, pp. 445-487.

[15] H. Karl, and A. Willig, "A short survey of wireless sensor networks," Technical

Report TKN-03-018, Technical University Berlin, Berlin, Oct. 2003.

http://www.onstar.eom/us_english/j
http://www.cisco.com
http://en.wikipedia.org/w/index.php?title=Grid_computing&oldid=:141246324

103

[16] L. Lilien, "Developing Specialized Ad Hoc Networks: The Case of Opportunistic

Networks," Proc. Workshop on Distributed Systems and Networks at the WWIC

2006 Conference, Bern, Switzerland, May 2006.

[17] L. Lilien, "A Taxonomy of Specialized Ad Hoc Networks and Systems for

Emergency Applications," The First Intl. Workshop on Mobile and Ubiquitous

Context Aware Systems and Applications (MUBICA 2007), Philadelphia,

Pennsylvania, August 2007.

[18] R. Bruno, M. Conti, and E. Gregori, "Mesh Networks: Commodity Multi-hop Ad

Hoc Networks," IEEE Communications, Vol. 43(3), March 2005, pp. 123-131.

[19] Wikipedia contributors, "Mesh networking," Wikipedia, The Free Encyclopedia,

21 June 2007. Last accessed online October 5, 2007.

http://en.wikipedia.org/w/index.php?title=Mesh_networking&oldid=139745759

[20] B. Ahlgren, L. Eggert, B. Ohlman, and A. Schieder, "Ambient Networks:

Bridging Heterogeneous Network Domains," The 16th Annual IEEE International

Symposium on Personal Indoor and Mobile Radio Communications (PIMRC),

Berlin, Germany, 11-14 Sep. 2005.

[21] Ambient Networks, Last accessed on June 30, 2007. Online http://www.ambient-

networks.org/

[22] N. Niebert, A. Schieder, H. Abramowicz, G. Malmgren, J. Sachs, U. Horn, C.

Prehofer, H. Karl, "Ambient Networks - An Architecture for Communication

Networks Beyond 3G," IEEE Wireless Communications (Special Issue on 4G

http://en.wikipedia.org/w/index.php?title=Mesh_networking&oldid=139745759
http://www.ambient-
http://networks.org/

104

Mobile Communications - Towards Open Wireless Architecture), Vol. 11(2),

April 2004, pp. 14-23.

[23] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, H.

Weiss, "Delay-Tolerant Network Architecture," DTN Research Group Internet

Draft, March 2003.

[24] L.M. Feeney, B. Ahlgren, and A. Westerlund, "Spontaneous Networking: An

Application-oriented Approach to Ad Hoc Networking," IEEE Communications

Magazine, Vol. 39(6), June 2001, pp. 176-181.

[25] Z. H. Kamal, L. Lilien, A. Gupta, Z. Yang, and M. Batsa, "Proof of Concept for

Class 2 Opportunistic Networks - a New Paradigm for Unlicensed Mobile Access

Technology," book chapter in: Unlimited Mobile Access Technology: Protocols,

Architectures, Security, Standards and Applications ed. by Y. Zhang, et al., to

appear.

[26] D. B. Shmoys, C. Swamy, and R. Levi, "Facility Location with Service

Installation Costs," Proceedings of the fifteenth annual ACM-SIAM symposium on

Discrete algorithms, 2004.

[27] M. G. C. Resende and R. F. Werneck, "A Hybrid Multistart Heuristic for the

Uncapacitated Facility Location Problem," AT&T Labs Research Technical

Report, TD-5RELRR (September 15), NJ, 2003.

[28] B. Aoun, R. Boutaba, Y. Iraqi, and G. Keyward, "Gateway Placement

Optimization in Wireless Mesh Networks with QoS Constraints," IEEE

105

Communication, Vol. 24(11), Nov. 2006, pp. 2127-2136.

[29] Y. Bejerano, "Efficient Integration of Multihop Wireless and Wired Networks

with QoS constraints," IEEE/ACM Transactions on Networking, Vol. 12(6), Dec.

2004, pp. 1064-1078.

[30] P. A. Bonatti, and P. Festa, "On Optimal Service Selection," Proceedings of ACM

International Conference on World Wide Web (WWW'05), Chiba, Japan, May 10-

14 2005, pp. 530-538.

[31] J. Cardinal, and M. Hoefer, "Selfish Service Installation in Networks," In Proc. of

Int. Conf. on Internet and Network Economics (WINE'06), Vol. 4286, Lecture

Notes in Computer Science, Springer-Verlag, 2006, pp. 174-185.

[32] R. Rizzi, and M. Rospocher, "Covering partially directed graphs with directed

paths," Discrete Mathematics, Vol. 306(13), July 06, Elsevier B.V., Amsterdam,

2006, pp. 1390-1404.

[33] F. Zhu, M. Mutka, and L. M. Ni, "Service Discovery in Pervasive Computing,"

IEEE Pervasive Computing, Vol. 4(4), Oct-Dec. 2005, pp. 81-90.

[34] Atinav, Online at http://www.atinav.com, 2004-2006. Last accessed on June 30,

2007.

[35] B. Hopkins and R. Anthony, Bluetooth for Java, Apress, 2003.

[36] Crossbow Technology Inc., 2007. Last accessed on October 5, 2007

http://www.xbow.com/

[37] TinyOS, UC Berkeley, 2004. Last accessed on June 30, 2007,

http://www.atinav.com
http://www.xbow.com/

106

http://www.tinyos.net/

[38] UC Berkeley WEBS Project, nesC: A Programming Language for Deeply

Networked Systems, Dec. 2004. Last accessed on June 30, 2007

http ://nescc .sourceforge.net/

[39] M. Berkelaar, K. Eikland and P. Notebaert, "lp_solve 5.5.0.10," Online, last

accessed: http://lpsolve.sourceforge.net/5.5/

[40] Z. H. Kamal, A. Al-Fuqaha, and A. Gupta, "A service location problem with QoS

constraints," Proceedings of 2007 International Conference on Wireless

Communications and Mobile Computing (IWCMC'07), Hawaii, USA, 2007, pp.

641-646.

[41] Wikipedia contributors, "LP relaxation," Wikipedia, The Free Encyclopedia, 3

July 2007, last accessed July 10, 2007.

http ://en.wikipedia.org/w/index.php?title=LP_relaxation&oldid= 142290098

[42] B. Hunsaker, "IE 3051: Computational Optimization - Notes on Decomposition,"

University of Pittsburgh, Pittsburgh, PA. Online, last accessed July 10, 2007,

http://www.engr.pitt.edu/hunsaker/3051/decomposition.pdf

[43] X. Zhao, P.B. Luh, and J. Wang, "Surrogate Gradient Algorithm for Lagrangian

Relaxation," Journal of Optimization Theory and Applications, 100 (3), March

1999, pp. 699-712.

[44] D. M. Gay and L. Kaufman, "Tradeoffs in Algorithms for Separable Nonlinear

Least Squares," Proceedings of the 13th World Congress on Computational and

http://www.tinyos.net/
http://sourceforge.net/
http://lpsolve.sourceforge.net/5.5/
http://www.engr.pitt.edu/hunsaker/3051/decomposition.pdf

107

Applied Mathematics (IMACS '91), edited by R. Vichnevetsky and J. J. H. Miller,

Criterion Press, Dublin, 1991, pp. 157-158.

[45] M. L. Fisher, "The Lagrangian Relaxation Method For Solving Integer

Programming Problems," Management Science, 27(1), January 1981, pp. 1 - 18.

[46] Michael A. Trick, "An application oriented tutorial on relaxations," Carnegie

Mellon University, Pittsburgh, February, 1996. Last accessed online:

http://mat.gsia.cmu.edu/mstc/relax/relax.html

[47] RAPIDware: Component-Based Development of Adaptable and Dependable

Middleware, Network Systems (SENS) Laboratory, Michigan State University.

Last accessed on June 30 2007. Online:

http://www.cse.msu.edu/~mckinley/rapidware/

[48] K. Zhu, available online, last accessed September 9, 2007,

http://networks.cs.ucdavis.edu/~zhuk/toplogies.html

[49] Z. H. Kamal, A. Gupta, L. Lilien, and Z. Yang, "The MicroOppnet Tool for

Collaborative Computing Experiments with Class 2 Opportunistic Networks,"

The 3rd Intl. Conf. on Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom 2007), White Plains, New York, November 2007.

[50] Z. H. Kamal, A. Al-Fuqaha, and A. Gupta, "A Service Location and Planning

problem with QoS constraints for Small and Large-scale Networks," submitted to

Special Issue of Elsevier Computer Communications on Self-Organization and

http://mat.gsia.cmu.edu/mstc/relax/relax.html
http://www.cse.msu.edu/~mckinley/rapidware/
http://networks.cs.ucdavis.edu/~zhuk/toplogies.html

108

Self-Management in Communications —Taking Vital Steps Towards Realizing

Autonomic Networking, under review.

[51] Z. H. Kamal, A. Al-Fuqaha, and A. Gupta, "Service Location Planning in Large

Scale Networks with QoS constraints," submitted to 2008 IEEE International

Conference on Communications (ICC 2008), under review.

[52] J. B. Orlin, Online lecture notes, last accessed July 9,2007.

http://web.mit.edu/jorlin/www/15.082/lectures/19_lagrangian_Relaxation_l.ppt

[53] L. Lilien, A. Gupta, Z. H. Kamal, and Z. Yang, "Opportunistic Networks and Their

Emergency Applications," submitted to Special Issue of Pervasive and Mobile

Computing Journal on Homeland and Global Security, under review.

[54] L. Kleinrock, Queueing Systems, Volume 1: Theory, Wiley-Interscience, 1975.

[55] L. Lilien, Z. H. Kamal and A. Gupta, "Opportunistic Networks: Research

Challenges in Specializing the P2P Paradigm," Proc. 3rd Int. W. on P2P Data

Management, Security and Trust (PDMST'06), Krakow, Poland, Sep. 2006, pp.

722-726.

[56] F. A. Chudak and D. P. Williamson, "Improved Approximation Algorithms for

Capacitated Facility Location Problems," Proceedings of the 7' International

Conference on Integer Programming and Combinatorial Optimization

(IPCO'99), Graz, Austria, June 1999.

[57] S. Jin, and L. Wang, "Content and Service Replication Strategies in Muli-hop

Wireless Mesh Networks," International Symposium on Modeling, Analysis and

http://web.mit.edu/jorlin/www/15.082/lectures/19_lagrangian_Relaxation_l.ppt

109

Simulation of Wireless and Mobile Systems (MSWiM'05), Montreal, Quebec,

Canada, 2005.

[58] X. Gao, R. Jain, Z. Ramzan, and U. Kozat, "Resource Optimization for Web

Service Compostion," IEEE International Conference on Services Computing

(SCC'05), Orlando, Florida, 2005.

[59] D. B. Shmoys, E. Tardos, and K. Aardal, "Approximation algorithms for facility

location problems," ACM Symposium Proceedings on Theory of Computing,

pp. 265-274, 1997.

[60] K. P. Bennet, A. Demiriz , J. Shawe-Taylor, "A Column Generation Algorithm

For Boosting," Proceedings of the Seventeenth International Conference on

Machine Learning, pp.65-72, 2000.

[61] S. Nash and A. Sofer, Linear and Nonlinear Programming. New York, NY:

McGraw-Hill, 1996.

[62] A. Demiriz, K. P. Bennett, J. Shawe-Taylor, "Linear Programming Boosting via

Column Generation," Machine Learning, Vol. 46 (1-3), pp. 225-254, 2002.

[63] Y. Wang, S. Jain, M. Martonosi and K. Fall, "Erasure-Coding Based Routing for

Opportunistic Networks," ACM Conf of the Special Interest Group on Data

Communication (SIGCOMM'05), Philadelphia, PA, Aug. 2005.

[64] P. Sistla, O. Wolfson, and B. Xu, "Opportunistic Data Dissemination in Mobile

Peer-to-Peer Networks," 9' Intl. Symp. on Advances in Spatial and Temporal

Databases (SSTD'05), Angra dos Reis, Brazil, Aug. 2005.

[65] ref for smoke detector image in Figure 9:

hUp://www.anaheim.net/depts servc/fire/com__svc/smoked2.gir

[66] ref for webcam image in Figure 9:

http://www.marktmedia.nl/osc/images/webcarni.ipg

[67] ref for laptop in Figure 9:

http://www.nilkantii.coni/my-uploads/dv61.141apt.op2.jpg

http://www.anaheim.net/depts
http://www.marktmedia.nl/osc/images/webcarni.ipg
http://www.nilkantii.coni/my-uploads/dv6
http://141apt.op2.jpg

Appendix A

OVM Primitive

111

112

The Oppnet Virtual Machine (OVM) [6] is a part of the Oppnet. The goal of

OVM project is to propose a standard for implementation of Oppnets. The standard will

facilitate implementations from different software vendors and will assure their

interoperability.

OVM will allow developing and marketing standard library routines and APIs to

be used for implementing all kinds of Oppnet-based applications. OVM will not only

facilitate application development but will also assure interoperability among different

Oppnet implementations and third-party Oppnet products.

A list of goals for OVM includes the following:

• Design an application programming interface.

o Provide extensions that allow greater flexibility.

o Can be implemented on many vendor platforms.

o Can be used in a heterogeneous environment.

• Allow efficient communication.

o With uniformed data format.

o Assume a reliable communication interface: the user need not cope

with communication failures. Such failures are dealt with by the

underlying communication subsystem.

This appendix details a list of primitives, divided into categories. It is summarized

in Tables A1-A4. The procedures for Oppnet control center (CC), seeds, helpers, and

lites have prefixes "CTRL_", "SEED_", "HLPR_", and "LITE_", respectively.

113

Table Al

Partial list of OVM primitives for CC nodes

Name of the Primitive
CTRL initiate
CTRL terminate
CTRL command

Functions of the Primitive
Initiate Oppnet
Terminate Oppnet
Send commend to seed nodes

Table A2

Partial List of OVM Primitives for Seed Nodes

Name of the Primitive
SEED_scan

SEED_discover

SEED listen
SEED validate
SEED isMember
SEED_evaluateAdmit

SEED sendTask
SEED_delegateTask

SEED release
SEED_processMsg
SEED_report
SEED update
SEED receiveTask
SEED_wait
SEED_barrier

Functions of the Primitive
Scan communication spectrum to detect devices that could become
candidate helpers
Discover candidate helpers with a specific communication
mechanism
Receive and save messages in buffer
Verify the received command
Checks if a device is already an Oppnet node (Oppnet member)
Evaluate a device and admit it into Oppnet if the device meets
criteria for admittance
Send a task to other Oppnet device
Delegate a task that requires a permission from the delegating
entity
Release a helper when no longer needed
Process a message from buffer
Report information to control center/coordinator
Update a device in the Oppnet with new expectations
Receive task from control center or another seed
Wait for a certain amount of time become take another action
Block the caller until all devices specified in the input parameter
have called it

114

Table A3

Partial List of OVM Primitives for Helpers

Name of the Primitive
HLPR isMember
HLPRJoinOppnet
HLPR_scan

HLPR_discover

HLPR validate
HLPR_switchMode

HLPR_report
HLPR selectTask
HLPR listen
HLPR_evaluateAdmit

H LP R_ru nApplication

HLPR_release

HLPR_processMsg
HLPR sendData
HLPR leave
HLPR_strongTask

HLPR_weakTask

HLPRassignStrongTask

HLPRassignWeakTask

Functions of the Primitive
Test if a helper is already a member of Oppnet
Join Oppnet
Scan communication spectrum to detect devices that could
become candidate helpers (regular or lites)
Discover candidate helpers with a specified communication
mechanism
Verify the received command
Switch between helpers' regular application and Oppnet
application
Send information/data to specified device
Select a task from the task queue to execute
Receive message and save it
Evaluate a candidate helper and admit it into Oppnet if it meets
criteria defined by Oppnet
Execute application indicated by authorized Oppnet seed or helper
node
Release a helper (unless delegated a release task, a helper H can
release only helpers admitted by H)
Process a message from buffer
Send information/data to specified authorized Oppnet node
Inform a seed that the caller will quit Oppnet
Respond to the request sent from device and express the
willingness to join Oppnet. By accepting this task, the device will
abort previous task
Respond to the request sent from device and express the
willingness to join Oppnet. By accepting this task, the device will
put the task in a queue
Assign tasks to a device. If accepted, the task will interrupt the
previous task at the device
Assign tasks to a device. If accepted, the task will be queued

115

Table A4

Partial List of OVM Primitives for Lites (Lightweight Helpers)

Name of the Primitive
LITE isMember
LITEJoinOppnet
LITE validate
LITE switch Mode
LITE_report
LITE selectTask
LITE listen
LITE_runApplication

LITE processMsg
LITE sendData
LITE leave
LITE_strongTask

LITE_weakTask

Functions of the Primitive
Test if a lit is already a member of Oppnet
Join Oppnet
Verify the received command
Switch between lites' regular application and Oppnet application
Send information/data to specified device
Select a task from the task queue to execute
Receive message and save it
Execute application indicated by authorized Oppnet seed or helper
node
Process a message from buffer
Send information/data to specified authorized Oppnet node
Inform a seed that the caller will quit Oppnet
Respond to the request sent from device and express the
willingness to join Oppnet. By accepting this task, the device will
abort previous task
Respond to the request sent from device and express the
willingness to join Oppnet. By accepting this task, the device will
put the task in a queue

Appendix B

MicroOppnet Code

116

117

The code presented in this section refers to the devices in Figure 4.

Oppnet Seed Code

Code on Laptop A :

1. OppComm.java contains classes: OppComm, ClientApp_Copy,

ServerSideApp

2. humaBcastlnject.java contains classes: humaBcastlnject

Note: humaBcastlnject refers to other classes that are used as-is with the TinyOS

operating system found at http://www.tinyos.net/

OppComm.java

package net.tinyos.tools;

import javax.swing.*;
import java.io.*;
import j ava.awt.image,*;
import j avax.imageio.*;
import com.atinav.standardedition.io.*;

// bluetooth related imports
import javax.bluetooth.*;
import j avax.obex.*;

/**
* Originally ised sample code from source below then modified by Zill-E-Huma Kamal
* <p>Title: ServerApp.java</p>
* <p>Description: Sample OBEX Object Push server application using JSR 82 APK/p>
* <p>Copyright: Copyright(c) Atinav Inc. 2002</p>
* (Aversion 1.0
V

class ServerSideApp extends ServerRequestHandler {

public String file_recvd — "";

public ServerSideApp())
}

public void server() throws lOException {
try {

LocalDevice Id = LocalDevice.getLocalDevice(};
System.out.println("BD_Address " + ld.getBluetoothAddress{));
System.out.printIn("Name " + ld.getFriendlyName());

http://www.tinyos.net/

118

System.out.println("Discoverable = " + Id.getDiscoverable());

}catch(Exception e) {
System.out.println("Error getting local device"+e.getMessage());

}

try { // btgoep://[localhost]:UUID[;][name=<service name>]

SessionNotifier sn = {SessionNotifier)Connector.open("btgoep://localhost:1105;name=0BEX"};
ServiceRecord sr - LocalDevice.getLocalDevice().getRecord(sn);
DataElement de = new DataElement(DataElement.DATSEQ);

//Register Push Service attribute
DataElement suppfeature = new DataElement (DataElement „U_INT_1, OxFF) ;
de.addElement(suppfeature);
sr.setAttributeValue(0x0303, de);

System.out.println{"Waiting to process client requests.,.");
sn.acceptAndOpen(this);
System.out.println("out of accept and open");

} catch (IOException ex) {
System.out.println("ERROR: Failed opening connection");
return;

}

try
(
synchronized(this){

this.waitO;
}}catch(Exception e){System.out.println("Error: " + e.toStringO);}

System.out.printlnfend of server method");

}//end of method server()

public int onConnect(HeaderSet request, HeaderSet reply) {
System.out.printIn("\n\nOnConnect\n\n");
//save the request packet details if neccessary
createHeaderSet(};
System.out.println("\n\nend of OnConnect\n\n");
return ResponseCodes.OBEX_HTTP_OK;

}//end of method onConnect

public int. onPut (Operation op) {
System.out.println{"\n\nln OnPut method\n\n");

boolean textFile = false; //false =:> image file to be read and written true=:> text file to
be read and written

try (
InputStream in = op.openlnputStream();
HeaderSet hdr =* op.getReceivedHeaders () ;

File f = new File((String)hdr.getHeader(HeaderSet.NAME});

//System.out.println((String)hdr.getHeader(HeaderSet-NAME));
System.out.println("file name = " + f.getName(});

if(f.getName().toLowerCase().endsWith(".txt"))
textFile = true;

else if
endsWithf".jpg") I If.getName().toLowerCase().endsWith(".jpeg"))

textFile = false;
else
{

System.out.println("The file type to be received is not currently supported.

System.exit(0);
}//file type currently not supported

if(textFile)
{

int data = 0;
System.out.print("**** Data received from client using OBEX Put ****\nReceived

data => ") ;

while((data - in.read(l) !== -1)
{

System.out.print((char)data) ;
file_recvd += (char)data;

(f.getName() .toLowerCase()

Exiting application.");

}//end of while reading all of received file

file:///n/nOnConnect/n/n
file:///n/nend

System.out .println { "\n \n") ;

writeFile{f, file_recvd);

}//read text file

else
{

byte [] imgData = null;

try{
int length = in.read{) « 8;
length 1= in.readO;

if (length <= 0) {
throw new lOException("Can't read a length");

}

// read the image now
imgData = new byte[length];
length « 0;

while (length != imgData.length) {
int n = in.read(imgData, length, imgData.length - length};

if [n — -1) {
throw new IOExceptionC'Can't read a image data");

>
length += n;

)
//in.close();

} catch (lOException e) {
System.err.println{"Can't read from server for: " + e) ;

}

}//if image received

System.out.printIn("received everything....");
in.close();
op.close(};

} catch(lOException ioe){
System.out.println{"ERROR: lOException in onPut in app");
return ResponseCodes.OBEX_HTTP_INTERNAL_ERROR;

t

System.out.println("\n\nend of onPut\n\n");

synchronized(this){
this.notify();

}

return ResponseCodes. OBEX_HTTP__OK;
}//end of method onPut

public static boolean writeFile (File file. String dataString) {

try {
PrintWriter out = new PrintWriter (new BufferedWriter (new FileWriter (file)});
out.print (dataString);
System.out.println("string received written to file");
out.flush {);
out.close ();

}
catch (lOException e) (

return false;
}

return true;
}// end of method writeFile

public static boolean writelmage (File file, ByteArraylnputStream rawImageBytes) (

try{

Bufferedlmage image = ImagelQ.read (rawImageBytes);

ImagelO.write(image, "jpg", file);

}catch(lOException ioe)(System.out.println("Error reading image: "+ioe.toString{));}

return true;
}// end of method writelmage

private byte[] getlmageData (String imgNarae) {

i f (imgName == nul1) {
return null;

}
Inputstream in * getClassO.getResourceAsStream(imgName);

// read image data and create a byte array
byte[] buff => new byte[1024];
ByteArrayOutputStream baos = new ByteArrayOutputStream(1024);

try {
while (true) {

int length = in.read(buff);

if (length = 1) <
break;

}
baos.write(buff, 0, length);

I
} catch (lOException e) {

System.err.println("Can't get image data: imgName—" + imgName + " :"
+ e};

return null;
}
return baos.toByteArray(};

}//end of method getlmageData

)//end of class ServerSideApp

/***********+** E N D 0 F ServerSicleApp FILE******* + ********** + ****************/

/* + t********H*H***H**H***H*u*******H***n*** CLIENT APP COPY FILE

/**
* Originally ised sample code from source below then modified by Zill-E-Huma Kamal
* <p>Title: ClientApp.java</p>
* <p>Description: Sample OBEX Object Push client application using JSR 82 APK/p>
* <p>Copyright: Copyright(c) Atinav Inc. 2002</p>
* Aversion 1.0
*/

class ClientApp__Copy extends ServerRequestHandler implements DiscoveryListener (
private boolean inquiryCompleted - false;
private boolean authenticate = false;
private RemoteDevice[] devices = new RemoteDevice[15];
private static int count ~ 0;
private String connectionURL • null;
private ServiceRecord[] records - null;
private DiscoveryAgent da;

public File fFile;

public ClientApp__Copy () {

)

public String[][] getDevicelnfo(){

System.out.println("What is count? count = " + count);

String[][] pairedFriendlyAndAddress - new String[count+1][count];
System.out.println("What is count? count = " + count);
System.out.printIn("*****Another attempt to get friendly name");

for(int i = 0; i < count; i++J{

try {

pairedFriendlyAndAddress[0] EU = devices Li J.y^tiriendlyName(true);
pairedFriendlyAndAddress[l][i] = devices[i].getBluetoothAddress();

}catch(lOException e)fSystem.out.println(e.getMessage());}

}//end of for loop

System.out.println("Printing list of paired...");

for (int j = 0; j < count; j++)
System.out.println(pairedFriendlyAndAddress[0][j] + "\t" + pairedFriendlyAndAddress[1][j]);

return pairedFriendlyAndAddress;

}//end of method getDevicelnfo

public void client(String url) throws IOException {
HeaderSet hdr * null;

boolean imageFlag = false; //false =:> text file to send true =:> image to
be sent

if (fFile.existsO)
System.out.printlnf"file EXISTS: "+fFile.getName()+" at n+fFile.getPath());

else
{

System.out.println("The file you selected doesnot exist. Quitting application.");
System.exit(0);

}

String filename = fFile.getName{);

System.out.println("Connection URL -> " + url);
if (url == null) {

System.out.println("ERROR: Null URL received, quitting app...");
System.exit(0);

}
ClientSession cs = null;
try {

System.out.println("url = " + url + " => this is the BT address of the machine I am connecting to!i!\n");
cs = (ClientSession)Connector.open(url);
hdr = cs.createHeaderSet();

System.out.println("Invoking obex connect...");

hdr = cs.connect(hdr); //connect first thing client does after server registers its services
internally

if (hdr.getResponseCode() 1= ResponseCodes.OBEX_HTTP_OK} {
System.out.println("ERROR: Connection request failed");
return;

}
} catch (IOException ex) {

System.out.println("ERROR: IOException caught " +ex.toStringO);
return;

}catch (Exception x) {
System.out.println{"ERROR: Exception caught");
x.printStackTrace();
return;

}

System.out.println("getting ready to read file: "+filename);

hdr = cs.createHeaderSet();
hdr.setHeader{HeaderSet.NAME, filename!;

//adding .txt extension made it possible for Nokia 6103 to view/open file at Nokia end
//but still doesnot work for Motorola

String ext = filename.toLowerCase();

if (ext.endsWithC.jpg"))
{

hdr.setHeader(HeaderSet.TYPE, "image/jpeg");
imageFlag = true;

}
else if(ext.endsWith("„txt"))
{

hdr.setHeader(HeaderSet.TYPE, "text/plai n") ;
imageFlag = false;

)
else
(

System.out.println("Currently the file format that you want, to send is not supported.
Application closing...");

return;
}
if(imageFlag)
{

byte[] buffer = null;
try {

Bufferedlmage image = ImagelO.read(fFile);

ByteArrayOutputStream bos = new ByteArrayOutputStream();
ImagelO.write(image, "jpg", bos);
buffer - bos.toByteArray0;

} catch (Exception e) {
e.printStackTrace();

}

hdr.setHeader(HeaderSet.LENGTH, new Long (buffer, length)) ;

Operation po - cs.put(hdr);
Outputstream os = po.openOutputstreamO ?

int of=0;
dot

int le - 64;
if (le+of>buffer.length)

le=buffer.length-of;

os.write(buffer,of, le);
os.flush();
of+=le;

}while(of<buffer.length);

po.close();

}//if image file

else

String msg = readFile(fFile);
Operation op = null;
tryf

op = cs.put(hdr);
System.out.println{"AFTER POT in obex APP");

}catch(Exception ioe){
System.out.println("Failed putting data to the server");
ioe.printStackTrace();
cs.close();
return;

OutputStream out = null;
out = op.openOutputStream();
try{

out.write(msg.getBytes());

}catch{IOException ioe){

System.out.println{"Failed putting data to the server");
op.close();
cs.close();
return;

>

System.out.printlnC'Data successfully pushed to the server");

// closing the streams
out.closeO ;
op.close ();

}//otherwise send text

cs.disconnect(null);

// closing the session
cs.close();

)//end of method client

public String readFile(File file) {

StringBuffer fileBuffer;
String fileString=null;
String line;

try (
FileReader in = new FileReader(file);
LiufferedReader dis - n^w uui^i'uaiwadei (±n
fileBuffer = new StringBuffer{) ;

while ((line = dis.readLine()) != null) (
fileBuffer.append(line + "\n");

in.close();
fileString = fileBuffer.toString();

catch (IOException e) {
return null;

return fileString;
} // end of method readFile

/*
* method client_image extracted from http://www.mobi.le-j.de/snipsnap/space/Fun/Send+PC+screen+to+SU2
* edited by Zill-E-Huma Kamal to fit application purpose
* removed client_image instead used part of it in method client
*/

public int onGet(Operation op) {

try{
//The server has received a GET request for client.
System.out.println("Received a GET request from client "};
HeaderSet hdr = op.getReceivedHeaders(};

System.out.println("Server has received a request for the file "+
(hdr.getHeader(HeaderSet.NAME}).toString!));

String url = "file://name=" +
(hdr.getHeader(HeaderSet-NAME}).toString() 4 ";mode=r";

InputConnection inpcon =
(InputConnection)Connector.open{url);

InputStream in = inpcon.openlnputStreamO ;
byte[] fileAsBytes = new byte[97];
in.read(fileAsBytes);
System.out.println("File read fully into the port.... ") ;
for {int i =0; KfileAsBytes.length; i++)

System.out.print{(char)fileAsBytes[i]);
DataOutputStream out = op.openDataOutputStream!);
out.write(fileAsBytes, 0, fileAsBytes.length);
System,out.println{"\n" + "File written back to client.... ") ;
op.close{);
in.close{);

} catch(IOException e){
System.out.println(e.getMessage());

} catch{ArraylndexOutOfBoundsException e){
System.out.println{e.getMessage{));

}

return ResponseCodes.0BEX_HTTP_OK;

}//end of onGet method

public int onConnect(HeaderSet request, HeaderSet reply) {
//save the request packet details if neccessary
createHeaderSet();
return ResponseCodes.0BEX_HTTP_0K;

}//end of method onConnect

public void searchDevices() throws Exception {
LocalDevice Id = LocalDevice.getLocalDevice();
da = ld.getDiscoveryAgent();

System.out.println("Starting device inquiry..."};
da.startlnquiry(DiscoveryAgent.GIAC, this);

// wait till the device enquiry is completed
synchronized(this){

this.wait{);
}

}//end of method searchDevices

public String connectToBTdevice(String bt_device) throws Exception {
System.out.printlnf'you are connecting to " + bt_device + " from method connectToBTdevice\n");

int[] attrSet - {0,3,4};
UUID[] uuids = new UUIDJ1];
uuids[0] = new UUID("1105", true);
int i, index;

System.out.printIn("\nSearching for Service..An");

ford = 0; i < count; i++) {
if(devices[i].getBluetootnAddress().equals(bt_device)) {

index = i;
break;

}
}//end of for loop
try{

System.out.println{"\nSearching for Service @ " + devices[i].getBluetootnAddress(});
int transactionid = da.searchServices(attrSet, uuids, devices[i], this);
if(transactionid != -1) {

synchronized(this) {
this.wait();

}

http://www.mobi.le-j
file://name=
file:///nSearching

124

}

if(connectionURL != null){
return connectionURL;

)
}catch(Exception e) {

System.out.println(e.getMessage()};
}
return null;

}//end of method conncetToBTDevice

public synchronized void inquiryCompleted(int discType) {
this.notify();

}

public synchronized void deviceDiscovered(RemoteDevice btDevice, DeviceClass cod) {

//trying not to add same device to RemoteDevice list: devices

boolean flag_found = false;

if(count > 0) {

for(int i =0; i < count; i++) {
flag_found - false;

System.out.printlnf*** compare: " + devices[i].getBluetoothAddress() + " with " +
btDevice.getBluetoothAddress(} + "\n");

if(devices[i].getBluetoothAddress().equals(btDevice.getBluetoothAddress ())) {

System, out .println ("**»> same bt device found <<**\n") ;

flag_found = true;

break;

}//end of if

(//end of for
}//if more than one device

//if not already in list add it in list
if(flag_found == false) {

devices[count++] = btDevice;

System.out.println("New Device discovered : "+ btDevice.getBluetoothAddress());

}//if not already found add to list

}//end of method deviceDiscovered

public synchronized void servicesDiscovered(int transID, ServiceRecord[] servRecords) (
if(servRecords.length == 0) {

synchronized(this){
this.notifyO ;

}

}
records = new ServiceRecord[servRecords.length];
records = servRecords;
for(int i=0;i<servRecords.length;i++){

connectionURL = servRecords[i].getConnectionURL(l,true);
System.out.println("Connection url :"+connectionURL);
if{connectionURL != null){

synchronized(this){
this.notifyO ;

}
break;

)
}

}

public synchronized void serviceSearchCompleted(int transID, int respCode))
if(respCode==SERVICE_SEARCH_ERROR)(

System.out.println("\nSERVICE_SEARCH_ERROR\n");
}
if(respCode==SERVICE_SEARCH_COMPLETED){

System.out.println("\nSERVICE_SEARCH_COMPLETED\n");
}
if(respCode==SERVICE_SEARCH_TERMINATED){

System.out.println("\n SERVICE_SEARCH_TERMINATED\n");
}
if(respCode == SERVICE_SEARCH_NO_RECORDS)(

file:///nSERVICE_SEARCH_ERROR/n
file:///nSERVICE_SEARCH_COMPLETED/n

System.out.println("\n SERVICE_SEARCH_NO_RECORDS\n");
}
if(respCode == SERVICE_SEARCH_DEVICE_NOT_REACHABLE){

System.out.println("\n SERVICE_SEARCH_DEVICE_NOT_REACHABLE\n");

synchronized(this){
this.notify();

}
}//end of method serviceSearchCompleted

}//end of class ClientApp_Copy

/****+********+********************* E N D Q F C L I E N T A P p C 0 P Y FILE

/*
* BTGuiFrame_OBEX.Java << frame created in netbeans
* Created on February 6, 2006, 1:32 PM
*/

class OppComm {

private humaBcastlnject bi - new humaBcastlnject();
private ServerSideApp s = new ServerSideAppO ;
private ClientApp_Copy m = new ClientApp_Copy();
private String url="";
private String[][] output;
private String bt_device__address ="";
private boolean smode = true; //false =:> client and true =:> server

public String file_recvd_string="";
public boolean fwd_msg = false;
public boolean bt = false;

public OppComm() {

}//end of constructor

public void serverActionPerformed(java.awt.event.ActionEvent evt) {

System.out.println("acting as server... getting ready to receive files... " } ;

smode = true; //false =:> client and true =:> server

bt = true;

if(smode) f

try {

s.server();

System.out.println("\n\n\n\nout of server and message received is:\n"+s.file_recvd);

System.out.println("############## getting ready to push distress signal to sensornet

String [] cmd = {"forward_msg", s. file__recvd};

fwd_msg = true;
bi.startInjection(cmd);

} catch (IOException ex) {
System.out.println("ERROR: IOException caught " + ex.getMessage());

return;

###############");

>

}//end of iC server mode then call server method

smode = false;

}//end of method serverActionPerformed

public boolean getFwdMsgO {
return fwd msg;

file:///n/n/n/nout

126

public boolean getBT(){
return bt;

}

private void clientActionPerformed(Java.awt.event.ActionEvent evt) {

System.out.println("acting as client... getting ready to send files... "};

smode - false;

}//end of ClientActionPerformed

private void sendActionPerformed(Java.awt.event.ActionEvent evt) {

if(!smode){
try {

m.client(url);
} catch (IOException ex) {

System.out.println("ERROR: IOException caught " + ex.getMessage());
return;

)

smode = false;
}//end of if in client mode

}//end of sendActionPerformed

public void ExitItemActionPerformed(Java.awt.event.ActionEvent evt) {
System.exit(0);

}//end of ExitltemActionPerformed

}//end of class OppComm

humaBcastlnject.iava

/* Modified code provided by Source below. Modified by Zill-E-Huma Kamal*/

// $id: Bcastlnject.java,v 1.6.2.4 2003/08/21 01:15:18 cssharp Exp $

* "Copyright {c} 2000-2003 The Regents of the University of California.
* All rights reserved.

* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without written agreement is
* hereby granted, provided that the above copyright notice, the following
* two paragraphs and the author appear in all copies of this software.

* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
* CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."

* Copyright (c) 2002-2003 Intel Corporation
* All rights reserved. *
* This file is distributed under the terms in the attached INTEL-LICENSE
* file. If you do not find these files, copies can be found by writing to
* Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
* 94704. Attention: Intel License Inquiry.
*/

/**

* @author Robert Szewczyk
*/

package net.tinyos.tools;

import net.tinyos.util.*;
import java.io.*;
import Java.util.Properties;
import net.tinyos.message.*;

public class humaBcastlnject implements MessageListener (
static Properties p = new Properties!);
public static final byte LED_ON = 1;
public static final byte LED_OFF = 2;
public static final byte RADIO_LOUDER = 3;
public static final byte RADIO_QUIETER - 4;
public static final byte FORWARD_MSG = 7;
public static final byte RETRIEVE_MSG = 8;

public boolean read_log_done = false;

//added
public static String message = "";
public boolean ret_msg_done = false;

public static final short TOS_BCAST_ADDR = (short) Oxffff;

public static void usage () {
System. <: i- v. print In ("U::.-ig«: j avn niM". tinyo-: .i-onla, Beast Tni nr-t"+

" <command> [arguments]"};
System.err.println{"\twhere <command> and [arguments] can be one of the
System, err.printIn("\t\tled_on");
System, err. println ("\t\tled__off") ;
System.err.println("\t\tradio_louder");
System.err.println("\t\tradio_quieter");
System.err.println("\t\tforward_msg [message]");
System.err.println("\t\tretrieve_msg ") ;

}

public static byte restoreSequenceNo{) {
try (

mailto:szewczyk@sourceforge.net%22%3eRobert
file:///twhere
file:///t/tled_on
file:///t/tled__off
file:///t/tradio_louder
file:///t/tradio_quieter

128

FilelnputStream fis = new FilelnputStream("beast.properties");
p.load{fis);
byte i = (byte)Integer.parselnt(p.getProperty("sequenceNo", "1")) ;
fis.close (};
return i;

} catch (lOException e) {
p.setPropertyf"sequenceNo", "1");
return 1;

}
}
public static void saveSequenceNo{int i) {

try {
FileOutputStream fos = new FileOutputStream("beast.properties");
p.setProperty{"sequenceNo", Integer.toString(i)J;
p.store(fos, "#Properties for Bcastlnject\n");

> catch (lOException e) {
System.err.println{"Exception while saving sequence number" +

e) ;
e.printStackTrace();

}
}

public static void setMessage(String msg}
{

message = msg;
}

public static void start!njection(String[] argv) throws IOException{

String cmd;
byte sequenceNo = 0;
boolean read_log = false;
boolean ret_msg = false;

if (argv.length < 1) {
usage{);
System.exit(-1);

}

cmd = argv[0];

SimpleCmdMsg packet = new SimpleCmdMsgO ;

sequenceNo = restoreSequenceNo();
packet.set_seqno(sequenceNo);
packet. set_hop__count ((short) 0) ;
packet.set_source(0);

if (cmd.equals("led_on")) {
packet.set_action{LED_ON);

} else if (cmd.equals ("led___of f")) {
packet. set_jaction(LED_OFF) ;

} else if (cmd.equals("radio_louder")) {
packet.set_action(RADIO_LOUDER);

} else if (cmd.equals{"radio_quieter")) {
packet.set_action{RADIO_QUIETER);

}
//added
else if (cmd.equals ("retrieve__msg")) {

packet.set_action(RETRIEVE_MSG};
ret__msg = true;

} else if (cmd.equals("forward_msg")) {
System.err.println("forward message");
packet.set_action(FORWARD_MSG);
setMessage(argv[l]);
packet. setString___args_untyped_args (message) ;
System.err.println("set the untyped args. hope this works, with message: " + message);
System.err.println("\n\nMessage going out is: \n"+packet);
System.err.println("\n\nMessage going out is: \n"+packet.getString_args_untyped_args{)};

} else {
usage();
System.exit(-1);

}

try {
System.err.print("Sending payload: ") ;

for (int i = 0; i < packet.dataLength(); i++) {
System.err.print(Integer.toHexString{packet.dataGet()[i] & 0xff)+ " ") ;

}
System.err.println();

MotelF mote = new MotelF(PrintStreamKessenger.err);

// Need to wait for a retrieve_msg message to come back

file:///n/nMessage
file:///n/nMessage

humaBcastlnject oc = null;
if !ret_msg) {

oc = new humaBcastlnject ();
mote.registerListener(new SimpleCmdMsg (), oc);

}

mote.send(TOS_BCAST_ADDR, packet);

if (ret_msg) {
synchronized (oc) {

if (oc.ret_msg_done — false) {
System.err.printing"Waiting for response to ret_msg...");
oc.wait(10000};

}
if (oc.ret_msg_done == false) {

System.err.println("Warning: Timed out waiting for response to
ret_msg command!");

>
}

}

saveSequenceNo(sequenceNo+1);

} catch(Exception e) {
e.printStackTrace();

}

}

public void messageReceived(int dest_addr. Message m) {

SimpleCmdMsg lm = (SimpleCmdMsg) m;

System.err.println("Received a message: ,,+lm+"\n\nimp area:
"+lm.getstring_args_untyped_args());

synchronized (this) {
ret_msg_done = true;
this.notifyAHO ;

)
}//end of messageReceived

}//end of humaBcastlnject

130

Code on Sensomet base station BS_1 is the TinyOS application TOSBase and can

be found at http://www.tinyos.net/tinyos-Lx/apps/TOSBase/

Oppnet helper code

Code on Wireless Sensor Network nodes contains two TinyOS applications

SimpleCmd and Beast, which have been modified by Zill-E-Huma Kamal to fit our

purpose. This contains: Bcast.nc, BcastM.nc, ProcessCmd.nc, SimpleCmd.nc,

SimpleCmdM.nc and SimpleCmdMsg.h

Bcast.nc

// $Id: Beast.nc,v 1.2.14.4 2003/08/26 09:08:06 cssharp Exp $

/*
* "Copyright (c} 2000-2003 The Regents of the University of California.
* All rights reserved.

* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without written agreement is
* hereby granted, provided that the above copyright notice, the following
* two paragraphs and the author appear in all copies of this software.

* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
* CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."

* Copyright (c) 2002-2003 Intel Corporation
* All rights reserved.

* This file is distributed under the terms in the attached INTEL-LICENSE
* file. If you do not find these files, copies can be found by writing to
* Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
* 94704. Attention: Intel License Inquiry.
*/
/*
* Author: Alec Woo, David Culler, Robert Szewczyk, Su Ping

* ?\Id$
*/

/**
* ©author Alec Woo
* ©author David Culler
* ©author Robert Szewczyk
* ©author Su Ping
*/

includes SimpleCmdMsg;

/**

* This configuration module wires BcastM module to components:

http://www.tinyos.net/tinyos-Lx/apps/TOSBase/

131

* Main, SimpleCmd, GenericComm and LedsC.
*/

configuration Beast { }
implementation {

components Main, BcastM, SimpleCmd, GenericComm as Comm, LedsC;

Main.StdControl -> BcastM;

BcastM.Leds -> LedsC;

BcastM.ProcessCmd-> SimpleCmd.ProcessCmd;

BcastM.CommControl -> Comm;
BcastM.SendCmdMsg -> Comm.SendMsg[AM_SIMPLECMDMSG] ;
BcastM.ReceiveOndMsg -> Comm.ReceiveMsg[AM__SlMPLECMDMSG];

}

BcastM.nc

//modified by Zill-E-Huma Kamal

// Sid: BcastM.nc,v X.2.14.3 2003/08/26 09:08:06 cssharp Exp $
/*
* "Copyright (c) 2000-2003 The Regents of the University of California,
* All rights reserved.

* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without written agreement is
* hereby granted, provided that the above copyright notice, the following
* two paragraphs and the author appear in all copies of this software.

* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
* CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."

* Copyright (c) 2002-2003 Intel Corporation
* All rights reserved.

* This file is distributed under the terms in the attached INTEL-LICENSE
* file. If you do not find these files, copies can be found by writing to
* Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
* 94704. Attention: Intel License Inquiry.
*/
/*
* Author: Alec Woo, David Culler, Robert Szewczyk, Su Ping
*
* $\IdS
*/
/**
* BcastM is a Tinyos application module.

* When a message with AM message type 8 is received from underlying
* Comm layer, this module checks if it has seen the message before and
* drops the message if so. Otherwise, it calls the local ProcessCmd
* interface to execute the command in the message.
* If the command is successful, it broadcasts the original message over
* RF link.
* @author Alec Woo
* Sauthor David Culler
* @author Robert Szewczyk
* @author Su Ping
**/

includes SimpleCmdMsg;

module BcastM (
provides interface StdControl;
uses {

interface ProcessCmd;
interface Leds;
interface Pot;
interface ReceiveMsg as ReceiveCmdMsg;
interface SendMsg as SendCmdMsg;
interface StdControl as CommControl;

}
}

/* Module Implementation */

implementation

{
TOS_MsgPtr msg;
int8_t bcast_pending;
TOS_Msg buf;
int8_t lastSeqno;

/**
* Task: Broadcast a message
* Sreturn Always returns <code>SUCCESS</code>
**/

task void forwarder!) {

call SendCmdMsg.send(TOS_BCAST_ADDR, sizeof(struct SimpleCmdMsg), msg
\
/* Reset the bcast_pending flag to 0 if pmsg was sent successfully
* @return Returns the value of 'status'
**/

event result_t SendCmdMsg.sendDone(TOS_MsgPtr pmsg, result_t status) {
if (status == SUCCESS) bcast_pending = 0;
return status;

}

/**
* Initalize the application.
* @return A boolean indicating success or failure of the application

* initialization.
**/

command result_t StdControl.init() {
msg - sbuf;
bcast_pending = 0;
lastSeqno=0;

return (call CommControl.init());
}
/** start generic communication interface **/
command result_t StdControl.start(){
return (call CommControl.start());

/** stop generic communication interface **/
command result_t StdControl.stop(){

return (call CommControl.stop £));
}

/**
* A module-scoped inline function.
* Decide whether a received message is new: its sequence number has to
* within 127 of the previous sequence number. Also drops the message
* if the module is still dealing with the previous broadcast.
**/
inline char is_new_msg(struct SimpleCmdMsg *bmsg) {
if (bcast_pending) return 0;
return (((bmsg->seqno - lastSeqno)>0) I I {(bmsg->seqno+127)<lastSeqno)

}

/**
* A module-scoped inline function. Updates the last sequence number
* and set the broadcast sending flag.
* + /

inline void remember_msg(struct SimpleCmdMsg *bmsg) {
lastSeqno - bmsg->seqno;

bcast_pending = 1;
}

/**
* Handles the AM type 8 receiving event signaled from ReceiveMsg.
* Checks if this is a new message and calls ProcessCmd.execute()
* if so.
* Oreturn A TOS_MsgPtr.
**/

event TOS_MsgPtr ReceiveCmdMsg.receive(TOS_MsgPtr pmsg){
TOS_MsgPtr ret = msg;
result_t retval;
struct SimpleCmdMsg *data= (struct SimpleCmdMsg *)pmsg->data;

// Check if this is a new broadcast message
//call Leds.greenToggle();
if (is_new_msg(data)) {
remember_msg(data);
retval - call ProcessCmd.execute(pmsg) ;

// Return a message buffer to the lower levels, and hold on to the
// current buffer
ret = msg;
m^y - pm:;y;

}
return ret;

}

/**
* Handles the ProcessCmd.done event signaled by ProcessCmd.
* Once command execution has completed, forward the message.
* Sreturn Always returns <code>SUCCESS</code>
**/

event result_t ProcessCmd.done(TOSJMsgPtr pmsg, result_t status) {

134

msg = pmsg;
//call Leds.redToggle();
if (status) {
post forwarder();

} else {
bcast_pending = 0;

}

return SUCCESS;
)
II end of implementation

ProcessCmd.nc

// Sid: ProcessCmd.nc,v 1.2.14.2 2003/08/18 22:09:36 cssharp Exp $

/*
* "Copyright (c) 2000-2003 The Regents of the University of California.
* All rights reserved.

* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without written agreement is
* hereby granted, provided that the above copyright notice, the following
* two paragraphs and the author appear in all copies of this software.

* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
* CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."

* Copyright (c) 2002-2003 Intel Corporation
* All rights reserved.

* This file is distributed under the terms in the attached INTEL-LICENSE
* file. If you do not find these files, copies can be found by writing to
* Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
* 94704. Attention: Intel License Inquiry.
*/

includes AM;

/**
* This interface process a
* command and is capable of the hnadling of command
* led_on, led__off, radio_louder and radio_quieter
*/

interface ProcessCmd
{
/**
* This command extracts the command from the message 'pmsg' and
* executes the command.
* @return Command execution result.
*/
command result_t execute(TOS_MsgPtr pmsg);

/**
* Indicate that the command contained in 'pmsg' has finished executing.
* @param status The status of the command completion.
* @return Always returns SUCCESS.
*/

event result_t done(TOS_MsgPtr pmsg, result_t status);
>

SimpleCmd.nc

// Sid: SimpleCmd.nc,v 1.2.14.2 2003/08/18 22:09:36 cssharp Exp $

/*
* "Copyright (c) 2000-2003 The Regents of the University of California.
* All rights reserved.

* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without written agreement is
* hereby granted, provided that the above copyright notice, the following
* two paragraphs and the author appear in all copies of this software.

* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
* CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."

* Copyright (c) 2002-2003 Intel Corporation
* All rights reserved.

* This file is distributed under the terms in the attached INTEL-LICENSE
* file. If you do not find these files, copies can be found by writing to
* Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
* 94704. Attention: Intel License Inquiry.
*/
/**
* SimpleCmd is a TinyOS configuration module.
* It defines the wiring used by SimpleCmdM module.
* It is wired to Main module's StdControl interface.
* It components GenericComm's CommControl and ReceiveMsg interfaces
* to receive AM_SIMPLECMDMSG from base station. It excecutes
* a command using either Pot or Leds interface depending as to
* the command type.
*/

includes SimpleCmdMsg;

configuration SimpleCmd {
provides interface ProcessCmd;

}
implementation {
components Main, SimpleCmdM, GenericComm as Comm, PotC, LedsC;

Main.StdControl -> SimpleCmdM;
SimpleCmdM.Leds -> LedsC;
ProcessCmd = SimpleCmdM.ProcessCmd;
SimpleCmdM.CommControl -> Comm;
SimpleCmdM.ReceiveCmdMsg -> Comm.ReceiveMsg[AM_SIMPLECMDMSG];

SimpleCmdM.Pot -> PotC;
>

SimpleCmdM.nc

// $Id: SimpleCmdM.nc,v 1.2.14.3 2003/08/26 09:08:06 cssharp Exp $

/*
* "Copyright (c) 2000-2003 The Regents of the University of California.
* All rights reserved. *
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without written agreement is
* hereby granted, provided that the above copyright notice, the following
* two paragraphs and the author appear in all copies of this software.

* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
* CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."

* Copyright (c) 2002-2003 Intel Corporation
* All rights reserved.

* This file is distributed under the terms in the attached INTEL-LICENSE
* file. If you do not find these files, copies can be found by writing to
* Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
* 94704. Attention: Intel License Inquiry.
*/

/ +
* Author: Robert Szewczyk, Su Ping

* \Id
*/

/**
* SimpleCmdM is a tiny OS application module.
* This module demonstrates a simple command interpreter for the TinyOS
* tutorial. The module receives a command message from the radio, which
* is passed to the ProcessCmd interface for processing. A task is posted
* to process the command. The command packet contains a one-byte
* 'action' field specifying which action to take; as a simple version,
* this module can only interpret the follwoing commands:
* Led_on (action = 1), Led_off (2), radio_quieter (3), and radio_louder (4).

* This module also implements the ProcessCmd interface.
* gauthor Robert Szewczyk
* @author Su Ping
**/

includes SimpleCmdMsg;

module SimpleCmdM {
provides {

interface StdControl;
interface ProcessCmd;

}

uses {
interface
interface
interface
interface

}
}

/*
* Module Implementation
V

implementation
{

// module scoped variables
TOS_MsgPtr msg;
TOS_MsgPtr imp_msg;
int8_t pending;
TOS_Msg buf;
int8_t imp_msg_recvd;
int8 t sent back; //0 means not sent back yet 1 means sent back

Leds;
Pot;
ReceiveMsg as ReceiveCmdMsg;
StdControl as CommControl;

* This task evaluates a command and execute it if it is a supported
* command.The protocol for the command interpreter is that
* it operates on the message and returns a (potentially modified)
* message to the calling layer, as well a status word for whether
* the message should be futher processed.

* ^return Return: None
**/

task void cmdlnterpret() {
struct SimpleCmdMsg * cmd = (struct SimpleCmdMsg *) msg->data;
// do local packet modifications: update the hop count and packet source
cmd->hop_count++;
cmd->source = TOS_LOCAL_ADDRESS;

// Interpret the command: Display the level on red and green led
//this tells whether msg was received during Beast from other nodes or from TOSBase

if (cmd->hop_count & Oxl)
cal1 Leds.greenOn(};

else
call Leds.greenOff{);

if (cmd->hop_count & 0x2)
call Leds.redOn(};

else
call Leds.redOff{);

// Execute the command
switch (cmd->action) {
case LED_ON:

call Leds.yellowOnO ;
break;

case LED_OFF:
call Leds.yellowOff();
break;

case RADIO_QUIETER:
call Pot.increase 0;
break;

case RADIO_LOUDER:
call Pot.decrease{);
break;

case FORWAKD_MSG:
call Leds.redOn();
call Leds.yellowOn();
call Leds.greenOn();
imp_msg_recvd = 1;
imp_msg = msg;
break;

case RETRIEVE_MSG:
call Leds.redOff£);
call Leds.yellowOff();
call Leds.greenOff();
sent_back = 1; //going to send back
break;

}
pending =0;
if(imp_msg_recvd == 1 && sent_back == 1){ //no impt msg received yet

imp_msg_recvd = 0;
sent_back = 0;
signal ProcessCmd.done(imp_msg, SUCCESS);
}

else //imp msg was previously received >
signal ProcessCmd.done(msg, SUCCESS);

}

/**
* Initialization for the application:
* 1. Initialize module static variables
* 2. Initialize communication layer
* @return Returns <code>SUCCESS</code> or <code>FAILED</code>
**/

command result_t StdControl.init() {
msg = fibuf;
pending = 0;
imp_msg_recvd = 0; //havent received impt msg yet
sent__back = 0;
return (call CommControl.init());

}

* start communication layer **/
command result t StdControl.start(){

return {call CommControl.start());
}

/** stop communication layer **/
command result_t StdControl.stop(U
return {call CommControl.Stop());

}

/**
* Posts the cmdlnterpret£} task to handle the recieved command.
* Sreturn Always returns <code>SUCCESS</code>
**/

command result_t ProcessCmd.execute(TOS_MsgPtr pmsg) {
pending =1;
msg = pmsg;
post cmdlnterpret{);
return SUCCESS;

/**
* Called upon message reception and invokes the ProcessCmd.execute()
* command.
* @return Returns a pointer to a TOS_Msg buffer
**/

event TOS_MsgPtr ReceiveCmdMsg.receive(TOS_MsgPtr pmsg){
TOS_MsgPtr ret - msg;
result_t retval;
//call Leds.greenToggle{);
retval = call ProcessCmd.execute(pmsg) ;
if (retval==SUCCESS) {
return ret;

} else {
return pmsg;

}

/**
* Called upon completion of command execution.
* Sreturn Always returns <code>SUCCESS</code>
**/

default event result_t ProcessCmd.done(TOS_MsgPtr pmsg, result_t status) f
return status;

}

} // end of implementation

SimpleCmdMsg.h

// $Id: SimpleCmdMsg.h,v 1.1.2.3 2003/08/23 19:43:39 hohltb Exp $

/*
* "Copyright (c) 2000-2003 The Regents of the University of California.
* All rights reserved.

* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without written agreement is
* hereby granted, provided that the above copyright notice, the following
* two paragraphs and the author appear in all copies of this software.

* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
* CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."

* Copyright (c) 2002-2003 Intel Corporation
* All rights reserved.

* This file is distributed under the terms in the attached INTEL-LICENSE
* file. If you do not find these files, copies can be found by writing to
* Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
* 94704. Attention: Intel License Inquiry.
*/

/*
* File Name: SimpleCmd.h

* Description:
* This header file defines the AM_SIMPLECMDMSG and AM_LOGMSG message
* types for the SimpleCmd and SenseLightToLog applications.
*/

enum {
AM_SIMPLECMDMSG - 8,
//AM_LOGMSG-9
};

enum (
LED__ON = 1,
LED_OFF = 2,
RADIO_LOUDER = 3,
RADIO_QUIETER = 4,
FORWARD_MSG = 7, //added
RETRIEVE_MSG = 8 //added

};

typedef struct {
int nsamples;
uint32_t interval;

} start_sense__args;

typedef struct {
uintl6_t destaddr;

} read_log_args;

// SimpleCmd message structure
typedef struct SimpleCmdMsg {

int8_t seqno;
int8__t action;
uintl6_t source;
uint8__t hop_count;
union {

r,tn rt_sense_args '^.y riT^ <"
read_log_args rl_args;
uint8_t untyped___args [0] ;

} args;
} SimpleCmdMsg;

141

Code on B S 2 is the TinyOS application TOSbase that can be found at

http://www.tinyos.net/tinyos-1 .x/apps/TOSBase/

http://www.tinyos.net/tinyos-

Code for Remote Java Server

import j ava.io.*;
import java.net.*;

class TCPServer
{

public static void main(String argv[]) throws Exception
{

String clientSentence, capitalizedSentence;

ServerSocket welcomeSocket;

InetAddress local = InetAddress.getLocalHost();

String ip = local.getHostAddress();

System, out .print In ("Server has IP address: "+ ip +"\t nd port: "-t-welcomeSocket.getLocalPort ());

System.out.println("Waiting for request from client ") ;

Socket connectionSocket = welcomeSocket.accept{);

System.out.println("accepted connection\n");

BufferedReader inFromClient = new BufferedReader(new InputStreamReader
(connectionSocket.getInputstream{)});

DataOutputStream outToClient = new DataOutputStream(connectionSocket.getOutputStream{));

clientSentence = inFromClient.readLine();

System.out.println("received client message:\t"+clientSentence);
welcomeSocket.close();

}//end of main

}//end of class TCPServer

http://java.net.*

143

Code on the Responder cell phone

1. Contains: TCP ClientMIDlet and TCP Client

TCP ClientMIDlet.iava

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.microedition.io.*;
import java.io.*;

public class TCP_ClientMIDlet extends MIDlet implements CommandListener {

Display display = null;

// form fields
TextField toField = null;
TextField msgField = null;

Form form;

static final Command sendCommand = new Command("send", Command.OK, 2);
static final Command clearCommand = new Command("clear", Command.STOP, 3);

String to;
String msg;

public TCP_ClientMIDlet(} {

display = Display.getDisplay(this);
form = new Formf'Server Address and Message");
toField = new TextFieldC'Server Address:", "", 25, TextField.ANY) ;
msgField = new TextField{"Message:", "", 90, TextField.ANY);

public void startAppf) throws MIDletStateChangeException {

form.append(toField);
form.append(msgField);

form.addCommand(clearCommand);
form.addCommand(sendCommand);
form.setCommandListener(this);
display.setCurrent (form);

public void pauseAppO {
}

public void destroyApp(boolean unconditional) {
notifyDestroyedO ;

}

public void commandAction(Command c, Displayable d) {
String label = c.getLabel{);
if(label.equals("clear")) {

destroyApp(true);
}
else if (label.equals("send")} {

to = toField.getStringf);
msg = msgField.getStringO ;
TCP_Client client = new TCP_Client(this.to, msg);

client.start(};

}//end of if-else

}//end of method commandAction

>//end of class TCP_ClientMIDlet

TCP Clientiava

144

import javax.microedition.midlet.*;
import javax.microedition.io.*;
import javax.microedition.Icdui.*;
import java.io.*;
import java.util.*;

public class TCP_Client implements Runnable {

private TCP_ClientMIDlet parent;
private Display display;
private Form f;
private Stringltem si;
private Stringltem sil;
private SocketConnection sc;
private InputStream is;
private OutputStream os;
private String serverAddress;
private String to, msg;
static final Command exitCommand = new Command("exit". Command.STOP, 3);

public TCP_Client (TCP_ClientMIDlet m. String to. String msg) {

parent = m;

this.to = to;
this.msg = msg;
serverAddress = to;

display = Display.getDisplay(parent);

f = new Form("TCP Client");
sil = new Stringltem("Connecting to:", "\n"+serverAddress+" with message: "+msg);
si = new Stringltem("Status:" , " ") ;

f.append(sil);
f.append(si);
display.setCurrent(f);

}

public void start {) {
Thread t = new Thread(this);
t.start ();

}

public void run() {

try {
si.setText("Opening connection...");
sc = (SocketConnection) Connector.open("socket://"+serverAddress+":9999");
//port 9999 is open as per TCPServer programs on Linux in ITIA

si.setText("Opened connection...");
is = sc.openlnputStream();
si.setText("Opened input stream...");
os = sc.openOutputStream{);
si.setText("Opened output stream.... and writing bytes..."};
os.write((msg+"\r\n").getBytes0); // message body
si.setText("Sent Message");

} catch(IOException e) {
Alert a = new Alert
("TCP^Client", "Cannot connect to server" + serverAddress + "\nPing the server to make sure it is running.,

null, AlertType.ERROR);
a.setTimeout(Alert.FOREVER);
display.setCurrent(a);

) finally {
try {

if(is != null) {
is.close();

1
if(os != null) {

o s . c l o s e O ;
)
i f (s c ! - n u l l) {

sc.close();
)

} catch(IOException e) {
e.printstackTrace();

}
}

}

public void commandAction(Command c, Displayable s) {
if (c -- Alert.DISMISS_COMMAND) {

file:///nPing

145

parent„notifyDestroyed() ;
parent.destroyApp(true);

}//end of class

Appendix C

ILP Formulation Code

146

147

ILP Formulation code contains the following classes: Process.java,

Processlnput.java, LpSolvelnput.java and LagrangeRelaxations.java.

Process.java

Driver class - for preprocessing for lp solve
- also finds lagrange multipliers

import lpsolve.*;

public class Process
{

static String inputFileName;
static String debugFileName;
static String lp_solveOutputFileName;
static String lr__outputFileName;

public static void main(String args[])
i

//scenario 2
inputFileName = "b_6n_3s.txt";
debugFileName = "b_6n_3s_debug.txt";
lp_solveOutputFileName = "b_6n_3s_lp.lp";
lr_outputFileName = "b_6n_3s_lr.txt";

//process input

long startProcessInput = System.currentTimeMillis();

Processlnput pi = new Processlnput(inputFileName, debugFileName);
pi.start_processing();

/1000F);

long elapsedTimeMillis_processInput = System.currentTimeMillis()-startProcessInput;
System.out.println("\n\nTime elapsed(s) to process input: " + (float)elapsedTimeMillis_processInput

//ILP formulation

long startLpConstraint = System.currentTimeMillis();

LpSolvelnput lpi = new LpSolvelnput(pi, lp_solveOutputFileName);

lpi.lp_constraintFormulation();

long elapsedTimeMillis_LpConstraint = System.currentTimeMillis{)-startLpConstraint;
System.out.println("\n\nTime elapsed(s) to write constraints to lp file: " +

(float)elapsedTimeMillis_LpConstraint/1000F};

//Lagrange Relaxations

long startLR = System.currentTimeMillis();

LagrangeRelaxations lr = new LagrangeRelaxations(lp_solveOutputFileName, lr_outputFileName, pi,
lpi);

lr.beginLagrangeRelaxations();

long elapsedTimeMillis_LR = System.currentTimeMillis{)-startLR;
System.out.printIn("\n\nTime elapsed(s) for lagrange relaxations: " +

(float)elapsedTimeMillis_LR/1000F);

}//end of main

}//end of class Process

file:///n/nTime

148

Processlnput.java

This class reads the input and initializes matrices R, L, C, T, vector b, and
scalar d

as defined in SLP problem description

import Java.io.*;

class ProcessInput
{

static String delayConst = "DelayTable.txt";

static String inputFileName;
static String debugFileName;
static int pathCount = 0;

/************** ******************************** N E T W 0RK GIVEN

public static int n, s, p, e, qlnterval;
public static int L[][]; //path-link matrix (0,1} p by e dimensional
public static int b[]; //link bandwidth vector {integers} e dimensional
public static int C[}[]; //cost matrix (integers} n by s dimensional
public static int d; //discount (double/integer}
public static int R[](][]; //routing matrix {0,1} n by n by

p dimensional
//throughput matrix {integers} n by s dimensional
//delay req. matrix n by s
//delay lookup table 10 by 21

public static int T[][]
public static int D[][]
public static int Q[][]

for bandwidth 100-1000 (in intervals of 50)
public static int numRowDelayTable = 10;
public static int numColDelayTable = 21;
public static int bandwidthlnterval = 100;

public Processlnput(String inputFile, String debugFile)
{

inputFileName = inputFile;
debugFileName = debugFile;

}//overloadd constructor

public static void start_processing()
{

System.out.println("processing network information given in file: " + inputFileName);

readFileO ;

readDelayConstants() ;

inputEcho();

}//end of start_processing

public static void readDelayConstants()
{

try
i

BufferedReader br = new BufferedReader(new FileReader(delayConst));

String sin;

//initialize Q
Q = new int[numRowDelayTable][numColDelayTable];

for(int i = 0; i < numRowDelayTable; i++)
for(int j = 0; j < numColDelayTable; j++)

Q[i][j] - 0;

while({sin = br.readLine()) != null)
{

StringU sub = sin.splitf" = ") ;

if(sub[0].equals("max load"))
{

149

setQ(sub[l], sub[2]); //make
setQ robust enough

}
else if{sub[0].equals("q"))

qlnterval = Integer.parselnt(sub[l]);
else

System.out.printlnfsub[0] + " not valid input in inputfile")»

}//end of while

br.close();

}catch(IOException ioe)
i

System.out .println("error in method readDelayConstants in class Processlnput: "-*-
ioe.getMessage());

}//end of ioexception catch

}//end of readDelayConstants

public static void readFile()
{

try

{

BufferedReader br = new BufferedReader(new FileReader{inputFileName));

String sin;

while({sin = br.readLine()) != null)
{

StringL] sub = sin.split{" = ") ;

if(sub[0].equals("n"))
n = Integer.parselnt(sub[1]);

else if(sub[0].equals("s"))
s = Integer.parselnt(sub[l]);

else if(sub[0].equals("p"))
p = Integer.parselnt(sub[l]);

else if(sub[0].equals{"e"))
e - Integer.parselnt(sub[l]);

else if(sublO].equals("L"))
//set pathlink matrix
setL(sub[l]);

else if(sub[0].equals("b"))
//set bandwidth vector
setb(sub[l]);

else if(sub[0].equals("C"))
//set cost matrix
setC{sub[l]);

else if(sub[0].equals{"d"))
d = Integer.parselnt(sub[l]);

else if(sub[0].equals("R")}
//set routing matrix
setR(sub[l]);

else if(sub[0].equals("T")}
//set throughput
setT(sub[l]);

else if(sub[0].equals("D"))
setD(sub[l]);

else
System.out.println(sub[0] + " not valid input in inputfile");

}//end of while

//once all matrices have been initialized update the number of paths, and edges
p - (2*p) + n;

//keep track of org e, i.e. w/o loops
// org_e * e;

e - e + n;

br.close();

}catch(IOException ioe)
{

System.out.println("error in method readFile in class Processlnput: "+ ioe.getMessage());
}//end of ioexception catch

}//end of readFile()

public static void setT(String sin}
i

T = new int[n][s];

for(int i = 0; i < n; i++)
for(int j = 0; j < s; j++}

T[i] [j] = 0;

String[] row = sin.split (";");

forfint i = 0; i < row.length; i++)
{

String[] cost = row[i].split(",");

forfint j = 0; j < cost.length; j++)

T [i] [j] = Integer.parseInt(cost[j]);

}//end of for

//print2DMatrix(System.out, T, n, s);

}//end of setT

public static void setD(String sin)
{

D = new int[n][s];

for (int i = 0; i < n; i++)
forfint j = 0; j < s; j++)

D[i][j] = 0;

String[] row = sin.split(";");

for(int i = 0; i < row.length; i++)
{

String[] cost = row[i].split(",");

for(int j = 0; j < cost.length; j++)

D[i][j] = Integer.parselnt(cost[j]);

}//end of for

//print2DMatriK(System.out, D, n, s);

}//end of setD

public static void setC(String sin)
{

C = new i n t [n] [s j ;

forfint i = 0; i < n; i++)
forfint j = 0; j < s; j++)

C[i][j] - 0;

String[] row = s i n . s p l i t (" ; ") ;

for(int i = 0; i < row.length; i++)
{

String[] cost = row[i].split(",");

forfint j = 0; j < cost.length; j++)

C[i] [j] = Integer.parselnt(cost[j]);

}//end of for

//print2DMatrix(System.out, C, n, s);

}//end of setC

public static void setb(String sin)
{

b = new int[e+n];

for (int i = 0; i < e+n; i++)
b[i] - 0;

String[] bndwd = sin.split(","};

forfint i = 0; i < bndwd.length; i++)
b[i] = Integer.parselnt{bndwd[i]);

//zero cycle loops for each node
forfint i = e; i < e+n; i++)

b[i] = 1000;

//printVector(System.out, b, e);

}//end of setb

public static void setQ(String r, String sin}
{

int row = ((Integer.parselnt(r))/bandwidthlnterval)-1;

String[] queDelay = sin.split{",");

for(int i = 0; i < queDelay.length; i++)
Gfrow][i] = Integer.parselnt(queDelay[i]);

}//end of overloaded setQ

public static void setR(String sin)
{

int numCol = 2*p+n;

R = new int[n][n][numCol];

for(int i = 0; i < n; i++)

for(int j = 0; j < n; j++)
for(int k = 0; k < numCol; k++)

R[i] [j] [k] = 0;
String[] chunks = sin.split{";");

int pathCount = p;

for(int i = 0; i < chunks.length; i++)
<

Stringt] pair = chunks[i].split(":");

//getting row and col indices
String!] r_c = pair[0].split("-");
int row = Integer.parselnt(r_c[0]);
int col = Integer.parselnt(r_c[1]);

//getting paths used
String[] paths = pair[1].split(",");

for (int k = 0; k < paths.length; k++)
{

R[row-l][col-1][Integer.parselnt(paths[k])-l] = 1;
R[col-*l][row-1][pathCount++] = 1;

}

}//end of i

//add the zero cycle loops on each node
for(int i ~ 0, m = pathCount; i < n; i++, m++)

R[i][i] [m] - 1;

}//end of setR

public static void setL(String sin)
{

L = new int[£2*p)+n][e+n];

fo r (i n t i = 0; i < (2*p)+n; i++)
for (i n t j = 0; j < e+n; j++}

L [i] [j] - 0;

String[] row = sin.split{";");

for(int i = 0,LpathCount = p; i < row.length; i++,LpathCount++)
{

String[] edges = row[i].split(",");

for(int j = 0 ; j < edges.length; j++)
{

L[i][Integer.parselnt(edges[j])-!]=!;
L[LpathCount][Integer.parselnt(edges[j])-13 = 1;

}

}//end of for

for(int i = (2*p), j = e; i < (2*p)+n &s j < e+n; i++, j++)
L[i][j] = 1;

//print2DMatrix{Systeni.out, L, p, e) ;

}//end of setL

public static void printVector(PrintStream w, int M[], int 1)

152

w.println("= {");

forfint i = 0; i < 1; i++)
{

w.print(M[i]);
if (i != 1-1)

w.print(" ") ;
else

w.println () ;
}

w.println("}");

}//end of printVector

public static void printVector(PrintWriter w, int M[], int 1)
{

w.printIn("= {");

forfint i = 0; i < 1; i++)
{

w.print(Mti]);
if(i !~ 1-1}

w.print(" ") ;
else

w.println ();
}

w.println("}");

}//end of printVector

public static void print2DMatrix(PrintStream w, int M[][], int row, int col)
{

w.println("= {");

for(int i = 0; i < row; i++)
{

for (int j=0; j < col; j++)
{

w.print(M[i] (j]>;
if(j != col-l)

w.print(" ") ;
else

w.println0;
}

}

w.println ("}");

}//end of print2DMatrix

public static void print2DMatrix(PrintWriter w, int M[][], int row, int col)
{

w.println("= {");

for(int i = 0; i < row; i++)
{

forfint j=0; j < col; j-H-)
{

w.print(M[i] [j]) ;
i f (j != col-l)

w.print (" ") ;
e lse

w . p r i n t l n 0 :
}

if ((i+l)%10 == 0)
w.pr int ln(" \ni = "+i+"\n");

}

w.printlnC'} ") ;

}/ /ond of tJfcin-t2EMatri:K

public s t a t i c void print3DMatrix (PrintStream v/, in t Mt][] [] , int row, in t col, int pg)
(

w.println("= {");

for (int i = 0; i < row; i++)
{

forfint 3=0; j < col; j++)
{

w.pr int ln!" \nsrc-dest pair : " + i + " , " + j + " : ") ;

file:///nsrc-dest

f o r (i n t k = 0; k < pg ; k++)
{

w . p r i n t (M [i J [j] [k]) ;

i f (j != pg-1)
w . p r i n t (" ") ;

e l s e

w . p r i n t l n () ;

}//end of k

}//end of j

}//end of i

w . p r i n t l n C } ") ;

f//end of print3DMatrix

public static void print3DMatrix{PrintWriter w, int. M[] [] [], int row, int. col, int pg)
i

w.printlnC- {") ;

for (int i = 0; i < row; i++)
{

for {int. j=0; j < col; j++}
{

w.print("\nsrc-dest pair: " + i + "," + j + ":\n");

for(int k = 0; k < pg; k++)
{

w.print(M[l][j][k]);
if(j != pg-1)

w.print C ") ;
else

w.println();

}//end of k

}//end of j

}//end of i

w.printlnC'}"};

}//end of print3DMatrix

public static void inputEcho()
{

try{

System.out.printlnf'debug tile: " + debugFileNarae);

PrintWriter pw = new PrintWriter(new FileWriter(debugFileName));

pw.println(" n =
pw.println(" s =
pw.println(" p =
pw.println(" e =
pw.println(" d =

pw.println(" L • ") ;
print2DMatrix(pw, L, p, e);

pw.println(" b = ") ;
printVector(pw, b, e);

pw.printlnf" C = ") ;
print2DMatrix(pw, C, n, s) ;

pw.printing" R = ") ;
print3DMatrix(pw, R, n, n, p);

pw, println (*' T = ") ;
print2DMatrix(pw, T, n, s);

pw.println(" D = ") ;
print2DMatrix(pw, D, n, s};

pw.println(" Q = " } ;
print2DMatrix(pw, Q, numRowDelayTable, numColDelayTable);

" +
" +
" +
" +
" +

n) ;
s) ;
P) ;
e) ;
d } ;

pw.println("interval in Q = " + qlnterval);

file:///nsrc-dest

pw.close();

Jcatch(lOException ioe)
{

System.out.println("error in inputEcho: "+ioe.getMessage());
}

}//end of output_format

public static int find__bmax()
(

int max = b[0] ;

for(int i = 1; i < b.length; i++)
if<b[i] > max)

max = b[i];

return max;

}//end of findjbmax

public static int find_qmax(} //max delay for any load on any link

<
int max - Q[0][0];

for(int i = 0; i < numRowDelayTable; i++)
for(int j = 0; j < numColDelayTable; j++)

if (Q[i] [j] > max)
max = Q[i] [j] ;

return max;

}//end of find^qmax

}//end of Processlnput

LpSolvelnput.java

import Java.io.*;

public class LpSolvelnput
!

static String IpOutputFileName ="";
static Processlnput pi;

static intnM counters; //row is constraint # in text file and column# is start of row # in
static int constrNum; //constr num. from formulations
static int rowNum; //rowNum in LP model

public LpSolvelnput(Processlnput _pi, String filename)
{

pi - _pi;

IpOutputFileName = filename;

initCounters ();

}//end overlaoded constructor

public static void initCounters{)
{

counters = new int[40][1];

constrNum = 0;
rowNum = 0;

for (int i = 0; i < counters.length; i++)
counters[i][0] = 0;

}//end of initCounters

public static void ip nonstraintFormulation{]
{

tryi

PrintWriter pw = new PrintWriter(new FileWriter(IpOutputFileName));

//objective function

pw.println(lpobjectiveFunction());

counters[constrNum++][0] = rowNum;

pw.println();
pw.println("\n\n/* service installation cost and location constraints *7");

155

pw.printlnCV* constraint 1 * / " } ;
//constraint 1
for(int i - 0; i < pi.n; i++)

pw.println(lp_constraintl{i) + " ; ") ;

counters[constrNum++] [0] = rowNum;

pw.printlnf);
pw.printlnCV* constraint 2. * / ") ;
//constraint 2
for(int i - 0; i < pi.n; i++)

pw.println(lp constraint2{i) •»• " ; ") ;

counters[constrNum++][0] = rowNum;

pw.printlnf);
pw.println("\n\n/* throughput constraints */");
pw.printlnCV* constraint 3 * / ") ;
//constraint 3
for(int j = 0; j < pi.n; j++)

forfint k - 0; k < pi.s; k++)
pw.print(lp_constraint3(j , k));

counters[constrNum++][0] = rowNum;

pw.println0;
pw.printlnCV* constraint 4 * / ") ;
//constraint 4
forfint i = 0; i < pi.n; i++)

forfint k = 0; k < pi.s; k++)
pw.println(lp constraint4{i,k) + " ; ") ;

counters[constrNum++][0] = rowNum;

pw.printlnCV* constraint 5 */");
//constraint 5
forfint i = 0; i < pi.n; i++)

for(int k = 0; k < pi.s; k++)
pw.println(lp_constraint5(i,k) + " ; ") ;

counters[constrNum++][0] = rowNum;

pw.printlnf);
pw.println("\n\n/* network link capacity constraint * / ") ;
pw.printlnCV* constraint 6 * / ") ;
//constraint 6
forfint 1 - 0; l < pi.e; .L++)

pw.println(lp_constraint6(l));

counters[constrNum++][0] = rowNum;

pw.println ("\n\nW ************** ********* DELAY CONSTRAINTS
*An\n");

/***** path service indicator *****/

pw.println();
pw.println("\n/* path serivce indicator * / ") ;
pw.printlnCV* constraint 7 */") ;
//constraint 7
forfint m = 0; m < pi.p; m++)

forfint k = 0; k < pi.s; k++)
pw.pr.i ntln (lp_constraint7 (nt,k) + ";") ;

counters [constrNuirn-i 3 [0] -• rowNum;

pw.printlnf);
pw.printlnCV* constraint 8 * / ") ;
//constratin 8
f o r f i n t m « 0; m < p i . p ; ra-M-)

forf lnl; k = 0; k < pi.;.;; k++)

pw.println(ip constraints (ra, k) + " ; ") ;

counters[constrNum++][0] = rowNum;

/***** compute load on link and round it up if necessary *****/

pw.println();

pw.println["\n/* compute load on link and round it up if necessary * / ") ;
pw.printlnCV* constraint 9 */"} ;
//constraints
//compute load at each link

file:///n/nW

156

for(int 1 = 0 ; 1 < pi.e; 1++)

pw.println(lp_constraint9(1));

counters[constrNum++][0] = rowNum;

pw.println ("/* constraint T9 */");
//constraintT9
//compute load at each link
forfint 1 = 0 ; 1 < pi.e; 1++)

pw.println(lp_constraintT9(1));
counters[constrNum++][0] = rowNum;

pw.printlnf);
pw.printlnf"/* constraint 10 */");
//constraintlO
for tint 1 = 0; 1 < pi.e; 1++)

pw.println(lp_constraintlO{!)+";");

counters[constrNum++][0] = rowNum;

pw.println();
pw.println!"/* constraint T10 */"};
//constraintTIO
forfint 1 = 0 ; 1 < pi.e; 1++)

pw.printIn(lp_constraintT10(1)+";");

counters[constrNum++][0] = rowNum;

/* compute the index that matches the load on a link to the delay in the lookup table */

pw.println("\n/* compute the index that matches the load on a link to the delay in the
lookup table * / ") ;

pw.println();
pw.println("/* constraint 11 */"} ;
//constraint11
forfint 1 = 0 ; 1 < pi.e; 1++)

for(int i = 0,j=0; i < pi.numColDelayTable && j <= pi.b[l];
i++,j+=pi.qlnterval)

pw.println(lp_constraint11{1,i) + " , * ") ;

counters[constrNum++][0] = rowNum;

pw.printlnf"/* constraint Til */");
//constraintTll
for{int 1 = 0; 1 < pi.e; 1++)

forfint i = 0,j=0; i < pi.numColDelayTable && j <= pi.bfl];
i++,j+=pi.qlnterval)

pw.println(lp_constraintTll(l,i) + " ; ") ;

counters[constrNum++][0] = rowNum;

pw.println();
pw.printlnf"/* constraint 12 */") ;
//constraint12
for{int 1 - 0; 1 < pi.e; 1++)

pw.println(lp_constraint!2(1) + " ; ") ;

counters[constrNum++][0] = rowNum;

pw.println();
pw.printlnf"/* constraint 13 * / ") ;
//constraint13
forfint 1 = 0 ; 1 < pi.e; 1++)

forfint i = 0,j=0; i < pi.numColDelayTable && j <= pi.b[l];
i++,j+=pi.qlnterval)

pw.println (lp__constraintl3 (1, i) + " ; ") ;

counters[constrNum++][0] = rowNum;

pw.println();
pw.println ("/* constraint T13 */") t
//constraintT13
forfint 1 = 0; 1 < pi.e; 1++)

forfint i = 0,j=0; i < pi.numColDelayTable && j <= pi.b[l];
i++,j+=pi.qlnterval)

pw.printIn(lp_constraintT13(l,i) + " ; ") ;

counters[constrNum++][0] = rowNum;

/* compute delay on link and then path */

pw.println("\n/* compute delay on link and then path * / " } ;
pw.printlnt};
pw.printlnC'/* constraint 14 * / " } ;
//constraint 14
for(int 1 = 0; 1 < pi.e; 1++)

pw.println(lp_constraintl4(1) + " ; ") ;

counters[constrNum++][0] = rowNum;

pw.println();
pw.println("/* constraint T14 */");
//constraint T14
for(int 1 = 0 ; 1 < pi.e; 1++)

pw.println{lp_constraintT14(1) + " ; ") ;

counters[constrNum++][0] = rowKum;

pw.println();
pw.println("/* constraint 15 * / ") ;
//constraint 15
for{int m = 0; m < pi.p; m++)

pw.println(lp_constraintl5(m) + " ; ") ;

counters[constrNum++][0] = rowNum;

pw.println(};
pw.printlnC'/* constraint T15 * / ") ;
//constraint T15
for{int m = 0; m < pi.p; m++)

pw.println(lp_constraintT15(m) + " ; ") ;

counters[constrNum++][0] = rowNum;

/* meeting delay requirements */

pw.println("\n/* meeting delay requirements * / ") ;
pw.println();
pw.printlnC'/* constraint 16 * / ") ;
//constraint 16
for(int i = 0; i < pi.n; i++)

for(int j = 0; j < pi.n; j++)
fortint k = 0; k < pi.s; k++)

if (pi.T[jl [k] > 0)
{

fortint m = 0; m < pi.p; m++)
pw.print(lp_constraintl6(i,j,k,m)};

}

counters[constrNum++][0] = rowNum;

pw.println(};
pw.printlnC'/* constraint 17 * / ") ;
//constraint 17
for t in t i = 0; i < p i .n ; i++)

for t in t j = 0; j < p i .n ; j++)
for t in t k = 0; k < p i . s ; k++)

i f (p i .T[j] [k] > 0}
{

for t in t m = 0; m < p i .p ; m++)
pw.print(lp_constraint!7(i,j,k,m));

}

counters[constrNum++][0] = rowNum;

pw.println();
pw.printlnC'/* constraint 18 */") ;
//constraint 18
fortint i = 0; i < pi.n; i++)

fortint j = 0; j < pi.n; j++)
fortint k = 0; k < pi.s; k++)

ifcPi.T[j][k] > 0)
{

fortint m = 0; m < pi.p; m++)
pw.print(lp_constraintl8(i,j,k,m)};

}

counters[constrNum++][0] = rowNum;

pw.println();
pw.printlnt"/* constraint 19 * / ") ;
//constraint 19
fortint j = 0; j < pi.n; j++)

158

use.");

for(int k = 0; k < pi.s; k++)

pw. print In (lp__constraintl9 (j , k)) ;

counters [constrNum+4-] [0] = rowNum;

pw.printlnO ;
pw.println("/* constraint 20 * / ") ;
//constraint 20
for(int j = 0; j < pi.n; j++)

for(int k = 0; k < pi.s; k++)
pw.printIn(lp_constraint20(j,k));

counters [constrNum-*-+] [0] = rowNum;

/********+************************ E N D Q F CCONSTRAINT FORMULATIONS

//integer linear programming — lp__solve: declare variables as int
pw.println("\n\n" + lp_variableBound()};

//integer linear programming — lp_solve: declare variables as int
pw.printIn("\n\n" + lp_variableDeclaration());

System.out.println("Input file for lp_solve: " + lpOutputFileName + " is ready for

pw.close();

}catch(IOException ioe)
i

System.out.printlnt"error in constraintFormulation: "+ioe.getMessage());
}

}//end of lp_constraintFormulation

public static String lp_objectiveFunction()
{

String output = "";

output = "min: ";

for(int i = 0; i < pi.n; i++)
for(int k=0; k < pi.s; k++)

o u t p u t += p i . C [i] [k] + " " + "X"+i+"_"+k + " + " ;

for(int i = 0; i < pi.n; i++)
{

output += pi.d + " U"+i;
if (i!= pi.n-1)

output += " + ";
else

output += ";";
}

rowHum++;

return output;

}//end of lp_objectiveFunction

public static String lp__constraintl (int i)
{

String output = "";

for(int k = 0; k < pi.s; k++)
{

output += "X"+i+"_"+k;
if(k!=pi.s-l)

output += " + ";
else

output +~

output += " - " +(pi.find_bmax())+" U"+i +" <= 0" ;

rowKum++;

return output;

}//end of lp_constraintl

public static String lp_constraint2(int i}
(

String output = "";

159

for(int k = 0; k < pi.s; k++)

output += " - X"+i+"_"+k + " ";

output += " + U"+i +" <= 0";

rowNum++;

return output;

}//end of lp_constraint2

public static String lp_constraint3(int j, int k)
{

String output = "";

for(int i = 0 ; i < pi.n; i++)
for(int m = 0; m < pi.p; m++)

if{pi.R[i][j][m]==l)
output += " - Z"+m+"_"-i-k + " ";

o u t p u t += " <= - " + p i . T [j] [k] + " ; \ n " ;

rowNum++;

return output;

}//end of lp_constraint3

public static String lp_constraint4(int i, int k)

String output = "";

output += "X"+i+"_"+k;

for(int j = 0; j < pi.n; j++)
{

for{int m = 0; m < pi.p; itH- +)
{

if (pi.R[i] [j] [m]==l>
output += " - " + " Z"+m+"_"+k;

}
}

output += " <= 0";

rowWum++;

return output;

}//end of lp_constraint4

public static String lp_constraint5(int i, int k)
{

String output = "";

output += " - " +(pi.find_qmax()*pi.p) + " X"+i+"_"+k;

for(int j = 0; j < pi.n; j++)
{

forfint m = 0; m < pi.p; m++)
{

if (pi.RUJ [j] [m]«1)
output += " + " + " Z"+m+"_"+k;

}

}

output += " <= 0";

rowNum++;

return output;

}//end of lp_constraint5

public static String lp_constraint6(int 1)
{

String output = "";
boolean firstTerm = false;

for(int m = 0; m < pi.p; m++)
for(int k = 0; k < pi.s; k++)
{

if(pi.L[m][1]==1)

if(firstTerm == false)

{

firstTerm = true;
output += "Z"+m+"_"+k;

}
else

output += " + Z"+m+"_"+k;

}

if (firstTerm — true)

output += " <= " + pi.b[l] + ";";

rowNum++;

}

return output;

>//end of lp_constraint6

//computing Y(m,k) - path service indicator
public static String lp_constraint7(int m, int k)
{

String output = "";

output += " - "+{pi.find_qmax{) *pi.p) + " Y"+m-t-"_"+k + " + Z"+m+"_"+k +" <= 0";

rowNum++;

return output;

}//end of lp_constraint7

public static String lp_constraint8(int m, int k)
{

String output = "";

output += " Y"+m+"__" + k + " - " + " Z"+m+"_"+k + " <= 0";

rowNum++;

return output;

)//end of lp_constraint8

//load vector V

public static String lp_constraint9(int 1)

{
String output = "";

boolean change = false;

output += "V"+l+ " ";

for(int m = 0; m < pi.p; m++)

for (int k = 0; k < pi.s; k++)

if (pi.L[m] [1]==D

{

output += " - Z"+m+"_"+k;

change = true;

}

output += "<= 0;";

if (change === true)
rowNum i- +;

return output;

}//end of lp_constraint9

//to remove egual sign

public static String lp_constraintT9(int 1)

{
String output = "";

boolean change = false;

output += " - V"+l;

for(int m = 0; m < pi.p; m++)
for(int k = 0; k < pi.s; k++)

if (pi.Lfml [1]==D

output += " + z"+m+"_"+k;
change = true;

)
output += "<= 0;";

if(change == true)
rowKum++;

return output;

}//end Of lp_constraintT9

//constraints related to rounding

public static String lp_constraintlO(int 1)
(

String output = "";

output += "V"+l + " - "+ (pi.qlnterval)+" a"+l +" <= 0";

rowNum++;

return output;

}//end of constraintlO

public static String lp_constraintT10(int 1)
{

String output = "";

output += " - V"+l + " + "+ (pi.qlnterval)+,f a"+l +" <- 0";

rowNum+ + ;

return output;

}//end of constraintTIO

//compute index to be looked up in table

////////042407 version
public static String lp_constraintll(int 1, int i)
{

String output = "";

output += "V" +1 + " - " + (pi.qlnterval* (i)) 4- " - " i-
(pi.numRowDelayTable*pi.bandwidth!nterval+pi.find_qmax()) + " c"+l+"_"+i + " <=- 0"

rowNum++;

return output;

}//end of lp_constraintll

public static String lp_constraintTll(int 1, int i)
{

String output = "";

Output I- " V" +1 + «' + " I (ri.qTnt^i-val*(i)) 4. " - '• s

(pi.numRowDelayTable*pi.bandwidthInterval+pi.find_qmax()) + " c"+l+"_"+i +• " <= 0"

rowNum++;

return output;

}//end of lp_constraintTll

public static String lp_constraintl2(int 1)
{

String output = "";

int i=Orj=0;

for(i = 0,j=0; i < pi.numColDelayTable && j < pi.b[l]; i++,j+=pi.qlnterval}
output += "c"+l+"_"+i + " + ";

output += "c"+l+"_"+i + " <= " + pi-fo[1]/pi.qlnterval;

rowMum++;

return output;
}//end of lp_constraint!2

public static String lp_constraintl3(int 1, int i)
{

String output - "";

output += "k"+l+-"_"+i + " + c"+l+"_"+i+" <= 1";

rowNum++;

return output;

}//end of lp_constraintl3

public static String lp_constraintT13(int 1, int i)
{

String output = "";

output += "- k"+l+"_"+i + " - c"+l+"_"+i+" <= -1";

rowNum++;

return output;

}//end of lp_constraintT13

//compute delay on link and path

public static String lp_constraintl4(int 1)

int row = (pi.b[1]/pi.bandwidthlnterval)-1;

String output = "";

output += "G" + 1;

forfint j = 0,counter=0; j < pi.numColDelayTable && counter <= pi.b[l]; j++,counter+=pi.qlnterval)
if (pi.Qfrow] [j] > 0}

output += " - "+pi.Q[row][j] + " k" + l+"_"+j;

output += " <= 0";

rowNura++;

return output;

}//end of lp_constraintl4

public static String lp_constraintT14(int 1)
{

int row = (pi.b[l]/pi.bandwidthlnterval)-1;

String output = "";

output += " - G" + 1;

for(int j = 0,counter=0; j < pi.numColDelayTable £& counter <= pi,b[1]; j++,counter+^pi.qlnterval)
if(pi.Q[row][j] > 0}

output += " •+• "+pi.Q[row] [j] + " k" + l+"_" + j;

output += " <= 0";

rowNum++;

return output;

}//end of lp_constraintT14

public static String lp constraintlS(int m)

163

String output ="";

output += "H"+m;

for (int 1 = 0 ; 1 < pi.e; 1++}
if (pi.L[m] [1]—=1)

output += " - G" + l;

output += " <= 0";

rowNum++;

return output;

}//end of lp_constraintl5

public static String lp_constraintT15(int m)
{

String output ="";

output -*-= " - H"+m;

for(int 1 = 0 ; 1 < pi.e; 1++)
if(pi.L[mJ [1]==1)

Output += " + G"+l;

output += " <= 0";

rowNum++;

return output;

}//end of lp_constraintT15

//meeting delay requirement

public static String lp_constraint!6(int i, int j, int k, int m)
{

String output = "";

if<pi.R[i] [j] [m]«1}
<

output += " - Y"+m+"_" + k + " - r" + i+"_"+j + "_"+k+"_"-t-m + " <= -l;\n";
rowNum++;

}

return output;

}//end of lp_constraint!6
public static String lp_constraintl7(int i, int j, int k, int m)
{

String output = "";

i f <p i .R [i] [j] [m]-=l)
{

o u t p u t += "Y"+m+"_"+k + " + r " + i+"_"+ j + "_"+k+"___"+m + " <= l ; \ n " ;
rowNura++;

>
return output;

}//end of lp_constraintl7

public static String lp_constraintl8(int i, int j, int k, int m)
{

String output = "";

if(pi.R[i][j][m]==l)
I

//LHS
output += "\n H"+m;
output += " - " + (pi. find_qmax ()+pi. f ind__bmax ()) + " r" + i + "_"-t-j + "_"-t-k+"_"+m;
//RHS
o u t p u t += " <= " + p i . D [j] [k] + " ; " ;

rowNum++;

return output;

164

}//end of lp_constraintl8

public static String lp_constraintl9(int j, int k)
{

String output = "";

for (int i = 0; i < pi.n; i++)
for{int m = 0; m < pi.p; m++)

if (pi.R[i] [j] [m]—1)
output += " - " + (pi. find_qmax{) *pi.p) +" Y"+ra+"_"+k;

output += " <= - " + pi.T[j][k] + ";";
rowNum++;

return output;

}//end of lp_constraintl9

public static String lp__constraint20 {int j, int k)
{

String output = "";

for(int i = 0; i < pi.n; i++)
for (int m. = 0; m < pi.p; m++)

if(pi.R[i][j][m]==l)
output += " + Y"+m+"_"+k;

output += " <= " + pi.T[j][k] + ";";

rowNum++;

return output;

t//end of lp_constraint20

public static String lp__variableBound()
{

String output = "\n\n";

for (int i •= 0; i < pi.n; i++)
for{int k = 0; k < pi.s; k++)

output += "0 <= X" + i+"__" + k + " <= l;\n";

forfint i = 0; i < pi.n; i++)
output += "0 <= U"+i + "<= l;\n";

forfint m = 0; m < pi.p; m+ +)
for(int k = 0; k < pi.s; k++)

output += "0 <= Y"+m+"_"+k + " <= l;\n";

for{int 1 = 0 ; 1 < pi.e; 1++)
for(int i =0,j=0; i < pi.numColDelayT'able && j <= pi.b[l]; i++,j+=pi.qlnterval}

output += "0 <= c"+l+"_"+i + " o l;\n";

for{int 1 = 0 ; 1 < pi.e; 1++)
for(int i =0,j=0; i < pi.numColDelayTable && j <= pi.b[l]; i++,j+=pi.qlnterval)

output += "0 <= k"+l+"_"+i •+• " <= l;\n";

forfint i = 0; i < pi.n; i++)
for{int j = 0; j < pi.n; j++)

for(int k = 0; k < pi.s; k++)
if(pi.T[jl[k] > 0)

1 j+,r,_w"+k"*-"_"'*'iri

for (int m ^ 0; m < pi.p; IR++)
if(pi.REi][j][m] == l)

output +- "0 <=

return output;

}//end of variableBound

public static string lp_variableDeclaration{)

+";\n"

String output = "\n\n";

output += "\n\n";

for(int i = 0; i < pi.n; i++)
for(int k = 0; k < pi.s; k++)

output += "int X"+i+"_"+k + ";\n";

for(int 1 = 0 ; i < pi.n; i
output +-

for{int i = 0; i < pi.e; i++)
output +=

'int U" + i + ";\n";

"int V"+i + ";\n"

for(int 1 = 0; 1 < pi.e; 1++)
output +== "int G"+l+ ";\n";

forfint m = 0; m < pi.p; m++)
output += "int H"+m + ";\n";

for(int m = 0; m < pi.p; m++)
for (int k = 0; k < pi.s; k++)

output += "int Y"+m+"_"+k + ";\n";

for(int i = 0; i < pi.e; i++)
output += "int a"+i + ";\n";

for(int 1 = 0; 1 < pi.e; l++)
forfint i =0,j=0; i < pi.nuraColDelayTable &S j <= pi.b[l]; i++,j+

output += "int c"+l+"_"+i + ";\n";

for(int 1 = 0; 1 < pi.e; 1++)
for(int i =0,j=0; i < pi.numColDelayTable && j <= pi.b[l]; i++,j+

output += "int k"+l+"_"+i + ";\n";

for(int i = 0; i < pi.n; i++)
for(int j = 0; j < pi.n; j++)

for(int k = 0; k < pi.s; k++)
if(pi.T[j] [k] > 0)
{

for(int m = 0; m < pi.p; m++)
if(pi.R[i][j][m] == 1)

output += "int

for(int m « 0; m < pi.p; m++]
forfint k = 0; k < pi.s; k++)
{

output += "int Z"+m+"_"+k;

if(m~=(pi.p-1) && (k==pi.s-l))
output += ";\n";

else
output += ";\n";

return output;

}//end of variableDeclaration

}//end of LpSolvelnput

The sample delay table input file.

q =
max
max
max
max
max
max
max
max
max

50
load
load
load
load
load
load
load
load
load

=
=
=
=
=
=
=
s=

=

100
200
300
400
500
600
700
800
900

0 , 2 0 0 , 5 0 0
0 , 6 7 , 1 0 0 , 2 0 0 , 5 0 0
0 , 4 0 , 5 0 , 6 7 , 1 0 0 , 2 0 0 , 5 0 0
0 , 2 9 , 3 3 , 4 0 , 5 0 , 6 7 , 1 0 0 , 2 0 0 , 5 0 0
0 , 2 2 , 2 5 , 2 9 , 3 3 , 4 0 , 5 0 , 6 7 , 1 0 0 , 2 0 0 , 5 0 0
0 , 1 8 , 2 0 , 2 2 , 2 5 , 2 9 , 3 3 , 4 0 , 5 0 , 6 7 , 1 0 0 , 2 0 0 , 5 0 0
0 , 1 5 , 1 6 , 1 8 , 2 0 , 2 2 , 2 5 , 2 9 , 3 3 , 4 0 , 5 0 , 6 7 , 1 0 0 , 2 0 0 , 5 0 0
0 , 1 3 , 1 4 , 1 5 , 1 6 , 1 8 , 2 0 , 2 2 , 2 5 , 2 9 , 3 3 , 4 0 , 5 0 , 6 7 , 1 0 0 , 2 0 0 , 5 0 0

0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 8 , 2 0 , 2 2 , 2 5 , 2 9 , 3 3 , 4 0 , 5 0 , 6 7 , 1 0 0 , 2 0 0 , 5 0 0
max l o a d = 1000 =
0 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 8 , 2 0 , 2 2 , 2 5 , 2 9 , 3 3 , 4 0 , 5 0 , 6 7 , 1 0 0 , 2 0 0 , 5 0 0

Appendix D

Lagrangean Relaxation Code

167

LagrangeRelaxations.iava

*/
import java.io.*;
import lpsolve.*;

public class LagrangeRelaxations
{

LpSolve orgLpModel;
LpSolve lr_lps;

Processlnput pi;
LpSolvelnput lpi;

double lrMult[];

int ignoreConstr[];
int numConstrNotRelaxed;

String outputFileName;
String IrOutputFile;

public LagrangeRelaxations(String LpFileName, String _outputFileName, Processlnput _pi, LpSolvelnput „lpi)
{

outputFileName = _outputFileName;
IrOutputFile = _outputFileName;
pi - _pi;
lpi = _lpi;

//just picking up the ilp model from the test file as a matrix.
try
{

//initiatlize lp mode
orgLpModel = LpSolve.makeLp(0,0);
orgLpModel.setLpName("orgLpModel"};

orgLpModel = LpSolve.readLp(LpFileName, LpSolve.NORMAL, orgLpModel.getLpName());

//for testing and debugging purposes
String orgOutputFile = "OrgLpModel_"+outputFileName;
System.out.println{"orginal lp model is in file: "+ orgOutputFile };
orgLpModel.setOutputfile(orgOutputFile);
orgLpModel.printLp();

}catch(LpSolveException lpe){System.out.println("LpSolveException in LagrangeConstructor: " +
lpe.getMes sage());}

}//end of overloaded constructor

public void beginLagrangeRelaxations()
{

initMultipliers(); //initialize lagrange multipliers to 0

setupLRO; //now setup a second lp model

with the lagrangean objective function f +Li(Ax-b}

addConstraints () ; //add constraints not. to be relaxed

solveLRO ;

}//end of beginLagrangeRelaxations

public void initMultipliers()
{

IrMult = new double[orgLpModel.getNrows{)+1];

for(int i - 0; i < IrMult.length; i++)
IrMult [i] = 0;

}//end of initMultipliers

//creating relaxed LP model and adding limits and variable types
public void setupLRO
{

doublet] LR^objFnRow - new double[orgLpModel.getNcolumns()+1];

int servLoc_Indi=0, througnputServLocConstr=0, networkConstr=0, delayServIndi=0, delayRounding=0,
delayLookup=0, delayCompute=0, delayMeet=0, safety=0;

numConstrNotRelaxed = 0;

169

//3,4,5

/////constraints to be rlaxed

servLoc_Indi = pi.n+pi.n;
//1,2

throughputServLocConstr = 3*(pi.n*pi.s);

//count only those constraints where the edges are being used
int edgesUsed = 0;
boolean used;
for(int 1=0; 1 < pi.e; 1++)
{

used = false;
forfint m = 0; m < pi.p; m++)
{

if{pi.L[m|[1] > 0)
used=true;

>
if(used==true)

edgesUsed++;
}

networkConstr = edgesUsed;
//6 — 2 edges arenot used in the scenario

delayServIndi = (pi.p*pi.s)+(pi.p*pi.s);
//7,8

delayRounding = 2*edgesUsed + 2*pi.e;
//9,T9,10,T10

//num of constraints dependent on bandwidth
//11,T11,13,T13

int lookupIndexRange=0;
for(int 1 = 0 ; 1 < pi.e;l++}

lookupIndexRange += (pi.b[1]/pi.qlnterval)+1;

delayLookup = /*4*/3*(lookupIndexRange)+pi.e;
//11,T11,13,T13 and 12

delayCompute = (2*pi.e)+(2*pi.p);
//14,T14,15,T15

//num of constraints depends on throughput requested and routing matrix
int servProvider = 0;
for(int i = 0; i < pi.n; i++)
//16,17,18

for(int j = 0; j < pi.n; j++)
for(int k = 0; k < pi.s; k++}
{

if(pi.T[j] [k] > 0)
for(int m = 0; m < pi.p; m-t-+)

if(pi.R[i][j][m] > 0)
servProvider++;

}

delayMeet = 3*servProvider;
//16,17,18

safety - 2* (pi.n*pi.s);
//19,20

numConstrNotRelaxed= servLoc_Indi + throughputServLocConstr + networkConstr +
delayServIndi + delayRounding + delayLookup + delayCompute + delayMeet + safety;

//////creating LP Model

lr_lps = LpSolve.makeLp(numConstrNotRelaxed,orgLpModel.getNcolumns());
lr_lps.setLpName("LR LpModel");

fn from org lp model
orgLpModel.getRow(0, LR_objFnRow); //get obj

lr_lps. setObjFn(LR__objFnRow) ; //set it
as the obj fn for the lagrangean relaxation lp model

for(int i = 1; i <= orgLpModel.getNcolumns(); i++)
{

lr_lps.setColName(i, orgLpModel.getColKame(i));
//set the column name for easy inferencing

lr_lps.setBinary(i,true);
//and variable type

170

forfint i = 0; i < pi.p; i++)
for(int j = 0 ; j < pi.s; j++)
{

//find Zij in model and set it to an int
String colName = "Z"+i+"_"+j;
int index = lr_lps.getNameindex(colName, false};
lr_lps.setInt(index, true);
lr_lps.setUpbo(index, orgLpModel.getUpbo(index));

}

for(int 1 - 0; 1 < pi.e; 1++)
{

//find VI in model and set it to an int
String colName = "V"+l;
int index = lr_lps.getNainexndex(colName, false);
lr_lps.setlnt(index, true);
lr_lps.setUpbo(index, orgLpModel.getUpbo(index));

//find al in model and set it to an int
colName = "a"+l;
index = lr___lps.getNameindex (colName, false);
lr_lps.setlnt(index, true);
lr__lps.setUpbo (index, orgLpModel. getUpbo (index)) ;

//find Gl in model and set it to an int
colName = "G"+l;
index = lr_lps,getNameindex(colName, false);
lr_lps.setlnt(index, true);
lr_lps.setUpbo(index, orgLpModel.getUpbo(index));

}

for (int m = 0; m < pi.p; m++)
{

//find Hm in model and set it to an int
String colName = "H"+m;
int index = lr_lps.getNameindex(colName, false);
lr_lps.setlnt(index, true);
lr_lps.setUpbo(index, orgLpModel.getUpbo(index));

}

}catch(LpSolveException lpe)(System.out.printlnf'LpSolveException in setupLR: " +
Ipe.getMessage());}

}//end of setupLR

public void addConstraints()
{

double[] LR_const = new double[orgLpModel.getNcolumns()+1]; //the constraints
not to be relaxed

ignoreConstr = new int[orgLpModel.getNrows()+1];

for(int i = 0; i < ignoreConstr.length; i++)
ignoreConstr[i] = 0;

try
{

int j = 1;

////servLoc_Indi

/* //do not relax constraint!*! — throughput constraint

for{int i = lpi.counters[0][0]; i < lpi.counters[1][0]; i++,j++)
{

//get org row from orgLpModel
orgLpModel.getRowji, LR_const);
//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation Ip model
double rhs = orgLpModel.getRh(i);
lr lps . set Row (j , LR con tit) ;
1r_lps.setRh(j, rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrType(i));

}//end of adding constratintttl

//do not relax constraint#2 — throughput constraint
for(int i = lpi.counters[1][0]; i < lpi.counters[2] [0]; i++,j++)

<
//get org row from orgLpModel
orgLpModel.getRow(i, LR_const);

//keep track of constraints not to be considered in lagrange

ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i};
lr_lps.setRow(j, LR_const);
lr__lps. setRh (j , rhs) ;
lr_lps.setConstrType(j,orgLpModel.getConstrType(i)};

}//end of adding constratint#2

////throughputServLocConstr

//do not relax constraint#3 — throughput constraint
for(int i = lpi.counters[2][0]; i < lpi.counters[3][0]; i++,j++)
{

//get org row from orgLpModel
orgLpModel.getRow(i, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps.setRow(j, LR_const);
lr_lps.setRh(j, rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrType(i));

}//end of adding constratint#3

//do not relax constraint#4 — throughput constraint
for{int i = lpi.counters!3][0]; i < lpi.counters[4][0]; i++,j++)
{

//get org row from orgLpModel
orgLpModel.getRow(i, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh{i);
lr__lps. setRow(j, LR__const) ;
lr_lps.setRh(j, rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrType(i));

}//end of adding constratint#4

//do not relax constraint#5 — throughput constraint
for(int i = lpi.counters[4][0]; i < lpi.counters[5][0]; i++,j++)
{

//get org row from orgLpModel
orgLpModel.getRowji, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps.setRow{j, LR_const);
lr_lps.setRh(j, rhs) ;
lr_lps.setConstrType{j,orgLpModel.getConstrType(i));

}//end of adding constratint#5

////networkConstr

//do not relax constraint#6 — network
for(int i = lpi . counters [5] [0] ; i < lpi. counters [6] [0] ; i+ + ,j+-f-)
{

//get org row from orgLpModel
orgLpModel.getRow{i, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh{i);
lr_lps.setRow(j, LR_const);
1r_lps.setRh(j, rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrType(i));

}//end of adding constratint#6

////delayServIndi

//do not relax constraint#7
for(int i = lpi.counters[6][0]; i < lpi.counters[7][0]; i++,j++)

//get org row from orgLpModel
orgLpModel.getRow(i, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps.setRowfj, LR_const);
lr_lps.setRh(j, rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrType(i));

}//end of adding constratint#7

//do not relax constraint#8
for(int i = lpi. counters [7] [0] ; i < lpi. counters [8] [0] ; i++,j++)
{

//get org row from orgLpModel
orgLpModel.getRow(i, LR_const);

//keep track of constraints not to be considered in lagrange

ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps. setRow! j , LR__const) ;
lr_lps.setRh(j, rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrType (i)) ;

}//end of adding constratint#8

////delayRounding

//do not relax constraint#9
forlint i = lpi.counters[8][0]; i < lpi.counters[9][0]; i++,j++)
{

//get org row from orgLpModel
orgLpModel. getRow (i, LR__const) ;

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps.setRow(j, LR_const);
lr_lps.setRh(j, rhs);
lr__lps.setConstrType (j,orgLpModel.getConstrType (i));

}//end of adding constratint#9

//do not relax constraint#T9
for(int i = lpi.counters[9][0]; i < lpi.counters[10][0]; i++,j++J
{

//get org row from orgLpModel
orgLpModel.getRow(i, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps.setRow(j, LR_const);
lr_lps.setRh(j, rhs);
lr_lps.setConstrType{j,orgLpModel.getConstrType(i));

}//end of adding constratint#T9

//do not relax constraint#10
for(int i = lpi.counters[10][0]; i < lpi.counters[11][0]; i++,j++)
{

//get org row from orgLpModel
orgLpModel.getRow(i, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps.setRow(j, LR_const);
lr_lps.setRh(j, rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrType(i));

}//end of adding constratint#10

//do not relax constraint#T10
for(int i = lpi.counters[11][0]; i < lpi.counters[12][0]; i++,j++}
{

//get org row from orgLpModel
orgLpModel.getRow(i, LR const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps. setRow(j, LR__const) ;
lr_lps.setRh(j, rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrType{i));

}//end of adding constratint#T10

////delayLookup

//do not relax constraintill
for(int i = lpi.counters[12][0]; i < lpi.counters[13][0]; i++,j++)
{

//get org row from orgLpModel
orgLpModel.getRow(i, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps.setRow(j, LR_const);
lr_lps.setRh(j, rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrType(i));

}//end of adding constratint#ll

//do not relax constraint#Tll
for(int i = lpi.counters[13][0]; i < lpi.counters[14][0]; i++,j++)
i

//get org row from orgLpModel
orgLpModel.getRowfi, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps. setRow (j, LR_const);
lr_lps.setRh(j , rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrType(i));

}//end of adding constratint#Tll

//do not relax constraint#12
for(int i = lpi.counters[14][0]; i < lpi.counters[15][0]; i++,j++)
{

//get org row from orgLpModel
orgLpModel.getRow(i, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps.setRow(j, LR_const);
lr_lps.setRh(j, rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrType(i));

}//end of adding constratint#12

//do not relax constraint#13
for(int i = lpi.counters[15][0]; i < lpi.counters[16][0]; i++,j++)
{

//get org row from orgLpModel
orgLpModel.getRow(i, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps.setRow{j, LR_const);
lr_lps.setRh(j , rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrType(i));

}//end of adding constratint#13

//do not relax constraint#T13
for(int i = lpi.counters[16][0]; i < lpi.counters[17][0]; i++,j++)
{

//get org row from orgLpModel
orgLpModel.getRowfi, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

http://lr_lps.se
http://lr_lps.se

//add it to the lagrangean relaxation lp model
double rhs - orgLpModel.getRh(i);
lr_lps.setRow(j, LR_const);
lr_lps.setRhfj, rhs);
lr_lps.setConstrType(j,orgLpModel.getConatrType(i))

}//end of adding constratint#T13

////delayCompute

//do not relax constraint#14
for(int i = lpi.counters[17][0]; i < lpi.counters [18][0]; i++,j++)
{

//get org row from orgLpModel
orgLpModel.getRowfi, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps.setRow(j, LR_const);
lr_lps.setRhfj, rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrType(i));

)//end of adding constratint#14

//do not relax constraint#T14
forfint i - lpi.counters[IS][0]; i < lpi.counters[19][0]; i++,j++)
{

//get org row from orgLpModel
orgLpModel.getRow(i, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh.fi) ;
lr_lps.setRow(j, LR_const);
lr_lps.setRhfj, rhs);
lr__lps . setConstrType (j , orgLpModel. getConstrType {i)) ;

}//end of adding constratint#T14

//do not relax constraint#15
forfint i = lpi.counters[19][0]; i < lpi.counters[20][0]; i++,j++)
{

//get org row from orgLpModel
orgLpModel.getRow(i, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps.setRow(j, LR_const);
Ir lps.setRhfj, rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrTypefi));

)//end of adding constratint#15

//do not relax constraint#T15
forfint i - lpi.counters[20] [0] ; i < lpi.counters[21][0]; i++,j++)
{

//get org row from orgLpModel
orgLpModel.getRowfi, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
Ir Ips.setRowfj, LR_const);
lr_lps.setRh(j, rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrTypefi));

)//oud of adding c^n^tiaLiiiL#Ti5

/////delayMeet

//do not relax constraint#16
forfint i = lpi.counters[21][0]; i < lpi.counters[22][0]; i++,j+
(

//get org row from orgLpModel
orgLpModel.getRowfi, LR_const);

//keep track of constraints not to be considered in lagrange

http://orgLpModel.getRh.fi

"LR__Model_"+outputFileName) ;

ignoreConstr[i] = 1;

//add it to the lagrangean relaxation Ip model
double rhs = orgLpModel.getRh(i);
lr_lps.setRowfj, LR_const);
lr_lps.setRh(j, rhs);
lr_lps.setConstrType{j,orgLpModel.getConstrType(i));

}//end of adding constratint#16

//do not relax constraint#17
forfint i - lpi.counters[22][Oj; i < lpi.counters[23][0]; i++,j++)
{

//get org row from orgLpModel
orgLpModel.getRow(i, LR_constj;

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation ip model
double rhs = orgLpModel.getRh(i);
lr_lps.setRow{j, LR_const);
lr_lps.setRh(j, rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrType(i)I;

}//end of adding constratint#17

//do not relax constraint#18
fordnt i - lpi.counter5[23] [0] ; i < lpi.counters [24] [03 ; i++fj++)
{

//get org row from orgLpModel
orgLpModel.getRow(i, LR_const);

//keep track of constraints not to be considered, in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps.setRowfj, LR_const);
lr_lps.setRh(j, rhs);
lr_lps.setConstrType{j,orgLpModel.getConstrType(i)};

}//end of adding constratint#18

/////safety

//do not relax constraint#19
for{int i - lpi.counters[24][0]; i < lpi.counters[25][0]; i++fj++>
{

//get org row from orgLpModel
orgLpModel.getRow(i, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps.setRowfj, LR_const!;
lr_lps.setRh(j, rhs);
lr_lps.setConstrType(j,orgLpModel.getConstrType(i));

}//end of adding constratint#19

//do not relax constraint#20
forfint i = lpi.counters[25][0]; i <. lpi.counters[26][0]; i++,j++)
<

//get org row from orgLpModel
orgLpModel.getRow(i, LR_const);

//keep track of constraints not to be considered in lagrange
ignoreConstr[i] = 1;

//add it to the lagrangean relaxation lp model
double rhs = orgLpModel.getRh(i);
lr_lps.setRow{j, LR_const);
lr_lps.setRh(j, rhs);
lr~lpts. setCoiisLrryptt (j ,orgLpModel.getConstrType U) } ;

}//end of adding constratint#20

//debugging
lr_JLps.setOutputfile("LR_Model_"+outputFileName);
System.out.println("from method: addConstraints, print ing LR model in f

lr__lps.printLp{) ;

}//end of t ry

catch(LpSolveException lpe}{System.out.println("LpSolveException in method addConstraints: error is
"+lpe.getMessage());}

}//end of method addConstraints

public void solveLRf)
{

SufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String goon="";

doublet] LR_objFnRow = new double[orgLpModel.getNcolumns0+1];
//the lagrangean obj fn

doublet] copyOfLrMult = new double[IrMult.length];
doublet] variables = new double[orgLpModel.getNcolumns0+1];

//value of variables
doublet] copyOfVariables = new double[orgLpModel.getNcolumns()+1]; //copy of

ariables
int[] nzlndex = new int[orgLpModel.getNcolumns{)];
//the variable indices

double stepK = 2, bestRelaxedValue currentRelaxedValue = 0, constant = 0;

0, copyCurrentRelaxedValue^O; double copyStepK=stepK, optimal=0, copyBestRelaxedValue
int copyTotallter = 0;
boolean copyKTooSmall = false;;

int m = 0, totallter = 0;

boolean kTooSmall = false, allConstrMet = true, constrMet = false;

String msg="";
int statusLR=0, statusSolve=0;

//Get current time
long start = System.currentTimeMillis();

//set nzlndex the indices of the variables
for(int i = 0; i < orgLpModel.getNcolumns(); i++)

nzlndex[i] = i+1;

try{

System.out,println("iteration =

allConstrMet = true;

stepK);

constant = createLRObjFn(LR_objFnRow);

lr_lps.setObjFn(LR_objFnRow);

//set timeout

lr_lps.setTimeout(120);
//2 minutes = 120 sec to find a solution

lr_lps.setVerbose(LpSolve.MSG_NONE);
statusSolve = lr_lps.solve 0;
//step 2

if (statusSolve 7)

function.");
System.out.println("timed out, unable to find solution to lagrangean

allConstrMet = false;

else
{

//get variables values
lr_lps.getVariables(variables);

currentRelaxedValue

+ currentRelaxedValue + " and bestRelaxedValue
System.out.println("constant

= " + bestRelaxedValue+"\n");

lr_lps.getObjective()+constant;

+ constant + " currentRelaxedValue =

violated with this solution set

//step 3 and 4
//get each constraint value from orgLpModel and check for constraints

for(int i = 1; i <= orgLpModel.getNrows(); i++)

if (ignoreConstr[i]==0)

nzlndex.length, variables, nzlndex);

System.out.println("checking constraint = " + i);

double rhVal = orgLpModel.getConstrValue(i.

177

ifCrhVal != orgLpModel-getRh(i))
{

if(rhVal < orgLpModel.getRh(i))

IrMultfi] -= stepK;

else iffrhVal > orgLpModel.getRh(i))

{
ystera.out.printing"violated..." + rhVal + " > " + orgLpModel.getRh{i));

//increase lambda

//ppsitive slack, if rhval < constr.RH

//decrease lambda

//constraint violated

lrMultJi] f= stepK;

allConstrMet = false;
}

}//if values arent equal
}//if constraint is relaxed

}//validate all constraints in org lp model

if(currentRelaxedValue > bestRelaxedValue)
{

bestRelaxedValue = currentRelaxedValue;

if(allConstrMet — true)
constraints have been met keep track of

//optimal value and LpModel that gave those results
if(constrMet »» false)

see if the solution is better than what was already found");

//copy variables array

for(int i = 0; i < orgLpModel.getNcolumns(}+1;

copyOfVariables[i] = variables[i];

copyStepK = stepK;

copyTotallter = totallter;
copyBestRelaxedValue = bestRelaxedValue;
copyCurrentRelaxedValue = currentRelaxedValue;
copyKTooSmall = kTooSrnall;
constrMet = true;
System.out.printIn{"allConstrMet is true, copied

}//first time constraints met
else
{

System.out.println("all constranints met again.

if(bestRelaxedValue > copyBestRelaxedValue)
{

//copy variables array
for(int i = 0; i <

orgLpModel. getNcolumns 0+1; i + +)

variables[i];

bestRelaxedValue;

currentRelaxedValue;

+ bestRelaxedValue + " OLDER SOLN = " + copyBestRelaxedValue);

FOUND and RECORDED");

bestModel then copy

obj fn value is less than model already copied
allConstrMet

}//when all constr met

copyOfVariables[i] =

copyStepK = stepK;
copyTotallter = totallter;
copyBestRelaxedValue =

copyCurrentRelaxedValue =

copyKTooSmall = kTooSrnall;

System.out.println("BETTER SOLUTION * "

System.out.println{"BETTER SOLUTION

}//if current model has a MORE optimal value than
- next time con^Udii.L^ met uuiy uupy model If

false;

if(m == 3)

stepK /= 2;
m = 0;

//step 5

//reset m

kTooSrnall = checkStepSize(stepK);

totalIter++;
}//end of else solver doesnot timeout

}while(!kTooSmall);

// Get elapsed time in milliseconds
long elapsedTimeMillis = System.currentTimeMillis(}-start;

if{constrMet == true)
{

msg = "atleast once all constraints were met";
statusLR = 1;

}//allConstrMet
else if(statusSolve ==7)
{

msg = "solver timed out";
statusLR = 7;

}//solver timedout
else
{

msg = "step size too small";
StatusLR = 0;

}//iterations too small

print(copyKTooSmall, copyTotallter, copyStepK, copyCurrentRelaxedValue,
copyBestRelaxedValue, elapsedTimeMillis, msg, statusLR, copyOfVariables);

}//end try
catch{LpSolveException lpe)(System.out.println("LpSolveException in solveLR: "+ Ipe.getMessageO);)

// catch{IOException ioe)(System.out.println("IOExceptions in solveLR: "+ ioe.getMessage{));}

}//end of solveLR

//multiply the constraints to be relaxed with appropriate mutlipliers
//and these constraints to the obj fn (i.e. collect all like variables together
//and explicitly copy the lagrangean obj fn into objFnRow
public double createLRObjFn(double[] objFnRow)
(

doublet] rowFromLP = new double[orgLpModel.getNcolumns(}+1];
double[] rowForLR = new double[orgLpModel.getNcolumns()+1];
double rhsColumn = 0;

try
(

fn from org Ip model
orgLpModel.getRowlO, rowForLR); //get obj

for(int i = 1; i <= orgLpModel.getNrows(); i++)
{

if(ignoreConstr[i] == 0)
{

//get a row from the orgLP
orgLpModel.getRow{i, rowFromLP);

//computing Ll(Alx-bl) + L2(A2x-b2) ...
//L1*A1
for{int j = 0; j < rowFromLP.length; j++)

//column 0 is just empty
rowFromLPfj] ~ rowFromLP[j] * lrMult[i];

//collect all constants -Ll*bl*{-1)
rhsColumn += (-1)*orgLpModel.getRh(i)*lrMult[i];

//add the variables together, creating one obj fn with the relaxed

for{int j = 0; j < rowForLR.length; j++)
rowForLR[j] += rowFromLP[j];

}//if constraint is not to be ignored
}//end of for loop i

//explicilty copy the rowForLR into objFnRow
//rowForLR contains the objFn + lagConstraints
for{int i = 0; i < rowForLR.length; i++)

objFnRow[i] = rowForLR[i];

}catch(LpSolveException lpe)(System.out.println("LpSolveException in createLRObjFn: " +
lpe.getMessage());}

return rhsColumn;

cosntramts

}//end of createLRObjFnRow

public boolean checkStepSaze(double stepK)
{

if{Math.abs(stepK) < (0.05})
return true;

else
return false;

}//end of checkStepSize

public void copyMultipliers(double c[])
{

for(int i = 0; i < c.length; i++)
c[i] = lrMult[i];

}//end of copyMultprs

public void print(boolean kTooSmall, int totallter, double stepK, double currentRelaxedValue, double
bestRelaxedValue, long elapsedTimeMillis, String msg, int status, doublet] copyOfVariables)

{
try

+bestRelaxedValue);

constraints"

String outputFile - "Variables "+lrOutputFile;
PrintWriter pw = new PrintWriter(new FileWriter(outputFileName)

System.out.printIn("\n\n
System.out.printlnC'Lagrangean relaxation output is in file:

pw.println("
pw.println("Quitting because: "+msg);
pw.println("currentRelaxedValue = " + currentRelaxedValue

M+lrOutputFile);

") ;

best relaxed sol

pw.println("step = " + stepK + " total iterations = " + totallter);
pw.println("number of constraints not relaxed = " + numConstrNotRelaxed);
pw.println("original model has " + orgLpModel.getNrows() + " constraints");
pw.println("therefore we are relaxing " + (orgLpModel.getNrows()-numConstrNotRelaxed) +

"\t\t"+copyOfVariables[i]);

pw.println{"\n\nElapsed Time: "+(float}elapsedTimeMillis/1000F);

//print lagrange multipliers
pw.println("\n\n The lagrange multipliers are: ") ;
pw.printIn{printLagreMultipliers(IrMult));

//use status to check which LpModel to print
//print solutions
switch(status)

(
case 0: //no optimal solution found

pw.println("Variables solutions are in file: "+outputFile);
lr__lps . setOutputf ile (outputFile) ;
pw.println("objective function solution = " + lr_lps.getObjective()};
lr__lps.printSolution(2) ;
break;

case 1:
pw.println("Variables solutions below...");
for(int i = 0; i < orgLpModel.getNcolumns(); i++)

pw.printIn(lr_lps.getColName(i+1) +

break;
case 7:

pw.println("Solver timed out. No solution found before time out..."In­
break;

default:
System.out.println("in method print: unknown status, "+status);

}//end of switch

pw. println ("— •
System.out.println("-

pw.close(};

}
catch(IOException ioe)(System.out.println("error in debugPrint: "+ioe.getMessage{));
catch(LpSolveException lpe){System.out.println{"LpSolveException in debugPrint:

"+lpe.getMessage{));}

}//end of print

public String printLagreMultipliers(double 1[])
{

String output = "";

180

for (int i = 1; i < 1.length; i++)
//lambdaO is for rowO i.e. obj fn and not used

output += "lambda " + i + " = " + l{i]+ "\n";

return output;

}//end of printLagreMultpliers

}//end of class LagrangeRelaxations

Appendix E

SLP Sample Scenario Input And Output Files

Sample SLP Problem Input File

n = 6
s = 3
p = 8
e = 8
L = 1;2,3;2;1,3;6;7,8;7;6,8
R = l-2:l,2;l-3:3,4;6-4:5,6;6-5:7,8
b = 100,100,100,100,100,100,100,100
C =
910,100,80,-120,100,150,-100,100,100;100,120,12 0;100,100,110,-100,110,90
T = 137,0,200;0,0,0;0,0,25;0,0,0;0,0,0;0,180,0
D = 1000,0,15;0,0,0;0,0,1000;0,0,0;0,0,0;0,1000,0
d = 20

Sample ILP File

183

min: 910 X0_0 +
X3_l + 120 X3_2
U4 + 20 U5;

100 X0_1 +
+ 100 X4 0

10 X0_2 ^
• 100 X4

120 X1_0 + 100 Xl_l + 150 Xl_2 + 100 X2_0 + 100 X2_l
1 + 110 X4 2 + 100 X5 0 + 110 X5 1 + 90 X5 2 + 20 U0 +

- 100 X2_2 + 100 X3_0 + 120
20 Ul + 20 U2 + 20 U3 + 20

/* service installation cost and location constraints */
/* constraint 1 */
X0_0 + XO
X1_0 + XI
X2 0 + X2~
X3_0 + X3~
X4_0 + X4~
X5 0 + X5

1 + X0 2
"l + XI 2
1 + X2 2
"l + X3 2
"l + X4 2
"i + X5 2

/* constraint 2 */
- X0 0 -
- XI 0 -
- X2 0 -
- X3 0 -
- X4 0 -
- X5 0 -

- X0 1 -
XI 1 -

• X2 1 -
X3 1 -
X4 1 -
X5 1 -

-
-
-
-
-
-

XO

xf
X2~
X3"
X4"
X5"

1000
1000
1000
1000
1000
1000

2
"2
"2
'2
"2
'2

+
+
+
+
+
+

uo
Ul
U2
03
U4
U5

uo
Ul
U2
U3
U4
U5

<=
<=
<=
<=
<=
<=

<=
<=
<=
<=
<=
<=

0;
0,
0,
0,
0,
0,

0;
0;
0;
0;
0;
0;

/* throughput constraints
/* constraint 3
- Z16 0
- Z16 1
- Z16 2
- Z0 0
- ZO 1
- ZO 2
- Z2 0
- Z2 1
- Z2 2
- Z19 0
- Z19 1
- Z19 2
- Z20 0
- Z20 1
- Z20 2
- Z12 0
- Z12 1
- Z12_2

- Z8 0
- Z8 1
- Z8 2

- Zl 0
- Zl 1
- Zl 2
- Z3 0
- Z3 1
- 23 2
- 24 C
- Z4 1
- Z4 2
- Z6 C
- 26 1
- Z6 2
- Z13
- Z13
- Z13

/* constraint 4
XO 0 -
XO 1 -
XO 2 -
XI 0 -
XI 1 -
XI 2 -
X2 0 -
X2 1 -
X2 2 -
X3 0 -
X3 1 -
X3 2 -
X4 0 -
X4 1 -
X4 2 -
X5 0 -
XS 1 -
X5_2 -

Z16 0 -
Z16 1 -
Z16 2 -
Z8 0 -
28 1 -
28 2 -
Z10 0 -
Z10 1 -
Z10 2 -
Z19 0 -
Z19 1 -
Z19 2 -
Z20 0 -
Z20 1 -
Z20 2 -
Z4 0 -
24 1 -
24 2 -

/* constraint 5
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000

XO 0 +
XO 1 t
XO 2 t
XI 0 +
XI 1 +
XI 2 +
X2 0 +
X2 1 +
X2 2 +
X3 0 +
X3 1 +
X3 2 +
X4 0 +

*/ - 29 0
- 29 1
- 29 2
- Z17 0
- 217 1
- 217 2
- Z18 0
- Z18 1
- Z18 2
- 25 0
- 25 1
- 25 2
- 27 0
- 27 1
- 27 2

0 - Z14
1 - Z14
2 - Z14_

*/
20 0 -
20 1 -
20 2 -

*/
- 210 0 - Zll 0 <•
- Z10 1 - Zll 1 <•
- Z10 2 - Zll 2 <-
<- -0;
< 0;
< 0;
<- -0;
<- -0;
<= -25;
<= -0;
<= -0;
<- -0;
<- -0;
<- -0;
<- -0;
0 - Z15 0 - Z21 0
1 - Z15 1 - Z21 1
2 - Z15_2 - 221_2

21 0 - 22 0 - 23_0
21 1 - 22 1 - 23 1
Zl 2 - 22 2 - 23 2

29 0 - Z17 0 <- 0;
29 1 - Z17 1 <- 0;
29 2 - Z17 2 <- 0;
Zll 0 -
Zll 1 -
Zll 2 -
Z12 0 -
Z12 1 -
Z12 2 -
Z14 0 -
Z14 1 -
Z14 2 -

218 0 <- 0
Z18 1 <= 0
Z18 2 <= 0
Z13 0 <= 0
Z13 1 <= 0
Z13 2 <= 0
Z15 0 <- 0
215 1 <- 0
215 2 <- 0

25 0 - 26 0 - 27 0 - Z21 0
25 1 - 26 1 - 27 1 - Z21 1
25 2 - 26 2 - 27 2 - Z21 2

*/ Z16 0 +
216 1 +
Z16 2 +
28 0 +
28 1 t
28 2 +
Z10 0 +
Z10 1 +
Z10 2 +
Z19 0 +
Z19 1 +
Z19 2 +
Z20 0 +

ZO 0 + Zl 0 +
20" 1 + 21~1 +
ZO 2 + Zl_2 +

-137; -0;
-200;

<=
<=
<=

<=
<=
<=

<=
<=
<=
Z2
Z2~
Z2"

29 0 + 217 0 <- 0;
29 1 + 217 1 <- 0;
29 2 + Z17 2 <- 0;
Zll 0 + Z18 0 <=
211 1 + 218 1 <=
211 2 + Z18 2 <-
212 0 + 213 0 <=
212 1 + 213 1 <•
Z12 2 + 213 2 <-
214 0 + 215_0 <=

0
0
0
0
0
0
0

-0;
-180;
-0;

0;
0;
0;

0;
0;
0;

0 +
1 +
"2 +

Z3 0 <=
23 1 <-
Z3_2 <-

0
0
0

184

- 11000 X4 1 +
- 11000 X4 2 4
- 11000 X5 0 +
- 11000 X5 1 +
- 11000 XS2 t

Z20_l +
Z20 2 +
Z4 0 +
Z4_l +
Z4_2 +

Z14 1 + Z15 1 <» 0;
Z14 2 + Z15_2 <= 0;
Z5 0 + Z6_0 + Z7 0 +
Z5 1 + Z6 1 + Z7 1 +
Z5 2 + Z6 2 + Z7 2 +

Z21 0 <- 0;
Z21 1 <- 0;
Z21 2 o 0;

/* network link capacity constraint */
/* constraint 6 */
Z 0 _ 0 + z o _ l + Z0_2 ^ Z 3 _ 0 + Z 3 _ l + Z 3 _ 2
Z 1 _ 0 + Z l _ l + Z l _ 2 + Z 2 _ 0 + Z 2 _ l + Z 2 _ 2
Z l 0 + Z l 1 + Z l ~ 2 + Z3 0 + Z3 1 + Z3 2

Z 8 _ 0 + Z 8 _ l + ZS_2 + Z 1 1 _ 0 + Z l l _ l + Z l l _ 2 < - 1 0 0 ;
Z 9 _ 0 + Z 9 _ l + Z9_2 + Z 1 0 _ 0 + Z 1 0 _ l + Z 1 0 _ 2 < - 1 0 0 ;
Z9 0 + Z9 1 + Z9 2 + Z l l 0 + Z l l 1 + Z l l 2 < - 1 0 0 ;

Z4_0 + Z4_l
Z5_0 + Z5_l
Z5 0 + Z5 1
Z16_0
Z17_0
Z18_0
Z19_0
Z20_0
Z21 0

+ Z 1 6 _ l
+ Z 1 7 _ l
+ Z 1 8 _ l
+ Z 1 9 _ l
+ Z 2 0 _ l
+ Z 2 1 1

4 _ 2
5_2
5_2 + Z

Z 1 6 _ 2
Z 1 7 _ 2
Z 1 8 _ 2
Z 1 9 _ 2
Z 2 0 _ 2
Z21 2

Z7_
Z6

1000
1000
1000
1000
1000
1000

Z7_
Z6_
Z7

Z12_0
Z13_0
Z13 0

Z12
Z13~
Z13

+ Z12_2
+ Z13_2
+ Z13 2

Z15_0
Z14_0
Z15 0

Z15_
Z14_
Z15

Z15_2
Z14_2
Z15 2

100;
100;
100;

DELAY CONSTRAINTS

* path serivce
* constraint 7
- 11000 Y0_0
- 11000 Y0_1
- 11000 Y0_2
- 11000 Y1_0
- 11000 Yl_l
- 11000 Yl_2
- 11000 Y2_0
- 11000 Y2_l
- 11000 Y2_2
- 11000 Y3_0 •
- 11000 Y3_l
- 11000 Y3_2
- 11000 Y4J) •
- 11000 Y4_l •
- 11000 Y4_2 •
- 11000 Y5_0 •
- 11000 Y5JL •
- 11000 Y5_2
- 11000 Y6_0 •
- 11000 Y6_l •
- 11000 Y6_2 •
- 11000 Y7_0 •
- 11000 Y7_l -
- 11000 Y7_2 •
- 11000 Y8_0 •
- 11000 Y8_l •
- 11000 Y8_2 •
- 11000 Y9_0 •
- 11000 Y9_l •
- 11000 Y9_2 •
- 11000 Y10_0
- 11000 Y10_l
- 11000 Y10_2
- 11000 Y11__0
- liooo m_i
- 11000 Yll_2
- 11000 Y12_0
- 11000 Y12_l
- 11000 Y12_2
- IIOOO Y13_0
- 11000 Y13_l
- 11000 Y13_2
- 11000 Y14_0
- 11000 Y14_l
- 11000 Y14_2
- 11000 Y15_0
- 11000 Y15_l
- 11000 Y15_2
- 11000 Y16_0
- 11000 Y16_l
- 11000 Y16 2

indicator
*/
zo_o
Z0_1
Z0_2
Z1_0
Zl_l
Zl_2
Z2 0

<- 0;
<- 0;
<- 0;
<- 0;

+ Z2 1 <-
Z2_2 <-
Z3_0 <=
Z3_l <=
Z3_2 <=
Z4_0 <=
Z41 <-
Z4_2 <-
Z5_0 <=
Z5_l <-
Z5_2 <=
Z6_0 <=
Z6_l <-
Z6_2 <-
Z7_0 <-
Z7_l <-
Z7_2 <-
Z8 0 <=

Z8_2
Z9_0
Z9_l
Z9_2
t Z10_
f Z10_l
^ Z10_2
f Z11_0
t- Zll_l
^ Zll__2
(• Z12_0
^ Z12_l
f Z12_2
l ZI3_0
I- Z13_l
^ Z13_2
I- Z14_0
^ Z14_l
h Z14_2
¥ Z15_0
t Z15_l
^ Z15_2
^ Z16_0
^ Z16_l
^ Z16 2

<= 0;
<- 0;
<- 0;
<- 0;
0 <-
<- 0;
<» 0;
<- 0;
<- 0;
<- 0;

<- 0;
<- 0;
<- 0;
<- 0;
<= 0;
<- 0;
<- 0;
<= 0;
<- 0;
<=• 0;

<- 0;

185

- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000

Y17 0 4 Z17 0
Y17 1 + Z17 1
Y17_2 + Z17_2
Y18 0 + Z18 0
Y18 1 < Z18 1
Y18 2 + Z18 2
Y19 0 + Z19J)
Y19 1 < Z19 1
Y19 2 + Z19 2
Y20 0 + Z20 0
Y20 1 + Z20 1
Y20 2 i
Y21 0 1
Y21 1 ^
Y21 2 i

* constraint
YO 0 -
YO 1 -
YO 2 -
Yl 0 -
Yl 1 -
VI 2 -
Y2_0 -
Y2~l -
Y2 2 -
B 0 -
Y3 1 -
Y3 2 -
Y4 0 -
Y4 1 -
Y4 2 -
Y5 0 -
VS 1 -
Y5 2 -
Y6 0 -
Y6~l -
Y6~2 -
Y7 0 -
Y7 1 -
Y7 2 -
Y8 0 -
Y8 1 -
18 2 -
Y9 0 -
Y9 1 -
Y9 2 -
Y10 0 -
Y10 1 -
Y10 2 -
Y11~0 -
Yll 1 -
Yll 2 -
Y12 0 -
Y12 1 -
Y12 2 -
Y13 0 -
Y13 1 -
Y13 2 -
Y14 0 -
Y14 1 -
Y14 2 -
Y15 0 -
Y15 1 -
Y15 2 -
Y16 0 -
Y16 1 -
Y16 2 -
Y17 0 -
Y17 1 -
Y17 2 -
Y18 0 -
Y18 1 -
¥lu 2 -
Y19 0 -
Y19 1 -
Y19 2 -
Y20 0 -
Y20 1 -
Y20 2 -
Y21 0 -
Y21 1 -
Y21 2 -

ZO 0
ZOJt
ZO 2
Zl 0
Zl "l
Zl 2
Z2 0
Z2~l
Z2 2
Z3 0
Z3 1
Z3 2
Z4 0
Z4 1
Z4 2
Z5 0
Z5 1
ZS~2
Z6_0
Z6~l
Z6 2
Z7_0
Z7 1
Z7 2
Z8 0
Z8 1
Z8 2
Z9 0
Z9 1
Z9 2
210
zio"
zio"
Zll"
Zll"
Zll"
Z12~
Z12~
Z12"
Z13"
Z13"
Z13"
Z14"
Z14
Z14~
Z15~
Z15~
Z15"
Z16~
Z16"
Z16~
Z17"
Z17"

zn~
Z18~
Z18]
Zlc"
Z19~
Z19
Z19"
Z20"
Z20~
Z20"
Z2l"
Z2l"
Z21~

8

<=

Z20 2
Z21 0
Z21 1
Z21_2

*/
0

<- 0
<• 0
<« 0

<= 0 <- 0

<=
<=
<=
<«
<=
<=
<=
<=
<=
<=
<=

0
0
0
0
0
0
0
0
0
0
0

<- 0

<=
<=

0
0

<- 0

<=
<=

0
0

<= 0

<=
<*
<=
<-o

<*
0
"l
~2
"0
1
~2

"o
~1
~2

"o
"l
2

"o
1
~2

"o
"l
"2

"o
"l
~2

"o
"l
2

"o
*1
~z
"o
"l
"2
0
"l
2
0
"l
2

0
0
0
0
0
0

<=
<=
<=
<=
o

<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<=
<-
<=
<=
<=
<= o

<=
<=
<~
<
<=
<=
<=
<=
<=
<-
<=
<=
<=

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

<=
<=
<=
<-
<=
<-
<=
<=
o

<•
<=
<=
<=
<=
<=

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

186

/*
/*
vo
VI
V2
V3
V4
V5
V6
V7

VI0
VI1
VI2
VI3
/

compute load on link and round it up if necessary */
constraint 9 */

1 - Z0_2 - Z3_0 - Z3 1 - Z3_2 - Z8_0 - Z8_l -
"l - Zl_2 - Z2_0 - Z2~l - Z2_2 - Z9_0 - Z9_l -
1 - Zl 2 - Z3 0 - Z3 1 - Z3 2 - Z9 0 - Z9 1 -

Z0_0 - Zi
Z1_0 - Z
Z1_0 - Z
0;
0;
Z4_0 - Z'
Z5_0 - Z!
Z5_0 - Z!
Z16_0 - :
zi7_o - :
Z18_0 -
Z19_0 -
Z20_0 -
Z21_0 -

constraint '
VO + Z0_0 +
VI + Zl 0 +
V2 +
V3<-
V4<-
V5 H
V6 H
V7 H
V8 H
V9 H

Zl 0

_1 -
_1 -
_1 -
16_1
17_1
Z18
Z19
Z20'
Z21^

T9 V
Z0_1
Zl_l
Zl 1

Z4_2 - Z7_0 -
Z5_2 - Z6_0 -
Z5_2 - Z7_0 -
- Z16_2<- 0;
- Z17_2<- 0;
1 - Z18_2<- 0;
1 - Z19_2<- 0;
1 - Z20_2<- 0;
1 - Z21 2<= 0;

Z7_2
Z6_2
Z7 2

Z12_0
Z13_0
Z13 0

Z12_l
Z13_l
Z13 1

0;
0;
Z4_0
Z5_0
Z5_0
Z16_0 +
Z17_0 +

V10 + Z18_0
Vll + Z19_0
V12 + Z20_0
V13 + Z21 0

Z4_l + Z4_2 + Z7_0
Z5_l + Z5_2 + Z6_0
Z5_l + Z5_2 + Z7_0
Z16_l + Z16_2<- 0;
Z17_l + Z17_2<- 0;
Z18_l + Z18_2<- 0
Z19_l + Z19_2<= 0
Z20_l + Z20_2<- 0
Z21 1 + Z21 2<- 0

Z8_2 - Z11_0 - Zll_l - Zll_2<- 0;
Z9_2 - Z10_0 - Z10_l - Z10_2<- 0;
Z9 2 - Zll 0 - Zll 1 - Zll 2<- 0;

- Z12_2 - Z15_0 - Z15_l - Z15_2<= 0;
- Z13_2 - Z14_0 - Z14_l - Z14_2<- 0;
- Z13 2 - Z15 0 - Z15 1 - Z15 2<- 0;

Z0_2 + Z3_0 + Z3_l + Z3_2 + Z8_0 + Z8_l
Zl_2 + Z2_0 + Z2_l + Z2_2 + Z9_0 + Z9_l
Zl 2 + Z3 0 + Z3 1 + Z3 2 + Z9 0 + Z9 1

Z8_2 + Z11_0 + Zll_l + Zll_2<- 0;
Z9_2 + Z10_0 + Z10_l + Z10_2<= 0;
Z9_2 + Z11_0 + Zll_l + Zll_2<- 0;

Z7
Z6
Z7

1
"l
1

+
+
+

Z7
Z6"
Z7"

2
2
2

+
+
+

Z12
Z13~
Z13"

0

"o
0

+
+
+

Z12
Z13
Z13

1 + Z12_2 + Z15_0 + Z15_l + Z15_2<= 0;
"l + Z13_2 + Z14_0 + Z14_l + Z14_2<- 0;
"l + Z13 2 + Z15 0 + Z15 1 + Z15 2<- 0;

/*
V0
VI
V2
V3
V4
V5
V6

constraint
50 aO <-
50 al <=
50 a2 <=
50 a3 <-
50 a4 <-
50 a5 <=•
50 a6 <=

V7 - 50 a7 <-
V8 - 50 a8 <=
V9 - 50 a9 <-
V10 - 50 alO <= 0
Vll - 50 all <= 0
V12 - 50 al2 <- 0
V13 - 50 al3 <= 0

•/

* cons
- V0
- VI
- V2
- V3
- V4
- V5
- V6
- V7
- V8
- V9
- V10
- Vll
- V12
- V13

traint T10
50 aO <= 0
50 al <- 0
50 a2 <- 0
50 a3 <- 0
50 a4 <= 0
50 a5 <= 0
50 a6 <= 0
50 a7 <- 0
50 a8 <= 0
50 a9 <- 0

+ 50 alO <= 0
+ 50 all <« 0
50 al2
50 al3

compute the index that matches the load on a link to the delay in the lookup table */

/* const
V0 - 0
V0 - 50
VO - 100
VI - 0 -
VI - 50
VI - 100
V2 - 0 -
V2 - 50
V2 - 100
V3 - 0 -
V3 - 50
V3 - 100
V4 - 0 -
V4 - 50
V4 - 100
V5 - 0 -
V5 - 50
V5 - 100

raint 11 */
1500 c0_0 <= 0;

- 1500 cO_l <- 0;
- 1500 c0_2 <- 0;
1500 cl_0 <- 0;
1500 cl_l <- 0;

- 1500 cl_2 <- 0;
1500 c2_0 <- 0;
1500 c2_l <= 0;

- 1500 c2_2 <- 0;
1500 c3_0 <- 0;
1500 c3_l <- 0;

- 1500 c3_2 <- 0;
1500 c4_0 <- 0;
1500 c4_l <- 0;

- 1500 c4_2 <- 0;
1500 c5_0 <- 0;

- 1500 c5_l <- 0;
1500 c5 2 <- 0;

• 0

V6 - 0 - 1500 c6 0 <- 0;
V6 - 50 - 1500 c6 1 <- 0;
V6 - 100 - 1500 c6_2 <- 0:
V7 - 0 - 1500 c7_0 <= 0;
V7 - 50 - 1500 c7_l <= 0;
V7 - 100 - 1500 c7_2 <» 0;
78 - 0 - 1500 c8_0 <- 0;
V8 - 50 - 1500 c8_l <= 0;
V8 - 100 - 1500 c8_2 <» 0;
V8 - 150 - 1500 c8_3 <- 0;
V8 - 200 - 1500 cS_4 <=» 0;
V8 - 250 - 1500 c8_5 <= 0;
V8 - 300 - 1500 c8_6 <= 0;
V8 - 350 - 1500 c8_7 <- 0;
V8 - 400 - 1500 c8_8 <= 0;
V8 - 450 - 1500 c8^9 <- 0;
V8 - 500 - 1500 c8_10 <=
V8 - 550 - 1500 c8_ll <-
V8 - 600 - 1500 c8_12 <=
V8 - 650 - 1500 =8 13 <=
V8 - 700 - 1500 c8~14 <-
V8 - 750 - 1500 c8 15 <-
V8 - 800 - 1500 c8~16 <-
V8 - 850 - 1500 c8_17 <=
V8 - 900 - 1500 c8_18 <- ..
V8 - 950 - 1500 c8_19 <= 0;
V8 - 1000 - 1500 cS_20 <- 0
V9 - 0 - 1500 c9_0 <= 0;
V9 - 50 - 1500 c9_l <- 0;
V9 - 100 - 1500 09 2 <- 0;
V9 - 150 - 1500 c9~3 <- 0;
V9 - 200 - 1500 c9_4 <- 0;
V9 - 250 - 1500 c9_5 <- 0;
V9 - 300 - 1500 <39_6 <» 0;
V9 - 350 - 1500 c9_7 <= 0;
V9 - 400 - 1500 c9_8 <= 0;
V9 - 450 - 1500 c9 9 <= 0;
V9 - 500 - 1500 c9~10 <= 0;
V9 - 550 - 1500 c9_ll <- 0;
V9 - 600 - 1500 c9_12 <» 0;
VS - 650 - 1500 c9_13 <- 0;
V9 - 700 - 1500 c9_14 i- 0;
VS - 750 - 1500 c9_15 <= 0:
V9 - 800 - 1500 c9_16 <- 0;
V9 - 850 - 1500 c9_17 <= 0;
V9 - 900 - 1500 C9_18 <- 0;
VS - 950 - 1500 c9_19 o 0;
V9 - 1000 - 1500 c9_20 <- 0;
V10 - 0 - 1500 clO_0 <» 0;
V10 - 50 - 1500 clO_l <- 0;
VI0 - 100 - 1500 cl0_2 <- 0;
V10 - 150 - 1500 Cl0_3 <- 0;
V10 - 200 - 1500 Ol0_4 <- 0;
V10 - 250 - 1500 cl0_5 <- 0;
V10 - 300 - 1500 Cl0_6 <- 0;
710 - 350 - 1500 clO_7 <- 0;
V10 - 400 - 1500 cl0_8 <> 0;
VI0 - 450 - 1500 Cl0_9 <= 0;
V10 - 500 - 1500 clO_10 <= 0;
VI0 - 550 - 1500 Cl0_ll <= 0;
V10 - 600 - 1500 Cl0_12 <- 0;
V10 - 650 - 1500 Cl0_13 <- 0;
V10 - 700 - 1500 cl0_14 <- 0;
V10 - 750 - 1500 Cl0_15 <- 0;
V10 - 800 - 1500 Cl0_16 <- 0;
V10 - 850 - 1500 cl0_17 <= 0;
V10 - 900 - 1500 clO 18 <- 0;
V10 - 950 - 1500 Cl0~19 <- 0;
V10 - 1000 - 1500 Cl0_20 <« 0;
Vll - 0 - 1500 Cll 0 <- 0:
VI1 - 50 - 1500 clT_l <
Vll - 100 - 1500 cll_2
Vll - 150 - 1500 cll_3
Vll - 200 - 1^00 cll_4
Vll - 250 - 1500 cll 5
Vll - 300 - 1500 cll~6 . .,
Vll - 350 - 1500 cllJJ <- 0;
Vll - 400 - 1500 cll_8 <= 0
Vll - 450 - 1500 cll_9 <= 0
Vll - 500 - 1500 cll_10 <-
Vll - 550 - 1500 cll_ll <-
Vll - 600 - 1500 cll 12 <=
Vll - 650 - 1500 cll~13 <-
Vll - 700 - 1500 cll_14 <-
Vll - 750 - 1500 cll 15 <«

VI1
VI1
VI1
VI1
VIX
VI2
V12
V12
VI2
V12
V12
V12
VI2
V12
VI2
V12
VI2
VI2
VI2
VI2
VI2
VI2
VI2
VI2
VI2
VI2
VI3
VI3
VI3
VI3
VI3
V13
V13
V13
V13
VI3
VI3
VI3
VI3
VI3
VI3
VI3
V13
VI3
VI3
V13
V13

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

800 -
850 -
900 -
950 -
1000

1500
1500
1500
1500

ell 16 <- 0
ell 17 <= 0
ell 18 <=• 0
ell 19 <- 0

- 1500 ell 20 <=
0 - 1500 c
50 -
100 -
150 -
200 -
250 -
300 -
350 -
4 00 -
450 -
500 -
550 -
600 -
650 -
700 -
750 -
800 -
850 -
900 -
950 -
1000

12 0 <- 0;
1500 ol2 1 <= 0;
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500

cl2 2 <= 0;
cl2 3 <- 0;
Cl2 4 <= 0;
012 5 <- 0;
cl2 6 <» 0;
cl2 7 <- 0;
cl2 8 <- 0;
cl2 9 <- 0;
cl2 10 <- 0
Cl2 11 <- 0
012 12 <= 0
ol2 13 <- 0
cl2 14 <- 0
Cl2 15 <- 0
Cl2 16 <- 0
Cl2 17 <= 0
cl2 18 <= 0
c!2 19 <- 0

- 1500 012 20 <-
0 - 1500 cl3 0 <- 0;
50 -
100 -
150 -
200 -
250 -
300 -
350 -
400 -
450 -
500 -
550 -
600 -
650 -
700 -
750 -
800 -
850 -
900 -
950 -
1000

1500 cl3 1 <- 0;
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500

cl3 2 <= 0;
013 3 <- 0;
cl3 4 <= 0;
cl3 5 <- 0;
013 6 <- 0;
cl3 7 <- 0;
Cl3 8 <- 0;
013 9 <- 0;
Cl3 10 <- 0
cl3 11 <- 0
cl3 12 <=- 0
Cl3 13 <- 0
Cl3 14 <=• 0
Cl3 15 <- 0
Cl3 16 <= 0
cl3 17 <- 0
Cl3 18 <= 0
Cl3 19 <- 0

- 1500 Cl3 20 <-
/* constraint Til */
- VO
- VO
- VO
- VI
- VI
- VI
- V2
- V2
- V2

+ 0 -
+ 50
+ 100
+ 0 -
+ 50
+ 100
+ 0 -
+ 50
+ 100

1500 cO 0 <- 0;
- 1500 CO 1 <= 0;
- 1500 CO 2 <- 0
1500 cl 0 <- 0;
- 1500 cl 1 <- 0;
- 1500 cl 2 <= 0
1500 c2 0 <- 0;
- 1500 c2 1 <= 0;
- 1500 c2 2 <- 0

• V3 + 0 - 1500 c3_0 <- 0;
• V3 + 50 - 1500 c3_l <- 0;
• V3 + 100 - 1500 c3_2 <- 0;
• V4 + 0 - 1500 c4_0 <- 0;
• V4 + 50 - 1500 c4_l <- 0;
• V4 + 100 - 1500 c4_2 <- 0;
• V5 + 0 - 1500 c5_0 <= 0;
• V5 + 50 - 1500 c5_l <- 0;
• V5 + 100 - 1500 c5_2 <= 0;
• V6 + 0 - 1500 c6_0 <= 0;
• V6 + 50 - 1500 c6_l <- 0;
• V6 + 100 - 1500 c6_2 <- 0;
• V7 + 0 - 1500 c7_0 <- 0;
• V7 + 50 - 1500 c7_l <- 0;
• V7 + 100 - 1500 c7_2 <- 0;
• V8 + 0 - 1500 c8_0 <- 0;
• V8 H- 50 - 1500 C8_l <= 0;
V8 + 100 - 1500 c8_2 <- 0;
V8 + 150 - 1500 c8_3 <- 0;

• V8 + 200 - 1500 c8_4 <- 0;
• V8 + 250 - 1500 c8_5 <= 0;
• V8 + 300 - 1500 c8_6 <= 0;
• V8 + 350 - 1500 c8_7 <= 0;
• V8 + 400 - 1500 o8_8 <- 0;
• V8 + 450 - 1500 c8_9 <- 0;
• V8 + 500 - 1500 c8_10 <- 0;
• V8 + 550 - 1500 c8_ll <= 0;
• V8 + 600 - 1500 c8 12 <- 0;

189

V8 + 650 -
V8 + 700 -
V8 + 750 -
V8 + 800 -
V8 + 850 -
V8 + 900 -
V8 + 950 -
V8 + 1000

1500 c8 13 <= 0;
1500 c8 14 <= 0;
1500 c8 15 <= 0;
1500 c8 16 <- 0;
1500 c8 17 <- 0;
1500 c8 18 <= 0;
1500 c8 19 <» 0;

- 1500
V9 + 0 - 1500 c9
V9 + 50 -
V9 + 100 -
V9 + 150 -
V9 + 200 -
V9 + 250 -
V9 + 300 -
V9 t 350 -
V9 + 4 00 -
V9 + 450 -
V9 + 500 -
V9 + 550 -
V9 4 600 -
V9 + 650 -
V9 + 700 -
V9 + 750 -
V9 + 800 -
V9 + 850 -
V9 + 900 -
V9 + 950 -
V9 + 1000
VI0
V10
V10
VI0
V10
V10
V10
VI0
VI0
VI0
V10
VI0
VI0
V10
V10
V10
VI0
V10
VI0
V10
V10
Vll
Vll
Vll
Vll
Vll
Vll
Vll
Vll
Vll
Vll
Vll
Vll
Vll
Vll
Vll
Vll
Vll
Vll
Vll
Vll
Vll
V12
V12
vl^
V12
V12
VI2
VI2
V12
VI2
VI2
VI2
V12
V12
V12

+ 0 -
+ 50 -
+ 100
+ 150
+ 200
+ 250
+ 300
+ 350
+ 400
+ 450
+ 500
+ 550
+ 600
+ 650
*• 700
t 750
t 800
+ 850
+ 900
+ 950
+ 100C
+ 0 -
+ 50 -
+ 100
+ 150
+ 200
+ 250
+ 300
+ 350
+ 400
+ 450
+ 500
+ 550
+ 600
+ 650
+ 700
+ 750
+ 800
+ 850
+ 900
+ 950

1500 c

c8 20 <- 0:

a <- o;
3 1 <- 0;

1500 c9 2 <- 0;
1500 c9 3 <= 0;
1500 c9 4 <- 0;
1500 c9 5 <= 0;
1500 c9 6 <- 0;
1500 c9 7 <= 0;
1500 c9 8 <- 0;
1500 o9 9 <- 0;
1500 c9 10 <= 0;
1500 c9 11 <- 0;
1500 C9 12 <= 0;
1500 c9 13 <- 0;
1500 c9 14 <- 0;
1500 c9 15 <- 0;
1500 c9 16 <- 0;
1500 c9 17 <- 0;
1500 c9 18 <- 0;
1500 c9 19 <- 0;
- 1500 C9 20 <- 0;
1500 clO 0 <- 0;
1500 ClO 1 <- 0;

- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500

ClO 2 <- 0
ClO 3 <= 0
ClO 4 <- 0
ClO 5 <- 0
ClO 6 <- 0
ClO 7 <- 0
ClO 8 <- 0
ClO 9 <= 0
ClO 10 <-
ClO 11 <-
ClO 12 <=
ClO 13 <-
ClO 14 <-
ClO 15 <=
ClO 16 <-
ClO 17 <=
ClO 18 <-
ClO 19 <=

0;
3;
3;
D;
D;
3;
0;
1:
0;
3;

- 1500 ClO 20 <- 0
1500 c 11 0 <- 0;
1500 ell 1 <= 0;

- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500

ell 2 <- 0
ell 3 <» 0
ell 4 <= 0
ell 5 <- 0
Cll 6 <- 0
ell 7 <= 0
Cll 8 <= 0
cll 9 <- 0
Cll 10 <-
cll 11 <=
cll 12 <-
cll_13 <=
cll 14 <-
cll 15 <-
cll 16 <=
cll 17 <=
cll 18 <=
cll 19 <=

D;
3;
3;
3;
3;
3;
3;
3;
3;
3;

+ 1000 - 1500 ell 20 <= 0
+ 0 -
+ 50 -
t- 100
t 150
+ 200
+ 250
+ 300
+ 350
+ 400
+ 450
+ 500
+ 550
+ 600
+ 650

1500 cl2 0 <- 0;
1500 cl2 1 <- 0;

- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500
- 1500

Cl^ ^ ^- 0;
Cl2 3 <- 0
Cl2 4 <- 0
Cl2 5 <= 0
cl2 6 <- 0
Cl2 7 <- 0
cl2 8 <- 0
Cl2 9 <- 0
Cl2 10 <=
Cl2 11 <=
Cl2 12 <=
Cl2 13 <-

0;
0;
0;
0;

190

VI2
VI2
V12
VI2
VI2
VI2
VI2
VI3
VI3
VI3
VI3
V13
VI3
V13
V13
V13
V13
V13
V13
V13
V13
V13
V13
V13
V13
V13
V13
V13

700 -
750 -
800 -
850 -
900 -
950 -
1000 •
0 - 1 5
5 0 - 1
100 -
150 -
200 -
250 -
300 -
350 -
400 -
450 -
500 -
550 -
600 -
650 -
700 -
750 -
800 -
850 -
900 -
950 -
1000

1500 cl2
1500 cl2'
1500 cl2'
1500 Cl2'
1500 cl2'
1500 cl2^

1500 d 2
00 cl3_0
500 cl3_l
1500 cl3_
1500 cl3_
1500 cl3_
1500 Cl3_
1500 cl3_
1500 Cl3_
1500 Cl3_
1500 cl3
1500 cl3'
1500 Cl3"
1500 cl3'
1500 cl3'
1500 cl3'
1500 Cl3"
1500 Cl3"
1500 Cl3"
1500 Cl3^
1500 cl3_

1500 013

14 <=
15 <-
16 <=

17 <-

18 <-
19 <- 0;
20 <= 0
- 0;

<= 0;

9 <•

10 <

1 1 <

12 <
13 <
14 <
15 <

16 <
17 <
18 <

19 <
20 <-

/* constraint
cO 0 -f cO 1 +

cl_0 +
c2_0 +
c3_0 +
c4_0 +
c5_0 -t-
c6_0 +
c7_0 +
c8_0 +
c8_16
c9 0 +

cl_l +
c2_l +
c3_l +
c4_l +
c5_l +
c6_l +
c7_l +
c8_l +
- c8_17
c9 1 +

c9_16 + c9_17
Cl0_0 + Cl0_l
cl0_14 + clO
cll_0 + cll_l
cll_14 + ell
Cl2_0 + Cl2_l
cl2_14 + cl2
Cl3_0 + cl3_l
Cl3 14 + ol3

12 */
cO_2 <
cl_2 <
c2_2 <
c3_2 <
c4_2 <
c5_2 <
c6_2 <
c7_2 <
c8_2 +
+ c8_18
c9_2
+ C9_18
+ Cl0_2

+ clO
cll_2'
+ ell
Cl2_2'
+ cl2
Cl3_2"
+ Cl3

2;
2;
2 ;
2 ;
2 ;
2 ;
2 ;
2 ;

c8_3 + c8_4 + c8_5 + o8_6 + c8_7 + c8_8 + c8_9 + c8_10 + c 8 _ l l + c8_12 + c8_13 + c8_14 + c8_15 +
+ c8_19 + c8_20 <= 20;

c9_3 + c9_4 + c9_5 + c9_6 + c9_7 + c9_8 + c9_9 f c9_10 f c 9 _ l l + c9_12 + c9_13 + c9_14 + c9_15 +
+ c9_19 + c9_20 <- 20;
+ Cl0_3 + cl0_4 + ol0_5 + c l0_6 + c l0_7 + c l0_8 + Cl0_9 + clO_10 + c l O _ l l + c l0_12 + c l0_13 +
16 + Cl0_17 + Cl0_18 + c l0_19 + clO_20 <- 20;
+ c l l _ 3 + c l l _ 4 + c l l _ 5 + c l l _ 6 + c l l _ 7 + c l l _ 8 + c l l _ 9 + c l l _ 1 0 + c l l _ l l + c l l _ 1 2 + c l l _ 1 3 +
16 + cll_17 + oll_18 + cll_19 + cll_20 <- 20;
+ Cl2_3 + Cl2_4 + Cl2_5 + Cl2_6 + cl2_7 + cl2_8 + Cl2_9 + Cl2_10 + Cl2_ll + ol2_12 + Cl2_13 +

16 + cl2_17 + cl2_18 + Cl2_19 + cl2_20 <= 20;
+ cl3_3 + cl3_4 + cl3_5 + cl3_6 + cl3_7 + cl3_8 + Cl3_9 + cl3_10 + cl3_ll + cl3_12 + cl3_13 +
16 + Cl3 17 + Cl3 18 + Cl3 19 + Cl3 20 <= 20;

/* cons
k0_0

kO_l
k0_2
kl_0
kl_l

kl_2
k2_0
k2_l
k2_2
k3_0
k3_l
k3_2
k4_0
k4_l
k4_2
k5_0

k5_l
k5_2

k6_0
k6_l
k6_2
k7_o
k7_l
k7_2
k8_0
k8_l
k8_2
k8_3
k8_4
k8_5
k8_6
k8_7
k8 8

traint 13
cO 0 <=

•I

c0_l <=
c0_2 <-
cl_0 <=
cl_l <=
cl_2 <-
c2_0 <-
c2_l <-
c2_2 <=
c3_0 <=
c3_l <=
c3_2 <-
c4_0 <=
c4_l <-
c4_2 <-
c5_0 <-
c5_l <-
c5_2 <-
c6_0 <-
c6_l <-
c6 2 <-

c7_l <-
c7_2 <-
c8_0 <=
c8_l <-
c8_2 <-
c8_3 <-
c8_4 <=
c8_5 <=
c8_6 <=
c8 7 <-

k8_9 + c8_9 <= 1;
k8_10 + c8_10 <= 1;
k 8 _ l l + c 8 _ l l < - 1;
k8_12 + c8_12 <= 1;
k8_13 + c8_13 <= 1;
k8_14 + c8_14 <- 1;
k8_15 + c8_15 <- 1;
k8_16 + c8_16 <- 1;
k8_17 + c8_17 <- 1;
k8_18 + c8_18 <« 1;
k8_19 + c8_19 <- 1;
k8_20 + c8_20 <- 1;
k9_0 + c9_0 <- 1;
k9_l + c9_ l <- 1;
k9_2 + c9_2 <= 1;
k9_3 + c9_3 <=• 1;
k9_4 + c9_4 <= 1;
k9_5 + c9_5 <- 1;
k9_6 + c9_6 <- 1;
k9_7 + c9_7 <= 1;
k9_8 + c9_8 <• 1;
k9_9 + c9_9 <= 1;
k9_10 + o9_10 <- 1;
k 9 _ l l + c 9 _ l l < - 1;
k9_12 + c9_12 <- 1;
k9_13 + c9_13 <- 1;
k9_14 + c9_14 <- 1;
k9_15 + c9_15 <= 1;
k9_16 + c9_16 <= 1;
k9_17 + c9_17 <- 1;
k9_18 + c9_18 <= 1;
k9_19 + c9_19 <= 1;
k9_20 + c9_20 <- 1;
klO_0 + clO_0 <= 1;
klO_l + olO_l <= 1;
kl0_2 + c l0_2 <- 1;
klO_3 + Cl0_3 <= 1;
klO_4 + Cl0_4 <- 1;
klO_5 + Cl0_5 <- 1;
kl0_6 + Cl0_6 <= 1;
kl0_7 + Cl0_7 <- 1;
kl0_8 + Cl0_8 <- 1;
k l0_9 + clO_9 <- 1;
klO_10 + clO_10 <- 1
k lO_ l l + c l O _ l l <- 1
klO_12 + clO_12 <- 1
klO_13 + c l0_13 <- 1
klO_14 + Cl0_14 <- 1
kl0_15 + Cl0_15 <• 1.
kl0_16 + Cl0_16 <= 1
kl0_17 + Cl0_17 <- 1.
kl0_18 + c l0_18 <- 1
klO_19 + Cl0_19 <= 1
kl0_20 + Cl0_20 <- 1
k l l _ 0 + c l l _ 0 <- l ;
k l l _ l + c l l _ l < - 1;
k l l _ 2 + c l l _ 2 <- 1;
k l l _ 3 + c l l _ 3 <- 1;
k l l _ 4 + c l l _ 4 <- 1;
k l l _ 5 + c l l _ 5 <= 1;
k l l _ 6 + c l l _ 6 <- 1;
k l l _ 7 + c l l _ 7 <- 1;
k l l _ 8 + c l l _ 8 <- 1;
k l l _ 9 + o l l _ 9 <- 1;
k l l _ 1 0 + c l l _ 1 0 <- 1,
k l l _ l l + c l l _ l l <« 1:
k l l _ 1 2 + c l l _ 1 2 <= 1;
k l l _ 1 3 + c l l _ 1 3 <= 1,
k l l_14 + c l l _ 1 4 <- 1;
k l l _ 1 5 + c l l _ 1 5 <- 1;
k l l _ 1 6 + c l l _ 1 6 <= 1,
k l l _ 1 7 + c l l _ 1 7 <- 1;
k l l _ 1 8 + c l l _ 1 8 <- 1;
k l l _ 1 9 -t- c l l _ l 3 < - l i
k l l _ 2 0 + c l l _ 2 0 <- 1;
kl2_0 + Ol2_0 <- 1;
kl2__l + Cl2_l <- 1;
kl2_2 + Cl2_2 <- 1;
k l2_3 + Cl2_3 <= 1;
kl2_4 + c l2_4 <- 1;
k l2_5 + c l2_5 <- 1;
k l2_6 + c l2_6 <= 1;
kl2_7 + c l2_7 <- 1;
kl2_8 + Cl2_8 <= 1;
kl2_9 + 0l2_9 <= 1;

192

kl2 10 +
kl2 11 +
kl2 12 +
kl2 13 +
kl2 14 +
kl2 15 +
kl2 16 +
kl2 17 +
kl2 18 +
kl2 19 +
kl2 20 +

cl2 10 <-
cl2 11 <-
cl2 12 <=
Cl2 13 <=
cl2 14 <=
cl2~15 <-
Cl2~16 <-
Cl2 17 <=
cl2 18 <-
cl2 19 <-
cl2 20 <-

kl3 0 + cl3 0 <= 1
kl3 1 + cl3 1 <- 1
kl3 2 + Cl3 2 <= 1
kl3 3 + Cl3_3 <- 1
kl3 4 + cl3_4 <- 1
kl3 5 + cl3 5 <= 1
kl3 6 + cl3 6 <- 1
kl3 7 + cl3_7 <= 1
kl3 8 + cl3~8 <- 1
kl3 9 + Cl3 9 <= 1
kl3 10 +
kl3 11 +
kl3 12 +
kl3 13 +
kl3 14 +
kl3 15 +
kl3 16 +
kl3 17 +
kl3 18 +
kl3 19 +
kl3_20 +

/* const
- kO 0 -
- kO 1 -
- k0~2 -
- kl 0 -
- kl 1 -
- kl 2 -
- k2 0 -
- k2 1 -
- k2 2 -
- k3 0 -
- k3~l -
- k3 2 -
- k4 0 -
- k4 1 -
- k4 2 -
- k5 0 -
- k5_l -
- k5~2 -
- k6 0 -
- k6 1 -
- k6 2 -
- k7 0 -
- k7 1 -
- k7 2 -
- k8 0 -
- kB 1 -
- k8~2 -
- k8 3 -
- k8 4 -
- k8 5 -
- k8 6 -
- k8~7 -
- k8 8 -
- k8 9 -
- k8 10
- k8 11
- k8 12
- k8~13
- k8 14
- kO 15
- k8 16
- k8 17
- k8 18
- k8 19
- k8 20
- k9 0
- k9 1
- k9 2
- k9 3
- k9 4
- k! 5

cl3 10 <-
cl3~ll <-
cl3_12 <-
cl3 13 <-
cl3 14 <=•
cl3~15 <-
cl3 16 <=
cl3 17 <=
cl3 18 <-
cl3~19 <=
Ol3_20 <-

raint T13
CO 0 <= -
cO 1 <« -
cO 2 <= -
cl 0 <= -
cl 1 <- -
cl 2 <= -
c2 0 <- -
c2 1 <= -
c2 2 <- -
c3 0 <- -
c3 1 <
c3_2 <- -
c4 0 <- -
c4 1 <- -
c4 2 <• -
c5 0 <- -
c5 1 <- -
ci 2 <= -
c6 0 <= -
c6 1 <- -
c6~2 <= -
o7 0 <
c7 1 <- -
c7 2 <- -
c8~0 <- -
c8 1 <- -
c8 2 <- -
c8 3 <- -
c8 4 <- -
c8 5 <« -
c8 6 <- -
c8 7 <- -
c8 8 <- -
c8 9 <- -

- C8 10 <•
- c8 11 <=
- c8 12 <•
- c8~13 <•
- c8_14 <=
- c8 15 <
- 08 16 <•
- C8 17 <•
- c8 18 <
- c8" 19 <
- c8_20 <
- c9 0 <-
- c9 1 <-
- C9_2 <=
- c9 3 <=
- c9 4 <-
- c9 5 <=

1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;

1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;

*/
1;
l!
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
1;
-1
-1

- -1
. -1
= -1
-i

. -1
• - 1

• - 1

= -1
= -1
-1;
-1;
-1;
-1;
-1;
-1;

193

k9 6 -
k9 7 -
k9 B -
k9~9 -
k9 10 -
k9 11 -
k9 12 -
]<9 13 -
k9 14 -
k9 15 -
k9 16 -
k9 17 -
k9 18 -
k9 19 -
k9 20 -
klO 0 -
klO 1 -
klO 2 -
klO 3 -
klo""4 -
klO 5 -
klO 6 -
klO 7 -
klO e -
kl0~9 -
klO 10
klO 11
klO 12
klO 13
klO 14
klO 15
klO 16
klO 17
klO 18
klO 19
klO~20
kll 0 -
kll_l -
kll 2 -
kll 3 -
kll 4 -
kll 5 -
kll~6 -
kll 7 -
kll~6 -
kll 9 -
kll~10
kll_ll
kll 12
kll 13
kll 14
kll 15
kll 16
kll 17
kll 18
kll 19
kll_20
kl2 0 -
kl2 1 -
kl2 2 -
kl2 3 -
kl2 4 -
kl2 5 -
kl2 6 -
kl2 7 -
kl2 8 -
kl2 9 -
kl2 10
kl2 11
kl2 12
kl2 13
kl2 14
kl2 15
kTC 1G
kl2 17
kl2 '18
kl2 19
kl2~20
kl3 0 -
kl3 1 -
kl3 2 -
kl3 3 -
kl3 4 -
kl3 5 -
kl3~6 -

c9 6 <= -1
c9 7 <- -1
c9 8 <- -1
c9 9 <- -1
c9 10 <- -1
c9_ll <- -1
c9 12 <= -1
c9~13 <= -1
c9~14 < 1
c9~15 <- -1
c9 16 <- -1
c9 17 <= -1
c9 18 <- -1
c9 19 <= -1
c9 20 <» -1
clO 0 <- -1
clO 1 <- -1
clO 2 <- -1
ClO 3 <- -1
ClO 4 <- -1
el0~5 <- -1
ClO 6 <- -1
cl0_7 <= -1
clO 8 <= ~1
Cl0_9 <- -1

- Cl0_10 <- -1
- ClO 11 <« -1
- ClO 12 <- -1
- C10~13 <- -1
- Cl0~14 <= -1
- ClO 15 <- -1
- ClO 16 <= -1
- ClO 17 <- -1
- Cl0~18 <- -1
- clO 19 <- -1
- clO 20 <- -1
cll_0 <« -1
cll~l < 1
ell 2 <= -1
ell 3 <- -1
ell 4 <- -1
ell 5 <- -1
ell 6 <- -1
ell 7 <- -1
ell 8 <- -1
ell 9 <- -1
- cll_10 <« -1
- ell 11 <- -1
- ell 12 <• -1
- ell 13 <== -1
- ell 14 <- -1
- cll~15 <- -1
- ell 16 <= -1
- ell 17 <- -1
- ell 18 < 1
- ell 19 <« -1
- ell 20 <- -1
Cl2 0 <•= -1
Cl2 1 o -1
Cl2 2 <• -1
Cl2 3 <- -1
cl2 4 <- -1
Cl2~5 <= -1
cl2 6 <= -1
cl2 7 <- -1
cl2 8 <= -1
el2 9 <- -1
- cl2 10 <•= -1
- cl2 11 <- -1
- cl2 12 <- -1
- cl2 13 <- -1
- el2 14 <- -1
- cl2 15 <- -1
- t-12 10 <;*• -X

- Cl2 17 <- -1
- Cl2_18 <- -1
- cl2 19 <- -1
- Cl2_20 <- -1
Cl3 0 <- -1
Cl3 1 <- -I
013 2 <- -1
cl3 3 <- -1
Cl3 4 <- -1
Cl3~5 <- -1
el3 6 <= -1

kl3 7 -
kl3 8 -
kl3 9 -
kl3 10
kl3 11
kl3 12
kl3 13
kl3 14
kl3 15
kl3 16
kl3 17
kl3 18
kl3 19
kl3 20

cl3 7 <- -1;
Cl3 8 <= -1;
cl3 9 <= -1;

- cl3 10 < 1
- Cl3 11 <- -1
- Cl3 12 <= -1
- Cl3 13 <= -1
- Cl3 14 <= -1
- Cl3 15 <= -1
- Cl3 16 <= -1
- Cl3 17 <= -1
- Cl3 18 <- -1
- Cl3 19 <- -1
- Cl3 20 <- -1

/* compute delay on link and then path */

/*
GO
Gl
G2
G3
G4
G5
G6
G7
G8 10

constraint 14
200 k0_l -
200 kl_l -
200 k2_l -
200 k3_l -
200 k4_l -
200 k5_l -
200 k6_l -
200 k7_l
9 k8_l -

k8_12 - 29 k8_13
G9 - 9 k9_l - 10
k9_12 - 29 k9_13
G10 - 9 kl0_l -
kl0_ll - 25 klO
<- 0;
Gil - 9 kll_l -
kll_ll - 25 kll
<- 0;
G12 - 9 kl2_l -
kl2_ll - 25 kl2
<= 0;
G13 - 9 kl3_l -
kl3_ll - 25 kl3
<= 0;

*/
500 k0_2 <- 0
500 kl_2 <- 0
500 k2_2 <« 0
500 k3_2 <- 0
500 k4_2 <- 0
500 k5_2 <- 0
500 k6_2 <- 0
500 k7_2 <= 0
k8_2 - 11 k8_3 - 12 k8_4 - 13 k8_5
- 33 k8_14 - 40 k8_15 - 50 k8_16 -
k9_2 - 11 k9_3 - 12 k9_4 - 13 k9_5
- 33 k9_14 - 40 k9_15 - 50 k9_16 -
10 kl0_2 - 11 kl0_3 - 12 kl0_4 - 13
12 - 29 kl0_13 - 33 kl0_14 - 40 kl0_

10 kll_2 - 11 kll_3 - 12 kll_4 - 13
12 - 29 kll_13 - 33 kll_14 - 40 kll_

10 kl2_2 - 11 kl2_3 - 12 kl2_4 - 13
12 - 29 kl2_13 - 33 kl2_14 - 40 kl2_

10 kl3_2 - 11 kl3_3 - 12 kl3_4 - 13
12 - 29 kl3 13 - 33 kl3 14 - 40 kl3

- 14 k8_6 - 15 k8_7 - 16 k8_8 - 18 k8_9 - 20 k8_10 - 22 k8_ll - 25
67 k8_17 - 100 k8_18 - 200 k8_19 - 500 k8_20 <- 0;
- 14 k9_6 - 15 k9_7 - 16 k9_8 - 18 k9_9 - 20 k9_10 - 22 k9_ll - 25
67 k9_17 - 100 k9_18 - 200 k9_19 - 500 k9_20 <- 0;
kl0_5 - 14 kl0_6 - 15 kl0_7 - 16 kl0_8 - 18 kl0_9 - 20 kl0_10 - 22
15 - 50 kl0_16 - 67 kl0_17 - 100 kl0_18 - 200 kl0_19 - 500 kl0_20

kll_5 - 14 kll_6 - 15 kll_7 - 16 kll_8 - 18 kll_9 - 20 kll_10 - 22
15 - 50 kll_16 - 67 kll_17 - 100 kll_18 - 200 kll_19 - 500 kll_20

kl2_5 - 14 kl2_6 - 15 kl2_7 - 16 kl2_8 - 18 kl2_9 - 20 kl2_10 - 22
15 - 50 kl2_16 - 67 kl2_17 - 100 kl2_18 - 200 kl2_19 - 500 kl2_20

kl3_5 - 14 kl3_6 - 15 kl3_7 - 16 kl3_8 - 18 kl3_9 - 20 kl3_10 - 22
15 - 50 kl3 16 - 67 kl3 17 - 100 kl3 18 - 200 kl3 19 - 500 kl3 20

- Gl
- G2
- G3
- G4
- G5
- G6
- G7

/* constraint T14
- GO + 200 k0_l

200 kl_l
200 k2_l
200 k3_l
200 k4_l
200 k5_l
200 k6_l
200 k7_l

- G8 + 9 k8_l + 10
25 k8_12 + 29 k8_13
- G9 + 9 k9_l + 10
25 k9_12 + 29 k9_13
- G10 + 9 kl0_l +
22 kl0_ll + 25 klO
kl0_20 <- 0;
- Gil + 9 kll_l +
22 kll_ll + 25 kll
kll_20 <- 0;
- G12 + 9 kl2_l +
22 kl2_ll + 25 kl2
kl2_20 <- 0;
- G13 + 9 kl3_l +
22 kl3_ll + 25 kl3
kl3 20 <- 0;

/
500 k0_2
500 kl_2
500 k2_2
500 k3_2
500 k4_2
500 k5_2
500 k6_2
500 k7_2
k8

<= 0
<= 0
<- 0
<- 0
<- 0
<- 0
<- 0
<= 0
11 k8

+ 33 k8_14 + 40 k8_15 + 50 k8_16 +
k9_2 + 11 k9_3 + 12 k9_4 + 13 k9_5
+ 33 k9_14 + 40 k9_15 + 50 k9_16 +
10 kl0_2 + 11 kl0_3 + 12 kl0_4 + 13
12 + 29 klO 13 + 33 klO 14 + 40 klO

12 k8_4 + 13 k8_5 + 14 k8_6 + 15 k8_7 + 16 k8_8 + 18 k8_9 + 20 k8_10 + 22 k8_ll
67 k8_17 + 100 k8_18 + 200 k8_19 + 500 k8_20 <= 0;
+ 14 k9_6 + 15 k9_7 + 16 k9_8 + 18 k9_9 + 20 k9_10 + 22 k9_ll
67 k9_17 + 100 k9_18 + 200 k9_19 + 500 k9_20 <- 0;
klO 5 + 14 klO 6 + 15 klO 7 + 16 klO 8 + 18 klO 9 + 20 klO 10
15 + 50 klO 16 + 67 klO 17 + 100 klO 18 + 200 klO 19 500

10 kll_2 + 11 kll_3 + 12 kll_4 + 13
12 + 29 kll 13 + 33 kll 14 + 40 kll

10 kl2_2 + 11 kl2_3 + 12 kl2_4 + 13
12 + 29 kl2 13 + 33 kl2 14 + 40 kl2

10 kl3_2 + 11 kl3 3 + 12 kl3_4 + 13
12 + 29 kl3 13 + 33 kl3 14 + 40 kl3

kll_5 + 14 kll_6 + 15 kll_7 + 16 kll_8 +
15 + 50 kll 16 + 67 kll 17 + 100 kll 18

18 kll_9 + 20 kll_10
• 200 kll 19 + 500

kl2_5 + 14 kl2_6 + 15 kl2_7 + 16 kl2_8 + 18 kl2_9 + 20 kl2_10
15 + 50 kl2 16 + 67 kl2 17 + 100 kl2 18 + 200 kl2 19 + 500

kl3_5 + 14 kl3_6 + 15 kl3_7
15 + 50 kl3 16 + 67 kl3 17

+ 16 kl3_
100 kl3

18 kl3_9 + 20 kl3_10
+ 200 kl3 19 + 500

/* constraint 15
HO - GO <- '/
HI -
H2 -
H3 -
H4 -
H5 -
H6 -
H7 -
H8 -
H9 -
H10
Hll
H12
H13
H14

Gl - G2
Gl <- 0;
GO - G2
G5 <= 0;
G6 - G7
G6 <- 0;
G5 - G7
GO <= 0;
Gl - G2
- Gl <= 0
- GO - G2
- G5 <« 0
- G6 - G7
- G6 <= 0

195

H15 - G5 - G7 <- 0;
H16 - G8 <- 0;
H17 - G9 <- 0;
H18 - G10 <- 0;
H19 - Gil <- 0;
H20 - G12 <= 0;
H21 - G13 <= 0;

/* constraint T15 */
- HO + GO <- 0;
- HI + Gl + G2 <- 0;
- H2 + Gl <- 0;
- H3 + GO + G2 <- 0;
- H4 + G5 <» 0;
- H5 + G6 + G7 <- 0;
- H6 + G6 <- 0;
- H7 + G5 + G7 <- 0;
- H8 + GO <- 0;
- H9 + Gl + G2 <- 0;
- H10 + Gl <= 0;
- Hll + GO + G2 <- 0;
- H12 + G5 <= 0;
- H13 + G6 + G7 <= 0;
- H14 + G6 <- 0;
- H15 + G5 + G7 <= 0;
- H16 + G8 <- 0;
- H17 + G9 <= 0;
- H18 I G10 <= 0;
- H19 + Gil <- 0;
- H20 + G12 <= 0;
- H21 + G13 <- 0;

/* meeting delay requirements */

/* constraint 16 */
- Y16_0 - r0_0_0_16 <- - 1 ;
- Y16_2 - r0_0_2_16 <« - 1 ;
- Y2_2 - r0_2_2_2 < 1;
- Y3_2 - r0_2_2_3 <= - 1 ;
- Y8_0 - r l_0_0_8 < 1;
- Y9_0 - r l_0_0_9 <= - 1 ;
- Y8_2 - r l_0_2_8 <- - 1 ;
- Y9_2 - r l_0_2_9 <•= - 1 ;
- Y10_0 - r2_0_0_10 <- - 1 ;
- Y11_0 - r 2 J) _ 0 _ l l <- - 1 ;
- Y10_2 - r2_0_2_10 <= - 1 ;
- Vll_2 - r 2 _ 0 _ 2 _ l l <= - 1 ;
- Y18_2 - r2_2_2_18 <- - 1 ;
- Y12_l - r3_5_l_12 <- - 1 ;
- Y13_l - r3_5_l_13 <- - 1 ;
- Y14 1 - r4_5_l_14 <- - 1 ;
- Y15_l - r4_5_l_15 <= - 1 ;
- Y21_l - r5_5_l_21 <- - 1 ;

/* constraint 17 */
Y16_0 + r0_0_0_16 <= 1;
Y16_2 + r0_0_2_16 <- 1;
Y2_2 + r0_2_2_2 <- 1;
Y3_2 + r0_2_2_3 <- 1;
Y8_0 + rl_0_0_8 <= 1;
Y9_0 + rl_0_0_9 <= 1;
Y8_2 + rl_0_2_8 <- 1;
Y9_2 + rl_0_2_9 <- 1;
Y10_0 + r2_0_0_10 <- 1;
Y11_0 + r2_0_0_ll <- 1;
Y10_2 + r2_0_2_10 <- 1;
Yll_2 + r2_0_2_ll <- 1;
Y18_2 t r2_2_2_18 <- 1;
I12_l + r3_5_l_12 <= 1;
Y13_l + r3_5_l_13 <- 1;
Y14 1 + r4_5 1_14 <= 1;
Y15~l + r4_5̂ "l_15 <- 1;
Y21_l + r5_5_l_21 <- 1;

/* constraint 18 */

H16 - 1500 r0_0_0_16 <- 1000;
H16 - 1500 r0_0_2_16 <- 15;
H2 - 1500 r0_2_2_2 <= 1000;
H3 - 1500 r0_2_2_3 <- 1000;
H8 - 1500 rl_0_0_8 <- 1000;
H9 - 1500 rl_0_0_9 <= 1000;
H8 - 1500 rl_0_2_8 <= 15;
H9 - 1500 rl_0_2_9 <= 15;
H10 - 1500 r2 0 0 10 <= 1000;

Hll - 1500 r2 0 0 11 <- 1000
H10 - 1500 r2 0 2 10 <- 15;
Hll - 1500 r2 0 2 11 <- 15;
H18 - 1500 r2 2 2 18 <- 1000
H12 - 1500 r3 5 1 12 <= 1000
H13 - 1500 r3 5 1 13 <- 1000
H14 - 1500 r4 5 1 14 '= 1000
H15 - 1500 r4 5 1 15 <- 1000
H21 - 1500 r5_5_l_21 <= 1000
* constraint 19 */
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000
- 11000

Y16_0 - 11000
Y16 1 - 11000
Y16 2 - 11000

Y8 0 - 11000 Y9 0
Y8 1 - 11000 Y9 1
Y8 2 - 11000 Y9 2

Y0_0 - 11000 Yl 0 - 11000 Y17 0
Y0_1 - 11000 Yl 1 - 11000 Y17 1
YO 2 - 11000 Yl 2 - 11000 Y17 2
Y2 0 - 11000 Y3 0 - 11000 Y18 0
Y2 1 - 11000 Y3 1 - 11000 Y18 1
Y2 2 - 11000 Y3 2 - 11000 Y18 2
Y19 0 - 11000
Y19 1 - 11000
Y19 2 - 11000
Y20~ 0 - 11000
Y20 1 - 11000
Y20 2 - 11000
Y12 0 - 11000
Y12 1 - 11000
Y12 2 - 11000

* constraint 20 */
+ Y16 0
+ Y16 1
+ Y16 2

+ Y8 0 + Y9 0
+ Y8 1 + Y9 1
+ Y8 2 + Y9 2

+ YO 0 + Yl 0 + Y17 0
+ Y0~1 + Yl 1 + Y17 1
+ YO 2 + Yl 2 + Y17 2
+ Y2 0 + Y3 0 + Y18 0
+ Y2 1 + Y3 1 + Y18 1
+ Y2 2 + Y3 2 + Y18 2
+ Y19 0
+ Y19 1
t Y19 2
+ Y20 0
+ Y20 1
t Y20 2
+ Y12~0
+ Y12 1
+ Y12_2

+ Y4 0 + Y5 0
+ Y4 1 + Y5 1
+ Y4 2 + Y5 2
+ Y6 0 + Y7 0
+ Y6_l + Y7 1
+ Y6 2 + Y7 2
+ Y13 0 + Y14
+ Y13 1 + Y14"
+ Y13_2 + Y14

Y4 0 - 11000 Y5 0
Y4 1 - 11000 Y5 1
Y4 2 - 11000 Y5 2
Y6 0 - 11000 Y7 "o
Y6 1 - 11000 Y7 1
Y6 2 - 11000 Y7 2
Y13 0 - 11000 Y14
Y13 1 - 11000 Y14~
Y13_2 - 11000 Y14~

+ Y10 0 + Yll 0 <•

- 11000 Y10 0 -
- 11000 Y10 1 -
- 11000 Y10 2 -
<= - 0
<- - 0
< 0
<= - 0
<= - 0
<=• - 25;
<= - 0
<- - 0
<- - 0
<- - 0
<- - 0
< 0
0 - 11000
"1 - 11000
_2 - 11000

- 137;
+ Y10 1 + Yll 1 <- 0;
+ Y10 2 + Yll "2 0 200;
<= 0
<= 0
<- 0
<= 0
<= 0
<- 25;
<= 0
<= 0
<- 0
<- 0
<- 0
<- 0
J) + Y15 0 + Y21 0
"l + Y15_l + Y21_l
2 + (15 2 + Y21_2

<- 0;
<- 180;
<= 0;

Y15 0
Y15~l
Y15 2

11000 Yll 0
11000 Yll 1
11000 Yll~2

- 11000 Y21
- 11000 Y21
- 11000 Y21

0 0 XO 0 <=
0 <- xo 1 <-
0 <- XO 2 <-
0 <- XI 0 <=
0 <- XI 1 <-
0 <= XI 2 <-

1
1
1
1
1
1

0 <= X2_0 < -
0 <= X2 1 < -
0 <= X2 2 <=
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

<*
<=
<=
<-0

<=
<=
<=
<=
<=
<=
<=
<-
<= 0

<=
<=
<=
<=
<=
<=
<=>
<-<„

X3 0
X3 1
X3 2
X4 0
X4 1
X4 2
X5 0
X5 1
X5_2
U0<=
U K *
02<-
U3<«
U4<=
U5<-
YO 0
YO 1
YO 2
Yl 0
Yl 1
Yl 2
Y2 0
Y2 1
Y2~2

<
<
<
<
<
<
<
<
<
1
1
1
1
1
1

<
<
<
<
<
<
<
<
<

- 1
• 1
• 1
= 1
= 1
- 1
. 1
= 1
- 1

= 1
- 1
- 1
• 1
= 1
• 1
- 1
. 1
• 1

>
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
<

l
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
/

>
o
o
o
o
o
o
o
o
o
o
o
o
<

o
o
o
o
o
o
o
o
o
o
o
o
c

A
A
A
A
A
A
A
A
A
A
A
A
/

o

o

o

o

o

o

o

li
II

II

II

II

II

I
I

I
I

1

I
I

I
I

I
f

I
I

t
H

P
P

O
O

O
W

^
C

O
i

n
C

O
^

J
-

J
m

i
J

,
m

^
|

t
n

W
*

^
U

U
W

M
W

N
H

M
M

I

I
1

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
•

J
H

O
W

M
O

M
P

O
M

P
O

W
H

O
l

|
|

|
|

|
|

|
|

|
|

|
|

|
|

i
|

|
|

|
j

|
|

1

|

|
|

|
|

|
|

|
|

|
|

J

N
>

l-
'O

N
>

l-
>

O
K

>
l-

'O
N

>
>

-
»

O
t

O
t

-
'O

t
0

1
-

'O
I

O
I

-
'0

N

)
h

-
'O

K
ll

-
'O

N
)

l~
1

O
K

)
l-

'O
W

t
-

'O
M

l-
i
O

t
v

)
h

-
'O

N
J

h
-

>
O

K
>

l-
'O

N
J

l-
'O

K
)

t
-

'
O

 t
o

 l-
>
 O

<

\
A

A
A

A
A

A
A

A
A

A
A

A
A

A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A

0
0

O
N

v

v

v

v

v

v

o
i-t

CM
 m

I

I
1

I
I

I
I

I
I

I
O

o
a

jc
o

o
o

a
a

c
o

o
D

o
o

g
s

tD

U
U

U
U

U
U

U
U

U
U

V

V
 V

11

II

II
II

V

V

V

V

D

O

O

ll
ll

ll
ll

'
V

V

II
I!

II
II

II
II

II
If

II
II

II
II

I!
V

V

)
C

N

P
)

**•
1

II
II

II
II

II
II

'
V

 V
 V

'

i
^

r
LO

W

> r
-

i

'
V

V

u

u

u

u

u

u

o

V

V

-
cri

o

_
.

|
l

D
h

B
i

J
O

O
H

N
m

^
l

/
)

I
C

M
)

)
«

H
H

H
i

H
H

H
H

H
H

H
N

O
r

.
„

. _
.

„
l

f
i

»
M

»
(

R
H

H
H

H
H

H
r

i
H

H
H

I
N

1

I
I

I
I

I
1

!

I
1

I
I

I
I

I
I

I
I

I
I

I
I

I
!

1

I

I
I

I
!

!
I

I
I

I
I

I
S

 !
I

|
|

|
|

|
|

|
|

|
|

|
|

|
|

l
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

i
-

t
i

H
i

H
^

H
i

-
l

i
H

i
H

^
H

t
-

f
i

H
i

H
^

H
^

I
r

-
f

i
H

^
H

i
-

H
i

-
l

i
-

t
i

-
l

i
-

l
t

N
t

N
t

M
C

M
t

M

O
l

C
l

O
l

l
T

l
^

i
n

i
^

f
l

i
O

l
^

O
l

^
^

O
l

K
f

f
l

O
l

l
^

m
W

i
r

i
H

H
H

H
H

H
H

H
H

H
H

H
H

r
l

H
H

H
H

H
H

H
H

H
H

H
r

t
H

H
H

H
H

H
H

H
H

H
H

H
H

r
^

u
u

u
o

u
u

o
u

o
u

u
u

u
o

o
u

o
o

o
u

u
o

o
u

o
o

u
o

o
o

o
u

u
u

u
o

o
u

u
o

u
u

u
o

o
o

o
o

u
o

o
u

u
o

u
o

o
u

o
o

o
u

u
o

o
u

o
o

11

11

II
II

IE
I
I

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

II
II

v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

199

0 <-
0 <=
0 <-
0 <-
0 <-
0 <-
0 <-
0 <=
0 <=
0 <=
0 <=
0 <-
0 <-
0 <-
0 <-
0 <-
0 <-
0 <-
0 <-
0 <=
0 <-
0 <«
0 <-
0 <-
0 <=
0 <=
0 <=
0 <=
0 <-
0 <=
0 <=
0 <=
0 <=
0 <=
0 <=
0 <-
0 <-
0 <=
0 <-
0 <-
0 <-
0 <-
0 <=
0 <=
0 <-
0 <-
0 <-
0 <=
0 <=
0 <-
0 <-
0 <-
0 <-
0 <-
0 <-
0 <-
0 <-
0 <-
0 <-
0 <-
0 <-
0 <=
0 <=
0 <•=
0 <-
0 <-
0 <-
0 <=
0 <-
0 <-
0 <-
0 <-
0 <-
0 <-
0 <-
0 <-
0 <=
0 <-
0 <-
0 <-
0 <-
0 <-
0 <=
0 <=
0 <=

Ci2 5 <- 1
Cl2 6 <- I
Cl2 7 <- 1
Cl2 8 <- 1
Cl2 9 <= 1
cl2 10 <= 1
cl2 11 <= 1
Cl2 12 <- 1
cl2 13 <- 1
Cl2 14 <- 1
Cl2 15 <- 1
Cl2 16 <= 1
Cl2 17 <= 1
Cl2 18 <- 1
Cl2 19 <- 1
ol2 20 <- 1
Cl3 0 <= 1
Cl3 1 <= 1
Cl3 2 <- 1
cl3 3 <- 1
cl3 4 <- 1
Cl3 5 <- 1
ol3 6 <- 1
Cl3 7 <- 1
Cl3 3 <- 1
Cl3 9 <- 1
Cl3 10 <= 1
Cl3 11 <- 1
Cl3 12 <- 1
Cl3 13 <- 1
cl3 14 <- 1
cl3 15 <- 1
cl3 16 <- 1
cl3 17 <- 1
Cl3 18 <- 1
Cl3 19 <= 1
cl3 20 <- 1
kO 0 <- 1,-
kO 1 <- 1;
kO 2 <- 1;
kl 0 <- 1;
kl 1 <- 1;
kl 2 <- 1;
k2 0 <- 1;
k2 1 <- 1;
k2 2 <= 1;
k3 0 <- 1;
k3 1 <- 1;
k3 2 <= 1;
k4 0 <= 1;
k4 1 <= 1;
k4 2 <- 1;
k5 0 <- 1;
k5 1 <- 1;
k5 2 <= 1;
k6 0 <= 1;
k6 1 <- 1;
k6 2 <- 1;
k7 0 <- 1;
k7 1 <- 1;
k7 2 <- 1;
k8 0 <- 1;
k8 1 <= 1;
k8 2 <- 1;
k8 3 <- 1;
k8 4 <- 1;
k8 5 <- 1;
k8 6 <- 1;
k8 7 <•= 1;
k8 8 <= 1;
kl 9 <- 1;
k8 10 <= 1
k8 11 <- 1
ke 12 <- 1
k8 13 <- 1
k8 14 <- 1
k8 15 <- 1
k8 16 <- 1
k8 17 <= 1
k8 18 <- 1
k8 19 <- 1
k8 20 <= 1
k9 0 <- 1;
k9 1 <- 1;
kS 2 <- 1;

200

0 <-
0 <-
0 <-
0 <-
o <=
0 <-
0 <•>

0 <-
0 <=
0 <-
0 <-
0 <•

0 <-
0 <=
o <-
o <=
o <-
o <=
o <-
o <-
o <-
o <-
o <-
o <-
o <-
0 <-
0 <-
0 <=
0 <-
0 <-
0 <=
0 <=
0 <-
0 <-
0 <-
0 <-
o <-
0 <-
0 <=
0 <-
0 <=

0 o
0 <-
0 <=
0 <-
0 <-
0 <-
0 <=
0 <-
0 <-
a <-
o <-
o <-
o <-
o <=
o <=
0 <-
0 <=
o <-
a <=
o <-
o <=
o <=
o <-
o <=
o <-
o <-
o <-
o <-
o <-
o <-
o <-
o <=
0 <™

o <=
o <=
o <-
0 <-
0 <-
0 <-
o <-
o <-
o <-
o <-
o <-

k9 3 <= 1;
k9 4 <= 1;
k9 5 <- 1;
k9 6 <= 1;
k9 7 <= 1;
k9 8 <- 1;
k9 9 <= 1;
k9 10 <- 1
k9 11 <- 1
k9 12 <- 1
k9 13 <- 1
k9 14 <- 1
k9 15 <- 1
k9 16 <- 1
k9 17 <- 1
k9 18 <- 1
k9 19 <- 1
k9 20 <- 1
klO 0 <= 1
klO 1 <= 1
klO 2 <- 1
klO 3 <= 1
klO 4 <= 1
klO 5 <= 1
klO 6 <= 1
klO 7 <= 1
klO 8 <= 1
klO 9 <- 1
klO 10 <- 1,
klO 11 <- 1,
klO 12 <- 1
klO 13 <- 1
klO 14 <= 1
klO 15 <- 1
klO 16 <= 1
klO 17 <- 1
klO 18 <- 1
klO 19 <- 1
klO 20 <- 1
kll 0 <= 1
kll 1 <- 1
kll 2 <= 1
kll 3 <- 1
kll 4 <- 1
kll 5 <•= 1
kll 6 <= 1
kll 7 <- 1
kll 8 <= 1
kll 9 <- 1
kll 10 <- 1
kll 11 <= 1
kll 12 <- 1
kll 13 <- 1
kll 14 <- 1
kll 15 <- 1
kll 16 <- 1
kll 17 <- 1
kll 18 <- 1
kll 19 <- 1
kll 20 <- 1
kl2 0 <= 1
kl2 1 <- 1
kl2 2 <- 1
kl2 3 <- 1
kl2 4 <- 1
kl2 5 <= 1
kl2 6 <- 1
kl2 7 <- 1
kl2 8 <- 1
kl2 9 <- 1
kl2 10 <- 1
kl2 11 <= 1
kl2 12 <- 1
kl2 13 <= 1
kl2 14 <- 1
kl2 15 <- 1
kl2 16 <= 1
kl2 17 <- 1
kl2 18 <- 1
kl2 19 <= 1
kl2 20 <= 1
kl3 0 <- 1
kl3 1 <= 1
kl3 2 <= 1
kl3 3 <- 1

201

0 < -
0 < -
o < -
o < -
o < -
o < -
o < -
o <=
o <=
o < -
o <=
0 < -
0 < -
0 <=
0 <=
o < -
o < -
o < -
o < -
o < -
o < -
o < -
0 < -
0 < -
0 < -
o < -
o <=
o <=
0 < -
0 < -
0 < -
0 < -
0 < -
0 < -
0 < -

kl3_4 <
kl3_5 <
kl3_6 <
kl3_7 <
kl3_8 <
kl3_9 <
kl3_10
k l 3 _ l l
kl3_12
kl3_13
k!3_14
kl3_15
kl3_16
k l 3 _ n
kl3_18
kl3_19
kl3_20
r0_0_0
r0_0_2"
r0_2_2
r0_2_2_

r l_0_o"
r l_0_0"
r l_0_2_
r l_0_2
r2_0_0"
r2_0_0"
r2_0_2"
r2_0_2_
r2_2_2~
r3_5_l"
r3_5_l"
r4_5_l^
r4_5_l"
rS S 1

int X0_0
int X0_1
int X0_2
int X1_0
int Xl_l
int Xl_2
int X2_0
int X2_l
int X2_2
int X3_0
int X3_l
int X3_2
int X4_0
int X4_l
int X4_2
int X5_0
int X5_l
int X5_2
int U0
int Ul
int 02
int 03
int U4
int U5
int VO
int VI
int V2
int V3
int V4
int V5
int V6
int V7

int V8
int V9
int VI0
int Vll
int V12
int V13
int GO;
int Gl;
int G2;
int G3;
int G4;

int G5;
int G6;
int G7;
int G8;
int G9;
int G10;
int Gil;
int G12;
int G13;
int HO;
int HI;
int H2;
int H3;
int H4;
int H5;
int H6;
int H7;
int H8;
int H9;
int HIO;
int Hll;
int H12;
int H13;
int H14;
int H15;
int H16;
int H17;
int H18;
int H19;
int H20;
int H21;
int Y0_0;
int Y0_1;
int Y0_2;
int Y1_0;
int Yl_l;
int Yl_2;
int Y2_0;
int Y2_l;
int Y2_2;
int Y3_0;
int Y3_l;
int Y3_2;
int Y4_0;
int Y4_l;
int Y4_2;
int Y5_0;
int Y5_l;
int Y5_2;
int Y6_0;
int Y6_l;
int Y6_2;
int Y7_0;
int Y7__l;
int Y7_2;
int Y8_0;
int Y8_l;
int Y8_2;
int Y9_0;
int Y9_l;
int Y9_2;
int Y10_0
int Y10_l
int Y10_2
int Y11_0
int Yll_l
int Yll_2
int Y12_0
int Y12_l
int Y12_2
int Y13_0
int Y13_l
int Y13_2
int Y14_o
int Y14_l
int Y14_2
int Y15_0
int Y15_l
int Y15_2
int Y16_0
int Y16_l
int Y16_2
int Y17_0
int Y17_l
int Y17 2

P

P
 P
 P
 P
 P
 3

:

o
o
o
o
n
o
n
n
o
n
n

I
I

I

t

I

I

I

I

I

I

I

I

P
2
S
P
P
P
P
P
!

i-

r
+

r
+

n
-

n
o
n
o
o
n
o
n
n
n

)|C
°i

C
O

|C
O

|C
O

|C
O

|C
O

|0
:>

|a
>
|C

O
iC

O

)
to

M

o

'•

'•

-•

E
E

E
E

E
E

E
E

sE
E

E
E

E
^

la
m

E
sE

E
ss

E
ft

o
o
o
o
o
o
o
o
o
o
n

l
U

l
U

i
i

b
A

i
b

W
W

U
W

M
K

)
I

I
I

i
I

I
I

I
I

I
I

I

o

o

o

si

P>

f
'

o
o

o
i->

 M
 ^

|

|
|

u>
 r

o
h

r+
 r

+
 r

+
 r

t
Pi

 W

p)

p
p

p
p

p
p

p
r

r
r

r
r

r
r

T
r

r
r

tr
tr

tr
t'

r
tr

t'
r

tr
r

ft
r

tr
t-

r
r

i
i

i
i

i
i

i
i

i
i

i
i

O

int c9_14;
int c9_15;
int c9_16;
int c9_17;
int c9_18;
int c9_19;
int c9_20;
int clO_0;
int clO_l;
int cl0_2;
int clO_3;
int clO_4;
int clO_5;
int Cl0_6;
int cl0_7;
int Cl0_8;
int cl0_9;
int clO_10
int clO_ll
int clO_12
int clO_13
int clO_14
int clO_15
int cl0_16
int clO_17
int cl0_18
int cl0_19
int Cl0_20
int cll_0;
int cll_l;
int cll_2;
int cll_3;
int cll_4;
int cll_5;
int cll_6;
int cll_7;
int cll_8;
int cll_9;
int cll_10;
int cll_ll,
int cll_12,
int cll_13i
int cll_14,
int cll_15,
int cll_16;
int cll_17,
int cll_18;
int cll_19;
int cll_20;
int Cl2_0;
int cl2_l;
int Cl2_2;
int cl2_3;
int Cl2_4;
int Cl2_5;
int Cl2_6;
int Cl2_7;
int cl2_8;
int cl2_9;
int Cl2_10;
int cl2_ll;
int cl2_12;
int Cl2_13;
int cl2_14;
int cl2_15;
int Cl2_16:
int cl2_17;
int Cl2_18;
int ci2_19;
int cl2_20;
int cl3_0;
int c!3_i;
int ci3_2;
int cl3_3,-
int cl3_4;
int cl3_5:
int cl3_6;
int cl3_7;
int cl3_8;
int cl3_9;
int Cl3_10;
int Cl3_il;
int Cl3_12;
int cl3_13;
int c!3 14;

int Cl3_15
int cl3_16
int cl3_17,
int c!3_18.
int cl3_19
int cl3_20.
int kO_0;
int kO_l;
int k0_2;
int kl_0;
int kl_l;
int kl_2;
int k2_0;
int k2_l;
int k2_2;
int k3_0;
int k3_l;
int k3_2;
int k4_0;
int k4_l;
int k4_2;
int k5_0;
int k5_l;
int k5_2;
int k6_0;
int kS_l;
int k6_2;
int k7_0;
int k7_l;
int k7__2;
int k8_0;
int k8_l;
int k8_2;
int k8_3;
int k8_4;
int k8_5;
int k8_6;
int k8_7;
int k8_8;
int k8_9;
int k8_10;
int k8_ll;
int k8_12;
int k8_13;
int k8_14;
int k8_15;
int k8_16;
int k8_l7;
int k8_18;
int k8_19;
int k8_20;
int k9_0;
int k9_l;
int k9__2;
int k9_3;
int k9_4;
int k9_5;
int k9_6;
int k9_7;
int k9_8;
int k9_9;
int k9_10;
int k9_ll;
int k9_12;
int k9_13;
int k9_14;
int k9_15;
int k9_16;
int k9_17;
int k9_18;
int k9_19;
int k9_20;
int klO_0;
int klu_l;
int kl0_2;
int kl0_3;
int klO_4;
int klO_5;
int k!0_6;
int klO_7;
int k!0_8;
int klO_9;
int klO_10;
int klO_ll;
int klO 12;

int kl0_13;
int kl0_14;
int klO_15;
int klO_16;
int kl0_17;
int klO_18;
int kl0_19;
int kl0_20;
int kll_0;
int kll_l;
int kll_2;
int kll_3;
int kll_4;
int kll 5;
int kll~6;
int fcll_7;
int kll_8;
int kll_9;
int kll_10;
int kll_ll;
int kll_12;
int kll_13;
int kll_14;
int kll_15;
int kll_16;
int kll_17;
int kll_18;
int kll_19;
int kll_20;
int kl2_0;
int kl2_l;
int kl2__2;
int kl2_3;
int kl2_4;
int kl2_5;
int kl2_6;
int kl2_7;
int kl2_8;
int kl2_9;
int kl2_10;
int kl2_ll;
int kl2_12;
int kl2_13;
int kl2_H;
int kl2_15;
int kl2_16;
int kl2_17;
int k!2_18;
int kl2_19;
int kl2_20;
int ki3_0;
int kl3_l;
int kl3_2;
int kl3_3;
int kl3~4;
int kl3_5;
int kl3_6;
int k!3_7;
int kl3~8;
int kl.3 9;
int kl3~10;
int k!3_U;
int kl3_12;
int kl3_13;
int kl3_14;
int kl3_15;
int kl3_16;
int kl3_17;
int k!3_18;
int kl3 19;
int kl3~20;
int r0_0_0_16;
int r0_0_2_16;

int 10_2_2_2;

int r0~2_2~3;
int rl_OJ3_8;
int rl__0_0_9;
int rl_0_2_8;
int rl_0_2_9;
int r2 0J3 10;
int r2~0_0~ll;
int r2_0_2_10;
int r2_0_2_ll;
int r2_2_2_18;
int r3_5_l 12;

207

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

r3 5
r4 5
r4 5"
r5 5
ZO 0,
ZO 1,
ZO 2;
Zl 0;
Zl 1;
Zl 2;
Z2 "0;
Z2 1;
Z2 2;
Z3 0;
Z3 1;
Z3 2;
Z4 0;
Z4 1;
Z4 2;
Z5 0;
Z5 1;
Z5 2;
Z6 0;
Z6 1;
Z6 2;
Z7 0;
Z7 1;
Z7 2;
Z8 0;
Z8 1;
Z8 2;
Z9 0;
Z9 1;
Z9 2;
Z10 0
Z10 1
Z10 2
Zll 0
Zll 1
Zll 2
Z12 0
Z12 1
Z12 2
Z13 0
Z13 1
Z13 2
Z14 0
Z14 1
Z14 2
Z15 0
Z15 1
Z15 2
Z16 0
Z16 1
Z16 2
Z17 0
Z17 1
Z17 2
Z18 0
Z18 1
Z18 2
Z19 0
Z19 1
Z19 2
Z20 0
Z20 1
Z20 2
Z21 0
Z21 1
Z21 2

1 13
1 14
1 15
1 21

Sample Lagrange Relaxation Output File

currentRelaxedValue = 152.6875 best relaxed sol = 324.9375
step = 0.0625 total iterations = 45
number of constraints not relaxed = 876
original model has 1038 constraints
therefore we are relaxing 162 constraints

Elapsed Time: 45.25

The lagrange multipliers are:
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

= i

= i

= i

= i

= •

= i

= .
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
^
=
=
=
=
=
=
=
=
=
=
=
=

0.0
0.0
0.0
0.0
0.0
0.0625
-17.75
0.0
-17.75
0.0
-9.87!
-o.oe:
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

209

lambda 67
lambda 68
lambda 69
lambda 70
lambda 71
lambda 72
lambda 73
lambda 74
lambda 75
lambda 76
lambda 77
lambda 78
lambda 75
lambda 80
lambda SI
lambda 62
lambda 83
lambda 84
lambda 85
lambda 86
lambda 87
lambda 88
lambda 89
lambda 90
lambda 91
lambda 92
lambda 93
lambda 94
lambda 95
lambda 96
lambda 97
lambda 98
lambda 99
lambda 100
lambda 101
lambda 102
lambda 103
lambda 104
lambda 105
lambda 106
lambda 107
lambda 108
lambda 109
lambda 110
lambda 111
lambda 112
lambda 113
lambda 114
lambda 115
lambda 116
lambda 117
lambda 118
lambda 119
lambda 120
lambda 121
lambda 122
lambda 123
lambda 124
lambda 125
lambda 126
lambda 127
lambda 128
lambda 12 9
lambda 130
lambda 131
lambda 132
lambda 133
lambda 134
lambda 135
lambda 136
lambda 137
lambda 138
lambda 139
lambda 14 0
lambda 141
lambda 142
lambda 143
lambda 144
lambda 145
lambda 14 6
lambda 147
lambda 148
lambda 149
lambda 150
lambda 151

- 0.0
» 0.0
- 0.0
- 0.0
- 0.0
- 0.0
=> 0.0
- 0.0
- 0.0
= 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
= 0.0
- 0.0
- 0.0
« 0.0
- 0.0
- 0.0
=• 0.0
- 0.0
- 0.0

- o.o
- 0.0
- 0.0
- 0.0
= 0.0
- 0.0
- 0.0
= 0.0
•= 0.0
- 0.0
- 0.0
» 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
= 0.0
- 0.0
- 0.0
» 0.0
=• 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
=• 0.0
- 0.0
- 0.0
=• 0.0
- 0.0
- 0.0
- 0.0
- 0.0
= 0.0
- 0.0

- o.o
= 0.0
= 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0

210

lambda 152 - 0.0
lambda 153 =0.0
lambda 154 - 0.0
lambda 155 =0.0
lambda 156 =0.0
lambda 157 =0.0
lambda 158 = 0.0
lambda 159 =0.0
lambda 160 =0.0
lambda 161 =0.0
lambda 162 =0.0
lambda 163 =0.0
lambda 164 - 0.0
lambda 165 =0.0
lambda 166 =0.0
lambda 167 =0.0
lambda 168 = 0.0
lambda 169 =0.0
lambda 170 =0.0
lambda 171 = 0.0
lambda 172 =0.0
lambda 173 =0.0
lambda 174 = 0.0
lambda 175 = 0.0
lambda 176 = 0.0
lambda 177 - 0.0
lambda 178 = 0.0
lambda 179 = 0.0
lambda 180 =0.0
lambda 181 = 0.0
lambda 182 =0.0
lambda 183 = 0.0
lambda 184 =0.0
lambda 185 =0.0
lambda 186 - 0.0
lambda 187 =0.0
lambda 188 =0.0
lambda 189 =0.0
lambda 190 =0.0
lambda 191 =0.0
lambda 192 =0.0
lambda 193 =0.0
lambda 194 =0.0
lambda 195 =0.0
lambda 196 = 0.0
lambda 197 =0.0
lambda 198 =0.0
lambda 199 =0.0
lambda 200 =0.0
lambda 201 - 0.0
lambda 202 =0.0
lambda 203 =0.0
lambda 204 =0.0
lambda 205 =0.0
lambda 206 =0.0
lambda 207 =0.0
lambda 208 =0.0
lambda 209 =0.0
lambda 210 =0.0
lambda 211 =0.0
lambda 212 =0.0
lambda 213 =0.0
lambda 214 =0.0
lambda 215 =0.0
lambda 216 =0.0
lambda 217 =0.0
lambda 218 =0.0
lambda 219 =0.0
lambda 220 =0.0
lambda 221 = 0.0
lambda 222 =0.0
lambda 223 =0.0
lambda 224 =0.0
lambda 225 - 0.0
lambda 226 =0.0
lambda 227 =0.0
lambda 228 =0.0
lambda 229 =0.0
lambda 230 - 0.0
lambda 231 = 0.0
lambda 232 =0.0
lambda 233 =0.0
lambda 234 =0.0
lambda 235 =0.0
lambda 236 = 0.0

211

lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda

lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda

237

238
239

240

241
242

243

244

245

246
247

248
249
250

251
252
253

254
255
256
257

259

259
260

261
262
263
264
265

266
267

268
269

270
271
272
273

274
275

27 6
277

273

279
280
291

282

283

284
285
286
287

238
289
290
291
292

293

294
295
296
297

298

299
300

301
302
303

304
305
306
307
308

309
310
311

312
313
314
315

316
317

313
319

320
321

=
=
*
=*
„

«
=.
m

=
=
=
=
=
=
=
=
»
s

=,
a

=
=
«
=
=
=
=
=>
s
=.
=
=
=
=
=
. • =

=
=
=•=

s

=
=
=
=
=
=e

3

=
=
=
=
*:
=
=
=
=
~
»
=
=
~
=
«
s

=
=
=
=
m

»
»
=«,
=
»:
=
=
=
«
S

S

^
=
»
=
a

0.0
0.0
0.0

0.0

0.0
0.0

0.0

0.0

0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0

o.o
0.0

0.0
0.0

0.0

0.0
0.0

0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0

o.o
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0

0.0

0.0
0.0

0.0
0.0

0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0

0.0
0.0

0.0
0.0

0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0

o.o
0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0

212

lambda 322
lambda 323
lambda 324
lambda 325
lambda 32 6
lambda 327
lambda 328
lambda 329
lambda 330
lambda 331
lambda 332
lambda 333
lambda 334
lambda 335
lambda 336
lambda 337
lambda 338
lambda 339
lambda 340
lambda 341
lambda 342
lambda 343
lambda 344
lambda 34 5
lambda 34 6
lambda 347
lambda 348
lambda 34 9
lambda 350
lambda 351
lambda 352
lambda 353
lambda 354
lambda 355
lambda 356
lambda 357
lambda 358
lambda 35 9
lambda 360
lambda 361
lambda 362
lambda 363
lambda 364
lambda 365
lambda 366
lambda 367
lambda 368
lambda 369
lambda 370
lambda 371
lambda 372
lambda 373
lambda 374
lambda 375
lambda 37 6
lambda 377
lambda 378
lambda 37 5
lambda 380
lambda 381
lambda 382
lambda 383
lambda 384
lambda 385
lambda 386
lambda 387
lambda 388
lambda 389
lambda 390
lambda 391
lambda 392
lambda 393
lambda 394
lambda 395
lambda 396
lambda 397
lambda 398
lambda 399
lambda 400
lambda 401
lambda 402
lambda 403
lambda 404
lambda 405
lambda 406

«
m

=
«
.
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=,
=
=
=
=
=
=
=
«
=
*
=
=
«
=
-
»
-
=
_
=
=
=
a.

=
=
_
=
=
=
»
-„
-
=
=
==
=
=
*
=
a

•

=
=

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

213

lambda
lambda
lambda

lambda

lambda
lambda

lambda
lambda

lambda
lambda

lambda
lambda

lambda
lambda
lambda

lambda
lambda

lambda

lambda
lambda
lambda
lambda
lambda

lambda
lambda

lambda

lambda
lambda
lambda
lambda
lambda

lambda
lambda
lambda
lambda
lambda
lambda

lambda
lambda
lambda
lambda

lambda

lambda

lambda
lambda
lambda

lambda

lambda
lambda
lambda

lambda

lambda
lambda

lambda
lambda
lambda

lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda

lambda
lambda

lambda
lambda

lambda
lambda
lambda

lambda
lambda

lambda
lambda
lambda
lambda
lambda
lambda
lambda

lambda
lambda
lambda

lambda

407
408
405
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
4 65

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
439
490
491

-
=
=
=
=
=
»
-
-
~
-=
*=
=
*=
=
*=
=
=
=
=
=*
=
~
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
^
=
=
=
=
=
-
=
=
=
*
=
°=

=
=
=
=>
=
«
=
=
=
-
~
m *=
s

=
=
=
=
=
=
=
^
»
=
=
=
=
=
=
=
=
=
=
=

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

lambda 492
lambda 4 93
lambda 4 94
lambda 4 95
lambda 496
lambda 4 97
lambda 498
lambda 4 99
lambda 500
lambda 501
lambda 502
lambda 503
lambda 504
lambda 505
lambda 506
lambda 507
lambda 508
lambda 509
lambda 510
lambda 511
lambda 512
lambda 513
lambda 514
lambda 515
lambda 516
lambda 517
lambda 518
lambda 519
lambda 520
lambda 521
lambda 522
lambda 52 3
lambda 524
lambda 525
lambda 526
lambda 527
lambda 528
lambda 52 9
lambda 530
lambda 531
lambda 532
lambda 533
lambda 534
lambda 535
lambda 536
lambda 537
lambda 538
lambda 53 9
lambda 540
lambda 541
lambda 54 2
lambda 543
lambda 544
lambda 545
lambda 546
lambda 547
lambda 548
lambda 549
lambda 550
lambda 551
lambda 552
lambda 553
lambda 554
lambda 555
lambda 556
lambda 557
lambda 558
lambda 559
lambda 560
lambda 5 61
lambda 5 62
lambda 5 63
lambda 564
1ambda 5 65
lambda 566
lambda 567
lambda 5 68
lambda 569
lambda 570
lambda 571
lambda 572
lambda 573
lambda 574
lambda 575
lambda 576

- 0.0
= 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
= 0.0
- 0.0
= 0.0
- 0.0
- 0.0
= 0.0
= 0.0
- 0.0
- 0.0
= 0.0
- 0.0
- 0.0
- 0.0
- 0.0
= 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- o.o
- 0.0
- 0.0
= 0.0
= 0.0
= 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
= 0.0
= 0.0
= 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
= 0.0
- 0.0
- 0.0
- 0.0
- 0.0
= 0.0
- 0.0
- 0.0
- o.o
- 0.0
= 0.0
- 0.0
- o.o
- 0.0
- 0.0
- 0.0
= 0.0
- o.o
- 0.0
= 0.0
- 0.0
• 0.0
- o.o
= 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0

215

lambda
lambda
lambda

lambda

lambda
lambda

lambda

lambda

lambda
lambda
lambda

lambda

lambda
lambda
lambda
lambda
lambda

lambda
lambda
lambda

lambda
lambda
lambda

lambda
lambda

lambda

lambda
lambda

lambda
lambda
lambda

lambda
lambda
lambda

lambda
lambda
lambda
lambda

lambda

lambda

lambda
lambda
lambda
lambda

lambda
lambda
lambda
lambda

lambda
lambda

lambda
lambda
lambda

lambda
lambda
lambda

lambda
Lambda
lambda
lambda
lambda
lambda
lambda

lambda
lambda

lambda

lambda
lambda
lambda
lambda
Lambda
Lambda
Lambda
L,.uub,la

Lambda

Lambda
Lambda
lambda

lambda
lambda
lambda

lambda
lambda
lambda
Lambda

577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
64 3
644
645
64 6
647
648
649
C 5 0

651
652
653
654
655
656
657
658
659
660
661

=

»
=
=
»
=
=.
=
s

=
=
=
=
-
*
=
*
=
=
=
=
=
=
=
=
=
=
»
=
»
=
m

=
=
=
=
=
=
=
=»
.
=
=
=
=
»
=
=
=
=
=
=
=
-
=
=
_
=
*
.
=
=
=
=
=
=
=
-
=
=*
•m

=
a

«
=
-
=
=
=
=
=
„

0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

o.o
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

216

lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda

662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

=
=
=
=
=
=
=
=
=
=
=
=
=
-
=
-
-
=
=
*
=
=
»
=
=
=
=
=
«
=
=
=
=
=
=
=
=
-
=
=
•

=
=
=
-
=
=
=
=
-
«
*
=
=
«
=
=
=
=
=
=
=
=
=
=
*
»
*
=
-
=
*
=
-
»
=
=
=
=°

=
=
*
a

=
=

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

217

lambda 747
lambda 748
lambda 74 9
lambda 750
lambda 751
lambda 752
lambda 753
lambda 754
lambda 755
lambda 75 6
lambda 757
lambda 758
lambda 759
lambda 760
lambda 761
lambda 762
lambda 763
lambda 764
lambda 765
lambda 766
lambda 767
lambda 768
lambda 769
lambda 770
lambda 771
lambda 772
lambda 773
lambda 774
lambda 775
lambda 776
lambda 777
lambda 778
lambda 779
lambda 780
lambda 781
lambda 782
lambda 783
lambda 784
lambda 785
lambda 786
lambda 787
lambda 788
lambda 789
lambda 790
lambda 791
lambda 792
lambda 793
lambda 794
lambda 795
lambda 796
lambda 797
lambda 798
lambda 799
lambda 800
lambda 801
lambda 802
lambda 803
lambda 804
lambda 805
lambda 806
lambda 807
lambda 808
lambda 809
lambda 810
lambda 811
lambda 812
lambda 813
lambda 814
lambda 815
lambda 816
lambda 817
lambda 818
lambda 819
lambda 820
lambda 821
lambda 822
lambda 823
lambda 824
lambda 825
lambda 826
lambda 827
lambda 828
lambda 82 9
lambda 830
lambda 831

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

218

lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda"
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda
lambda

832
833
834
835
836
337
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916

=
=
a

=
.
*
*
=
=
=
-
<.
a

=
=
=
=
s

m

=T

m

=
>
=
=
=
=
«
=
»=
=
=
=
==
=
=
=
=
=
=
=
=
=
=
=
=
=,
=
»
=
=
=
=
=*
a

=
=»
=
-
.
=
«
-
=
=
»
K «
=
=
=
s

= „

>=
«
B

=
=
.=
=
=
=
=
S=

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

o.o
0.0
0,0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

o.o
0.0
0.0
0.0
0.0

lambda

lambda
lambda
Lambda

Lambda
lambda
Lambda
lambda
lambda

lambda
lambda
lambda

lambda
lambda

lambda

lambda
lambda

Lambda

lambda

Lambda
lambda
Lambda

lambda
lambda
lambda

lambda
lambda
lambda

lambda
lambda
lambda

Lambda
lambda
Lambda

Lambda
lambda
lambda
lambda
lambda
lambda

lambda
lambda

lambda
lambda
lambda
lambda
lambda

lambda
lambda
lambda

lambda

lambda
lambda
lambda
lambda
lambda

lambda
lambda
lambda
lambda
lambda

lambda
lambda
lambda

lambda
lambda

lambda
lambda
lambda

lambda
lambda
lambda

lambda
1 ..imbda

lambda
lambda
lambda
lambda
lambda

lambda
lambda
lambda

lambda
lambda
lambda

917
918
919
920
921
922
923
924
925
92 6
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
97 6
977
978
979
980
981
982
983
984
985
986
987
988
989
«<>o
991
992
993
994
995
996
997
998
999
1000
1001

=
=
m =
*
» a
<B

=
=
=
=
=
=
=
=
-
=
.
«
z*

=
=
=
=
=
=
=
=
=
=
=
-
m

-
_
=
=
=
=
=
=
=
s

»
=
=
=
=
=
=
=
=
=
=
=
*
m

«
=
*
=
=
=
=
=
=
=
=
-
=
»
s

-
=x

m

=
=
=
=
=
=
=

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
- 0.0
= 0.0

220

lambda 1002 - 0.0
lambda 1003 =0.0
lambda 1004 - 0.0
lambda 1005 - 0.0
lambda 1006 - 0.0
lambda 1007 - 0.0
lambda 1008 =0.0
lambda 1009 =0.0
lambda 1010 - 0.0
lambda 1011 - 0.0
lambda 1012 =0.0
lambda 1013 - 0.0
lambda 1014 = 0.0
lambda 1015 =0.0
lambda 1016 - 0.0
lambda 1017 - 0.0
lambda 1018 - 0.0
lambda 1019 • 0.0
lambda 1020 =0.0
lambda 1021 =0.0
lambda 1022 = 0.0
lambda 1023 - 0.0
lambda 1024 =0.0
lambda 1025 =0.0
lambda 102 6 =0.0
lambda 1027 = 0.0
lambda 1028 = 0.0
lambda 1029 =0.0
lambda 1030 =0.0
lambda 1031 -o.o
lambda 1032 =0.0
lambda 1033 =0.0
lambda 1034 =0.0
lambda 1035 - 0.0
lambda 1036 - 0.0
lambda 1037 =0.0
lambda 1038 =0.0

Variables solutions below.,
X0_0 0.0
X0 1 0.0
X0^2 1.0
X1~0 0.0
Xl_l 0.0
Xl_2 0.0
X2_0 1. 0
X2_l 0.0
X2~2 0.0
X3 0 0.0
X3~l 0.0
X3_2 0.0
X4 0 0.0
X4~l 1.0
X4 2 0.0
X5~0 0.0
X5~l 0.0
X5~2 0.0
U0 1.0
Ul 0.0
H2 1.0
U3 0.0
04 1.0
U5 0.0
Z16_0 0.0
Z8_0 0.0
Z9 0 0.0
Z10_0 37.0
Z110 100.0
Z16_l 0.0
Z8_l 0.0
Z9_l 0.0
Z10_l 0.0
Zlll 0.0
Z16_2 ^00.0
Z8_2 0.0
Z9_2 0.0
Z10_2 0.0
Zll_2 0.0
Z0_0 0.0
Z1~0 0.0
Z17_0 0.0
Z0_1 0.0
Zl_l 0.0
Z17_l 0.0
Z0 2 0.0

221

Zl_2
Z17_2
Z2_0
Z3_0
Z18_0
Z2_l
Z3_l
Z18_l
Z2_2
Z3_2
Z18 2
Z19~0
Z4 0
Z5~0
Z19_l
Z4_I
Z5_l
Z19_2
24 2
Z53
Z20_0
Z6_0
Z7_0
Z20_I
Z6 I
Z7~l
Z2()_2
Z6 2
Z7~2
Z12_0
Z13_0
Z14_0
Z15_0
Z21_0
Z12_l
Z13_l
Z14 1
Z15~l
Z21_l
Z12_2
Z13_2
Z14 2
Z15~2
Z21_2
Y0_0
Y0_1
Y0_2
Yl 0
Vl_l
Yl_2
Y2_0
Y2_l
Y2_2
Y3_0
Y3_l
Y3_2
Y4_0
Y4_l
Y4_2
Y5_0
Y5_l
Y5_2
Y6_0
Y6_l
Y6_2
Y7_0
Y7_l
Y7_2
Y8_0
Y8_l
Y8_2
Y9_0
Y9_l
Y9_2
Y10_0
Y10_l
Y10_2
Y11J3
YH_1
Yll_2
Y12_0
Y12_l
Y12_2
Y13JJ
Y13 1

0.
0.
0.
0.
0.
0
0
0
0.0
0.0
0.0
0.0
0.0
o.o
0.0
0.0
0.0
0.0
0.0
0 .0
0 .0
100.
100.
0 .0
0.0
0 .0
0 .0
0 .0
0.0
0.0
o.o
0.0

0
0
0
0
0
0
0
0
0
0
0
0
0

0.0
0 .0
0 .0
0 .0
0 .0
0 .0
0 .0
0.0
0.0
0.0
0.0
0.0
0 .0
0 .0
1.0
0 .0
0.0

Y13
Y14~
Y14~
Y14~
Y15~
Y15
Y1S~
Y16~
Y16
Y16
Y17~
Y17~
Y17
Y18
Y18~
Y18
Y19
Y19
Y19_
Y20
Y20
Y20
Y21
Y21
Y21
VO
VI
V2
V3
V4
V5
V6
V7
V8
V9
VI0
VI1
VI2
VI3
aO
al
a2
a3
a4
a5
a6
a7
a8
a9
alO
all
al2
al3
cO 0
cO 1
cO 2
cl 0
cl 1
cl 2
c2 0
02 1
c2 2
03 0
03 1
c3 2
c4 0
c4 1
c4 2
c5 0
c5_l
c5 2
c6 0
c6 1
C6 2
c7 0
C7 1
c7 2
c8 0
c8 1
c8 2
08 3
c8 4
c8 5
c8 6
c8 7

2
"0
'l
'2
"0
"l
"2
"0
"l
2
"0
"l
2
"0
'l
2
'0
'l
2
0

i
'2
0
1
'2

0.0
0.0
1.0
0.0
0.0
1.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
100.0
100.0
100.0
0.0
0.0
100.0
100.0
100.0
200.0
0.0
0.0
0.0
0.0
0.0
2.0
2.0
2.0
0.0
0.0
2.0
2.0
2.0
4.0
0.0
0.0
0.0
0.0
0.0
1.0
1.0
0.0
1.0
1.0
0.0
1.0
1.0
0.0
0.0
1.0
1.0
0.0
1.0
1.0
1.0
1.0
0.0
1.0
1.0
0.0
1.0
1.0
0.0
1.0
1.0
1.0
1.0
0.0
1.0
1.0
1.0

a

a

o

n

o

n

o
n

o
o

o
n

o
o

n

l-
>

S
-»

H
t-

>
l-

'l
-'

l-
»

H
*l

->

I
I

!
I

I
I

!
1

I
I

I
I

I
i

I
I

I
J

f
f

i
V

f
t

W
M

H
O

M
H

h
H

K
H

P
I

J
H

!
n

 n
 n

 n
 o

 n
 n

D
O

i
-

J
i
R

c
n

^
w

r
o

p
o

o

o

o

o

o

o

I
I

I
I

I
t

"
C

O

-
J

(J

i

o

n

n

n

o

o

n

o

o

o

o

o

o
|

!
j n

o
o

n

n

n
o

o
n

i
co

 -
J

o
\

u
i

•>

S
O

O
O

O
O

O
O

O

>
C

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
C

o

o
o

o
o

o
o

o
a

o
o

o
o

o
o

o
c

O
O

O
O

O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O

to

224

cl2 9
cl2 10
Cl2 11
cl2 12
Cl2 13
Cl2 14
Cl2 15
cl2 16
cl2 17
Cl2 18
cl2 19
cl2 20
cl3 0
cl3 1
Cl3 2
cl3 3
Cl3 4
Cl3 5
Cl3 6
Cl3 7
cl3 8
cl3 9
cl3 10
cl3 11
cl3 12
cl3 13
cl3 14
cl3 15
Cl3 16
Cl3 17
cl3 18
Cl3 19
Cl3 20
kO 0
kO 1
kO 2
kl 0
kl 1
kl 2
k2 0
k2 1
k2 2
k3 0
k3 1
k3 2
k4 0
k4 1
k4 2
k5 0
k5 1
k5 2
k6 0
k6 1
k6 2
k7 0
k7 1
k7 2
k8 0
k8 1
k8 2
ke 3
k8 4
k8 5
k8 6
k8 7
k8 8
k8 9
k8 10
k8 11
k8 12
k8 13
k8 14
k8 15
k8 16
k8 17
k8 18
k8 19
k8 20
k9 0
k9 1
k9 2
k9 3
k9 4
k9 5
k9 6

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.0
0.0
1.0
0.0
0.0
1.0
0.0
0.0
1.0
1.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
1.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0

k9 7
k9 8
k9 9
k9 10
1<9 11
k9 12
k9 13
k9 14
k9 15
k9 16
k9 17
k9 18
k9 19
k9 20
klO 0
klO 1
klO 2
klO 3
klO 4
klO 5
klO 6
klO 7
klO 8
klO 9
klO 10
klO 11
klO 12
klO 13
klO 14
klO 15
klO 16
kio n
klO 18
klO 19
klO 20
kll 0
kll 1
kll 2
kll 3
kll 4
kll 5
kll 6
kll 7
kll 8
kll 9
kll 10
kll 11
kll 12
kll 13
kll 14
kll 15
kll 16
kll 17
kll 18
kll 19
kll 20
kl2 0
kl2 1
kl2 "2
kl2 3
kl2 4
kl2 5
kl2 6
kl2 7
kl2 8
kl2 9
kl2 10
kl2 11
kl2 12
kl2 13
kl2 14
kl2 15
kl2 16
k [:' ! 7

kl2 18
kl2 19
kl?. 20
kl3 0
kl3 1
kl3 2
kl3 3
kl3 4
kl3 5
kl3 6
kl3 7

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0. 0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

226

kl3 8
kl3 9
kl3 10
kl3 11
kl3 12
kl3 13
kl3 14
kl3 15
kl3 16
kl3 17
kl3 18
kl3 19
kl3 20
GO
Gl
G2
G3
G4
G5
GG
G7
G8
G9
G10
Gil
G12
G13
HO
HI
H2
H3
H4
H5
H6
H7
H8
H9
H10
Hll
H12
H13
H14
H15
H16
H17
H18
H19
H20
H21
ro o o
rO 0 2
rO 2 2
rO 2 2~
rl 0 o"
rl 0 0"
rl 0 2
rl 0 2
r2 0 0
r2 0 '0
r2 0 2
r2 0 2
r2 2 2
r3 5 l"
r3 5 1
r4 5 l"
r4 5 l"
rS 5 l"

16
"l6
~2
"3
~8
"9
~8
"9
"10
"11
"10
"ll
~18
"12
"13
"14
"15
"21

. 0
o.o
o.o
0 . 0
0 . 0
0 . 0
5 0 0 . 0
5 0 0 . 0
5 0 0 . 0
o.o
0.0
500.0
500.0
500.0
12.0
0.0
0.0
0.0
0.0
0.0
500.0
1000.0
500.0
1000.0
500.0
1000.0
500.0
1000.0
500.0
1000.0
500.0
1000.0
500.0
1000.0
500.0
1000.0
12.0
0 .0

1.0
1.0
1.0
0.0
0.0
1.0
1.0
1.0

	A Proof of Concept for Oppnets and Its Resource Utilization Techniques with QOS Constraints
	Recommended Citation

	ProQuest Dissertations

