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DIAGNOSTICS FOR CHOOSING BETWEEN
LOG-RANK AND WILCOXON TESTS

Ruvie Lou Maria Custodio Martinez, Ph.D.

Western Michigan University, 2007

Two commonly used tests for comparison of survival curves are the gener­

alized Wilcoxon procedure of Gehan(1965) and Breslow(1970) and the Log-rank 

test proposed by Mantel(1966) and Cox(1972). In applications, the Log-rank test 

is used after checking for validity of the proportional hazards (PH) assumption, 

w ith Wilcoxon being the fallback method when the PH assumption fails.

However, the relative performance of the two procedures depend not just on 

the PH assumption but also on the pattern  of differences between the two curves. 

We will show tha t the crucial factor is whether the differences tend to occur early or 

late in time. We propose diagnostics to measure early-or-late differences between 

two survival curves. A pretest based on either diagnostic will help the user choose 

the more efficient test under various patterns of treatm ent differences.
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Chapter 1

Introduction

1.1 M otivation and Background

The two-sample location problem is a fundamental technique used to determine the 

possible existence of treatm ent effect. In survival analysis we often test for whether 

treatm ent made a difference in the survival rates of the two groups. The two 

commonly used nonparametric tests for comparison of two survival distributions 

are the generalized Wilcoxon procedure of Gehan (1965) and Breslow (1970) and 

the Log-rank test proposed by Mantel(1966) and Cox(1972). Both tests are based 

on the ranks of the observations (Lee and Go 1997). The Log-rank test was derived 

by Cox under the assumption of proportional hazards and has been shown by Peto 

(1972) to be the locally most powerful rank-invariant test when there is a single 

param eter of interest and censorship is equal. Lee, Desu and Gehan (1975) have 

shown th a t when the hazard ratio is nonconstant the generalized Wilcoxon test 

can be more powerful than the Log-rank test.

Based on the above information there are situations where each of the two 

methods is more powerful than the other. In Chapter 2, we perform a power 

comparison of the two methods under various distributions and treatm ent effect

1
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structure. In Chapter 3, we investigate properties of diagnostics for choosing be­

tween Log-rank test and Wilcoxon test. The investigation shows th a t it may be 

more useful to discriminate based not on proportional hazards assumption, but 

on whether treatm ent differences occur earlier or later in the range of comparison. 

In Chapter 4, we propose diagnostics for early and late treatm ent differences th a t 

will help the user choose between the two methods of testing equality of two sur­

vival distributions. Simulation results are presented for adaptive tests based on 

proposed diagnostics in Chapter 5 and Chapter 6.

2
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1.2 Definition of Terms

In summarizing survival data, there are two functions of great interest, the survivor 

function and the hazard function.

We consider a population of individuals; for each individual we observe 

either the time to failure or the time to “loss” or “censoring” . For the censored 

individuals we only know th a t the time to failure is greater than  the censoring 

time.

We denote by T a random variable representing failure time. Let T  have,

m  =  lim P ( * < T < t  +  M )
J y '  A t-U) A t

Let S(t)  be the survivor function,

S{t) =  P ( T > t )  =  1 -  F{t) (1.2)

and let h(t) be the hazard function

h(t) =  lim P (/ ~ T  <  * +  A * 1 T  - - } (1.3)
V ’ At^O A t

The survivor function, the probability density function and the hazard func­

tion are equivalent ways of describing a continuous probability distribution. Given

any one of them, we can compute for the other two. The relationship between the

p.d.f  and the survivor function is,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



While the hazard function can be expressed as,

(1-5)

Together, equations (1.4) and (1.5) imply tha t

h(t) =  - ^ l o g S ( t )  (1.6)

Integrating both sides of equation (1.6) gives the expression for the survivor func­

tion in term s of the hazard function:

5 ( t ) = e x p | — J  h(u)duj  (1.7)

The cumulative hazard function is given by

H(t) =  [  h(u)du (1.8)
Jo

Consequently we can write S(t) =  exp[—H(t)] from (1.7)

Using equation (1.5), this formula leads to

/ (t) =  h{t) exp j — J  h(u)dv)j (1-9)

4
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1.2.1 The Product-Lim it Estim ation

The standard estim ator of the survival function, proposed by Kaplan and Meier 

(1958), is called the Product-Lim it estimator. Let us denote the distinct failure 

times by

ti < t2 <  ts . . .  < tk ( 1-10)

The basic computations for the Kaplan-Meier survival curve rely on the com puta­

tion of conditional survival probabilities. In particular, the probability

P [ T > U \ T >  U.,]  (1.11)

which can be interpreted as the probability of an individual surviving to a specific 

time, given th a t the individual survived to the previous time. Another probability 

is the unconditional probability of survival,

P[T > U] (1.12)

which represents the probability of survival to a specific time. Below is the rela­

tionship between the unconditional probability and the conditional probability:

P[T > ti] =  P[T > U \ T  >  > U.,] (1.13)

We can apply this approach to get

P[T >  U] = P [ T > U \ T >  i<_i]P[T >  U . i | T  > ti_2]P[T >  ti_2] (1.14)

5
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and we can continue along these lines to get

P[T > U] =  P[T > U \ T >  ti - i]P[T > U_! | T  >  t i . 2]P[T > U-2] . . . P [ T >  *o]

(1.15)

The last probability represents the probability of an individual surviving a t the 

s ta rt of the study, this probability has to be 1. Therefore, the unconditional 

probability is equal to the cumulative product of the conditional probabilities.

At each time point we observe the following: dj, the number of deaths or

failures a t time f*; c*, the number of censored observations at time ti and any

between ti and ; rii =  ni- 1 — di-i  — c*-i, which is the number of individuals 

a t risk entering the interval (fj_i,tj]. We also define no as the to ta l number of 

individuals in the study, c0 as the number of censored observations prior to the 

first death or failure and do =  0. The conditional probability of survival is given 

by

P [ T > t i \ T > t i. 1] =  l - ^ -  (1.16)
7%i

And the unconditional probability of survival is the cumulative product of the 

conditional probabilities given by:

S ( t )  =  P [ T > t i] ^ f [ ( l - ^ )  (1 .17)
j = i  \  n j J

For uncensored da ta  this is the usual sample survivor function; some of the as­

ym ptotic properties of (1.17) are given by Kaplan and Meier (1958) and by Efron 

(1967).

6
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1.2.2 Proportional Hazards M odel

D. R. Cox in his 1972 paper introduced two significant innovations. First, he 

proposed a model th a t is standardly referred to as the poportional hazards model. 

Second, he proposed a new estimation method called partial likelihood. The term  

Cox regression refers to the combination of the model and estim ation m ethod 

(Allison, 1995). In this paper, we will focus on the proportional hazards model 

more than  the estimation method. The Cox proportional hazards model has been 

widely used in the biomedical field (Leemis, 1995) and recently there has been an 

increasing interest in its application in reliability engineering.

The Cox proportional hazards model can be written as

hi(t /xn . . .  xip) =  h0(t) exp{/3ixn +  (32xi2 H b Ppxip}. (1.18)

This equation states th a t the hazard for individual % at time t is the product of 

two factors:

1. a baseline hazard function ho(t )  that is unspecified

2. a linear function of a set of fixed p covariates ( j q , . . . ,  xp), which is exponen­

tiated.

The function ho (t) can be considered as the hazard function for an individual whose 

covariates are all equal to 0.

Taking the logarithm of both sides, we can rewrite the model in (1.18) as

log hi(t) =  a(t)  +  Pixn +  P2xi2 H h j3px ip (1-19)

7
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where a(t)  =  log h0(t). If we further specify a(t) — a,  which is the simplest 

function th a t says the hazard is constant over time, we will get the exponential 

model. If we specify a(t) =  at,  we will get the Gompertz model. And if we specify 

a(t)  =  a  log(f), we will have a Weibull model. Thus, the proportional hazards 

model is generalization of the Exponential, Weibull and Gompertz model (Allison, 

1995). However, the great attraction of the Cox proportional hazards model is 

th a t h0(t) can take any form.

It is called proportional hazards model because the hazard for any individual 

is a fixed proportion of the hazard for any other individual. To illustrate, take the 

ratio of the hazards for two individuals i and j ,  and use (1.18):

=  exp{/A(xn -  Xji) H b /3p(xip -  xjp)} (1.20)

The ho(t) cancels out of the num erator and denominator. As a result, the ratio of 

the hazards is constant over time.

To illustrate a two-sample problem, let

{ 0 if individual belongs to Group 1 
1 if individual belongs to Group 2

Then following (1.18) the hazard functions for Group 1 and Group 2 are h\(t) and 

h2(t) =  hi(t)ip respectively where ip =  exp(/3). Lehmann(1953) showed th a t in the 

continuous case the survivor functions are related by S2(t) =  [S'i(t)]^.

Lemma 1.1 (Lehmann alternative) Let Si(t) and S2(t) be the survival func­

tions of Group 1 and Group 2 respectively. If h2(t) — iphi(t) then the survivor 

functions are related by S2(t) =  [<Si(t)]^.

8
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Proof.

h2(t) =  hi(t)il)

— f  h2(u)du =  — f  iphi(u)du 
Jo Jo

expj  — J  h2{u)du^ =  expj  — 'tph\{u)du^ 

e x p j — J  h2{u)du^ =  e x p j — ijj hi(u)dv)j 

Using (1.7), S(t) =  exp j — / 0* h(u)du} we have,

S t ®  =  [S^t)]* (1.21)

The Lehmann alternative (1.21) may be seen as the equivalent to  the pro­

portional hazards model in the two-sample problem.

9
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1.2.3 Description of Log-rank Test and W ilcoxon Test

We begin by considering th a t there are n\ and n2 patients who are allocated 

between two groups. We consider tests of the hypothesis th a t the patient groups 

have the same survival distribution against the alternative th a t the patients in 

Group 2 have improved survival. Suppose th a t there are r distinct death times, t%, 

t2, • • •, t r , across the two groups, and at a certain time tj there are d\j individuals 

who died in Group 1 and d2j individuals in Group 2, for j = l , 2 , . . . ,  r. For each 

particular death time we can create the following contingency table

Table 1.1: Number of deaths at the j ’th  death time in Group 1 and Group 2

Group N um ber of Num ber o f surviving Num ber at risk
deaths at tj beyond tj just before tj

1 dij ri-ij dij nij
2 d2j rt-2j ~  d2j n2j

Total dj rij -  dj rij

Here d i j  is a random variable with a hypergeometric distribution with null
_ n u d j  , . n u n 2 j d j ( n j  — d j )  _  . . .

mean given by eu — — and variance Vu =  —-—0, .. Combining
rij n j  (rij -  1)

the information from each 2 x 2 table for each tj gives an overall measure of the 

deviation of the observed values of dij from their expected values we have the 

statistic

U l  =  -  e y ) .  (1.22)
3 = 1

This statistic will have a zero mean, since E{d\j) =  e^ . Since the deaths are 

independent of each other, the variance of Ul is the sum of the variances of the

d i j ,

10
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This procedure is similar to the Mantel-Haenszel test and some authors refer to it 

as the Cox-Mantel test (Mantel and Haenszel, 1959). Thus, the test statistic

(1.24)
Vl

summarize the extent to which the observed survival times in the two groups of 

da ta  deviate from those expected under the null hypothesis of no group differences. 

The test statistic will have an asymptotic chi-squared distribution with one degree 

of freedom under the null hypothesis (Cox, 1972)

The generalized Wilcoxon test of Gehan (1965a,b) is a generalization of 

Wilcoxon’s two sample rank sum test for the case of censored data. The Wilcoxon 

test is based on the statistic

which will have an asymptotic chi-squared distribution with one degree of freedom 

under the null hypothesis (Gehan, 1965). This differ from the Log-rank statistic

(1.24) by the weights rij, the total number of individuals at risk at time tj. Thus the 

Wilcoxon statistic gives greater weight to differences occurring near the beginning

r
Uw =  ^ 2 nj(dij  -  eij). 

l=i
(1.25)

r
with variance Vw =  ^ 2 n“j vij, an^ so the Wilcoxon test statistic is

j =1

(1.26)

11
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of a study, and is less sensitive to events occurring when very few individuals under 

study remain alive (Taron and Ware, 1977).

Another version of Wilcoxon’s two sample rank sum test for complete ob­

servations is described by Peto and Peto (1972). The weight used are the Kaplan- 

Meier estim ate of the survival function,

UpP =  j 2 S ( t ) ( d l j - e l j ). (1.27)
j = i

This test reduces to Gehan’s Wilcoxon test when there are no censored observa­

tions. (Lee, Desu and Gehan, 1975)

12
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1.2.4 Some Survival Distributions (Weibull, Log-normal
and Log-logistic)

W eibull D istribution

The Weibull distribution is a continuous probability distribution characterized by 

two parameters, 7 (shape parameter) and A (scale param eter), with probability 

density function

f( t )  =  A7 (At)7_1 exp {—(At)7} . (1.28)

,  . r ( i  + 1/ 7 ) J r ( i  +  2/7) -  [ r( i  + 1 /7)]2
The mean and variance are -------—-—  and —1--------------—------------------, respec-

A
tively, where T(7 ) =  /0°° u7- 1e““dM is the gamma function. The survival function 

is expressed as

S(t) =  exp[—(At)7] (1.29)

and the corresponding hazard function as

h(t) =  A7 (At)7- 1. (1.30)

W hen 7= 1, the hazard rate remains constant as time increases (this is the expo­

nential case). The hazard rate increases when 7 >1 and decreases when 7 <1 as t 

increases. Since Weibull distribution may be used to model increasing, decreasing 

and constant risk, it has a broader application. The following published papers 

used the Weibull distribution to model survival times.

1. Elketroussi M, Fan DP. 1991. Time trends of smoking cessation analyzed 

with six m athem atical survival models. Int. J. Biomed. Comput. 27:231-44

13
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2. Hendricks JCM, Medley GF, Van Griensven GJP, Coutilinho RA, Heis- 

terkam p SH, et al. 1993. The treatment-free incubation period of AIDS 

in a cohort of homosexual men. AIDS  7:231-39

3. Juckett DA, Rosenberg B. 1993. Comparison of the Gompertz and Weibull 

functions as descriptors for human mortality distributions and their intersec­

tions. Mech. Ageing Dev. 69:1-31

4. Scott BR, Hahn FF. 1980. A model th a t leads to the Weibull distribution 

function to characterize early radiation response probabilities. Health Phys 

39:521-30

5. Williams AJ, Al-Katib A, Wong GY, Jhanwar SC, Chaganti RSK, et al 1978. 

Efficient analysis of Weibull survival data  from experiments on heterogeneous 

patient populations. Biometrics 34:209-22
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Lognormal D istribution

The lognormal is defined as the distribution of a variable whose logarithm follows 

a normal distribution. Consider T  as the random variable whose log T  is normally 

distributed with mean p  and variance a 2, then T  has a lognormal distribution with 

param eters p  and a 2. The probability density  function  is

The hazard function increases initially to a maximum and then decreases, almost 

as the median is passed, toward zero as time approaches infinity (non-monotonic 

hazards). The hazard function is an inverse-bath tub shape. The following pub­

lished papers used the Lognormal distribution to model survival times.

1. Ahmed FE, H attis D, Wolke RE, Steinman D. 1993. Human health risks 

due to consumption of chemically contam inated fishery products. Environ.

(1.31)

The mean and variance are exp(p  +  0.5cr2) and [exp(er2) -  1] exp(2p, +  a 2), respec­

tively. The survival function  is expressed as

(1.32)

and the corresponding hazard function  as

(1.33)

Health Perspect. 101:297-302

15
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2. Horner RD. 1987. Age at onset of Alzheimer’s disease: clue to the relative 

importance of etiologic factors? Am. J. Epidemiol. 126:409-14

3. Larsen RI, McDonnell W F, Horstman DH. 1991. An air quality d a ta  analysis 

system for interrelating effects, standards, and needed source reducations: 

P art II. A lognormal model relating human lung function decrease to 0 3 

exposure. J. Air Waste Manage. Assoc. 41:455-59
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Log-logistic D istribution

Similar to the lognormal distribution, if the variable log T  has a logistic distribu­

tion, the variable T  follows the log-logistic distribution. The log-logistic distribu­

tion also hr 

function  is

tion also has two parameters, a  =  — and A =  exp ( ——Y The probability density
a \  a J

r u \ t a ~1
/<*> =  f1-34*

™ j . 7r csc(71/0;)  ̂ . 27rcsc(27Tla )  r ,
ih e  mean and variance are ------/ / — if o  >  1, and ------- ^77—1---------L  i  , it

a \ lla a \ 2!a 1 J
a  >  2.The survival function  is expressed as

S {t)  =  „ \  (1.35)
w  1 +  A t a

and the corresponding hazard function  as

, . . a \ t a 1
h(t)  =     —  (1.36)

w  1 +  A t a

W hen a  <1 the hazard rate decreases from infinity toward 0 when a = l ,  it decreases 

from A to 0, and when a  >1, it increases from 0 to a maximum and then decreases 

toward 0. The following published papers used the log-logistic distribution to 

model survival times.

1. Conkin, J. 2001. A Log Logistic Survival Model Applied to Hypobaric De­

compression Sickness. NASA. h ttp :/ /techreports .larc .n asa .gov /cg i-b ib /N T R S

2. Elketroussi M, Fan DP. 1991. Time trends of smoking cessation analyzed 

w ith six m athem atical survival models. Int. J. Biomed. Comput. 27:231-44

17
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3. Schmidt P, W itte DA. 1988. Predicting Recidivism Using Survival Models. 

NY: Springer-Verlag
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Table 1.2: Summary of density, survival and hazard function with mean and vari­
ance

D istribution Param eters Density, survival and hazard function  
M ean and Variance

Weibull A, 7 > 0 f { t )  =  A7 (Af)7-1 exp {—(At)7} 
S( t )  =  exp[—(At)7] 

h(t)  =  A7 (At)7_1

^  r ( i  + 1/ 7)

r ( i  +  2 / 7 ) - [ r ( i  +  i / 7)]2 
A2

Lognormal H, a  > 0 /(*) =  ,  n r  exPt y / z i ta

S { t ) =  1 -  $  

h ( t) =

/i =  exp(yu 
a 2 =  [exp(<r2) — 1

1 f l n t  -  /A 2

2 \  a  /  j
Int  — fi 

a
f ( t )
S( t )

T 0.5cr2)
] exp(2// +  cr2)

Log-logistic
1

a  =  — 
a

A =  exp ( " )

1 [1 +

S( i> = l  +  « ■

w  1 +  Ata

7rcsc(7r/o!)
a y /«  , f a > 1

2x c Sc ( W « )  B[T]2i i f Q > 2
«A2/Q 1 J
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1.3 Proportional Hazards Model, Lehmann
Alternative and the Weibull Distribution

A general model for comparing two groups of survival times is the proportional 

hazards model. To illustrate a two-sample problem under the proportional hazards 

model, let

{ 0 if ith  individual belongs to Group 1 
1 if ith  individual belongs to Group 2

Then the hazard function for the ith  individual is

where ip =  exp(ft). Consequently, the hazard functions for the two groups are:

hi(t) =  h0(t) 

h { t )  =  h0(t)ip

So the relationship between the two hazard functions is,

Lemma 1.2 Let T\ ~ W e ib u l l ( 'y , \ )a n d  let the proportional hazards assumption  

(1.37) be satisfied. Then T2 ~  Weibull (ry,'ip1̂ X ) ,  fo r  some constant ip.

h0 (t) if ith  individual belongs to Group 1 
ho(t)ip if ith  individual belongs to Group 2

h2(t) =  h^t) ip (1.37)

From Lemma 1.1, condition (1.37) is equivalent to assuming S2CO =  Si(t )^.

20
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Proof. Ti has hazard function hi ( t )  =  Xj ( Xt ) 1 1. Then T2 has hazard function,

h2(t) =  i>hi{t)

=  'ipXry(Xty~1 

=  V,A77t7_1

= •01/7'0(7-1)/7AA7-17t7-1 

=  ^ 1/7A7 [t/;1/7At]7- 1 

-  A*7 [A*t]7-1

Lemma 1.2 shows th a t proportional hazards under the Weibull distribution is sat­

isfied if and only if the shape param eter 7 stays the same.

21
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Lemma 1.3 Let T\ ~ W e ib u l l(7 , AJ, T2 =  cT\. Since T\ and T2 satisfy the p ro ­

portional hazards assumption with h2 = iphi(t)  and  <S2(t) =  [Si(i)]^ then  T2 ~  

Weibull (7 , A/cJ.

Proof.

-S2W = m  >«]

=  P[cTx >  t] 

t'
=  P T i> cj

Lemma 1.3 shows th a t scalar transformation under the Weibull distribution main­

tains the shape param eter 7 and only change the scale param eter A thus satisfiying 

the proportional hazards assumption.

22
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Chapter 2 

Log-rank Test Versus W ilcoxon  
Test

2.1 Some Known Results

Tarone and Ware (1977) dem onstrated th a t the test statistics for the Log-rank 

and Wilcoxon differ only in the choice of weights, which are functions of the to ta l 

number of individuals at risk a t each event time. In discussing the weights utilized 

by the Log-rank and generalized Wilcoxon statistics Tarone and Ware (1977) have 

noted th a t the generalized Wilcoxon statistic gives more weight to early events 

and the Log-rank statistic is more sensitive to late occurring events. The Log-rank 

test, proposed by Mantel (1966) and discussed extensively by others [Cox (1972), 

Breslow (1975), Peto (1972), Peto and Peto (1972) and Peto and Pike (1973)], is 

known to be fully efficient rank test under Lehmann alternatives, 52 (t) =  [5i(t)]^ 

(alternatives in which the relative hazard is constant) when censoring distributions 

are equal. In general, the Log-rank test tends to be sensitive to distributional 

differences which are most evident late in time. In comparison, a generalized 

Wilcoxon procedure proposed by Gehan (1965) has been found to be more powerful 

in detecting differences very evident early in time (Lee, Desu and Gehan (1975);
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Prentice and Marek (1979); also some results by Lee and Thomas presented at 

meetings in Boston in 1976).

Tarone and Ware (1977) and Lee, Desu and Gehan (1975) indicate th a t 

while tests based on the Logrank statistic perform extremely well when the under­

lying distributions have constant hazard ratios, they may lose considerable power 

under deviations from the proportional hazard model. The assumption of propor­

tional hazards is th a t the hazard of death at any given time for an individual in 

one group is proportional to the hazard at th a t time for a similar individual in the 

other group.

Collett (1994) suggested th a t in order to help decide which test is the more 

suitable in any given situation, one make use of the result th a t if the hazard 

functions are proportional, the survival functions for the two groups do not cross. 

Since the survivor function takes values between 0 and 1, it can be shown under 

Lehmann-alternative (1.21) th a t Si(t)  is greater than or less than  S ^ ) ,  depending 

on whether 0  is less than or greater than  1 a t any time t. This means th a t if two 

hazard functions are proportional, the true survivor functions do not cross. This 

is a necessary, but not a sufficient condition for proportional hazards.

There have been several graphical methods suggested for assessing the pro­

portional hazards assumption (Hess, 1995). The commonly used graphical m ethod 

th a t is available on most statistical software is the plotting of the log of the cumu­

lative hazard function against log time and checking for parallelism. A plot of the 

values of log-log S(t) against log t  is known as the log-cumulative hazard plo t

Although there have been many numerical goodness-of-fit statistics pro­

posed to detect violations of the PH assumption, none of these gained wide use, 

and they are limited both by statistical power and the family of alternatives con-
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sidered. (Hess, 1995)

Fleming et al (1980) found out on the course of their research th a t both the 

Log-rank test and the Gehan-Wilcoxon test may be insensitive to certain commonly 

occurring departures from the null hypothesis. They have seen th a t substantial 

differences between two survival distributions may be apparent at one point in 

time, but fail to exist elsewhere. Stablein and Koutrouvelis (1985) mentioned in 

their paper the concern expressed by practitioners tha t alternative distributions 

may not be from a set of location shift alternatives. This departure from the null 

hypothesis fall within the class commonly referred to as “crossing-hazards alter­

natives” . Careful inspection of the Log-rank and Gehan-Wilcoxon test statistics 

suggests th a t test procedures based upon these statistics may be insensitive to such 

departures. Neither of these tests described is designed to detect differences where 

survival curves cross or differ in other more general ways, because the tests are 

based on the weighted integral of estimated difference between the survival curves.
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2.2 A Simulation Study

To compare the performance of the Log-rank and Wilcoxon tests, da ta  were gen­

erated by computer simulation from Weibull, Lognormal and Log-logistic distrib­

ution. The 50 survival times for each group are observed to fail (uncensored case). 

Let Ti denote the Group 1 (or control group) random variable. In all simula­

tion cases, T\ will have mean 100 and distribution either Weibull, Lognormal or 

Log-logistic.

Let T2 denote the Group 2 (or treatm ent group) random varible. We will 

compare the power of Log-rank and Wilcoxon under the following alternative hy­

pothesis treatm ent structures:

1. T2 =  cTi, where c >  1 (scale transformation)

2. T2 =  Tf, where c >  1 (this is equivalent to logT2 =  c lo g 7 \, scalar transfor­

mation in the log scale)

Two additional treatm ent effects under the Weibull distribution were also 

investigated (Cases 3 and 4).

Simulation were done 10,000 times for each case of treatm ent effects to 

show the size and power of the Log-rank and Wilcoxon tests. The alternative 

hypothesis used is th a t the treatm ent group have a higher survival times than  the 

control group.
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•  W EIBULL D istribution  

Case 1:

* T\ ~  Weibull(7 , A)

* T2 =  cTi, c > 1

T2 ~  Weibull(7 , A/c) and proportional hazards assumption is satisfied

Case 2:

* 7\ ~  Weibull(7 , A)

* T2 =  Tf, c >  1

T2 ~  Weibull(7 /c , Ac) and proportional hazards assumption is not sa t­

isfied since shape param eter changed

Case 3:

* Ti ~  Weibull(7 , A)

* T2 Weibull(c7 , A/c), c >  1

Proportional hazards assumption is not satisfied since shape param eter 

changed

Case 4:

* Ti ~  Weibull(7i, Ai)

*  T 2 ~  W e ib u l l ( 7 2 , A2) ,  w h e r e  71 <  72 a n d  Ax >  A2

Proportional hazards assumption is not satisfied since shape param eter 

changed
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•  LOGNORM AL D istribution  

Case 5:

★ Ti Lognormal(/x, a) 

k T2 =  cT\ , c >  1

T2 ~  Lognormal ( I n a )  and proportional hazards assumption is not 

satisfied

Case 6:

★ Ti ~  Lognormal(/r, a) 

k T2 =  Tf, c >  1

T2 ~  Lognormal(c/x, ccr) and proportional hazards assumption is not 

satisfied

•  LOG-LOGISTIC D istribution  

Case 7:

★ Tx rkj Log-logistic (a, A) 

k T% — cTi , c > 1

T2 ~  Log-logistic(a, A/cQ) and proportional hazards assumption is not 

satisfied

Case 8:

k Ti ~  Log-logistic(o!, A) 

k T2 =  Ti, c >  1

T2 ~  Log-logistic (a /c , A) and proportional hazards assumption is not 

satisfied

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.3 Simulation Results Under Weibull
Distribution (Cases 1, 2, 3 and 4)

Case 1

If survival time 7\ of individuals in Group 1 have a Weibull distribution with shape 

param eter 7 , and the hazard for an individual in the second group is proportional 

to th a t of an individual in the first, the survival times for those in the second 

group will also have a Weibull distribution with shape param eter 7 (Collett, 1994). 

M ultiplying a constant to the survival time only changes the scale param eter A and 

maintains the same value of the shape param eter 7 . Therefore, when control T) 

has a Weibull distribution and treatm ent T2 =  cTi, then Ti and T2 satisfy the 

proportional hazards assumption.

O

A '00o

CDO

o

<NO

150100 110 120 130 140

Mean for Group 2 
(Mean for Group 1 =100)

Figure 2.1: Power curves for the tests in samples of size n\ =  n 2 =  50 from a 
Weibull distribution with equal shape parameters 7 =  2 and treatm ent effect cT : 
O ) Log-rank; A , Wilcoxon
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Since the Log-rank test is efficient under proportional hazards, the Log-rank is 

expected to have higher power than  Wilcoxon. This is confirmed by our simulation 

results for Case 1, presented in Figure 2.1.

Case 2

If T2 =  Tf, then T2 has a Weibull distribution with scale param eter A* =  Ac 

and shape param eter 7* = 7 /c. Therefore, proportional hazards assumption is not 

satisfied since 7 * ^  7 . However, Log-rank test has higher power than  the Wilcoxon 

test (Figure 2.2) even if the proportional hazards assumption is violated.

o

COo

CD
d

d

160100 110 120 140 150130

Mean for Group 2 
(Mean for Group 1 = 100)

Figure 2.2: Power curves for the tests in samples of size n\ =  n 2 =  50 from a Weibull 
distribution with control group param eters 7  =2, A=0.008862 and treatm ent effect 
T°: O , Log-rank; A , Wilcoxon

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Case 3

Another treatm ent effect is when survival times were generated under the Weibull 

distribution where the shape param eter is increased by multiplying it by c (07) and 

the scale param eter was decreased by dividing it by c (A/c). This has the effect of 

increasing the mean survival time for the treatm ent group. In this case proportional 

hazards assumption is not satisfied and it is confirmed in our simulation th a t the 

Wilcoxon test has higher power than the Log-rank test, Figure 2.3.

OT*

00o

CD
©

©

C\l
©

140 150100 110 120 130

Mean for Group 2 
(Mean for Group 1 =100)

Figure 2.3: Power curves for the tests in samples of size ni =  n 2 =  50 from a 
Weibull distribution with shape parameters 71 =  2 and shape is increased by c and 
scale is decreased by c: Q> Log-rank; A , Wilcoxon
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Case 4

In this case the shape parameters of the two groups are different and the mean of 

the treatm ent group is higher. For this simulation the shape param eter for Group 

1 is 2 and the shape param eter for Group 2 is 3. I adapted the shape param eter 

values from Ng’Andu(1997) and the mean of the control group from Lee, Desu and 

Gehan (1975). Proportional hazards assumption is not satisified since the shape 

param eters of the two groups are not the same. In Figure 2.4 we can see th a t the 

power of the Wilcoxon test is higher than  the Log-rank test.
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140 150100 110 120 130

Mean for Group 2 
(Mean for Group 1 =100)

Figure 2.4: Power curves for the tests in samples of size n\ =  n2 — 50 from 
a Weibull distribution with shape param eters 7i =2  and 72=3 for Group 1 and 
Group 2, respectively: 0>  Log-rank; A , Wilcoxon
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2.4 Simulation Results Under Lognormal
Distribution (Cases 5 and 6)

Case 5

Let Ti follow a Lognormal distribution with parameters fi and a. If T2 =  cTi, 

then T2 will follow a Lognormal distribution with parameters In c  +  / i  and a. Here 

the Wilcoxon test has a higher power than the Log-rank test as can be seen in 

Figure 2.5.
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100 120 140 160 200180

Mean for Group 2 
(Mean for Group 1 =100)

Figure 2.5: Power curves for the tests in samples of size ni =  n 2 =  50 from 
a Lognormal distribution with parameters jx=4.1052 and a —1 for Group 1 and 
treatm ent effect cT for Group 2: Q> Log-rank; A , Wilcoxon
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Case 6

On the other hand, if T2 =  Tf, then T2 will follow a Lognormal distribution with 

param eters c/i and ca. In this case the Log-rank test has higher power than  the 

Wilcoxon test as can be seen in Figure 2.6.
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(Mean for Group 1 =100)

Figure 2.6: Power curves for the tests in samples of size rii — n 2 =  50 from 
a Lognormal distribution with parameters n = 4.1052 and a = l  for Group 1 and 
treatm ent effect T c for Group 2: Q> Log-rank; A , Wilcoxon
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2.5 Simulation Results Under Log-logistic
Distribution (Cases 7 and 8)

Case 7

Let the survival time 7 \ follow a Log-logistic distribution with param eters a  and 

A. If T2 =  cTi, then T2 will follow a Log-logistic distribution with param eters a  

and X/ca. Our simulation shows th a t the Wilcoxon test has a higher power than 

the Log-rank test (Figure 2.7).

O

00o

<Do

Tfo

CM
d

100 120 140 160 180 200

Mean for Group 2 
(Mean for Group 1 =100)

Figure 2.7: Power curves for the tests in samples of size n\  =  n 2 =  50 from a 
Log-logistic distribution with parameters //=4.1536 and <7=0.5 for Group 1 and 
treatm ent effect cT for Group 2: Log-rank; A , Wilcoxon
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Case 8

The survival time is raised to a constant (T2 =  T-f) and T2 ~  Log-logistic(o;/c, A). 

Our simulation shows th a t not much difference is seen between the powers of the 

Log-rank test and Wilcoxon test (Figure 2.8).
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Figure 2.8: Power curves for the tests in samples of size rii =  n 2 =  50 from a 
Log-logistic distribution with parameters //=4.1536 and <7= 0.5 for Group 1 and 
treatm ent effect T c for Group 2: Q , Log-rank; A , Wilcoxon
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2.6 Summary

Case 1 satisfy the proportional hazards assumption. For this case, the Log-rank 

test out performs the Wilcoxon test. In Cases 3, 4 and 5 the proportional hazards 

assumption is violated. In these cases, the Log-rank test performs worst than  

the Wilcoxon test. In Cases 2, 6, and 7 the proportional hazards assumption is 

violated, but the Log-rank test still out performs the Wilcoxon test. In Case 8 the 

proportional hazards assumption is not satisfied and the power of Log-rank test 

and Wilcoxon test shows not much difference.
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Chapter 3

D iagnostics for Choosing Betw een  
Log-rank Test and W ilcoxon Test

3.1 Log-cumulative hazard plot

It is a common practice on dealing with two-sample problem in survival analysis 

th a t Log-rank test is used under the assumption of proportional hazards and the 

Wilcoxon test otherwise. Several graphical methods were suggested for assessing 

the proportional hazards assumption and the commonly used graphical m ethod 

th a t is available on most statistical software is the plotting of the log of the cumu­

lative hazard functions against log time and checking for parallelism (Hess, 1995). 

A plot of the values of log-log S(t) against log t is known as the log-cumulative 

hazard plot.

It can be shown using (1.21) under the two-sample problem,

&(<) = [S1(i)]“ pOT

log 52 (i) =  exp(/3) log Si(t)

- l o g  S2(t) =  — exp(/3) log5 i(t)
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lo g { -lo g  S2{t)} =  p  +  lo g { - \o g S i ( t ) }  

log [H2(t)} =  P +  \og[Hi{t)]

Thus, plot of the two log cumulative hazard functions will be parallel under the 

proportional hazards assumption against log t.

W hen Ti ~  Weibull(7 , A), the log-cumulative hazard plot will give a straight 

line with intercept 7 log A and slope 7 since the survival function for Weibull is 

exp[—(At)7]. In the Weibull model, the assumption of proportional hazards be­

tween two groups corresponds to the assumption th a t the shape param eter 7 is 

the same in each group. It then follows th a t if T2 ~  Weibull(7 , A*), as they would 

in the proportional hazards model in (1.18), the log-cumulative hazard plot will 

give a straight line, also of slope 7 , but with intercept 7 log A*. Parallel straight 

lines would mean th a t the assumption of proportional hazards model and Weibull 

survival time are satisfied (Figure 3.1). If the two lines in a log-cumulative hazard 

plot are straight but not parallel, this means th a t the shape param eter 7 is differ­

ent in the two groups, and the hazards are no longer proportional. If lines are not 

particularly straight, the Weibull model may not be appropriate. However, if the 

curves can be taken to be parallel, this would mean tha t the proportional hazards 

model is valid, and the Cox regression model might be satisfactory (Figure 3.2).
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Figure 3.1: Log-cumulative hazards plot for two groups with Weibull survival times 
and satisfies the proportional hazards model assumption
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Figure 3.2: Log-cumulative hazards plot for two groups th a t satisfies the propor­
tional hazards model assumption
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The log-cumulative hazard plot will correctly identify the more powerful 

test in simulation Cases 1 and 4, but fail in simulation Case 2.

For simulation Case 2, the log-cumulative hazard plots are diverging (Fig­

ure 3.3). This tells the user to use the Wilcoxon test. However, our simulation 

shows (Figure 2.2) th a t Log-rank is the better test for this case.

The lesson here is to detect not just whether proportional hazards assump­

tion is violated, but how it is violated. In simulation Case 2, proportional hazards 

assumption is violated but treatm ent effect is late rather than early in the survival 

range (Figure 3.4). This suggest diagnostics not ju st for proportional hazards 

assumption but for whether separation between the two curves is early or late.

co

oo

0 1 2 3 4 5

log Time

Figure 3.3: Log-cumulative hazard plot for Weibull distribution with control group 
param eters (7 =  2, A =  0.008862) and treatm ent effect T c: Q ,  Control Group; A , 
Treatm ent Group
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Figure 3.4: Survival functions for Weibull distribution with control group para­
meters (7 =  2, A =  0.008862) and treatm ent effect T c: 0>  Control Group; A , 
Treatm ent Group

In addition, it can be shown th a t the log cumulative hazard function of the 

two groups is,

Group 1: 7 log(A) +  7 log(t)

G ro u p 2 :7 log(A) +  l ^ W

which also confirms th a t they are not parallel.
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3.2 Lehmann Alternative and Early-Late 
Treatment Differences

The Log-rank test has more power than the Wilcoxon test on situations where 

there is later separation.

L e m m a  3.1 (L a te  T re a tm e n t D ifferences) Under the Lehmann alternative (1.21), 

the maximum difference between the survival functions Si(t) and S2(t) will occur 

at T  such that Sfft) <  0.4.

Proof. Let,

p* - p

f ip )  =  p ^ - p

where p =  Sfft)

The first and second derivative of the function are,

d
dp P* - P =  ipp^ 1 (3.1)

dp2 [p4 P (3.2)

The second derivative will always be negative since ipp  ̂ 2 is positive and (ip — 1) is 

negative for 0 <  ip <  1. This implies th a t the function is concave down and from 

the first derivative the maximum value of p was computed to be

Si(t) = p  =  

43
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Using Equation (3.3), for 0 <  "0 <  1, the value of Si(t)  tha t will give the maximum 

difference for [S'i(t)]^ — Si(t)  are values less than 0.4. The values are tabulated  in 

Table 3.1 and plotted in Figure 3.5.

Table 3.1: Different values of -0 and the corresponding Si(t)

0 M ax im u m  d ifference  [<Si(i)]^ — Si(t)  
achieved at Si(t)  equal to

0.05 0.0427
0.10 0.0774
0.15 0.1073
0.20 0.1337
0.25 0.1575
0.30 0.1791
0.35 0.1989
0.40 0.2172
0.45 0.2341
0.50 0.2500
0.55 0.2649
0.60 0.2789
0.65 0.2921
0.70 0.3046
0.75 0.3164
0.80 0.3277
0.85 0.3384
0.90 0.3487
0.95 0.3585
0.99 0.3660

Observe th a t for all 0  between 0 and 1, the maximum difference [<Si(t)]^ — 

S\(t)  is achieved at later event times, i.e. late enough so th a t S\(t) <  0.40. For 

example, if 0  =  0.5, then S2(t) — Si(t) =  [S'i(t)]^ — Si(t) is largest a t Si(t) =  

(fT^ )1̂ 0 5 ^  =  0-25- The maximum of course depends on the value of 0 .
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Figure 3.5: Plot of 0  versus Si(t) =
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Figure 3.6: Plot of Si(t)  and S2(t) 
S^ t)  =  0.25: O , S i(t); A , S2{t)

[S'i(t)]0’5. Maximum separation occurs at
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3.3 Treatment Effects on the Survival Function

In this section we will show th a t simulation Cases 1, 2, 6 and 8 in C hapter 2 where 

Log-rank test beat Wilcoxon test correspond to late separation between survival 

curves.

In the following three subsections corresponding to the three survival time 

distribution being studied we will see how the survival function behaves on the 

three different treatm ent scenarios described on each graph.

3.3.1 Weibull Distribution

Figure 3.7 give plots of Si(t)  where T\ ~W eibull(7 =  2, A =  0.008862) against the 

following Si(t):

(a) T2 =  cTi (Case 1 and Lehmann alternative)

(b) T2 ~  Weibull(7 =  3, A =  0.0069) (Case 4)

(c) T2 =  Tf (Case 2)

In Figure 3.7 we can clearly see th a t survival function for Case 1 have wider 

difference from the control group on the lower half of the graph. The survival 

function for Case 4 clearly shows the wide difference from the survival function of 

the control group on the upper half of the two curves.
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Figure 3.7: 0>  Control group with survival times following a Weibull distribution 
with param eters 7 =  2, A =  0.008862; (a) Case 1: A , Lehmann alternatives with 
ip =  1/ 2, (b) Case 4: + , Treatment group with parameters 7 =  3, A =  0.006869, 
(c) Case 2: *, Treatm ent effect T°
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3.3.2 Lognormal Distribution

Figure 3.8 give plots of Si(t)  where 7 \ ~Lognormal(/z =  4.1052, a  =  1) against the 

following S^it):

(a) S2{t) =  [‘S'i(t)]0'5 (Lehmann alternative)

(b) T2 =  cTi (Case 5)

(c) T2 =  Tf (Case 6)

In Figure 3.8 we can clearly see th a t survival function for the Lehmann 

alternatives with tp—1/2 (a) have wider difference from the control group on the 

lower half of the graph. On the other hand, it is a little hard to tell from the 

graphs of the survival functions of the control group and treatm ent group for Case 

5 and Case 6 th a t (b) shows a wider difference on the upper half and (c) shows a 

wider difference on the lower half of the graph.
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Figure 3.8: O? Control group with survival times following a Lognormal distribu­
tion with param eters n =  4.1052, a  =  1; (a) A , Lehmann alternatives with xjj =  
1/2, (b) Case 5: + , Treatm ent effect cT, (c) Case 6: *, Treatm ent effect T c
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3.3.3 Log-logistic Distribution

Figure 3.9 give plots of S'i(t) where T\ ~Log-logistic(/x =  4.1536, a  =  0.5) against 

the following 52(f):

(a) 52 (t) =  [5 i(t)]°-5 (Lehmann alternative)

(b) T2 =  cTi (Case 7)

(c) T2 =  Tf (Case 8)

In Figure 3.9 we can clearly see th a t survival function for the Lehmann 

alternatives with tp—1/2 (a) have wider difference from the control group on the 

lower half of the graphs. It seems like the graphs (b) and (c) corresponding to 

Cases 5 and 6 looks the same.
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Figure 3.9: 0>  Control group with survival times following a Log-logistic distrib­
ution w ith param eters // =  4.1536, a  =  0.5; (a) A , Lehmann alternatives with ip 
— 1/2, (b) Case 7: + , Treatm ent effect cT , (c) Case 8: *, Treatm ent effect T c
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Chapter 4

Proposed Diagnostic for Early 
Versus Late Treatment 
Differences

Our simulation results show th a t power comparison between Log-rank and Wilcoxon 

tests does not depend entirely on proportional hazards assumption but more on 

early and later treatm ent effects. Motivated by this idea we propose a way to 

quantify the separation between the two survival functions.

4.1 The M Test

We propose as diagnostic the comparison of the lengths of the two vertical lines 

in Figure 4.1, as follows. If separation between the two curves occur early, then 

the vertical line on the left is expected to be longer than th a t one on the right. If 

separation is late, then the one on the left should be shorter. This is quantified in 

the following statistic M.

early deaths late deaths

M =[52(to.5, l) ~  <Sl(io.5, i)] — [<S2(to.5, 2) — <Sl(to.5, 2)] (4.0)
' --------------V------------- '  ' ------------- * -------------'

0.5 0.5
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where

to.5, i is the time in Group 1 with §i(t)  =  0.5 

to.5, 2 is the time in Group 2 with § 2(t) =  0.5 

^2^ 0.5, 1) is the survival estimate of f0.5, 1 in Group 2 

§i{to.5, 2) is the survival estimate of to.5,2 in Group 1

COo

COo
<0

o

CMo

o
d

Figure 4.1: M test on survival functions Q , Control Group; A , Treatm ent Group

If separation is early, then we expect M  >  0. If separation is late we expect M  <  0. 

In Chapter 5, we propose the following pretest procedure:

1. If M  < 0 ,  then use Log-rank test

2. If M  >  0, then use Wilcoxon test
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Now, we will show th a t the Lehmann alternative, and hence proportional 

hazards assumption, implies th a t M  <  0. This result is in Theorem 4.2. The proof 

will need the following Lemma.

O
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0.20.0 0.4 0.6 0.8 1.0

Figure 4.2: Plot of ijj versus (0.5)^ +  (0.5)^

L e m m a  4.1 Let f(ip) =  (0.5)^ +  (Q.5)1̂ .  Then

1. / ( I )  =  1 and / ' ( l )  =  0

& /(VO =  /(V V O

S. lim  /(VO =  lim  /(VO =  1
Ip—*0+ tp-tOQ

4■ / " (  1) is negative

5. f  has exactly three zeroes on (0,oo);

6. f  achieves its maximum value at ip =  1
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Proof.

(a)

(b)

(c)

(d)

(e) The following substitution were made to turn  the unusual symmetry of (b) 

as shown in Figure 4.2 into a genuine symmetry around the y-axis:

a =  ln(0.5) and t =  ln(V’)

Then we have f(ip) =  g(t), where

g( t )  =  eae* +  eae_i 

g'{t) =  eae< ae* — eae 1 ae~l 

The domain (0, oo) for /  has been stretched to  (—00, 00) for g. Now g'(t) 

=  0 precisely when /'(VO =  0, so we work on the equation g'(t) =  0. This

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/ ( I )  =  0 .5 +  0.5 =  1

/ ' (< «  =  ln (0 .5 ) 1 (0 .5 )*  -  ^ ( O .S ) 1̂

/ ' ( l )  =  ln(0.5)(0.5 -  0.5) =  0

1 , 1Let y =  — =+> ip =  -1 y >  0 
ip y

f ( y ) =  (0.5)» +  (0.5)1//2/ 

lim (0 .5 )^+  (0.5)1/,/’ =  1 +  0 =  1
ip->0+
lim (0.5)^ +  (0.5)x̂  =  0 +  1 =  1

ip—to o

Taking the second derivative

/"(VO =  ln(0.5) ^(0 .5)^ln(0.5) +  ^ ( 0 . 5 ) ^  ln(0.5) +  ^ ( Q .5)1̂  

and plugging in ip =  1 we get

/ " ( l )  =  ln(0.5)[0.51n(0.5) +  0.51n(0.5) +  2(0.5)] =  -0 .2127
negative



happens when

eaet ae4 =  eae_t ae“4

aeae*+t =  ae06-*-4

ln(eae‘+4) =  ln(eae~‘- 4)

ae4 + 1 =  ae~4 — t

a(e4 — e~4) =  — 2t

(—a) sinh(t) =  t

Using the definition below

sinh(t) =  ^ (e4 — e-4)

cosh(t) =  ^ (e4 +  e~4)

we take the first derivative of the left hand-side of the last equation above 

to  get

-r-(—a sinh(t)) =  —a cosh(f) =  ^(e4 +  e-4). 
dt  £

W hen t  =  0,

—a cosh(0)) =  ^(e° +  e°) 
z

=  1

Now —a — - ln(0.5) is positive, from the previous information we can con­

clude tha t, (—a) sinh(t) =  t has three solutions since — ln(0.5) <  1.

It follows from (d) and (e) tha t /  has three local maxima: at 0, oo and 1; 

the values a t 0, oo and 1 are all equal to 1. Thus, f achieves a maximum value of 

1 a t ip =  1.
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T h e o re m  4.2  7 /5 2(£) =  [5i(t)]^, then M  <  0.

P ro o f . Let 52(t) =  [5i(i)]^, then

M  =  [52( 5 r 1(0.5)) -0 .5 ]  -  [ 0 .5 - 5 i ( 5 2- 1(0.5))]

=  [[S1(Sr, (0.5))]+ -  0.5] -  [0.5 -  [S2(S2- 1(0.5))],/'']

=  [(0.5)* -  0.5] -  [0.5 -  (0.5)17*]

Therefore, M  <  0 if and only if

[(0.5)^ -  0.5] -  [0.5 -  (Q.5)1̂ ]  <  0 (4.1)

or equivalently ,

[(0.5)^ +  (0.5)1/V)] < 1 (4.2)

This is true as shown in Lemma 4.1.

Theorem 4.2 says th a t the Lehmann alternative implies M  <  0. Since pro­

portional hazards assumption implies the Lehmann alternative, the proportional 

hazards assumption implies M  <  0. In Chapter 5, we propose using M  <  0 as a 

pretest for using Log-rank test.
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4.2 The Q Test

Since the values of Si (t) th a t will give the maximum difference between two survival 

functions under the Lehmann-alternative for 0 <  ip < 1 are less than 0.4, we tried 

the cut-offs th a t capture 0.4 in the middle, for example 0.2 and 0.6. Measuring 

the vertical distance from the two points to their corresponding survival function 

to the treatm ent group is another way to quantify the separation between the two 

survival functions (Figure 4.3). Let,

Q =  [Si (to.6) — <5o(£o.6)] — [S'l(to.2) -  <5o(to.2)] (4-3)

where

to.6, i is the time in Group 1 with Si(t) =  0.6 

to.2, l is the time in Group 1 with Si(t)  =  0.2 

^2 (to.6, i) is the survival estimate of t0.6, i in Group 2 

&(to.2, i) is the survival estimate of t0.2, 1 in Group 2

The Q test directs the user to use Log-rank when Q <  0, thus implying a 

late separation in the survival curves which also says differences between groups 

are occurring a t later points in time. When Q > 0, thus implying early separation 

in the survival curves, the Q test directs the user to use the Wilcoxon test instead. 

Since the neither Log rank nor Wilcoxon are particularly good at detecting dif­

ferences when survival curves cross we can only limit the use of the proposed test 

where the Log rank and Wilcoxon test are particularly good.
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Figure 4.3: Q test on survival functions: Q ,  Control Group; A , Treatm ent Group
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Figure 4.4: Plot of xp versus (0.6)^ — (0.2)^ 
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Theorem 4.4 will show th a t Lehmann alternative also implies th a t Q <  0. 

The proof will need the following Lemma.

L e m m a  4 .3  Let /(?/>) =  (0.6)^ -  (0.2)^, for 0 <  tp <  1, f{if) <  0.4 

P ro o f .

/(</,) =  (0.6)^ -  (0.2)^, 0 < i p  < 1

f ' ($ )  =  (0.6)^ ln (0.6) -  (0.2)^ ln (0.2)

=  (0.2)^[3*ln(0.6) -  ln(0.2)]

Note: (0.2)^ >  0 for all if

f'(ip) >  0 if 3^ ln(0.6) -  ln(0.2) >  0

3^ ln(0.6) — ln(0.2) >  0

3^ <  since ln(0.6) < 0
ln(0.6) v '

3^ <  log3 (3.15) Note  : log3(3.15) >  1

Therefore, f'(if) > 0  on 0 < if <  1

f  is increasing in 0 < if <  1

It then follows tha t, f{if)  < / ( l )  =  0.4

T h e o re m  4 .4  If S2(t) =  [Si(f)]^, then Q <  0.

P ro o f . If ^ ( t )  =  [Si(t)]^, then

Q =  [S2( S f 1 (0.6) ) -  0.6] -[S a C S f1 (0.2)) - 0.2]

=  [[51( 5 f 1(0.6))]^ -  0.6] -  [ [ S ^ i O M *  ~  0-2]

=  [(0.6)^ -  0.6] -  [(0.2)^ -  0.2]
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Therefore, Q <  0 if and only if

[(0.6)* -  0.6] -  [(0.2)* -  0.2] < 0 (4.4)

or equivalently ,

[(0.6)* -  (0.2)*] <  0.4 (4.5)

This was proved in Lemma 4.3.

Theorem 4.4 says th a t the Lehmann alternative implies Q <  0. Since pro­

portional hazards assumption implies the Lehmann alternative, the proportional 

hazards assumption implies Q <  0. In Chapter 6, we propose using Q <  0 as a 

pretest for using Log-rank test.
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Chapter 5 

Pretest Based on M: Simulation

Here we investigate the power of an adaptive procedure th a t uses either Log-rank 

or Wilcoxon based on a pretest using M as follows:

1. If M  <  0, then use Log-rank test

2. If M  >  0, then use Wilcoxon test

The following sections show the power curves of the Log-rank test, Wilcoxon 

test and adaptive M test for the Weibull, Lognormal and Log-logistic distributions. 

In all the 8 cases, the adaptive M test approximates the power of the more efficient 

test.
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5.1 Simulation Results Under Weibull
Distribution (Cases 1, 2, 3 and 4)

Case 1

In this case Log-rank test is the optimal test. Figure 5.1 shows the M test is less 

powerful than  Log-rank test, but more powerful than Wilcoxon test.

o

00o

<a
d

o

c\io

150100 110 120 130 140

Mean for Group 2 
(Mean for Group 1 =100)

Figure 5.1: Power curves for the tests in samples of size ni — n2 =  50 from a 
Weibull distribution with equal shape parameters (7 =  2) and treatm ent effect cT: 
o ,  Log-rank; A , Wilcoxon; + , M Test
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Case 2

Log-rank is the optimal test in this case even if the proportional hazards assump­

tion is not satisfied. Again, as Figure 5.2 show, M test is less powerful than  

Log-rank test, but more powerful than Wilcoxon test.

O
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OJo

100 110 120 130 140 150 160

Mean for Group 2 
(Mean for Group 1 = 100)

Figure 5.2: Power curves for the tests in samples of size n\ =  — 50 from
a Weibull distribution with control group param eters (7 =2, A=0.008862) and 
treatm ent effect T c: Q ,  Log-rank; A , Wilcoxon; + , M Test
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Case 3

In this case the proportional hazards assumption is violated and Wilcoxon test is 

the more efficient test. The power after using the adaptive test is very close to the 

power of the Wilcoxon test.
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(Mean for Group 1 = 100)

Figure 5.3: Power curves for the tests in samples of size rii =  =  50 from a
Weibull distribution with shape param eters 71 =  2 and shape is increased by c and 
scale is decreased by c: Q? Log-rank; A , Wilcoxon; + , M Test
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Case 4

This is another case that the proportional hazards assumption is violated and

Wilcoxon test is the more efficient test. The power after using the adaptive test is

not far behind the power of the Wilcoxon test.
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Figure 5.4: Power curves for the tests in samples of size n\ =  =  50 from a
Weibull distribution with shape parameters 7 i=2  and 72=3 for Control group and 
Treatm ent group, respectively: Q> Log-rank; A , Wilcoxon; + , M Test
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5.2 Simulation Results Under Lognormal
Distribution (Cases 5 and 6)

Case 5

The M test also performed well for the survival times generated from the Lognormal 

distribution. Again it closely follows the test with the higher power. Figure 5.5 

shows th a t the power of using the M test as a pretest is very close to the power of 

Wilcoxon test.
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Figure 5.5: Power curves for the tests in samples of size ni =  n2 =  50 from 
a Lognormal distribution with parameters n = 4.1052 and <7=1 for Group 1 and 
treatm ent effect cT  for Group 2: Q ,  Log-rank; A , Wilcoxon; + , M Test
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Case 6

On the otherhand for Case 6, Figure 5.6 shows th a t the M test follows the Logrank 

test.
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Figure 5.6: Power curves for the tests in samples of size n\ — =  50 from
a Lognormal distribution with param eters \i—4.1052 and a —1 for Group 1 and 
treatm ent effect T c for Group 2: Q? Log-rank; A , Wilcoxon; + , M Test
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5.3 Simulation Results Under Log-logistic
Distribution (Cases 7 and 8)

Case 7

In Case 7, Wilcoxon test has a higher power than  the Log-rank test. The power 

after using the adaptive test is very close to the power of the Wilcoxon test (Fig­

ure 5.7).
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Figure 5.7: Power curves for the tests in samples of size ni =  n2 =  50 from a 
Log-logistic distribution with parameters /u=4.1536 and cr=0.5 for Group 1 and 
treatm ent effect cT for Group 2: Q ,  Log-rank; A , Wilcoxon; + , M Test
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Case 8

In Case 8, not much difference is seen between the power curves of Log-rank test 

and Wilcoxon test. So is the power after using the adaptive test (Figure 5.8).
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Figure 5.8: Power curves for the tests in samples of size ni — ri2 =  50 from a 
Log-logistic distribution with param eters //=4.1536 and <7= 0.5 for Group 1 and 
treatm ent effect T c for Group 2: Log-rank; A , Wilcoxon; + , M Test
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Chapter 6 

Pretest Based on Q: Simulation

Here we investigate the power of an adaptive procedure th a t uses either Log-rank 

or Wilcoxon, based on a pretest using Q as follows:

1. If Q <  0, then use Log-rank test

2. If Q >  0, then use Wilcoxon test

The following sections show the power curves of the Log-rank test, Wilcoxon 

test and adaptive Q test for the Weibull, Lognormal and Log-logistic distributions. 

In all the 8 cases, the adaptive Q test approximates the power of the more efficient 

test.
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6.1 Simulation Results Under Weibull
Distribution (Cases 1, 2, 3 and 4)

Case 1

In this case proportional hazards assumption is valid and Log-rank is the optimal 

test. Figure 6.1 shows the power after using Q as the pretest is very close to  the 

power of Log-rank test.
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Figure 6.1: Power curves for the tests in samples of size n\ — =  50 from a
Weibull distribution with equal shape parameters (7 =  1) and treatm ent effect cT : 
O? Log-rank; A , Wilcoxon; + , Q Test
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Case 2

In this case proportional hazards assumption is violated but Log-rank is the optimal

test. Figure 6.2 shows the power after using Q as the pretest is very close to the

power of Log-rank test.
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Figure 6.2: Power curves for the tests in samples of size n\ — n,2 =  50 from 
a Weibull distribution with control group parameters (7 =2, A=0.008862) and 
treatm ent effect T °: Q ,  Log-rank; A , Wilcoxon; + , Q Test
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Case 3

In this case proportional hazards assumption is violated and Wilcoxon is the opti­

mal test. Figure 6.3 shows the power after using Q as the pre-test is very close to

the power of Wilcoxon test.
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Figure 6.3: Power curves for the tests in samples of size n\ =  =  50 from a
Weibull distribution with shape parameters 71 =  2 and shape is increased by c and 
scale is decreased by c: Q> Log-rank; A , Wilcoxon; + , Q Test
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Case 4

This is another case that the proportional hazards assumption is violated and

Wilcoxon test is the more efficient test. The power after using the adaptive test is

not far behind the power of the Wilcoxon test.
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Figure 6.4: Power curves for the tests in samples of size n\ =  — 50 from a
Weibull distribution with shape param eters 71=2 and 72=3 for Control group and 
Treatm ent group, respectively: Q> Log-rank; A , Wilcoxon; + , Q Test
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6.2 Simulation Results Under Lognormal
Distribution (Cases 5 and 6)

Case 5

The Q test performed well too for the survival times generated from the Lognormal 

distribution. Again it closely follows the test with the higher power. In Figure 6.5 

Q test have the higher power than  the Log-rank test and is very close to the 

Wilcoxon test.
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Figure 6.5: Power curves for the tests in samples of size ni =  =  50 from
a Lognormal distribution with parameters /n=4.1052 and cr=l for Group 1 and 
treatm ent effect cT for Group 2: Q), Log-rank; A , Wilcoxon; + , Q Test
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Case 6

Figure 6.6 shows th a t the power using Q as the pre-test is very close to the power 

of Logrank test.
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Figure 6.6: Power curves for the tests in samples of size n\ =  n? =  50 from 
a Lognormal distribution with parameters /i=4.1052 and cr=l for Group 1 and 
treatm ent effect T c for Group 2: Q> Log-rank; A , Wilcoxon; + , Q Test
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6.3 Simulation Results Under Log-logistic
Distribution (Cases 7 and 8)

Case 7

For the Log-logistic survival times, Wilcoxon test has a higher power than  the 

Log-rank test for Case 7 which is closely reflected by using Q as the pre-test 

(Figure 6.7).
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Figure 6.7: Power curves for the tests in samples of size n\ =  n 2 =  50 from a 
Log-logistic distribution with parameters /i=4.1536 and a =0.5  for Group 1 and 
treatm ent effect cT for Group 2: Q> Log-rank; A , Wilcoxon; + , Q Test
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Case 8

Not much difference is seen on the power between Log-rank test and Wilcoxon 

test, but using Q as the pre-test gave the highest power (Figures 6.8) among the 

three.
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Figure 6.8: Power curves for the tests in samples of size n x =  n2 =  50 from a 
Log-logistic distribution with parameters //=4.1536 and <7= 0.5 for Group 1 and 
treatm ent effect T c for Group 2: Q? Log-rank; A , Wilcoxon; + , Q Test
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Chapter 7 

Conclusion and Recom m endations

We have shown th a t standard diagnostics based on log-cumulative hazard plot to 

choose the more appropriate test between the Log-rank and Wilcoxon tests fail 

in some instances. An example is Case 2 where the Log-rank test has higher 

power than  the Wilcoxon test even if the proportional hazards assumption is not 

satisfied. We have shown th a t relative performance of the two test depend not 

ju st on the proportional hazards assumption but also on the pattern  of differences 

between the two survival curves. The crucial factor is whether the differences tend 

to  occur early or late in time. This is evident in the structure of the test statistics 

themselves, with Wilcoxon giving more weight to earlier events and Log-rank to 

later events.

In this dissertation we propose diagnostics to measure early-or-late differ­

ences between two survival curves. The two adaptive tests were able to approx­

i m a t e  t h e  p o w e r  o f  t h e  m o r e  e f f ic ie n t  t e s t .  T h u s ,  i t  w il l  h e l p  t h e  u s e r  c h o o s e  

the more efficient test between Log-rank and Wilcoxon under various patterns of 

treatm ent differences.

Future studies are going to be devoted on, first extending the adaptive tests
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to survival da ta  with various censoring patterns. Secondly, we will allow for other 

types of covariates.
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A ppendix A

Power Simulation Tables for
W eibull D istribution
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Table A .l: Power for the tests in samples of size n\ =  n2 =  50 from a Weibull 
distribution with equal shape parameters (7 =  2) and treatm ent effect cT.

c M ean of  
Group 2

Always 
Log rank

Always
W ilcoxon

Power of 
M Test

Power of 
Q Test

1.00 100 0.0496 0.0481 0.0493 0.0458
1.10 110 0.1582 0.1266 0.1484 0.1638
1.20 120 0.4301 0.3364 0.3924 0.4258
1.30 130 0.7341 0.6224 0.6900 0.7275
1.40 140 0.9084 0.8168 0.8704 0.8987
1.50 150 0.9763 0.9260 0.9553 0.9708

Table A .2: Power for the tests in samples of size rii =  n2 — 50 from a Weibull 
distribution with control group param eters (7 —2, A=0.008862) and treatm ent 
effect T c.

c M ean of 
Group 2

Always 
Log rank

Always
W ilcoxon

Power of  
M  Test

Power of  
Q Test

1.00 100 0.0506 0.0494 0.0495 0.0498
1.02 110 0.1610 0.1207 0.1445 0.1634
1.04 121 0.4625 0.3379 0.4105 0.4550
1.06 133 0.7937 0.6250 0.7201 0.7778
1.08 146 0.9541 0.8397 0.9032 0.9406
1.10 161 0.9938 0.9542 0.9779 0.9910
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Table A.3: Power for the tests in samples of size rii =  n2 =  50 from a Weibull 
distribution with shape param eters 71 =  2 and shape is increased by c (07) and 
scale is decreased by c, (A/c).

c M ean of  
Group 2

Always 
Log rank

Always
W ilcoxon

Power of  
M Test

Power of  
Q Test

1.00 100 0.0496 0.0481 0.0493 0.0458
1.10 110 0.1354 0.1628 0.1633 0.1708
1.20 120 0.3854 0.4871 0.4698 0.4799
1.30 130 0.6870 0.8121 0.7871 0.7960
1.40 141 0.8979 0.9649 0.9564 0.9548
1.50 151 0.9834 0.9977 0.9953 0.9949

Table A.4: Power for the tests in samples of size n\ =  n 2 =  50 from a Weibull dis­
tribution with shape parameters 71=2 and 72=3 for Control group and Treatm ent 
group, respectively.

M ean of  
Group 2

Always 
Log rank

Always
W ilcoxon

Power of 
M Test

Power of 
Q Test

100 0.0496 0.0481 0.0493 0.0458
110 0.0673 0.2771 0.2514 0.2576
120 0.2844 0.6179 0.5706 0.5819
130 0.6360 0.8761 0.8394 0.8450
140 0.8840 0.9727 0.9591 0.9601
150 0.9762 0.9952 0.9915 0.9926
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A ppendix B

Power Simulation Tables for
Lognormal D istribution
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Table B .l: Power for the tests in samples of size n\ =  n2 =  50 from a Lognormal 
distribution with parameters ^=4.1052 and <7=1 for Group 1 and treatm ent effect 
cT  for Group 2.

c M ea n  o f 
G ro u p  2

A lw ays 
Log ra n k

A lw ays
W ilco x o n

P o w er o f 
M  T est

P o w er o f 
Q T es t

1.00 100 0.0496 0.0482 0.0475 0.0478
1.20 120 0.1374 0.1431 0.1477 0.1597
1.40 140 0.3392 0.3718 0.3751 0.3909
1.60 160 0.5655 0.6199 0.6142 0.6312
1.80 180 0.7546 0.8165 0.8093 0.8168
2.00 200 0.8843 0.9250 0.9203 0.9237

Table B.2: Power for the tests in samples of size rii =  n2 =  50 from a Lognormal 
distribution with parameters //=4.1052 and cr=l for Group 1 and treatm ent effect 
T c for Group 2.

c M e a n  o f 
G ro u p  2

A lw ays 
Log ra n k

A lw ays
W ilco x o n

P o w er o f 
M  T est

P o w e r o f  
Q T est

1.00 100 0.0513 0.0501 0.0494 0.0490
1.04 123 0.1328 0.1195 0.1334 0.1461
1.08 151 0.3855 0.3382 0.3709 0.3983
1.12 186 0.6804 0.6155 0.6579 0.6867
1.16 229 0.8870 0.8373 0.8648 0.8873
1.20 283 0.9689 0.9451 0.9575 0.9671
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A ppendix C

Power Simulation Tables for
Log-logistic D istribution
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Table C .l: Power for the tests in samples of size n\ =  — 50 from a Log-logistic
distribution with param eters fj,—4.1536 and cr=0.5 for Group 1 and treatm ent effect 
cT  for Group 2.

c M ean of 
Group 2

Always 
Log rank

Always
W ilcoxon

Power of 
M Test

Power of 
Q Test

1.00 100 0.0535 0.0498 0.0524 0.0517
1.20 120 0.1528 0.1769 0.1790 0.1876
1.40 140 0.4140 0.4853 0.4751 0.4872
1.60 160 0.6495 0.7549 0.7334 0.7376
1.80 180 0.8384 0.9180 0.9024 0.9051
2.00 200 0.9275 0.9725 0.9633 0.9632

Table C.2: Power for the tests in samples of size n\ =  112 — 50 from a Log-logistic 
distribution with param eters /j,= 4.1536 and cr=0.5 for Group 1 and treatm ent effect 
T c for Group 2.

c M ean of 
Group 2

Always 
Log rank

Always
W ilcoxon

Power of 
M Test

Power of 
Q Test

1.00 100 0.0533 0.0476 0.0505 0.0511
1.04 123 0.1571 0.1622 0.1699 0.1822
1.08 152 0.4438 0.4491 0.4603 0.4794
1.12 188 0.7504 0.7603 0.7692 0.7828
1.16 234 0.9293 0.9380 0.9397 0.9419
1.20 290 0.9875 0.9888 0.9889 0.9905
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