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ETA PHOTOPRODUCTION VIA 2H(y,n)2H"

Yan Zhang, M.A.

Western Michigan University, 1991

The reaction 2H(y,n)2H" is studied using the impulse
approximation. A recent fit to the 'H(y,n)'H elementary
amplitude is employed in the calculation. The n-p final
state is described by Reid's soft core potentials. The
calculation shows very different cross sections for the
final isospin 0 and isospin 1 break-up channels. The §,,
resonance 1is demonstrated to dominate the eta cross
sections in the 740 MeV photon laboratory energy region.
Fermi motion in the deuteron does not significantly spread
the effect of the S;,. All these results demonstrate that
the reaction 2H(y,n)2H" may provide a signature for the
isospin components of the S,, electromagnetic transition
amplitude. Measurement of this reaction will complement

the earlier %H(y,n)%H data.
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CHAPTER I
INTRODUCTION

Photoproduction and electroproduction of mesons from
nucleon are an important part of studies of nucleon reso-
nances because meson emission is the dominant channel. By
comparing the experimental electromagnetic transition
amplitudes with the quark model predictions, the validity
of quark models in describing nucleon resonances can be
tested, and therefore a better understanding of the under-
lying structure of these resonances can be achieved. With
new experimental facilities (e.g., CEBAF), interest in
meson photoproduction has been renewed. Although the
majority of  @experiments investigated charged pion
productions, more data on the photoproduction of eta mesons
are expected due to the recently developed neutral meson
detectors.! The S;; (1535) resonance, with its large eta
decay width (45%), can then be isoclated for study by these
eta-production experiments.

The T-matrix for eta photoproduction from the nucleon

can be written in isospin components as:

T=T%+7,T?, (1.1)
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where t,|p>=|p>.

Because the strong 7N interaction in the final states does
not distinguish between the neutron and proton, the T° and
7! represent just isospin components of electromagnetic
transition amplitudes for nucleon resonances. Obviously,
these isospin components must be obtained from experiments
with both proton and neutron targets. Neutron data can
only come from nuclear targets. Although the data
extracted from early photopion experiments? indicated that
electromagnetic amplitude of the S,, resonance is nearly
pure isovector, in agreement with gquark model predic-
tions,3* early data from photoproduction of eta on a
deuteron target®’ were analyzed in the impulse approximation
to give a nearly pure isoscalar transition amplitude. Some
efforts have been made to explain this discrepancy by meson
rescattering effects.® However, the most recent calculation
of the rescattering diagrams’ indicated that they are too
small to account for the difference. 1In that article, the
angular distributions of %H(y,7n)?H were suggested as a means
of distinguishing between the single scattering and meson
rescattering processes. The difficulty is the low yield of
H(y,n)?H due to the inability of the deuteron to accommo-
date the high momentum transfer in the reaction. It was
also suggested by Halderson and Rosenthal® to determine the

isospin components of the S,, resonance by photoproduction
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3
of eta mesons from excited, stretched states of several
nuclei. The nucleus would be used as an isospin filter.
However, the considerable Fermi motion of nucleons in these
heavy nuclei tends to smear out the contributions of
individual nucleon resonances to the cross section.

This study has been conducted with the purpose to show
that the °H(y,n)?H" reaction may provide information which
can help to determine the isospin components of the §,,
electromagnetic transition amplitude and, therefore, to
solve the discrepancies mentioned above. The impulse
approximation together with a recent fit to the elementary
y+p-n+p transition amplitudes’ is employed in the calcu-
lation. The n-p continuum wave functions are calculated
from Reid's soft core potentials.'® The deuteron breakup
accommodates a higher momentum transfer and, thereby,
yields a larger total cross section than in the 2H(y,n)%H
reaction. It also assures that rescattering effects are
négligible compared to single scattering, giving a credit
to the employment of impulse approximation. Calculations
demonstrate that the cross section is dominated by the S11
resonance in the 740 MeV photon laboratory energy region,
which is not smeared out by the Fermi motion in the loosely
bounded deuteron, in contrast to the case of heavy nuclei
targets.® Finally, there is a significant difference in the

eta cross section when a pure isovector and a pure iso-
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4
scalar elementary amplitude are compared, which can be used

to determine the isospin components of the S,, resonance.
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CHAPTER I1I
WAVE FUNCTION FOR NEUTRON PROTON ELASTIC SCATTERING

In the neutron-proton center-of-mass coordinate system
and, in the space of total spin of n and p, the initial

state prior to scattering is

|fcgsmy> "d’hsm,- (2m) _3/2eikfrx.sm, ' (2-1)

where j,, 1is the eigenfunction of total spin of n and p.

In this equation and the following derivation in this
chapter, the units are chosen such that fj=c=1. The final

state after scattering will then be

|k£s’m;> _4,*’5%_ (2m) —3lzeikg'zxslm2 . (2.2)

One may expand |k,sm> as:

%m,-\l 23 i ) ¥in (8) 33 () o,

- —12?21 K E1sm,|YT|K;1sm>X e T (KsT) (2.3)
1J

with <f1’s'ml|¥7|K;1sm> defined as
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<F1's'mg| ¥ 7| K lsm> =Y Yy (£) Yin(K) <1'm's'mf| a0
n'mM .

«<Imsmg|JM> . (2.4)

The S-matrix of the scattering in the c.m. system has

the form:

<b|S|a> =8 (P,) <kgs'ml| S|k sm,> , (2.5)

where |a> and |b> are initial and final states, and P, is

the total momentum in the final state. One can also define

a submatrix: <K,s/m)|S(k,)|K;sm,> on the energy shell by

<k s'ml| S|k sm,> -Tla le (k,) ~e(k;) ]
[
<Kes'ml|S (k;) | K smy> (2.6)
where e€(k) 1is the total energy of the reaction and

k2

Pe=——r is the density of states. Correspondingly, the
d@/dk' [k=k;

T-matrix can be written in the c.m. system and on the

energy shell as <k,s'mi|T(k;)|ksm,> and,

<Kps'mi|T(k,) |K;smy> = <kps'ml| Tk, sm > lkek; * (2.7)
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The S-matrix and T-matrix are related as

<K s'ml|S(k;) |E;smy> =858y !Bk, ~2mip,
< Kps'my|T(k,) |K;smg> . (2.8)

The differential cross section for unpolarized beam

and target is given by

da 1 do ,,» 1.1
Llnm 2 : —_ 1k ’ .
a4 s'mlem, df Restmaikasme) (2:9)

where

4 .
(21) 7 o |<K,ps'ml| T (k) |Eysmy> . (2.10)

rel.

Resolving the S-matrix into its submatrices for the
states of given total angular momentum J with the trans-

formation matrix:
<Ksmy|lmsm>=Y,,(K) , (2.11)

one has
<K s'ml|S(k,) |E;sm,>

<K s'ml|1'm's'ml> <1'm's'ml|J'M!> -

g™
ImaM
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«<1/s’d'M' |8 (k;) | 1sIM> < Imsm,|JM> < Imsmy|K;smy> . (2.12)
Because of conservation of total angular momentum,
<1's!'T'M|S (k) | 1STM> =8 ;784S 7o 4 (Ky) (2.13)
Eg. (2.12) can then be written as

<Kps'ml|S(k;) |Kysmp>= Y <Kpl's'mg|¥ °|K;1sm,>
11s

-8 1as (kg) (2.14)
Similar operation on the T-matrix gives

<K s'my| T|Kysmp>= Y <Kl's'ml|¥?|K;1sm,>
15

T e (ke i K3) (2.15)

where T,7,, (ks ky) =Ty ,,(k;) on the energy shell with k.-k,.

Here, (k;) and T’s’ls(ki) are related as:

1’8/18
l’s’ls(k.i) 611/6351 Zﬂlpe llsllﬂ(ki) N (2-16)

The Scattering Wave Equation

The scattering wave function 'Pi-,sm, in the c.m. coor-
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dinate system is given by

d3k /¢k’s’m,

P om, (£) =g om }: [ T <K's'ml|T|kysm> . (2.17)

With egs. (2.3), (2.4) and (2.15), ‘P;‘S,,,B is resolved into

substates of given total angular momentum J:

Fi,sm, (T) -E <f1/slmé|Y"|1€ilsms>xs/ma¢1,s,les(r) ’ (2.18)
! .
7
where

+ , 2 .
q’l’s’,kﬂls-ll, ) [6,3855:7, (k1)

3, (K'r) (K)2dK!

e (k) ~e (k) 1 oK Ea T (2-19)
with the asymptotic behavior!! as:
llmwlls’ les(I) \| 1 1{611’655'-71 (k 1.')
1I<1r ’
- o (- VT, () 1), (2.20a)
1T

or
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10

' + - 1 i 1 ~ikyr J iky
];:_':inq’l’s’,kpfls(r) T kT '_—Zﬂkir{ (-1) 18,8 500 +8,15115€" ©1 . (2.20Db)

The wave scattering function T;;sm, satisfies

Schrodinger equation:

(Vorki-v) Pxoon,=0 , (2.21)

m . . .
where v=-2m,V, m,- o |y is n-p interaction.
m,+m,,

To obtain the equation for the radial wave function

llr;,s,',kﬂns(r) , one has, from the above equation (2.21), the

following expression:

y (xs/m;,fdﬂfldﬂgfl’s’mslY"|J€ilsms>‘ (Vorki-v) Pion) =0 . (2.22)
/

mg

With the expression of ¥;., in eq. (2.18), the definition

of eq. (2.4) and orthogonality of Clebsch-Gordan
coefficients, the following radial wave equation is

obtained:
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11

1d d 1/(27+1) ;2944
" ) T Ve ()

-y -2 (2.23)

1/g"

J
Vyrgrgight (r) w.;”s”,k,Jls (r) ,
where vf,s,l,,s,, (r) is defined as

vf;s’l”s” (r) -illl'll% E (xs/mL ’ fdeXde<fl’s’mf,|Y"l]?ilsmsr'
T
MeMg

0 < P18 mg | ¥ 7| Ky Ism> K gnyn) . (2.24)

These coupled differential equations (2.23) should be solv-

ed subject to the above asymptotic boundary conditions eqgs.
(2.20).

Now let us define Rl",rs,ls(r) and Ul"fs,ls(r) as

J
] 1| 2 Y 10| 2 Uirsias (X) (2.25)
wl’S’,kals(r) =1 T Rylgryor) =1 =

The equation for Ul‘fszls(r) is then

42 1/(1'+1 29 rrd
[ dr? - 72 ) +k;i] Ul’s’ls(‘r) = ;:” v.IJ’s’l”s”U.l‘{’s”ls-o * (2.26)
17g

The asymptotic behavior of Ul‘fs,ls(r) , following from eq.

(2.20b), is given by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

. J 1
Linyiens (7) =53,

8,8, (-1 e efeg g, (-i) Vel* @) .  (2.27)

In the asymptotic region where np interaction is negligible

one has two linearly independent solutions of the above

equation:

iter-28)  -i(kyr-AR)
-e

-0 .

Fy=k,r7, (kiz)---~-§ [e 1, (2.27a)
ree ilkgr-A8)  -i(kgr-dR)

Gl-kirnl(kir)———-o—-;-[e e Ty, (2.27b)

where j; and n;, are the spherical Bessel functions. One

can rewrite the above asymptotic behavior of anus(r) as:

]}%?Ul.{s’ls (r)- 2]1;1 ]}:EE‘ (8,18 55/ (Fy1=1Gy1) +Slh’Tslls (Fy+iGy) 1 . (2.28)

Now we examine in detail the property of the radial

wave equation:

2 1¢ 7/
[ 51’2 -2 (i:l) +k-¥] Ul"fs’ls(r)
- E 1’1.1;5/1//5//(1.') Ul‘lrlsllls(r) . (2.29)

1/ gl

The general form for nucleon-nucleon potential subject to
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rotational-invariance, parity and isospin conservation is

V=V, (1) +V, (1) (8,8,) +Vg(z) (L°5) +V,[3 (G,°F) (8,°F) -§,'3,] . (2.30)

It is easy to demonstrate that

[V, J%]1=0 (2.31a)
(v, Jg,]1=0 (2.31b)
[V, 82%]=0 (2.314)
where P is parity operator. Here, the Hamiltonian H

together with J2, J,, s?2 and P form a complete set of

z’
observables for the two nucleon systen. One can have

simultaneous eigenfunctions of H, J%, J,, S%2 and the parity

z'
P. Two nucleon spins couple to singlet states (s=0) or
triplet states (s=1). So the eigenstates of two nucleon
system with well-defined J, M, S and parity P will be the

following:

singlet states: s=0 I1=J P=(-1)Y,

1=g P=(-1)7 if J%0
triplet states: s=1 { J=J:1l P=(-1)9*1 Jif J+0 .
1=1 if J=0
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Also from the permutation relations (2.31) and the defini-

. J
tion of v, _,.,, one has that

v_lJ/.S’lS-O ’ (2032)

unless s’=s and (-1)%-I-1. With the above argument and

properties of T-matrix, the following transition scheme
between different nucleon-nucleon states (1lsJ) is obtained:

One channel scattering:

s=0 1=J] scattering [s=0 1=J
singlet|™ transition |singlet]’

s=1 I=J]|__scattering [s=1 1-J
triplet|  transition |triplet]’

s=1 J=0 scattering [s=1 J=0
triplet| transition I(triplet|-

Examples of one-channel scattering states are 's;, *p,, 'p,,
3 1 3
p,, 'D,, 3D,.

Two channel scattering:

S=1 I=J+1 scattering [s-1 l-J+1]

triplet —~| triplet
[s-l .Z-J—l]><[s—l l-J-l}.

triplet transition | triplet

Examples of two-channel scattering states are 3S1--:"D1 and
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15
’p,~’F,. Due to the above restrictions on transitions
between two-nucleon states (lsJ) arising from the symmetry
property of nucleon-nucleon interactions, the radial wave
equation (2.26) can be simplified as following:

1. Equations for one-channel scattering:

2

dr? = ] Ul‘;ls'uli:ls'Ul‘gls ’ (2.33a)

where s=0 or 1, 1=J; or s=1=1, J=0;

2. Equations for two-channel scattering:

29 71 J I grJ g g9
+K3] Uj711=V1111 Ui11149;53,°Uin 1,

[_d? _ 1(1+1)
dr? r2

27 170 J g I urd
+k31Upn 117V 20 Uyt 319 114°Ul12 + (2.33D)

[ d? _ 1/(1'+1)
dr? r2

where s=1, J#0; 1=J+1, 1'=J-1; or 1=J-1, 1'=J+1.

Before discussing solutions of the above radial wave
equations, we will first look at diagonalization of the S-
matrix. First, the S-matrix is unitary over the physical
space spanned by the continuum scattering wave state ¥ ,.
where a represents the scattering channel. Also, time

reversal symmetry requires'! that
J J
Sl’s’ls-slsl’s’ .

These properties of the S-matrix enable us to write the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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J .
Sl’s’ls as:

1. One-channel scattering:

57, et (2.34a)

2. Two-channel scattering:

\ { R 8,+3
S71,1.041.1 SH1,1,0-1.1 Coszegehal “131n2€Jei( 1+92)

S J- - | .

J J . s 1(8,+48,) 218
Sgr-1,1,7+1,1 Sre1,1,041,1 -isin2e e 12 cos2e e ?

where phase shift 38j;, 8,, 6, and mixing parameter €, are all
real numbers.
Now we discuss in detail the solution of radial wave

equations (3.34). First, the expression of v s Will be

simplified. According to its definition eq. (2.24),

u_f/s/l//s”(r) -J:l”-ll—g—;:{—i' E (xs/m:’ ’ fdelde<fl/S/mé|Y"Ifilsmsf'
’. N
mgm

8

‘v<fl ”s”m,’;’[Y"l]?ilsms>xsumg)

By the definition of eq. (3.4) and the orthogonality for
spherical harmonics, one reaches
uf’s’l”s”-ilﬂ-ll'z—sﬁ E (xs’mz' fdnf /nzwy;lm’(f) <'Z/mlslm-£|m1> :

mmidy

2J+1 o
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- <Imsmgy|JM,> 0 X Yynp (£) < 1'm"s"ml | o> < Imsm | aM> 4 gn0) . (2.35)
n''m “

By defining Yff-z: <lmsms|JM>Y1m(f)xm’ and realizing that

mm,

<Imsmg|JM,><Imsmg|JM> = (<Imsm,|JM>) 28,,, , One has

J ,h-yt 28+1 .
Vyrgryugn=1 mg < 1/./'0"5/‘/2//) (<lmsmleM>)2 . (2.36)

Because the two-nucleon interaction is rotationally

. . 2 . .
invariant and conserves J,, S? and parity P, <Yy, |v|YyL,»> is

independent of M and

<Yialo|¥gm,

1's (]

"> -as's”b (_1)1”-1/'1< II,IIU 111//'/> . (2.37)

s _
So one can denote <Y;y|v|Yy,> as vy, and has

J YR TI ;
Ul’s’l”s”-ll 1 Vyrgiyhgh + (2.38)

Finally, by the definition of u=UZ,., Whilhlqius and

eq. (2.38), the radial wave equations (2.34a) and (2.34b)
become

1. One-channel scattering:
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[ d2 _ .Z(.Z+1)
2

dr? r +kf]u-vﬁhsu, (2.39a)

where s=0 or 1, 1=J; or s=1=1, J=0;

2. Two-channel scattering:

d?  1(1+1
[ dr? (rz ) +k§1 umvila ut v W

2 7 J
+K3 1 WVt g0 WAV 357U (2.39b)

[d> _ 1/(1/+1)
dr? r2

where s=1, J#0; 1=J+1, 1'=J-1 or 1l=J-1, 1'=J+1. In this

case w-—Ul‘,Tslg. The asymptotic behavior for u and w is

limu-ilim[(Fl—iGl)+Sl‘£13(F1+iG1)] / (2.40a)
= Zki I~

limw-—2-1im(-1) S, (Fy+1Gy)) . (2.40b)

I~ ki I-00

Evaluation of Scattering Wave Functions

In this calculation, Reid's soft core potential'® is
employed for V. This potential is given as function of

x=pr with p=0.7 f£m’'. With the definition k-k,;,/p and
V1J's/1s' Vl‘fslls/pz, egs. (2.39a) and (2.39b) will change to

1. One-channel scattering:
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2
[ diz - 1(}1{‘2‘1) +k2] u=viiou, (2.41a)

where s=0 or 1, 1=J; or J=0, l=s=1;

2. Two-channel scattering:

d? 1(1+1
[ - (x2 ) +k2] U=v iUV 0w
[ d2 l/(l,+1) +k2] - J W J N 2 41b)
ax? %2 W=V 13 WV 31110 (2.
where J#0, s=1; 1=J-1, 1'=J+1, or 1=J+1, 1l'=J-1. The

asymptotic behavior becomes

Limu=—Lim [ (F; (k) 16, (kx) ) +81315(Fy (o) 3G, (k) 1, (2.42a)

X0 X=oo

Limwe—Lim(-1) 877, (Fys (kx) +1Gy (kx) ) (2.42b)

X=o0 k X=~00

The 4th order Runge-Kutta-Gill method is used to solve
the above equations numerically. Linearly independent
solutions of u and w are generated from the region where
x¥~0 (left side) satisfying u=0 and w=0. At very large x
(right side), where the two-nucleon interaction becomes
negligible, linearly independent solutions of u and w are
also generated. By matching the solutions of u and w from

both sides according to the continuous condition of u, w,
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du/dx and dw/dx, and requiring that the right side solu-
tions satisfy the asymptotic boundary condition of egs.

(2.42a) and (2.42b), one can calculate the radial wave

functions LULQS for different scattering channels and the

phase shift parameters are obtained.

The constants employed in this calculation are:
m,~=938.263 MeV,
m,=939.556 MeV,

m,=938.909/2 MeV,

Zmr_ 1 1
p2h?  20.32144 MeV '’

The calculation of n-p continuum wave functions is
tested by comparing the phase shifts and mixing parameters
in this calculation to that in Reid's" at selected
energies. The agreement is almost perfect. However, it
should be made clear that T=1 phase shifts have to be
calculated from pp scattering in order to make comparison.
This has been done by adding the Coulomb potential to the
NN interaction. In the asymptotic region the solutions of
the corresponding Schrédinger equations are Coulomb wave
functions. The asymptotic boundary conditions is still

egs. (2.43a) and (2.43b), but with F; and G; understood as
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Coulomb wave functions. The phase parameters are still
obtained the same way as in the case when only the NN
interaction is involved. T=0 phase parameters are still

calculated from np scattering.

For the comparison with Reid's'?, the following con-

stants are employed:

m,=938.903/2 MeV,

zmz_ 1 1
. p2h? 20.32157 MeV'

When the Coulomb potential is present, e/x is added to the

NN potential v}, with
e/x=-2m.e?/p*h2r-0.049602/x .
The phase parameters obtained from this calculation
and those of Reid's'” are compared in Tables 1 and 2.
Table 1

Phase Parameters of T=0 Neutron Proton
Scattering Channels

E §('p,, radians) §(®°D,, radians)

This This
Lab,MeV Reid's' work A-MY Reid's'"® work aA-M"

24 -.033 -.033 -.041 .070 .069 .071
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Tabel 1-Continued
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E §('p,, radians) 6§ (*°p,, radians)
This This
Lab,MeV Reid's'"® work A-M"® Reid's"® work A-MY"
48 -.071 -.071 -.072 .169 .169 .169
96 -.190 -.190 -.182 «312 .311 .309
144 -.312 -.312 -.309 . 386 .386 .386
208 -.456 -.456 -.463 .431 .431 .433
304 -.633 -.633 -.646 .449 .449 .451
352 -.708 -.708 -.717 .448 .448 .449
E & (°s,,radians) §D,, radians)
This This
Lab,MeV Reid's' work A-MY Reid's'"” work A-M"0
24 1.426 1.426 1.443 -.050 -.050 -.051
48 1.105 1.106 1.138 -.115 -.115 -.123
96 .749 . 749 771 -.215 -.215 -.218
144 .521 .521 .513 -.281 -.280 -.272
208 .300 .300 .269 -.340 -.340 -.329
304 .057 .057 .066 -.403 -.403 -.432
352 -.042 -.042 .020 -.431 -.431. -.494
E sin(2e,)
This
Lab, MeV Reid's"? work A-M10
24 .064 .064 -.042
96 .114 .114 -.055
144 .152 .152 .064
208 .203 .203 .212
304 .269 .269 .368
352 «296 .296 .422
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Table 2

Phase Parameters of T=1 Neutron Proton
Scattering Channels

E §('s,, radians) §('D,, radians)
This This
Lab,MeV Reid's® work a-M"Y Reid's'® work A-M10
24 .862 .862 .868 .011 .011 .012
48 .696 .696 .686 .027 .027 - .029
96 .454 .454 .445 .059 .059 .061
144 « 277 .276 .278 .089 .089 .088
208 .093 .093 .101 .123 .123 .120
304 -.118 -.118 =-.115 .156 .156 .159
352 -.205 -.205 -=.206 .164 .164 .176
E § (*p,, radians) § (°P,, radians)
This This
Lab,MeV Reid's™® work a-M"Y Reid's'® work a-M"0
24 .141 .140 .122 -.074 -.074 -.074
48 .198 .198 .213 -.133 -.133 -.132
96 .179 «179 .186 -.228 -.228 -.228
144 .105 .105 .099 -.304 -.304 -.306
208 -.012 -.012 -.009 -.386 -.386 -.387
304 -.184 -.184 -.173 -.479 -.479 -.477
352 -.264 -.264 -.,273 -.518 -.518 -.514
E § (®p,, radians) § (°F,, radians)
This This
Lab,MeV Reid's™ work  A-MY Reid's? work A-M"
24 .038 .039  .039 .002 .002  .002
48 .093 .093 .095 . 005 . 005 .006
96 .186 .186 .186 .013 .013 .015
144 .243 .242 .241 .018 .018 .020
208 «277 277 «277 .022 .022 .022
304 .282 .281 .285 .019 .019 .017
352 .274 .273 .278 .014 .014 .014
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E sin(2¢,)
This
Lab,MeV Reid's'® work A-M10
24 -.026 -.026 -.029
48 -.057 -.057 -.061
96 -.091 -.091 -.094
144 -.103 -.103 -.103
208 -.104 -.104 -.102
304 -.092 -.092 -.098
352 -.085 -.085 -.099
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CHAPTER III
ETA PHOTOPRODUCTION FORMALISM

For the reaction 2H(y,n)%H" with three-body final
states, the unpolarized cross section in the center-of-mass

coordinate system (ACM) is given by"

1 (2m) ¢ |
do- dp, dp_dp.8 (P,-P,) | T,.|?, 3.1
O TETIY sy, o | PrPaPsd (BmPo) T (3.1)

where the initial and final states are

la>=|y (A, k) ,2H(Tm;) >, (3.2a)

|b>=|n (k') ,np(m,, m,, x)> , (3.2b)

Ppr Py and p, are the momentum of proton, neutrdn and eta in
the final states, and, P, and P, are the initial and final
total four-momenta. The normalization of a plane-wave
state is chosen as |k>=1/(27)32%T, Here and in the
following argument throughout this chapter, the units are
chosen so that h=c=1. After non-relativistic treatment of

n-p relative motion, eq. (3.1) becomes

4
o=t > (2m) QE, Pl | Ty, [*dE, dQdQ, , (3.3)

2 (ZJi"'l) Amymm, Vsel.

25
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and

d?c 1 (2w) 4 .
= E, dQ._|T P 3.4
dE’nko/ 2(20,+1) v, a ﬂppm%:nmpf pl bal ( )

where g and En are the momentum and total energy of outgoing
eta, p is the relative n-p momentum and g is the reduced
mass of n and p. The T-matrix Tpq is on both the energy and
momentum shell, which will be assumed in the following

argument except when specifically noted otherwise.
Impulse Approximation for the T-matrix
In this reaction, the T-matrix element is
T,,=<b|T|a>

= (¥, (H-E,)%,)

- (b VXS (3.5)
where
xa-ﬁei‘%mi(&) , (3.6)
wz-:mi:h(mv’)x,,, (3.7)
and
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-1 e 1 ety
T S Tamr S Ak (3-8)

In these equations, Xm, and X, are the proton and neutron

spins, & and &' are the deuteron internal coordinates with

their spatial parts denoted as &, and ¥/, respectively,

pointing from n to p. V, V' and U are the yN, nN and NN
interaction respectively. The configuration diagram of

this reaction is given in Figure 1 below.

P | /7"

{ o
? 2H 3
NN ) §Y
n

Figure 1. Configuration Diagram of the ?H(y,n)°H’ Reation.

The Hamiltonian can be split in the following way:

H=K_+V=K +V/+U, (3.9)

together with the definition:
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Ka-I(y+Kd' (3010)

K=K +K+K, (3.11)

where the k's are kinetic energy operators. Rewritingy)

in eq. (3.6) as

1 1 1

b= — U — (U+ V) Y p-————U% 1+ (3.
¥omX vt g -pege Xt Eopege (Ut X E g —poge Xpr (3-12)
and defining

¢B-xb+—;.Uxb, (3.13)
E,-K -U-ie
one reaches
T esm—— (3.14)
E,-H-it

So with eq. (3.5) and (3.10), the T-matrix element can be
written as
- 1
Tpa= (b, (VEV ——— . .
ba= (¢p, (V+ Ea_H”eV)xa) (3.15)
In the impulse approximation, 7 is produced either

from the proton or from the neutron. One also can assume

that the n interacts only with the nucleon it is produced
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from. If an on-shell approximation is made for both the yN

vertex énd the other nucleon (please refer to Figure 2.),

the above T-matrix element can be finally given as

Tpa= (¢br (T+TR) XA o (3.16)
where both T, and T, have the form of
v—t v, (3.17)

W-H +ie

W is the total energy of y and the struck nucleon in ACM
and, H,=K+Ky+V. In the spirit of the impulse approxima-
tion, T, is related somehow to the T-matrix of elementary
process Y+p-n+p. So it 1is necessary to study this

elementary reaction first.

M 1.

.A/I/

N

e - - o

N2 Aé/

Figure 2. The Corresponding Feynmann Diagram of This
Calculation.
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In the center-of-mass frame of the reaction y+p-n+p,

the T-matrix element is <n(k.), p(ml)|T.ly(k,, 1), p(m)>.

Here A is the photon polarization, m, and m,’, are the proton

spin orientations. All of them are quantized along the

direction of k,. Here and in the following argument, all

subscript and superscript ¢ indicate the quantities in the

YN center-of-mass frame (2CM) unless otherwise stated. TheT,

operator is

TuvVaVi—L v, (3.18)

where E€ and H€ is the total energy and the Hamiltonian of

this elementary reaction. A general discussion'' using
rotational and gauge invariance gives, under the transverse

gauge, the general form of the above T-matrix element as

<kh; -%-mélT(J (kg A); %ms>-<%mél9’|%ms> , (3.19)

with & given by

F-F (0@) +F (10°KL) (0€xK,) +F (6K, K. ) +F (0-KLK.@8) , (3.20)

where & is photon polarization vector and & are functions

of magnititude of k,, k!, and the angle 6, between them. The
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& can also be written as-:

F = (F-Fcos ) 0@+iF & (K xKL) + (F+F) (0K kL&) +F (6KLK.R) .

(3.21)
By writing the matrix element of T, as
<khi Lml)T | (K, @) ; m> - (—L __ei¥oray
cr 2 8 c ’ (21;)3/2 m'
T (@ 1 __eikToy ) 3.22
(& oS " ) (3.22)
and applying standard approximation r,’,-.r,, one has
/.1 g 1 uJ o
<kg: 'é"mschl( Ie) ; m >= (W = xm/ ’
T (&, W ik Foy )) (3.23)

Now it is assumed that photon and nucleon interact only
when they are very close together. Then one can apply a
zero-range approximation to T.: T_-v.8(z, which yields

1
cl_

<k,’,, mSITI( ,8); m> <= msl

> (3.24)

(2 )?

By comparing this equation with eq. (3.19), one reaches

ve=(2%)3F, (3.25)
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a constant. The elementary amplitude F,, which satisfies

(do

k:: 1.7/ 1 2
) =< = = 3.26
Q)c c|<2ms|11?c|2m_,,>| p ( )

is related to & as

F=(27)%W, ¥, (3.27)

/
(E°ExEy ES) /2
E c

with W_= and, has the same form as #:

F =F,(0®) +F,(i0°K.) (0@xK,) +F, (0°K K.@) +F, (c°K.K.€)

= (F,-F,c080 ) 6 @+1F, 8 (K_xK.) + (F,+F,) (0°KK.@) +F, (0 K.K.2) .
(3.28)

With the above elementary amplitude, v, can also be given

as

1 1

=(2 3 —_—
v~ (27) CTIEN

F,. (3.29)

Now go back to the T-matrix element eq. (3.16) in ACM

and rewrite it as following:

Tpa™ (dL(E, ), (T,+T,) Wéi‘"’%@,(i) ) . (3.30)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



33

Application of standard approximation:

R Y (3.31)

where m; is the deuteron mass and m,, is the mass of np

system in the final state, leads to

m 1 ikr,
mn‘;r) ’ (Tp+Tn)WG k. ¢Jxmx(E)) . (3.32)

Tba- (¢:‘b(EI
Again zero-range approximation is made to T, and T,:

Tmvpd (2-2E,) (3.33)

T =v,8 (r+%5,) . (3.34)

Then, by the impulse approximation, Vv, should be the
counter part of v, in the ACM system, which should be

obtained by transforming from v_, as a T-matrix:

cEcE,c'E,c /2
EEvEyEy | (2.35)

V., =VV V=
p c /! /
[E, Ey Ey E,

This step means that on-shell approximation has been made

dynamically for both the 7N vertex and the other nucleon
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(please refer to Figure 2). Using eq. (3.29), v, can be

written as

1 1
V-(2ﬂ)3———v—_ Fp- 3.36
P (2m)2 w, ° ( )

Here F_, in eq. (3.29) is denoted as FZ to indicate that it
comes from the reaction y+p-n+p. Similarly, v, can be

given as

—-]—'—v-i-Fcf’. (3.37)

-{(21)3
Vi (2m) (2‘“)2 Wc

However, v, must be obtained from eta photoproduction from

nuclear targets. In this calculation, FJ/ is assumed to be

proportional to FP. With all the above argument, the T-

matrix element of eq. (3.15) now becomes

1

_ m r
Tba'(‘bb(E:%Eni'E,): pre ¢Jim1(e))
- ~ilkE,
@RE G VT 0y (8)) L (3.38)

with v, and v, given above.

Before calculating the cross section using the above
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T-matrix element, the expression of ¢, (&, r’) has to be

figured out.

Time Reversed State ¢, and Resolution
of the Cross Section

By the definition of eq. (3.13), ¢}, is given by

- 1
&3 —UY , . .
b=X b* E,-K,-K,-K -U-1t Xp (3.39)

Making non-relativistic approximation for K,, KX, K, and the
motion of n, p and n in the final state |b>, and realizing
that U is the interaction between nucleons only, one reach-
es

1
E(x) -H,,-1

5= (|x, mom,>+ . Ix,mpm,,>)(—1—ei“'", (3.40)

21:)3/2
where E(x) and H,, are the kinetic energy and non-rela-

tivistic Hamiltonian of n-p relative motion. Here and in
the following argument in this section, the coordinates £?

and r' of the final state |b> are denoted as { and r

respectively to avoid confusion. Denoted as Yy, am,,

1
K, m >+ q
e Moo + ey BT

[k, mym,> is the time reversed state of
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1
E(k)-H, +i¢

/ /
Vi, ompem,= | % ~mymmy> |-%, -m,-m,>' , (3.41)

vhere |-k,-m,-m,>’ is the time reserved state of |[x,mm,>,

which can be expressed as

1

— — — /-_
I K, mP mn> (27‘)3/2

-1 a1 1
e * (_1)mp(—1)m IE"mp>I3_mn>

mymy, 1_ 1_ 1 -ix€,
-(-1)"" ;:(—é- mpa mnlsms>(2—n)3—/;e xsm,l (3.42)

where X, is the wave function for total spin of n and p.
Here, the definition and convention of time reversal
operation is taken from Ref. 11, and H,, is assumed time

reversal invariant.
Following the derivation from eq. (2.17) to eq. (2.18)
in Chapter II, and using the definition of eq. (2.4) and

eq. (2.25) , one reaches

1+ my+m 1 1 Il <l !
te-memm (~1) NN <3—mp-§—mn|sms> <1'm's'ml|Jr>
s!1sg mf,m,m’mM

< Imsmy|IM> ¥ysy (€ ;) Y;m(_g)xs,méiy'% RY, . (k,E,) . (3:43)

Now, by operating with the time reversal operator T on both

sides of the above equation, Vg, ., can be expressed as
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‘I’x, mpm,™ -T ‘I’/-x, -m,-m,

-(-1)%" ¥ y <%.—mp—;——mn|sm ><%m£, ;‘m,,ls’ms

‘IISI.ISJ mf,m_,m’mMmém{.,
- <1'm's'ml| aM> < Imsm | TM> (1) ™ ¥y1_ 0 (8 L) Yy (=R) (- 1) 1’.' % .
llslls(K'E )( 1)myx_m/( 1)mnx-m . (3.44)

By changing the sign of all m's in eq. (3.44) and using the

symmetry properties of Clesch~Gorden coefficients, Y., M is

finally given by

Vemm= 3, Y «l 2 (1 gmpz m,|sm,><Imsmg|IM> Y1, (R) *

1/g’195 mmM

P, (K E) (3.45)

where ¢37/,,(x,E) is defined by

ryg (K, E) = E —Jéi bg !\s'mls < 1/m's'ml|am> -
mpm om!
xm'xm/Y_l/ml(e )lll l’s’ls(K’EI) . (3.46)

Notice that ¢/, (x,§) is an eigenstate of I?, s?, 32 and J,.

In conclusion, ¢, is given by
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- 1 ixlz 2 1 1
dp(E, ) =—=—re = <=m,=m,|sm> *
T A 2T
< Imsmy|TM> Yin (R) 971, (K, E) (3.47)

with ¢7/,,.(x,E) defined as above.

Now, with all the preparation above, the cross section
eq. (3.4) is ready to be evaluated. However, one will find
that it can be resolved into partial cross sections as
following.

From eq. (3.38), (3.40), the T-matrix element T,, can

be expressed explicitly as

1 o4
i=__dgl
1 2 my,

s 1
Toam (myo72 ©

ll';.mpmn (&), VPW

O m, (E))

il Bdy

1 2 Trp Ty 1
+(We Ve, mpm, (8 4 Vn(z—':r)'-*/_ze

-il
12k~E

by (8)) -
(3.48)

The argument in the last section indicates that v, andv,

are just summation of some tensor operators which do not
contain derivative operators with respect to spatial

m
9k’), eq. (3.48) becomes

coordinates. Defining Q——é—(k—l
np
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Tpa™

o )3(q;,,mp,nn<e),E'<em‘r(v),,,+e'1°‘=<v> ) &g, (E))

(3.49)
where %' indicates the summation over just restricted pairs
of (J,,m,). Using eq. (3.45), the orthogonalities and sym-
metry properties of Clesch-Gc;rdan coefficients, and the

following identities and definitions:
e Y ami 25, (0F ) Yy (8 ) Y2u(D)
LM

Yo (8 ) (V+ (1) 2v,) 2= ¥ <IMT,m, | Ty +
JpMpg

LY (8 )@ v+ (-1) Lv,) X
<HPre (K, E) | 1758 ) ® (v+ (-1) Ev,) ™) 25, (OF ) 1 2| (E)
'<JimiJBmB|JM><¢i7’s/19| [ (v (€ ,) ®(Vp+ (-1) Lv,) 7] nltf:jz.i d |¢J,> R

LIyJpJy

=<Jm; T |TM> T 7052

one reaches

<|Tba|2>' E fdeITbalz

mymgin,

(21‘)52’2 E YW(@ YLM(@

T LM 153105/
Jxm #73 5 Tmy
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. [E}jj] <LMT, | Tymg> <L M T Ji | Tpmg> *
B

LJ,Jgd; LJ, xJIgTi* (3.50)

"Tis1lsls L1775 1

where [J]=2J+1, etc. On the other hand, by defining

Bd 4
1 m", 1
TJls'(We JIES,(!)I/B/IS(E), (vyd (r—EE,)
sV (2 2E ) —E ik, () (3.51)
a 2% (2¢)3/2 Ty '

and following the same precedure as above, one also has

Z E Y YO Ypg(O) -
T\, T, ity LMLM 1;'1""
B

2,
EI Jlsl (21‘:)4

. [[i]] <LMT,m,|JTgmp> <L M T, 0| Tpmg> *

LIJTgdy LTTgdye
1sl's's C1s7575 (3.52)

From eq.(3.4), (3.51) and (3.52) together with the

definition:

d°) 1 (2m)4 qE’ By
. T. 3.53
(dﬂ 1sJ 2[J1] Vro;. Ag;ul lsJI ( )

one can finally express cross section (3.4) as
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(3.54)

d?¢ __ PE’my (da)
dEnko’ nEnp IsJ di 1s7

where E? is the total energy of this reaction and E, is

the total energy of final np system in ACM.
Evaluation of Cross Sections

From the argument of the last section, the cross
section of reaction 2%H(y,n)%H" 1is resolved into the
contributions from each final np state of (1;s.J;). Once
this partial cross section is calculated for each (l,s.J;)
n-p final state, the cross section for this reaction can be
obtained from eq. (3.54). Here and in the following
derivation, (1l;s,J,) is used instead of (1sJ) to represent

np states after reaction in order to avoid confusion.

- Noticing that

1 BBy

’
UIGl . E Apy

(3.55)

where E, and p, are the photon energy and momentum andEk,

is the deuteron energy before reaction, ( %) 1,50, Decomes

(3.56)

do k EEEE, 1
=Toy -(2m)4 - Y dnmp T 2
( aQ )1,9,.7, X' (EAz  2[d,] Amzix:n, l 1,sﬂ;rtl
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From eq. (3.36), (3.37), (3.51) and the definition of Q in

eq. (3.49), the matrix element T,,, can be written as

- 1 1 —1)1e+9e+8y .
Treswr™ gy g (1 (1)

c

(b, (B) €710%, FPO, . (E)) , (3.57)

where Zd)‘lff;",‘;rs’(x,ﬁ) has been denoted as d)me!(E) : and r has
g/

been used to denote the spatial part of np internal

coordinate &, pointing from n to p. y=F7/F;. The sigh

(-1)17%#*%t comes from the interchange of n-p internal

coordinates. One should notice the selectivities on (1's!')

from Chapter II. From edgs. (3.56) and (3.57) one finally

has
do 14848y 2 k (E€) zEdEnp 1
a9 -[1+(~1 =
( aQ )1151']: [ +( ) YO] k, (E'A) ZENEIIV 2 [J_i]
-Agtl(%m(!i)e'iﬂ, Fébsn (8)) 2. (3.58)

Now the only thing left is to compute the quantity:

Y (s, (B e7i0%, F2G, . (E)) 2.

lmim:
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It can be written as in the following by using the expres-

sion (3.28),

Y (b, (B e7i0%, FEG,, (E)) |2

Am Rudy

- |f¢‘afmt (£) 97 [ (F,-F,cos0 ) 0,+iF, (KxK.) ,

Am ¢Mg

+(Fy+Fy) 0 5 (KL) \+Fy (0°K,) (KL) 3] by (B) E . (3.59)

Denoting the four terms in the above equation as #1, #2, #3
and #4 separately, the expansion of the above | |? will
yield the following terms: #1e#1, #1e#2, #1e#3, #ie#4, #2e
#2, #2e#3, #20#4, #3e#3, #3e#4, #40#4 and their complex
conjugates. Each of these terms has to be evaluated
separately. Before doing this, some preparation is needed.

The following identities and definitions are used in
the derivation:

(a) The expansion of e'%" in terms of spherical

harmonics:
eiT¥ugny " 1 15,(qr) ¥ip(Q) Yy, (£) .
1m

(b) The coupling of two spherical harmonics:

1.1
411t2<11m112m2 |LM><1,01,0|L0> Y, (&)

Yy m (@) Yy (&) -;}
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LIE 1,11\ 1,1,L
-y 1T,/—12; (~1) u(olozo)(mim:M)yL_M(@) :

(c) Orthogonalities and symmetry properties of

Clebsch-Gordan, 3j and 6j coefficients.

(d)

E (_1) 11+12+13+p1+[&2ﬂ13(j1 12 13 ) ( l1jz '13) (11 '12 jB)

m |, - -}, m -p.m
nih, N a2 Y A N TR LY (TS AN il PR

_(jljzja) {fljz j3}
mmmy) \1,1,1,] "’
from which one frequently-used identity is obtained:
(e)
/
y (_Ilmln,ﬁ)umz A|IM> <11 N |IM> (-1) ™

mm'M

o S )

for integer 1.

(f) Reduced matrix of irreducible tensor operator:

<j’m’|X,;7|jm>-<jmJM|j’m’>-‘J?<j’||XJllj> .

(g) Coupling of two tensor operators:
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k
quU;:-é <k, @ k,q, | KO> [TH®U™] 5.

1

Another thing which is frequently encountered in the
derivation is the matrix element: <¢, ,m,lei J(or) |¢Jim1>
where X, is either Y,,(f) or [v,®¢l, . Realizing that the
operator X will only act on the proton, the above matrix

element can be expanded as

<¢Jﬂl:IXmijl (Qr) |¢Jim‘>
J.

- Y 1 1,08 T 1 18,0,
(1%/131/5/1 (¥, ( —2--5) 5] m,IXm,;Jl (Qr) IERHSJ [Y11®(33 PR

- E E f(_l) llRl/s’R.l o jl (O0r) r2dr(-1) 11*1’+Jf*J1*2j‘/j‘§/§i .
Vgljl 118434 i

2 12 1y 1192 0 1 1,9
. (Y, B=)IQ=11 X | 1(Y, ®=) I®=1,5,
50 s %Jisi R A R A
(3.60)

. . J .
where R, stands for radial wave function R1'2'1,s,(‘°'r) in

eq. (3.46) and, R;, is the radial wave function of

deuteron. In the total spin wave function, coupling order

is s, ® s,. The selectivity of (l;s,J;) is 1,;=1,2, s;=J;=1.

One should refer to Chapter II for the selectivity of
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(1I’s’) . Remembering that X only acts on the proton, and

together with identities and definition (¢), (d) and (f),

one has

<I (Y1,®.-)i’®_1-]"f| X | 0¥y, ®i) Q2 1105

3 /
- (—1)j"3*2"'r*2”'1”1"7 3T {J Je3

<JTm,Jm.|JTme> *
z JiJJ} ymyJmy|J gmy

> (Y1,®%)i’[|XJII(YJI®%) Iy, (3.61)

Combining eq. (3.60) and (3.61), and appreviate index

(1’s’j") as @ and (1,;s,7) as B, one finally has

<y Xy 71 (0T) Idy,>

'@Aaﬂ/iﬂ 1) VRygiRy 5 517 dl‘<(Ylt®—)J[lX‘7II(Y1 ®-1-)J>(3 62)

where

1
1’41 +J+J+j o _
P e PO TN
J; g
l/; J’ 11 J
44 111 ) (3.63)
Est _Z—Jis'i
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The following quantities defined for X,,,‘;-Ylm(f) and Xmi'

[v,® U]J, are also used in this derivation:
(h)

Top=1 lan‘,J (-1)? Rllisl o J1x2dr -

El

'<(Yll®%)jl“Y1"(Y11®%) ENS

(1)

o,

tldai lfAGBJ/ = [(-1) YRygiRy 5, 3,7 2dx -

.<(Y1,®_)j'"[Y1®O]J"(Y1 1)J>

Please refer to Appendix A for the formula of the reduced

matrix elements <(Y1/®%)1'HXJ|](Y11®%) I> for bothX, -Y,,(f)

and X,-[Y,®@al, .

Now, with all the above definitions and identities (a)
through (i) plus eq. (3.62) and (3.63), all the terms in
the expansion of eq. (3.59) are derived to yield the

following results:
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2[J
#1®41=4x|F-Fcos0,.2 Y, ¥} (—1)‘7"1——[——£]—<l.11—1|L0>‘
1,17 «;B,05B, (]
L=-0,2
1 L1 _1,0/( 2,0\*
<1,01,01205{], 5 1 et (veip,) Pu(cose,) (3.64)

#1®#3=-2Re[4n (F-F,cos0 ) (F,+F)* Y. (-1)7 | 3 [Jg |
1T, 2 [J]

a;fiep;

+<1,01,0|2 0>{%llelz}tiigl(tiigz)'cosﬂQsinB osin® .1 . (3.65)

#1®#4-2Re[(4m)2(F-Fcos8 ) Fy Y. Y (-1) Jﬂ— ‘
1, 1,7 a,piayB; LI[J]
LMI%0,2

1 L1) 1,07 1,0\*
‘<1010IIO><110120|L0>{11J12}r¢:51(ta:p2) .

(8, (-1) ¥y, (O) Y, (KLY =-(-1)¥<101-M|L-M>

*<101-M|I-M>Y; , (O) Y, (KL) . (3.66)

[Jf] 1 I
[.Z] 2 T"‘151 azB,

#2Q@#2-4an|F,|?sin%0 ; (3.67)
laipiaap,
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#3043 -4n|F,+F;|?sin?0 , ) ‘2 (-1) 7 L] <1010|L0O> -
1%2B2

1,1,T ay (J]

L=-0,2

1 L1} Lo 1,0\*
.<110120|Lo>{llJ12}raipl(c¢:,,z) P (D) . (3.68)

#3®#4-2R’e[(41!:)2(F’2+17'3)17'4"3_-11129c E Z (-1) L+t [J,] .

1,10« 8,¢:p; 31J]
L=-0,2 -

1L 1) _10( 1,0 \*
.<110120|Lo>{11J12}r¢§pl(r 2 ) .

uzfs

- ( tl<1—MLM|10>YL_M(é) Y (KT . (3.69)
M=~

#4QO#4=(4am)?|F,|?sin20, Y, Y (-1)7 [T,

LT «.f,a.8, (L]-[J]
L=0,2

<1010|LO> -

1 *
.<110120|Lo>{11§li}rii‘§l(ci;‘;z) (Z(-1) ¥4, 4(0) ¥, 4 (KD) -

(3.70)
The other terms #1le#2=#20#3=#2@#4=0. In the above expres-

sions, 6, is the angle between @ vector and k vector. The

z-axis has been chosen in the direction of k; P, is theLth

Legenda polynomial.

Finally,
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Y | (P, () €707, FEG,, (E)) |2

Am (Mg

= (H1Q#1) + (#10#3) + (H1Q44) + (#2Q42)

+ (#3O#3) + (#30#4) + (#4O#4) . (3.71)

With egs. (3.54), (3.58), (3.59), (3.64) through (3.71) and
definitions and identities (a) through (i), the cross

section (3.4) of this reaction 2H(y,n)?H" is ready to

evaluate.

The Elementary Amplitudes and Forward Angle Approximation

The elementary amplitudes F; (i=1,2,3,4) are taken

from the most recent fit? to the elementary y+p-n+p
reaction. It uses the Cutkosky resonances'? which are more
reliable than those used in earlier Hick's fit."® 1In
Cutkosky resonances, the S;; resonance is peaked at 1510

MeV. Because the threshold of the °H(y,n)2H" reaction
corresponds a YN center-of-mass energy of E “=1438 MeV which
is much 1lower than the E°=1488 MeV threshold of the
elementary y+p--n+p reaction, some model is needed to
evaluate the elementary amplitudes for the E° energy below
1488 MeV. When E° 1is smaller than 1490 MeV, this

calculation simply freezes the resonance widths and
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penetration factors of the Tabakin's fit® at their 1490 MeV

value, and lets the denominator (E°-E,+il'/2) carry the only

energy dependence.

From eq. (3.28), one will notice that the FP operator

has to be made as a function of ACM variables. However,

how to define k, and k, from ACM variables remains

ambiguous. So some approximations have been made in this

calculation. First, the F; is evaluated from yN c.m. (2CM)

energy E° at 6.=0 degrees (forward angle approximation).

Second, the scattering angle 6, in the 2cm frame is set to

be equal to the scattering angle Oﬂ in the ACM. The second

approximation makes k=K' (K.~K anyway). Then egq. (3.28)

becones

F =F,(0@)+F,(io°K’) (0@xK) +F, (0-KK'®) +F, (6-K' K'8)

This second approximation is chosen because at forward

angles, where large yield occurs, the difference betweenk’
and Ei is expected to be small except for some "flip over"

effects at photon laboratory energy close to ACM threshold
(632 MeV) and for large enough n-p relative kinetic energy
(please see the following argument).

The above approximations mean that this calculation is
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only accurate at zero degrees. However, angular distribu-
tion is still presented in the result. In order to

estimate the effect of these approximations, one can choose

some other reasonable prescription for determining FZ from

ACM variables.

To estimate the effect of the second approximation

made above, cross sections are also calculated by Lorentz

. This choice is made in order to

transforming 6, from Bn

keep consistent with the impulse and on-shell approximation
used in the first section of this chapter. It means ignor-
ing the influence from the other nucleon kinematically.

The comparison between the second approximation and the
Lorentz transforming method is shown in Figures 3 and 4,
where the angular distribution and dependence of the cross
section on n-p relative kinetic energy for both T=1 and T=0
final states are plotted. At 650 MeV photon laboratory
energy, the Lorentz transforming moves the peak of angular
distribution from zero to about 12 degrees, and produces an
increase by about 10-20%. The "flip over" effect (at 6n=0
degrees, the Lorentz transformed Q:becomes 180 degrees) is
also seen in Figure 4 at that photon energy. However, at
700 MeV photon enerqgy the Lorentz transforming produces an
difference in angular distribution which is smaller than 5%
and, out to 54 degrees keeps the similar dependence of the

cross section on n-p relative kinetic energy, only produces
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about 10% increase. Obviously, the higher the photon
laboratory energy, the smaller the above difference, and

the more reliable the second approximation.

For the effect of the first approximation, one may

want to refer to Ref. 8.

—
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Figure 3. Angular Distributions at Selected KEWP'Values
for Both T=1 and T=0 Final States. The Dotted
Curves are with Lorentz Transformed Bc.
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Figure 4. The T=0 and T=1 Cross Sections at Selected Eta

Angles as Functions of n-p Relative Kinetic
Energy. The Dotted Curves are With Lorentz

Transforming 6, from 8,.
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CHAPTER IV
RESULTS

The double differential cross section dza/dEndn of this
reaction 2H(y,n)%H" depends on the incident photon energy,
the outgoing eta energy and angle. The energy of emitted
eta meson is uniquely determined by the n-p final relative
kinetic energy at a given incident photon energy. So in
this work, the cross section has been given as a function
of incident photon energy, n-p relative kinetic energy in
the final state and outgoing eta angle. All the cross
sections are calculated with Fermi-averaging the elementary
amplitude except commented otherwise.

It is instructive to see an overview of the above
dependence of the cross section. Shown in Figures 5
through 10 are cross sections, for both T=0 and T=1 final
states, as functions of the n-p relative kinetic energy KE,_
p and the eta angles Bn. In each of these six graphs,
contour lines are plotted at KE,., of 2, 6, 10 MeV and then
in step size of 10 MeV up to its maximum value allowed
(e.g., 97 MeV at photon lab energy of 760 MeV), and also
for eta angles from 0 to 57 degrees. In Figures 11 and 12,
T=0 and T=1 cross sections are also given as functions of

en and KE,_,, but confined within 0 to 10 MeV of KE, ,. By comparing

55
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T

2H(5,7m)°H"

d?g/dE,d0

++ (10™ub/SrMeV)

E,2*~700 MeV

T=1 FINAL N-P STATE

Figure 5. The T=1 Cross Section as a Function of Eta

Angle and n-p Relative Kinetic Energy at

E}®=700 MevV.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2H(y,7)°H"

=
—_ ©)
= v
o Q =
2 .
S 5 o® o
&<
Ll o o
RN z3
@ O = =
° = < o
< o
—i
b
n__ua
Tﬁ

ergy at



58

0 OJ
(ABWIS /AN, OT) g

f

UP“3p/0,P

Lt

—l

<<

T

wn

T+ >

z O

P

—J

< O

mm (0]

o

R

—

Section as a
n-p Relative
Ef*-=760 MeV.

and

Figure 7. The T=1 Cross
Angle

of the copyright owner. Further reproduction prohibited without permission

Reproduced with permission



59

2H(s,7)°H"

(102ub/SrMeV)

d4a/dE,d0

T=0 FINAL N-P STATE
E,*=760 MeV

Figure 8. The T=0 Cross Section as a Func ion
Angle and n-p Relative Kinetic Energy at

E;*-760 MeV.
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Figure 9. The T=1 Cross Section as a Function of Eta
Angle and n-p Relative Kinetic Energy at

E}*P-820 MeV.
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2H(y, n)°H"

d%g/dE,d0
(102ub/SrMeV)

T=0 FINAL N-P STATE “¢
lab O<(\
E,?b=820 MeV >
2/

Figure 10.

The T=0 Cross Section as a Function of Eta
Angle and n-p Relative Kinetic Energy at

E}*-820 MeV.



62

2Hs, 7)°H" . d°s/dE,,d0Q
T=1 FINAL N-P STATE  /j (107°ub/SrMeV)
E,°°=740 MeV

Figure 11. The T=1 Cross Section as a Function of Eta
Angle and n-p Relative Kinetic Energy from

0 to 10 MeV at E;**-740 MevV.
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d%g/dE,dN
(102ub/SrMeV)

T=0 FINAL N-P STATE
E,°°=740 MeV

Figure 12. The T=0 Cross Section as a Function of Eta
Angle and n-p Relative Kinetic Energy from

0 to 10 MeV at E;*’-740 MeV.
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these two groups of figures, one finds that cross sections
of T=0 and T=1 final channels are of very similar shape at
n-p relative kinetic energies beyond 10 MeV, yet very
different below 10 MeV. Figures 11 and 12 are quite
typical. Cross sections at other photon energies from 640
to 900 MeV have shapes very similar to that in Figures 11
and 12. This work then concentrates on the region where n-
p relative kinetic energy is smaller than 10 MeV, with the
purpose of distinguishing between isovector and isoscalar

electromagnetic transition amplitudes. One should note

that FP-F yields only T=0 cross sections, whileFpf=-FJ

yields only T=1 cross sections.

The dependences of cross sections on n-p relative
kinetic energies are given for both T=0 and T=1 channels in
Figures 4 and 13 at On=0 degrees for several photon

energies. Cross sections calculated by Lorentz transform-

ing EZ from Kk’ are also given by dotted curves in Figure 4

(Please refer to the discussion in the 1last section in
Chapter III). The very different dependence on n-p rela-
tive kinetic energy between T=0 and T=1 cross sections
indicates that the isospin nature of the §,; transition
amplitude may be determined by measuring zero-degree eta
cross sections at the photon energy where the S,; resonance

dominates. One thing worth mentioning here is that this
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Figure 13. Both T=1 (Solid Curves) and T=0 (Dashed
Curves) Cross Sections, at Zero Degrees
and Several Incident Photon Energies, as
Functions of n-p Relative Kinetic Energy.
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calculation is only accurate at forward angles (see also
the discussion in the last section of Chapter III).
Figures 3 and 14 shows the angular distribution at
several incident photon energies. The n-p relative kinetic
energies are chosen to give large cross sections. The
angular distribution does not distinguish between the T=0
and T=1 final channels. However, it peaks at forward
angles where the forward angle approximation is valid. At
40 degrees the cross section drops by about 50%. Again the

dotted curves in Figure 3 give the results with Lorentz

transformed Kk.,. The discussion in the last section of

Chapter III indicates that the cross section at high photon
energy 1is not sensitive to the angle transformation
employed.

The effects of eliminating the S;, contribution from
the elementary amplitudes are shown in Figures 15 and 16,
where cross sections at zero degrees for both T=0 and T=1
final n-p states are plotted versus incident photon energy.
Calculations with and without Fermi-averaging the elemen-
tary amplitudes are also included in Figures 15 and 16.
The Fermi-averaging reduces the cross section by 20-30%,
but does not smear out the contribution from the S,, as much
as in the photonuclear calculations.? The §,, is

demonstrated to dominate the eta cross section in

Eﬁ“¥740 MeV region (up to 60-70%), while at around 800 MeV
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photon laboratory energy, where the peak of the cross

section occurs, it accounts for only 30-40% of the cross

section. The reason is that at E’f&b-740 MeV, the total

energy of photon and the nucleon in the yN c.m. (2CM) frame
is 1507 MeV, almost on the resonance position of the S,; in
Cutkosky resonances.' 1In this reaction one may want to
concentrate on the photon energy near 740 MeV.

Finally, Figure 17 displays the T=0 and T=1 cross sec-
tions at zero degrees and E'.,lab-740 MeV which have been
folded with a Gaussian width of 1 MeV to simulate the

detector resolution. The T=0 curve also includes the

impulse approximation prediction for the 2H(y,n)°H cross

section calculated by assuming FZP=F7. Even with the

simulated detector resolution, one can still distinguish
between the pure isoscalar and pure isovector amplitudes

from the cross section.
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CHAPTER V
CONCLUSION

calculations for the 2H(y,n)2H" reaction have been
performed in the plane-wave impulse approximation with a
recent fit’ to the elementary y+p-n+p amplitude, and with
describing the n-p final state interaction by Reid's soft
core potentials.” The s, resonance is demonstrated to
dominate the cross section in the region of 740 MeV inci-
dent photon energy. There is a small difference between
calculations with and without Fermi-averaging the
elementary amélitude. The loosely bounded deuteron does
not smear out the contributions from individual nucleon
resonances as much as was determined for heavier nuclei.?
The deuteron breakup can accommodate higher momentum
transfer than in the reaction °2H(y,7n)2H, and therefore,
produces larger total cross sections. One can also expect
that the recattering effect is negligible compared to the
single scattering because of the deuteron breakup. Cross
sections calculated by assuming pure isoscalar and
isovector elementary amplitudes exhibit very different
dependence on the n-p relative kinetic energy at zero
degrees. These results suggest that the H(y,n)%H" reaction

may provide a signature for the isospin components of the

72
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S,y electromagnetic transition amplitude. This will
complement measurements for 2H(y,n)2H which can proceed only
through the 1isoscalar components of the transition

operator.
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The reduced matrix element <(Y1/®—%-)7'/||XJ||(Y11®-%) 7> in

the third section in Chapter III is given below.

If Xm‘;-Ylm(f) , then the unreduced matrix element is

1, 5 1
<(y; E)iﬂyml (Y11®3)n{,>

Ind L 112y 1 .
-y <1m-2-mp|J my><1m; = 705> <YKt | Y| (¥ o Xom >

m'mbmym,

1 - 1 ;
- E <l/m/3mplj’mj><limi—2—mp|_7mj><Y_z/m/|Y1m|Y11mx> . (1)

m'mgemy,

From the identities and definitions (b) and (d) in Chapter

III, the above equation becomes

1,5 1
< (Yl’®'§')iglylm| (Y11®E)n{,>

. 1.3 some2mys - 151 1
- rf1,<101io|1/o> (-1) sl TS
Vaw I jl;1

*<Fmylm|Fmb> . (2)

By the definition (f) in Chapter III, together with eq.

(2), the reduced matrix element of Y;,(f) is finally given

as
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1 1 1
3 (502 1%I(7, B5) %

Jji;1

1

i1,-2 150 L
1 I‘I‘g“(—l)j = 2¢101,0|1’0> 1 (3)
Vaim

For Xm‘i—[Y1®a] ,,‘,Z, the situation is more complicated.

First, for a general irreducible tensor operator, from the
definition (f) in Chapter III and orthogonality of Clebsch-

Gordan coefficients, one has

%(j’IITkIIj>-[—,kI]E <jmjkq|j’m§><j’m§|T;|jmj> . (4)
k (71 o,

For a tensor product X* composed of irreducible tensor

operators Tgf and U:: acking on different parts of a systemn,

identity (g) in Chapter III and the above equation give

1,74/ .
T?<J1J2J/"X M7 g,
KL 0| < | T < oy | 0>
[J] Py
m{mimym,
-y k. .
<k g, k,q, | KO> <j{m{32’m£|qu‘U::|Jlmljzmz> , (5)
while
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WY BN < . .
<JymyFamp | Tg! lﬁ:: |5 my 7 ,m, >

1
Kk,

<Fumy Ky @y | 7amy> < 5ok, | F5mg> < FINTST > -
<TlUl,> | (6)
From egs. (5) and (6) together with the following identity:
'11 j12 j13

21 J22 J23

31 Ja2 Jaa
E (jn J12 jn) (jm Jaz jzaJ (jn Jaz jsa)
al1lm’s \Ih1 My M3 ) \Myy oy Ny |\ My M, 15
(jn Fa1 531) (jzz J22 jsz] (jn Jaa j33)
Myq Myy Myy J\Iyp Mp5 My | \INy 3 I3 My
one finally reaches

1

K,,<j£j£J'ux K| 5, 3,0

Kt <TI0, <GalU™05,> 7)

By using eqg. (7) and following result:
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<lo1,0|1’0>,

<K1Y, 1,>= (111,
T

17
and

1 1
<-—-— — ) =
2ll<3l|2> 3,

the reduced matrix element of X,-[Y,®cl, is finally

obtained as

LU, [7®0] 7| (1, 82) 7>

J
11, 1
oa IT.
REEL— 2 < 1<101,0]1%> . (8)
VaT
i3 g
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