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ETA PHOTOPRODUCTION VIA 2H(y,r/)2H*

Yan Zhang, M.A.
Western Michigan University, 1991

The reaction 2H(y,n)2H* is studied using the impulse 
approximation. A recent fit to the ’h(y^*7) 1h elementary 
amplitude is employed in the calculation. The n-p final 
state is described by Reid's soft core potentials. The 
calculation shows very different cross sections for the 
final isospin 0 and isospin 1 break-up channels. The 
resonance is demonstrated to dominate the eta cross 
sections in the 740 MeV photon laboratory energy region. 
Fermi motion in the deuteron does not significantly spread 
the effect of the Sn . All these results demonstrate that 
the reaction 2H(y,r/)2H* may provide a signature for the 
isospin components of the electromagnetic transition 
amplitude. Measurement of this reaction will complement 
the earlier 2H(y,77)2H data.
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CHAPTER I

INTRODUCTION

Photoproduction and electroproduction of mesons from 
nucleon are an important part of studies of nucleon reso­
nances because meson emission is the dominant channel. By 
comparing the experimental electromagnetic transition 
amplitudes with the quark model predictions, the validity 
of quark models in describing nucleon resonances can be 
tested, and therefore a better understanding of the under­
lying structure of these resonances can be achieved. With 
new experimental facilities (e.g., CEBAF), interest in 
meson photoproduction has been renewed. Although the 
majority of experiments investigated charged pion 
productions, more data on the photoproduction of eta mesons 
are expected due to the recently developed neutral meson 
detectors.1 The (1535) resonance, with its large eta 
decay width (45%), can then be isolated for study by these 
eta-production experiments.

The T-matrix for eta photoproduction from the nucleon 
can be written in isospin components as:

T“r° + T3T1, (1.1)

1

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2

where t3 |p> - |p> .

Because the strong r]N interaction in the final states does 
not distinguish between the neutron and proton, the T° and 
T1 represent just isospin components of electromagnetic 
transition amplitudes for nucleon resonances. Obviously, 
these isospin components must be obtained from experiments 
with both proton and neutron targets. Neutron data can 
only come from nuclear targets. Although the data 
extracted from early photopion experiments2 indicated that 
electromagnetic amplitude of the Sn resonance is nearly 
pure isovector, in agreement with quark model predic­
tions ,3,4 early data from photoproduction of eta on a 
deuteron target5 were analyzed in the impulse approximation 
to give a nearly pure isoscalar transition amplitude. Some 
efforts have been made to explain this discrepancy by meson 
rescattering effects.6 However, the most recent calculation 
of the rescattering diagrams7 indicated that they are too 
small to account for the difference. In that article, the 
angular distributions of 2H(y,r?)2H were suggested as a means 
of distinguishing between the single scattering and meson 
rescattering processes. The difficulty is the low yield of 
2H(y,T7 )2H due to the inability of the deuteron to accommo­
date the high momentum transfer in the reaction. It was 
also suggested by Halderson and Rosenthal8 to determine the 
isospin components of the resonance by photoproduction
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of eta mesons from excited, stretched states of several 
nuclei. The nucleus would be used as an isospin filter. 
However, the considerable Fermi motion of nucleons in these 
heavy nuclei tends to smear out the contributions of 
individual nucleon resonances to the cross section.

This study has been conducted with the purpose to show 
that the 2H(y,»7 )2H* reaction may provide information which 
can help to determine the isospin components of the 
electromagnetic transition amplitude and, therefore, to 
solve the discrepancies mentioned above. The impulse 
approximation together with a recent fit to the elementary 
Y+p-*-rj+p transition amplitudes9 is employed in the calcu­
lation. The n-p continuum wave functions are calculated 
from Reid's soft core potentials.10 The deuteron breakup 
accommodates a higher momentum transfer and, thereby, 
yields a larger total cross section than in the 2H(y,t?)2H 
reaction. It also assures that rescattering effects are 
negligible compared to single scattering, giving a credit 
to the employment of impulse approximation. Calculations 
demonstrate that the cross section is dominated by the Sn 
resonance in the 740 MeV photon laboratory energy region, 
which is not smeared out by the Fermi motion in the loosely 
bounded deuteron, in contrast to the case of heavy nuclei 
targets.8 Finally, there is a significant difference in the 
eta cross section when a pure isovector and a pure iso-
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scalar elementary amplitude are compared, which can be used 
to determine the isospin components of the Sn resonance.
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CHAPTER II

WAVE FUNCTION FOR NEUTRON PROTON ELASTIC SCATTERING

In the neutron-proton center—of-mass coordinate system 
and, in the space of total spin of n and p, the initial 
state prior to scattering is

(2n)"3/2ei*-1'rxsmj, (2.1)

where x3ma the eigenfunction of total spin of n and p.

In this equation and the following derivation in this
chapter, the units are chosen such that tj=c=l. The final
state after scattering will then be

\kfslmi>-bktg,mi-(2k) -3/2eiJr'xxŝ  . (2.2)

One may expand |irisms> as:

Ylm^Ol<kir)X£* in

| £  i j! (k±r) , (2.3)
u

with <^l/s/n?s|yjr|icilsn?s> defined as
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<fl*s,m'3\YiT\£1lsmg>-'Ŷ  ijw(J?) <l/m,s/m/a\JM>
rn'oU

‘<lmsms\JM> . (2.4)

The S-matrix of the scattering in the c.m. system has 
the form:

<b\S\a> -5 (Pb) <-fcfs/jng|S,|.fcJ,sms> , (2.5)

where |a> and |b> are initial and final states, and Pb is 
the total momentum in the final state. One can also define

a submatrix: |icisms> on the energy shell by

KkfS'mi|£'|.fc'ismg> — — 5 [e (kf) -e (kd) ]
Pe

• <Jcfs'm'a\s(kj |Jcisms> , (2.6)

where e(k) is the total energy of the reaction and
Jĉ • •Pe— w 1S t l̂e density of states. Correspondingly, theae/ dk

T-matrix can be written in the c.m. system and on the 

energy shell as <Arfs/ms|r(ici) and,

<£fs'm's\T{k±) |iciSmg> - <k£s,m'3\T\kism3>\kf_ki . (2.7)
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7
The S-matrix and T-matrix are related as

• KlCfS'm'glTik̂  l/Cj sms> . (2.8)

The differential cross section for unpolarized beam 
and target is given by

■gg-J £  ■^(Icfs/m/3;k1sms) , (2.9)

where

-^r (£^/miikisma) - - & ^ p e\<£fs,m,B\T(ki) |2. (2.10)
au ure2.

Resolving the S-matrix into its submatrices for the 
states of given total angular momentum J with the trans­
formation matrix:

<£smg\lmsm3>-Ylm(£) , (2.11)

one has

<£fs'mla\S(k1) |icism0>

- J] KlCfS'nig 11 < 1 'm's'm̂  |<J/Af/> •
I'n/j'M*lmJM
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•<I/s/J/Af/|5'(iri) llsJMXlmsmglJMXlmsmglltiSm^ . (2.12)

Because of conservation of total angular momentum,

<lls'j'M,\S{ki)\lsJM>-biTjlbMMlS^sllg{ki) . (2.13)

Eq. (2.12) can then be written as

<icfs//ns|S'(ici) |icis/ns> - <icfi's'm's|JT^Isms>
1'IJ

• < 2 - 1 4 >

Similar operation on the T-matrix gives

<£fs/m/s\T\£ismB>-^2 <£fl/s/m ,g\YJ\£ilsms>
I'M

'T1 , (2.15)

where T^g,lg (ki,ki) = T^s,lg (k±) on the energy shell with kf-ki .

Here, sjg/^ikj and 7,ifg/j3(ici) are related as:

‘?iVi.(^i)-5ii'Sss'-27tiPerzVis(^i) ■ <2-16>

The Scattering Wave Equation 

The scattering wave function YiiS„,o in the c.m. coor-
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9
dinate system is given by

e(k) -e(k') +ir\ •<k's'm's | T\k1sms (2.17)

With eqs. (2.3), (2.4) and (2.15), Y£lSms is resolved into

substates of given total angular momentum J:

Y;iSm.(r)-£ <fl's'm's | Y J| 1 sme>x3fm̂ \'s',k.jis <r) ' 
l'u (2.18)

where

—  [Sji'Sss'Ji (ktr)

eikj -e(k') +ir\ lsls
(2.19)

with the asymptotic behavior11 as:

“\ i 1 2'{8n'dssdz (k,r)

- 4 —  [icpe(-i> Txigila(kj) ]}, (2 . 2 0 a)
K iz

or
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10

. J l  {-(-1) . (2.20b)r“" lyJ2%KiX

The wave scattering function YilSn,o satisfies 

Schrodinger equation:

(Vz+kj-v)V+klBm-0, (2.21)

where i>-2m rV, m r— m,̂ rip . v is n-p interaction. r r mn+mp

To obtain the equation for the radial wave function 

, one has, from the above equation (2.21), the

following expression:

E  <W . # /d£l^daf<fl's'm^Y'falsin^* (V2r+/cf-u) T ^ )  -0 . (2.22)
ma

With the expression of YiiSn,fl in eq. (2.18), the definition

of eq. (2.4) and orthogonality of Clebsch-Gordan 
coefficients, the following radial wave equation is 
obtained:
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r  1  d  /  2  d  \  l ' d ' + l )  7 2 -I ^  + /  v

T2"dr ~dr T2 kl**i's,.kixis'z>

~ ]C 1 _i Vl's,lHs" ( r  ̂ ’J'j'V'.JJe ̂ r  ̂ ' (2.23)
1"b"

where Vj/g/l//g//(r) is defined as

i>£s W (r) - i  ^  (zs/ffl/ , | daedQt<£ZVm'|r J|^Ism^ *
n>We

'X> <fl/,s,,m"\YJ\£ilsmB>xgllmii) . (2.24)

These coupled differential equations (2.23) should be solv­
ed subject to the above asymptotic boundary conditions eqs. 
(2.20).

Now let us define R$g/lg(r) and U^g,lg(z) as

U?lahAx)2_ “iWls1
7C r

(2.25)

The equation for U^g/lg(r) is then

1 'U 'z1) **j] nl V l s M  - £  »JVJ v t ' l W "  • (2-26)or r j//,,//

The asymptotic behavior of u£g,lg(z) , following from eq.

(2.20b), is given by
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liraU$g,lg(r) - ^ _ { 8 Ji/6sa/(-iJ/) e ' ^ + S ^ l - i )  JV M  . (2.27)

In the asymptotic region where np interaction is negligible 
one has two linearly independent solutions of the above 
equation:

_ . • / 7 \ i Uks-JZ) . .F1~kirj1(kir) —  [e 2 -e 2 ] , (2.27a)a

Gj-^rnj(^r) [e 2 +e 2 ] , (2.27b)

where jj and Uj are the spherical Bessel functions. One 

can rewrite the above asymptotic behavior of U^g/lg(r) as:

limJ7yfl/is(r) - — r-lim[8Ji/5ss/(l:’I/-iG2/) +S1%,l3(F1,+iG1,) ] . (2.28)
.r-*« ^ r-*«°

Now we examine in detail the property of the radial 
wave equation:

~dlJ  T 2  1 Ul's'ls(r)

~ v1>3'i"b" (r  ̂ Ul"s"ls (r ) * (2.29)
l"s"

The general form for nucleon-nucleon potential subject to
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13
rotational-invariance, parity and isospin conservation is 

V-Vc(r) +Vg(r) (Oj/o.*)+VLS(r) (L's) +Vr[3 (a^f) (32'f)-d1'd2] . (2.30)

It is easy to demonstrate that

[V, J2]-0 

[V, Jz] -0 

[V, P]-0 

[V, S2] -0

where P is parity operator. Here, the Hamiltonian H 
together with J2, Jz, S2 and P form a complete set of 
observables for the two nucleon system. One can have 
simultaneous eigenfunctions of H, J2, Jz, S2 and the parity 
P. Two nucleon spins couple to singlet states (s=0) or 
triplet states (s=l). So the eigenstates of two nucleon 
system with well-defined J, M, S and parity P will be the 
following:

singlet states: s-0 1-J P-(-l)J ,

(2.31a) 

(2.31b) 

(2.31c) 

(2.31d)

triplet states: s-1
1-J P-(-1) J if J*0

1-J±1 P-(-l)J+1 if J*0 
1-1 if J-0
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Also from the permutation relations (2.31) and the defini­

tion of Vi>g/ls, one has that

(2.32)

unless s'-s and (-l)j/_i-l. With the above argument and

properties of T-matrix, the following transition scheme 
between different nucleon-nucleon states (lsJ) is obtained: 

One channel scattering:

s-0 I-J" scattering s-0 I-J"
singlet transition singlet

s-1 1-J" scattering s-1 I-J
triplet transition triplet

s-1 J- O’ scattering s-1 J-0'
triplet \ transition triplet

Examples of one-channel scattering states are 1S0, 3P0, 1P1f
3p 1d 3d 1' 29 2*

Two channel scattering:

s-l I-J+11 scattering 
triplet J '[

rs-i l-j-li [ triplet J' transition

s-1 I-J+l 
triplet

s-1 i-<J-l 
triplet

Examples of two-channel scattering states are 3S1-3D1 and
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3P2-3F2. Due to the above restrictions on transitions 
between two-nucleon states (lsJ) arising from the symmetry 
property of nucleon-nucleon interactions, the radial wave 
equation (2.26) can be simplified as following:

1. Equations for one-channel scattering:

where s=l, J*0; 1=J+1, l'=J-l; or 1=J-1, l'=J+l.
Before discussing solutions of the above radial wave 

equations, we will first look at diagonalization of the S- 
matrix. First, the S-matrix is unitary over the physical 
space spanned by the continuum scattering wave state f* , 
where a represents the scattering channel. Also, time 
reversal symmetry requires11 that

These properties of the S-matrix enable us to write the

d2 1(1+1) +Jc_f] Uisi3’m\ilsls’Uisls (2.33a)dr2 i2

where s=0 or 1, 1=J; or s=l=l, J=0;
2. Equations for two-channel scattering:

d2 1(1+1)
dr2 i2

d2 I'd'+l)
dr2 r 2
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1. One-channel scattering:

-e2i8i** Isis e (2.34a)

2. Two-channel scattering:

(sJ*<7-1,1. <7-1,1 s J*<7+1,1, <7-1,1 c o s 2 e J.e2:ifil - i s i n 2 e  i7e i<8l+#2)'

a  Jk*<7-l,l, <7+1,1 a  J*<7+1,1, <7+1,1, k- i s i n 2 e j e i(8l+*2> c o s 2 e j e 2:i82 t

where phase shift 5̂ ,, 5lf 62 and mixing parameter Cj are all 

real numbers.
Now we discuss in detail the solution of radial wave 

equations (3.34). First, the expression of be

simplified. According to its definition eq. (2.24),

v?,gll„sA r) £  (xa/m/ , jdClxdQf < fl 's'm’3\YJ|Jc*lsms>-

By the definition of eq. (3.4) and the orthogonality for 
spherical harmonics, one reaches

fdtofZ (?) <1 'm's’m's|JMX> •
2J+1mWl maM'
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<lmsms\JM1>\iT,Y1nmii{f) <ll,m"sllm lg\JM><lmsms\JM>%Bifmii) . (2.35)

By defining <lmsmg\JM>Ylm(f) x8m and realizing that
mm„ 3

<lmsms\JM1Xlmsms\ J M > - one has

\v\rf?m„>-«lmsmB\JM»2 . (2.36)
iSc'+-L m

Because the two-nucleon interaction is rotationally 

invariant and conserves Jz, S2 and parity P, is

independent of M and

<3^/|u|3^,/>-6sV/8(.1)y/.I/1< ^ | u | r ^ /> . (2.37)

So one can denote as v*,gtl„8,i, and has

u2Vi/V /’’-2 1 _i vi,s'i,l911 • (2.38)

Finally, by the definition of u-u£,ls, Wm'i1'~1ujisl3 and

eq. (2.38), the radial wave equations (2.34a) and (2.34b) 
become

1. One-channel scattering:
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(2.39a)

where s=0 or 1, 1=J; or s=l=l, J=0;
2. Two-channel scattering:

d2 1(1+1) +kf] u-vf^'u+v^w
dr2 i2

d2 l^l'+l) +kj] w-v/1J/1,w+ v*,in-u , (2.39b)
dr2 r2

where s=l, J*0; 1=J+1, l'=J-l or 1=J-1, l'=j+l. In this

In this calculation, Reid's soft core potential10 is 
employed for V. This potential is given as function of 
x-\ir with ijl=0.7 fm‘1. With the definition k-kjp and

vii3>1s~vi's'1s ^ 2i e<3s• (2.39a) and (2.39b) will change to

1. One-channel scattering:

case w-~Uiiglg. The asymptotic behavior for u and w is

l im u -Limu- — ^-lim[ (Fj-iGj) +Sisl8(F1+iG1) ] ,2K± r-« (2.40a)

limw- — ^-lim(-l) sf,1JL1 (F^+iG^) .
r-*» 2 iCi X’*°°

(2.40b)

Evaluation of Scattering Wave Functions
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[-7 T -  i-(̂ 1) +ic2] u- v & 2su , (2 .41a)dx2 x 2

where s=0 or 1, 1=J; or J=0, l=s=l;
2. Two-channel scattering:

11+^2] u.vf .u+v J' .w
dx x 2

l-£i~ 1 ’ +*21 - <2 -«»>

where J*0, s=l; 1=J-1, l'=J+l, or 1=J+1, 1 1=J-1. The
asymptotic behavior becomes

l i m u - ^  lim[(F2 (Ax)-iG2(.fcx))+ 5 ^  (F2(£x)+iG2 (lex))] , (2.42a)
x-» 2iC x-»

limw--^-lim(-l) ,,, (F2,(kx) +iG1t(kx)) . (2.42b)x-« 2iC x-«

The 4th order Runge-Kutta-Gill method is used to solve 
the above equations numerically. Linearly independent 
solutions of u and w are generated from the region where 
x«0 (left side) satisfying u=0 and w=0. At very large x 
(right side), where the two-nucleon interaction becomes 
negligible, linearly independent solutions of u and w are 
also generated. By matching the solutions of u and w from 
both sides according to the continuous condition of u, w,
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du/dx and dw/dx, and requiring that the right side solu­
tions satisfy the asymptotic boundary condition of eqs. 
(2.42a) and (2.42b), one can calculate the radial wave

functions U^g,lg for different scattering channels and the

phase shift parameters are obtained.
The constants employed in this calculation are:

77?p-938.263 MeV,

ma-939.556 M eV,

mx-938.909/2 MeV,

2 rnz _ l______ 1_
^2 * 2 " 20.32144 MeV ’

The calculation of n-p continuum wave functions is 
tested by comparing the phase shifts and mixing parameters 
in this calculation to that in Reid's10 at selected 
energies. The agreement is almost perfect. However, it 
should be made clear that T=1 phase shifts have to be 
calculated from pp scattering in order to make comparison. 
This has been done by adding the Coulomb potential to the 
NN interaction. In the asymptotic region the solutions of 
the corresponding Schrodinger equations are Coulomb wave 
functions. The asymptotic boundary conditions is still 
eqs. (2.43a) and (2.43b), but with Fx and Gx understood as
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Coulomb wave functions. The phase parameters are still 
obtained the same way as in the case when only the NN 
interaction is involved. T=0 phase parameters are still 
calculated from np scattering.

For the comparison with Reid's10, the following con­
stants are employed:

mx-938.903/2 MeV,

2 rnr _ 1______ 1_
1*2*2 " 20.32157 MeV '

When the Coulomb potential is present, e/x is added to the 

NN potential vf's'is with

e/x-2inJ.e2/|x2*2r-0.049602/x .

The phase parameters obtained from this calculation 
and those of Reid' s10 are compared in Tables 1 and 2.

Table 1
Phase Parameters of T=0 Neutron Proton 

Scattering Channels

E 5 (1P,, radians) $(3D2' radians)

This This
Lab, MeV Reid's10 work A-M10 Reid's10 work A-M10

24 -.033 -.033 -.041 .070 .069 .071

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



22
Tabel 1-Continued

E radians) 4(3D2, radians)

This This
Lab,MeV Reid's10 work A-M10 Reid's10 work A-M10

48 -.071 -.071 -.072 . 169 .169 .169
96 -.190 -.190 -.182 .312 .311 .309
144 -.312 -.312 -.309 .386 .386 . 386
208 -.456 -.456 -.463 .431 .431 .433
304 -.633 -.633 -.646 .449 .449 .451
352 -.708 -.708 -.717 .448 .448 .449
E 6(%, radians) «3d1# radians)

This This
Lab,MeV Reid's10 work A-M10 Reid's10 work A-M11

24 1.426 1.426 1 .443 -.050 -.050 -.051
48 1.105 1.106 1.138 -.115 -.115 -.123
96 .749 .749 .771 -.215 -.215 -.218

144 .521 .521 .513 -.281 -.280 -.272
208 .300 .300 .269 -.340 -.340 -.329
304 .057 .057 .066 -.403 -.403 -.432
352 -.042 -.042 .020 -.431 -.431 -.494

E sin(2e1)

This
Lab,MeV Reid's10 work A-M10

24 .064 • 064 .042
48 .081 • 081 .102
96 .114 • 114 .055

144 .152 • 152 .064
208 .203 • 203 .212
304 .269 • 269 .368
352 .296 • 296 .422
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Table 2
Phase Parameters of T=1 Neutron Proton 

Scattering Channels

E *(1s0, radians) radians)

Lab,MeV Reid's10
This
work A-M10 Reid's10

This
work A-M10

24 .862 .862 .868 .011 .011 .012
48 .696 .696 .686 .027 .027 .029
96 .454 .454 .445 .059 .059 .061

144 .277 .276 .278 .089 .089 .088
208 .093 .093 .101 .123 .123 .120
304 -.118 -.118 -.115 .156 .156 .159
352 -.205 -.205 -.206 .164 .164 .176
E S(3P0, radians) S(ZPU radians)

Lab,MeV Reid's10
This
work A-M10 Reid's10

This
work A-M10

24 .141 .140 .122 -.074 -.074 -.074
48 .198 .198 .213 -.133 -.133 -.132
96 .179 .179 .186 -.228 -.228 -.228

144 .105 .105 .099 -.304 -.304 -.306
208 -.012 -.012 -.009 -.386 -.386 -.387
304 -.184 -.184 -.173 -.479 -.479 -.477
352 -.264 -.264 -.273 -.518 -.518 -.514
E S(3 P2, radians) <s(3f2, radians)

Lab,MeV Reid's10
This
work A-M10 Reid's10

This
work A-M10

24 .038 .039 .039 .002 .002 .002
48 .093 .093 .095 .005 .005 .00696 .186 .186 .186 .013 .013 .015144 .243 .242 .241 .018 .018 .020

208 .277 .277 .277 .022 .022 .022304 .282 .281 .285 .019 .019 .017
352 .274 .273 .278 .014 .014 .014
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Table 2-Continued

E sin(2ez)

Lab, MeV Reid's10
This
work A-M10

24 -.026 -.026 -.029
48 -.057 -.057 -.061
96 -.091 -.091 -.094

144 -.103 -.103 -.103
208 -.104 -.104 -.102
304 -.092 -.092 -.098
352 -.085 -.085 -.099
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CHAPTER III

ETA PHOTOPRODUCTION FORMALISM

For the reaction 2H(y,77)2H* with threerbody final 
states, the unpolarized cross section in the center-of-mass 
coordinate system (ACM) is given by11

d a "  2  ( 2  jj+i) fa*'1*-'1*’,6 (p» - p ^  i r « i 2 ■ <3 •

where the initial and final states are

|a>- |y (\,k), 2H(J1m1) > , (3.2a)

|2»-|ti (k') ,np(mn,mpfK) > , (3.2b)

pp, pn and pv are the momentum of proton, neutron and eta in
the final states, and, Pa and Pb are the initial and final
total four-momenta. The normalization of a plane-wave 
state is chosen as |k>=l/(27r)3/2eik‘r. Here and in the 
following argument throughout this chapter, the units are 
chosen so that Ti=c=l. After non-relativistic treatment of 
n-p relative motion, eq. (3.1) becomes

da- 1 £  .IpLLl qE^Pii|Tba|2dE^dQjj/dflp , (3.3)
Z vZc/^ + x; Xmininmp u rei.

25
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and

d 2a

dE dOtf 2(2 J±1 J p l ± g EpVi £  [da \Tba\2 , (3.4)
J i + Ujreit

where q and are the momentum and total energy of outgoing 
eta, p is the relative n-p momentum and /z is the reduced 
mass of n and p. The T-matrix is on both the energy and 
momentum shell, which will be assumed in the following 
argument except when specifically noted otherwise.

Impulse Approximation for the T-matrix 

In this reaction, the T-matrix element is

Tba~< b \T \a>

(* ] ,, (H-Ea)Xa) 

'Wir n a) ' (3.5)

where

(3.6)

Ea-H-lt (3.7)

and
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y H___];__ faHc't1___ ^ y  /o o \
(271) 3/ 2 ( 2 t0 3/2 Z^ '  ( 3 *8 '

In these equations, xmp anc* Xma are the Photon and neutron

spins, £ and £ 1 are the deuteron internal coordinates with 

their spatial parts denoted as and (j* respectively,

pointing from n to p. V, V' and U are the yN, 77N and NN 
interaction respectively. The configuration diagram of 
this reaction is given in Figure 1 below.

P

n

Figure 1. Configuration Diagram of the 2H(y,n)2H* Reation. 

The Hamiltonian can be split in the following way:

H-Ka+V-Kb+V'+U, (3.9)

together with the definition:
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Ka-Ky+Kd, (3.10)

Kb-Kp+Kn+K^ ' (3.11)

where the k's are kinetic energy operators. Rewritingijr*

in eq. (3.6) as

(n-rtx*- E^ _ a_u  <*>. (3.12)

and defining

ga_ ^ _ g.ie <*> ■ (3.13)

one reaches

^ >*'b+ „ t • V$~b . (3.14)

So with eq. (3.5) and (3.10), the T-matrix element can be 
written as

Tba-(*l, (V+V'. l . W Xa) • (3.15)Ea-H+ie

In the impulse approximation, rj is produced either 
from the proton or from the neutron. One also can assume 
that the rj interacts only with the nucleon it is produced
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from. If an on-shell approximation is made for both the yN 
vertex and the other nucleon (please refer to Figure 2.), 
the above T-matrix element can be finally given as

(fo, (Tp+Tn)xa) , (3-16)

where both Tp and Tn have the form of

V+V> rr (3.17)W-H0+it v

W is the total energy of y and the struck nucleon in ACM 
and, H0-Ky+KN+V. In the spirit of the impulse approxima­

tion, Tp is related somehow to the T-matrix of elementary

process y+p-+r7+p. So it is necessary to study this 
elementary reaction first.

Figure 2. The Corresponding Feynmann Diagram of This 
Calculation.
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In the center-of-mass frame of the reaction y+p^rj+p, 

the T-matrix element is <r\(k'a) , p{m's)\Tc\y (kg, X) , p(ms)>.

Here X is the photon polarization, mg and m'e are the proton

spin orientations. All of them are quantized along the 
direction of ka. Here and in the following argument, all

subscript and superscript c indicate the quantities in the 
yN center-of-mass frame (2CM) unless otherwise stated. TheTc

operator is

T-Vc+Vi i Vc, (3.18)c c E c-H c+ie c

where E c and H° is the total energy and the Hamiltonian of 
this elementary reaction. A general discussion11 using 
rotational and gauge invariance gives, under the transverse 
gauge, the general form of the above T-matrix element as

<k'a; -|jn'|rc|(*e,X) ; ± m s>-<±m,s\&’\±ma> , (3.19)

with 9  given by

S) (o-€xicc) + ^ ( o * i:e&c*) , ( 3 . 2 0 )

where € is photon polarization vector and ^  are functions 

of magnititude of kg, k'a and the angle 0 between them. The
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&  can also be written as

( ^ - ^ c o s 6 c) o -g + i^ g * ( ic cxic') + (ig ’+ i p  ( o - ^ i ?'•§) +.^(0 •£££'•§) .

(3.21)
By writing the matrix element of rc as

<*£; \^a\Tc\(*«,6); -|ms> - ( _ _ l _ . e lV-'rix„;,

M W e“ '''X -)) ' ( 3 ' 2 2 )

and applying standard approximation r'e-rgl one has 

<*£; - g X W  (*..«); •

r=<4' -(57^71 • <3‘23>

Now it is assumed that photon and nucleon interact only 
when they are very close together. Then one can apply a 
zero-range approximation to Tc: Tc-vcb (rc) which yields

<k'aj ^ m ,a\Tc\{ka,%) ; ^ m s>~<^m,s\— ^ — vc\^ms> . (3.24)2 2 2 (27l)3 2

By comparing this equation with eq. (3.19), one reaches

vc-(27i)3̂ , (3.25)
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a constant. The elementary amplitude Fc, which satisfies

(3.26,

is related to &  as

Fc-(2n)*wcf, (3.27)

  cjg c>’jg 1/2
with JV  -- *— — —— 3---  and, has the same form asc E c

F -Fx (o-g) +FZ (ia*iCp) (a^x£c) +F3 (o*iCpicĵ g) +F4 (a*£'jc'*g)

- (F1-F2cos0c) a-g+iF2 &'(£cx£'c) + (F2+F3) (o*jccJ:'*g) +F4 (o*Jc'ic'-g) .
(3.28)

With the above elementary amplitude, ve can also be given 
as

<3-29>

Now go back to the T-matrix element eq. (3.16) in ACM 
and rewrite it as following:
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Application of standard approximation:
33

(3.31)

where md is the deuteron mass and mnp is the mass of np 

system in the final state, leads to

Again zero-range approximation is made to Tp and Tn:

Then, by the impulse approximation, vp should be the 

counter part of vc in the ACM system, which should be 

obtained by transforming from vc as a T-matrix:

This step means that on-shell approximation has been made 
dynamically for both the rjN vertex and the other nucleon

V vp8(r- | 5 r) / (3.33)

ra-va5 (r+-|5r) . (3.34)
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(please refer to Figure 2). Using eq. (3.29), vp can be 

written as

<3-36)

Here Fc in eq. (3.29) is denoted as f £ to indicate that it

comes from the reaction y+p-^+p. Similarly, vn can be 

given as

(3-37>

However, vn must be obtained from eta photoproduction from 

nuclear targets. In this calculation, F? is assumed to be

proportional to F<f. With all the above argument, the T- 

matrix element of eq. (3.15) now becomes

<*i<? ■ a t * ; -  (?i >

- <3-38>

with vp and vn given above.

Before calculating the cross section using the above
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T-matrix element, the expression of $~b(V> *') has to be 

figured out.

Time Reversed State <j>], and Resolution 
of the Cross Section

By the definition of eq. (3.13), (J)̂ is given by

' (3‘39>

Making non-relativistic approximation for Kp, Kn, and the

motion of n, p and 77 in the final state |b>, and realizing 
that U is the interaction between nucleons only, one reach­
es

4 »  ( W  > ■ <3 -4°>

where E(k) and Hnp are the kinetic energy and non-rela­

tivistic Hamiltonian of n-p relative motion. Here and in 
the following argument in this section, the coordinates S' 
and r 1 of the final state |b> are denoted as £ and r

respectively to avoid confusion. Denoted as ^ /mpmn,

•1

|k, m p̂n> + H — 27 lK,impmn> -*-s the ti®16 reversed state of
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w h e r e  | - k ,  -J7ip - /n i3>/ i s  t h e  t i m e  r e s e r v e d  s t a t e  o f  |K / J77p7nn> ,

which can be expressed as

e~iXlz%sma' (3-42)

where xSm3 is the wave function for total spin of n and p.

Here, the definition and convention of time reversal 
operation is taken from Ref. 11, and Hnp is assumed time

reversal invariant.
Following the derivation from eq. (2.17) to eq. (2.18) 

in Chapter II, and using the definition of eq. (2.4) and 
eq. (2.25) , one reaches

Now, by operating with the time reversal operator T on both 
sides of the above equation, can be expressed as

_ (_D v ra» ^  ]p
l1 s'Is J m'jnjn'mM

< ~mn I smsX l  'm's'm's \ JM>

< lmsms\JM> Y1>m, (% z) Yim (-k) Xs'm'1
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,IrK,mpmn“ 1̂,lf -k, -mp-mn

_  ( _ ! )  w .  £  E  E  <  T  ~ mP T  ~ m *  I s m ‘ > < ^ m p \ m 'n I S 'm 3> •
l's'lsJ n/jn̂ nM m'ffti'n

_2
it• <l'mls,m ,g\JM><lmsms\JM> (-l)jn'lri/_JI1/(£r) Y^i-k) (-i)1>y

•«2Vi.(^«r> ( - D ^ t - D ^  ' (3’44)

By changing the sign of all m's in eq. (3.44) and using the 

symmetry properties of Clesch-Gorden coefficients, i|rK,mpir,n is

finally given by

K̂.JBpWa" E E \
llSllsjm'eM

**S/2fl(K#5) , (3-45)

where <|>̂ /2s(K/5) is defined by

■x„ ' M yi .<*<«*> ■ <3-46>

Notice that <|>̂ ViS(K/?) is an eigenstate of L2, S2, J2 and Jz. 

In conclusion, <J>i is given by
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j/g/jgj JnHlsM

(3.47)

with <|>̂,/Ig(K, $) defined as above.

Now, with all the preparation above, the cross section 
eq. (3.4) is ready to be evaluated. However, one will find 
that it can be resolved into partial cross sections as 
following.

From eq. (3.38), (3.40), the T-matrix element can 
be expressed explicitly as

The argument in the last section indicates that vp andv„

are just summation of some tensor operators which do not 
contain derivative operators with respect to spatial
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<Kv.ll). n  <eiw'(vp)%+e-**-(rn) £> ̂  ({)),
(27C) * Jjax

(3.49)
where S' indicates the summation over just restricted pairs 
of (Jx,mx) . Using eq. (3.45), the orthogonalities and sym­
metry properties of Clesch-Gordan coefficients, and the 
following identities and definitions:

ei*Z*-'£4%iLjL((Xr)YUi(lI)Y^($) ,
LM

WSr>-<Vp+ <-1) X > £ - £  <IMT]fltx\JdmB> *

•[y£(er)®(vp+(- 1 ) \ ) J*];, 

< * X / i . I  [ i rt ( | r ) 0 ( v p+ ( - 1 )  Lvn)J*] *jL(QSz)i (5 ) >

- < I [rL(5r)0(VP+ (-1) V n)J']£ j Li *\\^>R

one reaches

<|rj2>- £  /dQpl^J5

16
(2u)5E'E E *£*(<?)

JjPxk?L IbJI's*
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• r1"7̂ 1 * (3.50)'‘lsl's’j % 1bF P j  <

where [J]=2J+1, etc. On the other hand, by defining

1 i-̂Ljfĉr
r-"‘ (1 5 7 p « e "" 5 * S v " ({)'

+v-„S(r.|5r))15J p 7?e ^ . J(5)) , (3.51)

and following the same precedure as above, one also has

£ I t^ I 2--7^ti TL £ _  £  Y'w ($)Yrn{$)
B>iM \<ZKI j-xmxjxmx LMLM I's'Fs*Jsma

X lsl's'<T ZleFsfJ • (3.02)

From eq.(3.4), (3.51) and (3.52) together with the
definition:

<3-3)

one can finally express cross section (3.4) as
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d2a _ p E AmNy\ I da \ (3.54)
dE^dQy KEnp jsj-I d&li9j

where E A is the total energy of this reaction and Enp is 

the total energy of final np system in ACM.

Evaluation of Cross Sections

From the argument of the last section, the cross 
section of reaction 2H(y ,*?)2H* is resolved into the 
contributions from each final np state of (lfsfJf) . Once 
this partial cross section is calculated for each (lfsfJf) 
n-p final state, the cross section for this reaction can be 
obtained from eq. (3.54). Here and in the following 
derivation, (lfsfJf) is used instead of (lsJ) to represent 
np states after reaction in order to avoid confusion. 
Noticing that

1 _ EyEd
Vrel. E Ap.

(3.55)
Y

where Ey and pY are the photon energy and momentum and£d

da 
dQis the deuteron energy before reaction, (-3 q) becomes

< 3 - ,
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From eq. (3.36), (3.37), (3.51) and the definition of Q in 
eq. (3.49), the matrix element Tli3eJt can be written as

r, 1 v 1 (1+ (-1) le*3e+Slv )

^ . . . ( 5 0  - (3.57)

where (k » 5) has been denoted as ; and r has
l1 s'

been used to denote the spatial part of np internal 

coordinate 5, pointing from n to p. y0=jf£/f £. The sign

(-l)if+Sf+Si comes from the interchange of n-p internal

coordinates. One should notice the selectivities on (l's1) 
from Chapter II. From eqs. (3.56) and (3.57) one finally 
has

do \ - T1+(-1) 2/+Sjf+Siv i 2 -fc ) EtfEjjp i
° kj 2 [JJ

£  I ^,.,<5) ) I2 • (3.58)
Xmjmt

Now the only thing left is to compute the quantity:
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It can be written as in the following by using the expres­
sion (3.28) ,

-  E  l / <l>V^/ ( 5 ) e i‘?-r [(F1-F2c o s 0 c)o x+iF2(^cx 4 ) 1
\mjmf

+ (F2+F3) a 0(£c) a,+F4 (cj *Jc£) |2 . (3.59)

Denoting the four terms in the above equation as #1, #2, #3 
and #4 separately, the expansion of the above | |2 will
yield the following terms: #1®#1, #1®#2, #1®#3, #1®#4, #2®
#2, #2®#3, #2®#4, #3®#3, #3®#4, #4®#4 and their complex
conjugates. Each of these terms has to be evaluated 
separately. Before doing this, some preparation is needed.

The following identities and definitions are used in 
the derivation:

(a) The expansion of e,q‘r in terms of spherical 
harmonics:

e^*-47i£ i i j'j (gr) yim(f) .in?

(b) The coupling of two spherical harmonics:

£ £ 
i/f y4lt L
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b  y/Sie M o  o  0 •
(c) Orthogonalities and symmetry properties of 

Clebsch-Gordan, 3j and 6j coefficients.
(d)

3̂ If -̂1-7*2 -̂3 | [ *̂1 ^2^3 |

(J1J2J3) Jj'iJa Jal 

from which one frequently-used identity is obtained:
(e)

£  [-mm'ldl<lml X IIMl> <1 /m>1 ̂ \IMl> (_1) "W»' 1

for integer 1.
(f) Reduced matrix of irreducible tensor operator:

(g) Coupling of two tensor operators:
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<k1q1kzq2\KQ> [Tk'®Uk>] * .
KQ

Another thing which is frequently encountered in the 

derivation is the matrix element: Di (Or) |<j>j-,n>

where is either Ylm(f) or VŶ S) a]^. Realizing that the

operator X will only act on the proton, the above matrix 
element can be expanded as

- <%,RZ'sii 111Yi0  (i i } s'] (0r:1 Sj]

-E E /(-i) ̂ Ri's'RitsJi (or) r2dr(-l) .
l's'j1 1l3li i

T  A
\ j,B>

* «
i JiSl

(3.60)

where J?j/S/ stands for radial wave function (k , r) in

eq. (3.46) and, J2JiSi is the radial wave function of

deuteron. In the total spin wave function, coupling order 
is sp ® sn . The selectivity of (iisi<Ji) is li=1,2, si=J'i= 1.

One should refer to Chapter II for the selectivity of
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(!'s') . Remembering that X only acts on the proton, and 
together with identities and definition (c), (d) and (f), 
one has

< [ ( ) J'®y ] Z\ K  I t 3 Z>

J/--i+2fll/+2zn̂ +Jj-i7 S j J  ' -1 ) 2  ±Z— <
J

- (-1)
,•/ T 1

2
[JiJ J

< Ji/ni Jirij | < J >

(3.61)

Combining eq. (3.60) and (3.61), and appreviate index 
(l's'j') as a and ( 1 ^ j) as /3, one finally has

<^Jt\\X^ji{Qr) >

/ (_i) 1'Ri's'RiisJ?ir2dr< <*2/ ® y > J"l II (*2 ® y ) j> (3 • 62)

where

2̂+1 j+J/+J+ĵ + y , - Ai . ,A,b-(-D zg'gJj'SJ j'Jf
i l
2

1'y  j' Jiy JA
—  J s' 2

► < (3.63)
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The following quantities defined for X^-Ylm{f) and x£- 

[Yi®o]^ are also used in this derivation:

(h)

raJp-i f-j-f (-1)1'Rj's'R],JflJJ 1r2dr •

(i)

xif-i (-1) jSiJ2r 2dr •

[r^o] J||(y ®A)i> .
Ck £k

Please refer to Appendix A for the formula of the reduced 

matrix elements < ( )  J/||X Jfl (Y2 <8>^) j> for bothX^-Ylm(f)
^  a

and x'-lY&o]^.

Now, with all the above definitions and identities (a) 
through (i) plus eq. (3.62) and (3.63), all the terms in 
the expansion of eq. (3.59) are derived to yield the 
following results:
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# i ® # i - 4 7 i | f T1- f ’2c o s e c |2 £  £  ( - i ) j + i J L £ £ * L < i . i i  - i |l o > •
1X12J o1P1a2P2 *■ J
L-0,2

• < i 10 I 20 | l ,0 > { j i j / 2jT^1iJi( T « 5 J -P L (c o s e (?) . ( 3 .6 4 )

# 1 ® # 3 — 2 J ? e [4 * (F l - F 2c o s 0 e) (Fa+F3)*  £  ( - 1 )  ja
W  *

3 W  . 
2 [ J ]

a1p1a2p2

< A o i 2Ol2O>{ i 1J i 2} T«iP1('ci s2P2)*c ° s 0 1?s i n e c)s i n 0 c ] . ( 3 . 6 5 )

# l ® # 4 - 2 i? e [  (471)2 (F1-F2cosQc) F& £  £  ( - 1 )  J [J f]
•̂1̂2̂* alPla2p2 iX[l7]

LMJ-0,2

<1010|JOXJ1Oi2O|LO>{^i5-i12} T ^ S 2)*- 

* (Sjjr ( - 1 )  k YL-M (.& Ylu{&c)-(-1) m <ioi-m\l-m> •

• < i o i - i i f | j - w > r L.Af( ^ y 2M( ^ )  . ( 3 . 6 6 )

# 2 ® # 2  ”471 |F212s i n 20  c V  ( 3 . 6 7 )
Iai‘P7«2P2 [ i ]
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#3<S>#3-47i|F2+f’3 |2s in 20 c J )  V  (-1 ) < 1 0 1 0 |L0> •
<*i(̂«2P2

L- 0,2

• <J j O i j O • <3’68>

#3®#4-2J?e[(47u)z (F2+f’3) i !'4Sin20 ff ^  V  (-1 ) t*~7*1 ■['flij •«1P1«2P2 3
£ - 0,2

- < J 1 0 J 2 0  | i O > { ^ i 5 - / 2 } T ^ l(1r ^ a) '  •

•( t  <l-MLAf|lO>rI..j,(iJ)y1J,<î ))] . (3.69)Af* —1

#4<S>#4-(4ir)2|F j 2s in 20 c T T  (-1 ) J—J ^ L - < 1010  |L0> •
lilaJ ILi'lJl
L- 0,2

(3.70)
The other terms #1®#2==#2®#3=#2®#4=0. In the above expres­
sions, 0C is the angle between Q vector and k vector. The

z-axis has been chosen in the direction of kj PL is theLth

Legenda polynomial.
Finally,
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E  K W S l e - " * *

- (#1®#1) + (#1®#3) + (#1®#4) + (#2®#2)

+ (#3®#3) + (#3®#4) + (#4®#4) . (3.71)

With eqs. (3.54), (3.58), (3.59), (3.64) through (3.71) and 
definitions and identities (a) through (i) , the cross 
section (3.4) of this reaction 2H(y,f7)2H* is ready to
evaluate.

The Elementary Amplitudes and Forward Angle Approximation

The elementary amplitudes F± (i=l,2,3,4) are taken

from the most recent fit9 to the elementary Y+P***7+P 
reaction. It uses the Cutkosky resonances12 which are more 
reliable than those used in earlier Hick's fit.13 In
Cutkosky resonances, the resonance is peaked at 1510
MeV. Because the threshold of the 2H(y,rj)2H* reaction 
corresponds a yN center-of-mass energy of J?c=1438 MeV which 

is much lower than the # c=1488 MeV threshold of the
elementary y+p-->r)+p reaction, some model is needed to 
evaluate the elementary amplitudes for the E c energy below 

1488 MeV. When E° is smaller than 1490 MeV, this 
calculation simply freezes the resonance widths and
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penetration factors of the Tabakin's fit9 at their 1490 MeV 
value, and lets the denominator (Ec-Er+iT/2) carry the only

energy dependence.

From eq. (3.28), one will notice that the f £ operator

has to be made as a function of ACM variables. However, 

how to define kc and k'0 from ACM variables remains

ambiguous. So some approximations have been made in this 
calculation. First, the F± is evaluated from yN c.m. (2CM)

energy E c at 6C=0 degrees (forward angle approximation). 
Second, the scattering angle 0C in the 2cm frame is set to 
be equal to the scattering angle 0̂  in the ACM. The second 
approximation makes Je7-ic7 (icc-Jc anyway). Then eq. (3.28)

becomes

F -^(o-g) +F2(io'£') (o-gxic) +F3 (a*ic£7-§) +Fi (a*Je7Jc7*g)

This second approximation is chosen because at forward

angles, where large yield occurs, the difference betweenic7

and ic7 is expected to be small except for some "flip over"

effects at photon laboratory energy close to ACM threshold 
(632 MeV) and for large enough n-p relative kinetic energy 
(please see the following argument).

The above approximations mean that this calculation is
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only accurate at zero degrees. However, angular distribu­
tion is still presented in the result. In order to 
estimate the effect of these approximations, one can choose

some other reasonable prescription for determining F% from

ACM variables.
To estimate the effect of the second approximation 

made above, cross sections are also calculated by Lorentz 
transforming 0C from 0̂ . This choice is made in order to 
keep consistent with the impulse and on-shell approximation 
used in the first section of this chapter. It means ignor­
ing the influence from the other nucleon kinematically. 
The comparison between the second approximation and the 
Lorentz transforming method is shown in Figures 3 and 4, 
where the angular distribution and dependence of the cross 
section on n-p relative kinetic energy for both T=1 and T=0 
final states are plotted. At 650 MeV photon laboratory 
energy, the Lorentz transforming moves the peak of angular 
distribution from zero to about 12 degrees, and produces an 
increase by about 10-20%. The "flip over" effect (at 0^=0 
degrees, the Lorentz transformed 0C becomes 180 degrees) is 
also seen in Figure 4 at that photon energy. However, at 
700 MeV photon energy the Lorentz transforming produces an 
difference in angular distribution which is smaller than 5% 
and, out to 54 degrees keeps the similar dependence of the 
cross section on n-p relative kinetic energy, only produces
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about 10% increase. Obviously, the higher the photon 
laboratory energy, the smaller the above difference, and 
the more reliable the second approximation.

For the effect of the first approximation, one may 
want to refer to Ref. 8.

1.0

><u
Su
CO\
XI
«=*•1
2  0.

c
■vc-
Ed T3

3H(r,77)2H-
T=0 FINAL NP STATE 
E7lttb=650 MeV 
KEn_p=2.0 MeV

q  !-• I- l i t  I I t  i * 1 - 1  I I 1 1 I > t 1. 1 1 I t I I t  l l l

0 10 20 30 40 50 60
(DEC)

4  { M i l l ' l l  T T j “ l"'l 1 1 j J I T T p  i I . I I I  I 1

T=0 FINAL NP STATE 
E7lab=700 MeV 
KEn_p=2.0 MeV

CMT3
g I I I I 1 l l l I 1 l l l l 1 l i l l 1 l l i i I i i i i
0 10 20 30 40 50 60

0„ (DEG)

1.2 11 i i i m i i m  i i i i i  i i  11 i i m

22 1.0

°  0.6
a
•0 ,0 .4
EdTf> 0.2 

CM ”0
0.0

2H(7.??)2H*
T=1 FINAL NP STATE 
E7lab=650 MeV 
KEn_p=0.5 MeV

~i i i i I i i i i I i i i i I i i i i I i i i i I i

I ' I I I I I M  T  I I I M  T  I I I T T I  M i l l  I T  I

0 10 20 30 40 50 60
6V (DEG)

A
° 3|—
c %  2 
Ed XJ
>  1 

CMT3

2H (7 .v] ) 2H*
t= i final np state
E7lsb=700 MeV

1_ KEn_p=0.5 MeV

i  i I i I t r i t I I t  i i I i i t  i I i i i i 1 i i i  i

0 10 20 30 40 50 60
(DEG) ■

Figure 3. Angular Distributions at Selected KEM_p Values 
for Both T=1 and T=0 Final States. The Dotted 
Curves are with Lorentz Transformed 0C.
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Figure 4. The T=0 and T=1 Cross Sections at Selected Eta 
Angles as Functions of n-p Relative Kinetic 
Energy. The Dotted Curves are With Lorentz 
Transforming 0C from 0̂ .
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CHAPTER IV

RESULTS

The double differential cross section d^/dE^dn of this 
reaction 2H(y ,J?)2H* depends on the incident photon energy, 
the outgoing eta energy and angle. The energy of emitted 
eta meson is uniquely determined by the n-p final relative 
kinetic energy at a given incident photon energy. So in 
this work, the cross section has been given as a function 
of incident photon energy, n-p relative kinetic energy in 
the final state and outgoing eta angle. All the cross 
sections are calculated with Fermi-averaging the elementary 
amplitude except commented otherwise.

It is instructive to see an overview of the above 
dependence of the cross section. Shown in Figures 5 
through 10 are cross sections, for both T=0 and T=1 final 
states, as functions of the n-p relative kinetic energy KEN_ 
p and the eta angles 0̂ . In each of these six graphs, 
contour lines are plotted at KEH_p of 2, 6, 10 MeV and then 
in step size of 10 MeV up to its maximum value allowed 
(e.g., 97 MeV at photon lab energy of 760 MeV), and also 
for eta angles from 0 to 57 degrees. In Figures 11 and 12, 
T=0 and T=1 cross sections are also given as functions of 
Gjj and KEN_p, but confined within 0 to 10 MeV of KEN.p. By comparing
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d  c r / d E ^ d D  
( 1 0 ' 2 i u b / S r M e V )

A

T - l  F I N A L  N - P  S T A T E  
E , l a b - 7 0 0  M e V

Figure 5. The T=1 Cross Section as a Function of Eta 
Angle and n-p Relative Kinetic Energy at
E^-lOO MeV.
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T = 0  F I N A L  N - P  S T A T E  
E e i a b = 7 0 0  M e V

Figure 6. The T=0 Cross Section as a Function of Eta 
Angle and n-p Relative Kinetic Energy at
£yIai-7 00 MeV.
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OCM"O

T - l  F I N A L  N - P  S T A T E  
E e l a b = 7 6 0  M e V

Figure 7. The T=1 Cross Section as a Function of Eta 
Angle and n-p Relative Kinetic Energy at
E^ - 760 MeV.
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Figure 8. The T=0 Cross Section as a Function of Eta 
Angle and n-p Relative Kinetic Energy at
£^-76 0 MeV.
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T  =  1  F I N A L  N - P  S T A T E  
E „ l Q b = 8 2 0  M e V

Figure 9. The T=1 Cross Section as a Function of Eta 
Angle and n-p Relative Kinetic Energy at
E^ - 820 MeV.
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Figure 10. The T=0 Cross Section as a Function of Eta 
Angle and n-p Relative Kinetic Energy at 
£’viai“820 MeV.
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Figure 11. The T=1 Cross Section as a Function of Eta 
Angle and n-p Relative Kinetic Energy from
0 to 10 MeV at E^-IAO MeV.
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T = 0  F I N A L  N - P  S T A T E  
E 5 l a b = 7 4 0  M e V

Figure 12. The T=0 Cross Section as a Function of Eta 
Angle and n-p Relative Kinetic Energy from
0 to 10 MeV at £’Y2a*-740 MeV.
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these two groups of figures, one finds that cross sections 
of T=0 and T=1 final channels are of very similar shape at 
n-p relative kinetic energies beyond 10 MeV, yet very 
different below 10 MeV. Figures 11 and 12 are quite 
typical. Cross sections at other photon energies from 640 
to 900 MeV have shapes very similar to that in Figures 11 
and 12. This work then concentrates on the region where n- 
p relative kinetic energy is smaller than 10 MeV, with the 
purpose of distinguishing between isovector and isoscalar 
electromagnetic transition amplitudes. One should note

that Fc~Fc yields only T=0 cross sections, while

yields only T=1 cross sections.
The dependences of cross sections on n-p relative 

kinetic energies are given for both T=0 and T=1 channels in 
Figures 4 and 13 at 0^=0 degrees for several photon 
energies. Cross sections calculated by Lorentz transform­

ing iCp from Jc7 are also given by dotted curves in Figure 4

(Please refer to the discussion in the last section in 
Chapter III). The very different dependence on n-p rela­
tive kinetic energy between T=0 and T=1 cross sections 
indicates that the isospin nature of the Sn transition 
amplitude may be determined by measuring zero-degree eta 
cross sections at the photon energy where the Sn resonance 
dominates. One thing worth mentioning here is that this
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Figure 13. Both T=1 (Solid Curves) and T=0 (Dashed 
Curves) Cross Sections, at Zero Degrees 
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Functions of n-p Relative Kinetic Energy.
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calculation is only accurate at forward angles (see also 
the discussion in the last section of Chapter III).

Figures 3 and 14 shows the angular distribution at 
several incident photon energies. The n-p relative kinetic 
energies are chosen to give large cross sections. The 
angular distribution does not distinguish between the T=0 
and T=1 final channels. However, it peaks at forward 
angles where the forward angle approximation is valid. At 
40 degrees the cross section drops by about 50%. Again the 
dotted curves in Figure 3 give the results with Lorentz

transformed Jc£. The discussion in the last section of

Chapter III indicates that the cross section at high photon 
energy is not sensitive to the angle transformation 
employed.

The effects of eliminating the S11 contribution from 
the elementary amplitudes are shown in Figures 15 and 16, 
where cross sections at zero degrees for both T=0 and T=1 
final n-p states are plotted versus incident photon energy. 
Calculations with and without Fermi-averaging the elemen­
tary amplitudes are also included in Figures 15 and 16. 
The Fermi-averaging reduces the cross section by 20-30%, 
but does not smear out the contribution from the Sn as much 
as in the photonuclear calculations.8 The Sn is 
demonstrated to dominate the eta cross section in

7 ahEy -740 MeV region (up to 60-70%), while at around 800 MeV
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Figure 14. The Angular Distribution at Selected KEH.p 
Values and Selected Incident Photon Energies 
for Both T=1 (Solid Curves) and T=0 (Dashed 
Curves) Final States.
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Both With and Without Fermi-averaging the 
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photon laboratory energy, where the peak of the cross 
section occurs, it accounts for only 30-40% of the cross

section. The reason is that at £’yai>-740 MeV, the total

energy of photon and the nucleon in the yN c.m. (2CM) frame 
is 1507 MeV, almost on the resonance position of the Sn in 
Cutkosky resonances.12 In this reaction one may want to 
concentrate on the photon energy near 740 MeV.

Finally, Figure 17 displays the T=0 and T=1 cross sec­

tions at zero degrees and E ^ - l 40 MeV which have been

folded with a Gaussian width of 1 MeV to simulate the 
detector resolution. The T=0 curve also includes the 
impulse approximation prediction for the 2H(Y,r/)2H cross

section calculated by assuming Fi-F". Even with the

simulated detector resolution, one can still distinguish 
between the pure isoscalar and pure isovector amplitudes 
from the cross section.
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CHAPTER V

CONCLUSION

Calculations for the 2H(y reaction have been
performed in the plane-wave impulse approximation with a 
recent fit9 to the elementary Y+P^+P amplitude, and with 
describing the n-p final state interaction by Reid's soft 
core potentials.10 The S„ resonance is demonstrated to 
dominate the cross section in the region of 740 MeV inci­
dent photon energy. There is a small difference between 
calculations with and without Fermi-averaging the 
elementary amplitude. The loosely bounded deuteron does 
not smear out the contributions from individual nucleon 
resonances as much as was determined for heavier nuclei.8 
The deuteron breakup can accommodate higher momentum 
transfer than in the reaction 2H(y,?7 )2H, and therefore, 
produces larger total cross sections. One can also expect 
that the recattering effect is negligible compared to the 
single scattering because of the deuteron breakup. Cross 
sections calculated by assuming pure isoscalar and 
isovector elementary amplitudes exhibit very different 
dependence on the n-p relative kinetic energy at zero 
degrees. These results suggest that the 2H(Y/»?)2H* reaction 
may provide a signature for the isospin components of the
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electromagnetic transition amplitude. This will 
complement measurements for 2H(y,rj)2H which can proceed only 
through the isoscalar components of the transition 
operator.
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Calculation of Reduced Matrix Elements
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The reduced matrix element < (Fj/0-i) J’/||.X'J|| (Y2 ®-^) in2 1 2

the third section in Chapter III is given below.

If X^-Ylw(f) , then the unreduced matrix element is

- £  <l,rn,̂ m p\jtm,j><lim î m p\jmj><Yllml\Ylm\Ylim> . (1)
m'm̂ p

From the identities and definitions (b) and (d) in Chapter 
III, the above equation becomes

<{Y1® ± ) % j\Y2a\{Y1p ± ) i J>

 ^7<-Z0ii0 1'0> (-1) 2 J J fPC J 2 *
(j'li i

* . (2)

By the definition (f) in Chapter III, together with eq.
(2), the reduced matrix element of if) is finally given 

as
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A  < ( )  J'lYrf (Yj_

 ^ i T ij(-l)J"ii"T <i0Ji0|J/0>|i/j/'2 1 . (3)
v/4tT [j Ji I j

For X^r [ij® o]̂ ., the situation is more complicated.

First, for a general irreducible tensor operator, from the 
definition (f) in Chapter III and orthogonality of Clebsch- 
Gordan coefficients, one has

4 < J /I|7,Jc||j>--^L^ <jmjkq\j/m'jX j ,mj\T*\jmJ> . (4)
iC L 7 J _ wJBJjlUj

For a tensor product X k composed of irreducible tensor 

operators Tg* and acking on different parts of a system,

identity (g) in Chapter III and the above equation give

-pj- £  <JMKQ\JIM I> \j 'm '> <jxm1j2m2 \JM> •

■ <k1g1k2g2 \KQ> KjWijWz I | j1/n1j2m2> , (5)

while
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<j{mijim/21 Tgl Ug22 \ j1m1j 2m2 >

- <j1m1k 1q1 <j2m2k2q2 \j£mi> <jil|TJ:i||j1>
12

(6)

From eqs. (5) and (6) together with the following identity:

7 l l  7 1 2  J l 3  

7*21 -7*22 7 2 3

■731 -732  7 3 3

- E
a l l  m 's

^7' 11 7' 12 7 ' 13'

^ 11^ 12^ 13,

' 7 2 i  7 22 7 23\  / J 31 J 32 733 '

m2i ̂22 m31 m3 2 jn33>

r7n 7*2 1 7 *3 1' 
mlx m21 n?31j

|7 i 2  7 2 2  7 3 ^  

%2 ̂ 2 2 ^3 2]
7*13 023 7*33' 

kmi3 ̂23 ̂33,

one finally reaches

<7i72‘7/||-X’ *11 Jx J2 J>

<y #*/
Jr Jc -*1̂ 2

7 * 1  J i  

72 J2 *2 
J' J  K

(7)

By using eg. (7) and following result:
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r 71 r
V47t i

and

< - § I ° ! - | > - 3  ,

the reduced matrix element of x£- [ Y ^ o ] ^  is finally 

obtained as

A < ( y2& ±  ) J'fl [y&  o] J|| (y^® A )

-V T fj-
\/2k

l1 1± 1

—  —  1 2 2
j'j J.

(8 )
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