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CAMBRIAN-EARLY ORDOVICIAN SEQUENCE STRATIGRAPHY AND
MOUNT SIMON SANDSTONE PETROLOGY-MICHIGAN BASIN

leffrey T. Cottingham, M.S.

Western Michigan University, 1990

Michigan subsurface correlation is complicated in the Cambrian-Early 

Ordovician section due to limited availability of rock data. Core and cuttings 

examination demonstrate that similar stratigraphic sequences exist between the 

Michigan Basin and surrounding regions. Lithofacies in Wisconsin outcrop are 

similar to their basinal counterparts, and are correlated on the basis of sediment 

types, sedimentary structures, and the sequence stratigraphic concept.

The Mount Simon Sandstone in Michigan correlates with that observed in 

Illinois, Wisconsin, and Iowa. Isopach data throughout the Midwest indicate a single 

depocenter in Northeastern Illinois. Sedimentary structures and lithology indicate a 

subtidal environment that may be a progradational transition from a lower 

(shoreward) aeolian environment. Observed diagenetic patterns are influenced 

primarily by depth of burial. The deep pattern (below 14,250’) exhibits extreme 

compaction. The shallow pattern (above 8900’) exhibits pervasive carbonate and 

quartz cements, and authigenic clays. Secondary porosity developed from dissolution 

of carbonate, feldspar, and quartz.
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INTRODUCTION

The Michigan Basin has been an active site for petroleum exploration and 

production since the late 1920s. The basinal setting for thick deposits of Paleozoic 

sandstones and carbonates has created favorable burial conditions for both the 

maturation and entrapment of oil and natural gas. Cambro-Ordovician strata in the 

Michigan Basin have only recently come under scrutiny as potential new hydrocarbon 

producing horizons in Michigan. The existing St. Peter play is expanding (Harrison, 

1987), and as newer and deeper wells are drilled, more information is becoming 

available about deeper formations.

Information on the Cambro-Ordovician is somewhat limited. Recent drilling 

has penetrated those horizons, but anything deeper than the St. Peter Sandstone has 

very little well control. The focus of this paper, however, lies within those 

formations below the St. Peter Sandstone: the Upper Cambrian Mount Simon, Eau 

Claire, Wonewoc, and Franconia formations, along with the Upper Cambrian 

Trempealeauan interval through the Lower Ordovician Prairie du Chien Group 

(Figure 1). Lithostratigraphic studies will rely on actual rock data to the extent 

allowed by the current database. Subsequent sections of this study will describe 

Michigan Basin stratigraphy and relate it to the upper Midwest regional picture of the 

Cambro-Ordovician paleogeography (Droste and Shaver, 1983; Dott, Byers, Fielder,

1
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Figure 1. Stratigraphic Column for Lower Paleozoic Rocks in Michigan.
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Stenzel, and Winfree, 1986). Droste and Shaver (1983) suggest similar histories for 

the Illinois and Michigan Basins. Thus, the Illinois basin geologic history could 

serve as a good model for analysis of the Michigan Basin. The Cambro-Ordovician 

stratigraphy in the Illinois subsurface and Wisconsin outcrop has been studied in great 

detail. Therefore, regional comparison and correlation between the Wisconsin/Illinois 

section and the Michigan Basin is presented here.

This study is primarily based on limited available core and cuttings control, 

although wireline logs are also extensively used. The strata of interest will be within 

the Late Cambrian and Early Ordovician systems, with special emphasis on the 

Cambrian Mount Simon Sandstone, because of the availability of cores and cuttings 

constituting the best geologic sample database. The Middle Ordovician St. Peter 

Sandstone (also known as the "Bruggers formation" or the "Massive Sand") is a 

better known unit above the section under scrutiny here.

The utilization of X-ray diffraction, scanning electron microscopy, standard 

petrographic analysis, and wireline logs will yield information that supports the 

regional lithologic correlations made here. Actual rock data will be tied into wireline 

logs to map basinwide facies distributions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



PREVIOUS STUDIES INVOLVING THE CAMBRO-ORDOVICIAN

Previous attempts at determining the geology of the Cambro-Ordovician in the 

Michigan Basin have offered conflicting analyses as to the stratigraphy and 

depositional history within the section. Numerous studies have been undertaken, but 

all are plagued by a lack of well control in the Michigan Basin and a sense of 

regional perspective beyond the basin. There were 68 wells that have cored intervals 

in the better known Middle Ordovician St. Peter Sandstone as of December 1987, 

(Harrison, personal communication), and 198 wells (as of September, 1988; 

Appendix A) that have drilled through the St. Peter in the Lower Peninsula, 

illustrated in Figure 2. Conversely, the Mount Simon Sandstone has 8 wells with 

cored intervals throughout the state, and only 72 wells that penetrate the Mount 

Simon, 44 of which have been drilled through and into the Precambrian. All but 20 

of these wells are along the basin margins, and many of those are older and either 

were not logged or have poor quality logs that were made before modem logging 

techniques were developed. Hence, there is very little well control for an in-depth 

study of the magnitude completed for outcrop in Wisconsin and Illinois.

The earliest preliminary study was presented for a field trip into the Upper 

Peninsula, and a number of articles on Upper Peninsula strata were presented in 

guidebook format. Ells (1967) demonstrated similarities between well log signatures

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5

73 •  74*
26.,

34 .
40 miies

79.
78*
76^

92 . 91,

32.
AO

13. 9 5 . *
9798

*99.

16.1S,
18 17

56*

45*

Figure 2. Distribution of Cambrian-Precambrian Wells. Appendix A Lists Well
Data Corresponding to Well Numbers on Map.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of Illinois wells and early Michigan deep tests. A similar correlation is presented in 

Figure 3. However, Ells also correlated Michigan Basin strata with the outcrop 

region of the Upper Peninsula, which was also presented in more detail by 

Catacosinos (1973).

The earliest in-depth study was Catacosinos’ (1973), which attempted an 

outcrop-to-basin center correlation. Unfortunately, both Ells and Catacosinos had a 

lack of geologic data control within the basin. Their correlation with outcrops in the 

Upper Peninsula of Michigan is also questionable, since the section there straddles 

an arch of Precambrian basement, and those rocks lie on the Superior basin side of 

the arch. Correlation problems between neighboring Wisconsin and the Upper 

Peninsula have also been attempted, without complete resolve (Ostrom and Slaughter, 

1967). With the new well data available, a revised stratigraphy will be presented 

herein.

Bricker, Milstein, and Reszka (1983) present new information based entirely 

on well log correlation. The major shortcoming of this approach is the lack of rock 

data other than oil and gas well drillers’ descriptions. Well logs are secondary and 

are used to correlate from wells with detailed rock data to areas without rock data. 

In addition, no attempt was made to correlate beyond the limits of the Michigan 

Basin. Work done in Illinois by Buschbach (1964), Willman, Atherton, Buschbach, 

Collinson, Frye, Hopkins, Lineback, and Simon (1975), in Indiana by Droste and 

Shaver (1983), in Wisconsin by Dott et al. (1986), and throughout the Midwest by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Sloss (1963, 1984), all show that this is an undesirable and inaccurate approach to 

stratigraphic interpretation, since the entire Midwestern region has a relatively 

uniform sequence of strata.

Fisher and Barratt (1985), using well log and rock data, recognized distinct, 

mappable formations in the subsurface proposing the Bruggers and Foster formations, 

which are equivalent to the St. Peter Sandstone and Prairie Du Chien Group of 

Illinois and Wisconsin (Harrison, 1987). Here, also, no attempt at correlation outside 

of the Basin was made, and the formation names were taken from the name of the 

first well that they examined, rather than following the North American Stratigraphic 

Code, which states in article 22 part b, "the naming of new units in the subsurface 

is justified only where the subsurface section differs materially from the surface 

section, or where there is doubt as to the equivalence of a subsurface and a surface 

unit" (North American Commission on Stratigraphic Nomenclature, 1983, p. 856).

Their argument was objected to by Harrison (1987) who correlated the 

massive sandstone or the Bruggers formation (Fisher and Barratt, 1985) with the St. 

Peter Sandstone based on detailed analysis of over 30 cores at the Michigan Basin 

Core Analysis Laboratory, and extensive study of the Ordovician System in 

Wisconsin and Illinois. Utilizing Harrison’s method in the deeper section, similarities 

between formations in Wisconsin outcrop and Michigan subsurface are also observed. 

These similarities would also be expected based on two observations: (1) The Mount 

Simon Sandstone has already been recognized to exist in both localities, and (2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Wisconsin and Illinois studies show that sediments bounding the eastern edges of the 

Wisconsin and Kankakee Arches are dipping gently towards the center of the 

Michigan Basin (Buschbach, 1964; Ostrom, Dott, Byers, Morris, and Adams, 1978).

Brady and DeHaas (1988) present a detailed description of the Cambro- 

Ordovician section between the Precambrian and the Glen wood Formation. Their 

stratigraphy is based entirely on extensive well log correlation and mudlog 

description. No attempt is made to look at the rocks in a regional perspective. Rock 

data should be the single most important aspect in description and correlation of 

subsurface units.

In addition, such names as Franconia and Dresbach apply to both the Stage 

and the formation designations. With a greater rock database, these terms should 

eventually be abandoned in favor of lithostratigraphic terms as they have been in 

Wisconsin and Illinois (Willman et al., 1975). The same argument can be applied 

to the Trempealeau formation previously used in literature.

Additional studies presented by Wheeler (1988) also correlate based entirely 

on well logs and old oil and gas drillers’ descriptions. No other rock data are used. 

Although the study presented here will also rely on log correlations, limited core and 

cuttings data, along with outcrop studies, are utilized to minimize the risk of error 

in correlating wireline logs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



METHODS OF STUDY

Lab and Sample Preparation

The most useful and reliable data in any analysis of basin history, 

stratigraphy, and hydrocarbon potential must come from the rock record when 

possible. The rocks are the primary source of information and should be relied on 

more than any other geologic data. Therefore, the fundamental factor in this study 

is the availability of core and cuttings samples. Unfortunately, abundant, quality 

samples for the Cambro-Ordovician in Michigan are quite limited. However, the 

Mount Simon Sandstone has more available rock data than the overlying Upper 

Cambrian-Early Ordovician formations and will, therefore, be the focal point of this 

study.

Detailed analysis of samples has been completed by such traditional methods 

as examination by thin section, X-ray diffraction, and scanning electron microscopy. 

Core and cuttings descriptions were taken from available samples, and have been 

utilized as the foundation to tie into wireline log correlations. Samples of the Mount 

Simon were derived from three sources: (1) from the outcrops in Western

Wisconsin; (2) from 4 cores of wells in Michigan’s Lower Peninsula, 2 cores from 

Iowa, and core descriptions from Illinois; and (3) from cuttings out of 3 additional 

wells in the Lower Peninsula of Michigan. A list of samples and analyses is found

10
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in Appendix B.

The cores are the more important of two primary sources of information for 

the remainder of the section. Core analysis from the Winterfield A-l (Clare County), 

Doombos 5-30 and Bruggers 3-7 (Missaukee County), Gingrich 1-31A and Eisenga 

1-29 (Osceola County), and the State-Foster 1-28 (Ogemaw County) provided detailed 

information for Prairie du Chien correlation. Additional lithologic description taken 

directly from outcrops and published reports in Wisconsin, and from published 

material in Illinois and Wisconsin, is used for comparison and correlation with the 

Michigan section. This material can then be utilized to correlate well logs, which are 

secondary to the rock record, but can be used for basin-wide correlations. The 

author has tried to avoid the use of mudlogs and drilling logs, as many of them are 

biased by older outdated lithologic terms and descriptions, and older logs reflect a 

greater degree of inaccuracy without modem sampling techniques.

Additional wells with core control are as follows: JEM Petroleum Doombos 

5-30 in Missaukee County; Upjohn Brine Disposal Well #4 in Kalamazoo County; 

the Phillips 1-2 in Livingston County; and the Consumers Power Brine Disposal 

Wells #151 and #139 in St. Clair County. All cores are Mount Simon Cores, with 

additional core in the Prairie du Chien and the Trempealeau B intervals from the 

Doombos well. Detailed footages from wells with sample control are outlined in 

Table 1. Representative cuttings sets come from the following wells: Northern 

Michigan Land and Oil Corporation 1-27 in Charlevoix County; Miller Brothers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Table 1

Wells With Rock Data Available

Well Countv Type Footaee Formation

Reynolds 2-11 Cass Cuttings 1750’-TD Wonewoc
Smith 1-20 Cass Cuttings TD Mount Simon
No. Mich. Land/Oil
Corp. 1-27 Charlevoix Cuttiugs 6550’-8900’TD Mount Simon
Martin 1-15 Gladwin Cuttings 12,180’-

15,850’ TD Mount Simon
Victory 2-26 Mason Cuttings 5810’-7485’TD Mount Simon

Winterfield A-l Clare Core ll,605’-635’ Shakopee (PdC)
Upjohn BD#4 Kalamazoo Core 4953’-5008’ Mount Simon
Phillips 1-2 Livingston Core ?? Mount Simon
Doornbos 5-30 Missaukee Core 12,712’-746’ Shakopee (PdC)

Core 13,691’-696’ Trempealeau B
Core 14,234’-359’ Mount Simon

Bruggers 3-7 Missaukee Core ll,382 ’-568’ Shakopee (PdC)
State Foster ffl Ogemaw Core 11,600’

-12,996’ Prairie du Chien
Gingrich 1-31A Osceola Core 9994’-10,006’ Shakopee (PdC)
Eisenga 1-29 Osceola Core 11,487’-510’ Shakopee (PdC)
BD 139 St.Clair Core 4485’-4605’pC Eau Cl/Mt Simon
BD 152 St.Clair Core 4561’-4684’pC Eau Cl/Mt Simon
BD 151 St.Clair Core 4579’-4707’pC Eau Cl/Mt Simon
Woodhaven BD §1 Wayne Core 3233’-3710’pC Eau Cl/Mt Simon

Note: Cuttings listed are only those stored at the Core Research Lab, Western
Michigan University. Wells with cuttings begin with the Glenwood and list the
deepest formation only.
TD=total depth, pC==Precambrian

Victory 2-26 in Mason County; and the Hunt Energy Martin 1-15 in Gladwin 

County. These cuttings have been washed and were sampled every 5 feet. 

Observation of major lithologic changes within the cuttings correspond closely with 

major changes interpreted from the well log response. Figure 3 illustrates a
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generalized cuttings/core lithology versus well log response for 5 Michigan wells and 

correlates them with one another and with a representative well, the R.E. Davis 

Associates no. 1EA (Buschbach, 1965), from Illinois.

Cuttings have limited applicability towards this project since a cutting sample 

is contaminated with debris from overlying formations, but in lieu of core control, 

they become a necessary second source of rock information. The cuttings were 

mounted and thin-sectioned for analysis and description. Vacuum impregnation of 

a representative cuttings sample in blue-dyed epoxy was used, creating a chip from 

which a thin section was then made.

Outcrop

Examination of the type sections for the Late Cambrian and Early Ordovician 

formations adjacent to the Wisconsin Arch, which flanks the Michigan Basin on the 

west, included sampling the type localities to compare lithotypes to Michigan Basin 

strata. In addition, observations by Ostrom (1964), Emrich (1966), Davis (1966, 

1970), Stablein and Dapples (1977), Ostrom et al. (1978), Darby and Webers (1979), 

Dott and Byers (1980), and Dott et al. (1986), gave sufficient background and 

description for further comparison.

A similar comparison was made between the Illinois and Michigan sections, 

only more emphasis was placed on published literature and records at the Illinois 

State Geological Survey in Champaign, Illinois. Additional literature by Buschbach
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(1964, 1965) and Willman et al. (1975), was of tremendous help and use.

Correlation and Sequence Stratigraphy

L.L. Sloss (1963, 1984) recognized distinct lithologic cycles in the cratonic 

interior that represented episodes of major sea level transgression and regression and 

associated sedimentation. These were termed "mega-sequences" and have been 

observed continent-wide in sedimentary successions. Additional observations in 

Wisconsin by Ostrom (1964, 1970) demonstrate that numerous stratigraphic cycles 

exist on a smaller scale within the larger transgressive sequences recognized by Sloss. 

Vail, Mitchum, and Thompson (1977), through the use of seismic analysis, also 

recognized these "second order cycles" within stratigraphic successions.

Harrison and Barnes (1988), in studies of the St. Peter Sandstone in Michigan, 

recognized these cyclic sediment patterns and use this "sequence stratigraphy" 

concept for correlation of midwestem sandstones with those observed in the Michigan 

basin.

Applying sequence stratigraphy to the underlying Cambrian-Early Ordovician 

section, one can expect to observe second, third, and fourth order cycles, bounded 

by sharp, erosional unconformities (Figure 4). Combining the observed cyclicity 

with corresponding lithologic characteristics then makes clear the correlation of 

Wisconsin outcrop lithotypes with those of the Michigan Basin. Observed cycles 

show basal sand units were deposited on older erosional surfaces, representing
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Carbonate
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ST. PETER FORMATION

SHAKOPEE
FM.

ONEOTA
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River 
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New Richmond 
Sandstone

Hager City 
Mbr. *

Stockton 
Hill Mbr.*

JORDAN FORMATION**

ST. LAWRENCE FM.* 
(Trempealeau A and B)
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BONNETERRE FM. ***

Argillaceous Sst 
and/or Shale EAU CLAIRE FM.
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** not currently recognized (Michigan)
*** present further south (Illinois/Missouri)

Figure 4. Wisconsin Outcrop Lithotopes and Sequence Stratigraphic Units 
(modified from Ostrom, 1970).
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periods when relative sea level was at the lowest point. At such times, large areas 

of the craton were exposed, producing large volumes of clastic debris which collected 

in the nearby subsiding basins or areas with the greatest relative subsidence. As 

relative sea level rises, less craton is exposed, producing less clastic debris, and 

therefore allowing for the development of a mixture of finer clastic debris and 

carbonate, eventually grading into a predominantly carbonate sequence at the peak 

of the marine transgression. Relative sea level then drops, exposing more of the 

cratonic interior, and producing an erosional surface. At this time the cycle can then 

begin over, thus forming a sedimentary package which can contain numerous cycles. 

The most ideal conditions for the typical cycle would be in the basins where 

subsidence allows for the carbonate units to develop in deeper water and further 

from the source. Conversely, incomplete or modified cycles are expected and 

observed on the surrounding platforms and arches, where shallower water and/or 

close proximity to the source terranes exists.
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REGIONAL TECTONICS, STRUCTURE, AND BASIN HISTORY

Tectonics

Recent Work by Hinze, Kellogg, and O’Hara (1975), Fowler and Kuenzi 

(1978), Sleep and Sloss (1978), Brown, Jenson, Oliver, Kaufman, and Steiner (1982), 

Klein and Hsui (1987), along with Catacosinos (1981), Cercone (1984), Nunn, 

Sleep,and Moore (1984), Dickas (1986), and Howell (1988), have all supported that 

the Michigan Basin first began as a failed intracratonic rift basin, and continued 

subsequent development as a sag basin. Gravity and magnetic surveys, along with 

deep Consortium for Continental Reflection Profiling (COCORP) seismic patterns 

have indicated the presence of a linear gravity/magnetic anomaly (Figure 5) 

associated with benched half grabens on either side of a deep subsurface trough in the 

Precambrian.

In the mid 1970s, an ambitious drilling project began as a joint venture 

between Shell, Amoco, and McClure Petroleum Companies to drill a deep borehole 

in Gratiot County along the central axis of the gravity anomaly. The Sparks, 

Eckelbarger, and Whightsil #1-8 well in Gratiot County reached a record depth of 

17,466 feet, and several cores taken in the Precambrian show a sequence of redbeds 

and gabbroic intrusions dated approximately Middle Keeweenawan in age (Sleep and 

Sloss, 1978). This is the deepest well drilled in Michigan, and is the only well in the

17
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Figure 5. Midwestern Basement Structure. Dots in Michigan Correspond with 
Cambrian and Precambrian Well Locations (Figure 2).
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central basin to penetrate Precambrian strata. There are 43 wells that penetrate the 

Precambrian in Michigan, and all but two of those lie in close proximity to the basin 

margins. All basin-margin wells encounter crystalline rock or a granite wash below 

the Mount Simon Sandstone with the exception of the McClure State-Beaver Island 

#1 well (Charlevoix County) which penetrated a similar sequence of redbeds to the 

Sparks et al. 1-8. The Beaver Island #1 also occurs along the axis of the Mid- 

Michigan Gravity anomaly (Fowler and Kuenzi, 1978).

In 1978, COCORP undertook a project to run 3 deep seismic profiles in the 

region of the Sparks et al. 1-8 well. The results are inconclusive, but an 

interpretation by Brown et al. (1982) shows deep reflecting horizons far below the 

strong reflection marking the Precambrian-Cambrian contact. The reflections show 

prominent half graben "benches" on either side of the gravity anomaly with a 

structural trough in the center, thus supporting the rift theory. The approximate 

center of the structural basin (Figure 6) is in the vicinity of the Hunt-Martin 1-15 in 

Gladwin County, interpreted from the greater thicknesses and depths found there. The 

Precambrian in the Sparks well, which lies just to the north and east of the seismic 

trough (Brown et al., 1982), is encountered at 11,413 feet below sea level. The 

Precambrian in the Hunt-Martin is estimated at 15,480 feet below sea level.

Structure

Several structural features, illustrated in Figure 5, are observed throughout the
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Figure 6. Midwestern Precambrian Contour Surface (modified from Droste and 
Shaver, 1983).

Midwest. Droste and Shaver (1983, p. 2) show that the Michigan basin is bounded 

on the southwest by the Kankakee arch in Illinois, and the Findlay-Algonquin arch 

on the southeast and east. To the west lies the Wisconsin arch, and beyond these
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features lie the Illinois basin to the southwest and the Appalachian basin to the 

southeast. The Canadian shield lies to the north and northeast, while to the northwest 

lies a Precambrian high in the Upper Peninsula (Dickas, 1986) and beyond the high 

lies the Superior basin.

The rifting event 1.1 billion years before present developed these structural 

features (Dickas, 1986), though the Kankakee Arch has a much more complex history 

to be discussed later. Subsequent mechanical and thermal subsidence initiated the 

development of several structural basins, notably the Illinois, Michigan, and Superior 

basins. These basins provided the "sink" for sediment accumulation, while 

surrounding highs provided the source of sediment. The sediment source for the 

Illinois and Michigan basins was the Canadian shield and associated metasediments, 

while the Wisconsin arch acted as a shoreline for the periodic lower Paleozoic 

deposition (Dott et al., 1986, p. 357).

Basin History

After the initial rifting event which began to pull apart the North American 

interior, subsidence in the Michigan Basin began 1.1 billion years before present 

(Dickas, 1986). Precambrian subsidence allowed for the accumulation of a thick 

sequence of redbeds and diabase sills (Fowler and Kuenzi, 1978). After this 

sequence was deposited, mechanical subsidence slowed greatly between .7 and .8 

billion years before present (Klein and Hsui, 1987). Table 2 outlines the major
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Table 2

Summary of Events of Basin Development

1. Early Keeweenawan (1.6 Ba) - Mantle upwelling creates initial rifting
sequence associated with extension of the continental crust. Magmatic 
intrusions along faults and joints is common.

2. Middle Keeweenawan (1.3 Ba) - Extensional faulting continues, associated
with the early stages of continental separation. This results in the 
development of a protoceanic basin. Magmatic intrusions still 
occurring as rhyolitic dikes and basalt flows.

3. Late Keeweenawan (1.1 Ba) - Extension begins to terminate, and the shallow
asthenosphere now migrates downward. Subsiding basin begins to 
rapidly accumulate clastic sediment derived from nearby basin 
margins. Near the end of the Precambrian, the asthenosphere 
stabilizes and mechanical subsidence of the basin slows greatly and 
almost ceases. An erosion surface develops during latest Precambrian.

4. Late Cambrian (530 Ma) - The Sauk transgression renews sedimentation
across the midwestem region.

5. Latest Cambrian/Earlv Ordovician (510 Ma) - Thermal subsidence begins and
renews basin subsidence in both the Illinois and Michigan basins. 
Sedimentation continues during numerous fluctuations.of relative sea 
level, causing facies tract migrations.

(Compiled from Fowler and Kuenzi, 1978; Dickas, 1986; Klein and Hsui, 1987; and 
Howell, 1988)

events in Michigan Basin history.

Observations in the Upper Cambrian Mount Simon sandstone show that the 

bowl shaped sedimentary package is much less pronounced, where a total thickness
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increase from 1246 feet in the Thalmann #1 (Berrien County) on the edge of the 

basin, to 1250 feet in the Sparks 1-8 (Gratiot County) is seen (Figures 7 and 8). 

Rather, the Mount Simon appears to be a trough-shaped package, where it thins to 

700 feet (estimated) in the Victory 2-26 well (Mason County).

However, proceeding southwesterly from the Michigan Basin to the Kankakee 

arch, immediately a thickening trend occurs in each formation from the Cambrian 

Mount Simon sandstone to the Franconia formation (Figure 1). The Mount Simon 

sandstone seen in 4 cross sections of Figure 8, directly overlying the arch is 2550 

feet (Buschbach, 1964) for an increase of 1300 feet, which is a much greater 

thickness than in the center of the Michigan Basin. This is the only observed 

thickening for the Mount Simon sandstone outside of the Michigan basin, and shows 

a major depocenter there during late Cambrian time, indicating the development of 

the Kankakee Arch at a later time.

Burial history analysis also indicates greater subsidence in the southwest 

region of the state. Figure 9 identifies two curves: a central basin curve and a basin 

margin curve. During Late Cambrian, the central basin was subsiding at a much 

slower rate than the southwest margin (nearest the Kankakee arch region). During 

the Ordovician, this trend reverses.

This pattern is seen in the overlying Eau Claire, Wonewoc, and Franconia 

formations as well (Figure 8), but changes abruptly in the Trempealeauan stage. At 

this point, renewed subsidence is suggested by Klein and Hsui (1987) at 520-550
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Figure 7. Index Map for Cross-Sections A-A' through D-D' in Figure 8a to 8d.
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a
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A  -Basement subsidence curve from Howell (1988).
® -Basement subsidence cu rv e , Thalmann #1, B errien  County.

Note that the margin was subsiding at a much faster 
rate in Late Cambrian time compared to the central 
basin.

Figure 9. Late Cambrian to Early Ordovician Burial History Curve for the 
Central Basin and the Southwest Basin Margin.

million years before present, only this time from a thermal imbalance. This thermal 

imbalance resulted from an uncompensated isostatic load from the heavier, mafic 

material of the rift (Klein and Hsui, 1987, p. 1097). This subsidence is observed in 

the increased sediment thickness evident in the Prairie du Chien carbonates and the 

St. Peter sandstone. Prairie du Chien carbonates increase from 50 feet in the Victory 

2-26 well (Mason County) to 1850 feet in the Martin 1-15 well (Gladwin County) for 

an increase of 1800 feet in the center of the basin.

Droste and Shaver indicate a structural consequence of this model is that
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growth faulting should then be evident in those formations already in place at the 

time of renewed subsidence. They report that there is evidence for such features in 

the Illinois basin (1983), and if the Illinois and Michigan basins are developed along 

similar paths as Klein and Hsui suggest (1987), then these features should be evident 

in the deep Michigan basin as well. As study of the basin continues, such features 

may eventually be documented, but at present, there has been no evidence presented 

in literature.
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CAMBRO-ORDOVICIAN SEQUENCE STRATIGRAPHY AND LITHOFACIES

Although the stratigraphy of the Cambrian and Lower Ordovician in Michigan 

has been previously described in published literature (Catacosinos, 1973; Bricker et 

al., 1983), a serious consideration of regionwide description and correlation has not 

been attempted in recent years. It should be noted, however, that Ells (1967) and 

Catacosinos correlated the Cambrian of the Upper Peninsula with that of the basin. 

However, the Upper Peninsula strata reflect more the Superior Basin than the 

Michigan basin, since most of the strata straddle a Precambrian high between the 

Michigan Basin and the Superior Basin (Dickas, 1986). Generally, sedimentary rocks 

of Precambrian age in the Upper Peninsula dip northwestward towards the Superior 

Basin (Ostrom and Slaughter, 1967; Dickas, 1986), while rocks of Cambrian age dip 

35 to 45 degrees to the southeast, towards the Michigan Basin (Ostrom and Slaughter, 

1967). Some of the Cambrian exposures dip southeast by virtue of numerous 

synclines in the Upper Peninsula, and the entire region has been tectonically altered 

by the Midcontinent and Mid-Michigan rifts (Dickas, 1986). Uncertainty between 

rock types in the Michigan Basin and the Upper Peninsula and the proximity of 

Upper Peninsula sediments to the Precambrian gravity anomaly of the rift make 

correlations between the two questionable.

Analysis of sedimentary rocks from the Cambro-Ordovician section in

31
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Michigan, Illinois, Indiana, Wisconsin, Iowa, and Minnesota, shows remarkable 

similarity in overall gross lithofacies (Table 3) and overall stratigraphic units (Sloss, 

1963; Ostrom, 1970). However, as isopach data from the Cambrian seen in Figure 

10 indicates, there was little subsidence in the Michigan or Illinois Basins during 

Dresbachian time, and therefore a more uniform region-wide facies tract would 

result. This changes during Trempealeauan time (Figure 1) as the formations above 

show a tremendous thickening in the basin center, identified previously. Eventually 

by the end of Trempealeauan time, the basin is subsiding at a much greater rate than 

during Dresbachian and Franconian time, and several different facies are recognized 

in conventional wireline log and cuttings analysis. Trempealeauan sedimentation is 

the most complex because numerous lithofacies are observed, and also the most 

poorly understood in the Michigan stratigraphic sequence. Several formation names 

have been assigned in literature for observations made in this interval, such as the St. 

Lawrence formation and Jordan sandstone (Catacosinos, 1973), and most commonly, 

the Trempealeau formation (Bricker et al., 1983; Fisher and Barratt, 1985).

Cambrian System

No outcrops of the Cambrian exist anywhere in the lower Peninsula, but 

excellent exposures of the entire Cambro-Ordovician section can be seen along the 

flanks of the Wisconsin Arch in Western Wisconsin. These exposures represent the 

Cambrian and Ordovician systems along the Michigan Basin’s western limit, and
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Comparison of Outcrop and Subsurface Lithology

33

Formation Wisconsin/Illinois Lithology Subsurface Lithology

Shakopee (Willow River Member) - Tan to
Dolomite cream sandy and intraclastic

dolomite, that commonly exhibits 
algal stromatolites and oolitic 
dolomite. Minor amounts of grey- 
green shale and quartz sandstone are 
present. (New Richmond Member is 
a Sandstone lithology). Minor 
Amounts of Chert are included in 
Illinois, where color changes to light 
grey or brown.

Oneota In Wisconsin, the Oneota is a
Formation medium grained, tan to cream

colored dolomite and sandy dolomite, 
with very minor amounts of chert, 
shale, and calcite. It is a purer 
dolomite than the overlying 
Shakopee. In Illinois subsurface, the 
medium-fine grained Oneota becomes 
light grey in color and contains 
slightly more chert and shale.

Trempealeau A In Wisconsin, the Trempealeau
consists of the Jordan Sandstone, a 
fine grained cream colored 
quartzarenite. Illinois stratigraphy 
exhibits a lateral variation from the 
northern areas to the Eminence 
Dolomite seen elsewhere. The 
Eminence is a light grey to brown 
sandy dolomite that contains minor 
amounts of chert. A thin basal 
sandstone is reported.

The Shakopee in Michigan is a light 
to dark grey crystalline dolomite, 
exhibiting both sandy and 
argillaceous zones throughout. Algal 
stromatolites have been observed. 
Isolated bodies o f dolomitic 
sandstone are also recognized.

The Oneota in Michigan has little 
core control, and thus the lithology is 
less well known. In cuttings 
samples, the Oneota exhibits a light 
to medium grey crystalline dolomite 
with less sand and shale content than 
the overlying Shakopee.

The Trempealeau A in Michigan is a 
light to medium grey dolomite with 
no core control. It appears in 
cuttings to contain a higher shale 
percentage than the overlying 
Oneota. A hypothesis not pursued 
here is that this interval is part of the 
overlying Oneota and not assigned to 
the Trempealeauan Stage (figure 1).
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Formation Wisconsin/Illinois Lithology Subsurface Lithology

Trempealeau B - The St. Lawrence Formation
(Wisconsin) is a feldspathic siltstone 
and sandy dolomite. In Illinois this 
becomes the Potosi Dolomite, a light 
grey, fine grained, slightly 
glauconitic dolomite.

"Franconia" The Franconia in Illinois is a light
grey to pink fine grained dolomitic 
sandstone. This changes to a cream 
colored fine grained feldspathic and 
glauconitic sandstone and siltstone of 
the Lone Rock Formation, and a fine 
to medium grained quartzose and 
feldspathic sandstone of the 
Mazomanie Formation, both in 
Wisconsin.

Wonewoc The Wonewoc is a fine to medium
Formation grained dolomitic sandstone, with

subround to round, well sorted 
grains. Generally a distinction is 
made in both Illinois and Wisconsin 
between the Galesville and Ironton 
members of the Wonewoc.

Eau Claire The Eau Claire is generally a
Formation mixture of tan siltstones and shales,

exhibiting fossil trilobites and 
brachiopods, glauconite, and 
abundant mica. Much o f the Eau 
Claire is dolomitic, and in Illinois, a 
sandy dolomite member is also 
identified.

The Trempealeau B interval in 
Michigan is a medium quartzarenite 
in the northern and northeastern 
portions of the state, and undergoes 
a facies change in the southern and 
southwestern regions to a dolomite. 
This dolomite correlates with the 
Eminence/Potosi Dolomites of 
northeastern Illinois.

In Michigan, the Franconia is 
generally a very sandy to 
silty/argillaceous light grey dolomite 
and having a sandier lithology nearer 
to the Wisconsin Arch and siltier 
away from the arch. The sand and 
silt content from cuttings is in excess 
of 40 percent.

The Wonewoc in Michigan is 
generally a fine to medium grained 
quartzarenite with subround grains. 
The Wonewoc has a higher shale 
content closer to the Wisconsin 
Arch. Dolomite cement is common 
further from the arch (southeast)

The Eau Claire in Michigan is an 
argillaceous and dolomitic siltstone, 
grading to a silty dolomite in many 
regions. It is generally light grey, 
tan, and pink, with minor algal 
markings present.
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Table 3-Continued 35

Formation Wisconsin/Illinois Lithology Subsurface Lithology

Mount Simon The Mount Simon is a medium to
Sandstone coarse grained quartzarenite that

exhibits moderate sorting and 
subangular to subround grains. 
Vertical variations show a decrease 
in the feldspar content upwards in 
the section. Zones of pebbles are 
common. The Mount Simon 
becomes argillaceous in the upper 
section. Brachiopod fossils are 
found near the upper contact with the 
Eau Claire Formation.

The Mount Simon in Michigan is a 
medium to coarse, subround to 
subangular grained quartzarenite that 
is moderately to poorly sorted. 
Abundant feldspar is observed in the 
shallower cores, while deeper 
samples exhibit a more quartzose 
lithology. Minor amounts of 
glauconite are present, along with 
brachiopod fossils in the upper 
section. A basal conglomerate is 
present in many shallow wells.

therefore are a logical choice for comparison. The outcrops are actually along the 

western side of the arch in the "driftless area," but are the same formations seen in 

the subsurface in Wisconsin (Ostrom, 1978). The outcrop region is also where the 

type section for each formation is found.

The Cambrian System in Michigan begins with the Mount Simon Sandstone, 

a basin-wide cratonic sand that overlies Precambrian undifferentiated crystalline rock 

and metasediments along the margins of the basin and an unknown thickness of 

Precambrian sediment occupying part of the center of the basin along the axis of the 

gravity anomaly. The Mount Simon sandstone is overlain by the Eau Claire, 

Wonewoc, and Franconia Formations, which all exist basinwide and can be correlated 

outside of the basin. The Mount Simon, Eau Claire, Wonewoc, and Franconia
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formations show a standard signature (Figure 3) on Gamma ray-Neutron logs, and 

the Mount Simon, Eau Claire, and Wonewoc are also uniform in thickness 

throughout much of the basin. Another exception is the southeast part of the state 

where all formations between Eau Claire and the Lower Ordovician Glenwood 

formation are absent, due to non-deposition or subsequent erosion, most likely due 

to the presence of the Findlay-Algonquin arch. In Huron County, even the Mount 

Simon and Eau Claire formations are absent, as observed in the Volmering

The other rock units included in the Cambrian are those assigned to the 

Trempealeauan Stage, which include the Trempealeau A and B formations throughout 

much of the state, and the correlative carbonate facies of this interval in the center 

and southwest portions of the basin. There is no biostratigraphic control with any of 

these formations, so the actual Cambrian-Ordovician boundary has not been 

determined. However, physical correlation between the Michigan Basin and the 

Wisconsin and Illinois sections is possible because of the structural and sedimentary 

evidence which indicates the connection of both basins during the Dresbachian stage 

(Figure 1) (Droste and Shaver, 1983).

Cambro-Ordovician formations in Michigan are identified through 

conventional core and cuttings analysis. Lithology correlated with well log signature 

(Figure 3) then becomes the basis for correlation among the majority of deep wells 

in Michigan when actual rock data is unavailable. The distinction between 

formations in Illinois and Wisconsin also includes faunal assemblages in addition to
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lithologic data, that delineate biofacies (Ostrom, 1965; Willman et al., 1975). In 

Michigan, there aren’t enough cores taken in any of the formations described here 

to include faunal assemblages in the description, although the presence of fossils will 

be noted.

Mount Simon Sandstone

The Mount Simon Sandstone is the oldest Cambrian formation in Michigan, 

and the lowermost of the Upper Cambrian Dresbachian Stage. The Mount Simon is 

originally named for excellent exposures of a medium-coarse, subround-rounded 

quartzarenitic sandstone at Mount Simon Hill in Eau Claire, Wisconsin (Walcott, 

1914). In Michigan, the Mount Simon observed in cuttings and core samples ranges 

from the same white to cream colored lithology to subangular arkosic sandstone along 

the southeast margin of the basin. This change in lithology may be due to a direct 

influence of a source terrane different than that of most of the Mount Simon; possibly 

a local influence from the east-bounding Findlay-Algonquin arch which represents a 

Precambrian basement high. A localized basal granite wash or arkosic zone is 

observed in some wells along the basin margins that penetrate Precambrian (Bricker 

et al., 1983). Zones of brachiopod shells occur in the upper Mount Simon, just as 

they are found in outcrop. Vertical Skolithos and other burrows are also common.

Other differences between the Mount Simon of Wisconsin and the Mount 

Simon of Michigan are the amounts of diagenetic modification present and the change
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in grain size from outcrop to basin. Outcrop samples show little or no pore- 

occluding cements, but SEM analysis of samples of the Mount Simon show some 

minor quartz and dolomite cement that shows dissolution along crystal faces (Figure 

11), indicating secondary dissolution processes. Subsurface samples however, show 

abundant amounts of authigenic and detrital clay, pervasive dolomite cements, quartz 

cement and compaction-dissolution of quartz grains. The Mount Simon in the basin 

shows a slightly finer (a difference of .5 to 1 phi) grain size range than that of the 

type section and outcrop areas, since the outcrop areas exist along the arch are and 

the probable source area for the sediment (Dott et al., 1986).

Eau Claire Formation

The Eau Claire Formation, also assigned to the Dresbachian Stage, exists 

basin-wide, and is gradational with the top of the Mount Simon. The Eau Claire 

represents interbedded shales and carbonates that are part of the first stratigraphic 

sequence (Figure 4) recognized by Ostrom (1970) and represents a more distal, lower 

energy environment, resulting from continued onlap. The Eau Claire is named for 

exposures of argillaceous, fossiliferous sandstone and siltstone seen in outcrop at Eau 

Claire Wisconsin (Willman et al., 1975, p. 42). In Michigan well logs, it is defined 

above the Mount Simon by a high gamma ray signature, and in sample shows a much 

higher dolomite content (Figure 12). The Eau Claire in Michigan is not the same as 

that of the type section: The basinal setting has allowed for development of a more
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Figure 11. Scanning Electron Microscope (SEM) Photo o f Mount Simon 
Sandstone Type Section in Wisconsin. P =  Pore, Q =  Quartz, D = 
Dolomite Cement.
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Figure 12. Typical Eau Claire Formation - Fine Grained Sandstone with 
Dolomite Cements. Q =  Zone of Quartz Grains, D =  Zone of 
Dolomitic Cementation.
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dolomitic facies. Samples of Eau Claire from the Consumer’s Power brine disposal 

Wells (#151, #139) in St. Clair County are excellent examples of this facies, but also 

show abundant amounts of fine sand present in intervals throughout. Little detrital 

clay is observed in core and cuttings samples. The high gamma ray signature in well 

logs therefore is attributed to the presence of both glauconite and feldspar, both 

identified in thin section analysis of Michigan samples.

There is some debate as to the actual contact between Mount Simon and Eau 

Claire (Mike Sargent, personal communication, Illinois State Geological Survey). In 

Wisconsin, the contact is distinguished by numerous criteria, including a finer grain 

size than the Mount Simon, abundant thinly bedded shale zones that contain trilobites 

and glauconite (Ostrom, 1970). In general, the boundary is considered at the point 

where a distinct lithologic change is recognizable, even though the contact is 

gradational. In Illinois, the initial presence of abundant detrital clay in the upper 

regions of the massive medium grained Mount Simon sandstone marks the contact 

between the two. Unfortunately, this debate cannot apply to Michigan, simply 

because not enough rock data is available (Table 1). For well log correlation, 

however, the top of the Mount Simon has been picked above the initial increase in 

the gamma ray curve, since correlation here is made with the Wisconsin outcrop belt. 

Because this upper arkosic and fossiliferous zone between Mount Simon and Eau 

Claire is predominantly a quartzarenite (from core lithology), its lithologic similarity 

also dictates usage of the Mount Simon top described above. The Eau Claire in
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Michigan displays an arkosic dolomitic lithology, which is fundamentally different 

from the underlying sands of the Mount Simon. Brachiopod fossils observed in the 

Upjohn core (Kalamazoo County) and the upper Mount Simon of the BD 151 core 

(St. Clair County, Table 1), indicate correlation with the top unit of Mount Simon 

Hill in Eau Claire Wisconsin. This is the type section for the Mount Simon sandstone 

and is considered to be wholly Mount Simon (Ostrom, 1970). Identification of the 

brachiopod fossils has not been made at this time.

The Eau Claire is generally a pink, green, and grey argillaceous dolomite 

throughout the basin, including numerous sandy dolomite units. Porosity observed 

in samples is poor (Figure 12), making the Eau Claire a good seal for porous zones 

in the Mount Simon. The log signature is an easily distinguished high gamma ray 

curve, and is comparable to the log signature in Illinois welis penetrating the Eau 

Claire (Buschbach, 1964; 1965). The Eau Claire in outcrop is generally a cream 

colored mixture of shale and fine sand. Abundant Trilobites and Brachiopods are 

found along bedding planes. Unlike the type section, no fossils have been found in 

the 3 Michigan cores taken in the Eau Claire. Bedding is generally planar, and a 

relatively uniform formation thickness exists across the basin (Droste and Shaver, 

1983). There is a thickening in the center of the basin of 20-30 feet that indicates 

minor subsidence. Brady and DeHaas (1988, part 8) report that the Eau Claire more 

than triples in thickness toward the Kankakee arch in Illinois as the upper Mount 

Simon thins, indicating a lateral facies relationship with the Mount Simon. Although

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



cross sections indicate that the Eau Claire does indeed thicken toward the southwest 

(Figure 8), the underlying Mount Simon also thickens in a southwesterly direction, 

contrary to what Brady and DeHaas (1988, part 8) report. The observed thickness 

patterns clearly indicate that the depocenter during Dresbachian time which includes 

both the Mount Simon and Eau Claire formations, as well as the overlying Wonewoc 

formation, was in northeastern Illinois and not in the central Michigan Basin (Droste 

and Shaver, 1983) The Eau Claire thins dramatically along the southeastern margins 

of the basin (St.Clair, Macomb, Wayne Counties) due to erosion or nondeposition, 

where it is overlain by the Middle Ordovician Glenwood formation.

Wonewoc Formation

The Wonewoc Formation, divided into the Iron ton and Galesville Sandstone 

members in Wisconsin (Emrich, 1966; Ostrom, 1970), appears throughout much of 

the Michigan Basin, but thins out due to erosion or non-deposition in the south 

central and southeast portions of the basin. The Wonewoc was named the Dresbach 

in early literature (Willman et al., 1975), but since the outcrops now have been 

defined and subdivided into formations and members, that nomenclature should also 

carry into the Michigan subsurface based on lithologic similarities to outcrop 

formations (North American Committee on Stratigraphic Nomenclature, 1983). 

Although the Michigan Geological Survey continues to apply the term "Dresbach" to 

this interval in Michigan (Bricker et al., 1983), its usage should be abandoned since
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it is a time stratigraphic term that covers the underlying Mount Simon and Eau Claire 

formations as well.

The Galesville member of the Wonewoc is named for exposures of the 

Galesville Sandstone in and near Galesville, Wisconsin (Trowbridge and Atwater, 

1934). The Galesville in outcrop is a cream to rust-colored, well-sorted, well- 

rounded friable sandstone, containing zones of brachiopods (Ostrom, 1970). No 

fossils have been observed in the Michigan Wonewoc due to the lack of any core 

control. The only samples of Michigan Wonewoc are from cuttings sets (Table 1).

Within the Basin, the Wonewoc is generally an argillaceous to dolomitic 

sandstone, exhibiting an argillaceous facies closer to the Wisconsin arch and in 

shallower wells along the basin margins. The dolomitic facies is found in deeper 

wells and wells that are on the opposite side of the basin from the Wisconsin arch. 

The basin-wide log signature is a low gamma ray curve throughout the formation, 

distinguished from the high gamma ray spikes of the underlying Eau Claire formation 

and overlying Franconia interval (Figure 3).

No cores have been taken in the Wonewoc, but the Bulmer 1-33 well in 

Newaygo County had a show of gas in this interval. Cuttings from the Martin 1-15 

in Gladwin County, where the Wonewoc is encountered below 14,748', show a 

white, fine grained sandstone that exhibits long contacts and occasionally sutured 

contacts between medium, subround grains. No visible porosity or other cement is 

noticed, and the cuttings are similar to those of the Mount Simon cuttings from this
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well in that they are small chips of heavily cemented and compacted sandstone. The 

Northern Michigan Land and Oil Corporation (NMLOC) 1-27 in Charlevoix county 

also shows a white to cream, medium grained sandstone with subangular grains.

The Wonewoc is equivalent to the Galesville in Wisconsin and Illinois, rather 

than the Ironton Member in that the Ironton is considered a much coarser grained 

sandstone than the underlying Galesville, and is also generally less than 100 feet thick 

in the Illinois Basin (Emrich, 1966; Willman et al., 1975). The Galesville is defined 

as a medium to coarse-grained, poorly sorted sandstone with minor amounts of clay 

(Emrich, 1966, p. 7; Dott et al., 1986). Michigan’s Wonewoc is also generally a 

medium grained quartzarenite, and somewhat better sorted than the outcrop. 

Thickness remains uniform through much of the basin, except in the center (Gratiot 

and Gladwin Counties) where it increases abruptly by as much as 250%, and in the 

extreme southeast comer of the state where it is absent.

The Wonewoc is indicative of a shallow shelf environment, exhibiting trough 

cross beds and numerous fossils (Emrich, 1966). The sediment was derived from 

preexisting sediments from the Northern Michigan Highlands (p. 3). The Wonewoc 

represents the basal sandstone for another stratigraphic "sequence" (Ostrom, 1964; 

1970). In well log signature, the Wonewoc shows a low gamma ray curve (Figure 

3), comparable to wells in Illinois (Buschbach, 1964; 1965). The Wonewoc is 

distinguished from the underlying Eau Claire by a sharp contact with its characteristic 

high gamma ray curve. The overlying Franconia interval grades into a higher gamma
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ray response.

Franconia Formation

The Franconia is the oldest unit in the Franconian Stage (Figure 1), and the 

only unit assigned to this stage in Michigan. The Franconia was originally named 

for a glauconitic, argillaceous sandstone and dolomite at Franconia, Minnesota 

(Willman et al., 1975, p. 44). However, the outcrop region in Wisconsin does not 

display a "Franconia Formation" by that definition. Much work has been done in the 

Franconian interval in Wisconsin, and two distinct facies, the Lone Rock and 

Mazomanie formations, are recognized (Odom, 1978). In Illinois, this interval is 

recognized as the Franconia Formation, but thins to the north and east (Buschbach, 

1964).

The Franconia exists throughout much of Michigan, but thins and disappears 

in the south central and southeast regions of the basin along the Findlay-Algonquin 

arch. The Findlay-Algonquin arch proves to be a barrier preventing deposition of 

this lithology to the southeast, as the correlative Kerbel and Knox formations in Ohio 

(Droste and Shaver, 1983) are of a differing lithology than their Michigan Basin 

counterparts (Dolly and Busch, 1972).

There are no cores in the Franconia interval in Michigan (Table 1). The 

lithology of the Franconia, therefore, is sketchy at best, but in cuttings samples and 

well log analysis appears as a sandy (feldspathic) dolomite throughout most of the
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basin, with stringers of interbedded shale further from the Wisconsin arch, and 

becoming sandy in zones closer to the arch. Cuttings from the Martin 1-15 (Gladwin 

County), NMLOC 1-27 (Charlevoix County), and Victory 2-26 (Mason County) show 

a much higher percentage of detrital feldspar and sand, indicating the lithology as a 

tan to light grey sandy and argillaceous dolomite, with abundant detrital feldspar 

throughout.

In well log analysis, the Franconia is identified rather easily as the high 

gamma ray signature above the low gamma ray curve of the Wonewoc. The sandy 

lithology of the Franconia along the western margins of the basin and the similarity 

of wireline log signatures between Illinois and Michigan wells (Figure 3) indicates 

a correlation between the Lone Rock/Mazomanie Formations and the Franconia of 

Michigan. The Lone Rock and Mazomanie Formations are time-equivalent facies of 

the Tunnel City Group (Figure 1) where deposition and lithology was affected 

primarily by the Wisconsin arch. The Mazomanie is a quartzose sandstone deposited 

directly over the axis of the arch, while the Lone Rock, which is subdivided into 

many members, is a more glauconitic, feldspathic sandstone and minor shale (Dott 

and Byers, 1980).

The more distal Tomah or Birkmose Members of the Lone Rock are not 

observed at present, however, and the increased presence of carbonate in a northwest 

Wisconsin to southeast Michigan lateral facies progression indicates the development 

of possibly a third facies apart from the Lone Rock and Mazomanie Formations. In
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Wisconsin, low angle planar and trough cross beds, ripple marks and current 

lineations, occasional Trilobites, and also some mud cracks are common, indicating 

a shallow marine environment (Odom, 1978, p. 92). It is thought to be the 

continuation of a minor marine transgression that began with the Wonewoc Formation 

(a continuation of the second cycle, Figure 4), and represents an offshore shallow 

shelf environment. In Michigan, the lateral facies progression from the outcrop to 

the southeast would indicate a continuation of the offshore environment, evident by 

the increased presence of finer grained elastics and carbonate.

The exact correlation of the Franconia with the Lone Rock and Mazomanie 

Formations, however, remains obscure. The author agrees with Odom (1978, p. 91) 

that since the term Franconia was applied as a Stage name and is a generic term for 

virtually any litho- or biostratigraphic facies occupying this interval, its usage should 

be abandoned. Until such time as the Michigan lithology can be defined, its usage 

here is continued.

Trempealeauan Interval

This is the most poorly understood interval in Michigan. The rocks assigned 

here are those belonging to the Trempealeauan stage, named for outcrops in and 

around Trempealeau, Wisconsin (Willman et al., 1975). There are two recognizable 

stratigraphic horizons, herein called units, in the Michigan subsurface. The lower unit 

occupies the time interval of the St. Lawrence formation in Wisconsin, and the Potosi
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dolomite of northeastern Illinois. The upper unit occupies the time interval of the 

Jordan formation in Wisconsin and the Eminence formation in northeastern Illinois. 

Because the Trempealeau in Michigan has not previously been subdivided, for this 

report the upper unit in Michigan will be referred to as "Trempealeau A," and the 

lower unit will be referred to as "Trempealeau B ." Recent studies of the overlying 

Prairie du Chien group and the St. Peter Sandstone (Fisher and Barratt, 1985; 

Harrison, 1987) have isolated the Trempealeau as a separate unit, but since this name 

has already been applied to the uppermost stage of the Cambrian, when enough rock 

data exist to further define the Trempealeau units in Michigan, unique formation 

names should be assigned and use of the term "Trempealeau" as a formation name 

should be abandoned.

In Michigan, lack of biostratigraphic data prevents exact dating of either the 

Trempealeau A or B units, so there is some question about whether both units belong 

in the Trempealeauan stage (Figure 1). The lower unit B could be the uppermost 

Franconia stage, or possibly the upper unit A could be a part of the overlying Prairie 

du Chien group. The upper unit A in previous literature has been commonly referred 

to the Trempealeau formation (Bricker et al., 1983; Brady and DeHaas, 1988), and 

the St. Lawrence formation (Catacosinos, 1973). The lower unit B has been 

correlated with the Jordan Sandstone of Wisconsin (Bricker et al., 1983), or assigned 

as part of the overlying "Trempealeau" or the underlying "Franconia," or simply 

unrecognized. In this report, the lower unit B is recognized as displaying a distinct
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facies change from northeast Michigan to the southwest state boundary, seen in the 

unnamed unit of Figure 8. The southern facies of unit B is lithologically similar to 

the Potosi Formation, which is the stratigraphic interval recognized in northeastern 

Illinois (Buschbach, 1964).

The entire Trempealeauan interval (units A and B) shows an increase in 

thickness toward the center of the basin, from 300 feet in Mason County to over 560 

feet in Gladwin County. Along the southwestern margin near the Indiana border, the 

thickness is 231 feet in the Thalmann #1 in Berrien County. Like the underlying 

Franconia and Wonewoc intervals, the Trempealeau A and B units thin and disappear 

in the south central and southeast part of the basin, along the Findlay-Algonquin Arch 

(Figure 8, A-A'). The Trempealeau B in the north is described as a tightly 

compacted, cream colored quartzarenite that exhibits minor amounts of glauconite. 

There is a small 5 foot section of core that was taken in this interval at 13,691'- 

13,696' in the Doombos 5-30 well in Newaygo County. This core exhibits no 

porosity, and the medium to fine grains are tightly compacted, with quartz 

overgrowths and minor sutured grain boundaries visible. Minor amounts of clay are 

present. The grains also show good undulatory extinction, which combined with the 

sutured and long grain contacts indicate a fair amount of compaction. In well logs, 

a low Gamma ray curve combined with a PEF curve in a range of 1.5 to 2.5 

(reflecting sandstone) is characteristic, appearing above the high Gamma ray curve 

of the Franconia. The medium to fine-grained quartzarenite lithology of this unit
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correlates best with the Jordan Sandstone of Wisconsin as described by Odom and 

Ostrom (1978), but it occupies the St. Lawrence Formation stratigraphic interval of 

the Trempealeauan Stage.

To the south, this same interval undergoes a facies change (Figures 7B, 7C; 

and also wells it2 and if5 in Figure 3) to a sandy dolomite, very similar to the Potosi 

Dolomite of Illinois (Buschbach, 1964; Willman et al., 1975). No cores have been 

taken in this interval, and unfortunately, the only data available are derived from well 

log lithology. The PEF curve in well log signature is a higher value (2 to 4), 

indicating a definite change in lithology to a dolomitic rock as the unit approaches the 

Kankakee Arch in Illinois, the southwestern margin of the Michigan Basin.

The upper Trempealeau A unit appears basin-wide (again with the exception 

of the south-central and southeast portions due to non-deposition or erosion, and is 

generally a grey argillaceous dolomite that is marked by a characteristic double

humped gamma ray curve (Figure 3) below the gamma ray curve of the Oneota and 

above the Trempealeau A unit. The log signature is not easily recognized since the 

signature of the overlying Oneota Formation resembles the upper Trempealeau A 

unit.

The Upper Trempealeau A in Michigan is the time-stratigraphic equivalent of 

the Jordan Sandstone of Wisconsin and also possibly the lithic equivalent of the 

Uppermost member of the Jordan, the Coon Valley Dolomite (Odom and Ostrom, 

1978). In Illinois, the stratigraphic equivalent is the Eminence Dolomite, a sandy
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dolomite that exists throughout much of northeastern Illinois (Buschbach, 1964). In 

Wisconsin, the Cambrian-Ordovician contact occurs within the Jordan Sandstone 

(Odom, 1978), but the contact in northeastern Illinois lies at the top of the Eminence 

Dolomite. The Eminence Dolomite is recognized as the time-stratigraphic unit 

immediately below the Jordan Sandstone (Willman et al., 1975).

Ordovician System

The Prairie du Chien Group is the only Ordovician rock assemblage that will 

be addressed in this paper, since others are currently working on the overlying St. 

Peter Sandstone at the Core Research Laboratory of Western Michigan University. 

The Prairie du Chien is the only group assigned to the Canadian Series which is 

lower Ordovician in age. The Canadian series is originally named for exposures of 

strata in Eastern Canada (Willman et al., 1975).

Prairie du Chien Group

The Prairie du Chien Group is absent in the south and eastern parts of the 

basin, along the Findlay-Algonquin arch. The next unit above the Cambrian Eau 

Claire formation in this region is the Middle Ordovician Glenwood Formation, which 

stratigraphically overlies the St. Peter Sandstone elsewhere throughout the basin. The 

group thickens dramatically toward the center of the basin, from 640 feet in Grand 

Traverse County and just 54 feet in Berrien County, to over 1700 feet in Gladwin
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County.

The Prairie du Chien is named for exposures of dolomite and sandstone in and 

around Prairie du Chien, Wisconsin (Bain, 1906). It is generally subdivided into the 

lower Oneota and upper Shakopee Formations. The Oneota is a tan sandy dolomite 

and pure dolomite in outcrop (Davis, 1970, p. 34-35), and in Michigan also exhibits 

sandy and pure dolomitic characteristics, but with a more moderate to dark grey 

color. The Oneota is recognized in well log tracings by a dolomite signature ranging 

from 3 to 5 in PEF log, and a relatively low gamma ray curve compared to the 

overlying Shakopee formation. Distinction between the Oneota and the upper 

Trempealeau A interval is more obscure because the gamma ray signature is similar. 

The Oneota also has a high bulk density (2.7-2.8)/low neutron porosity (0%-5%) 

curve. Because the overall lithologic features between the Oneota in Michigan and 

the Oneota in Wisconsin are similar with the exception of color, the application of 

the formation name in Michigan is also warranted.

The upper Shakopee formation in Wisconsin is subdivided into the lower New 

Richmond Sandstone and the Upper Willow River Dolomite. The contact between 

the Shakopee and Oneota is believed to be erosional (Charlie Byers, personal 

communication). The New Richmond Sandstone is a pure cream-colored quartz 

sandstone to interbedded sandstones and dolomites. The Willow River member is a 

sandy, intraclastic dolomite with abundant algal stromatolites (Davis, 1970, p. 40-41). 

The Shakopee in Michigan has a much higher gamma ray curve than the overlying

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

St. Peter Sandstone and the underlying Oneota. The Shakopee as seen in the 

Doombos 5-30 and the Bruggers 3-7 (Missaukee County), the Gingrich 1-31A and 

Eisenga 1-29 (Osceola County), and the Winterfield A-l (Clare County) is a dark 

grey dolomite with argillaceous stringers and small amounts of sand locally present. 

Figure 13 illustrates the petrography from outcrop for the Shakopee. The Basinal 

Shakopee is similar in lithology and appearance, but has a grey color. The presence 

of isolated bodies of sand also mark the contact between the two. These isolated 

bodies may be roughly equivalent to the New Richmond member of the Shakopee, 

since they occupy the same stratigraphic horizon, but lack of sample control prevents 

a lithologic comparison. The Sun Huber 1-26 in Arenac County is producing out of 

one such sand body. This well is the only documented well producing below the St. 

Peter formation (Michigan’s Oil and Gas News, 1988-1989), though it is possible that 

other producing wells such as in the Snowplow field of Alpena County may actually 

produce out of such sand bodies (Bill Harrison, personal communication).

Rock data are limited in the Prairie du Chien, but eight wells have cored 

intervals in the strata (Table 1). In addition to those cores previously listed, two 

other cores have reported cored intervals in this part of the Cambro-Ordovician 

section. The whereabouts of the cores from the Dow-Taggart Ludington #32 and the 

Superior Oil Sippy #17, both in Mason County are unknown. The longest cored 

interval is from the State Foster 1-28 in Ogemaw County, which has 1396 feet of 

Prairie du Chien Core preserved. Conodont data by Repetski and Harris (1981)
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Figure 13. Shakopee Formation Outcrop Thin Section. Q =  Quartz Grain, D = 
Dolomite Matrix, P =  Pore. Basinal Shakopee is Similar in 
Appearance, but with Lower Porosity and Grey Color.

reported in Fisher and Barratt (1985) indicate that the cores belong to the uppermost 

Canadian and lowest Champlainian Series (Figure 1), which would correlate them 

with the Shakopee of Wisconsin. The cored interval is immediately below the contact 

with the St. Peter Sandstone. Some of the core extends above the 

Canadian/Champlainian Boundary, so it is hypothesized that there was little or no 

post-Sauk erosion between the Shakopee and the St. Peter in the center of the 

Michigan Basin. Additionally, conodont data from the Core Lab at Western Michigan 

University (Figure 14) shows that the St. Peter is of an older age than the St. Peter
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of the outcrop belt. Fisher and Barratt (1985, p. 2068) also mention that wavy bands 

within upper portions of the core could be algal markings, further tying the "upper 

Prairie du Chien" in Michigan with the Shakopee of Wisconsin. Examination of 

Michigan cores and thin sections reveals a petrography very similar to that of 

Wisconsin outcrop (Figure 12). Therefore, the term "Foster" (Fisher and Barratt, 

1985) should be abandoned in favor of the pre-existing Wisconsin outcrop 

nomenclature (Shakopee formation) for this stratigraphic horizon.

The Shakopee formation is capped by the Sauk unconformity, a major 

unconformity marking the offlap of the Cambro-Ordovician Sauk Sequence (Sloss, 

1963). This unconformity is seen throughout Michigan, especially in the southeast 

counties of Saint Clair, Macomb, Wayne, and Monroe, where the entire stratigraphic 

sequence from the Eau Claire formation to the St. Peter formation is missing. 

Preliminary data from central Michigan basin wells show that the unconformity in the 

central basin is significantly reduced and may not exist. Nonexistence of the 

unconformity then indicates a continuous depositional tract throughout the 

depositional hiatus. The "Brazos Shale" interval reported in many central basin wells 

such as the Hunt-Martin 1-15 in Gladwin County is a transitional unit across the 

unconformity, and diminishes in all directions away from the center of the basin, 

where the unconformity then becomes more prominent (Barnes, Harrison, and Shaw, 

1989)

In summary, the Prairie du Chien Group represents the offshore carbonate
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sequence at the period of greatest marine onlap and the uppermost unit in a 

minisequence recognized in outcrop also (Ostrom, 1970). The upper contact of the 

Prairie du Chien represents the Sauk unconformity, which appears in core and 

wireline logs as a sharp lithologic contact throughout the basin except in the center 

(Figure 3). There, conodont data indicate an extension of sedimentary layers through 

the hiatus of the Sauk Unconformity.
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MOUNT SIMON SANDSTONE PETROLOGY

Despite that the Huber 1-26 in Arenac County produces out of a small sand 

body in the Prairie du Chien, and the Bulmer 1-33 in Newaygo County had shows 

of gas in the Wonewoc, the best reservoir possibilities below the existing St. Peter 

play are in the Mount Simon Sandstone. The Mount Simon is the most widespread 

sandstone below the St. Peter, and samples of the Mount Simon show a complex 

diagenetic history. Porosity is reported as high as 19% in St. Clair County, where 

the Consumer’s Power Company of Michigan has drilled several brine disposal wells 

into the Mount Simon for waste fluid injection. Most of southeast Michigan is dotted 

with such disposal wells, but they exist elsewhere too (Environmental Protection 

Agency, 1988). The Upjohn Company has drilled 4 disposal wells in Kalamazoo 

County, and the core from Upjohn ftA is currently at the Core Laboratory at Western 

Michigan University.

The Environmental Protection Agency, in the summer of 1986, funded 

Western Michigan University to undertake a study of the Mount Simon and Eau 

Claire formations for waste injection potential. In Michigan, the Mount Simon has 

already been the target of such injection in St. Clair and Kalamazoo County Disposal 

wells. It has been recognized that the potential reservoir quality of Mount Simon is 

better than average in Michigan (Ells et al., 1964; Environmental Protection Agency,

59
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1988), but only along the flanks of the basin where porosity is greatest. The Mount 

Simon shows a uniform framework lithology across the basin, but the greatest 

variation in overall lithology is found in the diagenetic modifications that have 

occurred basinwide. These modifications are associated with current depth of burial.

Diagenetic cements within the Mount Simon can be interpreted based on 

existing core and cuttings samples. Samples show 2 recognizable diagenetic patterns 

(compare Hoholick, Metarko, and Potter, 1984) that exist within the basin. The 

deepest pattern 1 is predominantly a sedimentary quartzite; that is, a quartzarenite 

that has been heavily cemented with quartz overgrowths. Authigenic clay exists in 

slightly shallower depths. The shallower pattern 2 is dominated by authigenic clays, 

dolomite cements, and the development of secondary porosity.

Pattern 1 is greater than 90% to 100% quartz exhibiting undulatory extinction 

in both detrital grains and overgrowths, with long and often sutured grain contacts 

(Figure 15). Visible porosity is less than 1%. This pattern, observed in the Hunt 

Martin 1-15 (Gladwin County) and the Jem Doombos 5-30 (Missaukee County), is 

seen at and below approximately 14,250 feet depth in the central basin. Samples 

from the Doombos 5-30 below 14,250 feet exhibit all of these features. In the 

deepest part of the basin, the Martin 1-15 was not cored in the Mount Simon, but 

cuttings are large, well-cemented chips of rock, and the amount of cementation and 

compaction has converted the sandstone into an orthoquartzite. All contacts are long 

and often sutured, and SEM examination shows minute (<  1 %) amounts of dolomite
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and porosity. Limited core control does not permit an exact depth at which this 

facies begins, but the presence of stylolites in both the Martin 1-15 and the Doombos 

5-30 (Figure 15) indicates pressure solution, which in turn provides a source for the 

abundance of quartz cementation (Sibley and Blatt, 1976). The abundance of quartz 

cement in these deep wells suggests primary cement that has not been removed by 

dissolution, and indicates an association with greater depth of burial. The Doombos 

5-30 well also exhibits authigenic chlorite rims surrounding rounded quartz grains 

seen in SEM photomicrographs (Figure 16) and X-ray diffraction patterns (Figure 

17), with a pervasive hematite and quartz overgrowth cement occluding the remaining 

pore space at 14,234 feet. This is the shallowest that pattern 1 is observed.

A simplified paragenetic sequence at this depth indicates the initial coating of 

sand grains with authigenic chlorite, perhaps after the dissolution of early cements 

(Pettijohn, Potter, and Siever, 1987, p. 426). The initiation of pressure solution then 

provides a source for silica, which occludes remaining pore space.

The shallower pattern 2 is seen at depths of 4,000-5,000 feet along the 

margins of the basin, again suggesting a relationship between porosity and 

cementation with depth of burial (Hoholick et al., 1984). Brine disposal well cores 

in St. Clair County exhibit authigenic chlorite and illite (Figures 18, 19) within a 

pervasive dolomite cement surrounding subrounded-subangular quartz and feldspar 

grains. Zones of secondary porosity exist within the sandstone, where ferroan 

dolomite (stained blue in thin section) has undergone partial dissolution, as seen in
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Figure 15. Mount Simon Sandstone Deep Diageneti 
15 Well, B =  Doombos 5-30 Well, C 
Stylolite, Su =  Sutured Contact, 0  =  Qu
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ion Sandstone Deep Diagenetic Pattern. A = Martin 1- 
B =  Doombos 5-30 Well, Q =  Quartz Grain, S =  
u =  Sutured Contact, O =  Quartz Overgrowth.
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Figure 16. Thin Section and SEM Photomicrographs o f the Mount Simon 
Sandstone from the Doombos 5-30 at 14,234' Depth. Q =  Quartz 
Grain, C =  Chlorite Grain Coating, H =  Hematite Cements and 
Quartz Overgrowths.
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Figure 17. Selected X-Ray Diffraction Patterns for Clay Fractions of Whole 
Rock Samples. A =  Consumers Power BD-139 Well, B =  Doombos 
5-30 Well, C =  Martin 1-15 Well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 18. Thin Section and SEM Photomicrographs of Typical Mount Simon 
Sandstone Shallow Diagenetic Pattern. Both Photos From 
Consumers Power BD-139 Well. Q =  Quartz Grain, D =  Ferroan 
Dolomite Cement, P =  Pore, C =  Authigenic Ulite and Chlorite.
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Figure 19. Thin Section and SEM Photomicrographs of Feldspar, Quartz, and 
Dolomite Dissolution in the 'Shallow Diagenetic Pattern. Both 
Photos from Consumers Power BD-139 Well. Q =  Quartz Grain, D 
=  Dolomite Grain with Dissolution Front, F =  Feldspar Grain with 
Dissolution Front, P =  Pore Developed from Dissolution of Quartz.
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thin section and SEM photos of Figure 19. Similar occurrences o f tlvs pattern can 

be seen in the upper Mount Simon of the Upjohn #4 Brine Disposal well (Kalamazoo 

County). The Mount Simon is encountered at 4940 feet in the Upjohn H  

(Kalamazoo County), and at 4650 feet in the Consumer’s BD 1-7 (St. Clair County). 

Table 4 summarizes the various diagenetic modifications to the Mount Simon 

Sandstone associated with both the deep pattern and the shallow pattern.

Lithofacies Characteristics

Work done by Droste and Shaver (1983) shows a tremendous thickening of 

the Mount Simon in northeastern Illinois, where a single depocenter existed. The 

Mount Simon is very similar to the overlying Wonewoc and St Peter Sandstones in 

that it is a continuous sheet sandstone over much of the Midwestern United States. 

Taking this into consideration, along with the structural features presented by Droste 

and Shaver (1983), a marine shelf/shoreline model can be hypothesized for the Mount 

Simon depositional system (Figure 20).

The major feature during this time is the developing Wisconsin Arch (Figure 

5) and the southward margin represents the approximate position of the shoreline 

during much of the Paleozoic (Dott et al., 1986). The Mount Simon depositional 

package then represents the basal sandstone in the Sauk Transgressive cycle (Sloss, 

1963, 1984), and the first minicycle within the Sauk (Ostrom, 1970). Bioturbation 

and the presence of minor amounts of glauconite in the upper Mount Simon in St.
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Figure 20. Paleogeography of the Mount Simon Sandstone. Modified from 
Droste and Shaver (1983).
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Table 4

Observed Diagenetic Modifications and Paragenesis of the 
Mount Simon Sandstone

Deep Pattern

A: B:

1. Emplacement of chlorite rims locally on 1. 
loosely packed quartz grains (an early 
burial stage).

Initiation o f quartz overgrowths.

2. Dolomite (locally hematite and ferroan 2. 
dolomite cementation) occluding 
porosity.

Extreme compaction, creating long and 
sometimes sutured grain contacts. 
Stylitization develops.

Shallow Pattern

A:

1. Early emplacement of chlorite and illite, 
with minor kaolinite. Pervasive ferroan 
dolomite cementation follows.

2. Subsequent dissolution of dolomite, 
creating secondary porosity in zones, 
reaching 19% measured porosity. -

Clair county wells indicate a more offshore environment which is further from the 

theorized shoreline. The Upjohn well (Kalamazoo County) shows repeated storm/fair 

weather cycles (from Reading, 1985, p. 266-268) (Figure 21), which is in the 

uppermost Mount Simon, and indicates an offshore environment below fair weather 

wave base.

The observations in cores of the Mount Simon show a distinct marine facies
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21. Interpreted Storm/Fair Weather Sequence for The Upjohn H  Well.
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associated with the upper units of the formation. Observations primarily in the St. 

Clair County disposal well cores show a more massive sand, with no bioturbation. 

However, few cross beds that are generally smaller and of a low angle are observed 

within the cores.
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MOUNT SIMON SANDSTONE RESERVOIR CHARACTERISTICS

Porosity Predictions

Predictions of which facies would be encountered for a given depth can be 

modelled based on existing petrologic data. Figure 22 illustrates a depth versus 

porosity plot for the Mount Simon sandstone in the Michigan basin. The dissolution 

of quartz and feldspar (Figure 19) in shallow wells (Brine Disposal wells, St. Clair 

County; Upjohn #4, Kalamazoo County) has enhanced porosity at depths above 5000 

feet (Pettijohn et al., 1987). However, porosity then declines with depth, and 

measurements of less than 1% porosity are common below 14,000 feet (Doombos 5- 

30, Missaukee County; Martin 1-15, Gladwin County).

The shallow diagenetic pattern has the greatest potential for hydrocarbon 

exploration, based on the excellent zones of porosity reaching 19% measured in the 

BD 139, St. Clair County (Ells et al., 19o4). The Environmental Protection Agency 

(1988) states that the Mount Simon in Southern Michigan has a good confining layer 

in the overlying Eau Claire Formation. Despite this, these zones of secondary 

porosity have good reservoir potential within the Mount Simon because of the 

surrounding zones of pervasive dolomite cement that form both traps and seals for 

emplacement. Thin section examination of the shallow diagenetic pattern reveals that 

zones of high porosity (15-19 %) are generally surrounded by regions of poor porosity

72
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(1-5%). Published porosity measurements for Consumers Power BD-139 in St. Clair 

County (Ells et al., 1964) show several zones of high porosity separated by regions 

of low porosity in a vertical succession. Each zone of high porosity is generally less 

than 3 feet long.

Observed diagenetic patterns that have been discussed previously can be 

predicted on a statewide level based on current depth of burial (Figure 21). Figure 

21 illustrates observed porosity data versus depth, all of which is contingent on the 

previously discussed diagenetic patterns. If the Mount Simon sandstone is to be the 

target for future oil exploration, the shallow pattern holds the greatest potential 

because of the development of secondary porosity. However, there is a large "hole" 

between 5500' and 14,000' depth. Until core data is available in this interval, the 

diagenetic pattern there remains obscure.

Source Rocks and Thermal Maturation

The Mount Simon is generally too organic-poor to be considered a source rock 

for hydrocarbons, but some of the carbonate units in the Cambro-Ordovician are 

organic-rich and may play a key role in the potential for hydrocarbon migration into 

the Mount Simon. Burial and thermal history calculations by Cercone (1984) show 

that all Cambro-Ordovician strata have been buried deeply enough throughout the 

basin to undergo thermal maturation of organic components. Present day exploration 

below Cercone’s "window" of 8,200 feet maximum depth (1984, p. 130) in the St.
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Peter Sandstone yields natural gas, as predicted in her model. Therefore, it is 

possible that hydrocarbon reserves may exist in the deeper Mount Simon Sandstone.

However, the Mount Simon shows little or no porosity in the center of the 

basin, and has no known source terrane below it to allow for hydrocarbon generation 

and accumulation. The Mount Simon along the margins of the basin is at an ideal 

depth (4,000-5,000 feet), but again has no source terrane underlying it to allow for 

generation of hydrocarbons. Here also, the Mount Simon is too organic-poor to 

generate its own. Precambrian sediments encountered in the McClure-Sparks 1-8 

well (Gratiot County) have not been considered a source for hydrocarbon generation 

previously. The Precambrian Nonesuch shale in the Upper Peninsula of Michigan 

has demonstrated source rock capabilities (Dickas, 1986), but it is unknown if the 

Nonesuch or a similar formation exists in the central Michigan basin. The Sparks 

1-8 is the only well to have penetrated central basin Precambrian sediments, and the 

redbeds encountered there do not demonstrate a high organic content (John Fowler, 

personal communication).

Although chemical source rock evaluation has not been attempted for the 

Mount Simon, it is possible that oil could be emplaced within these zones of porous 

sand after migrating "down section" from stratigraphically higher source units that 

are actually deeper in the center of the basin. Migration could occur along faults and 

other conduits within the basin. A stratigraphically higher unit such as the massive 

Prairie du Chien Group or the Utica Shale (a known petroleum source) has undergone

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

thermal maturation in the center of the basin, where it lies structurally lower than the 

peripheral Mount Simon. Faults and other conduits of greater flow such as bedding 

planes would then allow mature hydrocarbons to migrate out toward the basin 

margins, while at the same time migrating "down section," eventually to become 

emplaced within a diagenetic or formational trap associated with the Mount Simon.

Toth (1988) presents a model by which migration in the manner presented 

above could occur. The hydraulic theory of petroleum migration (Toth, 1988, p. 

495) essentially forces petroleum outward and upward away from the deep central 

basin through compaction, diffusion, and gravity flow.

Although no reserves are currently producing in the Mount Simon, evidence 

provides potential source rocks, a process for migration, and methods for entrapment 

in the Mount Simon Sandstone. The lack of existing reserves may be due wholly to 

a sparsity of deep tests.
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DISCUSSION AND CONCLUSIONS

The stratigraphic evidence presented here illustrates the clear correlation 

between the Late Cambrian-Early Ordovician section in Michigan with that of 

surrounding regions. Application of the sequence stratigraphic concept and the 

minicycles of Ostrom (1970) to this section demonstrate that the subsidence of the 

Michigan basin was not uniform during Cambro-Ordovician time, and that during 

periods of low subsidence, a more uniform stratigraphic package was deposited 

throughout the midwest. During periods of higher subsidence, stratigraphic units in 

Michigan began to take on a slightly differing character from their Wisconsin outcrop 

counterparts.

The Michigan basin is poorly understood in terms of basement tectonics, due 

in part to the extreme depth to Precambrian in the center of the basin, and along the 

axis of the Midcontinent gravity anomaly (depths below 16,000 feet to Precambrian), 

which generally is not targeted for oil exploration. Hence, only 4 wells have ever 

penetrated the Mount Simon or the Precambrian in the center of the basin. However, 

recent work by Fowler and Kuenzi (1978), Hinze et al., (1975), and Dickas (1986) 

indicate that the basin is the product of a failed intracratonic rift.

The Mount Simon Sandstone offers good reservoir potential when encountered 

at depths above 5500 feet, due to development of secondary porosity from dissolution

77
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of both carbonate and quartz cements. Limited core and cuttings control enables 

diagenetic facies patterns to be observed, and based on these facies, predictions of 

where the best locations for good reservoir rocks can be made. Generally, this 

location lies in a doughnut-shaped ring around the central basin, from approximately 

the 6000 foot contour (Figure 6), to the state boundaries.

Oil exploration in the Mount Simon sandstone is limited. To date, no known 

reserves exist. There is a possibility of oil reserves in the Mount Simon sandstone, 

based on the reservoir potential at shallow depths of 4,000-5,000 feet, and the 

possibility of hydrocarbon migration along faults and bedding planes from 

stratigraphically higher source rocks in the center of the basin, utilizing the hydraulic 

theory of petroleum migration (Toth, 1988). With only 44 wells that have completely 

penetrated the Mount Simon sandstone (Appendix A), any attempt at ruling out the 

possibility of petroleum reserves in that interval would be premature. F u r t h e r  

studies of the Mount Simon should be aimed at obtaining better core and cuttings 

control throughout the basin. This, of course, can only occur with renewed drilling 

into the Mount Simon sandstone. Emphasis should be placed on the Mount Simon 

between 5500 feet and 14,000 feet, since there is no core at these depths, and, 

therefore, the reservoir potential is undocumented.

Additional drilling will also provide a better database for stratigraphic 

interpretations in the remaining Late Cambrian-Early Ordovician strata. The greatest 

limitation in identifying potential reservoir rocks there is that there is no sample
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control outside of a five foot section of core in the Wonewoc sandstone from the 

Doombos 5-30 well in Missaukee County. Additional coring in the interval between 

Prairie du Chien strata and Mount Simon strata will yield a better understanding of 

these rocks and will identify additional potential reservoirs. When renewed 

exploration yields a greater rock database, the nomenclature problems that have 

plagued exploration in the Michigan basin will be resolved once and for all.
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Appendix A

A List of Late Cambrian/Precambrian Wells 
in the Michigan Basin
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Data Column: L=log; T =ticket D=Drlg rp t ;  X =cuttings; C=core

NO. COUNTY PERHIT OPERATOR. UELL. T .D .. AND COWENTS
S-T-R DATA

01 Alleqan 35186 M artin P roperties  In c ., Howard Hunt u n it  1, 6000' (pC 5582')
9-2N-16U X,

02 Alcona 25690 Panhandle East P ipe line  Co., Ford Motor 1-5, 6380' (Eau C la ire)
5-31N-9E L,T

03 Barrv BD 153 B a ttle  Creek Gas Co., Fee #BD 153, 6618 ', (Mt. Simon)
14-1N-8U L,

04 Bay 37779 Shell Western ESP, Prevost e t . a l .  1-11, 14,549' <Mt Simon)
11-14N-5E L,T.

05 B errien 23545 R. O. Leighton, A nstiss 1-A, 2970* (Eau C la ire )
14-6S-17W T,D,

06 Berrien 26112 S ecu rity  OSG, Thalmann #1, 5632' (pC 4604')
10-6S-17W L.T,

07 Branch 29774 Consumers Power Co. and Quintana Prod. Co., L indsey-H ostetler e t . a l .
7-5S-8W L.T, #1, 5432' (pC 5375')

08 Branch 29969 Consuners Power Co. and Quintana Prod. Co., Harvey Clark #1, 5475'
8-5S-8W L.T, (pC 5418')

09 Branch 38045 A tla n tic  R ich fie ld  Co., ARCO and Gaglio 1-13, 5378' (pC 5206')
13-6S-7W L.T.

10 Branch 37569 ARCO, ARCO and Johnson 1-3, 5253' (pC 5210')
3-6S-8U L.T,

11 Branch 20685 Ambassador Oil Corp., Harry E. Schlautmann #1, 3990' (Eau C la ire)
15-7S-8U L.T,

12 Branch 33019 J.O . Mutch and S h e ll, Richard A. R ensel/ Alva Allan 1-13, 4633'
13-8S-6W L.T, (Mt. Simon)

13 Calhoun 30468 Earl R. Midlam, Hidlam (Fee) #1, 6000' (Franconia)
13-1S-5W L.T,

14 Calhoun 38822 Farmers Oil and Gas, Eyde Brothers 1-32, 5600' (Eau C la ire)
32-2S-6W L.T,

15 Calhoun 23389 P etroson ic , Maynard #1, 4646' (Eau C la ire )
15-3S-6W T,

16 Calhoun 22352 Trenton P e tr . Co. ond McClure O il, Bernloehr Bole and McClure #1,
13-3S-8U T, 4739' (Eau C la ire)

17 Cass 37536 Federated Nat. Res. (R affaele  E x p l.), Reynolds 2-11, 3900' (Uonewoc)
11-5S-13W L.T.X, (WMU f i l e )  (C uttings from 1750'-3900')

18 Cass 34763 H allwell In c ., Willbrandt-Hemenway 1-8, 4000' (Eau C la ire )
8-5S-14W l . t . d.

19 Cass 34367 H allw ell, In c .,  McKenzie #1, 4000' (Eau C la ire )
26-5S-14W T.D.

20 Cass 34773 H allwell In c ., McKenzie 1-8, 4000' (Eau C la ire )
8-6S-13U l . t . d.

21 Cass 35459 Hallwell In c ., Holdeman 1-31, 3800' (Eau C la ire?)
31-7S-13W L,

22 Cass 23289 C.A. Perry and Son, Warren Wooden #1, 3947' (Mt. Simon)
8-7S-14W L.

23 Cass 36985 Mannes Oil Co., Smith 1-20, 4007' (Mt. Simon) (unwashed cu ttin g s)
20-7S-14W L.T.X,

24 Cass 35967 Hallwell In c ., Hawks and Adames 1-28, 2998' (Mt. Simon) (WMU core lab
28-7S-14W T. f i le )

25 Cass 34304 Hallwell In c ., Lawson #1, 3875' (Mt. Simon)
28-7S-14W L.T,

26 Charlevoix 34824 En. Aquis. Corp., No. Mich. Land and Oil Corp.1-27, 8900' (Mt Simon)
27-32N-4W L.T.X, (UMU core lab f i l e )

27 Charlevoix 23478 McClure Oil Co., S ta te  Beaver Island  i f2, 4 ,800 ' (pC 4718')
6-37N-10W L.T.

28 Charlevoix 23435 McClure O il Co., State-Beaver Island  #1, 5 ,383 ' (pC 4566')
27-38N-10U L.

29 Chebovoan 35060 Sun Oil Co., S a iling  Hanson Co. T rust 1-11, 5940' (Franconia)
11-34N-2W L.T,

30 Chebovqan 30682 No. Mich. Expl. Co., S ta te  Waverly 1-24, 5753' (Mount Simon 5617')
24-35N-1W L,T,

31 Clare 34790 Dome Petroleum Corp., Brandt #1-34, 13022' (Eau C la ire ) (Log trac ing )
34-17N-6W L.T,

32 Eaton 29117 Mobil Oil Corp., Gladys Kelley u n it 1, 7200' (Mt. Simon)
24-2N-3W L.T,

33 Gladwin 35090 Hunt Energy Corp., M artin 1-15, 15845' (Mt. Simon) (WMU core lab
15-17N-1E L.T.X, f i l e )
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34 Gr Traverse 34292 Shell O il, S ta te  B la ir #2-24, 11,020' (pC 10 ,910 ')
24-26N-11W L.T.

35 G ratio t 29739 Mclure O il, Sparks e t . a l .  1-8, 17,466' (pC 12 ,176 ', deepest te s t  in
8-10N-2W L.T, Michigan)

36 H illsd a le 40414 Marathon O il, Rowe W A-8, 5917' (pC 5804')
3-5S-3W T.

37 H illsd a le
3-9S-1W

27024
L.T,

L iberty  P e t. C orp., Joseph Horwath #1, 3976' (Eau C la ire )

38 Huron 29191 Mobil Oil Co.. C .J. Volmering #1, 9086' (pC 8872')
26-15N-15E L.T,

39 Inqham
36-1N-1W

29672
L.T,

Mobil Oil Corp., Reeve #1, 6300' (Franconia)

40 Inqham 28607 Mobil Oil Corp., W alter Kranz j r .  #1, 7866' (pC 7690', h i t  basement)
29-2N-1W L.T, (log  ends a t  5800')

41 Jackson
29-3S-1U

22275 C.W. C ollin  and J .  O liver Black, Harold Dancer #1, 6088' (Mt Simon)

42 Jackson
30-3S-3W

27137
L.T,

Nanco In c ., A lfred Smith #2, 5936' (Mt. Simon)

43 Kalamazoo BD 21 Upjohn Co., Upjohn #4, 5600' (Ht Simon) (Ht Simon Core a t  WMU core
14-3S-11W L.C, lab)

44 Kent
3-5N-9W

BD 156 
L.T,

Ohio NW Dev. In c ., A lto Propane Storage Fee 2-156, 7820' (Mt Simon)

45 Lenawee 10448 W alter H. E ckert, Harry Taylor #1, 3902' (pC 3865')
32-8S-5E D.

46 Livinqston 25868 Brazos O&G Co. d iv . Dow Chem., T .J . and F.B. K izer #1, 7210' (Mt.
14-2H-4E L.T, Simon)

47 Livinqston 40438 Terra Energy and Smith P e tr . ,  P h il l ip s  1-2, 7450' (pC 7400') (Mt.
2-3N-3E L,T,C, Simon Core)

48 Livinqston 27986 Mobil Oil Corp., Howard J .  Messmore #1, 7589' (pC 7150') (1 PdC
11-3N-5E L,T,C, carbonate core?)

49 Livinqston 37893 Don Yohe E n te rp rise s , In c ., L aier 1-23, 7548' (Franconia? or Mt.
23-4N-5E l , t , d , Simon?)

50 Macomb 39859 Mich. P e tr . Expl. In c ., G au ltie ri e t . a l .  1-23, 5027' (Mt Simon)
23-3N-12E L.T,

51 Macomb 33737 Energy A qu isition  Corp., Grierson 1-24, 5389' (pC 5340')
24-5N-14E L,

52 Mason 18905 Superior O il, Sippy #17, 7249' (Franconia) (6 PdC cores - lo s t? )
25-17N-16U C,D,

53 Mason 39984 M iller B ros., V ictory 2-26, 7485' (Mt. Simon) (WMU core lab f i l e  -
26-19N-17W L,T, S t. P eter Core)

54 Mason 17789 Dow Chemical Co. (Brazos O&G), Ludington #32, 6622' (Mt Simon) (20
27-19N-18W l. c . d, cores in  PdC/lower, lo s t? )

55 Missaukee 34376 JEM Petroleum, Ooornbos e t . a l .  5-30, 14,722' (Mt. Simon) (Core a t  U
30-22N-6W L.T.C, of M, Eau C la ire  + Ht. Simon)

56 Monroe 11221 Joseph W. Sturman, D.L. and R.L. Chapman #1, 3377' (pC 3342')
29-5S-10E 0 , (G ranite Wash)

57 Monroe 25494 Ferguson and G arrison, M erlin Shimp #1, 3671' (pC 3637') (3670' g r .)
16-7S-6E T,

58 Monroe 35948 Reef P e tr . Corp., Cousino 1-1, 3512' (3470* pC)
1-7S-7E L.T,

59 Monroe 7702 Jacob Beck, Mrs. James Sancrant #1, 5495' (pC 3595')
19-7S-7E 0 ,

60 Newavqo 39856 Wolverine O&G, P a tr ic k -S ta te  Norwich #2-28, 10,180' (Mt Simon) (Log
28-15N-11W L.T, is  Xerox)

61 Newaygo 39916 Wolverine Oil and Gas, Bulmer 1-33, 9375' (Eau C la ire )  (show of Gas
33-15N-11W L.T, in Wonewoc)

62 Newavqo 26662 Thunder Hollow O&G Co., W alter and R osilea Thompson #1, 8215' (Mt
20-15N-14W L.T, Simon) (Log is  a t  6585' TD)

63 Oceana
10-13N-18W

33134
T.

Amoco Prod. Co., S c h il le r  1-10, 7240' (pC 6427')

64 Ogemaw 25099 Brazos O&G, Sun, and Superior O il, S ta te  Foster #1, 12989' (Eau
28-24N-2E L.T.C, C la ire ) (1300' of PdC core a t  MSU)

65 Osceola
19-20N-10U

39854
L.T,

P e tro s ta r  Energy, Boyce 2-19, 12,810' (Mt. Simon) (Log is  trac in g )

66 Oscoda
14-25N-2E

34070
L.T,

Hunt Energy Corp., USA Big Creek Unit 1, 11,691' (Eau C la ire )

67 Ottawa
20-5N-15W

BD Parke Davis & Co, Brine Disposal #3, 5945* (Mt. Simon)

68 Ottawa
30-5n“ 15W

BD H. J .  Heinz, Heinz WDW #1, 5915' (Mt. Simon)

69 Ottawa ID IS H. J .  Heinz, Heinz WDW #2, 6221' (pC)
30-5N-15W
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70 Ottawa Holland Suco Color Co., Waste D isposal Well #1 (Mt Simon)
30-5N-15W L,

71 Ottawa
30-7N-15W

wdw 3 
L,

Heinz, H .J ., Heinz WDW #3, 5905' (Mt. Simon)

72 Ottawa
3-8M-13U

34885
L.T.

Gulf O il, Robert Umlor e t . a l .  1-3, 7250' (Mt. Simon)

73 Prsoue Is l 
14-33N-3E

35085
L.T.

Jennings P e t r . ,  Moll 1-14, 6667' (Franconia)

74 Prsaue Is l 29372 Shell O il, T aratu ta  1-13, 6738' (pC 6 5 0 0 '-g ran ite  wash a t  65457 See
13-33N-5E L.T, M ilste in  Mt. Simon Map)

75 Prsaue Is l 27199 Cook Bros. (Pan Am. P e tr . C orp .), Donald E. Draysey BDW 1, 5940' (pC
29-35N-2E L.T, 5877')

76 Sanilac
16-9N-15E

25357
L.T,

Humble O il, Hoppinthal #1, 6787' (log  TO) (Eau C la ire )

77 Sanilac 26480 Hallwell Oil and Gas, Spencer #1, 6292' (Eau C la ire )
27-9N-15E L.T,

78 Sanilac 33999 Mid American O&G Corp., Woodruff 1-19, 8511' (pC 8298')
19-10N-15E L.T.

79 Sanilac
30-11N-15E

35779
L.T,

Traverse Oil Co., F ro s tic  1-30, 7824' (Eau C la ire )

80 Sanilac 30974 McClure O&G 3 Mich. Nat. Res. Co., Richard Hewett e t . a l .  and A lbert
20-12N-15E L.T, Shadd 1-20, 8975* (pC 8859‘)

81 S t.C la i r 25780 Bernhardt O&G, Puzzuoli i/1, 4188' (pC 4152')
17-2N-16E L.T,

82 S t.C la ir
10-3N-15E

23796
T,

C. W. C o llin , Bidal-Faucher-Levrau #1, 4494' (Franconia)

83 S t.C la ir 39755 No. Mich. Expl. Co., S alisbury  and Paganes 1-10, 4571' (pC 4520')
10-3N-15E L.T,

84 S t.C la ir 30376 Mich. Consolid. Gas Co., Alvin & Florence O sterland e t . a l .  1-14,
14-3N-15E L.T, 4627' (pC 4449')

85 S t.C la ir BD 139 Consigners Power Co., Consumers Power Co. BD 139, 4634' (pC 4605') (Mt
31-4N-15E L.T.C, Simon Core a t  U of H)

86 S t.C la ir
11-5N-16E

22002
L,T,

Panhandle Energy E xpl., Roney #1, 4798' (Eau C la ire )

87 S t.C la ir 196 S t. C la ir O&G Corp., Hurst #1, 4770' (pC 4730')
26-5N-16E

88 S t.C la ir BD 152 Consumers Power Co., Consumers Power 2-7  BDW 152, 4702' (pC 4684')
7-5N-17E L.T.C, Eau CL ♦ Mt. Simon Core a t  U of M)

89 S t.C la ir BD 151 Consumers Power Co., Consumers Power 1-7 BDW 151, 4773' (pC 4707')
7-5N-17E L.T.C, Ht. Simon Core a t  U of M)

90 S t.C la ir 38964 H ille r  Bros. In c ., ARCO and Senyk 1-30, 6676' (pC 6545')
30-6N-13E L.T,

91 S t.C la ir
6-6N-16E

24722
T,

G oll, Graves, and Mechling, Sumrack #1, 5391' (Eau Cl?)

92 S t.C la ir 38965 A tlan tic  R ich fie ld  Co. Inc. and M iller B ros., ARCO and Patton 1-34,
34-7N-14E L.T, 6310' (pC 6270')

93 St.Joseoh 
11-6S-10W

31335
L.T.C,

Marathon Oil Co., Lloyd Cupp 1-11, 5283' (pC 5074') (Mt Simon Core)

94 Van Buren 
35-3S-14W

25706
T,

Tri County Development, Reed #1, 3678' (Franconia)

95 Washtenaw 34223 Hunt Energy Corp., Robert H. Worrell 1-28, 6330' (pC 6294')
28-1S-6E L.T,

96 Washtenaw 10141 Calvin and Assoc. 3 E le c t .,  Wm. F. Voss Comm. //1, 6410' (pC 6374')
16-1S-7E

97 Washtenaw 10792 I.C . Chamnes, Troy and Roddenberry Comm. #1, 6094' (pC 6075')
27-1S-7E

98 Washtenaw 11341 Calvin and Assoc. 3 Rot. S t . ,  Viola H einzinger #1, 5692' (pC 5670')
12-2S-7E

99 Wavne
17-1S-8E

19496 Woodson Oil Co. and Consumer's Power Co., D e tro it House of Correction 
#3, 5483'

A0 Wavne
18-1S-8E

19329
T,

Taggart (O&G?), George #1, 5130' (Wonewoc)

A1 Wavne 10430 Colvin and Assoc. 3 E le c t . ,  Theison E sta te  #1, 4046' (pC 3985')
16-4S-9E

A2 Wavne BD 146 M iller Bros. Inc. (Marathon O il) , Woodhavcn (Fee) BD #1, 3752' (pC
22-4S-10E L.T.C, 3710') (Eau C la ire  + Mt. Simon cores)

(102 L istings cu rren t th ru  September, 1988. Updated 6-30-89)

( l i s t  compiled from M ilste in - DNR, Lundgren- WMU, DNR RI#26, WMU scout t ic k e t  
f i l e s ,  D rillin g  Progress reports-DNR, Permit Files-DNR)
L is t compiled by Je ff  Cottingham, UMU Core Lab.
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Well or OutcroD Name Countv Footaoes Samole Tvoe L ith . In te rv a l T-S )

V ictory 2-26 (HI) Hason 6495'-6500' C uttings 'Trempealeau' X
V ictory 2-26 6615'-6620' C uttings 'S t .  Lawrence' X
V ictory 2-26 6685'-6690' C uttings •S t. Lawrence' X
V ictory 2-26 6725'-6730' C uttings Franconia X
V ictory 2-26 6805'-6810' C uttings Franconia X
V ictory 2-26 6855'-6860' C uttings Wonewoc X
V ictory 2-26 6945'-6950' C uttings Eau C la ire X
V ictory 2-26 7125■-7130■ C uttings Hount Simon X
V ictory 2-26 7255'-7260' C uttings Hount Simon X

N.H.Land/Oil 1-27 (HI) C hari. 7395'-7400' C uttings PdC X
N.H.L.O.C. 1-27 7535'-7540* C uttings PdC X
N.H.L.O.C. 1-27 7715'-7720' C uttings PdC X
N.H.L.O.C. 1-27 7895'-7900' C uttings Trempealeau A X
N.H.L.O.C. 1-27 8125'-8130• C uttings Trempealeau B X
N.H.L.O.C. 1-27 8255'-8260' C uttings Franconia X
N.H.L.O.C. 1-27 8455'-8460' C uttings Wonewoc X
N.H.L.O.C. 1-27 8575'-8580' C uttings Eau C la ire X
N.H.L.O.C. 1-27 8695'-8700* C uttings Hount Simon X
N.H.L.O.C. 1-27 8805'-8810' C uttings Hount Simon X

Doornbos 5-30 (HI) Hisauk. 12,173' Core PdC X
Doornbos 5-30 12,719' Core PdC X
Doornbos 5-30 13,691' Core Trempealeau B X
Doornbos 5-30 14,234' Core Hount Simon X X
Doornbos 5-30 14,240' Core Hount Simon X
Doornbos 5-30 14,265' Core Hount Simon X X
Doornbos 5-30 14,288' Core Hount Simon X
Doornbos 5-30 14,299* Core Hount Simon X X
Doornbos 5-30 14,320' Core Hount Simon X
Doornbos 5-30 14,347' Core Hount Simon X

Brine Disp. 151 (HI) S t.C lr  4612' Core Eau C la ire X
B rine Disp. 151 4631' Core Eau C la ire X
B rine Disp. 151 4659' Core Hount Simon X
Brine Disp. 151 4686' Core Hount Simon X X
B rine Disp. 151 4689' Core Hount Simon X

Brine Disp. 139 (HI) S t.C lr  4528' Core Hount Simon X X
Brine Disp. 139 4529' Core Hount Simon X X

H artin  1-15 (HI) Gladwin 12 ,270 '-75 ' C uttings PdC X
H artin  1-15 13,140*-45■ C uttings PdC X
H artin  1-15 13 ,550 '-55‘ C uttings PdC X
H artin  1-15 14,100 *-105• C uttings PdC X
H artin  1-15 14 ,210 '-15 ' C uttings Trempealeau A X
H artin  1-15 14,600 '-605 ' C uttings Wonewoc X
H artin  1-15 14 ,780 '-85 ' C uttings Wonewoc X
H artin  1-15 14 ,870 '-75 ' C uttings Eau C la ire X
H artin  1-15 1S ,270 '-75 ' C uttings Hount Simon X X
H artin  1-15 15 ,310 '-15 ' C uttings Hount Simon X X
H artin  1-15 15 ,350 '-55 ' C uttings Hount Simon X X
H artin  1-15 15 ,670 '-75 ' C uttings Hount Simon X X

Upjohn HA (HI) Kalmzoo 4954' Core Hount Simon X
Upjohn HA 4955' Core Hount Simon X
Upjohn HA 4958' Core Hount Simon X
Upjohn HA 4959' Core Hount Simon X
Upjohn HA 4960' Core Hount Simon X
Upjohn HA 4964' Core Hount Simon X
Upjohn HA 4966* Core Hount Simon X
Upjohn HA 4968' Core Hount Simon X
Upjohn HA 4971' Core Hount Simon X
Upjohn HA 4986' Core Hount Simon X
Upjohn HA 4998' Core Hount Simon X

W in terfie ld  A-1 (HI) C lare 11,605' Core PdC X
W in terfie ld  A-1 11,605' Core PdC X
W interfie ld  A-1 11,605.2* Core PdC X
W interfie ld  A-1 11,605.6 ' Core PdC X
W interfie ld  A-1 11,606' Core PdC X
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Well o r OutcroD Name Countv Footages Samole Tvoe L ith . In terval T-S

W in terfie ld  A-1 11,610.5 ' Core PdC X
W in terfie ld  A-1 11,615' Core PdC X
W in terfie ld  A-1 11,620' Core PdC X
W in terfie ld  A-1 11,624' Core PdC X
W in terfie ld  A-1 11,629' Core PdC X

.Bruggers 3-7  (HI) Hisauk. 11,402' Core PdC X
Bruggers 3 -7 11,403' Core PdC X
Bruggers 3-7 11,404' Core PdC X
Bruggers 3-7 11,421' Core PdC X
Bruggers 3-7 11,425* Core PdC X
Bruggers 3-7 11,427' Core PdC X
Bruggers 3-7 11,427.4 ' Core PdC X
Bruggers 3-7 11,434* Core PdC X
Bruggers 3 -7 11,447' Core PdC X
Bruggers 3-7 11,449' Core PdC X
Bruggers 3 -7 11,450' Core PdC X
Bruggers 3-7 11,454' Core PdC X
Bruggers 3-7 11,464.5 ' Core PdC X
Bruggers 3-7 11,468' Core PdC X
Bruggers 3-7 11,478' Core PdC X
Bruggers 3-7 11,486* Core PdC X
Bruggers 3 -7 11,494' Core PdC X
Bruggers 3-7 11,494* Core PdC X
Bruggers 3 -7 11,498.6 ' Core PdC X
Bruggers 3-7 11,501' Core PdC X
Bruggers 3-7 11,504.8 ' Core PdC X
Bruggers 3-7 11,505' Core PdC X
Bruggers 3-7 11,507' Core PdC X
Bruggers 3-7 11,510' Core PdC X
Bruggers 3-7 11,523' Core PdC X
Bruggers 3-7 11,527' Core PdC X
Bruggers 3-7 11,535' Core PdC X
Bruggers 3-7 11,537.4 ' Core PdC X
Bruggers 3-7 11,537.9 ' Core PdC X
Bruggers 3-7 11,544' Core PdC X
Bruggers 3-7 11,554' Core PdC X
Bruggers 3-7 11,565.8 ' Core PdC X
Bruggers 3-7 11,568.5* Core PdC X
Bruggers 3-7 11,568.8 ' Core PdC X

Lehmann #1 (Iowa) D allas 2924' Core Hount Simon X X
McCallum #A1 (Iowa) D allas 3008' Core Hount Simon X

C1 #2 (Indiana) Lake Core Hount Simon X
01 #3 (Ind iana) Lake Core Hount Simon X
BC #1 (Ind iana) Lake Core Hount Simon X
E2 #4 (Indiana) Lake Core Hount Simon X
E20 #5 (Indiana) Lake Core Hount Simon X

Cuppy #1 ( I l l i n o i s ) 6-6S-7E D rillin g  record only - No samples
Mary S tre ich  #1 (IL) 2-11S-6E D rillin g  record only - No samples
Goodwin #1 (IL) 30-29N-2E D ril lin g  record only - No samples

Irv ine  Park (Wisconsin) 31-29N-8W Outcrop Hount Simon X X
Irv in e  Park (WI) Outcrop Hount Simon X X
Hount Simon H ill (UI) 8-27N-9W Outcrop Mount Simon X X
Hount Simon H ill Outcrop Mount Simon X X
Town Road Exposure (UI) 2-26N-8W Outcrop Eau C la ire
Bruce V alley Quarry (WI) 9-23N-8W Outcrop Eau C la ire X
Bruce V alley Quarry Outcrop Eau C la ire X
Bruce V alley Quarry Outcrop Wonewoc X
Bruce V alley Quarry Outcrop Wonewoc X
Bruce V alley Quarry Outcrop Wonewoc X X
W hitehall Roadcut (WI) 12-22N-8W Outcrop Lone Rock X X
W hitehall Roadcut Outcrop Lone Rock X
W hitehall Roadcut Outcrop Lone Rock X
Hazomanie H ill (WI) 16-8N-6E Outcrop Hazomanie X X
Hazomanie H ill Outcrop Jordon (Tremp) X
Hazomanie H ill Outcrop Jordon (Tremp) X X
P ra ir ie  du Chien Cut Wisconsin Outcrop PdC X X
P ra ir ie  du Chien Cut Outcrop PdC X
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Well or Outcrop Name County Footaoes Sample Type L ith . In te rv a l T-S XRD SEM

P ra ir ie  du Chien Cut Outcrop PdC X

S pec ific  locations fo r Michigan U ells  a re  given in  Appendix A.

PdC = P ra i r ie  du Chien Group

Numerous samples were co lle c ted  on 2 subsequent t r ip s  to  Wisconsin, none of which were used fo r anything 
o ther than hand observation .

I l l i n o is  w ells a re  in  add ition  to  lith o lo g y  from published l i te r a tu r e .

indiana well samples a re  provided fo r inform ation only . Uell loca tions were requested  to  remain 
c o n fid e n tia l.
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