
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Masters Theses Graduate College

8-1989

An Efficient Implementation of Logical Design for Relational An Efficient Implementation of Logical Design for Relational

Databases Databases

Shakeel Ishaque
Western Michigan University

Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ishaque, Shakeel, "An Efficient Implementation of Logical Design for Relational Databases" (1989).
Masters Theses. 1096.
https://scholarworks.wmich.edu/masters_theses/1096

This Masters Thesis-Open Access is brought to you for
free and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Masters Theses by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/masters_theses
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/masters_theses?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/masters_theses/1096?utm_source=scholarworks.wmich.edu%2Fmasters_theses%2F1096&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

AN EFFICIENT IMPLEMENTATION OF LOGICAL DESIGN FOR RELATIONAL
DATABASES

by

Shakeel Ishaque

A Thesis
Submitted to the

Faculty of The Graduate College
in partial fulfillment of the

requirements for the
Degree of Master of Science

Department of Computer Science

Western Michigan University
Kalamazoo, Michigan

August 1989

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AN EFFICIENT IMPLEMENTATION OF LOGICAL DESIGN FOR RELATIONAL
DATABASES

Shakeel Ishaque, M.S.

Western Michigan University, 1989

This work presents efficient methodology for the design of relational databases

and an implementation of a design tool. A set of algorithms and supporting theory are

discussed. Improvements are made on existing decomposition approaches.

The Dependency Preserving Normal Fom (DPNF), which is stronger than 3NF,

is presented. It guarantees a decomposition with lossless join property and at the

same time preserves all of the functional dependencies.

An algorithm to obtain DPNF decomposition is presented. The algorithm

computes DPNF decomposition in polynomial time. It converts supplied functional

dependencies to annular cover and uses reduced annular cover to compute closures

and decomposition. The algorithm finds the keys for every decomposed scheme and

the original scheme. The document contains a PASCAL implementation of the

algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I would like to thank Dr. Motzkin for guiding me through this project.

Regardless of her busy schedule she provided sufficient time to discuss problems and

to convey her scholarly advice with possible solutions. I would also like to thank her

for letting me do CS 710 with her while I was still taking CS 643. I would like to

thank Dr. Boals and Dr. Williams for reading and providing valuable comments and

suggestions to improve this work. Special thanks to Mr. Mani, a very good friend and

colleague, for his initial contributions while working on a CS 710 project and for

pursuading me to do this work.

Shakeel Ishaque

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI
MICROFILMED 1989

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INFORMATION TO USERS

The most advanced technology has been used to photo
graph and reproduce this manuscript from the microfilm
master. UMI films the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of this reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright material
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re
produced by sectioning the original, beginning at the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and white photographic print for an additional
charge.

Photographs included in the original manuscript have
been reproduced xerographically in this copy. Higher
quality 6" x 9" black and white photographic prints are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Order Num ber 1337927

An efficient implementation of logical design for relational
databases

Ishaque, Shakeel, M.S.

Western Michigan University, 1989

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... i i

CHAPTER

I. INTRODUCTION... 1

II. TERMINOLOGY AND NOTATIONS.. 3

NOTATIONS... 11

III. OUTLINE AND DETAILED STEPS OF THE ALGORITHM................................... 13

Computing The Reduced Annular Cover..14

Determine Equivalence Classes... 14

Determine Annular Cover... 17

Compute Reduced and NonRedundant Annular Cover................. 18

Determine The Relation Schemes... 2 3

Checking Lossless Join Property...28

Finding a Reduced Key of the Original Relation Schem e............... 2 9

Adding New Relation Scheme for Lossless Decomposition................... 30

Decomposition of New Relation Scheme.. 31

IV .' DESIGN ENHANCEMENTS.. 3 5

Computing All the Keys for each Scheme... 3 6

V. COMPLEXITY AND EXAMPLE... 3 8

VI. CONCLUSION... 4 2

APPENDIX

IMPLEMENTATION OF THE ALGORITHM 4 4

BIBLIOGRAPHY.. 64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I

INTRODUCTION

This work presents efficient methodology for the design of relational databases

and an implementation of a design tool. A set of algorithms and supporting theory are

discussed. Many of the algorithms, theorems, lemmas, and proofs were outlined by

Dr. Motzkin. The algorithms have been implemented with PASCAL programs.

There are basically three approaches for the design of relational database:

analytical approach, which was introduced in (Codd 1971), synthetic approach,

introduced in (Bernstein 1976) and integrated approach introduced in (Beeri, et al.

1986). In the integrated approach, the design process is similar to the synthetic

approach but multivalued dependencies are considered.

The design method described here also uses an integrated approach to efficiently

design the database but this integrated approach is different from (Beeri, et al.

1986) as pointed out below. The database designer defines a set of attributes and a

collection of data dependencies which may or may not be universal. This work does

not deal with the controversy of universal scheme ((Fagin, et al. 1982), (Kent

1981), (Kent 1983), (Ullman 1983)). It tries to design a database either if a

universal scheme is given or a collection of relation schemes are given as input. If

several schemes are given as input then it looks upon the dependencies of each

scheme and applies the design approach to each scheme. The problem addressed is

how one can derive a database scheme with certain desirable properties from the

information provided by the database designer. Among the properties considered are

those of lossless join property, preservation of dependencies, and normal forms such

as 3NF, 4NF, BCNF.

A new type of normal form called Dependency Preserving Normal Form (DPNF),

is presented which is stronger than 3NF. A simple algorithmic approach to obtain

non redundant DPNF database schemes with near minimum relation schemes is

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

presented, in addition it resolves some drawbacks of earlier methods. The approach

used by (Beeri, et al. 1986) is to first decompose the database on the basis of multi

valued dependencies (MVDs) and then on the basis of functional dependencies (FDs)

whereas the algorithm presented here first uses FDs to obtain 3NF database scheme

and then incorporate into it some of the algorithms given in ((Beeri 1980), (Beeri,

et al. 1986), (Yuan 1987)) using MVDs to obtain DPNF. For the definitions of MVD

and FD refer to chapter II. After decomposing on the basis of FDs, sometimes, new

MVDs appear; that is why we decompose first on the basis of FDs and then MVDs.

The algorithm considered here is simplified and somewhat faster than the

earlier approaches, and as noted above, it achieves a DPNF database. The algorithm

to obtain a near optimal design is also presented. The complexities using this

approach are calculated and compared to previous techniques. The algorithm is

described in detail in chapter III.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER II

TERMINOLOGY AND NOTATIONS

This chapter will introduce the concepts and terms used in this document. The

terms and notations that are mentioned in this document, but not defined here, are

used in the same way as in (Maier 1983).

FUNCTIONAL DEPENDENCY: Let r be a relation on scheme R and let X, Y be two

subsets of R. Relation R satisfies the functional dependency X — > Y if for any two

tuples t1 and t2 whenever t1 (X) = t2(X) then t1(Y)=t2(Y).

CLOSURE OF A SET OF FUNCTIONAL DEPENDENCIES: Let F be a set of FDs over a

relation scheme R. The closure of F, written F+ , is the smallest set containing F

such that Armstrong's axioms (Armstrong, 1974) can not be applied to the set to

yield a FD not in the set.

TRANSITIVE DEPENDENCY: Given a relation scheme R and X, Y subsets of R. Let

A be an attribute in R and F be a set of FDs. A is transitively dependent on X in R if

there is Y such that X —> Y, Y —> A and Y -/-> X under F and A is not in XY.

PRIME ATTRIBUTE: Given a relation scheme R, an attribute A in R, and a set of

FDs F over R. Attribute A is prime in R with respect to F if A is contained in some

key of R. Otherwise A is nonprime in R.

THIRD NORMAL FORM: A relation scheme R is in third normal form (3NF) with

respect to set of FDs F if all of its attributes are atomic and no nonprime attribute of

R is transitively dependent on a key of R. A database is in third normal form if every

relation scheme in it is in third normal form.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

BOYCE-CODD NORMAL FORM: A relation scheme R is in Boyce-Codd normal

form (BCNF) with respect to set of FDs F if all of its attributes are atomic and no

attribute of R is transitively dependent on any key of R. A database is in Boyce-Codd

normal form if every relation scheme in it is in Boyce-Codd normal form.

MULTIVALUED DEPENDENCY: Let r be a relation on scheme R and let X, Y, Z be

three disjoint subsets of R such that R * X U Y U Z. We say that Y is multivalued

dependent on X, if there exist tuples t-j, tg . with tf having X and Z values x1, z1 and

t2 having X and Y values x1 ,y1 then there exist a tuple t3 with X, Y, and Z values

x1,y1,z1. The tuples t-j, t2 , t3 do not need to be distinct.

Notation: We denote X — >—> Y to mean that Y is multivalued dependent on X.

The abbreviation MVD is also used.

STRICT MULTIVALUED DEPENDENCY: A MVD that is not a FD is called a strict

MVD. That is If X -->--> Y but X-/-> Y then X»>»> Y is a SMVD and is denoted by

X ~ > ~ > ~ > Y.

DIRECT DEPENDENCY: Let X be a subset of R and A an attribute of R. Let X —>

A be in F+. We say that A is directly dependent on X (or X directly implies A) if A is

non transitively dependent on X. It is denoted by X ===> A.

A set of attributes Y is directly dependent on X if each attribute of Y is directly

dependent on X.

Example 2.1: Let F={ A —> B, B —> C, A —> D, D —> E, A —> C } be a

set of FDs over R(ABCDE).

FD A — > B is a direct dependency whereas A — > C is not a direct

dependency.

CONTAINED FUNCTIONAL DEPENDENCY: Let R be a relation scheme and F be the

set of FDs over R. Let Rj be a subset of R. A FD of F+ , X —> Y,is said to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

contained in a relation scheme Rj if XUY is a subset of Rj.

Example 2.2: Consider example 2.1.

Let R1(ABD) and R2(BC) be a decomposition of R then A —> B is a contained

FD in R1 while D —> C is not contained in either R1 or R2.

LOST FUNCTIONAL DEPENDENCY: Let ,R2 Rn be a decomposition of a

relation scheme R and let G be a set of FDs over R. Let F be a set of all functional

dependencies contained in any of Rj. The FD, X —> Y of G+, is said to be a lost FD if

it is not in F+ .

Example 2.3: Let R(ABC) be a relation scheme with a set of FDs {AB —> C,

C—> B}. Let R1(AC) and R2(CB) be a decomposition of R then AB —> C is a lost

FD. Note that decomposition has lossless join property.

On the other hand let R(XYZ) be a relation scheme with set of FDs {Y—> X, X

—> YZ}. The decompositon of R into R1(XY) and R2(XZ) results in no lost FDs.

KEY BASED DECOMPOSITION: Let R (XYZ) be a relation scheme. Let X, Y, and Z

be three sets of attributes where X is a key of R. A decompositon of R into R1(XY)

and R2(XZ) is a key based decompositon.

Example 2.4: Let F ={A —> B, A —> C, B — > D} be a set of FDs over

R(ABCD).

A decomposition of R into R1(ABD) and R2(AC) is called a key based

decomposition whereas a decomposition of R into R1(ABC) and R2(BD) is not a key

based decomposition.

DEPENDENCY PRESERVING NORMAL FORM: Let R be a relation scheme, F be a

set of FDs over R then a decomposition of R into R-j, R2 ,Rn is in Dependency

Preserving Normal Form if the following conditions are met:

D1. Every scheme Rj is in 3NF.

D2. There are no lost functional dependencies, of F.

D3. The decomposition has lossless join property.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

D4. There are no non-trivial functional and multivalued dependencies on the

basis of which a relation scheme can be decomposed, without violating conditions D2

or D3, except for a key based decomposition of it.

DPNF is stronger than 3NF because it guarantees a decomposition with lossless

join property, whereas the conventional way of synthesis sometimes results in a

decomposition with no lossless join property. DPNF yields decomposition with fewer

schemes by removing redundant schemes. Unlike 3NF, DPNF guarantees

preservation of FDs. Also, it decomposes as much as possible by removing prime

attributes from relations as long as no FDs are lost. DPNF also decomposes on the

basis of some MVDs.

Example 2.5: Consider R = {ABCDEF} and F = { AB —>D, D —> AF, C

—> B, CD —> E, B - > C, E - > A }.

Conventional approach for 3NF decomposition is R1={ABCDE} with Key ={AB,

CD}, R2={ADF} with Key={D}, R3={CB} wiht Key={C, B} and R4={EA} with Key ={

E}.
The presented approach will produce R1={ABDE} with Key={AB}, R2={ADF}

with Key={D} and R3={CB} with Key={C, B}.

MINIMAL DEPENDENCY PRESERVING NORMAL FORM; Let R be a relation

scheme, F be a set of FDs over R then a decomposition of R into R-|, R2 R n 's 'n

minimal dependency preserving normal form if the following conditions are met:

1. The decomposition is in DPNF.

2. There is no decomposition of R which is in DPNF and has fewer relation

schemes.

Example 2.6: Let F . { AB - > CDIEH, CDI —> ABE, EK —> H. HI —>

EJ, AE —> AH, H —> IK, D - > EHK, AH —> AE } be a set of FD over

R(ABCDEHIJK). The minimal DPNF decomposition for R may be:

R1(ABCD) with Keys={AB, and CD}

R2(EHIJK) with keys={EK, and H}

R3(AEH) with keys={AE}

R4(DEK) with key={D}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

It is clear that R1, R2, R3, and R4 are in 3NF and there are no lost FDs. It has

been proved in (Biskup, et al. 1979) that if all FDs are preserved then presence of a

key of R guarantees a lossless join property. AB is key of scheme R therefore the

above decomposition has lossless join property. The above decomposition cannot be

decomposed any further because doing so will result in lost FDs. Hence, the above

decomposition is in DPNF.

Combining any of the above relation schemes will result in a decomposition

which is not in 3NF. Therefore, there is not a DPNF decomposition of R with fewer

than four relations. Hence, the above decomposition is in minimal DPNF.

The above decomposition is in DPNF and there is not any DPNF decomposition for

R with fewer relation schemes.

OPTIMAL DEPENDENCY PRESERVING NORMAL FORM: Let R be a relation scheme,

F be a set of FDs over R then a decomposition of R into R-j, R £ ,... ,Rn is in optimal

dependency preserving normal form if the following conditions are met:

1. The decomposition is in DPNF.

2. There is no decomposition of R which is in minimal DPNF and has fewer

attributes in it.

Example 2.7: Consider set of FDs, F and relation scheme of example 2.6.

The decomposition of example 2.6 is optimal but not minimal that is because R3

can have only attribute H instead of EK. Therefore the minimal DPNF decomposition

for R is:

R1 (ABCD) with Keys={AB, and CD}

R2(EHIJK) with keys={EK, and H}

R3(AEH) with keys ={AE}

R4(DH) with key={D>

The decomposition of example 2.6 is in minimal DPNF i.e. there is not any DPNF

decomposition for R with fewer relations in it. Therefore by replacing the sets with

equivalent sets having less number of attributes in them, will result in a

decomposition with fewest possible attributes. In the above decomposition EK is

replaced with its equivalent set H to yield an optimal DPNF decomposition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

REDUNDANT SCHEME: A scheme Rj is said to be redundant in a database if it can

be removed without losing the DPNF properties.

Example 2.8: Let F={A —> BE, BD —> C, C —> D, E —>C} be a set of FDs

over R(ABCDE).

A decomposition of R into R1(ABE), R2(BCD), R3(EC), and R4(CD) has a

redundant scheme R3.

NON REDUNDANT DATABASE: A database is non redundant if it does not contain

any redundant scheme.

Example 2.9: Consider example 2.8.

A decomposition of R into R1(ABE), R2(BCD), and R3(EC) has no redundant

schemes therefore it is a nonredundant database.

EQUIVALENCE CLASSES: Let F be a set of FDs and ep(X) be the set containing

those sets of attributes appearing on the left sides of any functional dependency of F

which are equivalent to X. Let Ep(X) be the set of all functional dependencies whose

left sides are in ep(X). The equivalence classes ep and Ep is defined as :

ep = { ep(X) : ep(X) * ep(Y) where X, Y is the set of attributes that appeared

on left side with X * Y }

Ep = { Ep(X) : ep(X) * ep(Y) where X, Y is the set of attributes that appeared

on left side with X * Y }

Example 2.10: Let F={A —> B, B —> A, C —> B, D —> B, CD —> E} be

a set of FDs over R(ABCDE).

ep={ ep(A)= ep(B)={A,B}, eF(C) ={C}, ep(D) ={D}, ep(CD) ={CD} } and

Ep={ Ep(A) = Ep(B) = { A --> B, B - > A }

Ep(C) = { C - > B }

Ep(D) = { D - > B }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

E f (CD) . { CD —> E } }.

COMPOUND FUNCTIONAL DEPENDENCY; Let R be a relation scheme and , X2, .

. .tXn be subsets of R, where Xj and Xj are equivalent for i, j = l...n , such that n > 1.

Let Y be the set of attributes which may or may not be empty. The compound

functional dependency is of the form (X-|, X2 Xn) — > Y, such that

intersection of Y with any Xj is empty and Xj —> Y is in F+ but Y -/-> Xj. Each of

the Xj is called a left set of the CFDy, Y is called the right set of CFDx-

Example 2.11: Let AB —> D and D —> ABCF.

Since AB and D are equivalent i.e AB derives D and vice versa.

Therefore it will result in the following CFD: (AB, D) —> CF.

ANNULAR COVER; The annular cover is a set of compound functional

dependencies such that the set of all the projections of Xj —> Y form a cover. If two

left sets Xj, and Xj are equivalent then both of them are in same CFD. The closure of

the annular cover is the closure of all the projections Xj —> Y.

Example 2.12: Let F= { A —> B, B —> AE, C —> D, D —> CF, AC —>

BD, BD —> ACF} be a set of FDs over R(ABCDEF).

The annular cover, G, for the above FDs may be G={(A,B) —> E, (C,D) —>

F, (AC.BD) — > F}.

NONREDUNDANT ANNULAR COVER: An annular cover G is nonredundant if no CFD

can be removed from G without altering the closure of G.

Example 2.13: Consider example 2.12.

In the annular cover G described in example 2.12 CFD (AC.BD) — > F is

redundant therefore the set G of CFD is not a non redundant annular cover. But

without CFD, (AC, BD) —> F, the set G is a nonredundant annular cover.

REDUCED ANNULAR COVER: Let G be a nonredundant annular cover. A CFD of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

G

(X-|, X2 , . . Xn) —> Y is reduced if the following are satisfied;

1) No Xj can be shifted to the right set without changing the closure of G.

2) No attribute of any of Xj can be shifted to the right set without changing

the closure of G.

3) No attribute from the left or the right sets of any CFD can be removed

without changing the closure of G.

If all of the CFDs in G are reduced then G is a reduced annular cover.

Example 2.14: Consider a set of FDs { AB —> CD, CD —> ABEFGH, BEF

—> AD, A —> C, B —> D, E - > F, H ~ > G }

After converting these FDs into CFDs we get the annular cover as: { (AB, CD,

BEF) — >GH, (A)—> C, (B) — > D, (E) - > F, (H) — > G }

But the above annular cover is not reduced. After shifting left sets to the right

set we get

{ (CD, BEF) —> AGH, (A)— > C, (B) - > D, (E) — > F, (H) - > G }

Still the attribute F in the set BEF is extraneous and can be discarded i.e there is

a need to check if any attribute is extraneous in any of the left sets. The new annular

cover, after discarding all extraneous attributes of left sets is :

{(CD, BE) —> AGH, (A)— > C, (B) —> D, (E) —> F, (H) —>G }

Now check if there are any extraneous attributes in the right set. Obviously G is

extraneous in the first CFD. Therefore the reduced annular cover is:

{(CD, BE) - > AH, (A)— > C, (B) — > D, (E) - > F , (H) - > G }.

KEY: Let R(A1, A2 An) be a scheme and {B1, B2 Bm} be a subset of

R. K(B1, B2 Bm) is called a key of R if ti(B1, B2, ... Bm) * tj(B1, B2, ... Bm)

whenever i * j.

Example 2.15: Let F={AB —> DE, E —> ABC} be a set of FDs over R(ABCDE).

{AB}, {E}, {ABC}, {ABE} are all some of the keys of R.

REDUNDANT KEY: A key is called a redundant key if a proper subset of it is also

a key.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

Example 2.16: Consider example 2.15.

{ABC}, {ABE} are both redundant keys of R whereas {AB} and {E} are not

redundant keys of R.

REDUCED KEY: A key is said to be reduced if no proper subset of it is a key.

Example 2.17: Consider example 2.15.

{AB}, and {E} are the only two reduced keys of R.

MINIMAL KEY: A key, K, of a relation scheme r(R) is said to be MINIMAL if

there is no key having smaller number of attributes than K. Note that a minimal key

is always a reduced key.

Example 2.18: Consider example 2.15.

{E} is the only minimal key of R.

KERNEL: A kernel is a set of attributes which do not appear on the right side of

any of the functional dependencies of a reduced cover of F.

Note that an attribute that does not appear on the right side of any FD in a

reduced cover of F, does not appear on the right side of any FD in any reduced cover of

F.

Note that kernel is a part of every key. This is due to the fact that no set of

attributes non-trivialy imply the kernel or parts of the kernel.

Example 2.19: Let F={A —> B, B —> DE, C —> B} be a set of FDs over

R(ABCDEH).

ACH is the kernel of R. This is because A and C appear only on the left side of FDs

whereas H did not take part in any FD.

NOTATIONS

The symbols below are used in this paper with the following meanings.

1. := - Assignment operator.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

2. » Equality Comparison.

3. U - Union of two sets.

4. £ - Subset of.

5. - Difference of two sets.

6. - - - > - Functional dependency also denoted as FD.

7. ==> Directly implied FD.

8. CFDX - Compound FD with left set Equivalent to X.

9. { } - Empty set.

10. * - Not equal to comparison.

11. card(S) Cardinality of the set S.

AiiA11cvj - Multivalued dependency. Also denoted as MVD.

A11A11CO - > - Strict Multivalued dependency also denoted as SMVD.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER III

OUTLINE AND DETAILED STEPS OF THE ALGORITHM

This work presents a design algorithm which accepts relation schemes, which

may or may not be universal, and sets of functional dependencies among the

attributes of each scheme. Some attributes of the scheme may not even take part in

any functional dependency. This algorithm is shown to be computed in polynomial

time with respect to the length of input. The objective of this algorithm is to

construct DPNF database schemes with the properties D1, D2, D3, and D4. The

algorithm is designed using top down organization. The top layer of the algorithm is

as follows:

ALGORITHM MakeDPNF:

FOR i = 1 to

STEP 0 :

STEP 1 :

STEP 2 :

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

STEP 8:

number of input schemes DO

Read in the relation scheme Uj and its functional dependencies, F.

Compute a reduced annular cover of the set of functional

dependencies.

Determine a set of relation schemes of the database satisfying

properties D1, D2, D4 and also compute some of the reduced

keys of each schemes so constructed.

Check whether any of the left sets is a key of Uj.

If yes, then do step 8 or else do step 5.

Determine a reduced key, K, of the original scheme U.

Add a new scheme composed of the attributes of K.

Remove strict multivalued dependencies from K, to obtain DPNF

decomposition.

Remove redundant relation schemes.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

Computing the Reduced Annular Cover

The step 1 consists of following substeps:

STEP 1.1 : Determine the equivalence classes ep and Ep.

STEP 1.2 : Determine the annular cover.

STEP 1.3: Determine reduced annular cover.

Determine Equivalence Classes

The equivalence classes ep and Ep are used to construct the compound functional

dependencies from the original functional dependencies.

The algorithm LINDERIVES determines if two sets of attribute X and Y form an

FD:

X —> Y in F+ . This algorithm is used in part to determine the equivalence

classes ep and Ep.

Algorithm LinDerives(F, X, Y)

In pu t: F - Set of functional dependencies, denoted by LS[i] — >
RS[i].

X, Y - Attribute Set.
Variables : R - Set containing all the attributes.

p - Number of functional dependencies.
LS[i] - Array of left sets where i = 1 ... p.
RS[i] - Array of right sets where i = 1 ... p.

Output : return true if X derives Y otherwise return false.
Body

for each attribute attr in R do
A[attr] := 0

for i = 1 to p do
count[i] := 0
for each attribute attr in LS[i] do

A [attr]> Afattr] U { i }
count[i] := countji] + 1

end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

end
Old := X; New := X
if (Y £ Old) then return(true)
While (New * { }) do

Choose an attribute attr from New
New := New - {attr}
for each i in A[attr] do

count[i] := count[i] -1
if (count[i] = 0) then

for each attribute ele in RS[i] do
if not(ele in Old) then

Old := Old U {ele}
New := New U {ele}
if (Y s Old) then return(true)

end
end

end
return(false)

The LinDerives algorithm is a modification of the algorithm LINCLOSURE in

(Beeri, et al. 1979). Unlike algorithm LINCLOSURE, LinDerivesO does not

necessarily compute the actual closure of X, therefore LinDerives is faster while it

has the same complexity. The algorithm is clearly correct. It is guaranteed to halt

as the number of attributes and number of functional dependencies are finite. The

complexity of the above algorithm in the worst case has been proved to be O(ap) in

(Beeri, et al. 1979), where p is the number of FDs and a is the number of

attributes in scheme.

The algorithm to determine equivalence classes uses the algorithm Equivalence.

The algorithm EquivalenceQ finds out if two sets of attributes X and Y are equivalent.

Algorithm Equivalence^, X , Y)

Input : F - set of functional dependencies.
O utput: If X and Y are equivalent then true else false.
Body :

if (LinDerives(F, X, Y) and LinDerives(F, Y, X)) then return(true)
else return(false).
end.

This algorithm is clearly correct. The complexity of this algorithm is based on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

the complexity of algorithm LinDerives i.e., O(ap).

The above algorithm finds out if two set are equivalent or not, whereas the

algorithm Determi_e&E() determines the equivalence classes for all left sets of the

set of FDs F. The algorithm to construct equivalence classes ep and Ep is as follows:

Algorithm Determi_e&E(F, ep, Ep)

Input : F - Cover of functional dependencies.
O utput: ep - Sets of equivalent attributes.

Ep - Sets of FDs of F with equivalent left sets.
Body

G := F
Until G is empty do

Select an FD X —> Y from G
eF(X) := { X }
Ep(X) := { X - > Y}
G := G - { X —> Y }
for each FD W —> U in G do

if (Equivalence^, X, W)) then
eF(X) := ep(X) U { W }
Ep(X) := Ep(X) U { W - > U }
G := G - { W ~ > U }

end
end

The above algorithm is indeed correct, by definition of equivalent classes. The

algorithm is guaranteed to halt because at least one functional dependency is removed

every iteration of the until loop. For Ith iteration of the until loop, the for loop will

be executed (p - i) + 1 times in the worst case, where 1 <= i <= p where p is number

of FDs in F. The complexity of the algorithm to determine ep(X) and Ep(X) for all

left hand sides of functional dependencies of a cover is 0 (ap3).

Example 3.1: Consider example 2.6. The set of equivalence classes ep and Ep are

given below.

e F={ eF(AB)= ep(CDI) = {AB, CDI}, eF(EK)= ep(H)= ep(HI) - {EK, H, HI},

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

ep(D) ={D}, ep(AE) = ep(AH) = {AE, AH} } and

Ep={ Ep(AB) = Ep(CDI) = { AB —> CDIEH, CDI —> ABE }

Ep(EK) = Ep(H) = Ep(HI) = { EK —> H, HI —> EJ, H —> IK }

Ep(D) = { D - > EHK }

Ep(AE) = Ep(AH) = { AE —> AH, AH - > AE } }.

Determine Annular Cover

The algorithm to determine the compound functional dependency and annular

cover is given below.

Algorithm Compound (ep, Ep, G)

Input : ep - Sets of equivalent attributes.
Ep • Sets of FDs with equivalent left sets.

O utput: G - Set of compound functional dependencies.
Body :

G := { }
for each member ep(W) of ep do

left_sets := left_attr := right_attr := {} ;
for each FD V - > X in Ep(W) do

left _attr := left _attr U V
right _attr := right _attr U X
Add V to the left_sets of the cfd C.

end
right _attr := right _attr - left _attr
right _set := right_attr
G : = G U cfd (left_sets) —> right_set

end

The algorithm is clearly correct and guaranteed to halt. The complexity of this

algorithm is O(p). The set of compound functional dependencies obtained is the

annular cover of the original set of functional dependencies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Compute Reduced and NonRedundant Annular Cover

In order to compute reduced annular cover; first, shiftable members of left set

are shifted to right; second, remove the extraneous attributes in every member of

left set; third step is to discard extraneous attributes of right set.

In order for us to construct a reduced annular cover we have to determine the

closure of a set of attributes using annular cover. The algorithm presented below

accepts two sets of attributes X , Y and an annular cover AnnCov. It returns a value of

true if X —> Y is in closure of AnnCov.

Algorithm Annderive(X, Y, AnnCov)

Input X is a set of attributes.
AnnCov is the Annular Cover.
Y is a set of attributes.

Output : if X derives Y then return TRUE else return FALSE
Body:
IF (X c Y)
then return(TRUE).
FOR each CFD, C, of AnnCov do

FOR each attribute A of C do
Right_set[C] := Right_set[C] U {A}.

FOR each left set Xj of C do
count[C,i] :=* 0
FOR every attribute A of Xj do

add (C,i) to list[A]
count[C,i] := count[C,i] + 1

Newel := X.
Oldcl := X.
While Oldcl * {} do

choose an attribute A of Oldcl
For each (C,i) in List[A] do

Count[C,i] := Count[C,i] -1 .
if Count[C,i] = 0 then

Exten := Right_set[C] - Newel.
Newel := Newel + Exten
Oldcl := Oldc + Exten
if (Y £ Newel)

then return(TRUE).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

Oldcl := Oldcl - {A}
return(FALSE)
end

The algorithm Annderive() is based on the correctness of Linclosure. The

complexity of the above algorithm is O(ap) i.e the complexity is linear to the input

length.

The example 2.6 is traced through the entire algorithm step by step.

Example 3.2 : The annular cover for equivalence classes formed in Example 3.1

is:

{ (AB, CDI) — > EH, (EK,H, HI) —> J, (D) — > EHK, (AE, AH) - > {} }.

The algorithm to rigth shift sets of shiftable left sets is described below:

Algorithm Shiftleftset(AnnCov)

Input : AnnCov is the Annular Cover.
Output : AnnCov with all shiftable Left sets shifted to right set.
Body:

For each CFD (X i , . . . , Xn) —> Y in AnnCov do
If n > 1 then

i = 1

Count := n
While (i <= n) and (Count >1) do

NC := AnnCov - CFDX
LeftSets := LeftSets of CFDX - Xj
RightSet := RightSet of CFDX U Xj
J := the first Set in LeftSets
NC := NC U { LeftSets - > R ightSet}
If AnnDerives (Xj, J, NC) then

CFDX := LeftSets —> RightSet
AnnCov := NC
Count := Count -1

i= i +1

AnnCov = NC

Example 3.3: The annular cover after ShiftleftsetQ is performed on the

annular cover in Example 3.2 is:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 0

{ (AB, CDI) —> EH, (EK, H) —> IJ, (D) —> EHK, (AE) —> H } The

attribute set HI is shifted in second CFD and AH is shifted in fourth CFD from left set

to the right set.

The algorithm for removing extraneous attributes in left sets is as follows:

Algorithm Removeleftattr(AnnCov)

Input : AnnCov is the Annular Cover.
Output : AnnCov with no extraneous attributes in Left sets.
Body:

For each CFD (X-j, . . . , Xn) —> Y in AnnCov do
For each Xi of CFD do

For each attribute A of Xi do
If Annderive(Xj-A, A, AnnCov) then

AnnCov := AnnCov - {(X-j Xn) —> Y)
AnnCov := AnnCov U { (X i , . . Xj-A Xn) —> Y)

end

The worst complexity of Removeleftattr() algorithm is 0 (a 2 p2).

Example 3.4: The annular cover after Removeleftattr() is performed on the

annular cover in Example 3.3 is given below:

{ (AB, CD) — > EH, (EK, H) - > IJ, (D) —> EHK, (AE) - > H } The

attribute I is removed in second CFD.

The algorithm to discard the extraneous attributes in the right set is:

Algorithm Rightreduce(AnnCov)

Input : AnnCov is the Annular Cover.
Output : AnnCov with all extraneous attributes of right set discarded.
Body:

For each CFD (X-j, . . . , Xn) —> Y in AnnCov do
For each attribute A of Y do

NC := AnnCov - { (X i Xn) - > Y)
NC :=NC U { (X i Xn) - > Y - A)

If Annderive(Xi ,A,NC) then
AnnCov := NC

end

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

The above algorithm is clearly correct and guaranteed to halt as the number of

left sets and the elements of right set are finite. The complexity of the above

algorithm is 0 (a2 p2).

Example 3.5: The annular cover after Rightreduce() is performed on the

annular cover in Example 3.4 is given below:

{ (AB, CD) — > {}, (EK, H) - > IJ, (D) —> EK, (AE) —> H } The

attribute sets EH was extraneous in the first CFD, and so was attribute H in third

CFD.

The algorithm that controls the sequence of steps to transform a set of FD's to a

reduced annular cover is:

Algorithm ReduceAnn(AnnCov)

Input AnnCov is the Annular Cover.
Output : Return reduced Annular cover of AnnCov.
Body:

Determi_e&E(F, ep, Ep)
Compound(ep, Ep, AnnCov)
shiftleftset(AnnCov)
Removeleftattr(AnnCov)
rightreduce(AnnCov)
remove CFDs of the form (X1) —> {}
end

The Complexity of the entire process of transforming a set of FD's to a reduced

nonredundant annular cover is 0 (max(ap3 , a2 p2)).

Example 3.6: The annular cover after ReduceAnn is performed on the set of FDs

F and relation scheme R of example 2.6 is given below.

The annular cover below is reduced.

{ (AB, CD) - > {}, (EK, H) - > IJ, (D) — > EK, (A E)-> H }.

The annular cover so obtained may not be unique. This is because of the

equivalence classes.

Example 3.7: The reduced annular cover after ReduceAnn is performed on the

set of FDs.F and relation scheme R in Example 2.6 may result in the following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 2

annular cover:

{ (AB, CD) —> {}, (EK, H) —> IJ, (D) — > H, (AE) —> {}) This is

because EK and H are equivalent to each other and one can be substituted for the

other.

Lemma 3.1: Let Xj be a left set in CFDX and let A be in Xj then

a) A is shiftable to the right iff Xj -A —> A.

b) A is extraneous iff (Xj -A) —> A or CFD is redundant.

proof: part a is obvious,

part b:

Case 1: CFD has more than one left set. Let CFD = (X-j, X2 , X3 Xn) —> Y.

If A is extraneous in say Xj then Xj -A becomes a left set which means (Xj-A)

— > X2

But also X2 —> Xj

i.e X2 —> A

hence (Xj-A) —> A.

Case 2: The CFD has only one left set X —> Y.

assume that A is extraneous in X.

let X-A = X-

then Annular Cover derives X '—> Y.

If X —> Y is not redundant then let B U Y such that B is not extraneous

and X —> B.

Since A is extraneous then X" —> B.

But if X* -/-> X then (X ')+ can be computed not using X —> Y.

Hence X‘ —> B is derived from FDs other than X —> Y.

But X —> X- .

Therefore B is extraneous which contradicts our assumption that it was not.

Hence, if A is extraneous in X then either X-A — > A or every attribute of Y

is extraneous.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

Lemma 3.2: The algorithm above produces a reduced annular cover.

Proof: Determi_e&E() finds all the equivalence classes of left sets. Compound()

takes the equivalence classes and forms CFDs out of FDs. Shiftleftset() shifts all

those left sets which are extraneous on left to right set. Removeleftattr() removes

all extraneous attributes of every left set. Whereas rightreducef) removes all

extraneous attributes from right set.

Determine the Relation Schemes

After obtaining a reduced annular cover the relation schemes are determined.

This is acomplished in two steps:

STEP 2.1 : Find the relation schemes of the database.

STEP 2.2 : Remove redundant relation schemes.

From the construction of the database it appears that the schemes obtained may

not be distinct, i.e. some of them can be a subset of the other which is observed in

((Beeri, et al. 1979), (Maier 1983), (Bernstein 1976)). This can be illustrated

by the following example.

Example 3.8: Let R = (C, S, Z) and the set of functional dependencies F = { Z

—> C, CS ~ > Z }.

The set F is left reduced. Transforming it into annular cover will result in:

(Z) —> C & (CS) - > Z

Thus the database consists of the following schemes:

R1(C, Z) with KU = (Z)

R2(C, S, Z) with K2 1 = { CS }

It is obvious that R1 is a subset of R2. Thus, there is no point in decomposing

the scheme R into R1 and R2. Here preservation of functional dependencies is

desired rather than the Boyce Codd Normal Form, in the line of the observations by

(Beeri, et al. 1979).

The database can be constructed by transforming each compound functional

dependency of the reduced annular cover into a relation scheme. The algorithm to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 4

obtain schemes of database is as follows:

Algorithm DataBase (G, DB)

Input : G - Reduced annular cover.
O utput: DB - Set of relation schemes in the database.

K - Two dimensional array where ky means j th key for i ^
scheme, i = 1 ... no. of schemes and j ■ 1 ... num_keys(i).

output the set of schemes along with contained FDs.
Body

i := j := m := 1

for each CFD in G do
let the ith CFD be (X1, X2 Xn) - > Y
DB(j) := X1 U X2 U U Xn U Y
Reduced Keys for DB(j) are X1 , X2f . . . , Xn where n £ 1

Kji := X1, Kj2 := X2 Kjn := Xn
FG) = { X! - > X2 U Y, X2 - > X3 Xn - > X! }
m := 1
found = false
While (m< j) and (not found) DO

if DBQ) £ DB(m) then
F(m) = FG)UF(m)
found := true

else if DB(m) s DBG) then
DB(m) = DBG)
Reduced Keys of DB(m) = Reduced Keys of DBG)
F(m) = F(m) U FG)
found:= true

else m := m+1

if (not found) then
j := j + 1

i := i +1

endfor
for i = 1 to no_schemes DO

print(DB(i))
print(Reduced_keys(i))
print(F(i))

endfor
end

The algorithm is clearly correct and guaranteed to halt as G is finite. The

schemes as well as some of the keys for each of the relation are determined in

polynomial time. The complexity of this algorithm is clearly the number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 5

compound functional dependencies which in the worst case is 0 (p2).

Note not all reduced keys of schemes are determined. For example :

Example 3.9: Let R(ABCD) be a scheme and let a set of functional dependencies,

F, be { AB — >CD, C —> AE, D ~ > BF}.

Resulting decomposition will be

R1(ABCD) K11=={ AB }

R2(ACE) K21 ={ C }

R3(BDF) K31 ={D}.

But R1 has two reduced keys {AB} and {CD}.

The decomposition resulting from the presented approach is not always in

optimal DPNF. This is due to the fact that attributes are checked for extraneousness

in random order. Consider the following example.

Example 3.10: Let R(ABCD) be relation scheme and a set of functional

dependecies, F, be { AB —> C, B —> D, D—> B, C —> BD }.

Two different reduced annular covers can result from F: AN1={(AB) —>C,

(B,D) — >{}, (C) — >B} and AN2 = {(AB) — > C, (B,D) — > {}, (C) —> D}.

Decomposition due to AN1 before step 8 will be R1(ABC), R2(BD) and R3(BC).

After step 8 it will be:

R1= (ABC) K11={ AB }

R2 = (BD) K2 1 ={B}, K2 2 ={D}

Which is in optimal DPNF. But the decomposition due to AN2 will be R1(ABC)

R2(BD) and R3(CD). After step 8 the decomposition will be:

R1(ABC) K-j -j ={ AB }

R2(BD) K2 i ={B}, K2 2 ={D}

R3(CD) K31 ={C}.

This decomposition is not in optimal DPNF.

A remark regarding subsets with respect to the superfluous attributes described

in (Ling, et al. 1981) is desired. Consider the following example.

Example 3.11: Let R(A, B, C, D, E, F) be a relation scheme and a set of

functional dependencies, F, be { AD —> B, B —> C, C —> D, AB —> E, AC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 6

—> F, E —> A }.

The above set of functional dependencies is reduced. The traditional approach

may generate the following :

R1(A, B, C, D, E, F) K-)-) = {A, B}, K1 2 = {A, C}, K1 3 = {A, D}.

R2(B, C) K2 -| = {B}.

R3(c, D) K3 1 = {C}.

R4 (A, E) K4 1 = {E}.

In (Ung, et al. 1981) it has been shown that C is superfluous attribute in R1

and therefore even if C is removed from R1 all the functional dependecies are

preserved. Therefore (Ling, et al. 1981) will obtain the following schemes:

R1-(A. B, D, E, F) KU = {A, B}, K12 = {A, D).

R2(B, C) K21 = {B}.

R3(C, D) K3 i = {C}.

R4(A, E) K41 = {E}.

As one can see, removal of R4 will not result in any lost FD because E —> A is

still contained in R 1 \

Therefore the method described here will result in the following decomposition.

R1-(A, B, D, E, F) K1 i = {A, B), K12 = {A, D}.

R2(B, C) K2 i = (B).

R3(C, D) K3 i ={C).

The method described is also preferred because while it generates lossless

decompositon along with no lost FDs, it provides a more optimal database scheme

with a smaller number of relation schemes. One does not have to worry about the

null values C may take as C is a prime attribute in R1.

The following text will show that the schemes constructed by algorithm

MakeDPNF satisfy properties D1, D2, D4.

Theorem 3. 1 : Let X —> A be in F+ then there exists a set of attributes Y such

that X —> Y and Y »»=> A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 7

Proof; If X does not directly imply A then there exists X-j such that X —> X i

and X-j —> A. Similarly if A is transitively depending on X-j then there exists a X2

such that X i —> X2 and X2 —> A. If any Xi <—> X then each Xj_i <—> Xj

which would mean that x ===> A to start with. This process must finish since F+ is

finite, then there is some Xj such that Xj ===> A and Xj -/-> X.

Theorem 3.2: Let Y ===> A then A is one of the attributes in CFDy of a reduced

annular cover.

Proof: Assume A is not in CFDy then A must be in some other CFD say CFDyi

such that Y1 is in Y+. If Y-j 0 Y+ and Y^ <-/-> Y then A is transitively dependent on

Y which contradicts the assumption that Y ===> A. If Y1 <—> Y then it is a

contradiction to the construction of annular cover.

Theorem 3.3: If A is a right attribute of CFDx then X ===> A.

Proof: Suppose there exists w in F s.t. X —> W, W -/-> X and W —> A. Let

W ‘ be s.t. W —> W* and W* ===> A. Thus by theorem 3.2 A is in CFDyy. then it

is extraneous in CFDx which contradicts our construction.

Corollary 3.1: If A is on the right side of some CFDx then there is no

decomposition of CFDx ‘n t0 CFDX-A and W —> A unless W contains a left set of

CFDx.

Proof: It follows from theorem 3.3.

Theorem 3.4: A decomposition of a CFDx into CFDx-A and W —> A will result

in a lost FD unless W —> X.

Proof: For attributes on the right side of CFDx the assertion follows from

corollary 3.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 8

If A is member of some left set of CFDx , say Y then we lose FDs Y —> X, since

Y has no extraneous attributes.

If Y —> X is not lost then W —> A is redundant because A would be in some

CFDW_ s.t. W" ===> A. But this means that A could have been removed from CFDX in

our construction.

Theorem 3.5: The schemes so constructed satisfy properties D1, D2, D4.

Proof: Since schemes are constructed by transforming CFDs into schemes all

left sets are Keys of the scheme and theorem 3.3 shows that no member of the right

set is transitively dependent on the left sets.

Due to the fact that reduced annular cover is used to construct schemes it is

obvious that all FDs are preserved.

Theorem 3.4 shows that the scheme conctructed out of reduced annular cover

cannot be decomposed further without losing FDs except for keybased decomposition

which is not desired.

Checking Lossless Join Property

In order to check for lossless join decomposition, one only needs to check if any

key of R is embeded in some scheme Rj. It has been proved in (Biskup, et al. 1979)

if all functional dependencies are preserved then presence of a key of R is sufficient

for lossless join decomposition. The algorithm to test for lossless join decomposition

in presence of functional dependencies is as follows:

Algorithm Lossless (F, DB, A)

Input : F - Reduced cover of functional dependencies.
DB - Set of relation schemes in the current database.
A * Attribute set.

O utput: If lossless then true else false.
Body :

For i = 1 to no_schemes do
If LinDerives(F,DB[i],R) then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

retum(TRUE)
return(false)
end

Thus the schemes so constructed are first checked for lossless decompostion, if

the decomposition is lossless then decomposition is done, otherwise add a new scheme

to make it lossless. Add a key of the original relation scheme as a new scheme, as it

makes it lossless decomposition.

Finding a Reduced Key of the Original Relation Scheme

A simple algorithm to compute a reduced key of a relation is as follows:

Algorithm GetKey(R, AnnCov, key)

Input : R - Set of all attributes of the relation scheme.
AnnCov - Reduced annular cover of functional dependencies.

Process: S - A key of the original relation scheme.
Subkey - Union of one member of left sets of each CFD

URightsets- Union of Right sets of all FDs.
ULeftsets - Union of left sets of all FDs.
Non_Key - The set of all attributes that appear only on the right.
Kernel - Set of attributes which are essential for any key.

Output: Key - One of the reduced keys of R.
Body :

Non_key := Urightsets - Uleftsets
Kernel := R - Urightsets
S := R - Nonkey
S' := S - Kernel
for each element A in S ' do

If AnnDerives(S- {A}, R, AnnCov) then
S := S - A

Key := S
end

The above algorihm obtains a reduced Key by removing extraneous attributes

from key S. Instead of checking for every attribute in S, check only those attributes

which are not part of the kernel and also appear in both Uleftsets and Urightset. The

complexity of this algorithm is based on the complexity of AnnDerives and is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

0 (a 2 p). This approach of obtaining a reduced key of the original relation is faster

than the one proposed in (Osborn, et al. 1978). This is because of the fact that here

the reduced cover rather than the original set of functional dependencies are

considered. To obtain a reduced key, pass to the above algorithm GetKey(R, AnnCov,

key). This is faster because Uleftsets and Urightsets don't have to be computed.

The computations, described above, for Kernel and key are faster than (Osborn,

et al. 1978) for two reasons: GetkeyO works with a reduced cover, secondly, it

tests a smaller number of attributes rather than the whole relation.

Adding New Relation Scheme for Lossless Decomposition

When the database is not lossless, add the reduced key obtained in step 5 as a

subscheme to yield a lossless decomposition. The algorithm is as follows:

Algorithm AddScheme (DB, Key)

Input : DB - Set of essential relation schemes in the database, obtained by
algorithm Database.

Key - Reduced Key of the original relation scheme.
O utput: DB - modified by adding a new scheme to it.
Body :

no_schemes := no_schemes + 1
DB(no_schemes) := Key
Kno_schemes,1 := Key
end

This algorithm is clearly correct as it is known that adding a reduced key gives

lossless decomposition ((Ullman 1980), pp. 242). However the new scheme added

may need some further decomposition.

Lemma 3.3: There are no FDs contained in the scheme added to obtain

losslessness of decomposition.

Proof: If scheme consisted of XYZ and Y —> Z then XY is a reduced key which

contradicts our construction of a reduced key.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

Corollary 3.2: Since the new scheme does not have any FD contained in it, one

cannot decompose it further for lossless decomposition on the basis of FDs. The only

decomposition possible for the newly added scheme is on the basis of SMVDs (and of

course JVDs which is not a concern here).

Decompositon of New Relation Scheme

The technique used in ((Fagin 1977), (Lien 1981), (Yuan, et al. 1987)) are

integrated and modified in order to obtain a DPNF decomposition. (Fagin 1977)

defines all the properties of the multivalued dependencies and also 4NF

decomposition. (Lien 1981) gives the concept of minimal 4NF covering and also

produces schemes which are not redundant. (Yuan, et al. 1987) gives an efficient

method to obtain reduced multivalued dependencies and also 4NF covering. However

obtaining a minimal 4NF covering is a complex process.

From Corollary 3.2, it follows that the only scheme to be considered for

decomposition is the new scheme which was obtained in step 6 . Let Q denote the

newly added scheme. We consider the set of multivalued dependencies, provided by

database designer, for this new scheme, Q. Let M be a set of multivalued dependencies

for the scheme Q. The algorithm below is based on (Yuan, et al. 1987). This

algorithm completes the construction of DPNF database.

Algorithm DPNF(Q, M, no, S)

Input : Q - Scheme under consideration.
M - A cover of multivalued dependencies.

Output: no • Number of schemes added.
S - Schemes modified i.e. S[1], S[2], .. S[no].

Body:
j := 1

SID > Q
for each MVD X W in M do

set : = X U W
for i = 1 to j do

if (set c S (i]) then
temp := S[i]
S[i] := set

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 2

j := j + 1
S[j] := temp - W

endif
endfor

endfor
no := j
end

It has been shown in (Yuan, et al. 1987) that the MVD covering produces

distinct and reduced database schemes. We now present an algorithm to organize the

schemes as follows:

Algorithm Organize(DB, M, no)

Set of schemes i.e. D B(1),... DB(no).
A cover of multivalued dependencies.
Number of schemes.
Schemes modified.
Number of schemes modified.

Input : DB
M
no

Output: DB
no

Body:
RemoveSmvds(DB(no), M, count, S)
DB(no) := S[1]
for j = 2 to count do

DB(no + j - 1) := SO]
endfor
no := no + count - 1

end

The above algorithm is guaranteed to halt and is clearly correct. However we

find that after decomposition we may get schemes which are subsets of other

schemes. This is shown in the following example.

Example 3.12: Let R = (A, B, C, D) and F = { AB —> C, D —> C }.

After transforming F to a reduced annular cover, we obtain the following

schemes:

R1 (A, B, C) with K j ̂ = {A, B)

R2 (D, C) with K2 i = {D}

The above schemes satisfy properties D1, D2 and D4. However the schemes

above do not have lossless decomposition. This is shown below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 3

I
a1 b1 c1 d1

a2 b1 c1 d2

a
a1 b1 c 1

a2 b1 c1 c1 d2

L2
c1 d1

Clearly r1 |X| r2 * r. So add a key ABD as a new scheme and which results in

the following schemes:

R1 (A, B, C) with K i 1 = {A, B}

R2 (D, C) with K21 = {D}

R3 (A, B, D) with K31 = {A, B, D}

let A — >—> B hold in R3. This will result in the following schemes:

R1 (A, B, C) with K-| 1 = {A, B}

R2 (D, C) with K2 1 = {D}

R3 (A, B) with K31 = {AB}

R4 (A, D) with K41 = {AD}

R3 is a subset of R1 and hence there is no point in considering R3. Discarding

R3 and reorganizing will result in the following schemes which are in DPNF and also

satisfy the properties D1 ... D4.

R1 (A, B, C) with K i 1 = {A, B}

R2 (D, C) with K21 = {D}

R3 (A, D) with K3 1 = {AD}.

Hence, finally remove the schemes which are subsets and obtain the schemes

which are in DPNF. DPNF database schemes are obtained in polynomial time.

Corollary 3.3: The schemes obtained by algorithm MakeDPNF are in DPNF.

Proof: Theorem 3.5 shows that decomposition resulting by algorithm MakeDPNF

satisfy properties D1, D2 and D4.

It has been shown in (Biskup, et al. 1979) that if all FDs are preserved then the

presence of a Key of R is sufficient for lossless join decomposition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 4

Since MakeDPNF preserves all FDs and the presence of at least one reduced key

of R is guaranteed, therefore MakeDPNF also satisfies property D3.

Hence the set of schemes obtained by MakeDPNF is always in DPNF.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER IV

DESIGN ENHANCEMENTS

The database constructed above is neither minimal nor optimal. Presented below

is an algorithm to obtain a more optimal design which is slower than the above

technique, but still good in terms of complexity. The near optimal design comes

from the fact that annular cover is not unique (refer example 3.10). Also, for

computing the key the order of discarding the attributes makes it near optimal,

rather than optimal. In addition, as was mentioned before, the algorithm MakeDPNF

does not find all of the keys of each scheme added.

The top down organization to obtain such a design is as follows:

FOR i = 1 to number of input schemes DO

STEP 0 : Read in a given relation scheme Uj and its functional dependencies, F.

STEP1: Compute the reduced annular cover of the set of functional

dependencies.

STEP 2 : Determine a set of relation schemes of the database satisfying

properties D1, D2, D4.

STEP 3 : Check whether any of the left sets is a key of Uj.

STEP 4 : If yes, then do step 8 or else do step 5.

STEP 5 : Determine a minimal key, K, of the original scheme Uj.

STEP 6 : Add a new scheme composed of attributes of the minimal key.

STEP 7: Remove strict multivalued dependencies from K to obtain DPNF

decomposition.

STEP 8 : Remove redundant schemes.

STEP 9: Find all reduced keys of Uj and of all the schemes.

Some steps from above are the same as the previous design.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 6

Computing All the Keys for each Scheme

Sometimes, not all of the reduced keys for the subschemes are found. This can be

illustrated by the example 3.8 considered before.

The set F is left reduced. Transforming F into annular cover we obtain:

(Z) —> C & (CS) —> Z

Thus the database consists of the following schemes:

R1(C, S, Z) with K-m = { CS }

However, ZS is also a reduced key for subscheme R2 which is not obtained.

In order to obtain all of the reduced keys for each subscheme, similar concepts

from the algorithm of (Osborn, et al. 1978) are applied. The algorithm is as

follows:

Algorithm AIIKeys(F, DB, K)

Input : F - Set of functional dependencies which are reduced.
DB - Set of essential relation schemes for the data base.

K - Two dimensional array and each array is a set of attributes where
kjj means jth reduced key for ith scheme. 1 £ i £ no. of schemes
and 1 <, j £ num_keys(i).

O utput: K modified for each scheme.
Body:

for i = 1 to no_schemes do
n := num_keys(i)
Ks : = { K h Ki n)
for each element say Key in Ks do

for each FD X —> Y in F do
if ((Key - Y) * Key) and (X £ DB(i))) then

temp := X U (Key - Y)
dup := false
j := 1
While ((not dup) and (j <= n)) do

if (Kjj £ temp) then dup := true
j := j + 1

end
if (not dup) then

call GetKey(DB(i), F, temp)
n := n + 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 7

Kjn := temp

Ks := Ks U {Kjn}
end

end
end
num_keys(i) := n

end

This algorithm is correct and its complexity is determined to be bounded by a

polynomial in the number of keys, functional dependencies and number of attributes

of the relation scheme (Osborn, et al. 1978), for each of the subschemes under

consideration. So all of the candidate keys for each subscheme are discovered.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER V

COMPLEXITY AND EXAMPLE

The complexity of obtaining the DPNF database is 0 (a 2 p4) where a is the

number of attributes of original relation scheme and p is the number of functional

dependencies. The algorithm presented here is compact and considers all of the

properties for the construction of database.

Trace the whole algorithm with an example.

Example 5.1: Let R(A, B, C, D, E, H, I, J, K, L, M, N, P) and set of functional

dependencies F={ ABM —> CDEJKL, B —> M, D —> BJ, N —> PH, NH —>

I, P — > H, P —> I, JKL —> ABM }.

First step in finding annular cover is to compute equivalence classes, ep and Ep.

The ep and Ep classes for F are:

ep= { ep(ABM)= ep(JKL)={ABM, JKL},

ep(B)={B} ,

ep(D)={D},

ep(N)= ep(NH)={N, NH},

e F(P)={P} }

Ep={ Ep(ABM)= Ep(JKL)={ ABM — > CDEJKL, JKL —>ABM},

Ep(B)=.{ B ---> M},

Ep(D)={ D - > BJ},

Ep(N)= Ep(NH)={ N — > PH, NH —> I },

Ep(P)={ P - > I, P - > H } }

Once equivalence classes are computed, then an annular cover can be formed for

F. Let G be annular cover of F.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

G={ (ABM, JKL) — > CDE, (B) — > M, (D) — > BJ, (N, NH) — > PI,

(P) - > HI }

After shifting shiftable left sets to the right, we obtain the following annular

cover:

G={ (ABM, JKL) - > CDE, (B) — > M, (D) — > BJ, (N) — > HIP, (P)

— > HI }

We find that M is extraneous in left set ABM of CFD (ABM, JKL) —> CDE.

After discarding all extraneous attributes in members of left sets of all CFDs we get

the following:

G={ (AB, JKL) —> CDE, (B) — > M, (D) —> BJ, (N) —> HIP, (P)

— > HI }

The final step in obtaining reduced annular cover is to remove all extraneous

attributes from right sets and discard CFDs of the form (x) —> (}. It is obvious

that HI can be discarded from CFD (N) —> HIP without altering the closure of F or

G. Therefore, the reduced annular obtained is :

G={ (AB, JKL) — > CDE, (B) — > M, (D) - > BJ, (N) — > P, (P)

— > HI }

Once a reduced annular cover is computed, then it can be used to generate

decompositions by translating all CFDs into relation schemes. After transforming

CFDs into relation schemes we obtain the following decomposition:

FU(ABCDEJKL) K ^ - tA B) , K1 2 =(JKL)

R2(BM) K2 1 =(B)

R3(BDJ) K3 1 »(D)

R4(NP) K4 1 =(N)

R5(PHI) K51={P}

But R3 is a subset of R1 i.e R3 is redundant, therefore, discarding it will not

result in any lost FD. Hence, the new decomposition is:

RI(ABCDEJKL) K-j 1 ={AB}, K1 2 =(JKL)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 0

R2(BM) K2 1 ={B}

R3(NP) K3 1 ={N}

R4(PHI) K41={P}

The decomposition above is in 3NF and also satisfies propeties D1 , D2, and D4.

Since neither of the decomposed schemes above contain a key of R, it is not a lossless

decomposition. We need to add a key of R to the decomposition as a scheme. The

reduced key of R found by Getkey algorithm is {JKLN}. The resulting decomposition is

given below:

RI(ABCDEJKL) K1 1 ={AB}(K1 2 ={JKL}

R2(BM) K2 1 ={B}

R3(NP) K31 ={N}

R4(PHI) K41={P}

R5(JKLN) K5 1 ={JKLN}

Suppose J —>—> L holds in R5 then R5 needs to be further decomposed and

the result will be:

RI(ABCDEJKL) K-j - j^AB}, K1 2 ={JKL}

R2(BM) K2 1 ={B}

R3(NP) K3 1 ={N}

R4(PHI) K41={P}

R5(JKN) K5 1 ={JKN}

R6 (JL) K6 1 _ {JL}

But R6 is redundant; therefore, the new and final decomposition will be the

following:

RI(ABCDEJKL) K-| 1 ={AB}, K1 2 ={JKL}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

R2(BM) K21={B}

R3(NP) K31={N}

R4(PHI) K41={P }

R5(JKN) K51={JKN}

The above decomposition is in DPNF and satisfies properties D1, D2, D3 and D4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER VI

CONCLUSION

The goal was to efficiently construct a database satisfying all the properties D1,

D2, D3 and D4 in chapter II. A new normal form, Dependency Preserving Normal

Form, which is superior to 3NF is introduced. Only functional and multivalued

dependencies are considered for such a construction of the database. The algorithm

described produces DPNF and is faster and simpler than the earlier approaches to

find 3NF, BCNF or 4NF. It also produces a more optimal design.

The new normal form DPNF, which is presented here, is stronger than 3NF but

weaker than 4NF. DPNF guarantees a lossless decomposition. All decompositions of

DPNF are in 3NF. DPNF preserves all functional dependencies. It yields a better

decomposition by discarding some of the redundant schemes and also by using CFDs as

a way of combining two schemes whose keys are equivalent. DPNF decomposition is

obtained in polynomial time.

The algorithm to produce DPNF decomposition uses a cover of FDs to produce a

reduced annular cover consisting of compound functional dependencies. The

approach to find the reduced annular cover is faster than the traditional methods. It

uses Linderives and Annderives which are faster than linclosure. Instead of

computing left reduced cover, right reduced cover, reduced cover, and then forming

the annular cover, the presented approach uses the original cover of FDs to form

annular cover. The database is constructed by transforming each compound

functional dependency of the reduced annular cover into a relation scheme, with each

left set of that compound functional dependency being a key for that scheme. It is

shown with examples that sometimes all of the keys for some subschemes are not

discovered. Some improvements are made to the algorithm given in (Osborn, et al.

1978) to find all of the keys for each subscheme of the database. However it has

been proved (Osborn, et al. 1978) that to determine all keys of cardinality m of a

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 3

relation scheme is NP-Complete.

It also removes schemes that happen to be subsets of other schemes. The

redundancy happens because of the fact that some functional dependencies take part in

more than one relation. The schemes whose superset exists are redundant and

therefore are not needed in the decomposition.

The schemes produced by this approach may be in Boyce Codd Normal form.

However it has been shown in (Beeri, et al. 1979) that it is NP-Complete just to

determine whether a relation scheme is in Boyce Codd Normal form. It is well known

that Boyce Codd Normal form does not always preserve functional dependencies. For

this reason DPNF is preferred over BCNF.

If the subschemes do not have the lossless join property then it has been shown

in (Biskup, et al. 1979) that a key is needed. Two approaches are used to find a key

of the original relation scheme. One method is faster but it does not guarantee

optimal DPNF. The second approach guarantees the minimal key but it is slower.

The fact is, if we have a minimal key then we can have a relation scheme with fewer

attributes.

The algorithm outputs every scheme with FDs that are contained in it along with

some of the corresponding keys.

The document notes earlier drawbacks and compares the presented algorithm

with other approaches. The complexities at each stage are also determined. Also, for

simplicity and clarity, an example has been traced through the whole algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX

IMPLEMENTATION OF THE ALGORITHM

The program to obtain a DPNF decomposition is given below. I f a new

scheme is added to the decomposition to obtain a lossless jo in property,

then th is program w il l not decompose on the basis of MVDs.

* This program takes re la tion scheme as input which may or may not be *
* Universal. I t is also supplied with functional dependencies which *
* specify the re la tio n among the a ttr ib u te s . The program f i r s t determines *
* equivalence classes i .e . a l l the f.ds whose le f t sides are equivalent. *
* Now we convert each set of f .d with equivalent le f t sets in to compound *
* functional dependencies. This co llec tion of CFDs forms an annular cover.*
* The annular cover is then converted into reduced annular cover. Each *
* cfd is then converted into a re la tio n scheme with a l l of cfd a ttrib u tes *
* being a ttrib u tes of the re la tio n scheme and le f t sets form reduced keys.*
* This approach is due to synthesis. So we obtain a set of re la tio n scheme*
* from o rig in a l scheme to s ta rt w ith. Some of the schemes may be subset of*
* the other schemes therefore those schemes which have superset are not *
* needed. These schemes are discarded. The schemes obtained may not have *
* lossless jo in property, therefore a check is made to see i f schemes have*
* th is property. I f i t is then we are done otherwise we determine one of *
* reduced keys of the o rig ina l scheme. The reduced key is added to the set*
* of decomposed schemes as a new scheme. *
* F in a lly the decomposed schemes are printed along with some of th e ir *
* reduced keys and a l l of the FDs contained in them. *
i t *)

PROGRAM c f(in p u t, inp, output, out);

* Constant declarations *
*)

CONST

mx_attr = 20; (Maximum number of a ttribu tes)
mx_length = 20; { Maximum length of each a ttrib u te }
mx_fds = 25; { Maximum number of fds }

* Type declarations *
*)

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

TYPE
marker_set
a ttr_set
fd_set
nametp
a ttr_ a r
fd rec

functional
right_ar
equi_set

cfd d

annular
count_d
lis t_ d
in t_ar
key ar

set of ' ' . . { Keeping track of endmarker }
set of 0 . . mx_attr; { Set of a ttrib u tes }
set of 1 . . mx_fds; { Set of f.ds }
string[mx_length]; { a ttr ib u te name }
a rray [1 . .mx_attrj of nametp; { array of a ttr ib u te names }
RECORD { an f .d with le f t containing a l l the }

le f t , { le f t a ttribu tes of i t and righ t the }
righ t : a ttr_ se t; { righ t a ttribu tes of i t . }

END;
array [1 . ,mx_fds] of fd_rec; { array of f.d s }
array[l..m x_fds] of a ttr_se t;
array[l..m x_fds] of fd_set; { contains f.ds whose le f t }

{ sides are equivalent }
RECORD

card : integer;
Lset : right_ar;
Rset : a ttr_ se t;

END;
arrayfl..m x_fds] of cfd_d;
array[l..m x_fds, l..m x_fds] of integer;
array [1 . .mx_attr, l..m x_fds] of integer;
array [1 . .mx_attr] of integer;
array[l..m x fds] of integer;

* Variable declarations *
★ a *)

VAR

inp, out Text;
inpf_name,
outf_name" Nametp;
no_fd Integer;
a ttrb a ttr_ar;
fd functional;
Pf>
equi equi_set;
e _ le ft ,
e_right,
clos,
re l right_ar;
R,
rkey a ttr_se t;
no_schemes,
ecounter,
probl_no integer; {
keys key_ar;
count count_d;
l i s t l ,
l is t2 l i s t d;

{ input f i l e and output f i l e }
{ Holds name of input f i l e .)
{ Holds name of output f i l e . }
{ number of f.ds read }

{ array for holding pointer to contained cfds. }

{ keeps a pointer to cfd that holds reduced keys.)
{ count of a ttrib u tes not counted for in cfd }
{ l i s t used in annderive fo r pointer to cfds }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

cfd : annular; { array for annular cover)

* In i t ia l i z e A ll the variables *

procedure in i t i a l i z e _ a l l (var F :functional; var a t tr :a tt r_ a r ; var equi:
equi_set; var e _ le ft , e_right, d b :rig h t_a r);

{ This procedure in it ia l iz e s a l l the variables used, to empty)

VAR
x : in teger;

BEGIN
for x := 1 to mx_fds do
BEGIN

F [x] . le f t
F [x].r ig h t
equi[x]
e _ le ft[x]
e_right[x]
re l[x] := [];

END;
for x := 1 to mx_attr do

a t tr [x] := " ;
END;

(*
* Prin t A ttrib u te Set *
* * * * * * * * * * ★ * ★ *)

procedure p r in t_ a t_ s e t(var out : te x t; a_set : a ttr_se t; a t t r : a ttr_ a r);

{ This procedure converts each integer in to appropriate a ttr ib u te name from
the set which is passed. I t then p rin ts the a ttr ib u te . }

VAR
x : in teger;

BEGIN
i f (a_set <> []) then

fo r x := 1 to mx_attr do
i f (x in a_set) then
BEGIN

w rite (ou t, a t t r [x]) ;
w rite (ou t, ' ') ;

END;
END;

(*

* P rin t Functional Dependency *
*)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

procedure prin t_fd_set (var out : tex t; f : functional; no_fd : integer;
a t t r ; a t t r_ a r) ;

{ This procedure p rin ts each f .d . from the set of f.ds in the proper order }

VAR
x, cou : in teger;

BEGIN
w rite ln (o u t);
w rite ln (o u t, ' ':1 0 , ' Functional Dependencies (F.D.) are : ') ;
w rite ln (out, ' ' : 10, ' -- ') ;
cou := 1;
for x := 1 to no_fd do

i f (f [x] . l e f t <> []) then
BEGIN

w rite (o u t, ' ':1 0) ;
i f (cou <= 9) then w rite(out, ' ') ;
w rite (o u t, cou, ') ') ;
prin t_at_set(o u t, f [x] . l e f t , a t t r) ;
w rite (o u t, ' — > ') ;
prin t_at_se t(o u t, f [x] .r ig h t , a t t r) ;
w rite ln (o u t); w rite ln (o u t);
cou := cou + 1;

END;
END;

* Print C .f.d . *

procedure pr_cfds(var o u t:text; cfd:annular; ecounter:integer; a t t rb :a t t r _ a r) ;

{ This procedure p rin ts compound functional dependency by checking the }
{ equivalence classes.)

VAR
i , x : in teger;

BEGIN
i := 1;
w rite ln (o u t);
w rite ln (o u t,' ':1 0 , ' Compound Functional Dependencies are : ') ;
w rite ln (o u t,' ' : 10, ' -- — ') ;
for i := 1 to ecounter do
BEGIN

w rite ln (o u t); w rite (ou t, ' ':1 0) ;
i f (i <= 9) then w rite(out, ' ') ;
w rite (ou t, i , ') (') ;
for x := 1 to c fd [i] .c a rd do
BEGIN

prin t_at_set (out, c f d [i] . ls e t [x] , a t t r b) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

i f (x < c fd [i] .c a rd) then w rite (o u t / , ')
else w rite (ou t, ') ') ;

END;
w rite (ou t, ' ---- > ') ;
i f (c fd [i] .rs e t <> []) then

prin t_at_set(out, c fd [i] .r s e t , attrb)
else

w rite (o u t / { } ') ;
w rite ln (o u t);

END;
END;

* Heading for the t i t l e *
★ ★ a *)

procedure heading(var ou t:text; s:nametp; var probl_no: in teg er);

{ This procedure prin ts the t i t l e with name passed as a parameter.)

BEGIN
w rite ln (o u t, chr(27), ch r(12));
w rite ln (o u t); w rite ln (o u t);
w rite ln (o u t / ':2 0 , 'The Input F ile is : ' , s) ;
w rite ln (o u t / ' : 20, ' ------------------------------ ') ;
w r ite ln (o u t); w rite ln (o u t);
w rite ln (o u t, ' ';2 0 , 'Data Set No. : ',p robl_no);
w rite ln (o u t, ' ':2 0 , ' -------------------') ;
probl_no := probl_no + 1;

END;

^ *
* Read the f i l e names for input and output *
★ ★ i t *)

procedure read_file_name(var i n f i l , o u t f i l : te x t; var i_name, o_name: nametp);

{ This procedure returns the f i l e variable used for both reading and w riting }
{ I t also checks the error condition lik e whether f i l e exists or not.)

VAR
ch : char;
correct : boolean;

BEGIN
clrscr;
w rite ln ; w rite ln ; correct := fa lse;
while (not correct)
BEGIN

w rite ln ;
w r ite (' Enter the name of f i l e containing fds : ') ;
read(i_name); w rite ln ;
a s s ig n (in fil, i_name);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

{$1-} reset (in f i l) ($ I+);
i f (IORESULT = 0) then correct := true
else w r ite ln ('F ile cannot be opened . . . Try again . . . ') ;

END;
w rite ln ;
w rite (' Enter the name of output f i l e : ') ;
read(o_name);
as s ig n (o u tfil, o_name);
r e w r ite (o u t f i l) ;

END;

^ * * * * * * * * * *
* X Closure *

procedure xclosure(F :functional; no_fds:integer; le f t :a t t r _ s e t ;
var lc lo s u re :a ttr_ s e t);

{ This procedure computes the closure of set of a ttr ib u te s .)

VAR
oldc, newc : a ttr_se t;
x : integer;

BEGIN
oldc := [];
newc := le f t ;
while (newc <> oldc) do
BEGIN

oldc := newc;
fo r x := 1 to no_fds do

i f (F [x] . le f t <> []) then
i f (newc >= F [x] . le f t) then newc := newc + F [x].r ig h t;

END;
lclosure := newc;

END;

* Derives *
*)

function derives(F:functional; no_fds: integer; le f t , r ig h t:a t tr_ s e t) :boolean;

{ This function returns true i f le f t derives righ t otherwise fa lse)

VAR
lclosure : a ttr_se t;

BEGIN
xclosure(F, no_fds, le f t , lc lo su re);
i f (r ig h t <= lclosure) then derives := true
else derives := fa lse;

END;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

^ *
* Equivalent *

function equivalent! F:functional; no_fds:integer; x, y :a ttr_se t) : boolean;

{ A function which returns true i f two sets are equivalent otherwise fa lse . }

BEGIN
equivalent := fa lse;
i f (derives(F, no_fds, x, y) and derives(F, no_fds, y, x)) then

equivalent := true;
END;

^ *
* Form Annular *

procedure form_annular(F:functional; no_fds:integer; var equi:equi_set;
var e _ le ft , e_ rig h t:rig h t_ar; var ecounter :in teg er);

{ This procedure determines a l l the equivalence classes of the le f t sides }
{ and using these classes i t forms annular cover. }

VAR
cnt, x, y : integer;
ebuf : fd_set;

BEGIN
ebuf := [] ; ecounter := 0;
for x := 1 to mx_fds do
BEGIN

eqgi[x] := [];
e _ le ft[x] := [];
e_right[x] := [j;

END;
for x := 1 to no_fds do

i f (F [x] . le f t <> []) then
i f not (x in ebuf) then
BEGIN

cnt := 1;
ecounter := ecounter + 1;
c fd [ecounter].lse t[cn t] := F [x] . le f t ;
equi[ecounter] := [x];
ebuf := ebuf + [x] ;
e_left[ecounter] : = F [x] . le f t ;
e_right[ecounter] := F [x] .r ig h t;
fo r y := x + 1 to no_fds do

i f (F [y] . le f t <> []) and (not (y in ebuf)) then
i f (e q u iv a le n t(F ,n o _ fd s ,F [x] .le ft ,F [y].le ft)) then
BEGIN

cnt := cnt+ 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

cfd [ecounter].lse t[cn t] := F [y] . le f t ;
equi[ecounter] := equi[ecounter] + [y];
ebuf ebuf + [y] ;
e_left[ecounter] := e_left[ecounter] + F [y] . le f t ;
e_right[ecounter] := e_right[ecounter]+ F [y].r ig h t;

END;
e_right[ecounter] := e_right[ecounter] - e_ le ft[ec o u n te r];
cfd[ecounter].rset := e_right[ecounter];
cfd[ecounter]. lset[cnt+1] := [];
cfd[ecounter].card := cnt;

END;
END;

^ * *'*
* Put In L ist *
★ ★ ★ ★ ★ ★ a *)

procedure p u tin lis t(v a r 11, 12 :lis t_ d ; A, x, y :in teger);

VAR
i : integer;

BEGIN
i := 1;
while (11[A ,i] <> 0) do

i := i+1;
11 [A ,i] := x; 11 [A, i+1] := 0;
12 [A, i] := y; 12 [A, i+1] := 0;

END;

* Ann Derives *

function Annderives (cfd: annular; le f t , r ig h t : a ttr_set) : boolean;

{ This returns true i f le f t derives rig h t using annular cover of cfds. }

VAR
der : boolean;
A, c, i , j , r , x, y : integer;
newc, oldc, ext : a ttr_set;

BEGIN
der := fa lse;
for x := 1 to mx_attr do

l i s t l [X , 1] := 0;
i f (righ t <= le f t) then

der := true
else

for x := 1 to ecounter do
With cfd[x] do
BEGIN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

clos[x] := rset; i := 1; j := 1;
w h ile (i <= card) do
BEGIN

while (ls e t [j] = []) do j:= j+1;
count[x, j] := 0; clos[x] := clos[x] + ls e t [j];
for A := 1 to mx_attr do

i f (A in ls e t [j]) then
BEGIN

count [x, j] := count [x, j] + 1;
p u t in l is t (l is t l , l is t2 , A, x, j) ;

END;
i := i +1;
j :» j + i;

END;
END;

newc := le f t ;
i f der then

oldc := []
else

oldc := le f t ;
while (oldc <> []) do
BEGIN

for A := 1 to mx_attr do
i f (A in oldc) then
BEGIN

i := 1;
while (l i s t l [A , i) <> 0) do
BEGIN

c := l i s t l [A , i) ; r := l is t2 [A , i] ;
c o u n t[c ,r]:= count[c,r] -1;
i f (count[c,r] = 0) then
BEGIN

ext := clos[c] - newc;
newc := newc + ext;
oldc :«= oldc + ext;
i f (righ t <= newc) then
BEGIN

der := true;
oldc := [];

END;
END;
i := i +1;

END;
oldc := oldc -[A];

END;
END;
annderives := der;

END;

(*

* Empty Cfd *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

* j

procedure Empty_Cfd(var c f : cfd_d);

{ This procedure empties a l l entries of the cfd. }

VAR
i , j : integer;

BEGIN
i ;= 1; j := 1;
while (i <= cf.card) do
BEGIN

i f (c f . ls e t [j] <> []) then
BEGIN

c f .ls e t [j] := [];
i := i +1;

END;
j := j +1;

END;
c f.rs e t := [];
cf.card := 0;

END;

* Move Cfd *
* * j

procedure Move_Cfd(var c f l , cf2: cfd_d);

(This procedure moves a cfd from one location to other. }

VAR
i , j : integer;

BEGIN
i := 1; j := 1;
while (i <= c fl.ca rd) do
BEGIN

i f (c f l . ls e t [j] <> [}) then
BEGIN

c f2 .1 s e t[j] := c f l . l s e t [j] ;
c f l . l s e t [j] := [];
i := i +1;

END;
j := j +1;

END;
c f2 .rs e t := c f l .r s e t ; c f l .rs e t := [];
cf2.card := c fl.c a rd ; c fl.c a rd := 0;

END;

(*

* Get Right Set *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

procedure g e tr ig h ts e t(x : integer; temp: a ttr_ se t; Var f in a l: a t tr_ s e t) ;

{ This function finds the right set of a given cfd a fte r one of the le f t }
{ sets is removed or changed. }
VAR

i , j : integer;
le f t : a ttr_ s e t;

BEGIN
with cfd[x] do
BEGIN

i := 1; j := 1;
while (i <= card) do
BEGIN

i f (ls e t [j] <> []) then
BEGIN

i:= i +1;
le f t := le f t + ls e t [j] ;

END;
j : = j +1;

END;
temp := rset + temp;
f in a l := temp - le f t ;

END;
END;

| *

* ArrangeLSets *
* ★ *)

procedure arrangelsets(var cfd: annular; num:integer; c n t:in te g e r);

{ This procedure puts the le f t sets of cfds in sequence.)

VAR
i , j : integer;

BEGIN
i := 1; j :=1;
while (i <= cnt) do
BEGIN

w h ile (c fd [num].lse t[j] = []) do j:= j+1;
i f (j > i) then
BEGIN

cfd [n um].lse t[i] := c fd [n u m].ls e t[j];
cfd[num] . ls e t [j] := [] ;

END;
i := i +1;
j := j +1;

END;
cfd[num].card := cnt;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

END;

^ *
* S h ift Left Sets *

procedure sh ift_ le ft_se ts (V ar cfd: annular; Var ecounter: in teger);

{ This procedure sh ifts extraneous le f t sets to the r ig t set.)

VAR
x, cnt, i , j : integer;
temp : a ttr_se t;

BEGIN
for x := 1 to ecounter do

i f c fd [x].ca rd > 1 then
With cfd[x] do
BEGIN

cnt := card; i :=2;
while (i <= cnt) and (card > 1) do
BEGIN

temp := ls e t [i] ; ls e t [i] := [] ; card := card -1 ;
i f annderives(cfd,temp, ls e t [1]) then

getrightset(X,tem p, rset)
else

BEGIN
card := card +1;
l s e t [i] := temp;

END;
i := i +1;

END;
i f (card > 1) then
BEGIN

temp := ls e t [l] ; i :=2;
ls e t [l] := []; card := card -1;
while (ls e t [i] = []) do i := i +1;
i f an nderives(cfd ,tem p ,lset[i]) then

getrightset(X , temp, rset)
else

BEGIN
card := card +1;
ls e t [l] := temp;

END;
END;
i f (card < cnt) then arrangelsets(cfd ,X ,card);

END;
END;

| *
* Remove Left A ttrs *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

procedure Remove_left_attrs(Var cfd: annular; Var ecounter: in teger);

{ This procedure discards extraneous a ttrib u tes in le f t sets. }

VAR
x, y, z : in teger;

BEGIN
for x := 1 to ecounter do

with cfd[x] do
for y := 1 to card do

for Z:= 1 to mx_attr do
i f (z in ls e t[y]) then

i f a n n d e riv e s (c fd ,ls e t[y]-[z], [z]) then
ls e t [y] := lse t [y] - [z] ;

END;

j *

* Right Reduce *
*)

procedure Right_reduce(Var cfd: annular; Var ecounter: in teger);

(This procedure discards the extraneous a ttrib u tes from the righ t sets. }

VAR
i , x, z : in teger;

BEGIN
for x := 1 to ecounter do

for z := 1 to mx_attr do
i f (z in c fd [x].rs e t) then
BEGIN

c fd [x].rs e t := c fd [x].rs e t - [z];
i f (not an n d erives (c fd ,c fd [x].ls e t[1], [z])) then

c fd [x].rs e t := c fd [x].rs e t + [z];
END;

END;

(*

* Reduce Annular *
*)

procedure Reduce_Annular(var out: tex t; var cfd: annular; var ecounter:integer;
F: functional; no_fds: integer; var equi: equi_set;
var e _ le ft , e_right: r ig h t_ a r);

{ This procedure computes the reduced annular cover from fds.)

VAR
x, cnt, i , j : integer;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

BEGIN
form_annular(F, no_fds, equi, e _ le ft , e_right, ecounter);
s h ift_ le ft_ s e ts (c fd , ecounter);
rem ove_left_attrs(cfd, ecounter);
right_reduce(cfd, ecounter);
cnt := 0;
for x: = 1 to ecounter do

i f (c fd [x].card <= 1) and (c fd [x].rs e t = []) then
em pty_cfd(cfd[x])

else
cnt := cnt +1;

ecounter := cnt; i := 1; j:= 1;
while (i <= cnt) do
BEGIN

w h ile (c fd [j] .card = 0) do j:= j+1;
i f (j > i) then

m ove_cfd(cfd[j], c fd [i j) ;
i := i +1;
j := j + i;

END;
pr_cfds(out,cfd,ecounter, a t t rb) ;

END;

* Reduced Key *

procedure reduced_key(var key: a ttr_se t; cfd: annular;
R: a ttr_se t; ecounter: in te g e r);

(This procedure determines the primary key by removing an a ttrib u te at a)
{ time (i f i t can) from a key.)

VAR
A, x, i : integer;
Uright, U le ft , p,
ronly, kernel, S : a ttr_se t;

BEGIN
for x := 1 to ecounter do

with cfd[x] do
BEGIN

Uright := Uright + rset;
i f (card = 1) then U left := U le ft + ls e t [l]
else

fo r i := 1 to card do
BEGIN

U le ft := U le ft + ls e t [i] ;
Uright := Uright + ls e t [i] ;

END;
END;

ronly := Uright - U le ft;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

kernel := R - Uright;
S := R - ronly;
P ;= s - kernel;
for A := 1 to mx_attr do

i f (A in P) then
i f annderives(cfd, S - [A], R) then

S := S - [A];
■ Key := S;

END;

* Lossless *

function lo ss le ss (re l ; right_ar; R: a ttr_ se t; no_schemes: in te g e r):boolean;

{ The function returns true value i f decomposition has lossless jo in property.)
VAR

x : integer;
BEGIN

lossless := fa lse;
for x := 1 to no_schemes do

i f annderives(cfd, r e l[x] , R) then lossless := true;
END;

^ *
* P rin t Contained Fds *

procedure pr_cont_fds(var out: tex t; cfd: annular; cvr: fd_set; a tr: a t t r_ a r) ;

(This procedure prin ts fds that are contained in a scheme.)

VAR
x, y : in teger;

BEGIN
for x:= 1 to ecounter do

i f (x in cvr) then
with cfd[x] do
BEGIN

i f (card > 1) then
for y := 2 to card do
BEGIN

w rite (o u t,' ':1 5) ;
p rin t_ a t_ s e t(o u t,ls e t[y], a t r) ;
w rite (o u t,' — > ') ;
p rin t_ a t_ s e t(o u t,ls e t[y -1], a t r) ;
w rite ln (o u t);

END;
w rite (o u t,' ':1 5);
p rin t_ a t_ s e t(o u t,ls e t[1], a t r) ;
w rite (o u t,' — > ') ;
i f (card=l) then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

prin t_at_set (out, rset, atr)
else

prin t_at_set(ou t, lset[card] + rset, a t r) ;
w rite ln (o u t);

END;
END;

^ *
* P rin t Database *

procedure print_db(var o u t:tex t; db:right_ar; a tr :a ttr_ a r ; key:attr_set;
R :attr_set; keys: key_ar);

{ This procedure prin ts the database with keys and also the primary key }
{ fo r the o rig ina l re la tio n . }

VAR
i , j : integer;

BEGIN
i : = 1;
w r ite ln (o u t); w rite ln (o u t);
w rite ln (o u t, ' ':1 0 , ' Relational Database');
w rite ln (out, ' ' : 10, ' ----------------- ------------- ') ;
w rite ln (o u t); w r ite (o u t,' ':1 0 , 'R ' , ' (') ;
prin t_at_set(out, R, a t r) ;
w rite ln (o u t,') ') ;
w r ite (o u t,' ':1 0 , 'Candidate Key for o rig ina l scheme : ') ;
prin t_at_set(out, key, a t r) ;
w rite ln (o u t);
for i := 1 to no_schemes do
BEGIN

w rite ln (o u t); w r ite (o u t,' ':1 0 , 'R ' , i , ' (') ;
prin t_at_set(out, d b [i] , a t r) ;
w rite ln (o u t,') ') ;
w rite ln (o u t,' ':1 0 , ' Keys are : ') ;
w rite (out, ' ':1 5) ;
i f (keys[i] = 0) then

p rin t_ a t_ s e t(o u t,d b [i],a tr)
else

for j := 1 to c fd [k e y s [i]] .card do
BEGIN

prin t_at_set (out,c fd [keys[i]] .ls e t [j] , a t r) ;
w rite (o u t,' ' : 3) ;

END;
w rite ln (o u t);
w rite ln (o u t,' ' : 1 0 , 'Contained fds : ') ;
pr_cont_fds(out, c f d ,p f [i] , a t r) ;

END;
w rite ln (o u t);

END;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

* Make Relation *

procedure m krel(cf: cfd_d; var re la tio n : a t tr_ s e t) ;

{ This procedure converts a cfd in to a re la tio n . }

VAR
x : integer;

BEGIN
re la tio n := c f .rs e t;
fo r x := 1 to cf.card do

re la tio n := re la tio n + c f . ls e t [x] ;
END;

^ *
* Make Database *
*)

procedure make_db(var re l:r ig h t_ a r; var pf: equi_set; var keys: key_ar;
var no_schemes:in te g e r);

{ This procedure determines the database, also, the keys for subschemes are }
{ determined along with contained fds. }

VAR
new, x, i : integer;
found : boolean;

BEGIN
new :=1;
for x ;= 1 to ecounter do
BEGIN

m kre l(c fd [x], re l[new]);
pf[new] := [x]; keys[new] := x;
found := fa lse; i :=1;
while (i < new) and (not found) do
BEGIN

i f (rel[new] <= r e l [i]) then
BEGIN

p f [i] := p f [i] + pf[new];
found := true;

END
else

i f (r e l [i] <= rel[new]) then
BEGIN

r e l [i] := re l[new];
p f [i] := p f [i] + pf[new];
keys[i] := keys[new];
found := true;

END;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

i := i+1;
END;
i f (not found) then new:= new +1;

END;
no_schemes := new -1;

END;

* Put A ttrib u te *

procedure pu t_at(var at : a ttr_ a r; new : nametp; var at_num : integer;
var R : a ttr_se t);

{ This procedure puts the a ttr ib u te in the array of a ttrib u tes i f not there)
{ already, while reading.)

BEGIN
at_num := 1;
while ((at [at_num] <> ") and (at[at_num] <> new)) do

at_num := at_num + 1;
at[at_num] := new;
R := R + [at_num];

END;

^ *
* Get F.d.s *
*)

procedure get_fds(var In f i le : Text; var no_fds : In teger; var a t t r : a ttr_ a r;
var fd : functional; var R: a t t r_ s e t) ;

(This procedure reads a l l the f.d s . from the f i l e fo r each problem)
(separately and stores i t in the array of records.)

LABEL
e l;

VAR
i , attr_num
temp
ch, lmarker,
m arker,
relmarker,
pmarker
curr_set
marker

: Integer;
: nametp;

: char;
: a ttr_ s e t;
: marker set;

BEGIN
for i := 1 to mx_attr do

a t t r [i] := " ;
R := [];
Marker := ' $ ',

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

lmarker
m arker :=
relmarker :=
pmarker :=
curr_set := []; no_fds := 1; temp := " ;
while not eof (in f i le) do
BEGIN

while not eoln (in f i le) do
BEGIN

re a d (in file , ch);
i f not (ch in Marker) then temp := temp + ch
else
BEGIN

i f (temp <> ' ') then
BEGIN

p u t_ a t(a ttr , temp, attr_num, R);
curr_set := curr_set + [attr_num];
temp := ' ' ;

END;
i f (ch = lmarker) then
BEGIN

fd [n o _ fd s].le ft := curr_set;
curr set := [];

END;
i f (ch = m arker) then
BEGIN

fd [no _fd s].rig h t := curr_set;
curr_set := [];
no_fds := no_fds + 1;

END;
i f (ch = relmarker) then curr_set := [];
i f (ch = pmarker) then goto e l; (* end problem *)

END;
END;
re a d ln (in f i le) ;

END;
e l:

no_fds := no_fds - 1; (* Number of fds read *)
END;

^ * ^ * * * * * * * * *
* Main Program *

BEGIN
read_file_name(inp, out, inpf_name, outf_name);
probl_no := 1;
while (not eof (in p)) do
BEGIN

heading (out, inpf_name, probl_no);
in i t ia l iz e _ a l l (fd , a ttrb , equi, e _ le ft , e_righ t, r e l) ;
get_fds(inp, no_fd, a ttrb , fd, R);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

p rin t_ fd _ se t(out, fd , no_fd, a ttrb);
reduce_annular(out,cfd,ecounter, fd, no_fd, equi, e _ le ft , e _ rig h t);
make_db(rel, p f, keys, no_schemes);
reduced_key(rkey, cfd, R, ecounter);
i f not (lo ss less (re l, R, no_schemes)) then
BEGIN

no_schemes : = no_schemes +1;
rel[no_schemes] := rkey;
pf[no_schemes] := [] ;
keys[no_schemes] := 0;

END;
print_db(out, r e l, a ttrb , rkey, R, keys);
read ln (in p);

END;
c lose(ou t);
c lo se (inp);

END.
^ *
* End of the Program *
*)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

Aho, A.H., Beeri, C., and Ullman, J.D., "The Theory of Joins in Relational Databases."
ACM TODS 4:3, (Sept. 1979) : 297-314.

Armstrong, W.W., "Dependency Structures of Database Relationships", 1974 IFIP
Cong.. Geneva. Switzerland. (1974) :580-583.

Beeri, C., and Bernstein, P.A., "Computational Problems Related to Design of Normal
Form Relational Schemas", ACM TODS 4 :1. (March 1979) :30-59.

Beeri, C., "On The Membership Problem for Functional and Multivalued
Dependencies in Relational Databases", ACM TODS 5:3, (Sept. 1980)
:241 -259.

Beeri, C., and Kifer, M., "An Integrated Approach to Logical Design of Relational
Database Schemes", ACM TODS 11:2. (June 1986) :135 - 157.

Bernstein, P.A., "Synthesizing Third Normal Form Relations From Functional
Dependencies", ACM TODS 1:4, (December 1976) :277-298.

Biskup, J., Dayal, U., and Bernstein, P.A., "Synthesizing Independent Database
Schemas", ACM SIGMOD International Symposium on Management of Data.
: 143-1 52.

Codd, E.F., "A Relational Model of Data for Large Shared Data Banks", Commun. ACM
13:6, (June 1970) :377-387.

Codd, E.F., "Further Normalization of The Database Relational Model In Database
Systems", Courant Computer Science Symposia 6. R. Rustin, Ed., Englewood
Cliffs, N.J. : Prentice-Hall, (1971) :65-98.

Delobel, C. and Casey, R.G., "Decompostion of a Database and The Theory of Boolean
Switching Functions", IBM J. Res. Dev. 17:5, (Sept. 1972) :374-386.

Fagin, R., "The Decomposition Versus Synthetic Approach to Relational Database
Design", Proc. third int. conf. Very laroe databases. Tokyo, Japan, (Oct. 1977)
:441 -446.

Fagin, R., "Multivalued Dependencies and a New Normal Form for Relational
Databases", ACM TODS 2:3, (Sept. 1977) :262-278.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 5

Fagin, R., Mendelzon, A.O., and Ullman, J.D., "A Simplified Universal Relation
Assumption and Its Properties", ACM TODS 7:3, (Sept. 1982) :343-360.

Kent, W., "Consequences of Assuming a Universal Relation", ACM TODS 6:4,
(December 1981) :539-556.

Kent, W., "The Universal Relation Revisited", ACM TODS 8:4, (December 1983).

Lien, Y.E., "Hierarchical Schemata for Relational Databases", ACM TODS 6:1, (March
1981) :48-69.

Ling, T.W., Tompa, F.W., and Kameda, T., "An Improved Third Normal Form for
Relational Databases", ACM TODS 6:2. (June 1981) :329-346.

Maier, D., The Theory of Relational Databases. Rockville, MD: Computer Science
Press, (1983).

Osborn, S.L., and Lucchesi, C.L., "Candidate Keys for Relations", J. of Computer and
System Sciences, 17, (1978) :270-279.

Ullman, J.D., Principles of Database Systems. Rockville, MD: Computer Science
Press, (1980).

Ullman, J.D., "On Kents "Consequences Of A ssuming A Universal Relation"", ACM
TODS 8:4, (December 1983).

Yuan, L., and Ozsoyoglu, Z.M., "Reduced MVD's And Minimal Covers", ACM TODS
12:3, (Sept. 1987) :377-394.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	An Efficient Implementation of Logical Design for Relational Databases
	Recommended Citation

	tmp.1500483058.pdf.6agvE

