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AN EFFICIENT IMPLEMENTATION OF LOGICAL DESIGN FOR RELATIONAL
DATABASES

Shakeel Ishaque, M.S.

Western Michigan University, 1989

This work presents efficient methodology for the design of relational databases 

and an implementation of a design tool. A set of algorithms and supporting theory are 

discussed. Improvements are made on existing decomposition approaches.

The Dependency Preserving Normal Fom (DPNF), which is stronger than 3NF, 

is presented. It guarantees a decomposition with lossless join property and at the 

same time preserves all of the functional dependencies.

An algorithm to obtain DPNF decomposition is presented. The algorithm 

computes DPNF decomposition in polynomial time. It converts supplied functional 

dependencies to annular cover and uses reduced annular cover to compute closures 

and decomposition. The algorithm finds the keys for every decomposed scheme and 

the original scheme. The document contains a PASCAL implementation of the 

algorithm.
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CHAPTER I

INTRODUCTION

This work presents efficient methodology for the design of relational databases 

and an implementation of a design tool. A set of algorithms and supporting theory are 

discussed. Many of the algorithms, theorems, lemmas, and proofs were outlined by 

Dr. Motzkin. The algorithms have been implemented with PASCAL programs.

There are basically three approaches for the design of relational database: 

analytical approach, which was introduced in (Codd 1971), synthetic approach, 

introduced in (Bernstein 1976) and integrated approach introduced in (Beeri, et al. 

1986). In the integrated approach, the design process is similar to the synthetic 

approach but multivalued dependencies are considered.

The design method described here also uses an integrated approach to efficiently 

design the database but this integrated approach is different from (Beeri, et al. 

1986) as pointed out below. The database designer defines a set of attributes and a 

collection of data dependencies which may or may not be universal. This work does 

not deal with the controversy of universal scheme ( (Fagin, et al. 1982), (Kent 

1981), (Kent 1983), (Ullman 1983)). It tries to design a database either if a 

universal scheme is given or a collection of relation schemes are given as input. If 

several schemes are given as input then it looks upon the dependencies of each 

scheme and applies the design approach to each scheme. The problem addressed is 

how one can derive a database scheme with certain desirable properties from the 

information provided by the database designer. Among the properties considered are 

those of lossless join property, preservation of dependencies, and normal forms such 

as 3NF, 4NF, BCNF.

A new type of normal form called Dependency Preserving Normal Form (DPNF), 

is presented which is stronger than 3NF. A simple algorithmic approach to obtain 

non redundant DPNF database schemes with near minimum relation schemes is

1
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2

presented, in addition it resolves some drawbacks of earlier methods. The approach 

used by (Beeri, et al. 1986) is to first decompose the database on the basis of multi 

valued dependencies (MVDs) and then on the basis of functional dependencies (FDs) 

whereas the algorithm presented here first uses FDs to obtain 3NF database scheme 

and then incorporate into it some of the algorithms given in ((Beeri 1980), (Beeri, 

et al. 1986), (Yuan 1987)) using MVDs to obtain DPNF. For the definitions of MVD 

and FD refer to chapter II. After decomposing on the basis of FDs, sometimes, new 

MVDs appear; that is why we decompose first on the basis of FDs and then MVDs.

The algorithm considered here is simplified and somewhat faster than the 

earlier approaches, and as noted above, it achieves a DPNF database. The algorithm 

to obtain a near optimal design is also presented. The complexities using this 

approach are calculated and compared to previous techniques. The algorithm is 

described in detail in chapter III.
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CHAPTER II

TERMINOLOGY AND NOTATIONS

This chapter will introduce the concepts and terms used in this document. The 

terms and notations that are mentioned in this document, but not defined here, are 

used in the same way as in (Maier 1983).

FUNCTIONAL DEPENDENCY: Let r be a relation on scheme R and let X, Y be two 

subsets of R. Relation R satisfies the functional dependency X — > Y if for any two 

tuples t1 and t2 whenever t1 (X) = t2(X) then t1(Y)=t2(Y).

CLOSURE OF A SET OF FUNCTIONAL DEPENDENCIES: Let F be a set of FDs over a 

relation scheme R. The closure of F, written F+ , is the smallest set containing F 

such that Armstrong's axioms (Armstrong, 1974) can not be applied to the set to 

yield a FD not in the set.

TRANSITIVE DEPENDENCY: Given a relation scheme R and X, Y subsets of R. Let 

A be an attribute in R and F be a set of FDs. A is transitively dependent on X in R if 

there is Y such that X —> Y, Y —> A and Y -/-> X under F and A is not in XY.

PRIME ATTRIBUTE: Given a relation scheme R, an attribute A in R, and a set of 

FDs F over R. Attribute A is prime in R with respect to F if A is contained in some 

key of R. Otherwise A is nonprime in R.

THIRD NORMAL FORM: A relation scheme R is in third normal form (3NF) with 

respect to set of FDs F if all of its attributes are atomic and no nonprime attribute of 

R is transitively dependent on a key of R. A database is in third normal form if every 

relation scheme in it is in third normal form.

3
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BOYCE-CODD NORMAL FORM: A relation scheme R is in Boyce-Codd normal 

form (BCNF) with respect to set of FDs F if all of its attributes are atomic and no 

attribute of R is transitively dependent on any key of R. A database is in Boyce-Codd 

normal form if every relation scheme in it is in Boyce-Codd normal form.

MULTIVALUED DEPENDENCY: Let r be a relation on scheme R and let X, Y, Z be 

three disjoint subsets of R such that R *  X U Y U Z. We say that Y is multivalued 

dependent on X, if there exist tuples t-j, tg . with tf having X and Z values x1, z1 and 

t2  having X and Y values x1 ,y1 then there exist a tuple t3  with X, Y, and Z values 

x1,y1,z1. The tuples t-j, t2 , t3  do not need to be distinct.

Notation: We denote X — >—> Y to mean that Y is multivalued dependent on X. 

The abbreviation MVD is also used.

STRICT MULTIVALUED DEPENDENCY: A MVD that is not a FD is called a strict 

MVD. That is If X -->--> Y but X-/-> Y then X»>»> Y is a SMVD and is denoted by 

X ~ > ~ > ~ >  Y.

DIRECT DEPENDENCY: Let X be a subset of R and A an attribute of R. Let X —> 

A be in F+. We say that A is directly dependent on X ( or X directly implies A) if A is 

non transitively dependent on X. It is denoted by X ===> A.

A set of attributes Y is directly dependent on X if each attribute of Y is directly 

dependent on X.

Example 2.1: Let F={ A —> B, B —> C, A —> D, D —> E, A —> C } be a 

set of FDs over R(ABCDE).

FD A — > B is a direct dependency whereas A — > C is not a direct 

dependency.

CONTAINED FUNCTIONAL DEPENDENCY: Let R be a relation scheme and F be the 

set of FDs over R. Let Rj be a subset of R. A FD of F+ , X —> Y,is said to be
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contained in a relation scheme Rj if XUY is a subset of Rj.

Example 2.2: Consider example 2.1.

Let R1(ABD) and R2(BC) be a decomposition of R then A —> B is a contained 

FD in R1 while D —> C is not contained in either R1 or R2.

LOST FUNCTIONAL DEPENDENCY: Let ,R2  Rn be a decomposition of a

relation scheme R and let G be a set of FDs over R. Let F be a set of all functional 

dependencies contained in any of Rj. The FD, X —> Y of G+, is said to be a lost FD if 

it is not in F+ .

Example 2.3: Let R(ABC) be a relation scheme with a set of FDs {AB —> C, 

C—> B}. Let R1(AC) and R2(CB) be a decomposition of R then AB —> C is a lost 

FD. Note that decomposition has lossless join property.

On the other hand let R(XYZ) be a relation scheme with set of FDs {Y—> X, X 

—> YZ}. The decompositon of R into R1(XY) and R2(XZ) results in no lost FDs.

KEY BASED DECOMPOSITION: Let R (XYZ) be a relation scheme. Let X, Y, and Z 

be three sets of attributes where X is a key of R. A decompositon of R into R1(XY) 

and R2(XZ) is a key based decompositon.

Example 2.4: Let F ={A —> B, A —> C, B — > D} be a set of FDs over 

R(ABCD).

A decomposition of R into R1(ABD) and R2(AC) is called a key based 

decomposition whereas a decomposition of R into R1(ABC) and R2(BD) is not a key 

based decomposition.

DEPENDENCY PRESERVING NORMAL FORM: Let R be a relation scheme, F be a 

set of FDs over R then a decomposition of R into R-j, R2 , ... .Rn is in Dependency 

Preserving Normal Form if the following conditions are met:

D1. Every scheme Rj is in 3NF.

D2. There are no lost functional dependencies, of F.

D3. The decomposition has lossless join property.
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D4. There are no non-trivial functional and multivalued dependencies on the 

basis of which a relation scheme can be decomposed, without violating conditions D2 

or D3, except for a key based decomposition of it.

DPNF is stronger than 3NF because it guarantees a decomposition with lossless 

join property, whereas the conventional way of synthesis sometimes results in a 

decomposition with no lossless join property. DPNF yields decomposition with fewer 

schemes by removing redundant schemes. Unlike 3NF, DPNF guarantees 

preservation of FDs. Also, it decomposes as much as possible by removing prime 

attributes from relations as long as no FDs are lost. DPNF also decomposes on the 

basis of some MVDs.

Example 2.5: Consider R = {ABCDEF} and F = { AB —>D, D —> AF, C

—> B, CD —> E, B - >  C, E - >  A }.

Conventional approach for 3NF decomposition is R1={ABCDE} with Key ={AB, 

CD}, R2={ADF} with Key={D}, R3={CB} wiht Key={C, B} and R4={EA} with Key ={

E}.
The presented approach will produce R1={ABDE} with Key={AB}, R2={ADF} 

with Key={D} and R3={CB} with Key={C, B}.

MINIMAL DEPENDENCY PRESERVING NORMAL FORM; Let R be a relation 

scheme, F be a set of FDs over R then a decomposition of R into R-|, R2  R n 's 'n

minimal dependency preserving normal form if the following conditions are met:

1. The decomposition is in DPNF.

2. There is no decomposition of R which is in DPNF and has fewer relation 

schemes.

Example 2.6: Let F .  { AB - >  CDIEH, CDI —> ABE, EK —> H. HI —> 

EJ, AE —> AH, H —> IK, D - >  EHK, AH —> AE } be a set of FD over 

R(ABCDEHIJK). The minimal DPNF decomposition for R may be:

R1(ABCD) with Keys={AB, and CD}

R2(EHIJK) with keys={EK, and H}

R3(AEH) with keys={AE}

R4(DEK) with key={D}
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It is clear that R1, R2, R3, and R4 are in 3NF and there are no lost FDs. It has 

been proved in (Biskup, et al. 1979) that if all FDs are preserved then presence of a 

key of R guarantees a lossless join property. AB is key of scheme R therefore the 

above decomposition has lossless join property. The above decomposition cannot be 

decomposed any further because doing so will result in lost FDs. Hence, the above 

decomposition is in DPNF.

Combining any of the above relation schemes will result in a decomposition 

which is not in 3NF. Therefore, there is not a DPNF decomposition of R with fewer 

than four relations. Hence, the above decomposition is in minimal DPNF.

The above decomposition is in DPNF and there is not any DPNF decomposition for 

R with fewer relation schemes.

OPTIMAL DEPENDENCY PRESERVING NORMAL FORM: Let R be a relation scheme, 

F be a set of FDs over R then a decomposition of R into R-j, R £ ,... ,Rn is in optimal

dependency preserving normal form if the following conditions are met:

1. The decomposition is in DPNF.

2. There is no decomposition of R which is in minimal DPNF and has fewer 

attributes in it.

Example 2.7: Consider set of FDs, F and relation scheme of example 2.6.

The decomposition of example 2.6 is optimal but not minimal that is because R3 

can have only attribute H instead of EK. Therefore the minimal DPNF decomposition 

for R is:

R1 (ABCD) with Keys={AB, and CD}

R2(EHIJK) with keys={EK, and H}

R3(AEH) with keys ={AE}

R4(DH) with key={D>

The decomposition of example 2.6 is in minimal DPNF i.e. there is not any DPNF 

decomposition for R with fewer relations in it. Therefore by replacing the sets with 

equivalent sets having less number of attributes in them, will result in a 

decomposition with fewest possible attributes. In the above decomposition EK is 

replaced with its equivalent set H to yield an optimal DPNF decomposition.
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REDUNDANT SCHEME: A scheme Rj is said to be redundant in a database if it can 

be removed without losing the DPNF properties.

Example 2.8: Let F={A —> BE, BD —> C, C —> D, E —>C} be a set of FDs 

over R(ABCDE).

A decomposition of R into R1(ABE), R2(BCD), R3(EC), and R4(CD) has a 

redundant scheme R3.

NON REDUNDANT DATABASE: A database is non redundant if it does not contain 

any redundant scheme.

Example 2.9: Consider example 2.8.

A decomposition of R into R1(ABE), R2(BCD), and R3(EC) has no redundant 

schemes therefore it is a nonredundant database.

EQUIVALENCE CLASSES: Let F be a set of FDs and ep(X) be the set containing 

those sets of attributes appearing on the left sides of any functional dependency of F 

which are equivalent to X. Let Ep(X) be the set of all functional dependencies whose

left sides are in ep(X). The equivalence classes ep and Ep is defined as :

ep = { ep(X) : ep(X) *  ep(Y) where X, Y is the set of attributes that appeared 

on left side with X *  Y }

Ep = { Ep(X) : ep(X) *  ep(Y) where X, Y is the set of attributes that appeared

on left side with X *  Y }

Example 2.10: Let F={A —> B, B —> A, C —> B, D —> B, CD —> E} be 

a set of FDs over R(ABCDE).

ep={ ep(A)= ep(B)={A,B}, eF(C) ={C}, ep(D) ={D}, ep(CD) ={CD} } and

Ep={ Ep(A) = Ep(B) = { A -->  B, B - >  A }

Ep(C) = { C - >  B }

Ep(D) = { D - >  B }
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E f (CD) .  { CD —> E } }.

COMPOUND FUNCTIONAL DEPENDENCY; Let R be a relation scheme and , X2, .

. .tXn be subsets of R, where Xj and Xj are equivalent for i, j = l...n , such that n > 1. 

Let Y be the set of attributes which may or may not be empty. The compound

functional dependency is of the form (X-|, X2  Xn ) — > Y, such that

intersection of Y with any Xj is empty and Xj —> Y is in F+ but Y -/-> Xj. Each of 

the Xj is called a left set of the CFDy, Y is called the right set of CFDx-

Example 2.11: Let AB —> D and D —> ABCF.

Since AB and D are equivalent i.e AB derives D and vice versa.

Therefore it will result in the following CFD: (AB, D) —> CF.

ANNULAR COVER; The annular cover is a set of compound functional 

dependencies such that the set of all the projections of Xj —> Y form a cover. If two 

left sets Xj, and Xj are equivalent then both of them are in same CFD. The closure of 

the annular cover is the closure of all the projections Xj —> Y.

Example 2.12: Let F= { A —> B, B —> AE, C —> D, D —> CF, AC —> 

BD, BD —> ACF} be a set of FDs over R(ABCDEF).

The annular cover, G, for the above FDs may be G={(A,B) —> E, (C,D) —> 

F, (AC.BD) — > F}.

NONREDUNDANT ANNULAR COVER: An annular cover G is nonredundant if no CFD 

can be removed from G without altering the closure of G.

Example 2.13: Consider example 2.12.

In the annular cover G described in example 2.12 CFD (AC.BD) — > F is 

redundant therefore the set G of CFD is not a non redundant annular cover. But 

without CFD, (AC, BD) —> F, the set G is a nonredundant annular cover.

REDUCED ANNULAR COVER: Let G be a nonredundant annular cover. A CFD of
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G

(X-|, X2 , . . Xn) —> Y is reduced if the following are satisfied;

1) No Xj can be shifted to the right set without changing the closure of G.

2) No attribute of any of Xj can be shifted to the right set without changing 

the closure of G.

3) No attribute from the left or the right sets of any CFD can be removed 

without changing the closure of G.

If all of the CFDs in G are reduced then G is a reduced annular cover.

Example 2.14: Consider a set of FDs { AB —> CD, CD —> ABEFGH, BEF 

—> AD, A —> C, B —> D, E - >  F, H ~ >  G }

After converting these FDs into CFDs we get the annular cover as: { (AB, CD,

BEF) — >GH, (A)—> C, (B) — > D, (E) - >  F, (H) — > G }

But the above annular cover is not reduced. After shifting left sets to the right

set we get

{ (CD, BEF) —> AGH, (A)— > C, (B) - >  D, (E) — > F, (H) - > G  }

Still the attribute F in the set BEF is extraneous and can be discarded i.e there is 

a need to check if any attribute is extraneous in any of the left sets. The new annular 

cover, after discarding all extraneous attributes of left sets is :

{(CD, BE) —> AGH, (A)— > C, (B) —> D, (E) —> F, (H) —>G }

Now check if there are any extraneous attributes in the right set. Obviously G is 

extraneous in the first CFD. Therefore the reduced annular cover is:

{(CD, BE) - >  AH, (A)— > C, (B) — > D, (E) - > F ,  (H) - > G  }.

KEY: Let R( A1, A2 An) be a scheme and {B1, B2 Bm} be a subset of

R. K(B1, B2 Bm) is called a key of R if ti(B1, B2, ... Bm) *  tj(B1, B2, ... Bm)

whenever i *  j.

Example 2.15: Let F={AB —> DE, E —> ABC} be a set of FDs over R(ABCDE).

{AB}, {E}, {ABC}, {ABE} are all some of the keys of R.

REDUNDANT KEY: A key is called a redundant key if a proper subset of it is also 

a key.
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Example 2.16: Consider example 2.15.

{ABC}, {ABE} are both redundant keys of R whereas {AB} and {E} are not 

redundant keys of R.

REDUCED KEY: A key is said to be reduced if no proper subset of it is a key.

Example 2.17: Consider example 2.15.

{AB}, and {E} are the only two reduced keys of R.

MINIMAL KEY: A key, K, of a relation scheme r(R) is said to be MINIMAL if 

there is no key having smaller number of attributes than K. Note that a minimal key 

is always a reduced key.

Example 2.18: Consider example 2.15.

{E} is the only minimal key of R.

KERNEL: A kernel is a set of attributes which do not appear on the right side of 

any of the functional dependencies of a reduced cover of F.

Note that an attribute that does not appear on the right side of any FD in a 

reduced cover of F, does not appear on the right side of any FD in any reduced cover of 

F.

Note that kernel is a part of every key. This is due to the fact that no set of 

attributes non-trivialy imply the kernel or parts of the kernel.

Example 2.19: Let F={A —> B, B —> DE, C —> B} be a set of FDs over 

R(ABCDEH).

ACH is the kernel of R. This is because A and C appear only on the left side of FDs 

whereas H did not take part in any FD.

NOTATIONS

The symbols below are used in this paper with the following meanings.

1. := - Assignment operator.
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2. » Equality Comparison.

3. U - Union of two sets.

4. £ - Subset of.

5. - Difference of two sets.

6. - - - > - Functional dependency also denoted as FD.

7. ==> Directly implied FD.

8. CFDX - Compound FD with left set Equivalent to X.

9. { } - Empty set.

10. * - Not equal to comparison.

11. card(S) Cardinality of the set S.

AiiA11cvj - Multivalued dependency. Also denoted as MVD.

A11A11CO - > - Strict Multivalued dependency also denoted as SMVD.
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CHAPTER III

OUTLINE AND DETAILED STEPS OF THE ALGORITHM

This work presents a design algorithm which accepts relation schemes, which 

may or may not be universal, and sets of functional dependencies among the 

attributes of each scheme. Some attributes of the scheme may not even take part in 

any functional dependency. This algorithm is shown to be computed in polynomial 

time with respect to the length of input. The objective of this algorithm is to 

construct DPNF database schemes with the properties D1, D2, D3, and D4. The 

algorithm is designed using top down organization. The top layer of the algorithm is 

as follows:

ALGORITHM MakeDPNF:

FOR i = 1 to 

STEP 0 : 

STEP 1 :

STEP 2 :

STEP 3 

STEP 4 

STEP 5 

STEP 6 

STEP 7

STEP 8:

number of input schemes DO 

Read in the relation scheme Uj and its functional dependencies, F. 

Compute a reduced annular cover of the set of functional 

dependencies.

Determine a set of relation schemes of the database satisfying 

properties D1, D2, D4 and also compute some of the reduced 

keys of each schemes so constructed.

Check whether any of the left sets is a key of Uj.

If yes, then do step 8 or else do step 5.

Determine a reduced key, K, of the original scheme U.

Add a new scheme composed of the attributes of K.

Remove strict multivalued dependencies from K, to obtain DPNF 

decomposition.

Remove redundant relation schemes.

13
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Computing the Reduced Annular Cover

The step 1 consists of following substeps:

STEP 1.1 : Determine the equivalence classes ep and Ep.

STEP 1.2 : Determine the annular cover.

STEP 1.3: Determine reduced annular cover.

Determine Equivalence Classes

The equivalence classes ep and Ep are used to construct the compound functional

dependencies from the original functional dependencies.

The algorithm LINDERIVES determines if two sets of attribute X and Y form an

FD:

X —> Y in F+ . This algorithm is used in part to determine the equivalence 

classes ep and Ep.

Algorithm LinDerives( F, X, Y )

In pu t: F - Set of functional dependencies, denoted by LS[i] — >
RS[i].

X, Y - Attribute Set.
Variables : R - Set containing all the attributes.

p - Number of functional dependencies.
LS[i] - Array of left sets where i = 1 ... p.
RS[i] - Array of right sets where i = 1 ... p.

Output : return true if X derives Y otherwise return false.
Body

for each attribute attr in R do 
A[attr] := 0 

for i = 1 to p do 
count[i] := 0
for each attribute attr in LS[i] do 

A [attr]>  Afattr] U { i } 
count[i] := countji] + 1 

end
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end
Old := X; New := X
if (Y £  Old) then return(true)
While ( New *  { } )  do

Choose an attribute attr from New 
New := New - {attr} 
for each i in A[attr] do 

count[i] := count[i] -1 
if (count[i] = 0) then 

for each attribute ele in RS[i] do 
if not(ele in Old) then 

Old := Old U {ele}
New := New U {ele} 
if (Y s  Old) then return(true) 

end
end

end
return(false)

The LinDerives algorithm is a modification of the algorithm LINCLOSURE in 

(Beeri, et al. 1979). Unlike algorithm LINCLOSURE, LinDerivesO does not 

necessarily compute the actual closure of X, therefore LinDerives is faster while it 

has the same complexity. The algorithm is clearly correct. It is guaranteed to halt 

as the number of attributes and number of functional dependencies are finite. The 

complexity of the above algorithm in the worst case has been proved to be O(ap) in 

(Beeri, et al. 1979), where p is the number of FDs and a is the number of 

attributes in scheme.

The algorithm to determine equivalence classes uses the algorithm Equivalence. 

The algorithm EquivalenceQ finds out if two sets of attributes X and Y are equivalent.

Algorithm Equivalence^, X , Y)

Input : F - set of functional dependencies.
O utput: If X and Y are equivalent then true else false.
Body :

if (LinDerives(F, X, Y) and LinDerives(F, Y, X )) then return(true)
else return(false).
end.

This algorithm is clearly correct. The complexity of this algorithm is based on
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the complexity of algorithm LinDerives i.e., O(ap).

The above algorithm finds out if two set are equivalent or not, whereas the 

algorithm Determi_e&E() determines the equivalence classes for all left sets of the 

set of FDs F. The algorithm to construct equivalence classes ep and Ep is as follows:

Algorithm Determi_e&E( F, ep, Ep)

Input : F - Cover of functional dependencies.
O utput: ep - Sets of equivalent attributes.

Ep - Sets of FDs of F with equivalent left sets.
Body 

G := F
Until G is empty do

Select an FD X —> Y from G 
eF(X) := { X }
Ep(X) := { X - >  Y}
G := G - { X —> Y } 
for each FD W —> U in G do 

if (Equivalence^, X, W)) then 
eF(X) := ep(X) U { W }
Ep(X) := Ep(X) U { W - >  U }
G := G - { W ~ >  U }

end
end

The above algorithm is indeed correct, by definition of equivalent classes. The 

algorithm is guaranteed to halt because at least one functional dependency is removed 

every iteration of the until loop. For Ith iteration of the until loop, the for loop will 

be executed (p - i) + 1 times in the worst case, where 1 <= i <= p where p is number 

of FDs in F. The complexity of the algorithm to determine ep(X) and Ep(X) for all 

left hand sides of functional dependencies of a cover is 0 (ap3).

Example 3.1: Consider example 2.6. The set of equivalence classes ep and Ep are 

given below.

e F={ eF(AB)= ep(CDI) = {AB, CDI}, eF(EK)= ep(H)= ep(HI) -  {EK, H, HI},
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ep(D) ={D}, ep(AE) = ep(AH) = {AE, AH} } and 

Ep={ Ep(AB) = Ep(CDI) = { AB —> CDIEH, CDI —> ABE }

Ep(EK) = Ep(H) = Ep(HI) = { EK —> H, HI —> EJ, H —> IK } 

Ep(D) = { D - >  EHK }

Ep(AE) = Ep(AH) = { AE —> AH, AH - >  AE } }.

Determine Annular Cover

The algorithm to determine the compound functional dependency and annular 

cover is given below.

Algorithm Compound ( ep, Ep, G )

Input : ep - Sets of equivalent attributes.
Ep • Sets of FDs with equivalent left sets.

O utput: G - Set of compound functional dependencies.
Body :

G := { }
for each member ep( W ) of ep do 

left_sets := left_attr := right_attr := {} ; 
for each FD V - >  X in Ep( W ) do

left _attr := left _attr U V 
right _attr := right _attr U X 
Add V to the left_sets of the cfd C. 

end
right _attr := right _attr - left _attr
right _set := right_attr
G : = G U  cfd (left_sets) —> right_set

end

The algorithm is clearly correct and guaranteed to halt. The complexity of this 

algorithm is O(p). The set of compound functional dependencies obtained is the 

annular cover of the original set of functional dependencies.
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Compute Reduced and NonRedundant Annular Cover

In order to compute reduced annular cover; first, shiftable members of left set 

are shifted to right; second, remove the extraneous attributes in every member of 

left set; third step is to discard extraneous attributes of right set.

In order for us to construct a reduced annular cover we have to determine the 

closure of a set of attributes using annular cover. The algorithm presented below 

accepts two sets of attributes X , Y and an annular cover AnnCov. It returns a value of 

true if X —> Y is in closure of AnnCov.

Algorithm Annderive( X, Y, AnnCov )

Input X is a set of attributes.
AnnCov is the Annular Cover.
Y is a set of attributes.

Output : if X derives Y then return TRUE else return FALSE
Body:
IF (X c  Y)
then return(TRUE).
FOR each CFD, C, of AnnCov do 

FOR each attribute A of C do
Right_set[C] := Right_set[C] U {A}.

FOR each left set Xj of C do
count[C,i] :=* 0
FOR every attribute A of Xj do

add (C,i) to list[A] 
count[C,i] := count[C,i] + 1 

Newel := X.
Oldcl := X.
While Oldcl *  {} do

choose an attribute A of Oldcl 
For each (C,i) in List[A] do 

Count[C,i] := Count[C,i] -1 . 
if Count[C,i] = 0 then 

Exten := Right_set[C] - Newel.
Newel := Newel + Exten 
Oldcl := Oldc + Exten 
if ( Y £  Newel ) 

then return( TRUE).
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Oldcl := Oldcl - {A} 
return(FALSE) 
end

The algorithm Annderive() is based on the correctness of Linclosure. The 

complexity of the above algorithm is O(ap) i.e the complexity is linear to the input 

length.

The example 2.6 is traced through the entire algorithm step by step.

Example 3.2 : The annular cover for equivalence classes formed in Example 3.1

is:

{ (AB, CDI) — > EH, (EK,H, HI) —> J, (D) — > EHK, (AE, AH) - >  {} }. 

The algorithm to rigth shift sets of shiftable left sets is described below:

Algorithm Shiftleftset( AnnCov )

Input : AnnCov is the Annular Cover.
Output : AnnCov with all shiftable Left sets shifted to right set. 
Body:

For each CFD ( X i , . . . ,  Xn) —> Y in AnnCov do
If n > 1 then 

i = 1

Count := n
While (i <= n) and (Count >1) do 

NC := AnnCov - CFDX 
LeftSets := LeftSets of CFDX - Xj 
RightSet := RightSet of CFDX U Xj
J := the first Set in LeftSets
NC := NC U { LeftSets - >  R ightSet}
If AnnDerives (Xj, J, NC) then

CFDX := LeftSets —> RightSet 
AnnCov := NC 
Count := Count -1 

i= i +1 

AnnCov = NC

Example 3.3: The annular cover after ShiftleftsetQ is performed on the

annular cover in Example 3.2 is:
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{ (AB, CDI) —> EH, (EK, H) —> IJ, (D) —> EHK, (AE) —> H } The 

attribute set HI is shifted in second CFD and AH is shifted in fourth CFD from left set 

to the right set.

The algorithm for removing extraneous attributes in left sets is as follows:

Algorithm Removeleftattr( AnnCov )

Input : AnnCov is the Annular Cover.
Output : AnnCov with no extraneous attributes in Left sets.
Body:

For each CFD (X-j, . . . ,  Xn) —> Y in AnnCov do 
For each Xi of CFD do

For each attribute A of Xi do 
If Annderive(Xj-A, A, AnnCov) then

AnnCov := AnnCov - {(X-j Xn) —> Y)
AnnCov := AnnCov U { (X i , . .  Xj-A Xn) —> Y)

end

The worst complexity of Removeleftattr() algorithm is 0 (a 2 p2).

Example 3.4: The annular cover after Removeleftattr() is performed on the

annular cover in Example 3.3 is given below:

{ (AB, CD) — > EH, (EK, H) - >  IJ, (D) —> EHK, (AE) - >  H } The

attribute I is removed in second CFD.

The algorithm to discard the extraneous attributes in the right set is:

Algorithm Rightreduce( AnnCov )

Input : AnnCov is the Annular Cover.
Output : AnnCov with all extraneous attributes of right set discarded.
Body:

For each CFD (X-j, . . . ,  Xn) —> Y in AnnCov do
For each attribute A of Y do

NC := AnnCov - { (X i Xn) - >  Y)
NC :=NC U { (X i Xn) - >  Y - A)

If Annderive(Xi ,A,NC) then
AnnCov := NC

end
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The above algorithm is clearly correct and guaranteed to halt as the number of 

left sets and the elements of right set are finite. The complexity of the above 

algorithm is 0 (a2 p2).

Example 3.5: The annular cover after Rightreduce() is performed on the

annular cover in Example 3.4 is given below:

{ (AB, CD) — > {}, (EK, H) - >  IJ, (D) —> EK, (AE) —> H } The 

attribute sets EH was extraneous in the first CFD, and so was attribute H in third 

CFD.

The algorithm that controls the sequence of steps to transform a set of FD's to a 

reduced annular cover is:

Algorithm ReduceAnn( AnnCov )

Input AnnCov is the Annular Cover.
Output : Return reduced Annular cover of AnnCov.
Body:

Determi_e&E( F, ep, Ep)
Compound(ep, Ep, AnnCov)
shiftleftset(AnnCov)
Removeleftattr(AnnCov)
rightreduce(AnnCov)
remove CFDs of the form (X1) —> {}
end

The Complexity of the entire process of transforming a set of FD's to a reduced 

nonredundant annular cover is 0 (max(ap3 , a2 p2)).

Example 3.6: The annular cover after ReduceAnn is performed on the set of FDs 

F and relation scheme R of example 2.6 is given below.

The annular cover below is reduced.

{ (AB, CD) - >  {}, (EK, H) - >  IJ, (D) — > EK, (A E )->  H }.

The annular cover so obtained may not be unique. This is because of the 

equivalence classes.

Example 3.7: The reduced annular cover after ReduceAnn is performed on the 

set of FDs.F and relation scheme R in Example 2.6 may result in the following
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annular cover:

{ (AB, CD) —> {}, (EK, H) —> IJ, (D) — > H, (AE) —> {} ) This is 

because EK and H are equivalent to each other and one can be substituted for the 

other.

Lemma 3.1: Let Xj be a left set in CFDX and let A be in Xj then

a) A is shiftable to the right iff Xj -A —> A.

b) A is extraneous iff (Xj -A) —> A or CFD is redundant.

proof: part a is obvious, 

part b:

Case 1: CFD has more than one left set. Let CFD = (X-j, X2 , X3  Xn) —> Y.

If A is extraneous in say Xj then Xj -A becomes a left set which means (Xj-A) 

— > X2

But also X2  —> Xj 

i.e X2  —> A 

hence (Xj-A) —> A.

Case 2: The CFD has only one left set X —> Y. 

assume that A is extraneous in X. 

let X-A = X-

then Annular Cover derives X '—> Y.

If X —> Y is not redundant then let B U Y such that B is not extraneous 

and X —> B.

Since A is extraneous then X" —> B.

But if X* -/-> X then (X ')+ can be computed not using X —> Y.

Hence X‘ —> B is derived from FDs other than X —> Y.

But X —> X- .

Therefore B is extraneous which contradicts our assumption that it was not. 

Hence, if A is extraneous in X then either X-A — > A or every attribute of Y 

is extraneous.
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Lemma 3.2: The algorithm above produces a reduced annular cover.

Proof: Determi_e&E() finds all the equivalence classes of left sets. Compound() 

takes the equivalence classes and forms CFDs out of FDs. Shiftleftset() shifts all 

those left sets which are extraneous on left to right set. Removeleftattr() removes 

all extraneous attributes of every left set. Whereas rightreducef) removes all 

extraneous attributes from right set.

Determine the Relation Schemes

After obtaining a reduced annular cover the relation schemes are determined. 

This is acomplished in two steps:

STEP 2.1 : Find the relation schemes of the database.

STEP 2.2 : Remove redundant relation schemes.

From the construction of the database it appears that the schemes obtained may 

not be distinct, i.e. some of them can be a subset of the other which is observed in 

((Beeri, et al. 1979), (Maier 1983), (Bernstein 1976)). This can be illustrated 

by the following example.

Example 3.8: Let R = ( C, S, Z ) and the set of functional dependencies F = { Z 

—> C, CS ~ >  Z }.

The set F is left reduced. Transforming it into annular cover will result in:

(Z) —> C & (CS) - >  Z

Thus the database consists of the following schemes:

R1(C, Z) with KU  = ( Z )

R2(C, S, Z) with K2 1 = { CS }

It is obvious that R1 is a subset of R2. Thus, there is no point in decomposing 

the scheme R into R1 and R2. Here preservation of functional dependencies is 

desired rather than the Boyce Codd Normal Form, in the line of the observations by 

(Beeri, et al. 1979).

The database can be constructed by transforming each compound functional 

dependency of the reduced annular cover into a relation scheme. The algorithm to
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obtain schemes of database is as follows:

Algorithm DataBase ( G, DB )

Input : G - Reduced annular cover.
O utput: DB - Set of relation schemes in the database.

K - Two dimensional array where ky means j th key for i ^
scheme, i = 1 ... no. of schemes and j ■ 1 ... num_keys(i).

output the set of schemes along with contained FDs.
Body

i := j := m := 1

for each CFD in G do
let the ith CFD be (X1, X2  Xn) - >  Y
DB(j) := X1 U X2 U .... U Xn U Y
Reduced Keys for DB(j) are X1 , X2f . . . ,  Xn where n £ 1

Kji := X1, Kj2  := X2 Kjn := Xn
FG) = { X! - >  X2  U Y, X2  - >  X3  Xn - >  X! }
m := 1
found = false
While (m< j) and (not found) DO 

if DBQ) £  DB(m) then 
F(m) = FG)UF(m) 
found := true 

else if DB(m) s  DBG) then 
DB(m) = DBG)
Reduced Keys of DB(m) = Reduced Keys of DBG)
F(m) = F(m) U FG) 
found:= true 

else m := m+1  

if (not found) then 
j := j + 1 

i := i +1 

endfor
for i = 1 to no_schemes DO 

print(DB(i))
print(Reduced_keys(i)) 
print( F(i)) 

endfor 
end

The algorithm is clearly correct and guaranteed to halt as G is finite. The 

schemes as well as some of the keys for each of the relation are determined in 

polynomial time. The complexity of this algorithm is clearly the number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 5

compound functional dependencies which in the worst case is 0 (p2).

Note not all reduced keys of schemes are determined. For example :

Example 3.9: Let R(ABCD) be a scheme and let a set of functional dependencies, 

F, be { AB — >CD, C —> AE, D ~ >  BF}.

Resulting decomposition will be 

R1( ABCD ) K11=={ AB }

R2( ACE ) K21 ={ C }

R3(BDF ) K31  ={D}.

But R1 has two reduced keys {AB} and {CD}.

The decomposition resulting from the presented approach is not always in 

optimal DPNF. This is due to the fact that attributes are checked for extraneousness 

in random order. Consider the following example.

Example 3.10: Let R(ABCD) be relation scheme and a set of functional

dependecies, F, be { AB —> C, B —> D, D—> B, C —> BD }.

Two different reduced annular covers can result from F: AN1={(AB) —>C, 

(B,D) — >{}, (C) — >B} and AN2 = {(AB) — > C, (B,D) — > {}, (C) —> D}.

Decomposition due to AN1 before step 8 will be R1(ABC), R2(BD) and R3(BC). 

After step 8  it will be:

R1= ( ABC ) K11={ AB }

R2 = (BD) K2 1 ={B}, K2 2  ={D}

Which is in optimal DPNF. But the decomposition due to AN2 will be R1(ABC)

R2(BD) and R3(CD). After step 8 the decomposition will be:

R1( ABC ) K-j -j ={ AB }

R2(BD) K2 i ={B}, K2 2  ={D}

R3(CD ) K31  ={C}.

This decomposition is not in optimal DPNF.

A remark regarding subsets with respect to the superfluous attributes described 

in (Ling, et al. 1981) is desired. Consider the following example.

Example 3.11: Let R( A, B, C, D, E, F) be a relation scheme and a set of 

functional dependencies, F, be { AD —> B, B —> C, C —> D, AB —> E, AC
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—> F, E —> A }.

The above set of functional dependencies is reduced. The traditional approach 

may generate the following :

R1( A, B, C, D, E, F ) K-)-) = {A, B}, K1 2  = {A, C}, K1 3  = {A, D}.

R2( B, C ) K2 -| = {B}.

R3( c, D ) K3 1  = {C}.

R4 ( A, E ) K4 1  = {E}.

In (Ung, et al. 1981) it has been shown that C is superfluous attribute in R1

and therefore even if C is removed from R1 all the functional dependecies are

preserved. Therefore (Ling, et al. 1981) will obtain the following schemes:

R1-( A. B, D, E, F ) KU  = {A, B}, K12  = {A, D).

R2( B, C ) K21  = {B}.

R3( C, D ) K3 i = {C}.

R4( A, E ) K41  = {E}.

As one can see, removal of R4 will not result in any lost FD because E —> A is 

still contained in R 1 \

Therefore the method described here will result in the following decomposition.

R1-( A, B, D, E, F ) K1 i = {A, B), K12 = {A, D}.

R2( B, C ) K2 i  = (B).

R3( C, D ) K3 i  ={C).

The method described is also preferred because while it generates lossless 

decompositon along with no lost FDs, it provides a more optimal database scheme

with a smaller number of relation schemes. One does not have to worry about the

null values C may take as C is a prime attribute in R1.

The following text will show that the schemes constructed by algorithm 

MakeDPNF satisfy properties D1, D2, D4.

Theorem 3. 1 : Let X —> A be in F+ then there exists a set of attributes Y such 

that X —> Y and Y »»=> A.
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Proof; If X does not directly imply A then there exists X-j such that X —> X i 

and X-j —> A. Similarly if A is transitively depending on X-j then there exists a X2  

such that X i —> X2  and X2  —> A. If any Xi <—> X then each Xj_i <—> Xj 

which would mean that x ===> A to start with. This process must finish since F+ is 

finite, then there is some Xj such that Xj ===> A and Xj -/-> X.

Theorem 3.2: Let Y ===> A then A is one of the attributes in CFDy of a reduced 

annular cover.

Proof: Assume A is not in CFDy then A must be in some other CFD say CFDyi 

such that Y1 is in Y+. If Y-j 0  Y+ and Y^ <-/-> Y then A is transitively dependent on 

Y which contradicts the assumption that Y ===> A. If Y1 <—> Y then it is a 

contradiction to the construction of annular cover.

Theorem 3.3: If A is a right attribute of CFDx then X ===> A.

Proof: Suppose there exists w in F s.t. X —> W, W -/-> X and W —> A. Let

W ‘ be s.t. W —> W* and W* ===> A. Thus by theorem 3.2 A is in CFDyy. then it

is extraneous in CFDx which contradicts our construction.

Corollary 3.1: If A is on the right side of some CFDx then there is no 

decomposition of CFDx ‘n t0  CFDX-A and W —> A unless W contains a left set of 

CFDx.

Proof: It follows from theorem 3.3.

Theorem 3.4: A decomposition of a CFDx into CFDx-A and W —> A will result 

in a lost FD unless W —> X.

Proof: For attributes on the right side of CFDx the assertion follows from

corollary 3.1.
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If A is member of some left set of CFDx , say Y then we lose FDs Y —> X, since

Y has no extraneous attributes.

If Y —> X is not lost then W —> A is redundant because A would be in some 

CFDW_ s.t. W" ===> A. But this means that A could have been removed from CFDX in 

our construction.

Theorem 3.5: The schemes so constructed satisfy properties D1, D2, D4.

Proof: Since schemes are constructed by transforming CFDs into schemes all 

left sets are Keys of the scheme and theorem 3.3 shows that no member of the right 

set is transitively dependent on the left sets.

Due to the fact that reduced annular cover is used to construct schemes it is 

obvious that all FDs are preserved.

Theorem 3.4 shows that the scheme conctructed out of reduced annular cover 

cannot be decomposed further without losing FDs except for keybased decomposition 

which is not desired.

Checking Lossless Join Property

In order to check for lossless join decomposition, one only needs to check if any 

key of R is embeded in some scheme Rj. It has been proved in (Biskup, et al. 1979)

if all functional dependencies are preserved then presence of a key of R is sufficient 

for lossless join decomposition. The algorithm to test for lossless join decomposition 

in presence of functional dependencies is as follows:

Algorithm Lossless ( F, DB, A )

Input : F - Reduced cover of functional dependencies.
DB - Set of relation schemes in the current database.
A * Attribute set.

O utput: If lossless then true else false.
Body :

For i = 1 to no_schemes do 
If LinDerives(F,DB[i],R) then
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retum(TRUE)
return(false)
end

Thus the schemes so constructed are first checked for lossless decompostion, if 

the decomposition is lossless then decomposition is done, otherwise add a new scheme 

to make it lossless. Add a key of the original relation scheme as a new scheme, as it 

makes it lossless decomposition.

Finding a Reduced Key of the Original Relation Scheme

A simple algorithm to compute a reduced key of a relation is as follows:

Algorithm GetKey( R, AnnCov, key)

Input : R - Set of all attributes of the relation scheme.
AnnCov - Reduced annular cover of functional dependencies.

Process: S - A key of the original relation scheme.
Subkey - Union of one member of left sets of each CFD

URightsets- Union of Right sets of all FDs.
ULeftsets - Union of left sets of all FDs.
Non_Key - The set of all attributes that appear only on the right.
Kernel - Set of attributes which are essential for any key.

Output: Key - One of the reduced keys of R.
Body :

Non_key := Urightsets - Uleftsets
Kernel := R - Urightsets
S := R - Nonkey
S' := S - Kernel
for each element A in S ' do

If AnnDerives( S- {A}, R, AnnCov) then 
S := S - A 

Key := S 
end

The above algorihm obtains a reduced Key by removing extraneous attributes 

from key S. Instead of checking for every attribute in S, check only those attributes 

which are not part of the kernel and also appear in both Uleftsets and Urightset. The 

complexity of this algorithm is based on the complexity of AnnDerives and is
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0 (a 2 p). This approach of obtaining a reduced key of the original relation is faster 

than the one proposed in (Osborn, et al. 1978). This is because of the fact that here 

the reduced cover rather than the original set of functional dependencies are 

considered. To obtain a reduced key, pass to the above algorithm GetKey(R, AnnCov, 

key). This is faster because Uleftsets and Urightsets don't have to be computed.

The computations, described above, for Kernel and key are faster than (Osborn, 

et al. 1978) for two reasons: GetkeyO works with a reduced cover, secondly, it 

tests a smaller number of attributes rather than the whole relation.

Adding New Relation Scheme for Lossless Decomposition

When the database is not lossless, add the reduced key obtained in step 5 as a 

subscheme to yield a lossless decomposition. The algorithm is as follows:

Algorithm AddScheme (DB, Key)

Input : DB - Set of essential relation schemes in the database, obtained by 
algorithm Database.

Key - Reduced Key of the original relation scheme.
O utput: DB - modified by adding a new scheme to it.
Body :

no_schemes := no_schemes + 1 
DB(no_schemes) := Key 
Kno_schemes,1 := Key 
end

This algorithm is clearly correct as it is known that adding a reduced key gives 

lossless decomposition ((Ullman 1980), pp. 242). However the new scheme added 

may need some further decomposition.

Lemma 3.3: There are no FDs contained in the scheme added to obtain 

losslessness of decomposition.

Proof: If scheme consisted of XYZ and Y —> Z then XY is a reduced key which 

contradicts our construction of a reduced key.
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Corollary 3.2: Since the new scheme does not have any FD contained in it, one 

cannot decompose it further for lossless decomposition on the basis of FDs. The only 

decomposition possible for the newly added scheme is on the basis of SMVDs (and of 

course JVDs which is not a concern here).

Decompositon of New Relation Scheme

The technique used in ((Fagin 1977), (Lien 1981), (Yuan, et al. 1987)) are 

integrated and modified in order to obtain a DPNF decomposition. (Fagin 1977) 

defines all the properties of the multivalued dependencies and also 4NF 

decomposition. (Lien 1981) gives the concept of minimal 4NF covering and also 

produces schemes which are not redundant. (Yuan, et al. 1987) gives an efficient 

method to obtain reduced multivalued dependencies and also 4NF covering. However 

obtaining a minimal 4NF covering is a complex process.

From Corollary 3.2, it follows that the only scheme to be considered for 

decomposition is the new scheme which was obtained in step 6 . Let Q denote the 

newly added scheme. We consider the set of multivalued dependencies, provided by 

database designer, for this new scheme, Q. Let M be a set of multivalued dependencies 

for the scheme Q. The algorithm below is based on (Yuan, et al. 1987). This 

algorithm completes the construction of DPNF database.

Algorithm DPNF( Q, M, no, S )

Input : Q - Scheme under consideration.
M - A cover of multivalued dependencies. 

Output: no • Number of schemes added.
S - Schemes modified i.e. S[1], S[2 ], .. S[no].

Body:
j := 1 

SID > Q
for each MVD X W in M do 

set : = X U W  
for i = 1 to j do 

if ( set c  S (i]) then 
temp := S[i]
S[i] := set
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j := j + 1 
S[j] := temp - W 

endif 
endfor 

endfor 
no := j 
end

It has been shown in (Yuan, et al. 1987) that the MVD covering produces 

distinct and reduced database schemes. We now present an algorithm to organize the 

schemes as follows:

Algorithm Organize(DB, M, no)

Set of schemes i.e. D B(1),... DB(no). 
A cover of multivalued dependencies. 
Number of schemes.
Schemes modified.
Number of schemes modified.

Input : DB 
M 
no

Output: DB 
no 

Body:
RemoveSmvds(DB(no), M, count, S)
DB(no) := S[1] 
for j = 2  to count do 

DB(no + j - 1 ) := SO] 
endfor
no := no + count - 1  

end

The above algorithm is guaranteed to halt and is clearly correct. However we

find that after decomposition we may get schemes which are subsets of other

schemes. This is shown in the following example.

Example 3.12: Let R = (A, B, C, D) and F = { AB —> C, D —> C }.

After transforming F to a reduced annular cover, we obtain the following 

schemes:

R1 (A, B, C) with K j  ̂ = {A, B)

R2 (D, C) with K2 i  = {D}

The above schemes satisfy properties D1, D2 and D4. However the schemes 

above do not have lossless decomposition. This is shown below.
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I
a1 b1 c1 d1

a2  b1 c1 d2

a
a1 b1 c 1 

a2  b1 c1 c1 d2

L2 
c1 d1

Clearly r1 |X| r2 *  r. So add a key ABD as a new scheme and which results in 

the following schemes:

R1 (A, B, C) with K i 1 = {A, B}

R2 (D, C) with K21  = {D}

R3 (A, B, D) with K31 = {A, B, D}

let A — >—> B hold in R3. This will result in the following schemes:

R1 (A, B, C) with K-| 1 = {A, B}

R2 (D, C) with K2 1 = {D}

R3 (A, B) with K31  = {AB}

R4 (A, D) with K41  = {AD}

R3 is a subset of R1 and hence there is no point in considering R3. Discarding 

R3 and reorganizing will result in the following schemes which are in DPNF and also 

satisfy the properties D1 ... D4.

R1 (A, B, C) with K i 1 = {A, B}

R2 (D, C) with K21  = {D}

R3 (A, D) with K3 1  = {AD}.

Hence, finally remove the schemes which are subsets and obtain the schemes 

which are in DPNF. DPNF database schemes are obtained in polynomial time.

Corollary 3.3: The schemes obtained by algorithm MakeDPNF are in DPNF.

Proof: Theorem 3.5 shows that decomposition resulting by algorithm MakeDPNF 

satisfy properties D1, D2 and D4.

It has been shown in (Biskup, et al. 1979) that if all FDs are preserved then the 

presence of a Key of R is sufficient for lossless join decomposition.
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Since MakeDPNF preserves all FDs and the presence of at least one reduced key 

of R is guaranteed, therefore MakeDPNF also satisfies property D3.

Hence the set of schemes obtained by MakeDPNF is always in DPNF.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER IV

DESIGN ENHANCEMENTS

The database constructed above is neither minimal nor optimal. Presented below 

is an algorithm to obtain a more optimal design which is slower than the above 

technique, but still good in terms of complexity. The near optimal design comes 

from the fact that annular cover is not unique (refer example 3.10). Also, for 

computing the key the order of discarding the attributes makes it near optimal, 

rather than optimal. In addition, as was mentioned before, the algorithm MakeDPNF 

does not find all of the keys of each scheme added.

The top down organization to obtain such a design is as follows:

FOR i = 1 to number of input schemes DO

STEP 0 : Read in a given relation scheme Uj and its functional dependencies, F.

STEP1: Compute the reduced annular cover of the set of functional

dependencies.

STEP 2 : Determine a set of relation schemes of the database satisfying 

properties D1, D2, D4.

STEP 3 : Check whether any of the left sets is a key of Uj.

STEP 4 : If yes, then do step 8  or else do step 5.

STEP 5 : Determine a minimal key, K, of the original scheme Uj.

STEP 6  : Add a new scheme composed of attributes of the minimal key.

STEP 7: Remove strict multivalued dependencies from K to obtain DPNF 

decomposition.

STEP 8 : Remove redundant schemes.

STEP 9: Find all reduced keys of Uj and of all the schemes.

Some steps from above are the same as the previous design.

35
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Computing All the Keys for each Scheme

Sometimes, not all of the reduced keys for the subschemes are found. This can be 

illustrated by the example 3.8 considered before.

The set F is left reduced. Transforming F into annular cover we obtain:

(Z) —> C & (CS) —> Z

Thus the database consists of the following schemes:

R1(C, S, Z) with K-m  = { CS }

However, ZS is also a reduced key for subscheme R2 which is not obtained.

In order to obtain all of the reduced keys for each subscheme, similar concepts 

from the algorithm of (Osborn, et al. 1978) are applied. The algorithm is as 

follows:

Algorithm AIIKeys(F, DB, K)

Input : F - Set of functional dependencies which are reduced.
DB - Set of essential relation schemes for the data base.

K - Two dimensional array and each array is a set of attributes where 
kjj means jth reduced key for ith scheme. 1 £ i £ no. of schemes
and 1 <, j £ num_keys(i).

O utput: K modified for each scheme.
Body:

for i = 1 to no_schemes do 
n := num_keys(i)
Ks : = { K h  Ki n )
for each element say Key in Ks do 

for each FD X —> Y in F do 
if ((Key - Y) *  Key) and (X £  DB(i))) then 

temp := X U ( Key - Y ) 
dup := false
j := 1
While ((not dup) and (j <= n )) do 

if (Kjj £  temp) then dup := true 
j := j + 1 

end
if (not dup) then 

call GetKey( DB(i), F, temp) 
n := n + 1
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Kjn := temp 

Ks := Ks U {Kjn} 
end

end
end
num_keys(i) := n

end

This algorithm is correct and its complexity is determined to be bounded by a 

polynomial in the number of keys, functional dependencies and number of attributes 

of the relation scheme (Osborn, et al. 1978), for each of the subschemes under 

consideration. So all of the candidate keys for each subscheme are discovered.
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CHAPTER V

COMPLEXITY AND EXAMPLE

The complexity of obtaining the DPNF database is 0 (a 2 p4) where a is the 

number of attributes of original relation scheme and p is the number of functional 

dependencies. The algorithm presented here is compact and considers all of the 

properties for the construction of database.

Trace the whole algorithm with an example.

Example 5.1: Let R(A, B, C, D, E, H, I, J, K, L, M, N, P) and set of functional

dependencies F={ ABM —> CDEJKL, B —> M, D —> BJ, N —> PH, NH —>

I, P — > H, P —> I, JKL —> ABM }.

First step in finding annular cover is to compute equivalence classes, ep and Ep.

The ep and Ep classes for F are:

ep= { ep(ABM)= ep(JKL)={ABM, JKL}, 

ep(B)={B} ,  

ep(D)={D},

ep(N)= ep(NH)={N, NH}, 

e F(P)={P} }

Ep={ Ep(ABM)= Ep(JKL)={ ABM — > CDEJKL, JKL —>ABM},

Ep(B)=.{ B ---> M},

Ep(D)={ D - >  BJ},

Ep(N)= Ep(NH)={ N — > PH, NH —> I },

Ep(P)={ P - >  I, P - >  H } }

Once equivalence classes are computed, then an annular cover can be formed for

F. Let G be annular cover of F.

38
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G={ (ABM, JKL) — > CDE, (B) — > M, (D) — > BJ, (N, NH) — > PI, 

(P) - >  HI }

After shifting shiftable left sets to the right, we obtain the following annular 

cover:

G={ (ABM, JKL) - >  CDE, (B) — > M, (D) — > BJ, (N) — > HIP, (P)

— > HI }

We find that M is extraneous in left set ABM of CFD (ABM, JKL) —> CDE. 

After discarding all extraneous attributes in members of left sets of all CFDs we get 

the following:

G={ (AB, JKL) —> CDE, (B) — > M, (D) —> BJ, (N) —> HIP, (P) 

— > HI }

The final step in obtaining reduced annular cover is to remove all extraneous 

attributes from right sets and discard CFDs of the form (x) —> (}. It is obvious 

that HI can be discarded from CFD (N) —> HIP without altering the closure of F or

G. Therefore, the reduced annular obtained is :

G={ (AB, JKL) — > CDE, (B) — > M, (D) - >  BJ, (N) — > P, (P)

— > HI }

Once a reduced annular cover is computed, then it can be used to generate 

decompositions by translating all CFDs into relation schemes. After transforming 

CFDs into relation schemes we obtain the following decomposition:

FU(ABCDEJKL) K ^ - tA B ) ,  K1 2 =(JKL)

R2(BM) K2 1 =(B)

R3(BDJ) K3 1 »(D)

R4(NP) K4 1 =(N)

R5(PHI) K51={P}

But R3 is a subset of R1 i.e R3 is redundant, therefore, discarding it will not

result in any lost FD. Hence, the new decomposition is:

RI(ABCDEJKL) K-j 1 ={AB}, K1 2 =(JKL)
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R2(BM) K2 1 ={B}

R3(NP) K3 1  ={N}

R4(PHI) K41={P}

The decomposition above is in 3NF and also satisfies propeties D1 , D2, and D4. 

Since neither of the decomposed schemes above contain a key of R, it is not a lossless 

decomposition. We need to add a key of R to the decomposition as a scheme. The 

reduced key of R found by Getkey algorithm is {JKLN}. The resulting decomposition is 

given below:

RI(ABCDEJKL) K1 1 ={AB}( K1 2 ={JKL}

R2(BM) K2 1 ={B}

R3(NP) K31  ={N}

R4(PHI) K41={P}

R5(JKLN) K5 1 ={JKLN}

Suppose J —>—> L holds in R5 then R5 needs to be further decomposed and 

the result will be:

RI(ABCDEJKL) K-j - j^AB}, K1 2 ={JKL}

R2(BM) K2 1 ={B}

R3(NP) K3 1 ={N}

R4(PHI) K41={P}

R5(JKN) K5 1 ={JKN}

R6 (JL) K6 1 _ {JL}

But R6  is redundant; therefore, the new and final decomposition will be the 

following:

RI(ABCDEJKL) K-| 1 ={AB}, K1 2 ={JKL}
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R2(BM) K21={B}

R3(NP) K31={N}

R4(PHI) K41={P }

R5(JKN) K51={JKN}

The above decomposition is in DPNF and satisfies properties D1, D2, D3 and D4.
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CHAPTER VI

CONCLUSION

The goal was to efficiently construct a database satisfying all the properties D1, 

D2, D3 and D4 in chapter II. A new normal form, Dependency Preserving Normal 

Form, which is superior to 3NF is introduced. Only functional and multivalued 

dependencies are considered for such a construction of the database. The algorithm 

described produces DPNF and is faster and simpler than the earlier approaches to 

find 3NF, BCNF or 4NF. It also produces a more optimal design.

The new normal form DPNF, which is presented here, is stronger than 3NF but 

weaker than 4NF. DPNF guarantees a lossless decomposition. All decompositions of 

DPNF are in 3NF. DPNF preserves all functional dependencies. It yields a better 

decomposition by discarding some of the redundant schemes and also by using CFDs as 

a way of combining two schemes whose keys are equivalent. DPNF decomposition is 

obtained in polynomial time.

The algorithm to produce DPNF decomposition uses a cover of FDs to produce a 

reduced annular cover consisting of compound functional dependencies. The 

approach to find the reduced annular cover is faster than the traditional methods. It 

uses Linderives and Annderives which are faster than linclosure. Instead of 

computing left reduced cover, right reduced cover, reduced cover, and then forming 

the annular cover, the presented approach uses the original cover of FDs to form 

annular cover. The database is constructed by transforming each compound 

functional dependency of the reduced annular cover into a relation scheme, with each 

left set of that compound functional dependency being a key for that scheme. It is 

shown with examples that sometimes all of the keys for some subschemes are not 

discovered. Some improvements are made to the algorithm given in (Osborn, et al. 

1978) to find all of the keys for each subscheme of the database. However it has 

been proved (Osborn, et al. 1978) that to determine all keys of cardinality m of a

42
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relation scheme is NP-Complete.

It also removes schemes that happen to be subsets of other schemes. The 

redundancy happens because of the fact that some functional dependencies take part in 

more than one relation. The schemes whose superset exists are redundant and 

therefore are not needed in the decomposition.

The schemes produced by this approach may be in Boyce Codd Normal form. 

However it has been shown in (Beeri, et al. 1979) that it is NP-Complete just to 

determine whether a relation scheme is in Boyce Codd Normal form. It is well known 

that Boyce Codd Normal form does not always preserve functional dependencies. For 

this reason DPNF is preferred over BCNF.

If the subschemes do not have the lossless join property then it has been shown 

in (Biskup, et al. 1979) that a key is needed. Two approaches are used to find a key 

of the original relation scheme. One method is faster but it does not guarantee 

optimal DPNF. The second approach guarantees the minimal key but it is slower. 

The fact is, if we have a minimal key then we can have a relation scheme with fewer 

attributes.

The algorithm outputs every scheme with FDs that are contained in it along with 

some of the corresponding keys.

The document notes earlier drawbacks and compares the presented algorithm 

with other approaches. The complexities at each stage are also determined. Also, for 

simplicity and clarity, an example has been traced through the whole algorithm.
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APPENDIX

IMPLEMENTATION OF THE ALGORITHM

The program to obtain a DPNF decomposition is  given below. I f  a new 

scheme is  added to the decomposition to  obtain a lossless jo in  property, 

then th is  program w il l  not decompose on the basis of MVDs.

* This program takes re la tion  scheme as input which may or may not be *
* Universal. I t  is  also supplied with functional dependencies which *
* specify the re la tio n  among the a ttr ib u te s . The program f i r s t  determines *
* equivalence classes i .e .  a l l  the f.ds  whose le f t  sides are equivalent. *
* Now we convert each set of f .d  with equivalent le f t  sets in to  compound *
* functional dependencies. This co llec tion  of CFDs forms an annular cover.*
* The annular cover is  then converted into reduced annular cover. Each *
* cfd is  then converted into a re la tio n  scheme with a l l  of cfd a ttrib u tes  *
* being a ttrib u tes  of the re la tio n  scheme and le f t  sets form reduced keys.*
* This approach is  due to synthesis. So we obtain a set of re la tio n  scheme*
* from o rig in a l scheme to s ta rt w ith. Some of the schemes may be subset of*
* the other schemes therefore those schemes which have superset are not *
* needed. These schemes are discarded. The schemes obtained may not have *
* lossless jo in  property, therefore a check is  made to see i f  schemes have*
* th is  property. I f  i t  is  then we are done otherwise we determine one of *
* reduced keys of the o rig ina l scheme. The reduced key is  added to the set*
* of decomposed schemes as a new scheme. *
* F in a lly  the decomposed schemes are printed along with some of th e ir  *
* reduced keys and a l l  of the FDs contained in  them. *
i t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

PROGRAM c f(in p u t, inp, output, out);

* Constant declarations *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

CONST

mx_attr = 20; ( Maximum number of a ttribu tes  )
mx_length = 20; { Maximum length of each a ttrib u te  }
mx_fds = 25; { Maximum number of fds }

* Type declarations *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

44
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TYPE
marker_set
a ttr_set
fd_set
nametp
a ttr_ a r
fd rec

functional
right_ar
equi_set

cfd d

annular 
count_d 
lis t_ d  
in t_ar  
key ar

set of ' ' . .  { Keeping track of endmarker }
set of 0 . .  mx_attr; { Set of a ttrib u tes  }
set of 1 . .  mx_fds; { Set of f.ds }
string[mx_length]; { a ttr ib u te  name }
a rray [1 . .mx_attrj of nametp; { array of a ttr ib u te  names } 
RECORD { an f .d  with le f t  containing a l l  the }

le f t ,  { le f t  a ttribu tes  of i t  and righ t the }
righ t : a ttr_ se t; { righ t a ttribu tes  of i t .  }

END;
array [1 . ,mx_fds] of fd_rec; { array of f.d s  } 
array[l..m x_fds] of a ttr_se t;
array[l..m x_fds] of fd_set; { contains f.ds whose le f t  }

{ sides are equivalent }
RECORD

card : integer;
Lset : right_ar;
Rset : a ttr_ se t;

END;
arrayfl..m x_fds] of cfd_d; 
array[l..m x_fds, l..m x_fds] of integer; 
array [ 1 . .mx_attr, l..m x_fds] of integer; 
array [1 . .mx_attr] of integer; 
array[l..m x fds] of integer;

* Variable declarations *
★ a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

VAR

inp, out Text;
inpf_name,
outf_name" Nametp;
no_fd Integer;
a ttrb a ttr_ar;
fd functional;
Pf>
equi equi_set;
e _ le ft ,
e_right,
clos,
re l right_ar;
R,
rkey a ttr_se t;
no_schemes,
ecounter,
probl_no integer; {
keys key_ar;
count count_d;
l i s t l ,
l is t2 l i s t  d;

{ input f i l e  and output f i l e  }
{ Holds name of input f i l e .  )
{ Holds name of output f i l e .  }
{ number of f.ds  read }

{ array for holding pointer to contained cfds. }

{ keeps a pointer to cfd that holds reduced keys.) 
{ count of a ttrib u tes  not counted for in  cfd }
{ l i s t  used in  annderive fo r pointer to cfds }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

cfd : annular; { array for annular cover)

* In i t ia l i z e  A ll the variables *

procedure in i t i a l i z e _ a l l ( var F :functional; var a t tr :a tt r_ a r ;  var equi:
equi_set; var e _ le ft , e_right, d b :rig h t_a r);

{ This procedure in it ia l iz e s  a l l  the variables used, to empty )

VAR
x : in teger;

BEGIN
for x := 1 to mx_fds do 
BEGIN

F [ x ] . le f t  
F [x ].r ig h t  
equi[x] 
e _ le ft[x ]  
e_right[x] 
re l[x ]  := [];

END;
for x := 1 to  mx_attr do 

a t tr [x ]  := " ;
END;

( * * * * * * * * * * * * * * * * * * * * * * *
* Prin t A ttrib u te  Set *
* * * * * * * * * * ★ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ★ * )

procedure p r in t_ a t_ s e t( var out : te x t; a_set : a ttr_se t; a t t r  : a ttr_ a r );

{ This procedure converts each integer in to  appropriate a ttr ib u te  name from 
the set which is  passed. I t  then p rin ts  the a ttr ib u te . }

VAR
x : in teger;

BEGIN
i f  (a_set <> []) then

fo r x := 1 to mx_attr do 
i f  ( x in  a_set ) then 
BEGIN

w rite (ou t, a t t r [ x ] ) ;  
w rite (ou t, '  ' ) ;

END;
END;

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

*  P rin t Functional Dependency *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )
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procedure prin t_fd_set ( var out : tex t; f  : functional; no_fd : integer;
a t t r  ; a t t r_ a r ) ;

{ This procedure p rin ts  each f .d . from the set of f.ds in  the proper order } 

VAR
x, cou : in teger;

BEGIN
w rite ln (o u t);
w rite ln (o u t, ' ':1 0 , ' Functional Dependencies ( F.D. ) are : ' ) ;
w rite ln  (out, ' ' :  10, ' ----------------------------------------    ' ) ;
cou := 1;
for x := 1 to  no_fd do

i f  ( f [ x ] . l e f t  <> [] ) then 
BEGIN

w rite (o u t, ' ':1 0 ) ;  
i f  ( cou <= 9 ) then w rite(out, ' ' ) ;  
w rite (o u t, cou, ')  ' ) ;  
prin t_at_set(o u t, f [ x ] . l e f t ,  a t t r ) ;  
w rite (o u t, ' — > ' ) ;  
prin t_at_se t(o u t, f [x ] .r ig h t ,  a t t r ) ;  
w rite ln (o u t); w rite ln (o u t); 
cou := cou + 1;

END;
END;

* Print C .f.d . *

procedure pr_cfds(var o u t:text; cfd:annular; ecounter:integer; a t t rb :a t t r _ a r ) ;

{ This procedure p rin ts  compound functional dependency by checking the }
{ equivalence classes. )

VAR
i ,  x : in teger;

BEGIN
i  := 1; 
w rite ln (o u t);
w rite ln (o u t,' ':1 0 , ' Compound Functional Dependencies are : ' ) ;
w rite ln  (o u t,' ' :  10, ' ------------------------------------------------------ — ' ) ;
for i  := 1 to  ecounter do 
BEGIN

w rite ln (o u t); w rite (ou t, ' ':1 0 ) ;  
i f  ( i  <= 9 ) then w rite(out, '  ' ) ;  
w rite (ou t, i ,  ')  ( ' ) ;
for x := 1 to  c fd [i] .c a rd  do 
BEGIN

prin t_at_set (out, c f d [ i ] . ls e t [x ] , a t t r b ) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

i f  ( x < c fd [i] .c a rd  ) then w rite  ( o u t / ,  ')  
else w rite (ou t, ' ) ' ) ;

END;
w rite (ou t, ' ---- > ' ) ;
i f  (c fd [ i] .rs e t  <> []) then

prin t_at_set(out, c fd [ i ] .r s e t ,  attrb )
else

w rite ( o u t / { } ' ) ;  
w rite ln (o u t);

END;
END;

* Heading for the t i t l e  *
★ ★ a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

procedure heading(var ou t:text; s:nametp; var probl_no: in teg er);

{ This procedure prin ts  the t i t l e  with name passed as a parameter. )

BEGIN
w rite ln (o u t, chr(27), ch r(12)); 
w rite ln (o u t); w rite ln (o u t);
w rite ln  (o u t /  ':2 0 , 'The Input F ile  is  : ' ,  s ) ;
w rite ln  (o u t /  ' :  20, ' ------------------------------  ' ) ;
w r ite ln (o u t); w rite ln (o u t);
w rite ln (o u t, ' ';2 0 , 'Data Set No. : ',p robl_no);
w rite ln (o u t, ' ':2 0 , ' -------------------' ) ;
probl_no := probl_no + 1;

END;

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Read the f i l e  names for input and output *
★ ★ i t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

procedure read_file_name(var i n f i l ,  o u t f i l :  te x t; var i_name, o_name: nametp);

{ This procedure returns the f i l e  variable used for both reading and w riting  } 
{ I t  also checks the error condition lik e  whether f i l e  exists or not. )

VAR
ch : char;
correct : boolean;

BEGIN
clrscr;
w rite ln ; w rite ln ; correct := fa lse; 
while (not correct)
BEGIN

w rite ln ;
w r ite (' Enter the name of f i l e  containing fds : ' ) ;  
read(i_name); w rite ln ; 
a s s ig n (in fil, i_name);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

{$1-} reset ( in f i l )  ($ I+ );
i f  ( IORESULT = 0 ) then correct := true
else w r ite ln ( 'F ile  cannot be opened . . .  Try again . . . ' ) ;

END;
w rite ln ;
w rite  (' Enter the name of output f i l e  : ' ) ;
read(o_name);
as s ig n (o u tfil, o_name);
r e w r ite (o u t f i l ) ;

END;

^ * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* X Closure *

procedure xclosure( F :functional; no_fds:integer; le f t :a t t r _ s e t ;
var lc lo s u re :a ttr_ s e t);

{ This procedure computes the closure of set of a ttr ib u te s . )

VAR
oldc, newc : a ttr_se t;
x : integer;

BEGIN
oldc := [];
newc := le f t ;
while (newc <> oldc) do
BEGIN

oldc := newc;
fo r x := 1 to no_fds do

i f  ( F [x ] . le f t  <> [] ) then
i f  ( newc >= F [ x ] . le f t  ) then newc := newc + F [x ].r ig h t;

END;
lclosure := newc;

END;

* Derives *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

function derives(F:functional; no_fds: integer; le f t ,  r ig h t:a t tr_ s e t) :boolean;

{ This function returns true i f  le f t  derives righ t otherwise fa lse )

VAR
lclosure : a ttr_se t;

BEGIN
xclosure( F, no_fds, le f t ,  lc lo su re );
i f  ( r ig h t <= lclosure ) then derives := true
else derives := fa lse;

END;
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^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Equivalent *

function equivalent! F:functional; no_fds:integer; x, y :a ttr_se t ) : boolean;

{ A function which returns true i f  two sets are equivalent otherwise fa lse . } 

BEGIN
equivalent := fa lse;
i f  (derives(F, no_fds, x, y) and derives(F, no_fds, y, x ) ) then 

equivalent := true;
END;

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Form Annular *

procedure form_annular( F:functional; no_fds:integer; var equi:equi_set;
var e _ le ft , e_ rig h t:rig h t_ar; var ecounter :in teg er);

{ This procedure determines a l l  the equivalence classes of the le f t  sides } 
{ and using these classes i t  forms annular cover. }

VAR
cnt, x, y : integer; 
ebuf : fd_set;

BEGIN
ebuf := [ ] ;  ecounter := 0; 
for x := 1 to  mx_fds do 
BEGIN

eqgi[x] := [];
e _ le ft[x ] := [];
e_right[x] := [ j;

END;
for x := 1 to  no_fds do

i f  (F [x ] . le f t  <> []) then
i f  not ( x in  ebuf ) then 
BEGIN

cnt := 1;
ecounter := ecounter + 1;
c fd [ecounter].lse t[cn t] := F [x ] . le f t ;
equi[ecounter] := [x ];
ebuf := ebuf + [x ] ;
e_left[ecounter] : = F [ x ] . le f t ;
e_right[ecounter] := F [x ] .r ig h t;
fo r y := x + 1 to no_fds do

i f  (F [y ] . le f t  <> []) and (not (y in  ebuf)) then
i f  (e q u iv a le n t(F ,n o _ fd s ,F [x ] .le ft ,F [y ].le ft)) then 
BEGIN

cnt := cnt+ 1;
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cfd [ecounter].lse t[cn t] := F [y ] . le f t ;  
equi[ecounter] := equi[ecounter] + [y ]; 
ebuf ebuf + [y ] ;
e_left[ecounter] := e_left[ecounter] + F [y ] . le f t ;  
e_right[ecounter] := e_right[ecounter]+ F [y ].r ig h t;

END;
e_right[ecounter] := e_right[ecounter] -  e_ le ft[ec o u n te r]; 
cfd[ecounter].rset := e_right[ecounter]; 
cfd[ecounter]. lset[cnt+1] := [];  
cfd[ecounter].card := cnt;

END;
END;

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  *'*
* Put In L ist *
★ ★ ★ ★ ★ ★ a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

procedure p u tin lis t(v a r  11, 12 :lis t_ d ; A, x, y :in teger);

VAR
i  : integer;

BEGIN
i  := 1;
while (11[A ,i] <> 0) do 

i  := i+1;
11 [A ,i] := x; 11 [A, i+1] := 0;
12 [A, i ]  := y; 12 [A, i+1] := 0;

END;

* Ann Derives *

function Annderives ( cfd: annular; le f t ,  r ig h t : a ttr_set) : boolean;

{ This returns true i f  le f t  derives rig h t using annular cover of cfds. }

VAR
der : boolean;
A, c, i ,  j ,  r , x, y : integer;
newc, oldc, ext : a ttr_set;

BEGIN
der := fa lse; 
for x := 1 to  mx_attr do 

l i s t l [ X , 1] := 0; 
i f  ( righ t <= le f t )  then 

der := true  
else

for x := 1 to  ecounter do 
With cfd[x] do 
BEGIN
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clos[x] := rset; i :=  1; j :=  1;
w h ile (i <= card) do
BEGIN

while ( ls e t [ j ]  = []) do j:=  j+1; 
count[x, j]  := 0; clos[x] := clos[x] + ls e t [ j ]; 
for A := 1 to  mx_attr do 

i f  (A in ls e t [ j ]) then 
BEGIN

count [x, j] := count [x, j]  + 1; 
p u t in l is t ( l is t l ,  l is t2 ,  A, x, j ) ;

END; 
i  := i  +1;
j  :» j  + i;

END;
END; 

newc := le f t ;  
i f  der then 

oldc := [] 
else

oldc := le f t ;  
while (oldc <> []) do 
BEGIN

for A := 1 to  mx_attr do 
i f  ( A in  oldc) then 
BEGIN

i  := 1;
while ( l i s t l [ A , i )  <> 0) do 
BEGIN

c := l i s t l [ A , i ) ;  r := l is t2 [A , i ] ;  
c o u n t[c ,r]:= count[c,r] -1; 
i f  (count[c,r] = 0) then 
BEGIN

ext := clos[c] -  newc; 
newc := newc + ext; 
oldc :«= oldc + ext; 
i f  ( righ t <= newc) then 
BEGIN

der := true; 
oldc := [];

END;
END;
i  := i  +1;

END;
oldc := oldc -[A ];

END;
END;
annderives := der;

END;

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

* Empty Cfd *
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * j

procedure Empty_Cfd(var c f : cfd_d);

{ This procedure empties a l l  entries of the cfd. }

VAR
i ,  j : integer;

BEGIN
i  ;= 1; j  := 1;
while ( i  <= cf.card) do
BEGIN

i f  (c f . ls e t [ j ]  <> []) then 
BEGIN

c f .ls e t  [ j]  := [];  
i  := i  +1;

END;
j := j +1;

END;
c f.rs e t := [];  
cf.card  := 0;

END;

* Move Cfd *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * j

procedure Move_Cfd( var c f l ,  cf2: cfd_d);

( This procedure moves a cfd from one location to other. }

VAR
i ,  j  : integer;

BEGIN
i  := 1; j := 1;
while ( i  <= c fl.ca rd ) do
BEGIN

i f  ( c f l . ls e t [ j ]  <> [}) then 
BEGIN

c f2 .1 s e t[ j]  := c f l . l s e t [ j ] ; 
c f l . l s e t [ j ]  := [];  
i  := i  +1;

END;
j := j +1;

END;
c f2 .rs e t := c f l .r s e t ;  c f l .rs e t  := [];  
cf2.card := c fl.c a rd ; c fl.c a rd  := 0;

END;

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* Get Right Set *
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procedure g e tr ig h ts e t( x : integer; temp: a ttr_ se t; Var f in a l:  a t tr_ s e t) ;

{ This function finds the right set of a given cfd a fte r  one of the le f t  }
{ sets is  removed or changed. }
VAR

i ,  j  : integer; 
le f t  : a ttr_ s e t;

BEGIN
with cfd[x] do 
BEGIN

i  := 1; j  := 1; 
while ( i  <= card) do 
BEGIN

i f  ( ls e t [ j ]  <> []) then 
BEGIN

i:=  i  +1;
le f t  := le f t  + ls e t [ j ] ;

END;
j :  = j +1;

END;
temp := rset + temp; 
f in a l := temp -  le f t ;

END;
END;

| * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* ArrangeLSets *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ★ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )  

procedure arrangelsets( var cfd: annular; num:integer; c n t:in te g e r);

{ This procedure puts the le f t  sets of cfds in  sequence. )

VAR
i ,  j  : integer;

BEGIN
i  := 1; j  :=1; 
while ( i  <= cnt) do 
BEGIN

w h ile (c fd [num ].lse t[j] = []) do j:=  j+1;
i f ( j  > i )  then
BEGIN

cfd [n um ].lse t[i] := c fd [n u m ].ls e t[j]; 
cfd[num] . ls e t [ j]  := [] ;

END;
i  := i  +1; 
j  := j  +1;

END;
cfd[num].card := cnt;
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END;

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* S h ift Left Sets *

procedure sh ift_ le ft_se ts (V ar cfd: annular; Var ecounter: in teger);

{ This procedure sh ifts  extraneous le f t  sets to the r ig t  set. )

VAR
x, cnt, i ,  j  : integer; 
temp : a ttr_se t;

BEGIN
for x := 1 to ecounter do 

i f  c fd [x ].ca rd  > 1 then 
With cfd[x] do 
BEGIN

cnt := card; i  :=2;
while ( i  <= cnt) and (card > 1 )  do
BEGIN

temp := ls e t [ i ] ;  ls e t [ i ]  := [] ;  card := card -1 ; 
i f  annderives(cfd,temp, ls e t [1]) then 

getrightset(X,tem p, rset)
else

BEGIN
card := card +1; 
l s e t [ i ] := temp;

END; 
i  := i  +1;

END;
i f  (card > 1) then 
BEGIN

temp := ls e t [ l ] ;  i  :=2; 
ls e t [ l ]  := [];  card := card -1; 
while ( ls e t [ i ]  = []) do i :=  i  +1; 
i f  an nderives(cfd ,tem p ,lset[i]) then 

getrightset(X , temp, rset)
else

BEGIN
card := card +1; 
ls e t [ l ]  := temp;

END;
END;
i f  ( card < cnt) then arrangelsets(cfd ,X ,card );

END;
END;

| * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Remove Left A ttrs  *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

procedure Remove_left_attrs(Var cfd: annular; Var ecounter: in teger);

{ This procedure discards extraneous a ttrib u tes  in  le f t  sets. }

VAR
x, y, z : in teger;

BEGIN
for x := 1 to  ecounter do 

with cfd[x] do
for y := 1 to  card do

for Z:= 1 to mx_attr do 
i f  (z in  ls e t[y ])  then

i f  a n n d e riv e s (c fd ,ls e t[y ]-[z ], [z]) then 
ls e t [y] := lse t [y] -  [z] ;

END;

j * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* Right Reduce *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

procedure Right_reduce(Var cfd: annular; Var ecounter: in teger);

( This procedure discards the extraneous a ttrib u tes  from the righ t sets. } 

VAR
i ,  x, z : in teger;

BEGIN
for x := 1 to  ecounter do 

for z := 1 to mx_attr do
i f  ( z in  c fd [x ].rs e t) then 
BEGIN

c fd [x ].rs e t := c fd [x ].rs e t -  [z ]; 
i f  (not an n d erives (c fd ,c fd [x ].ls e t[1 ], [z ])) then 

c fd [x ].rs e t := c fd [x ].rs e t + [z ];
END;

END;

( * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* Reduce Annular *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

procedure Reduce_Annular(var out: tex t; var cfd: annular; var ecounter:integer;
F: functional; no_fds: integer; var equi: equi_set; 
var e _ le ft , e_right: r ig h t_ a r);

{ This procedure computes the reduced annular cover from fds. )

VAR
x, cnt, i ,  j  : integer;
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BEGIN
form_annular( F, no_fds, equi, e _ le ft , e_right, ecounter);
s h ift_ le ft_ s e ts (c fd , ecounter);
rem ove_left_attrs(cfd, ecounter);
right_reduce(cfd, ecounter);
cnt := 0;
for x: = 1 to  ecounter do

i f  (c fd [x ].card  <= 1) and (c fd [x ].rs e t = []) then 
em pty_cfd(cfd[x]) 

else
cnt := cnt +1; 

ecounter := cnt; i :=  1; j:=  1;
while ( i  <= cnt) do 
BEGIN

w h ile (c fd [ j ] .card = 0) do j:=  j+1; 
i f ( j  > i )  then

m ove_cfd(cfd[j], c fd [ i j ) ;  
i  := i  +1;
j := j  + i;

END;
pr_cfds(out,cfd,ecounter, a t t rb ) ;

END;

* Reduced Key *

procedure reduced_key(var key: a ttr_se t; cfd: annular;
R: a ttr_se t; ecounter: in te g e r);

( This procedure determines the primary key by removing an a ttrib u te  at a ) 
{ time ( i f  i t  can) from a key. )

VAR
A, x, i  : integer;
Uright, U le ft , p,
ronly, kernel, S : a ttr_se t;

BEGIN
for x := 1 to  ecounter do 

with cfd[x] do 
BEGIN

Uright := Uright + rset;
i f  (card = 1) then U left := U le ft + ls e t [ l ]
else

fo r i  := 1 to card do 
BEGIN

U le ft := U le ft + ls e t [ i ] ;
Uright := Uright + ls e t [ i ] ;

END;
END;

ronly := Uright -  U le ft;
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kernel := R -  Uright;
S := R -  ronly;
P ;= s -  kernel; 
for A := 1 to mx_attr do 

i f  ( A in  P) then
i f  annderives( cfd, S -  [A], R) then 

S := S -  [A];
■ Key := S;

END;

* Lossless *

function lo ss le ss (re l ; right_ar; R: a ttr_ se t; no_schemes: in te g e r):boolean;

{ The function returns true value i f  decomposition has lossless jo in  property.) 
VAR

x : integer;
BEGIN

lossless := fa lse;
for x := 1 to no_schemes do

i f  annderives(cfd, r e l[x ] ,  R) then lossless := true;
END;

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* P rin t Contained Fds *

procedure pr_cont_fds(var out: tex t; cfd: annular; cvr: fd_set; a tr: a t t r_ a r ) ;

( This procedure prin ts  fds that are contained in  a scheme. )

VAR
x, y : in teger;

BEGIN
for x:= 1 to ecounter do 

i f  (x in  cvr) then 
with cfd[x] do 
BEGIN

i f  (card > 1) then
for y := 2 to card do 
BEGIN

w rite (o u t,' ':1 5 ) ;  
p rin t_ a t_ s e t(o u t,ls e t[y ], a t r ) ; 
w rite (o u t,' — > ' ) ;  
p rin t_ a t_ s e t(o u t,ls e t[y -1 ], a t r ) ;  
w rite ln (o u t);

END;
w rite (o u t,' ':1 5 );  
p rin t_ a t_ s e t(o u t,ls e t[1 ], a t r ) ;  
w rite (o u t,' — > ' ) ;  
i f  (card=l) then
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prin t_at_set (out, rset, atr) 
else

prin t_at_set(ou t, lset[card] + rset, a t r ) ;  
w rite ln (o u t);

END;
END;

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* P rin t Database *

procedure print_db(var o u t:tex t; db:right_ar; a tr :a ttr_ a r ;  key:attr_set;
R :attr_set; keys: key_ar);

{ This procedure prin ts the database with keys and also the primary key } 
{ fo r the o rig ina l re la tio n . }

VAR
i ,  j  : integer;

BEGIN
i  : = 1;
w r ite ln (o u t); w rite ln (o u t);
w rite ln (o u t, ' ':1 0 , ' Relational Database');
w rite ln  (out, ' ' :  10, ' ----------------- ------------- ' ) ;
w rite ln (o u t); w r ite (o u t,' ':1 0 , 'R ' , '  ( ' ) ;  
prin t_at_set(out, R, a t r ) ;  
w rite ln (o u t,' ) ' ) ;
w r ite (o u t,' ':1 0 , 'Candidate Key for o rig ina l scheme : ' ) ;  
prin t_at_set(out, key, a t r ) ;  
w rite ln (o u t);
for i  := 1 to no_schemes do 
BEGIN

w rite ln (o u t); w r ite (o u t,' ':1 0 , 'R ' , i , '  ( ' ) ;  
prin t_at_set(out, d b [ i] ,  a t r ) ;  
w rite ln (o u t,' ) ' ) ;
w rite ln (o u t,' ':1 0 , ' Keys are : ' ) ;  
w rite (out, ' ':1 5 ) ;  
i f  (keys[i] = 0 ) then

p rin t_ a t_ s e t(o u t,d b [i],a tr)  
else

for j  := 1 to c fd [k e y s [i]] .card do 
BEGIN

prin t_at_set (out,c fd [keys[i] ] .ls e t [ j ] , a t r ) ; 
w rite (o u t,' ' : 3 ) ;

END; 
w rite ln (o u t);
w rite ln (o u t,' ' : 1 0 , 'Contained fds : ' ) ;  
pr_cont_fds(out, c f d ,p f [ i ] , a t r ) ;

END;
w rite ln (o u t);

END;
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* Make Relation *

procedure m krel(cf: cfd_d; var re la tio n : a t tr_ s e t) ;

{ This procedure converts a cfd in to a re la tio n . }

VAR
x : integer;

BEGIN
re la tio n  := c f .rs e t;  
fo r x := 1 to cf.card  do

re la tio n  := re la tio n  + c f . ls e t [x ] ;
END;

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Make Database *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )

procedure make_db(var re l:r ig h t_ a r; var pf: equi_set; var keys: key_ar;
var no_schemes:in te g e r);

{ This procedure determines the database, also, the keys for subschemes are }
{ determined along with contained fds. }

VAR
new, x, i  : integer; 
found : boolean;

BEGIN
new :=1;
for x ;= 1 to ecounter do 
BEGIN

m kre l(c fd [x ], re l[new ]);
pf[new] := [x ]; keys[new] := x;
found := fa lse; i  :=1;
while ( i  < new) and (not found) do
BEGIN

i f  (rel[new] <= r e l [ i ] )  then 
BEGIN

p f [ i ]  := p f [ i ]  + pf[new]; 
found := true;

END
else

i f  ( r e l [ i ]  <= rel[new]) then 
BEGIN

r e l [ i ]  := re l[new ]; 
p f [ i ]  := p f [ i ]  + pf[new ]; 
keys[i] := keys[new]; 
found := true;

END;
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i  := i+1;
END;
i f  (not found) then new:= new +1;

END;
no_schemes := new -1;

END;

* Put A ttrib u te  *

procedure pu t_at( var at : a ttr_ a r; new : nametp; var at_num : integer;
var R : a ttr_se t );

{ This procedure puts the a ttr ib u te  in  the array of a ttrib u tes  i f  not there ) 
{ already, while reading. )

BEGIN
at_num := 1;
while ( (at [at_num] <> " )  and (at[at_num] <> new)) do 

at_num := at_num + 1; 
at[at_num] := new;
R := R + [at_num];

END;

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Get F.d.s *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )  

procedure get_fds(var In f i le  : Text; var no_fds : In teger; var a t t r  : a ttr_ a r;
var fd : functional; var R: a t t r_ s e t) ;

( This procedure reads a l l  the f.d s . from the f i l e  fo r each problem )
( separately and stores i t  in  the array of records. )

LABEL
e l;

VAR
i ,  attr_num 
temp
ch, lmarker,
m arker,
relmarker,
pmarker
curr_set
marker

: Integer; 
: nametp;

: char;
: a ttr_ s e t;
: marker set;

BEGIN
for i  := 1 to mx_attr do 

a t t r [ i ]  := " ;
R := [];
Marker := '  $ ',
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lmarker 
m arker := 
relmarker := 
pmarker :=
curr_set := []; no_fds := 1; temp := " ;
while not eof ( in f i le )  do
BEGIN

while not eoln ( in f i le )  do 
BEGIN

re a d (in file , ch );
i f  not (ch in  Marker) then temp := temp + ch
else
BEGIN

i f  (temp <> ' ' )  then 
BEGIN

p u t_ a t(a ttr , temp, attr_num, R); 
curr_set := curr_set + [attr_num]; 
temp := ' ' ;

END;
i f  (ch = lmarker) then 
BEGIN

fd [n o _ fd s ].le ft := curr_set; 
curr set := [];

END;
i f  (ch = m arker) then 
BEGIN

fd [no _fd s].rig h t := curr_set; 
curr_set := [];  
no_fds := no_fds + 1;

END;
i f  (ch = relmarker) then curr_set := [];
i f  (ch = pmarker) then goto e l; (* end problem *)

END;
END;
re a d ln ( in f i le ) ;

END;
e l:

no_fds := no_fds -  1; (* Number of fds read *)
END;

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^ * * * * * * * * *  
* Main Program *

BEGIN
read_file_name(inp, out, inpf_name, outf_name);
probl_no := 1;
while (not eof (in p )) do
BEGIN

heading (out, inpf_name, probl_no);
in i t ia l iz e _ a l l ( fd ,  a ttrb , equi, e _ le ft , e_righ t, r e l ) ; 
get_fds(inp, no_fd, a ttrb , fd, R);
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p rin t_ fd _ se t( out, fd , no_fd, a ttrb );
reduce_annular(out,cfd,ecounter, fd, no_fd, equi, e _ le ft , e _ rig h t);
make_db(rel, p f, keys, no_schemes);
reduced_key( rkey, cfd, R, ecounter);
i f  not (lo ss less (re l, R, no_schemes)) then
BEGIN

no_schemes : = no_schemes +1; 
rel[no_schemes] := rkey; 
pf[no_schemes] := [] ;  
keys[no_schemes] := 0;

END;
print_db(out, r e l,  a ttrb , rkey, R, keys); 
read ln (in p );

END;
c lose(ou t); 
c lo se (inp );

END.
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* End of the Program *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )
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