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A ROBUST TWO-SAMPLE PROCEDURE TO ESTIMATE A SHIFT
PARAMETER

Feridun Tasdan, Ph.D.

Western Michigan University, 2003

This study estimates the location shift parameter in the two-sample prob­

lem. The classical method, Least Square(LS), obtains the shift parameter estimate 

under the normality assumption. A departure from normality assumption makes 

the estimate inefficient and unreliable. One alternative to the least square esti­

mate is Hodges-Lehmann(HL) estimate which uses Wilcoxon ranks to estimate 

the shift parameter. This estimate is robust against contaminations and large 

outliers. The proposed method in this study combines two samples and uses con­

volution technique to find a density function for the combined sample. This new 

density function is later used in the construction of the log likelihood function. 

By the quasiconvexity of log likelihood function, a minimization procedure finds 

the estimate of the shift parameter. Asymptotic properties of this estimator is 

established under conditions that are similar to those used in LS and HL. Among 

those properties, the asymptotic linearity and asymptotic normality conditions 

are satisfied and found in the latter case. As shown in the study, the proposed 

estimator is highly efficient and robust against contaminations and outliers. This 

result is supported by the real data examples and by a bootstrap simulation study.
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CHAPTER I

INTRODUCTION

1.1 Definition of the Problem

Let X i , . . . , X ni and Yi, .. .,Yn2 be two independent i.i.d random samples 

with common distribution functions F(x) and G(y), respectively. We assume 

a relationship of G(y)=F(y-Ao) which is also called the location-shift model. In 

general, two problems are often studied in this set up. First problem is the testing 

of the hypotheses

H0 : F(x) = G{y) vs HA : F(x) ±  G(y)

where Ho implies tha t the sample X and the sample Y come from the same pop­

ulation distribution function under H q. Equivalently, above null and alternative 

hypotheses can also be expressed in terms of shift parameter Ao

Ho : Ao =  0 vs HA : Ao ^  0

Most of the procedures in the literature only deal with this problem, testing of

Ho vs H a . T he m ain  in terest is w hether or no t two sam ples come from  th e  sam e

population distribution function F(x).

Second type of problem often seen in the literature is the estimation of the

shift parameter Ao. The shift parameter Ao is sometimes called the treatment

1
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effect in the literature if the two random samples are classified as control and 

treatment groups. Ao is the expected effect due to the treatment. If Ao is positive, 

it is the expected increase due to the treatment. If Ao is negative, it is the expected 

decrease due to the treatment.

We should note that, in many cases, neither of the random samples are 

classified as treatment or control group. The procedures we discuss here are 

applicable even if the samples are not related to drug testing problems.

1.2 Least Square Estimation

The problem of estimating shift parameter Ao in the two-sample problem 

has been studied extensively in the past. The least square estimation method first 

introduced by Gauss in the 18th century can be used to derive the shift parameter 

estimate in the two-sample location problem. Hettmansperger and McKean(1998) 

described the two-sample location problem in terms of a linear model as follows:

Zi — A0Ci + ei, 1 < i < n,

where ei, ..en are i.i.d with distribution function F(x), c, is the indicator function

C i =

0, if 1 <  i < n\

1, if ni +  1 < i < n

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and Zi is the ith element of the combined sample of (Xi, . .Xni, Y , ..Y„2). The clas­

sical least squares estimation approach can be used to estimate the shift parameter 

Ao based on the following square pseudo-norm,

n  n

Dl s {A) = || Z -  CA | | | 5=  Zj +  CjA)
i= 1 j =1

By taking the first derivative of the above D (A) function with respect to A, we 

get the gradient function

S LS(A) =  -4 m n 2( f  -  X  -  A)

Therefore, setting S l s (A) equal to zero, we get the classical least square estimate 

of Ao which is

A ls = Y  — X

It can be shown that

A ls is approximately X(Ao,cr2(n^1 +  n^"1))

By setting A =  0 in S l s (A), we can find the test statistic

S l s ( 0) = Y  — X

Then, under Ho, the classical two-sampled pooled t-test statistic based on the 

above results is defined by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

where

[in i ~  m  +  (n2 - I j s g
pool ni +  n2 — 2

This is a well known testing procedure for comparing the locations of two samples. 

It can be found in almost every elementary statistics textbook. Under the normal­

ity of population distribution functions assumption, A l s  and pooled t-test are the 

best for estimating the shift parameter Ao and testing the null hypothesis in the 

two-sample location problem. On the other hand, if there is contamination in the 

data or departure from the normality assumption, then the result of the estimar- 

tion and naturally the result of the testing procedure could be less than optimal. 

Therefore, both of these methods, A l s  = Y  — Y  and the two-sample t-test, are 

vulnerable to the outliers and depend heavily on the normality assumption (Stu­

dent (1927), Tukey (1960), Hoyland (1965) and Huber (1972)). The two-sample 

t test should be used with a caution if the underlying distribution function is 

unknown or if there are large outliers in the data.

1.3 Hodges-Lehmann Estimation

The robust estimation and testing procedures are on the big move to­

ward replacing classical methods in recent years. The reason for this, as we have 

mentioned above, is that the classical estimation method (Least Square) needs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the data to be normally distributed (at least approximately normal or outlier 

free) but in the real world, the data does not follow these assumptions. Hample, 

Ronchetti, Rousseew, and Stahel (1986) argue tha t real data contain 1% to 10% 

gross errors in real life. Further studies by Huber(1972), and Hettmansperger and 

McKean(1998) also indicate that real life data can be contaminated. On the other 

hand, the robust estimation and testing procedures do not depend on the normal­

ity assumption and robust against outliers. Mostly, they are distribution free 

under the null hypothesis. The most widely used and well known robust proce­

dure in the two sample problem is the Mann-Whitney-Wilcoxon(MWW) method. 

This method uses ranks and based on the pseudo-norm(Li norm) defined by

n n

D r {A )  = || Z — CA  \\r =  ^ 2  ^ 2  I ^  — Ci^  ~~ I
i—1 1

By taking the first derivative of the dispersion function D r (A) with respect to A, 

we get the MWW gradient function

ni ri2

SR( Ao) =  - 2  EE sgn(Yj - X i - A o )
i=i j - i

By setting S r (A) =  0 and solving for A, we get

A fi =  med{Yj -  X J

which is the median of the pairwise differences. This is the pseudo-norm(Li 

norm) based on the estimate of the shift parameter Aq. The above estimator
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is called the Hodges and Lehmann(1963) estimator. Hodges and Lehmann(1963) 

and Hettmansperger and McKean(1998) showed tha t A r  is approximately normal 

with mean Ao and variance a2 = 12x1X2 U'if 2(x)dx)^ ■ Based on the MWW gradient 

function, Wilcoxon (1945) proposed rank based test statistic

W{A)  =  Y Z 1 R(Yi -  A)

Later, Mann and Whitney (1947) proposed the test statistic

SR(A) =  #(Y,- - X i >  A).

Mann and Whitney(1947) showed that the linear relationship between Wilcoxon 

and Mann-Whitney is

SR(A) =  W(A) -

The statistic SR(A) has been referred as the Mann-Whitney-Wilcoxon(MWW) 

test statistic. This derivation of the linear relationship can be found in Hettmansperger 

and McKean (1998).

Hettmansperger and McKean(1998) showed tha t the test statistic SR(A) is 

distribution free under the null hypothesis H0. Asymptotically, it is normally dis­

tributed with the mean /jl = n !n2/2  and standard deviation a = y /n 1n2(ni +  n2 +  1)/12. 

Hence, based on the asymptotic results, an a  level Z test statistic has been devel­

oped

2? =  S r (o)—(m » 2  /2 )
^ /n in 2 (n i+ n 2 + l)/1 2
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The benefit of using robust procedures is tha t they don’t lose efficiency and 

power under the contamination and presence of large outliers. If the normality 

assumption is satisfied, then robust methods still hold their ground against the 

least square estimation with asymptotic relative efficiency of 0.95, which was found 

by Hodges and Lehmann(1956). In some cases, even one outlier is enough to 

impair a two-sample t-test procedure and A l s , but MWW test and A# remain 

robust and less sensitive to gross errors, see Hettmansperger and McKean(1998, 

Example 2.3.1).

1.4 General Rank Scores

The general rank score function estimate of the Ao and testing procedure 

has been developed by Hettmansperger and McKean(1998). The pseudo norm for 

the scores is denoted by

n

Dv {A) = || Z -  CA \\v= J 2 aA R (z i -  CiA)){Zi -  CiA)
i=1

By taking the negative derivative of the || Z  — C A  Ĥ , we find gradient function

H2
S„( A) =  ^ a v(R (y ,.-A ))

l=i

where a(i) are scores such tha t a(l) < ... <  a(n) and ^  a(i) =  0. This score 

function can be taken as a(i) =  <p{i/(n +  1)). If we take ipn — y/l2(u — 1/2), it is
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called Wilcoxon score and ips — sgn(2u — 1) is called sign score.

By setting Sv (A) =  0 and solving iteratively, we find A v . This solution 

exist since the pseudo norm is a convex function of A. Hettmansperger and 

McKean(1998) found that

A v is approximately N(Ao, T^{n[l +  n ^ 1))

where t^ — J  tp(u)tpf(u)du

The test statistics, under Ho, is

n 2

•V o) =  £ > „ ( j i ( y , ) )
j=1

This test statistics is distribution free and depends only on the ranks of the sample 

under the null hypothesis. The expected value and variance of Sv are

E[SV] = 0

and

2 Uin2 j V—v 1 1 . U.1U2

Then, for testing previously defined H0 vs H a , an asymptotic level a  test is to 

Reject H0 in favor of Ha if 5^(0) >  zaav
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1.5 Other Important Methods

Some other nonparametric procedures for the two-sample location problem 

are Fisher’s Exact Test by Fisher (1936), Median Test by Mood(1950), Tukey’s 

Quick Test(1959), Kolmogrov and Simirnov etc.
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CHAPTER II

PROPOSED SOLUTION

2.1 Method and Notation

Let X i , . . . , X ni and Yi, . . . ,Yn2 be two independent i.i.d random samples 

with distribution functions F(x) and G(y)=F(x-Ao), respectively. As we know 

from the Chapter I, the parameter Ao represents the true shift parameter between 

the locations of the two samples. The main interest in this dissertation is to 

estimate the true shift parameter Ao and find asymptotic properties of the its 

estimator. Therefore, the shift in the locations of the two samples is our main 

focus. If we state our basic assumption:

Assumption (Al): X i , . . . , X ni and V),..., Yn2 are two independent i.i.d random 

samples from continuous distribution functions F(x) and G(y)=F(x-A0) with 

equal scale parameters.

In a linear model notation, the following representation is also used by 

Doksum(1974) and Hollander and Wolfe(1999).

Y  — A0 =  A

The notation =  indicates tha t Y  — Ao and X  have the same distribution function 

as F(x). If Ao =  nv — n x (the shift between the locations), then we have

10
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Y  -  fJLy =  X  -  fJ ,X

which indicates that by shifting, the data is centered.

The following figure shows the relationship between two distributions and 

the true shift parameter Ao-

Graphical illustration of Two Sample Location Problem

F(x)
G(y)

Delta=E[Y]-E[X]

Figure 1: F(x) and G(y), shifted by Ao=E(Y)-E(X)
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First, let Y* — Yj — A for j  = 1 , n 2 be a rb it ra ry  A shifted Y-Sample

and let

Xi, i f  1  <  A; <  t h ;

Y f ,  if rq +  1 <  k < n;

be the combined sample of X \ , X ni ; Y { , Y * 2 and n =  n 1+ n 2 is the combined 

sample size. We will call this the ” combined shifted sample” . The purpose of using 

the arbitrary A variable is to align two samples as closely as possible so tha t true 

shift parameter A0 can be estimated. We should note tha t when we shift the 

sample Y with A parameter, the combined shifted sample Zk can be taken as a 

single sample from the underlying distribution function F(x).

In this notation, for testing purposes, if we want to investigate tha t the 

difference in locations of the two samples is equal to A q , then we should look at 

the null hypothesis,

Ho : A0 =  A£ vs H A : A0 > Aj$

In addition, if we are testing tha t there is no difference in the locations of 

the two samples, then the null hypothesis becomes

Hq : A 0 = 0 vs Ha : A0 > 0.

2.2 Likelihood Function of the Combined Sample

To estimate the true shift parameter Ao, we use the idea of the likelihood 

function which is the joint probability density function of the combined shifted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sample Zk . The maximization of the likelihood function with respect to the arbi­

trary shift variable A estimates the true shift parameter Ao which aligns the two 

samples as closely as possible. We first define the likelihood function of random 

variable Zfc,

Then, by taking the negative log of both sides, we get the negative log likelihood 

function,

The negative log likelihood function defined above would be a convex function 

of A as long as we have a log concave density function f(x). Therefore, by min­

imizing the log likelihood function with respect to A, the estimate of the true 

shift parameter Ao can be found. The problem is tha t we rarely know the true 

distribution function F(x) or density function f(x) of the populations in real life. 

Thus, in order to use this idea, we need to know the true density function of the 

combined sample or we should find one that replaces the true density function.

n

k=1
ni ri2

= n  *  n

n * n f(vj  ~ a) (2 .1)
i= 1 j=l

(2 .2 )
8 = 1
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2.3 Kernel Density Estimation

The estimation of density functions is not a new idea. The Kernel density 

estimation methods first introduced by Rosenbalt(1956), Parzen(1962) and Cen- 

cov(1962). The Kernel estimator is a numerical approximation to the derivative 

of the empirical distribution function Fn(x). The basic kernel estimator can be 

written simply as

=  (2.3)
i=l i= 1

There are a lot of studies and suggestions in the literature for selecting the kernel 

function K(x) and bandwidth parameter bn. The choice of the kernel function 

K(x) is, to some extent, arbitrary, and properties of f ( x )  will depend mostly on 

the chosen value of the bandwidth parameter bn. There is always a trade-off in the 

selection of the bandwidth parameter bn. As we decrease the value of bn, the bias 

of f ( x )  decreases but the variance increases. Conversely, as we increase the bn, 

the bias of f ( x ) increases but the variance decreases; see Silverman (1986, section 

4.3.1).

A complete solution to the problem of selecting the bandwidth parame­

te r bn is no t curren tly  available, although  some prom ising work has been done in 

recent years. Sheather and Hettmansperger (1985) studied the selection of band­

width in the rank regression. Silverman (1986), Hall and Marron (1987), Park and 

Marron (1990), and Sheather and Jones (1991) all proposed an optimum band­
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width parameter selection procedure. Sheather and Jones(1991) stressed that 

their bandwidth estimator has a practical performance second to none in the ex­

isting literature on the subject. In this dissertation, we will run a simulation 

study to investigate the kernel density estimation method as an alternative to our 

’’smoothing by convolution” idea by using bandwidth bn as a smoothing param­

eter. For the estimation of the bandwidth parameter bn, we will be using the 

optimum bandwidth parameter proposed by Sheather and Jones(1991).

2.4 Smoothing by Convolution

The idea of smoothing functions by convolution has been used mostly in the 

mathematical sciences, engineering, physics, computer science and statistics. For 

example, mathematicians use Fourier transformations to approximate functions. 

An electronics engineer facing a noisy function will use one of the convolution 

filters to smooth away unwanted noisy functions. Engineers call this filter design; 

see Scott (1992). Similarly, a physicist would like to use convolution smoothing 

to smooth away unwanted high frequency components. One of the recent hot top­

ics in computer science involves image recognition algorithms. Gaussian density 

function has been used in the edge smoothing of estimates of the real images. The 

problem in statistics is that we can have a sample set drawn from a population 

whose density function is unknown to us. The empirical density function of the 

sample can be smoothed with a weight function by using the convolution oper­
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ation tha t makes the empirical density function smooth, less noisy and useable 

in the statistical inference. Cencov(1962), Kronmal and Tarter (1968), and Wat­

son (1969) suggested smoothing the empirical density functions using orthogonal 

series approximation which uses Fourier transformation as a basis.

The usual nonparametric estimate of a distribution function F(x) is the 

empirical distribution function Fn(x). It is a very common practice in statistics 

to use the empirical distribution function Fn(x) instead of the unknown F(x) in 

statistical inference or testing problems. For example, the two sample Kolmogrov- 

Simirnov test uses the empirical distribution functions of the two samples and 

finds the maximum distance between them for testing purposes. There is a very 

strong theoretical background concerning Fn(x) and F(x). The Glivenko-Cantelli 

Theorem states tha t Fn(x) converges to F(x) uniformly rather than pointwise 

without restrictions to continuity points of F(x). Whenever we are have a data 

set, we can find an empirical distribution function Fn(x) of the given set. These 

are the main reasons that we would like to use an empirical distribution function 

Fn(x) as a main tool in the replacement of real density function. So, given that 

we have the combined shifted sample Zk, we can find the empirical distribution
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function of the Zk in the following fashion.

lb k= 1
1 .ni, 1 J12,= ;Ei(i-<i) + ;E i« -a<‘)

i=1 j=1

— * Fni(x) + —  * Gn2(x +  A) 
n n

(2.4)

where I is the indicator function defined as

1(A) =
1, if event A is true

0, otherwise

and Fni and Gn2 are the empirical distribution functions for the X and Y samples 

respectively. Note tha t F*{x) also depends on the arbitrary variable A.

We can not put F*(x) in negative log likelihood function directly but one 

can think tha t we can use the theoretical relationship of f ( x )  = F'(x) between 

f n{x) and Fn(x). In reality, the empirical density function f n(x) is

f n(x) = -  Xi)
n i=\

where S(t) function is called the Dirac delta function by Scott(1992). It is always
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a d isc re te  un ifo rm  d en sity  over the data with probability mass of 1 /n  for each

data point. On the graph, it can be seen as one-dimensional scatter diagram. It 

is a useless estimate especially if the real density is continuous. So, we cannot use 

f n(x) in the negative log likelihood function either.

To overcome the difficulty of using empirical density function, we introduce 

the ’’smoothing by convolution” idea to find a replacement for the unknown den­

sity function f(x) in the log likelihood function. By using a convolution of f n(x) 

with a smooth continuous density function, the resulting empirical density func­

tion becomes a smooth and continuous density and can be used as a replacement 

of f(x) in the log likelihood function.

The basic notation for the convolution in one sample case is

g(t) and convolute with combined empirical distribution function F*(x). The 

resulting convolution becomes,

(2.5)

For the two-sample problem, choose a continuous ’’smoother density” function

J  g(t -  x)d[(n1/n )  * Fni(x) +  (n2/n )  * Gn2(x +  A)]

— [  g(t — x)dFni(x) +  — [  g(t — x)dGn2{x +  A) 
n J n J
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ni
n J  g(t -  x)dFni(x) +  “  y 9 ( t ~ y  +  &)dGn2(y)

If we apply the Reimann-Stieljes integral, we have

 ̂ '1,1 't2 
M *) = -  ^g{ t - Xi )  + Y^gtt-yi  + A) (2 .6 )

The resulting function h&(t) is a smoothed empirical density function of 

the combined shifted sample according to the density function g(t) chosen in the 

convolution. In addition, it should be noted tha t hA(t) depends on the arbitrary 

shift variable A.

Let g(t) = where a is a scale parameter. If we replace g(t) with

^g(^)  in the expression( 2.6), we have,

will have the basic shape of the density that the data comes from. If we compare 

kernel density expression ( 2.3) with smoothing by convolution expression ( 2.7), 

we see tha t there is no bandwidth parameter to estimate in the convolution

(2.7)

We should emphasize tha t /ia ( )̂ is not an exact estimate of f(x) but it
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smoothing but instead we have a scale parameter ”cr” to deal with it. bn and a, 

both do the same job, work as a smoothing parameter but estimation of bn and a 

are indeed two different problems. As we discuss in section 2.3, even though there 

are promising studies that have published on selection of bandwidth parameter, 

there is no common solution to the bandwidth parameter bn in the literature. 

On the other hand, a parameter can be estimated with classical scale estima­

tion methods. This makes the ’’smoothing by convolution” procedure somewhat 

simpler than regular kernel density estimation procedure.

The convolution smoothing replaces the value of a function by a local 

weighted average of the function’s values according to a weight function g(t),which 

will be symmetric around zero. In general, the shape of the resulting convolution 

function will depend on sample size n and a. On the other hand, Kernel estimator 

uses a single shape for all sample sizes and width of the kernel control by smoothing 

parameter bn (see, Scott 1992). The following example and plots will illustrate 

the convolution smoothing and the effect of a parameter over the shape of the 

data.

Example 2.4.1. (Illustration of the Convolution) To illustrate how the smoothing 

by convolution works, we will generate a random sample of X from Exp(l) with 

ni =  50 and a random sample of Y-A from the same underlying distribution 

function Exp(l) with n2 =  30. We assume tha t under Hq : Ao =  0. Then, we will 

convolute the combined empirical CDF of F*(x) with a smoother density function
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such as

s(*>*2) =  ? L e“ ^

The parameter a2 is an important one here, we can call it the smoothing pa­

rameter, smoothness of the convolution function h&(t) depends on the smoothing 

parameter a2. The following figures show the importance of a 2 as a smoothing 

parameter in the Gaussian density function g(t). First column is the smoothed 

empirical density function h&(t) and second column shows the resulting negative 

log likelihood function Ln(A). In first row, a = 0.1 is arbitrarily chosen value of 

smoothing parameter, the resulting convolution does not work and the graph is 

rough, no smoothing is done. In the second row, a is increased to 1 The resulting 

graphs are both smooth and h&{t) resembles the true density function Exp(l). 

In the third row, a is chosen to be 10, resulting h&(t) looks over smoothed and 

loses the original exponential density shape. It looks very similar to the smoother 

density function g(t). In this example, g(t) is a normal density function and over 

smoothed shape is similar to the normal density function.
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Figure 2: h&(t) and Ln{A) with o — 0.1
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Figure 3: h&(t) and Ln(A) with a  =  1
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As we see from the example given figures above, hA(t) is not an exact esti­

mate of f(x) but it has the basic shape of the unknown density function f(x), in this 

case, an exponential density function. This shape depends on the scale parameter 

<x and it should be chosen carefully in order to have appropriate smoothing of the 

data. Even though we mentioned kernel density estimation method here, we are 

not going to deal with the main topics of kernel density estimation procedure such 

as consistency, convergence rates, selecting bandwidth parameter etc. because it 

is not our interest to investigate those properties in this dissertation. The pur­

pose of this dissertation is to find a ’’replacement” for unknown density function 

f(x) which makes the log likelihood function smooth enough with respect to A 

so tha t we can estimate the shift parameter from the likelihood function. In the 

Chapter 7.2, a simulation study will be conducted to investigate the differences 

between using bn and a  as a smoothing parameter.

2.5 Estimation Procedure

Prom the previous section 2.4, we have the smoothed empirical density 

function hA(t) of the combined shifted sample. The unknown true density f(x) in 

the log likelihood function (2.2) can be replaced with the hA(t). First recall that

hA(t) = -  
n

n  i  U 2
-  Xi) + ^ 2 g { t -  Vj +  A) 

. *=i j =i
(2 .8 )
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If we rewrite hA(t) in two pieces, we have

hA(t) = hx (t) + hy (t + A) (2.9)

where hx(t) = ± £ £ i d{t -  %i) and hy{t) =  £ Y Z U  9{t -  Vk)-

If we replace f(x) with hA (t), we have the new following log likelihood 

function,

2 = 1

L„(A) = - ^ l o g  hA(xi) -  ^ 2  lo9 hA(Vj ~  A)
ri2

j=1
ni n2

= ~ Y 2 l o g  hx (xi) + hy (xi +  A) ~ Y 2 ,lo g  hx {yj -  A) +  hy (yj -  A +  A)
2= 1 j =  1

Til 712
L n(A) ^  ( log hx(xi) +  hy(xi -\- A)j ^  ) log hx(jjj A) -|- hyigjj)

i=1 j=l

(2 .10)

The minimization of the negative log likelihood function would give us the follow­

ing expression

A 5 =  Argm in{Ln( A)}
A

(2 .11)

where As is the proposed estimate of the true shift parameter A0.

By taking the derivative of the L n(A) with respect to A, we can find the 

gradient function and solve for A. So the partial derivative of the first sum term
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in Ln(A) with respect to A is

dL j  _  h'y (xj +  A)

9A M®<)

Similarly, the partial derivative of the second sum term is

BLj  , ' ^ f e - A )

8A i t  -  a )

By adding the two derivatives, we get

q (A\  — d -M A ) _  _  hy(xj +  A) ^  Ht(Vj ~  A)
9A i=i M®<) j=i -  A)
ni ri2

S„(A) =  - ] T
i=l j=l

where

^  +  A) _ ^ E £ i ^ - y fc +  A)

and

/iA(x) /ia (^)

f 2(s, A) =  5 f a ~ A) =  • a ‘y ( , ' A ' , | )
^ ( y - A )  /lA (y -A )

Therefore, the shift parameter can be estimated by either

A s =  Argmin{Ln(A)}
A
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or solving

A minimization algorithm or root finder algorithm can find A s.  Details of these 

results will appear in Chapter III.

2.6 Translation Property

One of the important properties of the proposed estimator A5 is the trans­

lation property. This property will allow us to assume under Ho : Ao =  0 without 

loss of generality. For convenience, let the vector X  denote sample X \,  ..Xni and 

the vector Y  denote the sample Y \ , .., Y„2. The following definition of translation 

equvariance property is given by Hetmansperger and McKean(1998).

Definition 2.6.1. Let X  +  a l  =  (Xj +  a , .., X ni + a ), where a is a constant number. 

An estimator A(X, Y) of A is said to be a location equivariant estimator of A if 

A(X  +  a l ,  Y ) =  A(X, Y) -  a and A(X, Y  +  a l)  = A(X, Y ) +  a

T heo rem  2.6.1. Let A s = A n7mm{Ln(A|X, Y ))}. Let X  + a l  = (Xi +
A

a, . . ,X ni +  a). Then we have

Aa =  Argm in{Ln( A |X  +  a l ,  Y)}
A

where

Aa =  A s -  a
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Proof. By the expression ( 2.11), we have As =  Argm in{Ln(A)} where
A

Ln(A) = - ^ 2  log hA(xi) -  ^ 2  lo9 hA(yj -  A)
2 = 1

ni
J=1

2=1

=  - ^ 2  log K{xi)  +  +  A)J -  lo9 hx(yj -  A) +  hy(yj)
l=i

Note that the L„(A) can be also written as L„(A|X, Y ) since it depends 

on X  and Y  also. Let X  +  a l  =  X \  +  a , .., X n2 +  a. Then, replace sample X  with 

X  +  a l  in the L„(A |X ,Y ). So

Ln(A |X  +  a l ,Y )  =  - ^ l o g  hA(xi + a) log hA(yj -  A)
2=1 j=1

ni
= log hx+0(xi +  a) +  hy (xi +  a +  A)

2 = 1

-  ^ 2 1°9 K+aiyj -  A) +  hy(yj -  A)
l=i

=-x>
2 = 1

n2

- ^ 2  log
3 = 1

^ nx -^222

-  ^  5(^i + a - a : ; - a )  +  - V '  5(0:* +  a +  A -  yk) 
n z ' n *■—41=1 k=1

^ n i  ^  «2

^  -  Xi -  a) + ~ '2 2 g (y j -  A  -  yk + A)
i=i k=1

After some rearrangement inside the sums and writing — A — a =  — (A +  a), we 

get the following expression
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Inside the brackets, the shift variable is A +  a this time and the log likelihood 

function depends on A +  a. Thus we can write

«i
Ln(A |X  +  a l ,  Y) =  -  ^ 2 1°9 +  hy {x{ +  (A +  a))

2= 1

-  ^  l°9 -  (A +  a)) +  hy (yj
j=i

L„(A |X  +  a l ,  Y) =  L n{ A +  a|X , Y) =  Ln( A +  a) (2.18)

Let’s define

Aa =  Argm in{Ln( A +  a)}
A

(2.19)

where A a is the argument that minimizes Ln(A +a). Note tha t As is the argmin of 

the Ln(A), which implies that Ln(As)  is the minimum at As- Then the argument 

that minimizes Ln(A +  a) must be equal to As — a. Thus, we have the following

A a = A s -  a (2 .20)
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Similarly, by using the same argument above for Yj. +  a , .., Yn2 +  a, we will have

Aa =  A s + a (2.21)

Therefore, the proposed estimator A s  is a translation equivariant estimator. □
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CHAPTER III

PROPERTIES OF hA(t) and Ln{A)

3.1 Asymptotic Properties of hA(t)

In this section, we are shall give some important definitions and theorems, 

which are necessary for establishing the basic properties of the hA(t). We in­

vestigate the asymptotic properties of the smoothed empirical density hA(t) in 

this chapter. It will be proven that hA(t) converges to a true convolution density 

hA(t)1 which is the convolution of the smoother density function g(t) with CDF 

of F*(x). The pointwise convergence of hA(t) to hA(t) is clear by the Strong Law 

of Large Numbers(S.L.L.N). The theorems of Wellner(2001) will be introduced in 

order to prove the uniform convergence of hA(t) to hA(t). First, we shall state 

a very basic theorem of empirical processes called the Glivenko-Cantelli theorem 

in the literature. We would like to state this theorem because we are using the 

empirical distribution function F*(x) in our convolution transformation. The fol­

lowing well known theorem proves that F*(x) converges to F*(x) uniformly for 

i.i.d random variables. We shall state the one-sample case of the Glivenko-Cantelli 

Theorem first.

32
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T h eo rem  3.1.1. (Glivenko-Cantelli Theorem)

Assume that Z\, ..Zn are i.i.d with distribution function F(z). Then,

sup\Fn{z) -  F(z)  | — >a.s 0 as n  -> oo 
zgR

We can extend the one-sample Glivenko-Cantelli theorem to introduce two 

sample version of it. The following theorem states the result for the two-sample 

problem.

T heo rem  3.1.2. Assume that

1. The random variables X i , . . . ,X ni and Y i,.. .,Yn2 are i.i.d with distribution 

functions F(x) and G(y)=F(y-A0) respectively.

2. n = n\ + ri2; ^ i /n  —7 \  and 0 < A* < 1 for i= l,2  as n-̂ > oo.

Then,

sup\F*{x) — F*(x)| — >a,s 0 as n—> oo
x e R

where

FZ(x) = f F ni(x) + f G n2(x + A)

and

F*(x) = A !F(x) +  A 2G ( x  + A)

=  X\F(x) +  A2 F{x  +  A — Aq)
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C oro llary  3.1.1. I f  we assume that the arbitrary shift variable A equals to true 

shift parameter Ao ( or Ho : Ao =  0 and A =  0), then

sup\F*(x) — -P(x)| — >a.s 0 as n—> oo 
xeR

Proof If A =  A0, F*(x) = X1F(x)+X2F{x). Since Ai+A2 =  1, F*(x) = F(x). □

The following theorem and its proof are provided by Wellner (2001) and it is 

known as Glivenko-Contelli theorems in the empirical processes theory.

T h eo rem  3.1.3. {Theorem 2 of Wellner 2001} Assume that

1. Fn is an empirical CDF of sample size n from the density f

2. 0  is compact set.

3. g(z,t)is a upper semicontinuous in t for all z.

4- There exists a function H(z) such that E[H(Z)J < oo and g(z,t)  <H(z) for

all z € x  and t € 0 .

5. For all t and sufficiently small p > 0

sup f ( x , t ' )
\t'-t\<p

is measurable in z. Then,

lim supsupF„5(2;, t) < sup Fg(z,t)  (3.1)
n—+oo teS teQ
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The following theorem and its proof is provided by Wellner (2001). We will 

state the theorem and the proof for the readers.

T h eo rem  3.1.4. {Theorem, 1 of Wellner 2001} Assume that

1. Z \ ,Z 2 , ■■■Zn are i.i.d with cdf F on the measurable space(x,A).

2. 0  is compact set.

3. g(z,t)is a measurable, real valued function of z and t and continuous in t for 

all z.

f .  There exists a function H(z) such that E[H(Z)J <  oo and \g(z,t)\ <H(z) for 

all z € x  and t € 0 . Then,

1 „ f
su p \- 'Y ]g (Z k , t )  -  g (z ,t)dF (z ) \ — >a.s 0 as n  -> oo. (3.2)

J

for all fixed t.

Proof. The proof is from the Theorem 1 of Wellner(2001) and it also uses of the 

result of Theorem 2 of the same author.

First note tha t E[g(Z,t)] = f  g (z ,t)dF (z ) exists and is fmite£[g(z, t)} < oo for 

all t  €  0 .  B y th e  S trong Law of Large N um bers(S.L .L .N ), we have

f  g(z,t)dFn(z) = - ' j h g { Z k,t)
I n  'J i—1

a.8 J  g ( z , t ) d F ( z )  = E \ g ( Z , t ) }

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



for all fixed t. We also want to show that this result holds uniformly in t € 0  so 

tha t we have ( 3.2). First, define k(z ,t)  = g{z,t) — f  g (z ,t)dF (z ) and —k(z,t).  

By the Theorem 2 of Wellner(2001) applied to k(z,t), we have,

lim sup sup Fnk(z, t) < sup Fk(z, t)
n—> oo t€© ££©

lim sup sup ( Fng(z,t) -  /  g (z , t )d F (z ) ) < sup ( Fg(z,t)  -  /  g(z,t)dF(z)
n—>oo £€© \  J J t£© \  J

lim sup sup ( - Y '  g(zk,t) — [  g(z,t)dF(z) \ < 0  a.s 
n-^oo tee \ n  fc=1 J  J

Similarly, by the Theorem 2 of Wellner(2001) applied to -k(z,t), we have,

lim sup sup ( [  g(z,t)dF(z) — —'S~' g(zk, t ) \  < 0  a.s
n—► OO t£© \ J  Tl /

We can conclude our proof since

1 . w ' f
< suP l ~ y ] 5 ( ^ , i )  -  /  g{z,t)dF{z)I

=  sup ( -  V  g(zk, t) -  [  g(z, t)dF(z) J V sup ( [  g(z, t)dF(z) -  -  V  g(zk, t ) 
tee \ n  f - '  ,/ tee \ J  " T T/ c = l  /  \  /c = l

By taking the lim sup of both sides, gives us the desired result. Thus,

suP l£ E jL i 9{zk,t) ~  f  g(z,t)dF(z)\ — >a.s 0 as n  —» oo 
tee

□
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The following theorem can be concluded as a result of the Theorem 3.1.4 

and Theorem 3.1.3 tha t are stated above.

T h eo rem  3.1.5. Assume that

1. X i ,  ..Xni and Yi, ..,Yn2 are i.i.d with distribution functions F(x) and G(y + 

A) =  F(y  +  A — A0) respectively.

2. t belongs to any fixed interval t G [A,B\.

3. g(t) is a bounded continuous function oft.

4■ There exists a function H(z)such that E[H(Z)\ < oo and |g(t)| <  H (z ) for 

all t G [̂ 4, B \ .

Then,

sup |/ia(0  — h&(t)\ —►a.s 0 as n —> oo for all fixed A. 
te©

where,

T , x 1hA(t) =  -  n g(t -  x^ +  Y d ( t - y j  +  A)
j= i j=i

and

fit) =  Ai J  g(t — x)dF{x) +  A2 J  g(t -  y + A)dG(y)

=  Ai J  g(t -  x)dF{x) +  A2 J  g ( t - y  + A -  A 0)dF(y)
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where n ,/n  —> \  for i—1,2 as n —> oo.

Proof. By the Theorem 3.1.4, we have

-  A i f  g ( t - x ) d F ( x ) \  -♦a.s 0 as n —* oo.
tee

Similarly,

suPl£ E jL i  9{t -  % +  A) -  A2 /$ (£  -  y +  A)dG(y)| ->0.s 0 as n ^  oo.
£€©

By the Slutsky’s Theorem,

sup| t e ,  s(t -  *,) +  i  E-Li  -  yj +  A)
i£© ^

[Ai J  g(t -  x)dF(x) +  A2 f  g(t -  y +  A )dG(y)\ | - > a .s 0 as n oo.

Thus, the theorem is proved. □

It will be useful to remember the definitions of the log concavity and con­

cavity before we start discussing local properties of h&(t). The following defini­

tions can be found in any calculus book. We just feel the need to state them here 

in order to use in our proofs and discussions in this section.

Definition 3.1.1. A function /  : Rn —> R is concave if for all x, y € dom f  and 

0 < 6 < 1, we have

f ( 6x  +  (1 -  6)y) >  9f (x)  +  (1 -  0)f(y)

and we also say tha t -f is convex if f is concave. If we assume tha t f is twice 

differentiable then the second order condition implies that f is concave if f "(x)  < 0.
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Definition 3.1.2. A function f(x) is log concave if and only if log f(x) is concave 

for f {x)  > 0.

Remark 3.1.1. The log concavity of a function f(x) implies that

f "{x) f ( x)  < [f ' ( x )\2

It should be worth to mention tha t concavity implies log-concavity. Thus, a 

concave function is also log concave function but opposite is not true. On the 

other hand, sum of the concave functions are concave but sum of the log concave 

functions is not necessarily log concave.

We now look at the smoothed empirical density function h&(t) which is 

given by expression ( 2.8). If we assume that the smoother density function g(t) 

is a log concave density, like normal density, the sum of the smoother density 

function g(t) is not necessarily log concave as stated in the remark above. But 

under some conditions, hA(t) can be log concave function of A, then -log likelihood 

function Ln(A) will be a convex function of A under the same conditions applied 

to /ia (t) . In the following example these conditions will be investigated.

Example 3.1.1. We want to give an example tha t illustrates the log concavity of 

h/\(t) under some conditions. Since concavity implies log concavity, the conditions 

that makes /ia(£) concave will be the same as the log concavity conditions. This 

way we will avoid working with log function. Let us assume tha t smoother density 

function is

5(f) =  J = e x p { - f }  (3.3)
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which is the standard normal density function. We should note tha t univariate 

and multivariate normal density functions are log concave functions. Recall that

hA(t) =
a • n

ni t - x i  ^  , t - y k + A
E ^ t + E *

.1=1 k=1
(3.4)

We first replace g(t) function with standard normal density and take the first and 

the second derivative of hA(t) with respect to A. So,

dhA(t) 1
8 A an

"2
E c - i ) ( t ~ !/t +  A ) exp{~ ( i ~ 2y A)2}
,fc=l ■y/2n>na*

(3.5)

The second derivative is

d2hA{t) _  
d2A  asr E

Lfe=i

((-<,„ + A)* ^ _ 1 =exp{- ( t - a  + A f }
\ /2tt

Let t  = Xi for i =  1,.., n\. Then,

d2hA(xi) 1
d2A a2n

V  f t e - V '  +  A ) 2 _  ^  1 r..n r - ( ^ - y fc +  A)2

2<j2

The second product factor on the right is always positive. Therefore, in order to 

have concavity which implies 9 < 0, the first product factor inside the sum

must be negative. Thus, it can be written that

{ x i  - y k  +  A)2 < 0 (3.6)
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This implies that

{ x j  ~ V k  +  A)2 

a 2

(xi - y k + A )2 < a2 

| Xi - y k + A \ < a  

- a  < Xi -  yk +  A < a (3.7)

By the last expression, we can find a a for some Xi, yk and for some A on some 

interval [a,b] that makes h"A{xi) < 0.

Similarly, let t = ijj for j  =  1 , n2, hA(jjj) can also be a concave function of 

A on some interval [a,b] for a proper a that satisfies 9 <  0. Since concavity

implies log concavity, the same condition is also valid to make h&(yj) log concave 

function of A.

We now state a theorem that can be found in Miravete (2002). The proof 

of the Theorem is provided by the same author.

T h eo rem  3.1.6. Assume that

1. the smoother density function g(t) is a log concave density

2. the true density function f(x) is log concave density 

Then the convolution of g(t) and f(x)

h(t) — j  g(t — x)dF{x) =  f  g(t — x ) f (x )dx  (3-8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



is a log concave function of t.

Proof. Miravate(2002) proved that the convolution of the two log concave density

Remark 3.1.2. If we recall the expression( 2.6), we can write the smoothed em­

pirical density hA(t) in the following form

For fix n, we can argue that hA(t) is a log concave function as a —► oo as long as 

g(t) is log concave. This is consistent with the figures 2- 4. For large cr, we will

convolution density will look similar to smoother density function g(t). If we have 

a log concave smoother density function g(t), hA(t) will be log concave for cr —> oo. 

In a special case if smoother density g(t) is normal density and if cr —► oo, the 

resulting estimate of Ao will be same as maximum likelihood estimate. Also, the 

resulting negative log likelihood function Ln(A) will be a convex function of A. It 

is not desirable to have a large a tha t can spoil the estimation or lose robustness 

but a reasonable cr can give us a robust estimate of the true shift parameter Ao- 

We will discuss this matter later in the simulation and examples.

The convexity of L n(A) is hard to reach in practice. In a practical point 

of view, for finite samples, we can accomplish the log concavity of hA(t) on some

functions is also a log concave density. □

cr • n
1

(3.9)
J= i fc=1

over smooth the data and lose the shape of the underlying density and resulting
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interval that A € [a,b] for a reasonable smoothing parameter a on some data 

points.(i.e, See Example 3.1.1). The larger a, the wider the interval A € [a, b\ will 

be on a given data set. This is true under the normal smoothing which has been 

shown by the Example 3.1.1 and expression( 3.7). In the following section we will 

introduce a topic tha t it belongs to a family of convex functions.

3.2 Quasi-convexity of Ln(A)

In this section, we would like to introduce one of the important properties 

of the Ln(A). That is Quasi-convexity. The quasi-convexity is discussed by several 

authors in the literature. Ponstein(1967) presented ’’Seven Kinds of Convexity” 

and introduced ’’strict” quasi-convexity in his article. Roberts and Varberg (1973) 

gave a nice table tha t compares the properties of convex and quasi-convex func­

tions respectively. The main difference between convexity and quasi-convexity is 

that the convexity ensures the existence of the global minimum but the quasi­

convexity ensures the existence of the local minimum. The local minimum can 

be a global minimum if the quasi-convexity is ” strict” . These properties will be 

discussed in this section. The graphical presentation of the quasi-convexity will 

be introduced with a figure that is given after the definition of quasi-convexity.
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Definition 3.2.1. A function /  : M" —» R is called quasi-convex if its domain and 

all its sublevel sets

Sa = {x  € dom f\ f (x )  < a}  (3.10)

are convex.

The definition above is illustrated in figure 5. For every a, the sublevel set 

Sa is convex., i.e, Sa is an interval.

f(x)

a level

x scale

Sa

Figure 5: For each a, the a-sublevel set Sa is convex
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Remark 3.2.1. The following property of the quasi-convexity is based on the 

Jensen’s inequality tha t characterizes quasi-convexity of a function. A function 

/  : R" —> M is called quasi-convex if and only if for i , y €  dom f  and 0 < 8 < 1

f{Qx +  (1 -  6)y) < m a x { f ( x ) , f ( y ) }  (3.11)

Example 3.2.1. We would like to give an example to illustrate the quasi-convexity 

of Ln(A). We randomly generated two samples from Unif(l,2) and Unif(2,3) 

with sample sizes ni =  30 and n2 =  20 respectively. So true shift parameter 

Ao =  1. The following figure shows the quasi-convexity of Ln(A) at cr =  0.3 

level. The smoothing by convolution estimate of Ao =  1 is As =  1.05964, 

Hodges-Lehman(H-L) estimate is A hl =  1.05255 and Least-Square(L-S) estimate 

is A l s  =  1.05913.
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The value of L n(A) at 

a  level

Convex set S a  on [a,b] 
for a  given tr

A scale

Figure 6: The quasiconvexity of Ln(A) with a =  0.3 level
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Remark 3.2.2. The effects of different a levels and quasi-convexity of Ln(A) can 

be seen on the following figure. We use the same data set generated in the Exam­

ple 3.2.1. Three levels of cr =  0.3, <7 =  1 and <7 =  2 are used in the plot. For each 

a level, we have a convex subset Sa tha t contains As. Sa is actually an interval 

that we defined as [a,b] in the previous examples.

o

s

5

CT=2
CD

-2 0 2 6-4 4

s

8

CT=1

-4 -2 0 2 64

Figure 7: The quasiconvexity of Ln(A) with different cr levels
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CHAPTER IV

ESTIMATION OF THE SHIFT PARAMETER BY USING hA{t)

4.1 The Likelihood function L*(A)

In this section, we would like to introduce a new log likelihood function that 

is consist of hA(t) instead of hA(t). In Chapter 2, a smoother density function 

g(t) is convoluted with empirical distribution function F*(x) of the combined 

sample Zk. The resulting convolution is hA(t). If we convolute a smoother density 

function g(t) with the distribution function F*(x) of the combined sample Z k, the 

resulting convolution is hA(t). If we recall that by the Theorem 3.1.5, we have

sup|/iA(t) — hA(t)\ ~^as 0 as n  —> oo.
i€0

where,

T / N 1h&(t) = -  
n

n 2
+ ^ g ( t -  yj +  A)

. *=i j =i

and

h, ,(t) =  Ai J  g(t -  x)dF(x) + X2 J  g ( t - y  + A)dG(y)

= h  J 9 ( t  ~  x)dF(x)  +  A2 J g ( t - y  + A -  A0)dF(y)

48
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We define this new log likelihood function by replacing hA(t) with h&(t) 

in the L n{A). After replacing hA(t) with h&(t) , we have

n \  r i 2
K ( A ) = - ^ l o g l h A i x i ) }  - ^ l o g [ h A(yj -  A)] (4.1)

i= 1 j=l

The purpose of this replacement is to create a new log likelihood function L*(A) 

in terms of true convolution density /ia(£) that can also be used to estimate the 

true shift parameter Ao- The new estimator is

A*s = Argmin  {L* (A)}
A

We need to know underlying density function f(x) in order to estimate A*s . A 

question can be asked why do we need to use this estimator if we know underlying 

density function since the underlying density function can be used in the log 

likelihood function to estimate the shift parameter Ao- A simple answer maybe 

with smoothing of underlying density function efficiency of the estimator can be 

increased. This topic will be studied in the future because we are mainly interested 

in the estimator Ag. We would like to investigate the log-concavity of /ia (0  with 

respect to A given that we have log-concave smoother density g(t) and log-concave 

true underlying density f(x). By the Theorem 3.1.6, it has been proven that the 

convolution of two log-concave density functions is a log-concave density. The 

result of log-concavity implies certain properties for a density function. Some 

important properties of log-concave functions are given in the following remark.
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Remark 4.1.1. Log-concavity of a function 1p(x) is equivalent to each of the fol­

lowing three conditions.

1. log[tp(x)] is a concave function.

2. ip'(x)/ i>{x) is monotone decreasing for all x.

3. ip{x)ip"(x) — \ip'{x)]2 < 0 for all x.

T heo rem  4.1.1. Let A  > 0 be a constant number. Assume that ip is twice 

differentiable log concave density function. Then, the function <h(x) =  log[A +  

ip(x)} is a concave function on an interval (-a,a) i f  there is an interval (-a,a) such 

that

^ - < 0 for x  6 ( - a ,  a) 

or

ip"(x) < 0 for x  E (—a, a), where ”a" is the inflection point oftp(x).

Proof. By using the properties of log-concavity mentioned in the remark 4.1.1, we 

can find first and second derivation of function 4>(x)

... (4 2)
A  + iP(x)

and

fc/'M  _  [A + 1p(x)}lP"(x)-[lP'(x)}2 
* {X) [A + iP{x)f
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If we prove tha t 4>"(x) < 0, then the proof is complete. The denominator of the 

$"(x)  reveals that [A +  ip(x)]2 is always positive. The numerator is

[A +  — [V>'(x )]2 =  Aip"(x) +  ip(x)ip"(x) — [ip'(x)]2

The last property in the remark 4.1.1 implies tha t — [^'(x)]2 < 0. Thus,

Then, Aif)"{x) <  0 since A is a positive constant. Therefore, the numerator is

This result implies tha t $"(x) <  0 for x  G (—a, a). The point ”a” in the interval

between (-a,a). Therefore, the function $(x) will be concave on the same interval.

We would like to give an example to see that this condition holds for our 

application here.

Example 4.1.1. Let ip(x) be N (0 ,a2) which is a log concave density. Let A be a 

positive constant number. First, we find the second derivative of ip(x). It is given 

by the following expression

by the assumption there is an interval (-a,a) such tha t ij)"{x) < 0 for x  € (—a, a).

(4.4)

(-a, a) can be called inflection point because ip(x) turns downward(concave down)

□

(4.5)
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and then we find the second derivative of log[A + i>(x)] which is

Ail>"{x) +  ^ ( x ) ^ "  (x) — [-i/}'(x)]2 
[A + ip(x)}2

To
The first product term,

(4.6)

X2 1_9 -L , in the ^"(x)  implies that we must take |x| < a 

in order to have if"(x) < 0. Therefore, the numerator of the expression defined 

in the ( 4.6) will be less than or equal to zero as long as x € (—cr, cr)(i.e |x| < <j ). 

Thus, by Remark 4.1.1 and Theorem 4.1.1, log[A + ip(x)\ is a concave on (—a, a) 

and [A +  ^(x)\  is log concave on (—a , cr).

C o ro lla ry  4.1.1. Suppose that

1. there is a positive constant A.

2. the smoother density function g(t) is a log concave density function.

3. the true underlying density function f(x) is a log concave density function.

4- if(t, A) =  f  g(t — y — Ao +  A )dF(y) is a log concave function of A for any 

given t.

5. there is an interval (—t +  Ao, Ao + 1) such that

if"(t, A) < 0 for  A e  (—t + Aq, Aq +  t) with any given t.
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Then, by the Theorem 4-1-1,

hA(t) =  Ax J  g(t -  x )dF(x ) +  A2 J  g{t -  y -  A0 +  A )dF(y)

= A  + ip(t,A)

is log concave function of A on the interval (—t +  Ao, Ao +  t) for any given t. 

Proof. We have

hA(t) = Ai J  g(t — x)dF(x)  +  A2 J  g(t -  y + A)dG(y)

=  Ai J  g ( t - x ) d F ( x )  + A2 J  g(t -  y +  A)dF(y  -  A0)

=  *1 J  9(t ~  x)dF(x)  +  A2 J  g(t -  y -  A0 +  A)dF(y)  (4.7)

The first integral, Ai f  g(t—x)dF(x),  is independent of A, therefore we can replace 

this integral with a positive constant A. So we have

h. i(t) =  A + A2 J g ( t  -  y -  A0 +  A)dF(y)  (4.8)

Let if(t, A) =  A2 f  g(t -  y -  A0 +  A )dF(y). Then,

hA(t) = A  + i f ( t ,A )  (4.9)

By the Theorem 3.1.6, tp(t, A) is a log concave function of A for all t  since it is
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a convolution of two log concave density functions and log concavity is preserved 

under the integration. Also, log of a log concave function is concave by the 

Definition 3.1.2. Therefore,

log A)] is a concave function of A for all t.

By the Theorem 4.1.1, for A  > 0, log [A + %f(t, A)] will be a concave function 

of A on the interval {—t +  Ao, Ao +  t) such tha t < 0 for any given

t. Thus, h&(t) =  [A +  ip(t, A)] is a log concave function of A on the interval 

(—t +  Ao, Ao + 1) for any given t. □

T h eo rem  4.1.2. Assume that Theorem 3.1.6, Theorem 4-1.1, and Corollary 4-1-1 

hold. There exists a o so that

ni ri2
Ln(A ) =  X  ~log[hA(xi)\ +  ^  -log{hA(yj -  A)] 

i=1 j=1

is a convex function of  A on the interval (Ao — o — C\, Ao +  o +  c2), where C\ =  

max{xi' ,yj} fo r i  — 1, . . . ,n i , j  = 1, . ..,n2  andc2 =  min{xi;yj}  fo r i  =  1, . . . ,n \ , j  =  

l , . . . ,n 2.

Proof. By the Corollary 4.1.1 and Theorem 3.1.6, h&(t) is a log concave function 

of A on the interval (—t +  A0, A0 +  t) for each t. Therefore, the negative log 

of h&(t) must be convex function of A on the same interval for each t. The 

-log likelihood function L*(A) contains observations xi, ...xni,yi, ...,yn2 and for 

each observation, -log hA(t) is convex function of A on the given interval by the
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Corollary 4.1.1. In order to smooth the data, we choose a smoothing density 

g(t) =  y$ (y) and use in the convolution operation to get hA(t). The parameter 

a is smoothing parameter and smoothness of L*(A) depends on cr.

Let t — xi,  -log hA(xi) is a convex function of A on (Ao—cr—xi,  Ao+cr+xx) 

by the Corollary 4.1.1. Similarly, for t — x 2, -log /ia(x2) is a convex function of 

A on (Ao — cr — x2, Ao +  a +  x2). So, for each x t , -log hA(xi) is a convex function 

of A on (Ao — a — X i , A o  + cr + Xi ) .  If we find the sum of the convex function, -log 

h^(xi),  for each i = 1, rij, then the sum must be a convex function of A on the 

intersection of the intervals. This intersection can be found by defining the lower 

limit as m a x{Ao — cr — Xi\ and the upper limit as mm{Ao +  cr +  x t}. Therefore,i i

XTIii —l0(j[h&{x i)} is a convex function of A on (Ao — a — max{xi},  Ao +  a +  

m tn jij} ).

Similarly, for t =  yj, ~ 0̂5[^a(j/j — A)] is a convex function of A on (Ao —

cr — max{yj} ,  Ao +  cr +  min{yj}).  A basic calculus argument says that the sum 

of convex functions is a convex function. So,

ni 722
Ln(A ) =  5 ^  -log[hA(xi)\ +  ^  - log[hA(yj -  A)]

i=1 j—1

is a convex function of A on the interval (Ao — cr — ci, A0 +  cr +  c2), where 

cl =  max{x i ,y j} and c2 =  min{xi',yj}  for i = 1, . . . ,n i , j  =  1, ...,n2 and cr is the 

smoothing scale parameter that can be estimated by observations x, and y j . □
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Since L*(A) is a convex function of A on the interval (Ao — cr — 

a +  C2), then the minimum value of L*(A) exists and we can write it as

A*s = Argmin{L*n( A)}
A

The following theorem shows the approximation of L*(A) to L*(A).

T h eo rem  4.1.3. Assume that — —> Aj as n —> 00. TTien,

P  Ztm -L*(A ) =  L*(A) = 1
\ n —* o o 7 l

where

L*(A) =  Ai J  - log[hA(x)\dF(x) +  A2 J  -log[hA(y -  A)\dG(y)

Proof. Recall that

n  2

i=l j=l
n  2

Z=1 j = l
rii 1
n n  1 E Zo5[/iA(xf)]

i=1

n2 1 
n n2 E i0 5 [/iA(t/j -  A);

.3 = 1

If we take the limit as n —> 00, we have

Cl, A0 +

(4.10)

(4.11)

(4.12)
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lim £L*(A) -+ Ai J  - log[hA(x)\dF(x) +  A2f  -log[hA(y -  A)\dG{y) = L*(A)
n —> o o ' 6

where n*/n —> A; as n —> oo for i = 1,2. Therefore, Al*(A) —>a s L*(A) which 

completes the proof. □

In the next theorem, the identifiability condition will be discussed. Before 

tha t we investigate the convexity of the log likelihood function L*(A). It is known 

from the calculus that the convexity is preserved under the infinite sums and in­

tegrals. By the corollary 4.1.1, hA(t) is a log concave function of A on the given 

interval by the same corollary. Thus, — log[hA(t)\ is a convex function of A for any 

t on the same interval given by the corollary 4.1.1. Therefore, f  —log[hA{x)\dF{x) 

is a convex function of A for each x since convexity is preserved under the inte­

gration. Similarly, f  — log[hA(y — A )]dG(y) is a convex function of A for each 

y. Therefore, the log likelihood function L*(A) is a convex function of A since it 

is the sum of two convex functions. In fact, L*(A) is strictly convex since —log 

implies strict convexity.

In the following theorem, it will be shown tha t L*(A) attaints its unique 

minimum at A =  Ao- The result of the theorem indicates that A*s = ArgminL*(A)
A

would be consistent for true shift parameter A0.

T h eo rem  4.1.4. The function L*(A) attains its unique minimum at A  — A0; 

where Ao is the true shift parameter.

Proof If we prove tha t 9Ld^  =  0 when A =  Ao, then the proof of the theorem 

is complete.
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Recall that

L*(A) =  Ai J  - log[hA(x)\dF(x) + X2 j  -log[hA(y -  A)}dG(y)

=  Ai J  - log[hA(x)\dF(x) +  A2 J  - loghA(y -  A)\dF(y -  A0) (4.13)

Let y = y + Ao in the second integral. Then,

L*(A) =  Ai J  —log[hA(x)]dF(x) +  A2 J  -log[hA(y +  A0 -  A )]dF(y) (4.14)

Take the first partial derivative with respect to A.

dL*(A) _  f h ' A(x) f  (—l)h'A (y +  A0 -  A)
8 A  hA(x) v '  V  hA(y + A o - A )

= _ A f __________ X2Jg '{x  + A - y - A 0)dF(y)__________
1 J  Ai J  g ( x -  x*)dF(x*) +  A2 /  g(x +  A -  y -  A 0)dF(y)

, x f  M j g ' j y  + A p -  A - x ) d F ( x ) __________
2 J  Ai /  g(y +  A0 -  A -  x)dF{x)  +  A2 f  g{y -  y*)dF(y*)

If we p u t A  =  A q,

— \ x [  f  g'(x  ~  y)dF{y)___________
1 2J  X i f  g (x -x* )dF (x * )  + \ 2J g ( x - y ) d F ( y )

a. x X f ___________ I  g'(y — x)dF{x)___________
1 2 J Ai /  g(y -  x)dF{x) + X2 f  g{y -  y*)dF(y*)

=  _ AiX2 / / t i m d F M
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Let y=x in the second integral, then

— —A1A2

+ ̂ iA2 J  
=  0 (4.15)

So =  0 when A  =  A q. Since L*(A) is strictly convex function, it attains

its unique minimum at A =  A q. Thus, the proof is complete. □

4.2 Asymptotic Normality of A*s

In this section, we want to find asymptotic distribution and variance of 

Ag = Argmin{L*n(A )}. We will satisfy the Pitm an regularity conditions for
A

the gradient function -S'*(A) =  — 9L§ ^  and find the efficacy of it. The Pitman 

regularity conditions are stated in the Hettmansperger-McKean (1998). We will 

also use the Theorem 1.5.8 of Hettmansperger-McKean (1998) in order to prove 

asymptotic normality result:

where c is the efficacy of the S'*(A). W ithout loss of generality, we will also assume 

that

Assumption (A2): Under Ho : A0 =  0 and G(y) =  F(y  — A q) =  F(y)

y/n(A*s — A0) —> N(0,^ )
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First recall that

712

where

hA(t) =  Ax J g ( t  -  x)dF{x)  +  A2 J g ( t  -  y +  A )dG(y)

= M J  9(t ~  x)dF(x ) +  A2 J  g ( t - y  + A )dF(y)

Define tha t hx(t) =  A i f  g(t — x)dF(x)  and

Then, hA(t) can be written as

hA(t) = hx(t) +  hy(t +  A) 

So we can rewrite L* (A) in the following way,

n  i

L*(A) = - ' Y ^ l o g  [hx (x^ +  hy(xi +  A)]
i—1

712

60

L*(A) =  -Z o ^ ta fa ) ]  +  -log[hA(yj -  A)] (4.16)
i=1 j=l

^ ( i )  =  A2 J  g(t -  y)dG(y) =  A2 J  g(t -  y)dF{y) (4.17)

~  \hx{yi -  A) +  hv(yj -  A +  A)] (4.18)
3 =  1

Let S'*(A) =  — aLj£A) • Note tha t we can call L*(A) as the dispersion function 

and S*(A) as the gradient function.
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The partial derivative of the first sum term in the L*(A) is

9L*n( A) h!y(xj +  A)
5 A ^  hA(xi)

(4.19)

Similarly, the partial derivative of the second sum term  in the L*(A) is

dLU  A) 
0A

^ ( - l ) / ^ . - A )  
“  hA(yj -  A)

(4.20)

If we add the two partial derivatives, we get

=  - -E
2 = 1

nl hf
yhy(xj +  A) ^  ^  ( _ l)/t^.(y3- — A) 

f a )  f i  hA(yj -  A)

f , h>(xi + A) ^ h'x(y j - A )

iri (®<) -  A )
ni ri2

5n(A) = X>(Si,A) - X̂ 2̂(yj, A)
i=l j=l

(4.21)

where

V’l (*> A) =  A:
f  g’(t - y  + A)dG(y)  _  h!y(t +  A)

h A (f) hA(f)
(4.22)

and

ip2(t, A) =  A;
f  g'(t — A — x)d,F(x) _  /^ ( t — A)

hA(t -  A) hA(f -  A)
(4.23)

The following definition of Pitman regularity conditions is given by Hettmansperger- 

McKean (1998).

Definition 4.2.1. We say tha t the function S*(A) is Pitman regular if the following
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four conditions hold;

1. The gradient function S*(A) is nonincreasing function of A.

2. Let S ( A) =  ( l /n 7)S*(A) for some 7 > 0. There exists a function /i(A) 

£?a[-5(0)] =  Eo[S(—A)] such tha t fi(0) = 0 and / / ( 0) > 0.

3. There is a constant er2(0) =  /im n_toonVar[£(0)] such that

4. The asymptotic linearity of the process S*(A).

SUP l ^ ( “ 7=) “ -S (̂O) +  V (0 )l ->P 0 ^  n - > o o  (4.24)
VH|5|<B v n

for all B  > 0.

Then, by the Definition 1.5.3 of Hettmansperger-McKean (1998), the quantity

c =  fj,'(0)/cr(0)

is called the efficacy of S'*(A).

T h eo rem  4.2.1. The function S*(A) is Pitman regular i f  it satisfies the condi­

tions of the definition f.2.1. Then, we have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

where 5(0) =  ^5*(0) and

a(0) =  A/ l im nVrar[5(0)] (4-26)
V n—►oo

Proof. We start proving each conditions of Pitman regularity from 1 to 4, respec­

tively.

1. In our problem, L*(A) is a convex function of A on the given interval by 

Theorem 4.1.2. Then there is e >  0 such tha t aL§ ^  is a nondecreasing function 

of A around [Ao — e, Ao +  e]. Thus, 5*(A) =  — is nonincreasing function 

of A within the interval [Ao — e, e +  A0].

2. Let 5(A ) =  45*(A). Since £ A[5(0)] =  E0[S(—A)], we write

E 0[S(-A)} = E0
n  i n 2

Y ^ M x i , ~ A ) -  -
i=1 n  .7=1

—  E n

— E q

1 ni 1 n2 
- ^ 2 ^ i ( x i > ~ A )  - E 0 A )

n i=1 . .n  j=l
ni -A )
n

7=1
ni

En « 2  v 2'  fojVj, ~ A )

n 4- i  n2i=i
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After moving the signs of A inside the fa  and fa  functions and taking the expec­

tation of the each terms, we can write

=  fa J  fa (x ,A )dF(x )  -  X2 J  fa(y,  A)dG(y)

=  A fa(x,  A)dF(x) -  A2J  fa(y  -  A, A)dF(y)

= /i(A) (4.27)

where 121 —> Ai and ^  —> A2 as n—> 00.n 1 n *

Thus, we write

/i(A) =  Ai J  fa(x,  A)dF(x)  — A2 J  f a ( y -  A ,A )dF (y )  

* f  x I  9 '{x - y  + A)dF(y)— Ai /  A2  , . aF(x)

Let’s put A =  0 in the expression of /i(A). Therefore, under the assumption (A2), 

we have

m o ) - * , . *  2j M i ^ m dFix)

 ̂  ̂ f  19'{y -  x )dF(x)
-  2 1J  W )  m
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Again we let y=x in the second integral term of /x(0), then we have

MO) =  o

Second part of the condition is to show that //(()) > 0.

First note that we have the expression ( 4.27) which is

//(A) =  A: J  i/j1 (x,A)dF(x) -  X2  j  i >2 (y, A )dG(y)

The partial derivatives of ipi and ip2  functions with respect to A is

, m  _  [h'y(t + A ) } 2  -  h'fo + A) * hA(t)
} d A  [hA(t ) ] 2

and

nh'd At -  a ^ (* ,A )  _  < A ) * h A( t -  A)
^  j d A  { } [hA(t — A )]2

Let’s take the derivative of /x(A) with respect to A. So we have

dn( A)
/i'(A) = «9A

(4.29)

(4.30)
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= \ , J  iP[(x,A)dF(x) + \ 2 J  1 /2 (y,A)dG(y)  

f  [h' {x +  A )]2 -  /i"(x +  A) * hA{x)

= Al J  s i  dF{x)
. x [  [ K i v - & ) ? - K ( y - & ) * h A{ y - A )

+  AV  [ M l f - A ) ] a d G ( y )

By the assumption (A2) and taking A =  0, we have

//nx x f  i K W P  ~  K ( x ) * h (x ) j rv  x
" (0)=Ai J  m ?   ( )

( 4 . 3 1 )+  Aq

The numerator in the first integral is positive since the function h(x) =  f  g(x — 

y)dF(y) > 0 and the log concavity of h(x) implies tha t [h'y(x ) } 2  — hy(x) * h{x) > 0. 

Similarly, the numerator in the second integral is also positive with similar reason. 

Thus, the first and second integrals are both positive which implies tha t //(0) > 0. 

Therefore, second condition of the Pitman regularity condition satisfied.

3. To prove the third condition of the Pitman regularity, we follow the path of 

Hettmansperger and McKean (1998)

cr2(0) =  l imn_ 0 0 nVar[S{ 0)]
J H i  ^  » 2

l imn^ 00n V a r [ - ' ^ 2 ip 1(xi)  ^(Vj)}
n n  .i=i j=i
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Since two samples are i.i.d and mutually independent, we can write

 ̂ nl n2
= l imn.+0 0 n[—  V  ar[^x{xi)] +  — ^  Var[$2 {yj)\

f i .  n .i=i j=i

1 1
=  limn^ooln * — ni * Var[ipi(xi)\ + n *  — n 2  * Var[ip2 (yi)]\ 

rr nz

= l imn^ oo[— * Var[ipi(x1)} +  — * V a r ^ iv i ) ] ]  
n n

a 2 (0) =  Ai * Var[if)i(x)\ +  A2 * Var[ip2 (y)] (4.32)

Therefore, by the Central Limit Theorem, we have

v g c ° > - , y (o)| } ~ ^ d m i ) .

□

4. In order to prove the fourth condition of the Pitman Regularity, we will give 

the following theorem. The theorem is from Hetmansperger-McKean(1998) and 

it proves the asymptotic linearity of S'*(A).

T h eo rem  4.2.2. Let S (A) =  ( l /n 7)S*(A) for some 7 > 0 such that S*(A) 

satisfies 1,2 and 3 of the Pitman Regularity conditions. I f  for any S € R

nVar[S(—j=) — S i 0)1— ► 0 as n  —» 00. 
y/n

Then,

sup |\ /n S (—^=) — y/nS(0) +  n'(0)5\ — >p 0
|<5|<B V n
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for  any B  > 0

Proof. As we know from the previous section, S'*(A) satisfies the conditions 1, 2 

and 3 of Pitman regularity. By the Theorem 1.5.6 of Hettmansperger-McKean 

(1998), we only need to show

e
nVar[S(—=)  — S(0)] — > 0 as n  —> oo

y/Tl

Let S(A) =  ^ S ^ A ) for 7 =  1. Replace A with 7= in S'(A). 

By the definition, we have

=  linin^oo{riVar[S(-7=) -  S’(O)]}
Y Tl
ni

= Umn^ 0 0 {nVar[
1 A 1 _ _
-  X ]  M xi, -7=) -  -  ~T^n * —f  J n  n*r-f v nt=i v j=i

1 W1 1 K2

■ 1 ^  • 12=1 J = 1
1  n i  ^

=  /im„_oo{n * — V ]  Var[V>i(a:i, -7=) -  0)]
^  „ \/n

2 = 1

1 n 2  ^

+  71 * ~2 XT y a r [^(% ', -7^ )  ~  MVjy  °)])*—■4 \Jn
3=1

=  /im ^ o o ln *  * ni * V o r ^ i^ i ,  -^=) -  ^ 1(^1,0)]
Tl y / l

+  n * * n2 * Var[tf2(yi, - 7 =) -  ^ 2 (2/1 , °)]}n* \ /n
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Now if we move the limit inside, we get —► 0 and rij/n  —> A* for i= l,2  as

AiFar[V>i(x,0) -  V’iK O )]

+  A2Far[V’2(j/, 0) -  if>2(y, 0)]

=  0 (4.33)

Thus, {nP ar [5( ̂ ) — 5(0)]} =  0. Therefore, the fourth condition of

The following theorem proves the asymptotic normality of A*s . The Pitman 

regularity conditions and the Theorem 1.5.8 from Hettmansperger-McKean(1998) 

proves the result.

T h eo rem  4.2.3. Suppose that 5*(A) is Pitman regular with efficacy c. Then, by 

the Theorem 1.5.8 of Hettmansperger-McKean(1998),

where p( 0 ) is given by the expression( 4-31) and cr(0) is given by the expres­

Pitman regularity also holds. □

V ^ (A £ -A o ) -» J V (0 ,i )  c*
(4.34)

and the efficacy c is

cr(0)
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sion( 4-32).

Proof. Since S* (A) satisfies the Pitman regularity conditions and by the Theorem 

1.5.8 of Hettmansperger-McKean (1998), we can conclude that

— Ao) —>N(0,^ )

Thus, the proof is complete. □
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CHAPTER V

ASYMPTOTIC PROPERTIES OF THE PROPOSED ESTIMATOR

5.1 Asymptotic Linearity of the Sn(A)

In Chapter 4, we discussed the asymptotic properties of the estimator A*s. 

It is clear that it is not practical to use A$  as an estimator of A0 since we need 

to know true density function f(x). This was the reason we propose A s  as an 

estimator of the true shift parameter since it does not depend on the true density 

function f(x) in the estimation process. In this chapter we will develop asymptotic 

properties of the As by using the gradient function Sn(A).

Now let’s switch our attention to Sn(A) which is the gradient function of 

L„(A). Recall tha t we have

ni n 2

L„(A) =  -log\h&(xi)} +  ^  ~log\hA(yj -  A)] (5.1)
i=i j=i

where

— 1 .n* n2
hA(t) = - £ j ( t  -  xi) + ^ 2 g ( t - y k + A)]

1 = 1  k=1

=  hx (t) +  hy(t +  A)

71
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where hx(t) = ± Y a=i 9(* ~  x i) and M O  =  £ E feli d(t -  yk)- Let

q ( a \ =  ^ L n ( A )  M  hy(a:i +  A )  ^  _  A )

aA  M M -  ^ M i / j - A )
ni n2

S„(A) =  ~Y^ij>l (xi ,A )  + ' £ / ij>2 (yj ,A )  (5.2)
i= l  j = l

where

and

& (*, A) =  =  i S l . ^ - a  +  A) 3
/lA(x) h A(x)

/iA( y -  A) hA( y - A )

First,we replace A with in the Sn(A). Then, we have

S n =
V i— 1  V ■ _ ] _

Second, let’s take 5 =  0. Then,

ni n2
‘S'n(O) =  - J ^ ^ i ( a : i , 0 )  +  5 ^ ^ 2 ( j / j ,0 )

i=l j=l

Now we recall S'* (A) =  dL§ ^  from Chapter 4

S^(A) =  A) +  5 ^ 0 / 7 .  A) (5.5)
Z=1
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where

J .  ( f  \  \  \  f  g ' ( t - y + A ) d G ( y )  _  h ’v ( t+A)AJ -  A2*<------^ h A (t)

and

( f  M _  \  f  g ' ( t - A - x ) d F ( x )  _  h'x ( t - A) -  A S f c A ( t _ A )  -

Again replace A with in the 5*(A).

n Tlj C 2̂ C

y 7=1 v j=l
(5.6)

We now subtract S * ( ^ )  from the Sn(-^=)

Sn(
ni ri2

■ Z  77^  +  Z  77^)
i=1 V 7=1 V

ri2

- E ' M ^ i + E ' M ^7=1 v j = l v
ri2 <- it Tii j  <-

E f t t o .  77^ _  77^ -  _  7 ^)]7 — 1 * V 1=1 V V
(5.7)

Similarly,

S „ ( 0 ) - ^ ( 0 )  =
ni n2

-  Z  °) +  Z  ^ 2(%, 0)
1 = 1 J=1

+
ni n2

Z ^ i(® < .o ) -  Z ^ 2(yj»o)
J=l

n2

Z [ ^ 2(%> ° ) -  °) i -  Z ^ ° ) -
i=i

(5.8)
1 = 1

After this step, we can state the following theorem which is necessary to
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show the asymptotic linearity of Sn(A).

T h eo rem  5.1.1. Assume that the assumptions of Theorem f .2.2 hold. Then,

sup i ( 4 = s „ ( 4 = )  -  4 =s„(o)') -  ( 4 = ^ ( 4 )  -  4 = s ; ( o ) ) o
V^\s\<B \ V n V n V n J \V «  y/n V™

as n  —> oo for any B  > 0

Proof First we start our proof by noting tha t by the Theorem 4.2.2, we have

sup |-r=>S^(-^=) -  - ^ ^ ( O )  +  V (° ) l  0 as n - * o o  (5.9)
^\S\<B V n  V n  V n

for any B  > 0.

Now define a function

S ( 4 = )  =  S , ( d L )  _  S.( _ L )  (5.10)
V n  y n  v  n

Then if we put S = 0, we get

S(0) = Sn(0)-S*n(0) (5.11)

By the Mean Value Theorem, we can write

S { - = ) - S ( 0 )  = £ ? { $ ) { - = -0 )  
Vn Vn

(5.12)
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where \S\ < | ^ | .  Thus, we have

S'$) =  £ $ 2 (Vi )̂ ~ ^ 2 (ViA ~ ~ (5 -13)
j - 1 i —l

If we multiply the both side of the expression( 5.12) with we get

(5.14)

where |d| <  1 -s/n I'

Therefore, by the expression( 5.14), we can write

4 = S ( - t = )  -  4 = S ( 0 )
V n v n v n

C n 2 r n i

=  ~  * )  _  ^ 2 ( % >  ^  -  “  5 ^ ^ ’ ^  _  ^
j = i  i = i

A ”2 ni
=  (*<>*) -  $(*<>*)]71 7T-2 T“; /*- Tfrl T“TJ=1 7=1

_  (5 *  n 2 <*) ~  1 ^ 2 G /j>  <*)] £  *  n i  <?) -  V 'i Qe q  ^ ) ]
n n ni

(5.15)

If we take the absolute value of both sides, we get

< 6  * n 2  Y^j i  1 IV%(2/j> ~  V^Gfr) ^)l . ^ * n i I 2"=1 ^)|
n n 2

+ n ni
(5.16)
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Since each sum terms in the above inequality is an average, we can put max as 

an upper bound

y/n y n  \Jn n 3

+  — max{|V'i(a:i ,5) -  ^[(x^S)]}  
n i

Now take the sup of both sides, left and right side, the result we get

4 = S (0 )) | <  sup max{|V4 (yj) —
v n \S\<\j-\ n  J

+  max{|i>[(xu 5) -  V>i(xi} <5)|}} 
n  i

If we distribute the sup inside, we have

^ 5 * n 2 m a x i l f y i y j j )
n  \*\<\js\ 3

S 'f* — «
H sup m&x{\:ip[(xi,S)

n  l«l<l^-l *

By taking the limsupn^ <*> of both sides, we get

< 6 * A2 lim sup sup max{|i/4(y j ,6) — ip'2(y j , <51}
n—00 |«|<|^j| J

+  d*A ilim sup sup m axd^^X j, 5) — <S)|} (5-17)
n_>0° *

I 1 Q{ ^ \ sup I 7“ ( ~r~)
l«l<l^rl V " V "
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The term  inside maXj is

[m  E " i i  9 ' { y j - S - x i ) i2 m  E " i i  9 " { y j - S - X i ) ^  ,  _

& ( y j )  -  S) =  ^  J n_  - a  ^ '
i W i  -  * )r

_  [Ai J  g'jyj - 8 -  x )dF {x ) f  -  \ i j g " ( y j  - 5 -  x)dF(x)h-s(yj -  5)

M U i  -  *)12

In a more compact form,

?l( f t  f t  n^h'-^yj -  5)\2 -  hl (yj -  5)h~5(yj -  5)

n [hs(yj -  5)P
I2 -  h'jjyj - ,  

[h-s(yj -  $)?

[h'sivj -  )̂]2 -  hs(yj -  6)hs(yj - s ) 5̂ 1 8 ^

We know that x ,’s and y / s  are i.i.d, g is measurable function, 5 belong to compact 

set 0 . Ex[g(yj,S] < oo. Then, by the Theorem 2 of Wellner(2001), for fixed yj, 

we have

su p ^e  |hjivj - 5 ) -  hs(yj -  S)\ -+ 0 as n  -» oo 

By assuming E x[g'(yj,5)\ <  oo, we also have,

suPaee WfiVi - & ) ~  h'foi  ~  0 as n ^  oo

Similarly, by assuming Ex[g"(yj,5)] < oo, we have,

suPlee WgiVj -  8) -  h'faj -  6)\ -+ 0 as n -> oo 

By the Slutsky’s Theorem, the following statements are also true,
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suPlee I WgiVj ~  ^)]2 -  WiiVi -  ^)]2H  0 as n -» oo

and

suPlee \hi(yj -  ~8) k { y 3 -~8) -  hi(yj -  8)hs(Vj -  $)l -» 0 as n -► oo

and

sup
lee

I {[k(yj -  <̂)]2 ~  k(Vj -  8)k(yj -

-  {[tigiVj ~  ^)]2 -  kiVj  ~ k k i V i  -  £)} | -» 0 as n -► 00 (5 .19)

Therefore, by the Slutsky’s Theorem, we have

sup|V4(%,<5) ~  ^ { V j M  
see

=  gu .ni {WgiVj ~ )̂]2 ~  h'ijyj -  8)k(yj ~ *)} 

see n \hg(yj ~  <$)]2

A {[h'sivj -  k ?  -  hjbii -  8) k ( y 3 -  *)}. Q f52Qs

M i  -  *)]2

where 21 —> Ai as n  —> 00.n 1

Similarly, the term inside max* is

n  I ?  E g ‘ +  f  £ £ ,  y"(x, -  yt  +  S ) h i Mil>1(xi ,8)- i />1(xi,8) =  ------------- 2 rr -----------------------------
( W ,)]2

_  [A2 f g ' ( x j  -  y + S)dG(y)]2 +  A2 / g"{xj - y  + 5)dG(y)h-s{xj)
[.k ( x i )]2
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In a more compact form,

$[(xi,S) -  il>[(xi,6)

= n2 W~s{xj)]2 -h g (x i )h s(xi) _  [h'-s{xi)}2 -  h'tjx^h^Xj)

n  fe (® 0 ]2 2 ihs(Xi)]2

By using the similar arguments as above and by the Slutsky’s Theorem,

sup I ̂ [ { X i j )  -  ^[(xi,S)  I 
see

,n2 Wl{x i ) f  ~ ^ x i ) h ( x i) ,  lh 's(Xi ) ?  -  hs(x i ) h i ( x i) I n  r e  n - n=  sup |------ --------- —  ---------------- A2— -. ------- ---------- 1— >0 (5.21)
see n [hg(Xi)]2 [ ^ (xi)]2

where ^  —> Ao as n  —» oo.n  *

Therefore, combining results of the ( 5.20) and ( 5.21), we have tha t

1 A 1
sup I—= 5 ( —= ) -----=5(0)1 - ^ O a s r w o o

|j|<l_*.| y/n V n

Since

. 1 = 5 ( 4 = ) - 4 = ^ ( 0 ) = f 4 5" (4 = )  -  4 5- ( ° ) )  -  ( 4 = ^ - 7 = )  -v n  Vn v n \ V n V n  V n J \ V n V n v n J

The result concludes the proof. □

T h eo rem  5.1.2. Assume that Theorem 4-2.2 and Theorem 5.1.1 hold. Then, we
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have

sup |-^=S'n(-^ = )----^=5n(0) +  <fy/(0)| —>p 0 as n —> oo (5.22)
VTi\S\<B v n v n v n

for any B  > 0

Proof. By the Theorem 4.2.2 and Theorem 5.1.1, the proof is complete. □

By the result of this theorem, it can be written that

4=Sn(4=) = 4= 5«(0) -  V(°) + ° p ( 1) (5-23)yjn 'S/Th \Jn

which is going to be the foundation of our asymptotic normality proof.

5.2 Influence Function of Sn(A)

In section 5.1, we proved the asymptotic linearity of Sn(A). In this section, 

we will find the influence function of Sn(A) tha t will determine the asymptotic 

distribution of Sn(A). We will use the influence function and asymptotic linearity 

results of Sn(A) to prove asymptotic normality of the estimator As-  Asymptotic 

normality is also needed for developing hypothesis testing and confidence interval 

estimation of the Ao- Note tha t our estimator A s  is translation equivariant esti­

mator by the Theorem 2.6 and we can assume tha t G(y)=F(y) by the assumption 

A2.
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Definition 5.2.1. Let T be a statistical functional defined on a space of distribution 

functions and let F denote a distribution function in the domain of T. Let 7t(x) 

be a point mass distribution function at t. Then, the Gateux derivative of T(F)

is called the influence function of T(F).

Note that the influence function VifW is the derivative of the functional 

T [( l—s)F (x )+ s7t(x)] at s= 0. It measures the influence of a point in the estimator. 

A functional said to be robust if influence function is bounded (Hettmansperger- 

McKean 1998).

In our investigation of the influence function, we will use the idea of Huber 

(1981) who suggested using the empirical distribution functions in the functional 

that is used to estimate the true parameter. Therefore, before we find the influence 

function of 5„(0), we need to write Sn(0) as a function of its empirical distribution 

functions Fni and Gn2. Recall that

g (±)  E f c = i  9 '(Xi -  yk +  A) *  1 (-1 )  a .  9’jyj - A - X i )

k  hAfa )  k  hA(y j - A )

where hA(t) = ^ E ? i i  9{t ~  xi) +  Y T L l 9(t ~  Vk + A)].

Let A =  0 in Sn(A). We can rewrite a functional Sn(0) =  T(Fni,Gn2) in terms
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of empirical distribution functions Fni and Gm . So we have

T ( f p  p i  \ =  _ I h v i- '______________^  Y h k = 1 9 ' ( x i Vk)______________

1 B1’ 9& - x i )  + %-2 Z nkh 9 ( x i - y k)

+  - ET 7r v  f  ^

E "=i d ' i v j  -  x i )
n2 “  ^  E " ii $(%■ -  Xi) +  ^  E feii y(y? -  y*)

After appliying Reimann-Stieljes aproximation, we can write

T (F  G ) = - n J  J 9  (x -  y)dGn2(y) ________
{ n i , n 2 )  1 J  « ± J g ( x _ x * ) d F n i { x * ) +  ^ J g i x _ y ) d G n M  n A  )

f ___________ f  f  9 '(y ~  x)dFni(g)___________
7 1 ^ I 9 (V ~  x)dFni(x) +  ^  f  g(y -  y*)dGn2(y*) n2 ^

(5.25)

Thus, 5n(0) =  T(Fni,Gn2) can be written in terms of empirical distribution func­

tions Fni and Gn2.

T h eo rem  5.2.1. Let Sn(0) =  T(Fni,Gn2) where Fni and Gn2 are empirical dis­

tribution functions of X  and Y  respectively. Let

Fi(x,  e) =  (1 -  e)F(x) +  ejxi (x) (5.26)

and

Fi(y, e) =  (1 -  t)G(y) + e^yi (y) (5.27)

where 0 < e < 1 is the proportion of the contamination and is the distribution
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function for  a point mass at t. Then, the influence function of  ̂ (O ) is

I F ix uy i )  = £ W £ ^ i M ^ l  |„ 0 

=  ! ^ [ n ( x 1) - n ( y i ) ]

where

) ,n , s 1 9 ' ( t - y )d G { y )
J g ( y ~ x )dF(x) J  g(t — y)dG(y)

Proof. We start our proof by replacing Fni(x) and Gn,2 (y) with Fi (x, e) and F2(y, e) 

in the -S^O) given by expression( 5.25). After the replacement, we have

T / P , , n ,  » _  f ___________ ^ I y ' ( x - y)dF2(y)__________
T ( F 2(x ), a (y ) )  m y  f  f  g ( x  _  x *) d F i M  +  f  J  g ( x  _  y )dF2(y)  i ( * )

+ n f __________ f f f f ,( y - x )dF1(x)__________
2 J  i t f d i y -  x)dFl (x) +  ^ f g ( y -  y*)dF2(y*) 2

After putting Fi(x) = (1 -  e)F(x) +  ejxi{x) and F2(y) =  (1 -  e)G(y) + £7yi(y) in 

the 5n(0), and applying change of variable technique, we get

T(Fi(x) ,F2(y))

n m 2 _  v f  [(1 -  e) J g \ x  -  y)dG(y) +  e f g' (x -  y)d7lft(y)] 
J [(1 -  e) f  g ( x  -  y)dF(y)] +  e[f g(x -  y)djxi (y)n
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, ,  f  K1 ~  0  J  g'(x ~  v)dG(y) +  6 f  g \ x  -  y)d'yVl (y)]
J [(! -  e) / g(x  -  y)dG{y) + e / g(x -  y)dyxi(y)\ X1

W h  [n _  v f  [(1 ~  c) JY (y  ~  x)dF(x)  +  e f  g \ y  -  x )d jxi (g)] 
n J K1 -  e) / 9{y ~ x)dF(x) + e f  g(y -  x)daxi{x)}

, ,  f  [(1 ~  0  /  9'{y -  g)d F (g )  +  6 f  g'(y -  aptfrfa (a;)] ^
J  [(l - e ) f f f ( y - z ) d F ( x )  + e f g ( y - x ) d ‘yxl(x)] 2/1

Let |£=0> Apply the chain rule and replace e =  0, we get

f  S ^ x - y ^ d9Sy)dF(x)n J  j 9 ( x - y ) d G ( y ) d H x )

, f  [ ( - 1) J Y (*  ~  y)dG(y) +  f g ' { x  -  y)d-/n (y)\ J g ( x  -  y)dG(y)

+ J --------------------------u s < . * - v m v )p-------------------------- ( ’
f  [(-1) 19{x  ~  y)dG(y) + f g ( x -  y )d jxi (y )] J  g'fo ~  3/)<ft?(y) , p , x 

J  [f g(x -  y)dG(y)}>

+ n  J  J g ( y - x ) d F ( x )
, f  [ ( - ! ) /  5' (y -  ar)dF(x) +  JY (y  -  apdT^ap] /g ( j /  -  apdF(ap

J  [ f  g ( y  -  x ) d F ( x ) P  ‘“ ’ W

f  [(-1) /  g(l/ ~  apdF(ap +  J  g{y -  x )d jxi (ap] J  g'(l/ ~  apdF(ap 
J  U  g ( v  -  x)dF{x)]* [y)[ /  g(y -  x )dF{x) f

    r/'V
J g ( y - x ) d F ( x )

f  f  y'ly — r)/IF(r)J  J  9<y -  x)dF(x ) d l ’M l  l5'29)
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By applying change of variable in the first term, we can further simplify the 

equation. Note tha t 7 is a point mess and f  g(x — y)d/yyi(y) =  g(x — jq) and 

f  g(y -  x )d jxi(x) =  g(y -  sq)

T (F 1(x ),F 2(y))
n in 2

n >/

+

+

+

9 \ x  -  yi) f  g(x -  y)dG{y) 
[ f  g(x -  y)dG(y ) ] 2

f y ' j x i  ~y)dG(y)
J  9 (xi ~  y)dG(y)

9'{y -  z i)  f  g{y -  x)dF{x)  
[ J g ( y - x ) d F {  x ) } 2

- x)dF(x)

dF{x)

n2ni
n ' /

dG(y)

1 9' (yi
f  9(yi ~ x )dF(x)

(5.30)

Finally, in the last equation, the square terrnfj g(x — y)dG(y ) ] 2  in the first and 

third denominators cancel out the integral term J  g(x—y)dG(y) in the numerators. 

After this cancellation, we have

n in 2
n /

n2ni
n /

g'jx -  y\)
J g ( x - y ) d G ( y )  

9'(y ~  ^1)

dF(x)  +
J  9 ' -  y)dG(y)

f  g(y ~  x)dF(x)
dG(y) +

f  g(x 1 ~  y)dG(y) 
1 9 ' (yi ~  x)dF(x)
f  g(yi -  x)dF{x)

(5.31)

The first and last terms in the expression depend on yi, we can put these terms 

together. Similarly, the second and third terms depend on aq, we can put them 

together.
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Thus, we have

dT(F1(x,e) ,F2(y,e))
de l£=0

n^ni f f  g'jy -  Xi) _  f g ' j x !  - y ) d G ( y ) \
n  I J  J  g(y -  x)dF(x)  J  g(Xl - y ) d G ( y )  J

g \ x  -  j/i) _  /  5'(yi -  x)dF(x)
f  g(x -  y)dG(y) f  g(y 1 -  x)dF(x)

Let

O (t\ = !  f  9'(y ~  ^  .4r(v\ -  I  s ' ( t - y ) d G ( y ) \
I J  f  g(y -  x )dF(x )dG{y} J g ( t - y ) d G ( y ) f

Therefore, the influence function is

I F ( x 1,y l ) = ^ [ Q ( x 1) - Q ( y 1)}

which completes the proof.

One of the properties of influence function is that E[IF(xi ,yi)]  

that X and Y are independent by the assumption Al.

E[IF(xi ,yi)]  = E  [ ^ ( f i ( x i )  -  Q(yi))

711712 [E(Q{Xl)) -  E(Q(yi ))}
n

n in2
n

J n ( Xl)dF(x0 -  j  Q(y i )dG(y i)

(5.32)

(5.33)

(5.34) 

□

0. Note

(5.35)
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Let yi =  Xi in the second integration and G(y)=F(y) under H 0

n in 2
n

J  Q,(xl )dF(xi)  — J  Q,(xi)dF(xi)

Now let’s look at the individual terms in the IF(x i ,y \ ) .  First, consider the 

function f2(:ri),

■E[f2(:ri)] =  J  Q(xi)dF(xi)

= J  J  Q'(y ~  ^  

“/ /

________________ d G ( v )  _  I f f V - i - y ) d G ( y )
J g ( y - x ) d F ( x )  f  g f a  -  y)dG{y)

dF(xi)

f {y  -  *1)
f  9{y ~  x)dF(x)

By the independence of x and y, we can apply change of order of integration in 

the first term

“/[/ g'{y -  s i)
J  g{y -  x)dF{x)

dF(xi) dG(y) -  J
J  y' jxi ~  y)dG(y) 
I f f  f a  - y )d G (y )

dF(x  0

The denominator term f  g(y — x)dF(x)  is independent of dF(x i), therefore, mov­

ing dF(x i) to numerator keeps the integratiy of the double integral

/ f  g'(y -  x x)dF f a )  
f  g(y -  x)dF(x)

dG(y) -  J J  g'f a  ~y)dG{y)  
J  9 f a  - y )d G (y )

d F f a )
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Let y  =  x i and d G {y ) =  d F (x i) in the first integral, then

Let x=y and dF(x) = dG(y) in the denominator of first term, then

Therefore, difference of the two same integral indicates

£/[f2(xi)] =  0

Similarly, using the same arguments, we can show tha t i?[f2(yi)] =  0.

5.3 Asymptotic Normality of 5„(0)

The influence function (IF) often provides a representation suggesting the asymp­

totic distribution of the estimator. Based on the above influence function result, 

we will prove that gradient function 5„(0) is asymptotically normally distributed. 

For one-sample case Huber (1981, Section 2.5) point out that, under regularity 

conditions,

Vn(T (Fn) -  T(F) )  = I F( Xi) + oP (l) (5.36)
v n
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where op(l) tends to 0 in probability. By applying the Central Limit Theorem to 

the first term on the right side, and using the fact that E[IF(x)]=0, then we have

For two-sample case, we will extent Huber’s idea to our case. We will state 

following theorem in order to prove asymptotic normality of 5„(0). Here, recall 

that Sn(0) =  T(Fni,Gn2) from section 5.25 and

Assumption (A3): Assume tha t op(l) tends to 0 in probability.

Remark 5.3.1. Since we assumed that the remainder term op(l) goes to ’’zero” , 

it must be proven in order to be theoretically true. The proof is not easy to show 

but it is often true so that asymptotically negligible. In the literature, several 

authors, for example, Huber (1981) and Serfling (1980) mentioned tha t this proof 

is very difficult task to be accomplished. Therefore, we will assume tha t op(l) 

goes to ’’zero” but the proof will be shown in the future studies related this topic.

T h eo rem  5.3.1. Assume that the Theorem 5.2.1 and (A3) holds. Then we have

M T ( F n) -  T(F) )  -  N ( 0, E[IF*(x)}) (5.37)

Vn[T(Fni,Gn2) -  T(F, G)} —  N ( 0, u2(0)) (5.38)

where u2(0) =  (y ^ ) 2 [niE[Q2(x)] +  n2.E[f22(y)]] and n = n\  +  n2.
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Proof. By the Theorem 5.2.1 and Huber (1981, section 2.5), we can write

[T(Fni,G n2) — T(F,G)] 

1 I n in2
y / n ^ n .*=1 j=1

+  op(l) (5.39)

where Q(xi) and fi(yj) are independent since sample X and sample Y independent 

by the assumption and both samples are i.i.d. Then, by the Central Limit Theo­

rem, the right side of the expression( 5.39) is Normally distributed with mean 0 

and variance

v2(0) =  (1̂ 2)2 [niE[t f {x)] _  n2E[Q\y)}] (5.40)
Y  71/7X

Note tha t expected value of the influence function is zero(i.e E [IF (x, y)] = 0) and 

by the assumption (A3) the remainder term op(l) goes to 0 in probability. □

5.4 Asymptotic Normality of As

In the final part of the chapter V, we will show the asymptotic normality of 

estimator A s- The result of this section will also help us to develop an asymptotic 

a  level hypothesis testing and (1 — a)100% confidence interval estimation.. We 

will use asymptotic linearity results for Sn(A) from chapter IV in proving the 

asymptotic normality of As-
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Recall that by the Theorem 5.1.2, we have

sup |-^=Sn(-^ = )---- ^ ^ ( O )  +  <V(°)| —>P 0 as n  —► oo
y/K\5\<c V n  V n  V n

This result is an important one that will be used to prove Asymptotic Normality 

of the estimator As. We will give following theorem in order to prove asymptotic 

normality.

T h eo rem  5.4.1. Assume that Theorem 5.1.2, Theorem 5.3.1 and the assumption 

(AS) hold. Then, we have

^ ( A s - A 0) - ^ i V ( 0 , V 2(0))

where 1̂ (0) =  v '/) , ' r " /) .

Proof. By the Theorem 5.1.2, we have the asymptotic linearity result of

4 = $ , ( - 4 )  =  4 = 5 n ( 0 )  -  V ( 0 )  +  O p ( l )
y / n  y / n  y / n

If we substitute y/n A s  =  S and by the assumption (A2), we can write,

v € A s =  - M L  +  o , ( 1)vV( o)

If we know the asymptotic distribution of ; we can find the asymptotic
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distribution of ^/riAs-

By the Theorem 5.3.1, we have S„(0) =  T (F ni,G n2) and

V ^ S n(0) - c  JV(0,u2(0))

where u2(0) =  ( ^ ) 2 [ni£[Q2(a:)] +  n2E[tt2(y)}}. 

Therefore, we also have

Sn(0) lV(0,u2(0)/n)

and

* .(» ) -’ m - M s )W ( 0) ’ n2(//(0))

By the asymptotic linearity of 5„(0)

The remainder term op(l) —*• 0 in probability as n —► oo 

Therefore, we have

y/n(A s — A0) N(0, l /2(0))

where 1/ ( 0) =  the assumption A2, Ao =  0.

that

V n A s  — > N (0,V (0))

by the assumption (A3).

Thus, we can also write
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CHAPTER VI

HYPOTHESIS TESTING AND CONFIDENCE INTERVAL ESTIMATION

6.1 Hypothesis Testing

In this section, we will develop a hypothesis testing tha t will use the result 

of chapter V. By the asymptotic normality of the Sn(0)(Theorem 5.3.1), we have

^ ( g n( 0 ) - g [ 5 n(0)]) ^  N orm al(Q
V ^ ( 0)  ̂ '

where v2(0) = [niE[fl2(x)] +  n2E[fl2(y)]]. Next, we will develop an asymp­

totic level a  test of hypothesis Ho : Ao =  0 vs H a : Ao > 0 which is

Reject Ho in favor of Ha if -S'n(O) > zav(Q)/^Jn

Here v(0) has to be estimated from data since it will not be practical to use it

directly because underlying distribution functions of the samples are unknown to

us. We approximate ■u(O) in the following way, first recall tha t we have

O(fy =  {  f  9'(y -  t) ,r (  x _  1 9 '(t -  y)dG(y)}
I J  J  g ( y -  x)dF(x) f  g(t -  y)dG(y) J

94
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Then Q(t) can be approximated by the following expression

Then w(0) can be approximated by

1 _ni_ 1 U2
i— + 7i2~  Sn 1 t * n.ft « ■*

S2(0) =  (^ )2 
y n n ni t r  n2 j=i

(6.3)

6.2 Confidence Interval Estimation

As we discussed in chapter II, the estimate A s  is a solution to the equation 

Sn(A s ) =  0. Based on this equation and asymptotic distribution result of Sn(0), 

(l — a ) l 00% level confidence interval for Ao can be found by solving

Sn(Au) = —za/2v(0 )/s fn  and Sn(A L) = za/2v(0) /  y/n

which yield a ( l —o ) l00% level confidence interval (Ay, Ay) for the shift parameter 

A0. Similar to the estimator As, Ay and Ay can be found by using an iterative 

algorithm. Examples are given in Chapter 7 to illustrate finding a (l — a ) 100% 

level confidence intervals for the true shift parameter Ao.

The result of asymptotic normality of As  indicates tha t

V^As~^N(0,V2(0))
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where V (0) =  . Therefore, based on the asymptotic distribution of A s ,  a

(1 — a ) 100% level confidence interval can be written as

As  ±  za/2V (0 )/^ /n

The estimation of V(0) and properties of this asymptotic level confidence interval 

will be investigated in a future study.
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CHAPTER VII

NUMERICAL EXAMPLES AND A SIMULATION STUDY

7.1 Numerical Examples

Example 7.1.1. (Random Generated Data Example) We mentioned tha t L„(A) 

is a quasiconvex function of A. To see this property clearly, the plot of disper­

sion function Ln(A) is generated by using two arbitrary samples, see the Fig­

ure 8. Here, for simplicity reasons, smoother density function g(t) chosen to be 

g(t)=Normal(0, cr2) in the convolution and cr2 will be estimated from the data 

such tha t a2 =  ^  Sample X with rq =  20 is generated from Nor-

mal(0,l) and sample Y with n2 =  10 is generated from N orm al(l,l). So, the true 

shift is Ao =  1.

In Table 1, the estimate of A0 is found by using LS, H-L and proposed 

Smoothing method. As we see from the Table 1, the proposed Smoothing method 

performed better or equal compare to LS and H-L. A 95% confidence interval is

also indicates th a t  th e  proposed m ethod  perform ed equal to  th e  o ther two. Ac­

tually, it is close to the least square in estimating the shift and the confidence 

interval. This can be a good indication since the data comes from Normal Distri­

bution in which least square works the best.

97
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Table 1: Estimate of Aq and 95% Confidence Limits

Method A 95% Lower 95% Upper
Smoothing 1.0257 0.1466 1.8723
Hodges Lehman 1.0485 0.1127 1.8422
Least Square 1.0135 0.1575 1.8694

Dispersion Function Ln for Normal D ata

c- I

6-4 ■2 0 2 4

delta

Figure 8: Log-likelihood function Ln(A) of the random data
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Example 7.1.2. (Quail Data Example) This example comes from a drug screen­

ing program tha t finds compounds which reduce low-density lipoprotein(LDL) in 

quails. See McKean, Vidmar and Sievers (1989) for the discussion of this screen. 

The Main purpose of the study was to examine the effects of a drug which is 

designed to lower the cholesterol levels. Two groups of quails have been randomly 

selected, the first group were fed with a special diet and given the drug, the second 

group were fed with same diet but didn’t get the drug over the same time period. 

The first group is referred to the treatment group and the second group refered to 

the control group in the study. The data is displayed in Table 2. we can observe

Table 2: Quail Data

Control 64 49 54 64 97 66 76 44 71 89 
70 72 71 55 60 62 46 77 86 71

Treatment 40 31 50 48 152 44 74 38 81 64

tha t 5th observation in the treatment group is an outlier. This type of outliers 

are common in this drug study program, see McKean et al(1989). We can also 

note tha t treatment group has lower values than the control group. This can be a 

rough indication of the effectiveness of the drug but we should also consider that 

sample size in treatment group is 10 against 20 in the control group.

Let 9c and 6t  denote the true median levels of the control and treatment 

populations, respectively. Then, one can say that the parameter of interest should 

be A =  6c — &t - Since we are interested in the alternative hypothesis that 

effectiveness of the drug in the study, the hypothesis set up should be
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H0 : A0 =  0 vs Ha : A0 >  0

By using the data given in Table 2, we run our code to find proposed Smoothing, 

Hodges-Lehmann(H-L) and Least Squares(L-S) estimations of the shift parameter 

A0. We also find a 90% level confidence intervals for the shift Ao. The results 

are given in Table 3. Here, for simplicity reasons, smoother density function g(t) 

chosen to be

9 ® =  ~ N [ 0 ,a 2}

and a2 estimated by a2 =  ha i +(»2 i) M a d y jrom ^  data.
J  n i - f n 2 —2

As we see from the table, the proposed estimation method is rejecting Hq since 

Table 3: Estimate of Ao and 90% Confidence Limits

Method A 90% Lower 90% Upper
Smoothing 16.02 5.10 26.20
Hodges Lehman 14 -2 24
Least Square 5 -10.25 20.25

” Zero” is not included in the interval, on the other hand, other two have included 

’’Zero” in the intervals and they don’t  reject H q. Thus, the proposed method finds 

tha t the treatment effect is significant. We can also note that proposed method 

gives us the narrowest confidence interval compared to the other two confidence 

intervals.

In the following Table 4, we illustrated same problem without the outlier 

which is the observation # 5  in the sample Y. As we see that, LS jump 10 units
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Table 4: Quail Data Results without the Outlier

Method A 90% Lower 90% Upper
Smoothing 16.22 8.58 23.30
Hodges Lehman 16 5 26
Least Square 14.97 4.75 25.20

from 5 to almost 15, HL increased 2 units from 14 to 16, Smoothing only increased 

by 0.2 from 16.02 to 16.22. %90 confidence intervals are now very similar to each 

other, almost estimated the same interval. ’’Zero” is included in all three intervals 

and all of them rejects H0 : A0 — 0, therefore, there is significant treatment effect.

Dispersion Function Ln For Quail Data

20 4 0 6 0-40 -20 0
d e lta

Figure 9: Log-likelihood function Ln(A) of the quail data
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7.2 A Simulation Study

In this section, we are going to illustrate a bootstrap simulation study to 

compare Asymptotic Relative Efficiencies (ARE) of Smoothing, Hodges-Lehmann 

and Least Square. It is very well known that (see Hetmansperger and McKean 

1998), ARE of Hodges-Lehmann with respect to Least Square is 0.955 when er­

rors are normally distributed with mean 0 and variance 1. It is natural to ask 

what is the ARE of Smoothing with respect to Least Square when we have the 

same underlying normal distribution. Next question, maybe, what is the ARE 

of Smoothing versus Least Square and Hodges-Lehmann when we contaminated 

underlying distributions. We will answer these questions with comparing finite 

sample relative efficiencies (RE) of the methods. ARE is the ratio of bootstrap 

variances of Smoothing estimation of the shift with respect to Hodges-Lehmann 

estimation and with respect to Least Square estimation. For this simulation, the 

smoother function g(t) will be Gaussian Density(Normal Density) function,

t2
g(t) =  ~  N orm al[0, cr2]

and a 2 will be estimated by a2. Different choices of a2 will be investigated. We 

will generate two random samples from Normal Distributions such as,

Let X \.. .X ni ~  Normal{nx,a1)

and

Let Y\...Yn2 ~  N o rm a lly , a2)
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Therefore, the true shift parameter will be Ao = ny — nx. If we shift the sample 

Y with true shift parameter Ao, the combine shifted sample becomes,

X t, ...Xni,Yi -  A0, ...Yn2 -  A0 ~  Normal(0, <7q)

We will also define that

C .N (e,n i) =  (1 — e)Normal(0,crl) + e N orm al([ii,a2) 0 < e < 1.

which is a contaminated normal with contamination level e.

We run 1000 replications in the simulation by generating n\ = 20 observa­

tions from Normal(2,4) and n<i = 10 observations from Normal(4,4). Therefore, 

true shift parameter is Ao =  2 and a2 =  4. Furthermore, the contaminated part is 

generated from Normal(10,16) where Hi =  10 and o \ = 16. Estimated Asymptotic 

Relative Efhciency(ARE) values of the Smoothing relative to Hodges-Lehmann 

and Least Square is given in the tables with a different e contamination levels.

The smoothing parameter a2 in the smoother density function g(t) must be 

estimated from the data. There are several ways to estimate this parameter. We 

can use the pooled variance if we assume that underlying distribution is normal 

or approximately normal.

1. a2 can be estimated by d2M = 1̂morfy, where mad is the median

absolute deviation, a robust scale parameter estimate from the data.
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2. a 2 can be estimated by <x2 =  (W1 1)Tx+(»2 1)3̂  where r  is a robust scale
J t  n i + n 2 —2 ’

parameter estimate proposed by Huber(1981).

3. cr2 can be estimated by d2s = Ŵ1 ^ ^ " 2  where S 2 = is a 

non-robust classical estimate of the variance from the data.

4. If we use Kernel Density Estimation method instead of ’’smoothing by convo­

lution” idea in the replacement of true density function f(x), the bandwidth 

parameter(6„) must be estimated from the data. We will use optimal band­

width parameter selection procedure proposed by Sheather and Jones(1991).

First, we will run all three smoothing parameter a2 replacement options and see 

which one gives us the highest relative efficiency compared to Hodges-Lehman(H- 

L) and Least Square(L-S) procedures under the contamination. Later, we will run 

a simulation to investigate the Kernel Density Estimation which is alternative to 

the smoothing by convolution.

We start the simulation with using Median Absolute Deviation (MAD) as 

a smoothing parameter a estimate. We compare relative efficiencies of Smooth- 

ing(SM), H-L and L-S. The Following Table 5 shows the results. The relative 

efficiencies of Smoothing(SM) versus H-L and L-S compared by using Huber’s r  

as a  sm oothing param eter estim ate. A t e =  0, ARE of SM with respect to L-S 

is 0.9649 which is almost equal to H-L under no contamination case. L-S is the 

best at 0% contamination compared to H-L and SM. At the 10% contamination 

of the data, ARE of SM versus H-L is 1.0103 which indicates Smoothing is 1%
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more efficient than H-L and almost 18% more efficient than L-S. At the extreme 

case, 30% contamination, ARE of Smoothing versus H-L is 1.1099 which indicates 

Smoothing is almost 11% more efficient than H-L, and almost 56% more efficient 

than L-S.

Table 5: SM relative to HL and LS, using a2M as a smoothing parameter

e ARE(SM,LS) ARE(SM,HL) ARE(HL,LS)
6=0 0.9649 1.0013 0.9637
6= 0.10 1.1802 1.0103 1.1681
e=0.20 1.4715 1.0693 1.3760
e=0.30 1.5615 1.1099 1.4068

In Table 6, the relative efficiencies of Smoothing(SM) versus H-L and L- 

S compared by using Huber’s r  as a smoothing parameter estimate. At e =  0, 

ARE of SM with respect to L-S is 0.9672 which is almost equal to H-L under 

no contamination case. L-S is the best at 0% contamination compared to H-L 

and SM. At the 10% contamination of the data, ARE of SM versus H-L is 1.0126 

which indicates Smoothing is 1% more efficient than H-L and almost 18% more 

efficient than L-S. At the extreme case, 30% contamination, ARE of Smoothing 

versus H-L is 1.1160 which indicates Smoothing is 11% more efficient than H-L, 

and almost 57% more efficient than L-S.

Table 7 shows relative efficiencies of Smoothing(SM) versus H-L and L- 

S, by using as a smoothing parameter estimate. At e =  0, ARE of SM with 

respect to L-S is almost 98% which is 2% greater than H-L under no contamination
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Table 6: SM relative to HL and LS, using a 2 as a smoothing parameter

e ARE(SM,LS) ARE(SM,HL) ARE(HL,LS)
6=0 0.9672 1.0036 0.9637
6= 0.10 1.1829 1.0126 1.1681
e= 0.20 1.4806 1.0761 1.3760
e=0.30 1.5701 1.1160 1.4068

case. But still L-S is the best at 0% contamination. At the 10% contamination 

of the data, ARE of SM versus H-L is 1.0211 which indicates Smoothing is 2% 

more efficient than H-L and almost 20% more efficient than L-S. At the extreme 

case, 30% contamination, ARE of Smoothing versus H-L is 1.0608 which indicates 

Smoothing is 6% more efficient than H-L, and almost 50% more efficient than L-S.

Table 7: SM relative to HL and LS, using d2s as a smoothing parameter

6 ARE(SM,LS) ARE(SM,HL) ARE(HL,LS)
6=0 0.9791 1.0160 0.9637
6= 0.10 1.1927 1.0211 1.1681
e=0.20 1.4460 1.0508 1.3760
6=0.30 1.4924 1.0608 1.4068
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Table 8 shows relative efficiency of Kernel Density Estimation Method with re­

spect to H-L and L-S by using optimal bandwidth procedure from Sheather and 

Jones(1991). The algorithm used in this simulation is available upon request from 

the authors.

Table 8: SM relative to HL and LS, using bandwidth bn as a smoothing parameter

e ARE(SM,LS) ARE(SM,HL) ARE(HL,LS)
6—0 0.8140 0.8414 0.9586ot-H©II 1.0086 0.8664 1.1641
e=0.20 1.4242 1.0259 1.3882
e=0.30 1.6236 1.1274 1.4401
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CHAPTER VIII

CONCLUSION

8.1 Concluding Remarks

In this study, we proposed a new estimation method for the shift parameter 

Ao in the two-sample location problem. Our main purpose was to develop an 

alternative procedure to current parametric and nonparametric procedures that 

are widely used in the literature.

The parametric shift parameter estimation method, Least Squares and non­

parametric estimation methods Hodges-Lehman and General Rank Scores have 

been presented in the Chapter I. Their asymptotic properties have been referred 

to Hettmasperger and McKean(1998). Their advantages and disadvantages have 

been pointed out. In Chapter II, the proposed method has been described and 

notation introduced. The sample Y is shifted by an arbitrary shift variable A 

and then sample X and A shifted Y sample are combined in a one sample. The 

purpose of our arbitrary A shift is to align two sample as closely as possible and 

find tha t value which aligns two sample. We can not use true shift parameter Ao 

in place of A because it is unknown. Later the empirical distribution function 

F*(x) of the combined shifted sample is convoluted with a smoother density func­

tion g(t) to find a smooth replacement for the true underlying density f(x). This
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new density is called hA(t) which carries over the overall(approximate) shape of 

the true population density f(x) tha t the combined shifted sample comes from. 

It should be noted tha t even though proposed smoothing by convolution idea is 

analogous to Kernel Density estimation, we don’t  exactly estimate the density but 

we smooth the empirical distribution function with convolution idea to get the 

overall shape of the data. The smoothing parameter a plays an important role in 

the smoothing by convolution idea. The smaller values of the a can under smooth 

the data, the larger values of the a can over smooth the data. The importance 

of a is illustrated by figures in Chapter 2. Later hA(t) replaces the unknown true 

density function f(x) in the log likelihood function L(A). After the replacement, 

L(A) is called Ln(A) which can be minimized with respect to A. The resulting 

solution A s is estimate of the true shift parameter Ao- This estimator is a trans­

lation equivariant estimator and this is proved in the last part of the Chapter 

2 .

In Chapter III, some of the theoretical properties of the smoothed density 

function hA{t) is presented. We discussed tha t Ln(A) is a quasiconvex function of 

A and minimum exists by Roberts and Varberg(1973). Ln(A) and its approxima­

tion L*(A) have been developed to support the asymptotic results. In Chapter

dL*  A )
IV, the Pitman regularity conditions for S'* (A) =  have been satisfied and

the asymptotic linearity results of gradient function S'* (A) has been shown.

In Chapter V, The asymptotic linearity of Sn(A) is proven by the The­
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orem 5.1.2. The influence function IF(x,y) derived by using the idea proposed 

by Huber(1982) in the one sample case. Based on the influence function and the 

asymptotic linearity results of S'n(A), the asymptotic normality result of the esti­

mator As  has been derived. In Chapter VI, we developed the asymptotic a  level 

testing and confidence interval estimation procedure for the proposed method.

The examples and a bootstrap simulation study presented in the Chapter 

VII demonstrated tha t proposed method is as competitive as current methods, 

in most cases even better. By the simulation study, different choices of smooth­

ing parameter a have been investigated. The regular non-robust sample variance 

estimate <r|, robust median absolute deviation(MAD) estimate d \j and robust 

Huber’s Tau(r) estimate a2 are compared and found that the proposed estimator 

works similarly in the different choices of a2 estimations. Surprisingly, non-robust 

sample variance estimation of a2 is very competitive with other two robust es­

timations of a2. Kernel Density estimation method is also used to estimate the 

unknown true density function of the combined sample. As an alternative to esti­

mate smoothing parameter a from regular scale estimation procedures, the band­

width parameter proposed by Sheather and Jones(1991) is estimated and used in 

the smoothing by convolution idea. The result of the simulation is presented in 

Chapter VII.

By the finite sample asymptotic efficiency result, the proposed solution 

is approximately 98% efficient against classical method, the Least Square under
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the normality assumptions and far better than the Least Squares if underlying 

distribution is contaminated. Under the same conditions proposed method has 

almost 1%-10% more efficient than the Hodges-Lehman method. As a result, we 

can confirm tha t proposed method works as good as currently used methods and 

can be included in the literature of two-sample location problem.

8.2 Future Research

In the future, we will investigate some of properties of the smoothed den­

sity function hA(t) and log-likelihood function Ln(A). We will try  to develop 

conditions on the log concavity of hA(t) with respect to smoothing parameter a. 

The quasi-convexity of the Ln(A) will be investigated further and mathematical 

proofs will be sought. The different choices of the smoothing parameter a will be 

considered and optimum smoothing parameter a will be proposed.

From Chapter IV, the efficiency of the estimator A*s will be investigated 

against the maximum likelihood estimator given tha t underlying distribution func­

tions are known.

We would like to investigate the Behrens-Fisher problem by using the same 

smoothing by convolution idea. In the Behrens-Fisher problem, we have a case of 

different scale parameters for each population distribution functions. If we recall 

that in regular two-sample location problem, we assumed tha t scale parameters
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are equal. By this assumption, we guaranteed that shapes of the two distributions 

are identical but locations are different. In fact, the scale parameters are different 

in Behrens-Fisher problem. Therefore, the shapes of the underlying distribution 

functions are not identical any more. In this case, we propose to smooth each 

empirical density functions of the samples separately without combining the two 

samples. We will have two different smoothing parameter ax and <ry for each 

convolution smoothing. It will be a very complicated problem to  work on.
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