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AN ANALYSIS OF TH E IMPACT OF AN OUTLIER ON CORRELATION 
COEFFICIENTS ACROSS SMALL SAMPLE DATA 

WHERE RHO IS NON-ZERO

Maria A_ Suchowski, Ph.D.

Western Michigan University, 2001

This study addressed the problem o f the probable effectiveness o f  the Pearson 

correlation coefficient (r) as an estimator o f moderate or strong population correlation 

(rho) when that estimate is based on small sample data which contains an outlier. In 

such a  situation, three components contribute to the size o f  a  sample correlation 

coefficient, and so to the subsequent effectiveness o f  the resulting estimation decision. 

These components are 1) rho, 2) sample size, and 3) outlier. Considered in this study 

were: two conditions o f rho (.5 and .8), three sample sizes (10, 30 and 50) and two 

outlier conditions (without outlier and with outlier).

The investigation was conducted by simulating the distribution o f Pearson r’s 

under each condition and observing its behavior. Each sample distribution was 

characterized by values o f  central tendency, dispersion and skew. Each distribution 

was also summarized in terms o f  a hit rate which indicated the percentage o f  times the 

confidence interval about its sample r ’s contained the known population rho. The 

nominal expected hit rate was 95%.

Results indicated that in the condition without outlier measures o f  central 

tendency were close to rho across all sample sizes and for both conditions o f  rho. Hit 

rate was very close to the expected 95% across all study conditions.

In the condition with outlier, measures o f central tendency were not close to
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rho, and were farther from rho as sample size became smaller. Hit rate was 

considerably smaller than the expected 95%, particularly when rho was .5 rather than 

.8. When rho was .5, the hit rate was 73% at sample size 10, 83% at sample size 30 

and 87% at sample size 50. When rho was .8, the hit rate was 84% at sample size 10, 

90% at sample size 30, and 92% at sample size 50.

The implication o f these results for the practical investigator is that if  an outlier 

appears in small study data, the risk o f making an incorrect decision is substantially 

increased particularly when rho is moderate.
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CHAPTER I

INTRODUCTION

The Pearson product moment correlation coefficient (Pearson r) is the most 

widely used index o f  bivariate correlation (Sheskin, 1997; Chou, 1989; Liebetrau, 

1983). Operating under the assumption that related random variables are normally 

distributed, when a  random sample is drawn from this normal population, the sample 

correlation coefficient Ov) is an estimator o f the population correlation coefficient 

( P x y ) .  When sample sizes are large and sample data consistent, the estimator is a 

robust one (McCallister, 1991; Trochim, 1997). Although large consistent samples are 

available to  investigators in many situations, in some experimental or testing situations 

encountered in disciplines such as education, social analysis, and in the medical 

sciences, investigators may be limited to small samples. W hen sample sizes are small 

and data contains an anomaly, the effectiveness o f the Pearson estimator is less certain. 

This uncertainty suggests the utility o f  an improved understanding o f  the estimator 

under conditions occurring in the small sample as well as the large one. One o f  these 

real world conditions is the occurrence o f  the outlying value in sample data. This 

study assesses the effectiveness o f  the Pearson sample correlation coefficient as an 

estimator o f  moderate or strong population correlation when the estimate is based on 

small sample data which contains an outlying value. The study context is correlational 

validity in measurement.

There are three components that are fundamental contributors to the size o f  a 

sample correlation coefficient, and so to the subsequent effectiveness o f  the resulting 

estimation decision. The first o f  these components is rho (P x y ) ,  the size o f  the

1
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conceptual absolute correlation between two sets o f  measures x and y. The second of 

these components is sample size, the size o f  the sample on which the sample estimate 

T x y  was computed. Because any factor that affects the range o f x or y  affects the size of 

the resulting correlation coefficient, the third o f  these components is any outlying 

value, a data point within the sample that affects the range o f sample points.

While in theory samples should be large and data free o f  anomalies, in practice, 

samples are customarily small to moderate and data are frequently less than perfect. In 

practical application, departures from normality are common (Hill & Dixon, 1982; 

Micceri, 1989) and random samples drawn from real world distributions can have 

deviant unusually small o r large values among a sample o f observations (Wilcox,

1997). Such an outlying value, lying apart from the rest o f  the sample observations is 

termed an outlier, as illustrated in Figure 1 below.

CC

- 2  i

•OuiIi*r-3 .

-4 -3 -2 0 3-1 21

Figure 1. Example o f  Outlier in Sample Data.

Although in applied research, sample data sometimes contains an outlier 

(Barnett & Lewis, 1995; StatSoft, 1998), the source o f  this observation may be
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unknown to the investigator. This uncertainty results because any o f  several 

conditions may result in the appearance o f  an outlier in sample data. Sample data 

containing such an outlier may be a reflection o f  random variation in a  normal 

distribution, reflect a non-normal distribution with heavy tails, reflect a distribution 

with larger variance than the one assumed, or may reflect a skewed or mixture 

distribution (Draper & Smith, 1981; Hamilton, 1992).

The effectiveness o f  estimation under non-ideal conditions has been a long 

standing problem for methodological researchers (Nevitt & Tam, 1997). A  major 

topic in measurement research which has both applied and theoretical interest is the 

attenuation o f  coefficient values by a variety o f  conditions. The restrictions o f  range 

resulting from violations o f the assumptions o f  linearity and homoscedasticity have 

received substantial attention in the measurement literature (Busby &  Thompson, 

1990; Fowler, 1987; McCallister, 1991). The problem o f correcting correlation 

coefficients for various conditions has also received a good deal o f  attention 

(Alexander, Carson, Alliger & Carr, 1987). By altering the range o f a  data set, an 

outlier can cause a reduction or enhancement in the correlation coefficient (Armstrong 

& Frame, 1977; Rousseeuw & Leroy, 1987; Hubert & Rousseeuw, 1996; Rousseeuw 

& Hubert, 1996). The influence o f such a point becomes larger as the sample size gets 

smaller (McCallister, 1991).

It is generally understood that when there is no correlation in the parent 

population and the sample size is large, the sample correlation coefficient is relatively 

insensitive to violations o f underlying assumptions (Kowalski, 1972; Chou, 1989). An 

outlier may not be problematic. On the other hand, when there is some degree o f  

association in the parent population and the sample size is small, the effectiveness o f 

the coefficient as an estimator is less clear. Some writers suggest that the Pearson
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coefficient is robust and powerful even under extreme violations o f  normality 

assumptions (Fowler, 1987). Other researchers suggest that the effectiveness o f  the 

Pearson coefficient is reduced in the presence o f a data anomaly (McCallister, 1991; 

Halperin, 1986).

These conflicting reports are not very meaningful for the practical investigator 

who is interested in detecting moderate or strong correlation in a population with 

imperfectly known characteristics. Specifically, the study o f  measurement validity 

presumes a correlation between two indices rather than no such correlation (Hopkins, 

1998).

Measurement concerns can be exacerbated in small sample problems because 

much statistical theory is based on large sample proof (Mooney, 1997). Secondly, in 

correlation estimation, much statistical theory is based on conceptual population 

symmetry in which the population correlation is equal to zero. I f  the population 

correlation in a practical research situation is not equal to zero, evaluation may not be 

clear. Thirdly, in the situation in which a small sample contains an outlier, the outlier 

may influence commonly used tests for the correlation coefficient, further complicating 

the evaluation decision. The question o f whether an outlier makes a difference to the 

effectiveness o f  estimation when appearing in small sample data drawn from a 

population with moderate or strong correlation remains to be assessed. For this 

evaluation, the sampling distribution o f the sample correlation coefficient is needed.

The only general way through which to make this evaluation is through Monte 

Carlo simulation which assesses and compares estimators empirically under specified 

criteria (Boijas & Sueyoshi, 1994; Kleijnen, 1992; Yu & Dunn, 1982). The principal 

advantage o f simulation is that this method provides information about both the 

population correlation parameter and the sampling distribution o f  the sample
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correlation coefficient under stipulated conditions (Davidson & MacKinnon, 1993).

The problem addressed in this simulation study was the probable effectiveness 

o f the Pearson sample correlation coefficient (r*y) as estimator o f moderate or strong 

population correlation ( p x y )  when sample size is small and when that sample data 

contains an outlier. These three components 1) population correlation, 2) sample size 

and 3) outlier condition, were systematically manipulated through the study. From a 

practical perspective, this study could have meaningful implications for both a) applied 

investigators concerned with assessment o r analysis o f  research data and b) planning o f 

a research design.

The study dealt with the following questions:

1. When pxy is moderate (.5) what is the distribution o f  rxy ?

a. W hat is the effect o f  sample size on the distribution o f %  ?

b. W hat is the effect o f  an outlier on the distribution o f rxy ?

2. When pxy is strong (.8) what is the distribution o f  %  ?

a. W hat is the effect o f  sample size on the distribution o f rxy ?

b. W hat is the effect o f  an outlier on the distribution o f rxy ?

3. When p x y  is moderate how is the efficacy o f  the estimate o f  P x y  affected by: 

(a) sample size and (b) an outlier?

4. When pxy is strong how is the efficacy o f  the estimate o f p.xy affected by:

(a) sample size and (b) an outlier?
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CHAPTER II

LITERATURE REVIEW 

Overview

This chapter first discusses the correlation coefficient in the context o f  the 

estimation framework in which practical investigations are conducted. Second, the 

chapter reviews the influences o f  population correlation and sample size on the 

goodness o f  estimation in the normal case. Third, the chapter surveys empirical 

research conducted on the goodness o f  estimation in the non-normal case. Fourth, the 

chapter examines the related but separate estimation problem o f  an outlier occurring in 

sample data. Finally, the chapter closes with a summary o f remaining needs and the 

question o f  interest.

Investigative Framework

Correlation Coefficient

M uch work in the investigative sciences is devoted to the discovery o f 

important associations or relationships. In addition to anticipating that some 

relationship exists, investigators seek to  quantify that association. Quantification is a 

basic contributory step in the prediction process which is the central purpose o f  

scientific inquiry (Liebetrau, 1983). Bivariate correlational procedures measure the 

degree o f  association between two variables. (Sheskin, 1997; Chou, 1989; Cohen & 

Cohen, 1983; Gibbons, 1993).

Among the oldest and most frequently used measures o f  association is the

6
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Pearson product moment correlation coefficient, the most widely used measure o f  

association (Liebetrau, 1983; Gibbons, 1993; Trochim, 1997). Use o f  this correlation 

coefficient depends on assumptions made about the variables o f  interest and about the 

population from which the sample is drawn. Under Pearson’s correlation, the usual 

assumptions are that the underlying bivariate population is one in which both variables 

are normally distributed and the relationship between variables is linear (Chou, 1989; 

Tabachnik & Fidell, 1989). Under these assumptions, the size and effectiveness o f  the 

sample estimate then depends on the magnitude o f population correlation, the 

adequacy o f  sample size drawn, and the consistency o f  sample data. These three 

components o f  the sample correlation estimate vary in practice.

Measurement research, particularly, is predicated on the investigation o f 

anticipated relationship. The sample correlation coefficient (% ) is a validity 

coefficient between a test score (x) and a criterion score (y), providing a basis for the 

correctness or goodness o f  inference made on that measure. Similarly, the sample 

correlation coefficient between two sets o f  observations provides a coefficient o f  

reliability for those observations (Brown, 1983; Crocker & Aigina, 1986; Hopkins,

1998). Because correlational studies are concerned with the detection o f  an 

anticipated relationship between variables (Liebetrau, 1983), no correlation or very 

low correlation provides no useful information.

Correlation Strength

While the relationship between variables is a necessary one for correlational 

research, the useful magnitude of the relationship varies with the practical situation 

under investigation. The higher the correlation coefficient, the better the predictor, 

but the size o f  the correlation coefficient need not be high in order to provide useful
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information. M oderate correlation may be o f  use. The usefulness o f this magnitude 

varies with the study.

The interpretation o f  this magnitude also varies with the study. There is no 

fixed definition o f  what constitutes a moderate or high degree o f  correlation. Because 

the scale o f  values for the correlation coefficient is ordinal, correlation values are 

relative not absolute. Depending on application and on interpretation, a correlation 

coefficient o f  .5 may be termed low, moderate or substantial. In general, however, a 

moderate correlation is considered to be in the range o f  coefficient values falling about 

.5. Similarly, a  rule o f  thumb for interpreting correlation to be high is a correlation 

coefficient about .8 (Nunnally, 1967; Hinkle, Wiersma, & Jurs, 1988; Hopkins, 1998).

In validity studies, moderate correlation may provide good information. 

Similarly, correlation between various measurement forms is generally found to  be 

moderate in practice. For example, in a study o f  the relationship between o f  test 

scores and other ratings, Bridgeman and Harvey (1998) report correlations o f  .5, .68, 

.57 and .53 across several samples. In a study o f  predictive validity, Simner (1992) 

reports an average correlation o f .49. Powers (1986) reports between test correlations 

ranging from .34 to .60.

By contrast, strong correlation is more typically encountered in cognitive 

measurement (Hopkins, 1998). For example, in a  study o f  a cognitive instrument, 

Drudge (1981) reports uniformly high indices o f  cognitive measures ranging from .78 

to .94. Correlation is also typically strong in reliability studies, and in fact, should be 

as strong as possible (Hopkins, 1998). For example, in a literature search o f  22 

studies with 258 different reliability coefficients, Jiang (1997) found that median 

reported coefficients centered on a correlation o f  .8. O f 21 reported internal 

consistency coefficients, the median was .956; o f  151 reported inter-rater reliability
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coefficients, the median was .806; and in one reported case, test-retest reliability was 

.801.

Sample Size

As with the question o f  what constitutes moderate o r  strong correlation, the 

question o f what constitutes an adequate sample size has no fixed answer. Typically, 

correlational studies are not based on very large samples. It is assumed that i f  a 

relationship exists, it will be evident in a small or moderate sample (Liebetrau, 1983). 

In practice, what constitutes adequate sample size varies with the investigator. 

Correlation coefficients based on sample sizes as small as 10 or 20 are reported 

(Leknes, Lie, Boe, & Selvig, 1997; Smith & Knudtsen, 1990; Breen, Rogers, Lawless, 

Austin, & Johnson 1997). In a search o f  87 ERIC studies containing the key words: 

tests, correlation and validity, approximately one third o f these studies (30) reported 

results based on samples o f  a size smaller than 60. O f these, two predominant size 

groupings were 1) studies o f size 20 to  36 (median size 27) and 2), studies o f size 43 

to 56 (median size 48). In addition, many larger studies reported correlations based on 

small subsets o f  larger samples.

It has been suggested that no definite answer to the question o f adequate 

sample size is available because so many mediating factors exist (Hinckle, Wiersma & 

Jurs, 1988; Chou, 1989; Freedman, Pisani, Purves & Adhikari, 1991)). The sample 

size needed depends on many factors: the level o f  significance or confidence required, 

the power o f  the test, the probability o f rejecting the null hypothesis (confidence and
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accuracy required), the probability of accepting the null hypothesis when it is false, and 

the population variance. Churchill (1991) notes that there is often a balance between 

precision, confidence and sample size in applied investigation, and that applied 

researchers often w ork with somewhat imprecise estimates.

It is commonly accepted that a sample size should be 25 or greater in order to 

have satisfactory approximations. A  size o f  30 is frequently recommended 

(Mendenhall, Wackerly, & Scheaffer, 1986; Chou, 1989). While a sample size o f  30 is 

generally accepted as a  size at which the central limit theorem begins to operate, 

providing a probability basis for estimation, confidence in obtained estimates is 

increased with sample size (Chou, 1989). In studies o f  confidence, McNemar (1962) 

and Hays (1981) indicate that approximation o f  standard error about the sample 

correlation coefficient begins to be accurate only when sample sizes are at 50, and 

recommend this somewhat larger sample size minimum for correlational work.

Outliers

In addition to consideration o f rho and o f  sample size in the correlation 

estimation decision, investigators dealing with real world data may encounter an 

anomaly in an observed sample. Correlational study data may contain an outlier. 

Although there is no available true appraisal o f  degree to which data is consistent in 

practice, the large body o f work devoted to the detection and treatment o f outliers 

indicates the magnitude o f  interest in this source o f  uncertainty (Barnett & Lewis, 

1995). In a set o f  observations, if one or more o f  those observations stands out in
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contrast to the other observations, this outlying observation is termed an outlier. 

Although the term outlier is often not rigorously defined (Motulsky, 1997), outliers 

are generally conceptualized as either observations which do not fit the pattern in the 

rest o f  the data, deviant observations, o r extreme values which can bias the estimates 

o f  x  and y (Barnett & Lewis, 1995). Apart from the rest o f  the data, outliers are seen 

as extreme cases on one variable or a combination o f variables which can have an 

influence on the calculation o f statistics (Wulder, 1996; SAS Institute, 1998). The 

term outlier is used collectively for discordant observations and for contamination 

(Iglewicz & Hoaglin, 1993).

Sources o f Outliers

Outliers may arise in any o f three general ways. (Anscombe 1960; Barnett 

1978; Beckman & Cook 1983; Grubbs, 1969): 1) inherent data variability, 2) 

measurement error and 3) execution error. Data variability may include random 

variation in a normal distribution, distributions with heavy tails, distributions with 

larger variance than assumed, and skewed or mixture distributions. Measurement 

error and execution error are among possible data contaminants.

Some researchers distinguish between outliers caused by variation inherent to 

the population being studied and spurious observations caused by contaminants, 

measurement or execution errors (Anscombe 1960; Gideon & Hollister, 1987). 

Others make no such distinction (Barnett & Lewis, 1995), arguing that in practical 

applications it may not be possible to  identify such causes. Both conceptual
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approaches tend to conclude that in no field o f observation is it possible to entirely rule 

out the possibility that an observation is marred by investigator error.

Apart from outliers caused by outright mistakes in recording or coding, which 

can be eliminated or corrected, outliers resulting from other sources are dealt with in a 

wide variety o f ways. In an analysis o f  35 applied studies, Ulrich and Miller (1994) 

counted 17 different outlier treatment methods or criteria used by various 

investigators, and reported that none o f the studies gave explicit reasons for the 

procedure selected. The distinction between erroneous and valid data, clear in theory, 

may become blurred in practice.

In the real world setting, the form o f underlying distributions may be only 

imperfectly known. Measures o f  population characteristics are frequently normally 

distributed, but the distribution may have thicker or longer tails than expected. In such 

a case, an outlier may be generated from either the right or the left tail o f  the 

underlying distribution. Alternately, the underlying distribution may be somewhat 

skewed. Data may be characterized by a floor effect in which observations are 

grouped at the lower end o f  a  distribution. For example, income data, with a  floor o f  

0, in which most people have an average income and some few have a large income, 

may be right skewed. In such a case, a positive outlier may be generated from the 

right tail. Assessment data, for example test scores, may be left skewed, distributed as 

a  compressed group o f  high scores with a long tail descending through lower scores. 

In such a case, a negative outlier may be generated from the left tail. The negative 

outlier may be particularly problematic because it may indicate the failure o f  a test to
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fully identify performance, o r may reflect unanticipated variance, or may reflect simple 

random variation. For this reason, in a correlational study, the negative outlier is o f  

particular interest.

Although an outlier in data presents an estimation problem, there is no 

uniformly accepted way in which to  accommodate an outlier. While there is a variety 

o f techniques suggested in the literature for the treatment of outliers, there is no 

mathematical o r generally accepted resolution available to the investigator to 

determine cause or source o f  the outlier (SAS Institute, 1998). Additional evaluation 

o f the data may be needed to determine whether the data in question are the result o f  

common cause or special cause variation (DOE, 1997).

The practical problem for the investigator is not a trivial one since the presence 

o f an outlier may cause bias (Motulsky, 1997). On the other hand, eliminating data 

may artificially raise the size o f  the experimental effect (error variance decreases while 

the difference between means remains constant), o r produce a lower reliability o f  

estimators through a smaller sample size, o f particular importance when the sample is 

already small. M ost outlier treatment procedures lead to a shift or bias about the mean 

(Kohnert, 1995).

Estimation in the Underlying Normal Case

Normal Assumption

While the practical investigator does not deal with populations in which there 

is no anticipated correlation, frequently relies on small samples, and may encounter an 

outlying value in small sample data, the theoretical framework around the Pearson r
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which guides estimation decisions is most exact when the population correlation is 0, 

when the sample size is large and when sample values are internally consistent. Under 

the assumption that the sample is drawn from a normal bivariate population, the 

sample correlation coefficient tends to  be distributed approximately normally as: 1) the 

sample size increases, and 2) as values o f the population correlation coefficient 

approach 0.

Sampling Distribution of the Estimator

Like any other statistic, the Pearson correlation coefficient (r) has a sampling 

distribution. I f  a large number o f  paired measurements were sampled and the Pearson 

r computed for each sample, the resulting Pearson coefficients would form a 

distribution o f  r ’s. When the absolute value of the correlation in the population is 0, 

and the sample is large, then the sampling distribution o f  Pearson r ’s is approximately 

normal. The normal distribution then furnishes a practical method o f computing 

approximate probability values associated with arbitrarily distributed random variables 

(Chou, 1989). I f  the population correlation is 0 and sample size is large, then the 

resulting normal distribution o f  Pearson r’s and a known testing statistic (t) is used to  

compute approximate probability that a given sample correlation coefficient provides a 

good estimate o f population correlation.

If  the value o f the population correlation coefficient (p) is not 0, then the 

distribution o f  Pearson r ’s is no longer normally distributed and centered on 0, but 

tends to become skewed and peaked, centered on the value o f  p. With higher positive 

values o f correlation in the population, the distribution o f  Pearson r’s takes on a 

negative skew. With higher negative values of correlation in the population, the 

distribution o f  Pearson r’s takes on a positive skew. I f  the population correlation is
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greater (or smaller) than 0, then inferences about the population correlation (p) are 

made by transforming the asymmetric distribution o f Pearson r ’s into an approximately 

normal distribution. This z transformation then again provides a proven testing 

statistic (Fisher, 1915).

The pattern assumed by the distribution o f  Pearson r ’s is illustrated for 

correlations o f -p, 0 or +p in Figure 2 below. When there is no population correlation, 

the sampling distribution of the estimator, Pearson r ’s, is approximately normal, 

centered on p = 0. But when population correlation is positive (or negative), p > 0 (or 

p < 0), the sampling distribution o f  Pearson r’s tends to move away from center (0), 

skew, and build over +  p or - p (Hinkle, Wiersma & Jurs, 1988).

l  - P +  p  + io

Figure 2. Example Sampling Distribution o f  the Correlation Coefficient 
When p is <  0, 0, and >0.

Approximations improve as sample size becomes larger. As the sample size 

becomes larger, the extremity o f  the tail becomes smaller with fewer observations 

appearing in the tail, while the kurtosis o f  the distribution is increased. B oth sample
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size and p  influence the shape o f  a particular sampling distribution o f  Pearson r’s 

(Belsley, 1996; Chou, 1989; Edwards, 1976).

In  o rder for estimates based on the sampling distribution o f  Pearson r ’s to  be 

valid, the underlying assumption that the sample is drawn from a normal distribution 

must be met. Pearson (1929) showed that the Pearson r  is stable in samples as small 

as 20 o r  30 even if rho is not equal to 0 when samples are drawn from a normal 

distribution.

Estimation in the Non-Normal Case 

Sampling from  Non-Normal Distributions

The robustness o f the Pearson r under anomalous conditions has been a topic 

o f  theoretical and applied interest for many years. Much initial interest revolved about 

the goodness o f  the Pearson r when sampling is from non-normal distributions, when 

the assum ption o f  normality is violated. Hey (1928) reported that considerable non

normality will not affect the distribution o f  correlation coefficients. Gayen (1951) 

noted that these results are valid only when rho =  0. The investigation o f  robustness 

was extended by Cheriyan (1945) to the case where a sample is drawn from a non

normal distribution in which rho is moderate to  large (.5, .75, .89). Cheriyan (1945) 

found close agreement with normal theory expectation for certain values o f  r, but 

found that as rho increased, the agreement with normal theory decreased. Haldane 

(1949) reported that if rho is small then non-normality does not affect the distribution 

o f  Pearson r ’s if  non-normality is restricted to  skewness, but showed by example that 

when rho w as large a small change in kurtosis may affect the variance o f  Pearson r’s. 

Extending the  investigation to consideration o f  sample size as well as rho, Gayen 

(1951) show ed that when rho = 0 the effect o f  non-normality is not serious even for
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samples as small as eleven, but found less agreement when rho is not equal to 0. 

Kowalski (1968, 1972) reported that there is general agreement that the distribution o f 

Pearson r  is quite robust to non-normality when rho =  0, but that there is good 

evidence that this is less so for increasing values o f  rho, especially if the non-normal 

distribution displays a high degree o f  kurtosis.

Sampling From Mixed Distributions

With the advent o f Monte Carlo simulation and the computer, the 

investigation o f the stability o f  the Pearson r under irregular circumstances was 

extended to  the study of mixture distributions. In a  simulation study considering 

samples drawn from populations which were either not normal or were mixtures, 

Devlin, Gnanadesikan and Kettenring (1975) considered the finite properties o f 

Pearson r (and others) in two sample sizes (20 and 60) and three values o f  rho (0, .5 

and .9). Results indicated that mean Pearson r’s w ere very close to rho for both 

sample sizes and for all values o f  rho, although somewhat closer to rho in the larger 

sample size. Mixture contaminants tended to  affect mean Pearson r ’s by a fraction of 

a percentage point, slightly more when rho was .5 as opposed to .9. Wainer and 

Thissen (1979), also investigated the robustness o f estimators in simulation trials by 

using mixture distributions. Sample sizes o f  50 and 100 were considered across rhos 

o f 0, .5 and .9. When 10% and 20 %  contaminants in which rho =  0 were introduced, 

the mean o f  r ’s for rho of .5 and .9 was substantially reduced. The reduction was 

somewhat greater when rho was .5. Results were identical for both sample sizes. The 

mean o f  Pearson r ’s was influence primarily by the extremity o f  the contaminant.

Kowalski (1972) illustrated that the distribution o f  Pearson r ’s in samples from 

mixtures o f  bivariate normal distributions may depart from the corresponding normal
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density even when rho =  0, if  the mixture is extreme enough. Additional studies have 

continued to show that even a small proportion o f extreme contaminants can influence 

computed estimates (Armstrong & Frome, 1977; Hubert & Rousseeuw (1996), 

Rousseeuw & Leroy, 1987; Rousseeuw & Hubert, 1996).

A number o f  studies also appeared on the robustness o f  tests o f the correlation 

coefficient in a bivariate normal distribution under the prospect o f  contamination by 

outlying sample values. Duncan and Layard (1973) showed by the Monte Carlo 

method that the test o f  p  =  0 is not robust under extreme contamination conditions, 

consistent with asymptotic theory. Srivastava and Lee (1984) studied the robustness 

o f  tests and estimators when the parent population is non-normal or when observation 

from a normal population are contaminated by observations from a normal population 

with different variance properties (mixing two bivariate normal distributions with zero 

means but with different variances). The test o f  p = 0 based on Student’s t, Fisher’s z, 

Arcsine, or Ruben’s transformation was shown numerically to  be non-robust when the 

proportion o f contamination is between 5 and 50% and the contaminating population 

has a large variance compared to the bivariate normal population. Srivastava and Lee

(1984) found that tests are very sensitive to even one contaminant if  the variance o f  

the contaminating population is very large, but the degree o f  seriousness in the 

distortion o f tests varies with the extremity o f the contaminant. This again implies that 

commonly used tests o f  p =  0 are very sensitive to the presence o f  extreme values if  

the values are large enough. Robust tests for the correlation coefficient are also 

described in Tiku and Balakrishnan (1986) who report that tests for rho = 0 are robust 

to small departures from normality but not robust to large departures.

Tiku (1987) extended the robust test for rho equal to  0 to  the situation where 

rho is not equal to 0 (rho =  .5 and .7) across various sample sizes (20, 30, 45, and 60),
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and reports that tests o f  rho =£ 0 have the same drawbacks as for testing rho =  0, 

particularly where the mixing population has a  high variance and the percentage o f  mix 

is large. These studies consistently show that very large outlying values in sample data 

drawn from non-normal or mixed distributions can have a negative effect on the 

goodness o f estimation based the violation o f  normality. The effect o f  sample size 

and rho on estimation, although considered in some studies, is less certain, tending to  

be overshadowed by the extremity o f the contaminant mixture.

Estimation in the Observed Data Case

Outlier in Sample

The effects o f  anomalies on the robustness o f  the Pearson r  studied through 

non-normal or mixture models are typically based on the premise that the whole 

sample comes from a different distribution than the normal or from a distribution 

which is composed o f  mingled elements (Srivastava & Lee, 1984). A  separate 

problem o f  practical interest is the case where there is an outlier in an observed sample 

rather than the sample being drawn from a population which is not normal or which is 

mixed with another population. Srivastava and Lee (1985) examined the problem o f  

one outlier appearing in an observed sample by considering N  independent 

observations in which N -l o f  them were from a bivariate normal w ith a  given mean 

and variance and one o f  them was from a  bivariate normal with multiples o f that 

variance. N ’s o f 10, 20 and 40 were considered. Rho was zero. Srivastava and Lee

(1985) found that if  N  was greater than 20, then the Pearson r was robust in the 

presence o f  a variance multiplier o f 3, but w as seriously affected by an outlier with a 

variance multiple o f  9, even when N  = 40. Results showed that when observations 

have an outlier, the distribution of Pearson r’s has larger tails than that which would be
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expected under normal theory. Both sample size and the extremity o f  the outlier w ere 

found to  combine in effect on the robustness o f  the Pearson r. The effect o f  rho was 

not considered.

Conception o f Outlier

The distinction made by Srivastava and Lee (1985) between robustness o f  the 

Pearson r when sampling from non-normal distributions and robustness when an 

outlier observed in sample data is a meaningful one. In contrast to much theoretical 

w ork which has tended to be based on large outliers from non-normal distributions o r 

from mixed distributions, the outlying value in an observed sample needs neither to be 

from a non-normal distribution nor to be very large in order to be defined as an outlier. 

The investigative problem extends to the question o f  how to characterize the outlier. 

An outlier may not be very large and still be apart from other sample data. The 

underlying distribution may be unknown.

Although concepts o f  outlier measurement vary, Hanneman (1998) suggests 

that outliers are usually at core defined in terms o f  deviation from an expected value, 

plus or minus three standard errors or three standard deviations. Three such 

deviations are highly improbable (Chaloner & Brant, 1988; Nevitt &  Tam, 1997).

The Univariate Condition

Characterization o f the outlier is straightforward in the univariate case, but is 

more complex in the bivariate case which is essential to correlation. In  the univariate 

case, the univariate boxplot o r box and whiskers plot developed by Tukey (1977) is a
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21
well known graphical tool for the isolation o f possible outliers. In a  data display, the 

boxplot describes data points included in the interquartile range. It consists o f  a box 

drawn from the lower quartile o f  data points to their upper quartile with a  crossbar at 

the median. The box length is the interquartile range. The fence reaches from the 

lower quartile minus 1.5 times the interquartile range (IQR) to the upper quartile plus 

1.5 times the interquartile range (IQR). Points lying outside o f  the fence are 

considered outliers. Under this 1.5(IQR) rule, values between 1.5 and 3 box lengths 

from the upper or lower edge o f  the box are flagged as outliers. Figure 3 below shows 

the Tukey boxplot which here identifies an outlier at three standard deviations from 

the mean when the mean is zero.
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Figure 3. Boxplot Identifying Outlier at 3 Standard Deviations From Mean.
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The Bivariate Condition

Identification is exacerbated in the bivariate case. There has been less 

development in estimation methods for bivariate distributions and correlation than for 

univariate methods (Johnson, Kotz, &  Balakrishnan, 1997; Kocherlakota & 

Kocherlakota, 1997). The univariate boxplot is based on ranks since the box is 

described by the value with rank n/4 to that with rank 3n/4. In the bivariate case, there 

is no unique ranking o f  values. The degree o f data extremeness is not intuitive.

Because there is no unique ranking system in bivariate data, a bivariate outlier 

does not need to be extreme on both measures. It is possible for a measure to be 

extreme on the x measurement but not on the y measurement. While in bivariate data 

there is no unique form o f  total ordering, however, several different types o f  ordering 

principles have been defined and employed. (Bamett & Lewis, 1995). When 

extremeness is relative to  the normal correlation model, bivariate outliers will be 

governed by the population correlation. Because of this governing relationship, 

bivariate sample measures will tend to associate in the same direction and to be related 

in size. As an outlier is extreme on the x measurement, it will also tend to be 

correspondingly extreme on the y measurement. This relationship is illustrated in 

Figure 4 below. Although the outlier is apart from the mass o f the data, this point still 

tends to conform to the operating relationship or shape, and to be circumscribed by 

this relationship.
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Figure 4. Example o f  an Outlier Relative to Mass o f  D ata Points.

Several bivariate plots have been proposed for the description o f outliers 

(Rousseeuw & Ruts, 1997). A  bivariate boxplot has been suggested by Becketti and 

Gould (1987), and modified by Lenth (1988). This suggested extension o f  the 

univariate boxplot is based on the median and the quartiles for the two variables. 

These numbers are used to draw horizontal and vertical lines on the scatterplot, 

forming a cross and rectangle, which replaces the familiar Tukey box. Goldberg and 

Iglewicz (1992) suggest a  bivariate generalization o f  th e  boxplot in which the box is an 

ellipse, based on data which is assumed to be elliptically symmetric.

A  more general approach which does not rely on  elliptical models has been 

suggested by Rousseeuw and Ruts (1997) who propose a generalization o f  Tukey’s 

univariate box and whiskers plot in which the box is a  bag. The Tukey median is the
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deepest data location surrounded by a bag which contains the n/2 observations closest 

to  the median. These observations are described as having the greatest depth. 

Magnifying the bag by a  factor o f  3 yields the fence. Observations outside the fence 

are considered outliers. U nder this conceptualization, an outlier is a  data point that is 

away from the mass o f  the data.

In a somewhat different approach, Hyndman (1996) suggested a plot based on 

data density. The central data mass is described by a contour that encompasses 50% 

o f  the mass. Typically, the 50% region and the 99% region are superimposed on the 

scatterplot of the data. In  this approach, an outlier is a point lying in an empty area.

For the boxplot, ellipse and bagplot, the outlier is a  point lying far away from 

the bulk o f the data. Based on the Tukey median, the boxplot and bagplot 

(Rousseeuw & Ruts, 1997; Rousseeuw, Ruts, & Tukey, 1999) are stable, which 

makes them particularly useful for describing outliers based on a concept o f  distance 

from the data mass. All o f  these approaches, including that o f Hyndman (1996) data 

density, are based on a graphical core which describes 50% o f the data and a fence 

beyond which data points are considered to  be improbable, and are described as 

outliers.

The box- or bag-plot fence, which provides a boundary beyond which data 

points are considered to  be outliers, is a probability based rule in a variety o f 

distributions. Assuming that a data set is approximately normally distributed, about 1 

data point in 100 would be classified as an outlier using the 1.5(IQR) rule. Assuming
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a standard normal distribution with a mean 0 and standard deviation 1, this outlying 

point fall outside a z  value o f  +/- 2.68.

Similar reasoning can be employed using the Rousseau & Ruts (1997) bagplot, 

or Hyndman 99% rule. At core, an outlier is a  value at an improbable distance from 

the center o f  the mass, and can be measured in terms o f  z scores, or population 

standard deviation in an infinitely large population. By all rules, in an infinite normally 

distributed population with mean 0 and standard deviation 1, a  data value falling 

beyond 3 population standard deviations is highly improbably. I f  a  sample is drawn 

from this distribution, a sample data point with a value beyond 3 population standard 

deviations is also highly improbable. The probability that a value exceeds 3z is very 

small and such a value can be regarded as an outlier.

Limitations in Empirical Research

While in practical data evaluation a value at three standard deviations from 

data center is typically identified as an outlier, empirical research conducted on outlier 

effects tends to be more extreme in its definitions. The characterization is an important 

one since it has been shown that contaminants will damage the robustness o f the 

Pearson r, irrespective o f sample and population conditions, if  the mixture is extreme 

enough (Kowalski, 1972). M ore materially, while population correlation, sample size 

and data consistency combine together in practical importance for the investigator, 

empirical research which considers the combined effect o f all three variables is limited.
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It has been well demonstrated that the Pearson r  is robust if  rho is 0 and 

sample size is large (Havlicek & Peterson, 1977; Edgell & Noon, 1984). It has also 

been shown that the Pearson r  is robust even if  rho is not 0 and sample size is 

relatively small if  the underlying population distribution is normal, that is, i f  there is no 

violation o f the normality assumption (Pearson, 1929).

The focus o f  robustness research with respect to the effect o f  an anomaly has 

been on the effects o f  non-normality either on the distribution o f  the sample correlation 

coefficients (Kowalski, 1972; Fowler, 1987) or on formal inference concerning the 

population correlation coefficient (Duncan & Layard, 1973; Devlin, Gnanadesikan, & 

Kettenring 1975). There is general agreement that the Pearson r  sample correlation 

coefficient is relatively insensitive to violations o f  normality assumptions when the 

population correlation is equal to 0 (Gayen, 1951; Kowalski, 1972).

The robustness o f  the Pearson’s r when the population correlation is not equal 

to 0 is less extensive. (Kraemer, 1980). Evidence tends to show that the Pearson r is 

less robust to non-normality for increasing values o f rho (Kowalski, L972). The 

robustness o f the correlation coefficient in a mixture model has been variously 

examined by Devlin, Gnanadesikan and Kettenring (1975), W ainer and Thissen 

(1979), Muirhead (1980), Srivastava and Awan (1980), Gnanadesikan and Kettenring 

(1981) and Srivastava and Lee (1984) with major emphasis on multivariate methods 

which are recalculated until some convergence criterion is reached. These studies 

provide evidence that mixture contaminants tend to affect mean Pearson r’s  more for 

moderate than for strong values o f rho.
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The specific problem o f  an outlier appearing in an observed sample rather than 

an entire sample being drawn from a non-normal distribution has been little 

considered. Srivastava and Lee (1985) investigating this problem when rho =  0 found 

the Pearson r  robust to a small outlier but not robust to a large one. The effect o f  rho 

^  0 is an unanswered question.

A  number of published M onte Carlo simulation studies concerning outlier 

methods (Bush, Hess & Wolford, 1993; Miller, 1988, 1991; Ulrich & Miller, 1994; 

Van Selst & Joliceour, 1994) have been conducted, but most focus on specific cases 

and special methods. Results are presented either in the framework o f  statistical theory 

or by examining estimator performance on limited exemplary data sets (Nevitt & Tam, 

1997). Additional comparative studies assess estimators o f  correlation but do not 

consider anomalies in sample data (Y u & Dunn, 1982). The optimality and robustness 

o f  various estimators and designs used in these studies often hold only asymptotically. 

Less is known about the behavior o r robust estimators and tests for finite samples 

(Muller, 1997).

In addition, the small sample distribution o f  Pearson’s r  is, in general, little 

investigated (Belsley, 1996). When sample size is small, the sampling distribution o f  

coefficients tends to be biased downwards, be skewed, and have varying degrees o f  

kurtosis making estimation less certain. Belsley (1996) found that in a small sample 

relative to the 5% expected in each tail when using a 10% two tailed test for 

correlation, more typically, 5.5% might appear in the lower tail and 4.5% in the upper. 

The combination o f sample size, rho and outlier is essentially little understood.
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Remaining Needs and Rationale
28

While there has been a large amount o f  interest and published w ork on the 

subject o f  the treatment of outliers in a  wide range o f  data contexts, there has been 

little published w ork on outliers in finite samples (Barnett & Lewis, 1995; Barnett, 

1992, 1993). I f  outliers arise in infinite populations whose properties are known, then 

the probability o f  the occurrence o f  a given value can be assessed through the use o f  

probabilistic procedures. If outliers occur in sampling from an unknown population 

then how to reflect a value which is atypical in the sample but is merely a  facet o f  the 

finite population is a  fundamental dilemma with undefined principles (Barnett, 1992).

Computer methods and simulations are important to this study (Muller, 1997). 

In particular, small and intermediate sample properties o f  robust procedures almost 

always have to  be determined by empirical sampling. In addition, ordinary variance is 

not an adequate measure o f performance o f  a robust estimator because it too is 

sensitive to  extreme tail behavior. In order to  assess robustness o f  an estimator for 

finite sample sizes, it is necessary to use M onte Carlo techniques to obtain accurate 

categories (Huber, 1964; Andrews et al., 1972). The effect of an outlier in the context 

o f  anticipated correlation and small sample size is a largely unexplored question.

Study Focus

In the situation in which an investigator is working with large sample data 

drawn from a population with known characteristics, there is a  large body o f 

theoretical w ork to  support the correlation estimation decision. I f  data is homogenous, 

then the estimation decision is also made in accordance with known behavior based on
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compliance with underlying assumptions.

In the situation in which an extreme data point occurs in data, if  this point is 

deviant enough to be considered a  contaminant from another distribution, o r is 

considered to be an error, then inclusion or exclusion o f  that data point becomes the 

practical problem for the investigator. In such a case, the estimation decision may be 

o f  less practical importance than the treatment decision.

If, on the other hand, a point is deviant in relationship to the sample data, but is 

not readily identifiable as a contaminant from outside the model under consideration, 

then direction from existing estimation studies is limited. If, in addition, the sample is 

a small one from a population in which a moderate or large relationship between two 

variables is anticipated, the estimation decision is still less clear. This was the situation 

o f  interest in this study.

Available research indicated that there are three characteristics which influence 

the Pearson estimate o f rho. The first of these is the strength o f rho itself. When 

values o f  rho considered in non-normality studies were moderate, typically defined at 

.5, and strong, generally defined to fall in a range from .7 (Tiku, 1987) to .9 (Devlin, 

Gnanadesikan, & Kettenring, 1975), Pearson estimates were dissimilar. The second 

influencing characteristic is sample size, variously investigated in samples as small as 

10 (Belsley, 1996) and as large as 100 (Thissen, 1979). Study results tend to  indicate 

that there was little influence on estimation due to sample size in samples over 50, but 

that the influence of sample size on estimation was less clear in small sample sizes. 

The third characteristic which affected estimation was the presence o f  an outlier, 

which was shown to influence the Pearson estimator when rho was 0, particularly in 

the small sample (Srivastava & Lee, 1985).
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CHAPTER HI

DESIGN AND METHOD 

Overview

This study used a  simulation methodology to empirically investigate the 

problem o f  an outlier appearing in an observed sample by assessing the behavior o f  the 

sampling distribution o f Pearson r’s under three sets o f  conditions. These conditions 

incorporated the three characteristics o f  interest: rho, sample size and outlier.

As discussed, particular assumptions were proscribed on the variables o f 

interest. Population correlation was assumed to be moderate or strong, moderate 

defined as .5, strong defined as .8. Sample size was assumed to be small, defined as 

10, 30 or 50. An outlier, defined to fall at about 3 SD below the mean, occurred in 

study data. Under these circumstances the study considered the following questions:

1. When pxy = .5 what is the distribution o f  ?

a. What is the effect o f  sample size on the distribution characteristics o f

r x y ?

b. What is the effect o f  an outlier on the distribution characteristics o f  r^?

2. When p.̂ , = .8 what is the distribution o f  r ^  ?

a. What is the effect o f  sample size on the distribution characteristics o f 

%  ?

b. What is the effect o f  an outlier on the distribution characteristics o f  % ?

3. When p ^  = .5 how is the efficacy o f  the estimate o f p ^  affected by:

(a) sample size and (b) an outlier?

30
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4. W hen pxy =  .8 how is the efficacy o f  the estimate o f  pxy affected by: 

(a) sample size and (b) an outlier?

As a  result o f  the posed questions, several types o f  data were needed. These 

data included 1) sets o f  correlated data pairs from distributions w ith known 

characteristics, 2) Pearson r’s calculated on each set o f  pairs, and 3) distributions o f  

these calculated Pearson r ’s.

Because these data are not readily available in the real world, data used in this 

study were com puter generated, data which were the product o f  a simulation model. 

A  simulation model is a computer program representing a  process or system, written 

for the purpose o f  experimenting (Chisman, 1992; Watkins, 1993; Widman, Loparo & 

Nielsen, 1989; Law  & Kelton, 1991; Fishman, 1996; Mooney, 1997). Simulation 

provided an empirical alternative when there was little o r no real world data available. 

Simulation also provided a way to  systematically design and control for each o f  the 

characteristics o f  interest, then to  replicate those conditions over multiple trials. 

(Please see Appendix A  for a description o f the computer procedure.)

Data Pairs

Overview

First was needed a correlated data pair from a known distribution with a fixed 

rho. Computer syntax was written for the generation o f  such data pairs based on a 

bivariate normal distribution: x, N=0,1; y, N=0,1. The number o f data pairs generated 

depended on the condition o f sample size. The kind o f  data pair generated depended

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



on the condition o f  outlier influence. (Please see Appendix B for an illustration o f  the 

computer syntax used in the generation of data pairs.)

Influence o f  Size on Pairs

The condition o f  sample size was specified to  be 10, 30 or 50. The 10 case 

condition represented the very small sample size, based on minimal sizes sometimes 

encountered in practice. The primary purpose for inclusion o f  this very small size was 

to provide a range o f  observable effects due to sample size (May & Hittner, 1997). 

The 30 case condition was consistent with both a small sample typically found in 

practice and with the minimal requirements o f the central limit theorem. The 50 case 

condition was consistent with both a small sample typically found in practice and with 

the suggestion o f  McNemar (1962) and Hays (1981) who indicate that approximation 

o f  standard error about the sample correlation coefficient begins to be accurate only 

when sample sizes are at 50.

A  number o f  pair sets was generated for each condition o f sample size: 10, i.e. 

10 (x,y) pairs w ere generated in the set, 30 or 50,. Pearson’s r was calculated on each 

sample o f  pair sets. The Pearson r’s were saved.

Influence o f  Outlier on Pairs

The outlier condition was one o f two conditions. The first condition was the 

simple random condition in which no outlier was specified. The second condition was 

a deterministic condition in which one outlier was specified to occur.

In the no outlier condition a Pearson’s r was directly calculated on each pair 

set. In the outlier condition, one random pair was first removed from each pair set. 

The pair was replaced with a randomly generated outlier pair. For that outlier pair, x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



was randomly generated to be an outlier that had a  mean o f  -3  and a standard 

deviation o f  .1 across all x’s that were generated, and y  was generated with respect to 

the rho in the condition. (Please see Appendix C for an illustration o f the computer 

syntax used to generate the outlier pair.) The outlier was defined to occur on the 

negative end o f  the distribution in conformance with the leftward test skew 

encountered in a  measurement situation. The size and deviation of the outlier was 

designed to fall outside a z  value o f  +/- 2.7 in agreement with the discussed 

classification o f  outlier using the 1.5IQR A Pearson’s r  was then calculated on each 

sample pair set in the outlier condition. The Pearson r’s were saved.

Formation o f Pearson r Distributions

Pair Set Size 10. 30. 50

Pair sets were re-generated 1,000 times in each unique condition. Although 

there are no general guidelines for the number o f  trials needed in order for 

experimental results to be valid, since simulation results are unbiased for any number 

o f  trials (Hope, 1968; Mooney, 1997), the power o f  any assessment increases as the 

number o f  cases or trials increases. Many trials are commonly used in estimator 

simulation studies because a large number of trials increases power and because large 

computer capacity is increasingly available. 1,000 trials were run, consistent with 

current usage (Mooney, 1997).

Distributions of Pearson r ’s were formed. Each distribution had 1,000 cases 

but varied by the size o f the pair sets in each condition o f  sample size: 10, 30 or 50.
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Pair Set for Tw o Outlier Conditions

Pair sets were re-generated 1,000 times. Three distributions of Pearson r’s 

were formed in the no outlier condition. Each distribution had 1,000 cases where pair 

sets varied by the condition o f sample size, 10, 30 o r 50. Three additional 

distributions o f  Pearson r’s were formed in the no outlier condition. Each distribution 

had 1,000 cases where pair sets varied by the condition o f  sample size, 10, 30 or 50, 

and each pair set had one determined outlier.

Pair Set o f  r =  .5 or r = .8

M oderate correlation was defined to  be .5 and strong correlation was defined 

to be .8. Each o f  the three distributions o f  Pearson r ’s, no outlier (10, 30, 50) and 

three distributions o f  Pearson r’s, deterministic outlier (10, 30, 50) was generated for 

each o f two levels o f  rho (.5 and .8). Resulting was a to tal o f  12 distributions o f 

Pearson r ’s.

Characterization o f  Pearson r Distributions

The distributions o f Pearson r ’s represented each o f  12 conditions (3X2X2). 

Considered were three (3) levels o f  sample size, two (2) levels o f  outlier, and two (2) 

levels o f  rho.

Descriptors o f Effect

Certain descriptive aspects o f  the Pearson r distributions were relevant to study 

questions 1 and 2. For each distribution, calculated was the mean, median, range, 

interquartile range, and skewness. (Skewness was computed on the mean as n/(n-l)(n-
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2)sum(x- x  )^3/sA3).

Study Questions 1. and 2. with Corresponding Analytical Techniques

1. When pxy =  .5 what is the distribution o f rxy ?

a. W hat is the effect o f sample size on the distribution o f r^?

(1) Display measures o f  central tendency (mean, median) and skewness 

across sample size for each o f  10, 30, 50 in each outlier condition.

(2) Display measures o f dispersion (range, interquartile range) across 

sample size for each o f 10, 30, 50 in each outlier condition.

b. W hat is the effect o f  an outlier on the distribution o f %  ?

(1) Display measures o f  central tendency (mean, median) and skewness 

in the no outlier condition with measures o f  central tendency (mean, 

median) and skewness in the outlier condition across sample size for 

each o f  10, 30, 50.

(2) Display measures o f dispersion (range, interquartile range) in the no 

outlier condition with measures o f  dispersion (range, interquartile 

range) in the outlier condition across sample size for each o f  10, 30, 50.

2. When =  .8 what is the distribution o f  r^  ?

a. W hat is the effect o f sample size on the distribution of %  ?

(1) Display measures o f central tendency (mean, median) and skewness 

across sample size for each o f  10, 30, 50 in each outlier condition.

( ! )  Display measures o f  dispersion (range, interquartile range) across 

sample size for each o f 10, 30, 50 in each outlier condition.

b. W hat is the effect o f an outlier on the distribution o f %  ?

(1) Display measures o f central tendency (mean, median) and skewness
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in the no outlier condition with measures o f central tendency (mean, 

median) and skewness in the outlier condition across sample size for 

each o f 10, 30, 50.

(2) Display measures o f dispersion (range, interquartile range) in the no 

outlier condition with measures o f  dispersion (range, interquartile 

range) in the outlier condition across sample size for each o f 10, 30, 50.

Efficacy o f  Estimate

Overview

The primary purpose o f  this study was an assessment o f  the efficacy o f  the 

Pearson estimate o f  rho under described conditions, the problem o f an outlier 

occurring in an observed sample. This assessment was made in terms o f  the 

probability o f  making an incorrect decision. The probability o f making an incorrect 

decision, in turn, was the error rate, computed as the difference between the sample 

correlation estimate, Pearson r, and the rho being estimated (Chou, 1989; Mooney 

1997).

Confidence Intervals are Built on Individual r's

Error rate estimation was done by testing whether or not the known rho value 

was excluded from the confidence interval for each Pearson r, when a  nominal a  was 

set for the confidence interval. In this procedure, a  was set at .05. Upper and lower 

limits o f  the confidence intervals for each Pearson r in the distribution o f 1,000 

generated within a  specific condition were calculated using Fisher’s (1915) 

transformation of the Pearson r  distribution. This method of transformation was such 

as to give the distribution o f  z a close approximation to a normal curve with a standard
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deviation depending only on the size o f  the sample and not on rho; as the size o f  the

sample increases, deviation becomes nearly independent o f  rho, accurate for even very

small sample sizes provided that rho is not too near unity (Pearson, 1929; David,
\

1938; Kraemer, 1973). (Please see Appendix D for detailed description o f  the z 

transformation and confidence interval calculation.)

Hit Rate

I f  rho was captured in the confidence interval about a Pearson r, the capture 

constituted a hit. If  rho was not captured in the confidence interval about r, a miss 

occurred. The number o f hits and misses occurring for each distribution o f  1,000 

Pearson r’s was recorded. The number o f recorded hits in each distribution was 

divided by 1,000 to produce a percentage hit rate for that distribution developed under 

given rho, sample size and outlier condition. This hit rate constituted the efficacy o f  

the estimator under a given condition. I f  there were no effects o f  size o r outlier, the 

hit rate under the specified nominal a  would have been 95%. The hit rate w as used to 

operationally define efficacy o f the estimator in questions 3 and 4.

Study Questions 3. and 4. with Corresponding Analytical Techniques

3. When p*y = .5 how is the efficacy of the estimate o f  pxy affected by:

a. sample size. Display hit rate across sample size for each o f  10, 30, 50 

in each outlier condition.

b. an outlier. Display hit rate in the no outlier condition with hit rate in 

the outlier condition across sample size 10, 30, 50.

4. When Pxy = .8 how is the efficacy of the estimate o f p^  affected by:
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a. sample size. Display hit rate across sample size for each o f  10, 30, 50 

in each outlier condition.

b. an outlier. Display hit rate in the no outlier condition with hit rate in 

the  outlier condition across sample size 10, 30, 50.

Summary

Using simulation, sets o f  data pairs were computer generated from a known 

distribution with a  fixed rho (.5 or .8). The number o f  data pairs in a set was 10, 30 or 

50. The kind o f  data pair in a set was either with o r without outlier. Pearson’s r  was 

calculated on each pair set. Pair sets w ere regenerated 1,000 times; Pearson r’s were 

calculated. Distributions o f 1,000 ris each were formed. Each o f the twelve 

distribution o f Pearson r’s represented one o f  twelve specified conditions.

Descriptors o f  central tendency, dispersion and skewness were computed on 

each distribution. Descriptors were displayed and synthesis o f  results shown.

Confidence intervals were computed on Pearson r’s in each distribution o f

1.000 Pearson r’s, using a nominal a  o f  .05. The number o f times the known rho was 

captured or was not captured by the confidence interval was counted. In each 

distribution, the number o f times the known rho was not captured when divided by

1.000 represented the effectiveness o f  the estimator under conditions o f  that 

distribution. Effectiveness was displayed, and synthesis o f  results shown.
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CHAPTER IV

RESULTS

Overview

Descriptors and rates were calculated on each o f  twelve simulated distributions 

o f  Pearson r’s. Each distribution was composed on 1,000 Pearson r’s. Each 

distribution represented one o f  12 conditions (3X2X2). These conditions were three

(3) levels o f sample size, two (2) levels o f outlier, and two (2) levels o f  rho.

The following chapter presents results o f  the simulation. Results are presented 

in terms of the measures which define the characteristics o f  each distribution. These 

measures are central tendency, dispersion and skewness. Measures o f Pearson’s %  

are presented.in tabular form. Tables show central tendency (mean, median), skewness 

(on mean) and dispersion (range and interquartile range). Additional tables show the 

effectiveness o f  the Pearson estimator, measured by the hit rate, under conditions o f  

each distribution.

Each distribution o f  Pearson r’s was characterized by particular values o f 

central tendency, dispersion and skewness. As an introduction to  the tables which 

display particular values for each o f the distributions, the following histogram shows 

one such distribution o f  r ’s as an example in order to illustrate the location o f each o f  

the measures o f interest appearing on the histogram. (All twelve histograms are 

displayed organized by sample size in Appendix E, and are also presented organized by 

outlier condition in Appendix F.) The following example histogram shows the 

simulated distribution o f  Pearson r’s in which rho is .5 and sample size is 10.

39
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Exarrple Hstogram Sarrpling Dstribuh'on off's

frequency

180
medan=.528

120

0.0 0.1 0.3 0.4 0.5 0.6 0.8 0.9 1.0

range=1.415 -.491__________________________________  .924

iq range=.358 .315 _________ .673

Figure 5. Simulated Sampling Distribution o f  Pearson r ’s: Sample Size is 10, rho is .5.

In this illustration the range of values which characterize this distribution o f  

Pearson r ’s is 1.415. r ’s fell from a low o f -.491 to  a high o f  .924. While no value o f  

Pearson r  can be greater than 1, some values were negative. 50% o f  all r ’s, the 

interquartile range, were between .358 and .673, quite closely centered on the rho o f  

.5. The median value was .528. The mean was .473, a value lower than the median, 

indicating a  negative skew, in this example calculated to  be -.898.
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The following tables display the characterizing values o f the distributions o f  r ’s 

across sample size for each rho and outlier condition. First are shown values for 

distributions without outlier. Then are shown values for distributions w ith outlier.

Displays o f  Characterizing Measures:
Central Tendency, Skewness and Dispersion

Measures When rho is .5. W ithout Outlier

Table 1 displays the mean, median and skewness o f Pearson r ’s across sample 

size for each o f  10, 30, and 50 when rho is .5. I t can be seen that the mean and 

median o f  Pearson r’s closely approximate rho across all sample sizes. As sample size 

gets bigger, there is an almost trivial convergence on rho. The degree o f  skewness in

Table 1

Mean, Median and Skewness o f  Pearson r’s Across Sample Size for Each o f  10, 30,
50, Without Outlier, When rho is .5

Sample Size P Mean Median Skewness

10 .5 .473 .528 -.898

30 .5 .487 .492 -.428

50 .5 .496 .509 -.408

the distribution o f r’s decreases dramatically between the sample size o f  10 and the 

sample size o f  30, but there is little additional change in skewness at sample size 50.

Table 2 displays the range and interquartile range o f Pearson r ’s across sample 

size for each o f  10, 30, and 50 when rho is .5. As shown, the dispersion o f  the
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distribution o f  Pearson r ’s dramatically shifts downward as sample size gets bigger. 

Both range and interquartile range are essentially halved between sample size 10 and 

sample size 50.

Table 2

Range and Interquartile Range o f  Pearson r’s Across Sample Size for Each o f  10, 30,
50, W ithout Outlier, When rho is .5

Sample Size P Range Interquartile Range

10 .5 1.415 .358

30 .5 .909 .200

50 .5 .721 .142

Measures When rho is .8. Without Outlier

Table 3 displays the mean, median and skewness o f  Pearson r’s across sample 

size for each o f  10, 30, and 50 when rho is .8. It can be seen, as with rho o f  .5, that 

the mean and median o f  Pearson r’s closely approximate rho across all sample sizes. 

As sample size gets bigger, there is only slight convergence on rho. The degree o f  

skewness decreases as sample size gets bigger. A dramatic contraction in skewness 

occurs between the sample size o f  10 and the sample size o f  30. While lesser, there is 

still substantial contraction in the skewness of the distribution o f  r ’s between sample 

size 30 and 50.
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Table 3

Mean, Median and Skewness o f  Pearson r’s Across Sample Size for Each o f 10, 30,
50, Without Outlier, When rho is .8

Sample Size p Mean Median Skewness

10 .8 .780 .821 -1.771

30 .8 .791 .803 - .948

50 .8 .797 .804 - .623

Table 4 displays the range and interquartile range o f  Pearson r ’s across sample 

size for each o f 10, 30, and 50 when rho is .8. As shown, the dispersion o f the 

distribution o f  Pearson r ’s dramatically shifts downward as sample size gets bigger, 

with a particularly large jum p between sample size 10 and sample size 30.

Table 4

Range and Interquartile Range o f  Pearson r’s Across Sample Size for Each o f  10, 30,
50, Without Outlier, When rho is .8

Sample Size p Range Interquartile Range

10 .8 1.085 .172

30 .8 .555 .098

50 .8 .358 .072
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Measures When rho is .5. With Outlier

Table 5 displays the mean, median and skewness o f  Pearson r’s across sample 

size for each o f 10, 30, and 50 when rho is .5 in the outlier condition. The mean and 

median o f  Pearson r’s become closer to rho as sample size gets bigger. However, the 

disparity between rho and the mean or median o f  Pearson r’s is substantial for the 

sample size o f  10 and still not trivial for the sample sizes o f  30 and 50. The degree o f 

skewness becomes smaller as sample size moves from 10 to 30, then stabilizes.

Table 5

Mean, Median and Skewness o f  Pearson r’s Across Sample Size for Each o f  10, 30,
50, With Outlier, When rho is .5

Sample Size P Mean Median Skewness

10 .5 .784 .800 -.818

30 .5 .638 .641 -.367

50 .5 .595 .602 -.400

Table 6 displays the range and interquartile range o f  Pearson r ’s across sample 

size for each o f 10, 30, and 50 when rho is .5 in the outlier condition. As seen, the 

dispersion o f the distribution o f Pearson r ’s is only slightly decreased as sample size 

gets bigger.
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Table 6

Range and Interquartile Range o f  Pearson r’s Across Sample Size fo r Each o f 10, 30,
50, With Outlier, When rho is .5

Sample Size p Range Interquartile Range

10 .5 .601 .142

30 .5 .572 .129

50 .5 .556 .110

Measures When rho is .8. With Outlier

Table 7 displays the mean, median and skewness o f Pearson r ’s across sample 

size for each o f  10, 30, and 50 when rho is .8 in the outlier condition. It can be seen 

that the mean and median o f  Pearson r ’s approximate rho across all sample sizes but

Table 7

Mean, Median and Skewness o f  Pearson r ’s Across Sample Size for Each o f  10, 30,
50, W ith Outlier, When rho is .8

Sample Size P Mean Median Skewness

10 .8 .905 .913 -1.083

30 .8 .847 .852 - .702

50 .8 .832 .835 - .546

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46
the approximation improves somewhat as sample size gets bigger. The degree o f  

skewness decreases markedly as sample size gets bigger.

Table 8 displays the range and interquartile range o f  Pearson r ’s across sample 

size for each o f  10, 30, and 50 when rho is .8 in the outlier condition. As shown, the 

dispersion o f  the distribution o f  Pearson r ’s is narrow across all sample sizes, with little 

difference between sample size 10 and 30 and some reduction at size 50.

Table 8

Range and Interquartile Range o f  Pearson r ’s Across Sample Size for Each o f  10, 30,
50, With Outlier, When rho is .8

Sample Size P Range Interquartile Range

10 .8 .322 .064

30 .8 .300 .061

50 .8 .253 .052

Displays Showing Efficacy o f  Estimate:
Hit Rates Across Sample Sizes

The following set o f  tables presents the values which represent the 

effectiveness o f the Pearson estimate under conditions o f  each distribution. These 

values, the hit rates, are displayed across sample size for each rho and outlier 

condition. First are shown hit rate values for distributions without outlier. Then are 

shown hit rate values for distributions with outlier.
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H it Rates When rho is .5 and .8. Without Outlier

As is shown in Table 9, the hit rate o f  the distribution o f  r ’s without outlier closely 

approximates the expected 95% rate across all sample sizes and across both conditions 

o f  rho. This is the case even in the smallest sample size.

Table 9

Hit Rates o f Pearson r ’s Across Sample Sizes When rho is .5 and .8, W ithout Outlier

Sample Size Expected % Hit Rate r ’s rho = .5 Hit Rate r ’s rho =  .8

10 95.0% 94.1% 94.6%

30 95.0% 94.7% 94.3%

50 95.0% 94.4% 94.6%

Hit Rates When rho is .5 or .8. With Outlier

As is shown in Table 10, the hit rate o f  the distribution o f  r ’s with outlier 

approximates the expected 95% rate poorly although proximity improves as sample 

size increases. Approximation is substantially poorer when rho is .5 than when rho is 

.8 . The divergence is particularly noticeable in the sample size o f  10 for both 

conditions o f  rho, and still marked in the sample size o f 30 when rho is .5.
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Table 10

Hit Rates of Pearson r’s Across Sample Sizes When rho is .5 and .8, With Outlier

Sample Size Expected % Hit Rate r’s rho =  .5 Hit Rate r’s rho =  .8

10 95.0% 72.9% 83.9%

30 95.0% 82.9% 90.0%

50 95.0% 87.1% . 91.8%

Displays Organized by Outlier Condition

The purpose o f the following tables is to provide a ready basis for comparison 

between outlier conditions across sample size for each rho. Displayed are 

characteristic values o f the distributions both without and with outlier, followed by hit 

rates o f  those distributions both without and with outlier.

Measures o f  Central Tendency. Skewness and Dispersion Under Both Outlier 
Conditions When rho is .5

Table 11 displays measures o f  central tendency and skewness across sample 

sizes when rho is .5 both without and with outlier. Measures o f central tendency 

closely approximate rho across all sample sizes in the without outlier condition, but 

not in the with outlier condition, particularly when sample size is 10. The degree of 

skewness drops dramatically when sample size is higher than 10 in both the without 

outlier condition and in the with outlier condition.
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Table 11

Mean, Median and Skewness o f  Pearson r’s Across Sample Size for Each o f  10, 30,
50, Without Outlier and With Outlier, When rho is .5

Sample Size P Mean r’s Median r ’s Skewness r ’s

w/o Outlier-w Outlier w/o Outlier-w Outlier w/o Outlier-w Outlier

10 .5 .473 .784 .528 .800 -.898 -.818

30 .5 .487 .638 .492 .641 -.428 -.367

50 .5 .496 .595 .509 .602 -.408 -.400

As shown in Table 12, the dispersion o f the distribution o f r’s w ithout outlier 

decreases substantially with increased sample size. In the distributions with outlier,

Table 12

Range and Interquartile Range o f  Pearson r ’s Across Sample Size for Each o f  10, 30, 
50, Without Outlier and With Outlier, When rho is .5

Sample Size P Range r’s Interquartile Range r ’s

w/o Outlier-w Outlier w/o Outlier-w Outlier

10 .5 1.415 .601 .358 .142

30 .5 .909 .572 .200 .129

50 .5 .721 .556 .142 .110
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dispersion is overall smaller than in the distributions without outlier, but is little altered 

with increased sample size.

Measures o f  Centred Tendency. Skewness and Dispersion Under Both Outlier 
Conditions When rho is .8

As can be seen in Table 13, when rho is .8, measures o f central tendency 

closely approximate rho across sample sizes in the without outlier condition, but not 

closely in the with outlier condition when sample size is 10. In the with outlier 

condition, both mean and median become closer to rho as sample size increases. 

Skewness is smaller in the with outlier condition than in the without outlier condition. 

Skewness decreases as sample size increases in both outlier conditions.

Table 13

Mean, Median and Skewness o f  Pearson r’s Across Sample Size for Each o f  10, 30, 
50, Without Outlier and With Outlier, When rho is .8

Sample Size P Mean r ’s Median r ’s Skewness r ’s

w/o Outlier-w Outlier w/o Outlier-w Outlier w/o Outlier-w Outlier

10 .8 .780 .905 .821 .913 -1.771 -1.083

30 .8 .791 .847 .803 .852 -.9 4 8  - .7 0 2

50 .8 .797 .832 .804 .835 -.623  -.5 4 6

Table 14 shows range and interquartile across sample sizes when rho is .8 both 

without and with outlier. Dispersion becomes substantially smaller w ith increased
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sample size in the without outlier condition, but is little affected by increased sample 

size in the with outlier condition. Range is noticeably smaller in the outlier condition.

Table 14

Range and Interquartile Range o f  Pearson r’s Across Sample Size for Each o f  10, 30,
50, Without Outlier and With Outlier, When rho is .8

Sample Size p Range r ’s Interquartile Range r’s

w/o Outlier-w Outlier w/o Outlier-w Outlier

10 .8 1.085 .322 .172 .064

30 .8 .555 .300 .098 .061

50 .8 .358 .253 .072 .052

Hit Rates Under Both Outlier Conditions When rho is .5 o r .8

Table 15 displays the hit rate o f r’s across study conditions. As can be seen, 

distributions o f  r ’s in the no outlier condition closely approximated rho and 

effectiveness, as measured by hit rate, paralleled expected values. In the outlier 

condition, however, the hit rate o f  r’s decreased. The outlier reduced effectiveness of 

the Pearson r  as sample size decreased. The reduction was more substantial when rho 

was .5 than when rho was .8, tangible when sample size was 10 and even as large as 

30.
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Table 15

Comparison o f the Hit Rates o f  Pearson r’s Across Sample Sizes, Conditions o f  rho
and Outlier Condition

rho = .5 rho =  .8

Sample Size w/o Outlier with Outlier w/o Outlier with Outlier

Expected % Hit Rate r ’s Hit Rate r’s Hit Rate r ’ s Hit Rate r ’s

10 95.0% 94.1% 72.9% 94.6% 83.9%

30 95.0% 94.7% 82.9% 94.3% 90.0%

50 95.0% 94.4% 87.1% 94.6% 91.8%

Synthesis o f  Findings Across Conditions o f  Study

W ithout Outlier

In the without outlier condition, there was little risk associated with the 

Pearson estimator across sample sizes and conditions o f  rho. The hit rate was 

consistently high. As sample size increased, mean r ’s and median r’s, which were 

already very close to rho in the smallest sample size, became even closer to rho and 

closer to one another. With increase in sample size skewness o f  the distributions 

decreased. With increase in sample size, range and interquartile range become much 

smaller.
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With Outlier

In the with outlier condition, risk associated with the Pearson estimator 

increased considerably as sample size and rho became smaller. Hit rate was lowered. 

M ean and median r’s were not close to rho in the smallest sample size, particularly 

when rho was .5. With increase in sample size, mean r’s and median r ’s became 

somewhat closer to  rho, but were still not close approximations o f rho. With increase 

in sample size, skewness o f the distributions became smaller but range and interquartile 

range decreased little with increase in sample size.

Contrast

Overall, in the without outlier condition, there was little risk associated with 

the Pearson estimator across study conditions and there were some benefits from 

increased sample size, little in terms o f central tendency but striking in terms o f 

reduced dispersion. By contrast, with the outlier, the degree o f  risk associated with 

the Pearson estimator was substantially increased, particularly for moderate rho. 

Increased sample size provided some reduction in risk but only moderate benefit in 

terms o f  central tendency and very little benefit in terms o f  dispersion.
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CHAPTER V

DISCUSSION 

Introduction to Discussion

The purpose o f  this study was to address the probable effectiveness o f  the 

Pearson sample correlation coefficient ( r xy) as estimator o f moderate o r strong 

population correlation (pxy) when sample size was small and when that sample data 

contained an outlier. This purpose was addressed by observing central tendency, 

dispersion and skewness o f simulated distributions o f  Pearson r’s under moderate (.5) 

and strong (.8) conditions o f rho, in three sample sizes (10, 30, 50), both without and 

with outlier. In addition, the hit rate, or percentage o f  times in which the Pearson 

estimator captured the known rho, was used to  measure effectiveness o f the Pearson 

estimator under conditions o f that distribution.

Overview o f  Findings

Without Outlier

In the without outlier condition, sample size had little effect on central 

tendency. M ean and median o f Pearson r ’s approximated rho across sample size. Hit 

rate was consistently high. Both range and skewness o f  the distribution o f  r ’s 

decreased with increasing sample size. All measures indicated that the Pearson r was 

robust across all sample sizes and conditions o f  rho.

54
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With Outlier

Addition o f  the outlier affected values o f  both central tendency and dispersion, 

but had little additional effect on skewness o f  the distributions. With the outlier, mean 

and median values or r ’s were shifted farther from rho. Range o f  the distributions 

became smaller, irrespective o f  sample size or rho. Increased sample size had little 

effect on dispersion o f the with outlier distributions.

O f most practical interest, in the outlier condition, the degree o f risk associated 

with the estimator, as measured by the hit rate, was reduced across all sample sizes 

and conditions o f  rho. This reduction in hit rate o f  the Pearson estimator w as most 

pronounced when rho was moderate and sample size was smallest.

When rho was moderate and sample size was 10, the hit rate o f the estimator 

was 73% as contrasted to the 94% achieved in the same sample size without outlier. 

When sample size was 30 hit rate was increased to 83%, still well below the expected 

rate o f  95% found in the same sample size without outlier. When sample size was 50, 

hit rate was at 87% as contrasted with the expected 95%.

When rho was strong, degradation in effectiveness o f the Pearson estimator 

was less marked than when rho was moderate, but w as still substantial. When rho was 

strong, the hit rate o f  the Pearson estimator in the very small sample size was 84% 

rather than the expected 95%. Increasing sample size to 30 improved the hit rate o f 

the estimator to 90%, but still short o f the expected 95%. Little further gain was 

accomplished by raising sample size to 50.

The primary implication o f  this finding is that if  an outlier occurs in small 

sample data the risk o f making an incorrect decision based on the Pearson sample 

coefficient is greatly increased. I f  rho is moderate rather than strong, the degree of 

risk is further increased. While increasing sample size does tend to reduce the degree
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o f  risk somewhat, the remaining degree o f  risk is still well higher than that which 

would be expected in the no outlier situation, even when sample size is as large as 50.

Implications for Practice

W ithout Outlier

The results o f  this study have particular implications fo r investigators. First, 

when there is no outlier, findings indicated that the Pearson r  is robust even in the 

small sample. The indication o f  this finding, consistent with studies dating back to 

Pearson (1929) and summarized by Kowalski (1972), is that sample size is o f 

inconsequential practical importance to the estimation problem. The practical 

implication is that use o f the Pearson estimator is essentially secure even in very small 

samples.

With Outlier

Results indicated that the presence o f  an outlier tended to  increase the value o f 

the Pearson estimate in the small sample and to materially affect uncertainty related to 

the estimation decision. The implication o f  these results is tw ofold. 1) The practical 

investigator should carefully attend the interpretation o f  results i f  an outlier occurs in 

small sample data. 2) The practical investigator should be aware that since the 

likelihood o f  estimation accuracy is diminished, the likelihood o f  making a correct 

decision is likewise diminished if  an outlier is observed in small sample data. Affected 

are both data assessment and study design.

Results indicate that at the time o f  data assessment the likelihood o f increased 

risk o f  an incorrect decision is a given. I f  an outlier appears in small study data, the 

value o f  the Pearson coefficient will tend to be high. The degree o f  risk attending the
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estimation decision will tend to  be high. I f  small study data contains an outlier, and 

the cause o f that outlier cannot be determined, depending on the gravity o f the 

decision involved, the best course o f  action may be to discard the data and begin again. 

Study results show that increasing the amount o f  data collected once the outlier has 

appeared is o f little benefit. Sample size will not totally overcome the outlier problem.

At the time o f  study design, control o f  risk may still be possible. In study 

design, if  the investigator is confronted with a  new situation where a population is 

unknown, the sample variance from a pilot study is typically used in determining 

desired sample size for further assessment. Confidence about the correlation 

coefficient is based on the sampling distribution o f  the correlation coefficient with its 

associated confidence or probability o f  making an error at a given sample size.

In the presence o f  an outlier, measures o f  central tendency are shifted, 

variance is affected and the sampling distribution is altered. The probability o f  making 

a correct decision based on the Pearson r, particularly about a moderate rho, may fall 

from an expected 95% to as little as 73%. This result will be o f  particular importance 

in measurement studies where moderate correlation is typically encountered. Once it 

is understood that if  an outlier should occur in small study data, either sample size 

needs to be well increased o r a  greater risk than expected will be assumed, it may still 

be possible to increase study size which in turn will reduce risk.

When the underlying probability is considered, the appropriate course o f  action 

selected will depend on a number o f  factors since applied investigation tends to be 

problem specific (Clemen, 1996). The relevant outcomes o f conducting the research, 

the payoff* o f  the research, may need to be balanced against the expense o f  increased 

sample size. Expected value o f  the decision, o r expected opportunity loss o f the 

decision may be weighed against the cost o f  making the decision. Availability o f  study
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subjects may be a limiting or uncontrollable constraint. Time may be a  factor. 

W hether o r not the assumption o f  a higher degree o f  risk about the Pearson r  is 

acceptable in a particular situation remains in the hands o f  the investigator. 

Understanding that the probability o f  making an incorrect decision is increased and 

that this uncertainty might be controlled, if  not totally eliminated, is an advantage in 

weighing potential courses of action.

Conclusions

This study was conducted in the expectation that it could contribute to  1) the 

assessment or analysis o f  research data and to  2) planning o f  research design. The 

study has provided a fuller explanation o f the effect an outlier in small sample data 

under conditions which might be encountered in a measurement situation. Secondly, 

the study has demonstrated that the effect o f  an outlier is better explained by a 

combination o f sample size and rho than by either characteristic alone. Thirdly, the 

study has provided a fuller assessment o f  the degree o f risk associated w ith the 

presence o f  an outlier which is extreme relative to the body o f sample data but not 

readily excludable from that data.

Study findings supports several theoretical underpinnings. First, findings 

support the premise that the Pearson r  is robust even in the small sample (Pearson, 

1929; Kowalski, 1972). There was no indication that sample size alone diminished the 

effectiveness o f  the estimator to any noticeable degree. Second, findings support the 

premise that the outlier affects the mean and the range o f  the sample distribution o f  the 

estimator (Armstrong & Frome, 1977; Barnett & Lewis, 1995). The presence o f  the 

outlier increased the mean of Pearson r’s and decreased the range. Third, findings 

support the premise that the effect is greatest when sample size is small (Srivastava &
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Lee, 1985; McCallister, 1991).

Results o f  this study also have additional implications for the theoretical. 

Historical approaches to outlier study have been based on the violation o f normal 

assumptions through the use o f  non-normal and mixture models. The findings o f this 

study support the suggestion o f  Srivastava & Lee (1985) who submit that the case in 

which the whole sample comes from a distribution which is not normal is not identical 

to the case in which an outlier occurs in an observed sample. This study supports the 

usefulness o f  studying this separate problem in a different way. Although several 

mixture studies find that the correlation coefficient to be depressed in the presence o f 

an outlier (Devlin, Gnanadesikan, & Kettenring, 1975; Wainer & Thissen, 1979), the 

results o f  this study indicated that the estimated correlation coefficient was greater 

than that expected in the presence o f  an outlier. The difference in conception and 

definition o f  the outlier may be a substantive one.

A second related implication is that the consideration o f  rho, in addition to the 

consideration o f  sample size, is useful to the study o f the case in which an outlier 

occurs in an observed sample. Findings indicated that rho made a material difference in 

outcome. The outlier was found to have the greatest overall effect on the Pearson r 

under the combination o f moderate rho and small sample size.

In addition, an implication for another stream o f  study exists. Historically, 

study and discussion o f outlier treatment, including removal or abridgement o f the 

outlier, has been considerable (Kohnert, 1995; Barnett & Lewis, 1995). By contrast, 

work on risk assessment associated with estimation as it affects decision making has 

been less substantial. The results o f  this research indicate that in addition to 

developing a clearer understanding o f  the shapes of underlying distributions under 

outlier conditions and an understanding o f  the possible treatment o f  an outlier, it is
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also useful expand understanding o f the ways in which changes in distributions might 

affect investigative practice such as the amount o f  risk investigators are likely to 

assume under the prospect o f  an outlier.

Implications for Further Research

As an addendum to the preceding discussion several observations about the 

limitations to the generalizability o f these findings should be noted. The simulation 

used in this study was limited to consideration o f  specific sample size, rho and outlier 

conditions. Although these conditions were chosen to limit the scope o f  the study in 

accordance with particular measurement conditions, this restriction necessarily limits 

generalizability o f  findings to  conditions which were not considered. While selected 

restrictions limit generalizability o f findings, they at once suggest several directions for 

future research. Because the Pearson coefficient was found to be most sensitive to 

the presence o f an outlier when sample size was smallest (10) and rho lowest (.5 rather 

than .8), the opportunity exists to consider the effect o f  other sample size and rho 

combinations on the effectiveness o f the Pearson r. Similarly, the opportunity exists to 

consider the effect o f  an outliers arising from different locations, the affect o f  larger 

outliers, or combinations o f  outliers on the Pearson r.

In addition, because this study found a  loss o f  effectiveness in the Pearson r 

under specified outlier conditions, further study might be extended to a comparison o f  

the efficiency o f  the Pearson r  to the efficiency o f  non-parametric estimators under the 

conditions of this study. It is possible that a non-parametric estimator such as the 

Spearman, which is based on ranks, might provide a better estimate since the outlier 

will become an extreme rank rather than extreme value.

In  closing, it is recommended that practical investigation be concerned with the
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possible risk attending the occurrence o f an outlier in small study data. It is also 

recommended that further study continues to address the quantification o f  decision 

risk associated with estimation under practical investigative conditions.
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First, for each o f six conditions (3 sizes X 2 p), a  script was written as a syntax 

file in SPSS 8.0 to generate base data. Each segment o f  script specified a number o f  

cases (10, 30 or 50). In each case, two variables, x’ and y’, were created as random 

numbers from a normal distribution (standard normal: x, N=0,1; y, N=0,1). The data 

list o f independent variables x’ and y’ was saved in a  data matrix, X. To create the 

correlated data list, new correlated variables were created from the independent 

variables. The data matrix X  was post multiplied by the desired correlation matrix, the 

Cholesky decomposition o f  R, where R  was computed as [1, .5; .5, 1} or [ 1, .8; .8, 1]. 

The matrix conversion generated paired variables created as if  they were sampled from 

a distribution with the specified correlation o f .5 or .8 . The new correlated variables 

were saved as x and y. This process was replicated 1,000 times, for each o f six 

scripts, one for each set o f  six conditions yielding 6,000 correlated samples, 1,000 

samples for each o f 6 size and rho combinations.(Please see Appendix B for a detailed 

description o f script). Following the generation of the six sets o f  samples, Pearson’s r 

was calculated on each sample. 6 X  1,000 values o f Pearson’s r were saved.

In a second program, for each o f  two conditions (2 ps), a script was written in 

SPSS to generate outliers. As in the first set o f  scripts, two variables, x’ and y’, were 

created as random numbers from a normal distribution but with a mean o f -3 (x, N=-3, 

.1 y, N=3,.l). The random numbers were then post multiplied by the correlation 

matrix used in the original program, either [1, .5; .5, 1} or [1, .8; .8, 1], The resulting 

variables x and y were saved. The matrix conversion generated correlated numbers as 

if  they were drawn from a distribution with the same correlation (.5 o r .8) as the 

original sample sets, but with a mean o f -3  rather than a mean o f  0. In this manner, 

correlated variables were shifted to occur in a circumscribed area pivoting on a value 

o f -3  standard deviations away from the mean of the base data sample sets. These
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pairs o f  variables represent the outliers. Two scripts w ere run yielding tw o groups o f  

outliers. (Please see Appendix C for a  detailed description o f script).

As a sub-procedure, one o f  the data pairs in each o f the six sample sets was 

replaced at random by one o f  the outliers from the corresponding correlation. The 

process was replicated 6,000 times yielding 6,000 correlated samples, 1,000 samples 

for each o f  6 size and rho combinations, in which each sample contained an outlier. 

Following the generation o f  the six sets of outlier samples, Pearson’s r  was calculated 

on each sample. 6 X  1,000 values o f  Pearson’s r  were saved.

A  third process calculated the upper and lower limits o f  the confidence 

intervals for each sample statistic using the z transformation. For each condition, the 

proportion o f  times that the population correlation (.5 or .8) was captured in the 

interval provided the hit rate. These proportions were saved. Please see Appendix D 

for description o f  the z transformation.)
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Generating D ata as if  Drawn From a Population With a Given Correlation, Base Sets
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*ln SPSS, two variables are created as (pseudo) random numbers. Using 
these (pseudo) random numbers, correlated numbers are created using the 
property that for a set of random variables, a given correlation matrix can be 
imposed by post-multiplying the data matrix by the upper triangular Cholesky 
decomposition of the correlation matrix. The matrix conversion generates 
variables created as if they were sampled from a population with a given 
correlation. *

‘ Script generates one bivariate data set of desired sample size, desired 
population distribution (here standard normal, mean 0, SD 1), and desired 
population correlation.
‘ Example for. Sample Size 30, Population Correlation .5*

new file, 
input program.
* Draw 30 cases (modify for number of cases desired) 
SET SEED 2469768.
loop #i = 1 to 30.
* Draw data for two variables 
do repeat response=r1 to r2.
* Specify desired distribution characteristics 
COMPUTE response = rv.normal(0,1).
end repeat, 
end case, 
end loop, 
end file.
end input program.
* Save variable list as file 
Save outfile = "DataOut.sav"

Matrix.
Get X/var = r1 to r2.
‘ Replace the variable list r1 to r2 with nr1 to nr2
* to produce correlation matrix.
‘ Define desired pattern of correlations.
Compute R = (1, .5;
-5, 1}.
Compute NewX = X*chol(R).
* Save NewX as the working file.
Save NewX /outfile = ‘/variables = nr1 to nr2.
End matrix.
‘Save correlated variable list as file
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Save outfile = "datal.sav"

‘Script generates one bivariate data set as desired, and adds correlated 
variable list to previous file 
new file, 
input program.
* Draw 30 cases (modify for number of cases desired)
SET SEED 2469769.
loop #i = 1to 30.
* Draw data for two variables 
do repeat response=r3 to r4.
* Specify desired distribution characteristics 
COMPUTE response = rv.normal(0,1).
end repeat, 
end case, 
end loop, 
end file.
end input program.
* Save variable list as file 
Save outfile = "DataOut.sav"

Matrix.
Get X/var = r3 to r4.
‘ Replace the variable list r1 to r2 with nr1 to nr2
* to produce correlation matrix.
‘ Define desired pattern of correlations.
Compute R = {1, .5;
.5, 1}.
Compute NewX = X*chol(R).
* Save NewX as the working file.
Save NewX /outfile = ‘/variables = nr3 to nr4.
End matrix.

* Add correlated variable list to file 
Match files file=data1 .sav /file=‘ .
Save outfile = "datal.sav".

* Repeat for as many variable sets (trials) as desired.
*1,000 trials (sets) were independently generated for each combination of 
sample size and population correlation.*

(modified from Howell, 1998; Nichols, 1996; SPSS, 1997 and 1998)
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Generating Data as if  Drawn From a Population With a Given Correlation, Outliers
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••Script generates one set of 1,000 bivariate outliers, of desired population 
distribution (here standard normal, mean -3, SD .1), and desired population 
correlation.
•Example for: Population Correlation .5*

new file, 
input program.
* Draw 1,000 cases (modify for number of trials desired)
SET SEED 2469768.
loop #i = 1to 1000.
* Draw data for two variables 
do repeat response=r1 to r2.
* Specify desired distribution characteristics 
COMPUTE response = rv.normal(-3,.1). 
end repeat.
end case, 
end loop, 
end file.
end input program.
* Save variable list as file 
Save outfile = "DataOutsav"

Matrix.
Get X/var = r1 to r2.
•Replace the variable list r1 to r2 with nr1 to nr2
* to produce correlation matrix.
•Define desired pattern of correlations.
Compute R = (1, .5;
-5, 1}.
Compute NewX = X*chol(R).
* Save NewX as the working file.
Save NewX /outfile = ‘ /variables = nr1 to nr2.
End matrix.

•Using this script, 1,000 bivariate outliers were generated for the population 
correlation = .5. Using a second script of the same form, 1,000 bivariate 
outliers were generated for the population correlation = .8.

(modified from Howell, 1998; Nichols, 1996; SPSS, 1997 and 1998)
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CONFIDENCE INTERVAL ABOUT SAMPLE CORRELATION COEFFICIENT

A  9 5 %  confidence interval about each sample correlation coefficient (r) is 

developed using the Fisher’s Z which transforms the asymmetric distribution o f  rs into 

an approximately normal distribution as follows.

a. Each r (and r0) is converted to a  Fisher’s Z  using the formula:

Zr =  l / 2 I n ^ ± ^
1— r

Z r  is approximately normally distributed with an estimated standard error o f:

 1
S E  =  )«  — 3

where n= sample size

b. U pper and lower bounds in the Zr scale are calculated using:

U pper bound = Zr + 1 . 9 6 ( S E )  and Lower bound =  Zr - 1 . 9 6 ( S E )

c. Z r  is returned to  the original scale using:

e 2Z - 1  
r ~  e l z  +1
where e  is the base o f  the natural log.

(see Fisher, 1915; Chou, 1969; Mendenhall, W ackerly & Scheaffer, 1990)
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Sampling Distributions o f  r ’s Organized by Sample Size
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E l: Distributions o f  r’s across 3 samples sizes when rho is .5

sample size 10, rho .5
frequency.
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E2: Distributions o f r ’s across 3 samples sizes when rho is .8
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E 3: Distributions o f r’s across 3 samples sizes when rho is .5, with outlier

sample size 10, rho .5, with outlier
frequency
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E4: Distributions o f r’s across 3 samples sizes when rho is .8, with outlier

sample size 10, rho .8, with outlier
frequency

800-

mean .905 
median .913 
range .322 
iq range .064 
skew -.1.083

-1 .0 -0 .7-0 .4-0 .1  0.2 0.5 0.8 
sample size 30, rho .8, with outlier

frequenc
800-

400- mean .847 
median .852 
range .300 
iq range .061 
skew -.702

-1 .0 -0 .7-0 .4-0 .1  0.2 0.5 0.8 
sample size 50, rho .8, with outlier

frequency 
8 0 0 '

400 mean .832 
median .835 
range .253 
iq range .052 
skew -.546

* » 1 1 i 1 i i i i i ^  i i » i i "  r "

-1 .0-0 .7-0 .4-0 .1  0.2 0.5 0.8
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FI. Distributions o f  r’s without and with outlier when rho is .5

sample size 10, rho
freq 

800

with outlier

400 mean .473 ' 
median .526 
range 1.415 
iq range .358 
skew -.898

"mean .784 
med.800 
mg .601 
iq mg .142 
skew-.818

-1.0-0.5 0.0 0.5 1.0
sample size 30, rho .5

freq 
800 ‘

-1.0-0.5 0.0 0.5 1.0
with outlier

400 mean .487 • 
median .492 
range .909 
iq range .200 
skew -.428

mean .638 
median .641 
range .572 
iq range .129 
skew -.367

-1.0-0.5 0.0 0.5 1.0
sample size 50, rho .5

freq 
800 '

-1.0-0.5 0.0 0.5 1.0
with outlier

400 mean .496 
median .509 
range .721 
iq range .142 
skew -.408

mean .595 
median .602 
range .556 
iq range .110 
skew -.400

-1.0-0.5 0.0 0.5 1.0 -1.0-0.5 0.0 0.5 1.0
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F2. Distributions o f r’s without and with outlier when rho is .8

sample size 10, rho .8
freq 

800

with outlier

400 mean .780 
median .821 
range 1.085 
iq range .172 
skew-1.771

'mean .905 
median .913 
range .322 
iq range .064 
skew-.1.083

-1 .0-0.4 0.2 0.8 
sample size 30, rho .8

-1.0-0.4 0.2 0.8
with outlier

mean .791 ' 
median .803 
range .555 
iq range .098 
skew -.948

'mean .847 
median .852 
range .300 
iq range .061 
skew -.702

-1.0 -0.4 0.2 0.8 
sample size 50, rho .8

-1 .0-0 .4  0.2 0.8
with outlier

mean .797 " 
median .804 
range .358 
iq range .072 
skew -.622

"mean .832 
median .835 
range .253 
iq range .052 
skew -.546

-1 .0-0.4 0.2 0.8 -1 .0-0 .4  0.2 0.8
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