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BIVARIATE NEGATIVE BINOMIAL HURDLE MODEL WITH RANDOM

SPATIAL EFFECTS

Count data with excess zeros widely occur in ecology, epidemiology, market-

ing, and many other disciplines. Mixture distributions consisting of a point mass at

zero and a separate discrete distribution are often employed in regression models to

account for excessive zero observations in the data. While Poisson models are very

popular for count data, Negative Binomial models provide greater flexibility due to

their ability to account for overdispersion.

This research focuses on developing a method for analyzing bivariate count

data with excess zeros collected over a lattice. A bivariate Zero-Inflated Negative

Binomial Hurdle (ZINBH) regression model with spatial random effects is developed.

The proposed model characterizes spatial and cross-spatial dependencies. Inferences

on model parameters and predictions are done using samples from a Markov Chain

Monte Carlo algorithm. We applied our proposed model on Michigan county level

crime incidence data. In addition, a method for variable selection through Bayesian

penalized regression is developed using a LASSO-type method and elastic net.
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Chapter 1

Introduction

Count data, responses comprising the value of zero or positive integers, arise in many

situations where the quantity of objects or number of incidences of some phenomena

is measured. Certain discrete probability distributions, such as Poisson, Binomial,

and Negative Binomial, have support comprising these values and are often used to

model this type of data. Sometimes the log of the response (or the response plus

an offset, to deal with ‘0’ observations) is modeled by regression as a linear function

of the covariates. Another approach is to model the log of the expectation of the

response, i.e. the distribution mean, as a linear function of the covariates. These

‘log-linear’ models are similar to many others which have modeled discrete or cate-

gorical data, see Agresti [2007].

The discrete distributions that can model these datasets incorporate a non-zero prob-

ability for a count of ‘0.’ However, when there are too many zero observations, a
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standard discrete distribution cannot account for the variation and overdispersion

adequately. These datasets are referred to as ‘zero-inflated’ count data; for examples

in medical and epidemiological studies, see Lachenbruch [2002], J. Tooze and Jones

[2002], Wang and Carrivick [2003], Buu et al. [2011], Ghosh et al. [2012], H. Liu

and Chan [2012], Moulton and Halsey [1995], and the references therein. In these

cases, the data are modeled as a mixture of two distributions, a probability point

mass equal to π at zero and a conventional discrete distribution with weight equal

to 1− π. In this way the probability of observing a zero count response is increased

by adding a point mass π at response value zero. When zero observations occur

from a single source, a ‘hurdle’ model is employed, wherein all zeros are accounted

for by the point mass probability at zero and the discrete distribution is truncated

to account for only the non-zero observations (see M. Ridout and Hinde [1998], Hu

et al. [2011], Neelon et al. [2012], Neelon et al. [2014], and the references therein).

Two-part regression models of zero-inflated count data involve modeling one or more

of the parameters of each distribution as linear functions of covariates measured for

each observation ( M. Ridout and Hinde [1998]). One parameterization of zero in-

flated count data is the Zero Inflated Poisson (ZIP) model, in which the point mass

at zero is modeled through a logistic, probit, or log-log compliment regression, and

the log-transformed mean of the Poisson portion is modeled by Poisson regression

( Ghosh et al. [2006]). In the case where the estimates of the variance of the Poisson

modeled datasets significantly exceed the estimates of the mean, this ‘over disper-

sion’ is a problem, since the single parameter Poisson model has the assumption of
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equal magnitudes for mean and variance.

Another, more common way of addressing this problem is to treat the mean of

the Poisson model as a product two components, one of which is regressed, the other

a random variable from a Gamma distribution. In other words, the mean itself has

a ‘prior’ distribution. In this way another parameter is introduced into the model

which can allow for a wider range of variances than the Poisson model by itself. This

Poisson-Gamma model leads to the ‘posterior’ distribution of the response being

Negative Binomial ( M. Zhou and Carin [2012]). The zero-inflated version of this

is well known as the Zero-Inflated Negative Binomial (ZINB) distribution ( Greene

[1994]).

Spatial count data occurs when count data are obtained over designated spatially

defined regions, and when dependence on location is incorporated in the model. Lo-

cation can be measured continuously, such as latitude and longitude, or with some

other referencing system (see Schmidt and Rodriguez [2010] and Cressie [1993]).

Alternatively, location data may be aggregated, such as with counties, states, zip

codes, or with other boundary divided spatial regions, often referred to as compris-

ing a ‘lattice.’ For discrete location data, one way to model this spatial dependence

is through (intrinsic) conditional autoregressive (ICAR) random effects ( J. Besag

and Mollie [1991]). In this method, effects within one lattice site are conditionally

regressed on the value of the same effects in one or more other, usually neighboring

lattice sites. Because the variable is regressed on itself, measured at different lattice
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sites, it is said to be ‘autoregressive’.

When a bivariate response is measured, for example under multiple condition in-

cidences, the dependence grows more complicated, including cross-spatial and cross-

variable (non-spatial) dependencies, involving both the point mass and the non-zero

discrete distribution of each response. This requires characterization of a more com-

plex variance-covariance structure and more flexible ways to estimate these param-

eters.

This research develops a bivariate Zero-inflated Negative Binomial Hurdle (ZINBH)

model for analyzing spatial count data on a lattice. By modeling excess zeros through

two-part regression and accounting for possible cross-variable and cross-spatial de-

pendencies through multivariate ICAR random effects, bivariate data with many ze-

ros are more accurately modeled than by separate univariate, traditional regression

analysis on each response. We employ a Bayesian approach to avail ourselves of in-

creased accuracy for small sample sizes and/or large numbers of zeros. We introduce

a multi-level prior structure into the variance-covariance matrix of the multivariate

normally distributed ICAR effect, thereby reducing the subjectivity. In addition,

we formulate a variable selection method for spatial count data by incorporating

penalized regression, via elastic net ( Zhou and Hastie [2005]), into a univariate form

of our ZINBH model. The rest of this paper will describe and develop the research

described above in four chapters. We review, in chapter 2, the current literature

surrounding zero-inflated models, ZINBH spatial models, and elastic net variable
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selection method, and explain how this research differs. Chapter 3 presents the pro-

posed model, starting with the parameterization of a bivariate ZINBH model with

ICAR effects, as well as the weakly informative prior for the variance-covariance ma-

trices associated with the ICAR effects. Model performance comparisons are first

assessed using simulated data, through regression estimates and posterior predic-

tive plots. Next, the models are used to analyze bivariate, Michigan county level,

crime data. Chapter 3 closes with a discussion on the challenges associated with im-

plementing these models in WinBUGS. We develop a variable selection method for

univariate ZINBH regression in chapter 4 through penalized regression. A penalty

function, with the regression estimates among the arguments, is introduced into the

likelihood through the prior distribution on the regression parameters, and then sim-

ulated data are used to examine the performance. This paper closes with chapter

5, where conclusions are drawn from the research and recommendations are made

about further research.
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Chapter 2

Literature Review

Zero-inflated spatial count data models have been employed for some years. VerHoef

and Jansen [2007] used a space-time ZIP model for describing seal discovery and cap-

ture patterns in Alaska. D. K. Agarwal and Citron-Pousty [2002] used ZIP regression

to model the number of nests of isopods across a region of the Negev desert in Israel.

Nadiroh [2009] compared Negative Binomial Regression (NBR), also known as the

Poisson-Gamma model, with random area specific effects, to model simulated count

data with excess zeros. Estimated MSE’s showed that the NBR outperformed ZINB

when there was a modest probabilities of zero, while ZINB outperformed NBR when

the probability of zero exceeds 0.6. However, their data did not account for spatial

correlation. Ismail and Zamani [2013] proposed model selection methods for Pois-

son, generalized Poisson, and Negative binomial regression models, for both ‘regular’

and zero-inflated models. These univariate models were implemented for Malaysian

auto damage claims (over-dispersed) and German health care visits (zero-inflated
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and over-dispersed). Various tests, including likelihood ratio tests (LRT), Wald and

Vuong tests, as well as information criteria, including Aikake Information Criteria

(AIC) and Bayesian Schwartz Information Criteria (BIC), were applied to determine

and compare performances of these models. K. E. Staub and Adnan [2011] showed the

advantages of Poisson Quasi-Likelihood (PQL) methods as an alternative to ZIP and

ZINB regression models, in cases where the model is misspecified with respect to the

actual distribution of count data, i.e. excess zeros (zero-inflated). This was demon-

strated via MCMC results on both simulated data and Austrian health care survey

data, including physician/specialist visitation count data. Osei [2010] employed

ZINB regression on incidences of lip cancer in the 56 districts of Scotland. Neelon

et al. [2010] and Neelon et al. [2012] use spatial ZIP hurdle models to describe emer-

gency department visits in Durham County, NC, employing spatial random effects

associated with both the occurrence and abundance of visits. However, none of the

above work analyzed bivariate responses. The present work extends these models by

including both cross-spatial and cross-variable dependencies for the case of bivariate

data using an intrinsic conditional auto regressive (ICAR) prior on the spatial effects.

There has been some previous consideration of bivariate models. Wang [2003]

employed a bivariate ZINB regression model to analyze two sets of overdispersed,

dependent count data, the number of doctor visits and the number of non-doctor

health related visits, as reported in an Australian health survey. Wang and Car-

rivick [2003] modeled a bivariate ZIP regression on the number of muscular and

non-muscular loss of time injuries (MLTI, NMLTI) to hospital cleaning staff for pre-
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and post ergonomic team intervention. Both Wang [2003] and Wang and Carrivick

[2003] used an EM algorithm to obtain maximum likelihood estimates and treat a

‘zero observation’ as consisting of zeros in both responses simultaneously. This was

limited by fitting a point mass at zero only for the probability of simultaneously

occurring zeros. Our work differs in that it uses a Bayesian approach to allow for a

separate point mass at zero for each response. Also, neither Wang [2003] nor Wang

and Carrivick [2003] consider random spatial effects. We fit a separate point mass at

zero for each response while including random spatial effects on a lattice. More re-

cently, Majumdar and Gries [2010] developed a regression model for bivariate count

data with excess zeros in both responses separately. Their model incorporates data

augmentation to account for a mixing probabilities of bivariate responses [Y1, Y2]′ un-

der the four states (Y1 = Y2 = 0), (Y1 = 0, Y2 > 0), (Y1 > 0, Y2 = 0), (Y1 > 0, Y2 > 0),

among two independent ZIP regressions. In their application, the responses were the

occurrences of two distinct plant species. But in this case, Majumdar and Gries

[2010] did not consider random spatial effects.

Variable selection via penalized regression has developed over the years in various

forms. Hoerl and Kennard [1970] introduced Ridge Regression which minimized the

regression sum of squares (RSS) subject to the constraint Σp
k=1|βk|2 <constant, i.e.

the L2 norm of regression coefficients. Frank and Friedman [1993] further refined this

constraint to Σp
k=1|βk|γ <constant, suggesting that an optimal choice of γ yielded the

best subset of predictors. Tibshirani [1996] introduced the Least Absolute Shrink-

age and Selection Operator (LASSO) estimation of regression parameters. In this
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method, the likelihood function, rather than RSS, is modified by subtracting a norm

(proportional to L1 for LASSO) of the regression parameters, similar to the method

of Lagrange multipliers. Unimportant predictors have their corresponding regression

coefficients effectively ’shrunk’ to zero by this method. Extensions of LASSO include

adaptive LASSO, Group LASSO, and elastic net (see Casella et al. [2010], C. Leng

and Nott [2012], Zhou and Hastie [2005]). Adaptive LASSO was more flexible in

that the shrinkage imposed is different for different coefficients. This allows for more

flexibility in the selection process. In Group LASSO, a combination of L1 and L2

norms is used in the penalty function, and so categorical variable levels are treated

separately. Unlike regular LASSO, Group LASSO can select just certain levels of

a categorical variable. In elastic net, a convex combination of norms, L1 and L2,

is used to implement the regression penalty, see Zou and Hastie [2005]. Through

studies and real data analysis, it was shown that elastic net outperforms LASSO.

None of these prior efforts attempt variable selection on zero-inflated data.

Buu et al. [2011] develop variable selection methods for ZIP regression models in-

cluding LASSO and Smoothly Clipped Absolute Deviation penalty (SCAD). Variable

selection for the semi-parametric model, among those covariates that are initially in-

cluded in the nonparametric portion, would be desirable, as well. Buu et al. [2011]

does not apply to ZINBH models, nor does it use a Bayesian approach in its estima-

tion process.

Penalized regression is formulated through a Bayesian approach by using symmetric,
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leptokurtic distributions as prior distributions for the regression coefficients ( Trevor

and Casella [2008] , Yaun and Lin [2005a] and Bae and Mallick [2004]). Bayesian

credible intervals from MCMC samples are used to make decisions about predictors.

Yaun and Lin [2005b] and Hans [2010] used a mixture distribution, ‘zero inflated’,

consisting at a point mass at zero and Laplace distribution, for priors on coefficients.

By this method they were able to arrive at more ‘definitive’ decisions about coef-

ficients than by Laplace alone. Kuo and Mallick [1998] and Lykou and Ntzoufras

[2013] incorporate Bernoullli indicator variables within the priors of the regression

coefficients. In this way, objective decisions of variable selection are based upon the

posterior distribution of these Bernoulli variables. Again, none of the above litera-

ture addresses zero-inflated data.

The present work incorporates several of the above model components into a Bayesian

approach in which a Zero-Inflated Negative Binomial Hurdle (ZINBH) regression

model is developed for bivariate data with spatial random effects measured on a

lattice. Further, both cross-spatial and cross-variable dependencies are included in

the covariance structure of our model. There is reason to believe that Bayesian ap-

proaches may perform better in data sets that are pertinent to this research. Ghosh

et al. [2006] used simulations to show an increased accuracy of Bayesian methods over

traditional MLE estimates in distribution parameter estimates for small sample sizes

and higher proportions of zero observations. Also, Bayesian methods relax the re-

quirement of non-singularity of the Hessian matrix X−1
+ X+, where X+ represents the

rows of the design matrix X which have nonzero response variables. This provides
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more flexibility for experimental design, especially in the presence of a sparse Hessian

matrix. In order to model the presence of lattice dependence with a Bayesian ap-

proach, we first implement a prior distribution of imposed variance-covariance struc-

ture on the random effects in the form of an intrinsic conditional auto-regressive

(ICAR) Gaussian prior. We perform simulations studies to assess the performance

of these approaches. Furthermore, we implement a Two-Level Hierarchical, Inverse

Wishart (TLHIW) prior in the scale matrix for the ICAR variances to promote more

accurate variance-covariance estimation (see Huang and Wand [2013]). And lastly,

we implement the the technique of Kuo and Mallick [1998] and Lykou and Ntzoufras

[2013] for variable selection, via elastic net, in a univariate form of our ZINBH model.

11



Chapter 3

The Modeling Approach

Parameterization

The object of interest in this research is a method of modeling zero-inflated bivari-

ate spatial count data with overdispersion. Two-part regression is applied to each

response, consisting of a point mass at zero and the discrete portion modeled as

Negative Binomial via Poisson-Gamma hierarchical model ( Greene [1994]). The

spatial random effects are modeled through a Gaussian Intrinsic Conditional Auto

Regressive (ICAR) model ( J. Besag and Mollie [1991]).

Multivariate spatial data on a lattice can exhibit a number of dependencies among

the responses which must be considered when developing a model:

• Spatial dependence within the same variable from one lattice site to another.

12



• Cross-variable dependence between different variables within the same lattice site.

• Cross-variable cross-spatial dependence between different variables on different lat-

tice sites.

To develop our model, let Yi,j (i = 1, 2 : j = 1, . . . , n) be the ith response of a

bivariate observation on the jth lattice site, and we assume that there are n sites on

the spatial domain under analysis as described below in Figure 3.1.

Figure 3.1: Schematic diagram for spatial and cross spatial dependencies of a set of
bivariate response on a 2-dimensional lattice

In Figure 3.1, two copies of the same rectangular lattice represent the collections

of observed values of the two responses, Y1 and Y2, at each lattice site. The curved

lines represent the various cross-variable, cross-spatial and cross-spatial cross-variable

dependencies described above. The distribution of the zero-inflated response, 3.1
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below, is a mixture of two distributions as described in Chapter 1. The first part,

the zero, or ‘occurrence’ portion, consists of the point mass at zero, with probability

πi,j. The second part, the non-zero, or ‘abundance’ portion, consists of a truncated

Negative Binomial distribution (≥1) with mean µi,j and dispersion parameter αnb,

with mixing probability 1-πi,j:

[Yi,j] = πi,j × [0] + (1− πi,j)× [Vi,j|µi,j, αnb]; i = 1, 2; j = 1, . . . , n (3.1)

where πi,j is the probability point mass at ‘0’ and [Vi,j|µi,j, αnb] refers to a truncated

Negative Binomial distributed variable Vi,j, truncated above ‘1’ (Vi,j ≥ 1) and con-

ditioned on the mean µi,j and dispersion parameter αnb.

The point mass at zero, the probability, πi,j, is modeled in terms of explanatory

variables and spatial random effects using complementary log-log link function:

(πi,j)Transform = log(− log(1− πi,j)) (3.2)

The complimentary log-log transformation, in comparison to more traditional prob-

ability transforms such as logit or probit, has the advantage of being asymmetric

with respect to the q=0.5 axis. Figure 3.2 below, which graphs the value of propor-

tion q (horizontal axis) versus its transformed value (vertical axis), illustrates this

asymmetry. This makes this transform more effective when the occurence of zero is

either particularly high or low ( Williams [2015]).
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Figure 3.2: Complimentary Log Log Transformation

Using complimentary log− log link function, the regression equation for πi,j is

log(− log(1− πi,j)) = xjαi + ψ
(1)
ij , (3.3)

where αi is the vector of p× 1 regression coefficients, xj are the set of p covariates

for the jth lattice site, and ψi = {ψ(1)
i,1 , ψ

(1)
i,2 , . . . , ψ

(1)
i,n} are the spatial random effects

terms. Spatial and cross spatial dependencies are imposed through these random

variables. The regression coefficients αki, k=1,. . . ,p, all have zero mean Gaussian

priors with variance σ2
α. To reduce subjectivity, we make this prior weakly informa-

tive by setting σ2
α to be 10,000.

To impose a Negative Binomial distribution, we take a Poisson distributed vari-
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able and express its mean, θi,j, as a product of µi,j × ri,j. The random variable ri,j

is assumed to have a Gamma(αnb, αnb)) distribution. The log of αnb was uniformly

distributed on the interval (a,b) (See section 3.4 for more detail on a,b). Sampling

the log of the parameter, and exponentiating that value, ensured that the value of the

parameter remained positive during the iteration process. While a uniform distribu-

tion on the interval (-∞,∞) would have been desirable as a non-informative prior of

log(αnb), the interval employed was as wide as the WinBUGS software would accept

for purposes of sampling. If we integrate out rij, then the resulting distribution of

the response variables become Negative Binomial conditioned on µi,j and αnb . Inte-

grating out ri,j, we get

[Vi,j|µi,j, αnb] =

∫ ∞
ri,j=0

[Vi,j|µi,j, ri,j, αnb]dri,j

=

∫ ∞
ri,j=0

PoissonVi,j(µi,jri,j)×Gammari,j(αnb, αnb)dri,j

= Negative BinomialVi,j(µi,j, αnb)

(3.4)

This is a Negative Binomial model ( Lord and Park [2010]). To implement a hur-

dle model, we take the truncated version of (3.4) by limiting its support to values ≥ 1.

For the nonzero part, the log of µi,j is modeled as a linear function of the covariates

and random effects:

log(µi,j) = xjβi + ψ
(2)
ij (3.5)

where βi, the regression coefficients, (βki, k=1,. . . ,p) have zero mean Guassian priors
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with variance σ2
β. Again, we set σ2

β=10,000 to avoid subjectivity. The random effects

terms, ψ
(2)
i = {ψ(2)

i,1 , ψ
(2)
i,2 , . . . , ψ

(2)
i,n}, incorporate both spatial and cross dependencies

among other responses.

Gaussian Multivariate intrinsic autoregressive (ICAR) dependence is imposed on

the random effects:

Ψ = (Ψ1,Ψ2, . . . ,Ψn)′ =



ψ
(1)
11 ψ

(1)
12 . . . ψ

(1)
1n

ψ
(1)
21 ψ

(1)
22 . . . ψ

(1)
2n

ψ
(2)
11 ψ

(2)
12 . . . ψ

(2)
1n

ψ
(2)
21 ψ

(2)
22 . . . ψ

(2)
2n


. (3.6)

In this prior, associated with the ICAR process, the random effects at any specific

lattice site j, Ψj, are distributed, conditioned on the neighboring lattice sites, as a

multivariate normal with mean equal to the average of the random effects of neigh-

boring lattice sites, Ψj, and variance equal to a diagonal, inverse-Wishart distributed,

scaled covariance matrix , Q
nj

Ψj|Ψωj ∼MVN

(
Ψj,

Q

nj

)
(3.7)

where

Ψj =
(
ψ

(1)

1,j , ψ
(2)

1,j , ψ
(1)

2,j , ψ
(2)

2,j

)
, ψ

(m)

i,j =

∑
s∈ωj

ψ
(m)
i,s

nj
, ωj = set of neighbor indices, and
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nj = ‖ωj‖. Furthermore, Q is the 4 × 4 covariance matrix, with diagonal elements

representing the conditional variances of the
(
ψ

(1)
1,∗, ψ

(2)
1,∗, ψ

(1)
2,∗, ψ

(2)
2,∗

)
. We impose upon

Q a prior distribution of Inverse-Wishart(4,I4×4), as is conventional for multivariate

normal covariance structure. This is similar to a Proper CAR distribution, but here

Q need only be non-negative definite. It is worth noting here that as Q is non-

negative definite, ICAR is not a proper prior. However, the posterior distribution is

a legitimate distribution.

Usually, Inverse-Wishart prior is imposed on Q with a pre-specified scale matrix.

Here we explore a two-level Inverse-Wishart prior described in Huang and Wand

[2013]. This is similar to the previous model with the feature that the matrix Q has

an Inverse-Wishart distribution with degrees of freedom ν + p− 1 and 4×4 diagonal

square scale matrix 2ν×diag(1/a1, . . . 1/a4). The hyperprior distributions for ak’s,

k=1,. . . ,4, are independent Inverse-Gamma with shape equal to 1/2 and scale 1/A2
k,

where ν and Ak are positive scalars. This additional constraint reduces potential bias

in the model by making the prior marginally noninformative, as will be explained in

the next sections. This bias is related to putting high mass on smaller values in the

prior (see Gelman [2006]).

Finally, the likelihood for response Yi,j, L(Yi,j), is a function of the probabilities

and indicator functions of Yi,j being zero and greater than zero:

L(Yi,j) = (P (Yi,j = 0))I(Yi,j=0)(P (Yi,j = y > 0))I(Yi,j≥1). (3.8)
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Substituting model parameters of the Truncated Negative Binomial (µi,j, αnb) and

Bernoulli(πi,j) distribuions into (3.9), the expression becomes:

L(Yi,j) = [πi,j]
I(Yi,j=0)

×

(1− πi,j)
Γ(yi,j+αnb)

Γ(yi,j+1)Γ(αnb)

(
αnb

µi,j+αnb

)αnb ( µi,j
µi,j+αnb

)yi,j
1−

(
αnb

µi,j+αnb

)αnb
I(Yi,j≥1)

.

(3.9)

Then, for a set of responses {Yi,j} i=1,2; j=1,..,n, the joint data likelihood is the

product of the individual responses,

i=2∏
i=1

j=n∏
j=1

L(Yi,j). (3.10)
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3.1 Weakly Informative Prior for Variance Co-

variance Matrices

A well known issue in Bayesian analysis is the effect of the presence of information, or

bias, in the prior distribution and its associated impact upon the posterior inference.

In the scenario where real prior knowledge is present, due to, for example, a previous

study, or a known physical limitation, it is advantageous to have this information

reflected in the prior distribution by weighting certain possible values heavier than

others. This ability to incorporate extra information into the estimator is, in fact,

among the advantages of Bayesian analysis. However, in the scenario when there is

no real prior knowledge of a parameter, it is of great importance to avoid imparting

any bias through the specified prior distribution which might, as a result, impart

bias to the posterior distribution. In this case, non-informative prior distributions,

those which don’t favor any particular possible value, or set of possible values, of the

parameter are sought. This pursuit can lead to improper priors or non-conjugate

priors. In some cases, the compromise is to settle for a ‘weakly informative’ prior,

which is ‘almost’ flat within the region of possible values.

In pursuit of prior noninformativity, for example in hierarchical modeling of a nor-

mal distribution in Bayesian analysis, Gelman(2006) advised against the conventional

conjugate prior distribution of inverse Gamma for standard deviation parameters in

favor of other distributions, such as the non-centralized, or Half -t, with scale A and

degrees of freedom ν having pdf:

20



p(σα) ∝
(

1 +
1

ν

(σα
A

)2
)− (ν+1)

2

. (3.11)

These priors are less sensitive to hyper-parameters and still retain conditional con-

jugacy.

For q-dimensional multivariate normal distributions, covariance between responses

within the same observation can exist, and the overall variance-covariance parameter

is then a square matrix, such as

Σ =



σ2
1 ρ12σ1σ2 . . . ρ1qσ1σq

ρ21σ2σ1 σ2
2 . . .

...

... . . .
. . .

...

ρq1σqσ1 . . . σ2
q


. (3.12)

In Bayesian analysis of a q-dimensional multivariate normal response with mean θ

and covariance matrix Σ, MVNq(θ,Σ), the extension of an inverse gamma distri-

bution to a multivariate structure, as a prior distribution for variance-covariance

matrix Σ, is the inverse Wishart distribution with degrees of freedom ν and q × q

scale matrix Ψ, W−1
q (ν,Ψ),

p(Σ) ∝ |Ψ|
ν
2 |Σ|−

ν+p+1
2 exp{−tr(ΨΣ−1} (3.13)
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where ν >0, Σ, Ψ both are positive definite.

M. P. Wand and Fruhwirth [2011] showed that the desired Half t distribution arises

as a scaled mixture of Inverse Gamma distributions, namely,

(i) If σ2 conditioned on α is Inverse Gamma distributed with shape ν
2

and scale ν
α

p(σ2|α) ∝ (σ2)−
ν
2
−1e−

ν
α
/σ2

, and (3.14)

(ii) α is Inverse Gamma distributed with shape 1
2

and scale 1
A2 ,

then σ is distributed Half-t with scale A and degrees of freedom ν.

Extending this to q×q random matrices Σ, Huang and Wand [2013] proposed the

family of prior distributions where the matrix Σ, conditioned on a set of random

variables (a1, a2, . . . , aq), where each ai has a Gamma distribution with shape of 1
2

and scale A2
i , is Inverse-Wishart distributed with degrees of freedom ν + q − 1 and

scale matrix 2ν diag
(

1
a1
, 1
a2
, . . . , 1

aq

)
,

p(Σ) ∝ |Σ|−
ν+2q

2

q∏
k=1

{
ν(Σ−1)kk +

1

A2
k

}− ν+q
2

,Σ is postive definite. (3.15)
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Huang and Wand [2013] establish that a variance-covariance matrix Σ with prior

distribution as above has the following properties:

Property 1: The marginal distribution of any sub-covariance matrix in Σ has the

same distributional form as Σ itself.

Property 2: The marginal distribution of any standard deviation term σk in Σ is

Half-t(ν,Ak).

Property 3: The marginal distribution of any correlation parameter term ρij in Σ

has density

p(ρij) ∝ (1− ρ2
ij)

ν
2
−1,−1 < ρij < 1. (3.16)

Property 4: For the particular choice ν=2, the marginal distribution of any cor-

relation parameter term ρij in Σ is uniform on (-1,1).

As described in Figure 1 above, bivariate regression on a lattice contains numer-

ous possible dependencies, or correlations, and because of the two-part nature of

zero-inflated model , these correlations are considerably complex. By employing a

Two-Level Hierarchical Inverse Wishart(TLHIW) matrix, as described above, as a

prior in the spatial random effects distribution, we take advantage of property 4 and
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protect against systematic bias towards any particular correlation values, making

our spatial random effects model more flexible.

3.2 Model Comparison

In this section we will compare the performances between the Negative Binomial

Hurdle spatial models stated in the previous section. In addition, the ‘standard’

versions of the Negative Binomial spatial model, with no zero inflation, are also

compared to check the appropriateness of zero-inflation.

To compare the performance of the models, data were simulated as follows:

1. Random spatial effects were simulated for a a rectangular 25×40 (n=1000) lat-

tice using spatial effects determined by conditional auto regressive covariance with

“neighbor” sites defined as sharing a lattice edge. The effects are generated as a

mean zero 2ni dimensional multivariate random variable: Φ2ni with covariance ma-

trix

Q2ni×2ni = τ 2(I− ρA)−1M (3.17)
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where

i : dimension of the multivariate response (=2 for bivariate response),

and the “2” represents one part for the occurrence portion of the response, one

part for the abundance portion of the response.

τ : standard deviation of the random spatial effects (0.01).

ρ : spatial dependence between lattice sites(set to 0.1 to impose low spatial

dependence).

A : weighted neighborhood matrix such that sum of each column is equal to unity.

M : diagonal matrix where Mii is the number of neighbors of lattice j.

These effects contained four separate components, one for each of the Bernoulli and

truncated Negative Binomial portions of bivariate zero-inflated data.

2. Covariates are generated as:

1) Normally distributed with mean zero and standard deviation 0.2.

2) Uniformly distributed on the interval (-1,1).

3) Beta distributed with shape parameters α = β=2.

3. Ten regression coefficients are set, one for each of the covariates of the truncated

negative binomial regression, and one for the intercept of the binomial regression.

This gives a total of five coefficients for each of the two responses. All coefficients

were set to generate both a high (∼ 0.45-60) and low (∼ 0.15-0.30) proportion of

zero observations for each of the responses.
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4. Using random spatial effects, along with the covariates and regression coeffi-

cients described above, we generate bivariate zero-inflated Negative Binomial Hurdle

responses for each of the 1000 lattice sites.

Due to the complexity of the model, including non-linearity and depth of hyper-

priors, the algorithm takes considerable time to converge into a stable orbit around

this distribution space of the estimated parameters, and hence the large burn-in is

required. This ‘slow mixing’ can be seen in the trace plots in Appendix. While

MacEachern and Berliner [1994] show that keeping the entire Markov Chain always

leads to more precise posterior estimates than thinning, the latter was employed in

bivariate simulations due to memory issues with WinBUGS. In fact, to make possible

the posterior prediction checks below, more than 1000 values had to be stored for

each MCMC iteration. For this simulation 20,000 MCMC samples were used with

the initial 10000 discarded as burn-in to allow the algorithm to converge.

The simulated data were analyzed using the three regression models described in

the previous section. The two zero-inflated models are compared to each other via

regression estimates, while both of these are compared to the non zero-inflated mod-

els via posterior predictive plots.

From the preliminary results shown below in Table 3.1, the univariate models ap-

pear to be performing close to the same for both higher and lower proportions of
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zero observations, with the fixed scale matrix model doing slightly better. In both

univariate simulations the constant scale matrix model captures 83.3% (5 out of 6)

of the regression coefficients versus 66.7% (4 out of 6) for the TLHIW scale matrix.

Note that the latter model ‘barely’ misses capturing the β14 true value in the 95%

credible interval in both simulation.

For the bivariate models in table 3.2, the constant scale matrix model clearly does

better than the TLHIW scale matrix model, in both lower and higher proportion of

zero observations. Again, in the majority of instances where the latter model fails

to capture the true value, it does by a very small margin. When the magnitude of

the spatial dependence ρ is increased, as in table 3.3, it appears that both models do

poorly if the signs of the dependencies alter. This altering of signs could represent

a scenario when the two responses depend on neighboring values is opposite ways.

The combined effect of increasing dependence and altering of the signs of the spatial

dependence may be introducing too much noise with the signal, making it difficult

for the models to distinguish between the two. Note that when the signs of the

dependence are all positive, both models perform similarly, with most 95% credible

intervals relatively close in width and location.
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Table 3.1: Univariate Simulation

SIMULATION 1 UNIVARIATE
95 % credible interval

(”+” = capture of true parameter)
Y1:% zeros = 28.1

variable true TLHIW Fixed Scale Matrix
α(1) 0.25 (0.0624, 0.2384) (0.1515, 0.2914)+
β(1, 1) 0.5 (0.2488, 0.9356)+ (0.1803, 0.6240)+
β(1, 2) 2.00 (1.640, 2.023)+ (1.821, 2.190)+
β(1, 3) −4.00 (−4.05,−3.83)+ (−4.127,−3.894)+
β(1, 4) 3.00 (2.494, 2.809) (2.570, 2.921)
αnb 3.00 (0.5563, 18.90)+ (2.913, 4.088)+

SIMULATION 2 UNIVARIATE
95 % credible interval

(”+” = capture of true parameter)
Y1:% zeros = 46.1

variable true TLHIW Fixed Scale Matrix
α(1) −0.35 (−0.4238,−0.2261)+ (−0.3606,−0.1772)+
β(1, 1) 0.5 (−0.6172,−0.09554) (0.3169, 0.5855)+
β(1, 2) 2.00 (1.832, 2.341)+ (2.209, 2.602)
β(1, 3) −4.00 (−4.038,−3.679)+ (−4.147,−3.859)+
β(1, 4) 3.00 (2.601, 2.983) (2.912, 3.287)+
αnb 3.00 (0.481, 7.022)+ (2.783, 4.022)+

3.3 Posterior Predictive Check

There has been some discussion as to whether the Zero-inflated Negative Binomial

model is really ever needed (see Allison [2012a]). Because of the ability to model

high probability of zero as well as large non-zero values, via overdispersion, in the

Negative Binomial model, the zero-inflated case is thought to be unnecessary, as

‘suitable’ fit should be achievable without a separate occurrence regression. Obvi-

ously, ZINBH models evolve naturally from situations where occurrence is influenced
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Table 3.2: Multivariate Simulation

SIMULATION 1 MULTIVARIATE
95 % credible interval: ”+” = capture of true parameter)

Y1:% zeros = 28.6
variable true TLHIW Fixed Scale Matrix
α(1) 0.25 (0.1054, 0.2856)+ (0.1364, 0.3067)+
β(1, 1) 0.5 (0.2796, 0.6462)+ (0.3585, 0.613)+
β(1, 2) 2.00 (1.624, 2.251)+ (1.547, 2.204)+
β(1, 3) −4.00 (−4.169,−3.953)+ (−4.190,−3.952)+
β(1, 4) 3.00 (2.662, 3.216)+ (2.815, 3.196)+
rnb1 3.00 (3.480, 5.149) (2.978, 4.211)+

Y2: % zeros = 28.1
α(2) 0.15 (0.1197, 0.2947)+ (.1445, 0.3118)+
β(2, 1) 0.27 (−0.1745, 0.2379) (0.03831, 0.31590)+
β(2, 2) −3.00 (−3.508,−2.673)+ (−3.012,−2.459)+
β(2, 3) 4.00 (4.028, 4.463) (3.792, 4.180)+
β(2, 4) −2.00 (−2.379,−1.913)+ (−2.078,−1.591)+
rnb2 5.00 (5.517, 18.890) (4.584, 9.728)+

SIMULATION 2 MULTIVARIATE
95 % credible interval:”+” = capture of true parameter)

Y1:% zeros = 46.1
variable true TLHIW Fixed Scale Matrix
α(1) −0.35 (−0.4843,−0.2989)+ (−0.3533,−0.1755)+
β(1, 1) 0.5 (0.2746, 0.4959) (0.4321, 0.7642)+
β(1, 2) 2.00 (2.043, 2.622) (2.075, 2.573)
β(1, 3) −4.00 (−4.056,−3.826)+ (−4.054,−3.757)+
β(1, 4) 3.00 (2.827, 3.133)+ (2.615, 3.062)+
rnb1 3.00 (3.691, 5.855) (2.824, 4.064)+

Y2: % zeros = 52.3
α(2) −0.50 (−0.6816− 0.4831)+ (−0.5324,−0.3579)+
β(2, 1) 0.27 (−0.39030, 0.08882) (0.0852, 0.4976)+
β(2, 2) −3.00 (−3.414,−2.760)+ (−3.101,−2.471)+
β(2, 3) 4.00 (4.169, 4.792) (3.803, 4.260)+
β(2, 4) −2.00 (−2.484,−1.470)+ (−2.454,−1.812)+
rnb2 5.00 (4.398, 14.600)+ (3.204, 7.021)+
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Table 3.3: Multivariate Simulation with Altered Spatial Dependence

SIMULATION 3 MULTIVARIATE (new spatial correlation)
ρ11 = 0.5; ρ12 = −0.5; ρ21 = 0.5; ρ21 = −0.4

95 % credible interval: ”+” = capture of true parameter)
Y1:% zeros = 48.9

variable true TLHIW Fixed Scale Matrix
α(1) −0.35 (−0.4913,−0.3256)+ (−0.4489,−0.2678)+
β(1, 1) 0.5 (1.070, 1.296) (0.9763, 1.3350)
β(1, 2) 2.00 (2.061, 3.115) (1.953, 2.805)+
β(1, 3) −4.00 (−4.342,−4.025)+ (−4.082,−3.826)+
β(1, 4) 3.00 (2.282, 2.673) (2.336, 3.010)+
rnb1 3.00 (0.8152, 1.1290) (2.117, 2.162)

Y2: % zeros = 57.0
α(2) −0.50 (−0.7830,−0.5559) (−0.7078,−0.5029)
β(2, 1) 0.27 (0.2439, 0.9335)+ (0.6342, 1.1630)
β(2, 2) −3.00 (−2.787,−1.908) (−3.137,−2.189)+
β(2, 3) 4.00 (3.363, 4.169)+ (3.371, 3.787)
β(2, 4) −2.00 (−1.731,−1.154) (−2.325,−1.454)+
rnb2 5.00 (0.5505, 0.9350) (2.118, 2.240)

SIMULATION 4 MULTIVARIATE (new spatial correlatoin)
ρ11 = 0.5; ρ12 = 0.5; ρ21 = 0.4; ρ21 = 0.4

Y1:% zeros = 43
variable true TLHIW Fixed Scale Matrix
α(1) −0.35 (−0.3054,−0.0894) (−0.2603,−0.1075)
β(1, 1) 0.5 (0.2949, 0.5067)+ (0.2921, 0.6307)+
β(1, 2) 2.00 (1.454, 2.164)+ (1.592, 2.118)+
β(1, 3) −4.00 (−4.027,−3.771)+ (−4.010,−3.759)+
β(1, 4) 3.00 (2.831, 3.190)+ (2.753, 3.304)+
rnb1 3.00 (2.957, 4.374)+ (2.410, 3.417)+

Y2: % zeros = 46.8
α(2) −0.50 (−0.4127,−0.2502) (−0.3609,−0.2018)
β(2, 1) 0.27 (−0.1864, 0.1433) (−0.0740, 0.2572)
β(2, 2) −3.00 (−3.390,−2.663)+ (−3.553,−2.813)+
β(2, 3) 4.00 (3.816, 4.268)+ (3.732, 4.231)+
β(2, 4) −2.00 (−2.170,−1.411)+ (−1.815,−1.372)
rnb2 5.00 (8.452, 19.750) (3.862, 8.420)+
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by factors which preclude abundance a priori. For example, a survey of people about

how often they attended a fitness center the previous month. Responses would pre-

dictably include zero’s from subjects that did not belong to a fitness club, being

precluded (theoretically) a priori from a non-zero response, as well as those that

had access but did not avail themselves that particular month. In this section, we

will compare the performance of the ZINBH models described previously with the

traditional NB model with no zero-inflation. For comparing the zero-inflated models

and nonzero-inflated model, performance will be assessed through posterior predic-

tive distributions of the responses. That is, based upon the estimates of regression

coefficients and the random spatial effects, we will generate random samples from the

modeled distributions of the responses and compare those random samples against

the actual data. Because of the large sample size, it is not prudent to compare predic-

tive distributions for every data point. Therefore, we randomly sample 20 responses

from each of the two (bivariate) collection of responses, making sure to select 10 zero

and 10 non-zero data points from each. In each plot, the actual data point to which

the predictive distribution is associated is marked for comparison. In some cases,

the data point does not sit on the software chosen horizontal axis.

In general, it is important to understand the complexity of the problem we attempt

to address. Like any regression, outliers can possibly ‘mislead’ the model, as two,

what appear to be similar, sets of covariates lead to vastly different responses. In

zero-inflated regression, this issue is compounded by the presence of the extra weight

at zero. When the mean of the abundance portion of the distribution is far away
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from zero, the variation of the observed responses can be vast. In our model, we

assume a different probability of zero as well as a different abundance mean at every

lattice site. One observation per lattice site is equivalent to a single realization of

an unknown distribution. This approach lends itself well to MCMC methods, where

many different possible realizations of each unknown distribution are generated with

the exploration of the sample space tending to stay away from the less ‘likely’ realms

of values.

All three models do a fair job with zero observations, as a rule. A ‘fair’ job for

zero-inflated model is when a significant probability of zero accompanies an actual

zero data point, regardless of the mean of the abundance distribution. A very small

mean, and hence many posteriorly predicted zero observations, is judged a ‘fair’ job

for the traditional Negative Binomial model. Both of these are seen in most of ran-

domly chosen zero observations from the actual data. See plots for variable 1, Y1,

at lattice sites 14 below and 54, 73, 94, 97, 203, 330, 420, 744 and 890 in Appendix.

Similarly, see plots for variable 2, Y2 at lattice sites 796 below and 240, 305, 477,

688, 712, 773, 877 and 992 in Appendix.

For non-zero observations, a ‘fair’ job for the zero-inflated models is when the actual

data point is located somewhere near the mean of the abundance histogram, regard-

less of the weight at zero. For the traditional Negative Binomial, a larger positive

tailed histogram, i.e. a more right skewed posterior plot, which overlaps the actual

data point, is a sign of a ‘fair’ job. All three models do a fair job for Y1 at lattice
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sites 156 and 528 (Y1=1) and Y2 at site 100 below and 72, 141, 312, 530, 625, and

971 in Appendix (Y2=1). For non-zero observations greater than 1, the advantage

of the zero-inflated distribution becomes more apparent. For example, see for Y1 at

sites 242 and 590 below. See also, for Y2 at site 954 below and 593 in Appendix. For

some sites, the observation is in the tail of the distributions and none of the models

do well (see Y1 at sites 38, 60 and 735 in Appendix).
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Figure 3.3: (a), (c): The histograms show the posterior predictive distribution of
simulated data of Y1 for ZINBH and Negative Binomial at site 14, respectively under
two-level inverse-Wishart prior. (b), (d): The histograms show the posterior predic-
tive distribution of simulated data of Y1 for ZINBH and Negative Binomial at site
14, respectively under fixed inverse-Wishart prior. The vertical lines represent the
observed values.
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Figure 3.4: (a), (c): The histograms show the posterior predictive distribution of
simulated data of Y1 for ZINBH and Negative Binomial at site 242, respectively
under two-level inverse-Wishart prior. (b), (d): The histograms show the posterior
predictive distribution of simulated data of Y1 for ZINBH and Negative Binomial at
site 14, respectively under fixed inverse-Wishart prior. The vertical lines represent
the observed values.
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Figure 3.5: (a), (c): The histograms show the posterior predictive distribution of
simulated data of Y1 for ZINBH and Negative Binomial at site 590, respectively
under two-level inverse-Wishart prior. (b), (d): The histograms show the posterior
predictive distribution of simulated data of Y1 for ZINBH and Negative Binomial at
site 14, respectively under fixed inverse-Wishart prior. The vertical lines represent
the observed values.
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Figure 3.6: (a), (c): The histograms show the posterior predictive distribution of
simulated data of Y2 for ZINBH and Negative Binomial at site 954, respectively
under two-level inverse-Wishart prior. (b), (d): The histograms show the posterior
predictive distribution of simulated data of Y2 for ZINBH and Negative Binomial at
site 954, respectively under fixed inverse-Wishart prior. The vertical lines represent
the observed values.
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Figure 3.7: (a), (c): The histograms show the posterior predictive distribution of
simulated data of Y2 for ZINBH and Negative Binomial at site 100, respectively
under two-level inverse-Wishart prior. (b), (d): The histograms show the posterior
predictive distribution of simulated data of Y2 for ZINBH and Negative Binomial at
site 100, respectively under fixed inverse-Wishart prior. The vertical lines represent
the observed values.
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Figure 3.8: (a), (c): The histograms show the posterior predictive distribution of
simulated data of Y2 for ZINBH and Negative Binomial at site 796, respectively
under two-level inverse-Wishart prior. (b), (d): The histograms show the posterior
predictive distribution of simulated data of Y2 for ZINBH and Negative Binomial at
site 796, respectively under fixed inverse-Wishart prior. The vertical lines represent
the observed values.
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3.4 Real Data Example: Michigan Crime Counts

by County 2011

To test the TLHIW prior and fixed scale matrix models, we apply them both to

Michigan crime data (number of incidences of a particular crime) at the county level

(source:http://www.michigan.gov/msp). The bivariate response variables are county

level counts on murder or non-negligent manslaughter and burglary forced

entry. Table 3.4 and Figure 3.9, which describe these two responses, reflect moderate

zero-inflation (38.6 % and 37.3%, respectively) and presence of overdispersion.

Table 3.4: Summary of MI Crime Responses by County

Crime Min 2nd quartile Median Mean 3rd quartile Max
(Y1)Murder or 0.00 0.00 1.00 6.988 2.00 345.00
Non-negligent
Manslaughter

(Y2)Burglary with 0.00 0.00 1.00 12.95 3.00 524.00
Forced Entry
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Figure 3.9: Histogram of Crime Incidences in MI Counties

The following covariates were considered for this study:

•X1: % unemployment rate as of February 2011

•X2: change in % unemployment over the prior 12 months

(source:http://data.bls.gov/map/MapToolServlet)

•X3: % High School Graduation Rate as of 2011

(source:http://www.countyhealthrankings.org/app/michigan/2011

/measure/factors/21/data)

•X4: Median Income in $10000’s, Averaged over 2010-2013

(source:https://en.wikipedia.org/wiki/Michigan locations by per capita income)

•X5: Log of Estimated population as of 2011

(source:http://www.michigan.gov/cgi/

0,4548,7-158-54534 51713 51716-325583–,00.html)
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In addition, an intercept was also added to the model.

The distribution of the covariates are reflected in Fig. 10 below. All are unimodal

and most of them are generally symmetric. Skewness exists moderately in % Un-

employment and Median Income. The log transformation of Population yielded a

symmetry that does not tend to dominate in influence among the covariates.

Another consideration is multicollinearity among these covariates, which could sig-

nificantly affect the accuracy of the regression estimates. For instance, ‘change in %

Unemployment over the prior 12 months’ and the ‘% Unemployment in February’

might very well track each other and pull the model towards spurious estimates. To

check for the presence of multicollinearity, a correlation matrix for the covariates

was generated as well as variance inflation factors (VIF) for each of the covariates.

Table 4 shows some moderate to significant correlations, such as ‘% Unemployment

in Feb.’ with ‘Median Income’ and ‘Log of Population’. The former is somewhat

expected, as the latter may reflect higher employment rates in counties with larger

cities. The highest is between ‘Median Income’ and ‘Log of Population’, which,

again, follows conventional wisdom. However, there were no unexpectedly high cor-

relations between ‘suspect’ pairs. Furthermore, all of the VIF are below 2.5, which

is a conventional threshold for suspected multicollinearity ( Allison [2012b]).

To assess the fit and confidence in the regression estimates of these two models,
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Figure 3.10: Histograms of MI Crime CovariatesX1, X2, X3, X4, X5
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Table 3.5: Correlation Matrix and VIF for MI Crime Covariates

% Change H.S. Log
% Unemploy. in % Grad. Median of

in Feb. Unemploy. Rate % Income Pop.
% Unemploy. 1.00 -0.091 -0.047 -0.507 -0.594

in Feb.
Change in % 1.00 0.220 -0.015 -0.184

Unemploy.
H.S. Grad. Rate 1.00 0.310 -0.101

Median Income 1.00 0.606

Log of Pop. 1.00
VIF 1.726 1.143 1.331 2.101 2.322

both of which employ MCMC methods, we will look again at posterior predictive

plots of the responses. To do this, we proceed as before and randomly select 3-5 each

of zero and non-zero responses from the data and examine where the actual data

points locate within the histograms of the collection of predicted responses based on

estimates.

For this example the prior distributions are the same as those used for the anal-

ysis of the simulated data. α, the regression coefficients for the occurrence portion

of the two part regression, and β, the coefficients for the non-zero part, were both

normally distributed with mean 0 and precision 0.0001 (variance = 10000). The log

of αnb was uniformly distributed on the interval (-0.8,3). Sampling the log of the

parameter, and exponentiating that value, ensured that the value of the parameter

remained positive during the iteration process. While a uniform distribution on the
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interval (-∞,∞) would have been desirable as a non-informative prior of log(αnb), the

interval employed was as wide as the WinBUGS software would accept for purposes

of sampling. For the MCMC simulation, 20000 iterations were performed, discarding

the first 10000 as burn in, and then thinning by a factor of five (nthin=5).

The posterior predictive plots for some non-zero observations are shown in figure

3.11 and 3.12 below (and for sites 4,8,19,12,81 in Appendix). In the situation of a

zero observation, both models do well (see for site 56 in Appendix). This was the

case for simulated data, as well. In the situation of non zero observations in actual

data, both models perform about the same, with the TLHIW prior model performing

slightly better in some cases. For example, at site 33 in Figure 3.11 (a) and (b), for

Murder and Non-negligent Manslaughter, the height of the histogram at the observed

value is higher for the TLHIW prior model than that of the fixed scale matrix prior

model . Similarly, this true for the other histograms in figures 3.11 and 3.12. Based

upon the performance at the posterior predictive plots for both responses, below and

in the Appendix, confidence in the estimates is warranted.
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Figure 3.11: (a), (c): The histograms show the posterior predictive distribution
of Murder and Non-negligent Manslaughter data for ZINBH at sites 33 and 52,
respectively, under two-level inverse-Wishart prior. (b), (d): The histograms show
the posterior predictive distribution of Murder and Non-negligent Manslaughter data
for ZINBH at sites 33 and 52, respectively, under fixed inverse-Wishart prior. The
vertical lines represent the observed values.
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Figure 3.12: (a), (c): The histograms show the posterior predictive distribution of
Burglary Forced Entry data for ZINBH at sites 33 and 41, respectively, under two-
level inverse-Wishart prior. (b), (d): The histograms show the posterior predictive
distribution of Burglary Forced Entry data for ZINBH at sites 33 and 41, respectively,
under fixed inverse-Wishart prior. The vertical lines represent the observed values.
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Table 3.6 shows the 95% credible intervals for α converted to probabilities of zero

observations under bivariate model for TLHIW and fixed scale matrix priors, as well

as for a univariate model for the TLHIW. These probability intervals (as proportions)

capture the actual proportion of zero observations, 38.6% and 37.3% respectively, in

the data.

Table 3.6: 95% Credible Intervals for α Converted to Probabilities of Zero Observa-
tions

actual 2 level fixed scale Univariate
crime % zeros Wishart matrix TLHIW

(Y1)Murder or 38.6% (31.1%, 55.8%) (32.8%, 52.1%) (25.93%, 50.4%)
Non-negligent
Manslaughter

(Y2)Burglary with 37.3% (29.1%,51.5%) (30.7%,51.2%) (22.43%, 44.03%)
Forced Entry

Table 3.7 shows the regression estimates for bivariate regression estimates under bi-

variate model for TLHIW and fixed scale matrix priors, as well as for a univariate

model for the TLHIW. For the abundance portion of the regression, % Change in

Unemployment and Median income ( for Multivariate ICAR only) have 95 % credible

intervals which contain zero. Based on these intervals, the rest of the covariates are

influential and we will interpret their signs and magnitudes. Also, all three models

agree on the sign of each coefficient save for Median Income, and intercept.

Conforming to conventional wisdom, High School Graduation Rate has a negative
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effect on both crime measurements. Also, Median Income has a negative effect on

Murder and Non-negligent Manslaughter. A positive effect of Median Income on

Burglary Forced Entry would seem logical due the fact that higher income neighbor-

hoods will tend to have more valuable items within a residence. Only the bivariate

TLHIW model predicts this. This may be evidence of a better performance from

this model. Population has a positive effect, and in this case plays the roll of an

offset, except that we do not fix the coefficient at ‘1’. Surprising is the negative

effect of % Unemployment, indicating that less employment would lower incidence.

This is in contrast with the theory that unemployment would accompany higher ten-

dency of crimes, due to stress, unease or desperation. Regression analysis quantifies

these effects, but cannot establish causation. A more in depth look at the data, and

more measurements of social, economic and psychological nature may illuminate the

reasons for these findings. The difference in the sign of the intercept for Burglary

Forced Entry in the univariate TLHIW prior model is also not readily explainable.

This appears to be at least partially offset with the more negative estimates of %

Unemployment and % Change in Unemployment over the last 12 months and maybe

just a model predilection for this particular data set rather than an overarching differ-

ence in the performance of the three models. Finally, the estimates of the dispersion

rate, αnb, are quite different between the TLHIW prior and Fixed Scale Matrix prior

models, the former indicating significantly more overdispersion than the latter. From

the simulated data in the previous section, it appears that the Fixed Scale Matrix

tends towards a more accurate prediction of this parameter, and so we should lean

towards concluding that the over dispersion is smaller than that what the TLHIW
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prior model is indicating.

It is worth noting that the 95 % credible intervals of the Univariate TLHIW prior

model are, on average, wider than those of the bivariate models. While it is theo-

retically predicted, this is empirical evidence of the benefits of a bivariate approach

which accounts for the interdependencies of the two measured responses.

Figures 3.13 through 3.24 represent the countywise medians, the lower bounds of

95% credible intervals, and the upper bound of 95% credible intervals of spatial ran-

dom effects terms for ”occurrence” and ”abundance” parts of the regressions. Larger

values indicate that for that particular region the geographical influence increases

the effect once adjusted for the effects of covariates. For example, in Figure 3.13, the

chance of ”zero” crime is increased by the spatial influence in Kalkaska and Roscom-

mon counties.
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Table 3.7: MI Crime Data Regression Estimates

Regression Estimates
Murder and Non-negligent Manslaughter:% zeros = 38.6

TLHIW Fixed Scale Matrix Univariate TLHIW

variable Median 95% Credible Int. Median 95% Credible Int. Median 95% Credible

α -0.2362 (-0.5413, 0.1454) -0.14125 (-0.4264 , 0.1082) 0.007 (-0.378, 0.300 )
Intercept -0.8023 (-1.715, 0.430) -0.2684 (-0.8029, -0.0026 ) 0.942 (-0.446, 1.278)

% Uemployment -0.2304 (-0.4527, -0.0197) -0.2214 (-0.3339, -0.026) -0.402 (-0.524, -0.118)
Change in Unemployment 0.3498 (-0.3627, 0.9883) 0.1698 (-0.1308 ,0.4299) -0.003 (-0.423, 0.269 )

H.S. Grad. Rate -0.065 ()-0.0814, -0.0297) -0.1044 (-0.111, -0.0869) -0.042 (-0.071 ,-0.032 )
Median Income -0.4542 (-0.7591, -0.0772) -0.1775 (-0.3892, 0.0612) -0.918 (-1.200, -0.373 )
log(Population) 1.07 (0.9235, 1.1690) 1.098 (0.9703, 1.277) 1.051 (0.740,1.277)

αnb1 0.8532 (0.478, 1.863) 3.0545 (2.153, 6.258) 1.11 (0.535, 3.083 )

Burglary Forced Entry : % zeros = 37.3

α -0.1816 (-0.4087, 0.2115) -0.0331 (-0.4019, 0.1659) 0.098 (-0.198, 0.402)
Intercept -0.5859 (-2.456 ,-0.1117) -1.847 (-2.361, -1.512) 1.274 (0.936, 1.752 )

% Uemployment -0.193 (-0.2497, -0.092) -0.2663 (-0.3716, -0.1896) -0.465 (-0.592, -0.301)
Change in Unemployment -0.6235 (-0.7914, -0.2308) -0.3301 (-0.6156, -0.003) -0.865 (-1.185 ,-0.323 )

H.S. Grad. Rate -0.05511 (-0.0805, -0.0324) -0.0342 (-0.049 -0.0247) -0.025 (-0.035, -0.017)
Median Income 0.5627 (0.3288, 1.098) -0.2483 (-0.4665, -0.0076) -0.304 (-0.696,-0.025 )
log(Population) 0.4249 (0.2800, 0.6432) 0.8604 (0.7328, 0.9840) 0.664 (0.390, 0.751 )

αnb2 0.6511 (0.4653, 1.048) 2.408 (2.127, 3.532) 0.857 (0.517, 1.556 )
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Figure 3.13: Countywise medians of spatial random effects terms for the abundance
part of the regression for the variable Murder and Non-negligent Manslaughter
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Figure 3.14: Countywise lower bounds of 95% credible intervals for spatial random
effects terms for the abundance part of the regression for the variable Murder and
Non-negligent Manslaughter
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Figure 3.15: Countywise upper bounds of 95% credible intervals for spatial random
effects terms for the abundance part of the regression for the variable Murder and
Non-negligent Manslaughter
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Figure 3.16: Countywise medians of spatial random effects terms for the occurrence
part of the regression for the variable Murder and Non-negligent Manslaughter
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Figure 3.17: Countywise lower bounds of 95% credible intervals for spatial random
effects terms for the occurrence part of the regression for the variable Murder and
Non-negligent Manslaughter

42

44

46

−90 −88 −86 −84
long

la
t

−0.5

0.0

0.5

1.0

1.5

2.0

2.5
values

Figure 3.18: Countywise upper bounds of 95% credible intervals for spatial random
effects terms for the occurrence part of the regression for the variable Murder and
Non-negligent Manslaughter
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Figure 3.19: Countywise medians of spatial random effects terms for the abundance
part of the regression for the variable Burglary Forced Entry
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Figure 3.20: Countywise lower bounds of 95% credible intervals for spatial random
effects terms for the abundance part of the regression for the variable Burglary Forced
Entry
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Figure 3.21: Countywise upper bounds of 95% credible intervals for spatial random
effects terms for the abundance part of the regression for the variable Burglary Forced
Entry
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Figure 3.22: Countywise medians of spatial random effects terms for the occurrence
part of the regression for the variable Burglary Forced Entry
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Figure 3.23: Countywise lower bounds of 95% credible intervals for spatial random
effects terms for the occurrence part of the regression for the variable Burglary Forced
Entry
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Figure 3.24: Countywise upper bounds of 95% credible intervals for spatial random
effects terms for the occurrence part of the regression for the variable Burglary Forced
Entry
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3.5 WinBUGS

Bayesian analysis has always faced the issue of large computational demands with

respect to MCMC methods. With the recent and continuing advances in processor

and random access memory technology, even personal computers have become very

fast, and these demands have become less of an obstacle. Even so, calculating poste-

rior distributions often lead to integrals with no closed-form solutions, or expressions

which are not proportional to known distributions, making sampling from MCMC

very challenging.

Then BUGS (Bayesian inference Using Gibbs Sampling; see source:

http://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/), an open

source software package, was released which allowed users to do Bayesian analysis

from knowing only the model equations, sampling and prior distributions of the

model to which the data are fitted. Later an interactive GUI Windows version of

this software, WinBUGS, was released. R2WinBUGS, a package developed for open

source statistical software R, facilitated a ‘bugs’ function to be called from within R

which allowed the sampling tools of WinBUGS to be accessed.

While there are packages that exist for R which can be used for spatial analysis,

e.g spBayes and CARBayes, and zero-inflated distribution analysis, e.g. pscl, these

are not conveniently combined for multivariate data. In particular, where CAR ef-

fects are related between multiple responses within a single observation as in the

situation of the research (See Figure 1 above) presented here.
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Neelon et al. [2012] employed WinBUGS for ZIP and ZINB models with ICAR effects.

Namely, the function mv.car(), from the open source software GEOBUGS designed

for spatial analysis, was implemented to sample from mulitvariate Guassian ICAR

random variables. The function mv.car() requires, as an input argument, along with

lattice structure information, a precision matrix (the inverse of a variance-covariance

matrix) with a Wishart prior distribution. The function is so structured that it

requires this Wishart prior to be specified by the WinBUGS built-in distribution

function dwish(). The input arguments for dwish() are degrees of freedom and scale

matrix. WinBUGS makes a restriction that both the degrees of freedom and the

scale matrix are both constants, not subject to updating. This restriction precludes

implementation of the TLHIW prior for the precision matrix used in the ICAR ef-

fects distribution as described previously.

Specification of multivariate Gaussian ICAR effects with prior and hyper priors on

the precision matrix, so as to ensure a flat posterior distribution for the correlations

between effect components as per Huang and Wand [2013], requires that the both

the ICAR effects and the multilevel Wishart prior be manually coded. While the

conditional prior distribution for ICAR effects on a lattice (see section 3 above) is a

relatively straight forward construction, that of the Wishart prior is not. The Win-

BUGS software is somewhat limited in its capacity to manipulate and sample vectors

and matrices, making the implementation of the Wishart distribution function very

challenging. This obstacle was surmounted by employing the following method of
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generating random Wishart matrices of given parameters.

Suppose n p-variate observations xi are identically normally distributed with mean

0 and variance-covariance matrix Σ, with xi perpendicular xj for i 6= j, and

S =
n∑
i=1

xix
′
i, (3.18)

then S conditioned on Σ is distributed, up to a constant, as a p×p random Wishart

matrix with degrees of freedom n and scale matrix Σ.

Choosing ν=2, n= ν + p -1 = 5, Σ to be a diagonal matrix with entries 1
2νai

,

and ai each having a hyper prior Gamma distribution with shape 1
2

and scale 1
A2 ,

the conditions of Huang and Wand [2013] above are met. This implementation of

ICAR with hyperpriors, involving a large number of random samples from normally

distributed random variables, greatly increases the run time for each iteration of this

parameterization.

Furthermore, WinBUGS interprets use of (i.e. formula involving) a particular com-

ponent of a multidimensional, block updated random variable, e.g. a matrix, as

requiring a separate updating scheme for that particular component. This requires

the use of marginal and conditional distributions for components in order to get

WinBUGS to update.
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Chapter 4

Variable Selection

The primary goal of regression is to model the response variable as a function of the

covariates as accurately as possible, while still allowing reasonable interpretation of

the results: the simpler the model, i.e. the fewer covariates, the more transparent

the interpretation. Thus it is of great interest to the investigator to find the “best”

subset of covariates for the regression model. Conventional techniques, such as for-

ward, backward and stepwise selection, based upon criteria including R2 and AIC,

are available but often suffer from “over fitting” of regression parameters, especially

in the presence of strongly competing parameters, i.e. co-linearity Casella et al.

[2010], Bae and Mallick [2004]. One method of addressing this drawback is by pe-

nalizing the likelihood function for over-estimation of parameters. A popular method

implementing this penalization is the Least Absolute Shrinkage and Selection Oper-

ator (LASSO) estimation of regression parameters. In this method, introduced by

Tibshirani [1996], the likelihood function is modified by subtracting a norm (pro-
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portional to L1 for LASSO) of the regression parameters, similar to the method of

Lagrange multipliers. In this way large numbers of regression coefficients, as well as

large estimates of regression coefficients, reduce the likelihood function. Buu et al.

[2011] develop variable selection methods for ZIP regression models including LASSO

and Smoothly Clipped Absolute Deviation penalty (SCAD). Variable selection for

the semi-parametric model, among those covariates that are initially included in the

nonparametric portion, would be desirable, as well. Li and Lian [2008] first estimate

regression coefficients and smoothing parameters through penalized maximum like-

lihood and quasi- likelihood methods, and then employ a series of F-tests on nested

subgroups of nonparametric oriented covariates, similar to backwards, forward, and

stepwise regression.

This research employs a Bayesian approach to facilitate the the penalization function

of the penalized regression technique above. The imposition of symmetric, leptokur-

tic distributions as prior distributions for the regression coefficient carries out the

‘shrinkage’ effect seen in LASSO. Trevor and Casella [2008], Yaun and Lin [2005a]

and Bae and Mallick [2004] used double exponential distributions to this end. The

sharper peak and fast tail decay of Laplace like distribution cause unimportant vari-

able coefficients to shrink to zero faster than Gaussian distributions. In a Bayesian

approach, Bayesian credible intervals are constructed by MCMC samples from pos-

terior distributions, and decisions are made based upon these intervals. Yaun and

Lin [2005b] and Hans [2010] used a mixture distribution, ‘zero-inflated,’ consist-

ing of a point mass at zero and Laplace distribution, for priors on coefficients. By
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this method they were able to arrive at more ‘definitive’ decisions about coefficients

than by Laplace alone. This research will implement the the technique of Kuo and

Mallick [1998] and Lykou and Ntzoufras [2013] and incorporate Bernoullli indicator

variables within the priors of the regression coefficients. In this way, objective deci-

sions of variable selection are based upon the posterior distribution of these Bernoulli

variables.

Extensions of LASSO include adaptive LASSO, Group LASSO, and elastic net

Casella et al. [2010] C. Leng and Nott [2012]. In adaptive LASSO, the degree

of shrinkage imposed is different for different coefficients. This allows for more flexi-

bility in the selection process. In Group LASSO, a combination of L1 and L2 norms

is used in the penalty function, categorical variable levels are treated separately.

Unlike regular LASSO, Group LASSO can select just certain levels of a categorical

variable. In elastic net, a convex combination of norms, L1 and L2, is used to im-

plement the regression penalty, see Zou and Hastie [2005]. Through studies and real

data analysis, it was shown that Elastic Net outperforms LASSO.

In this research, we will restrict ourselves to the elastic net method of penalized

regression and apply it to univariate Negative Binomial Hurdle data with spatial

random effects on a lattice. In the two part regression for each of the zero-inflated

responses, multivariate ICAR spatial random effects are used to account for the ran-

dom spatial effects.
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4.1 Parameterization

Let Yj (j=1,. . . ,n) be a response, each assumed to have a Negative Binomial Hur-

dle distribution for this research, with likelihood, conditioned on parameter collec-

tion Θ, L(Yj|Θ). Θ includes parameters upon which Yj depends, including the set

of regression coefficients β. Then the joint likelihood for the set of observations

Y={Y1, Y2, . . . , Yn} is the product of their individual likelihoods:

L(Y|Θ) =
n∏
j=1

L(Yj|Θ) (4.1)

Penalized regression, which allows for modifying which parameter sets are favored,

is realized by minimizing the sum of the negative expectation of the log likelihood

and the penalty function:

−EΘ[logL(Y |Θ)] + h(θ,λ) (4.2)

with respect to θ. As mentioned above, this resembles the use of Lagrange multi-

pliers to optimize with respect to constraints. Here h(θ, λ) is the penalty function,

with arguments θ, the collection of regression coefficients, and λ ≥0, the collection

of tuning parameters. λ controls the rate at which regression coefficients for less

important covariates approach zero, with smaller values of λ associated with coarser
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models. As λ → 0, and the amount of penalization diminishes to 0, the regression

coefficients approach their maximum likelihood estimates.

For elastic net (see Zhou and Hastie [2005]), the penalty function is

h(θ, λ) = λ1Σp−1
k=1|θk|+ λ2Σp−1

k=1θ
2
k (4.3)

In a Bayesian approach, the implementation of the above penalty scheme is accom-

plished through careful imposition of a prior distribution on the regression coeffi-

cients. For our model we impose on the regression coefficients, βk (k=1. . . ,p), an

exponential prior with the elastic net penalty function (4.4) in the the argument:

f(β,λ) ∝ exp
{
−λ1Σp

k=1|βk| − λ2Σp
k=1β

2
k

}
(4.4)

Incorporating this in the likelihood for Negative Binomial Hurdle distributed re-

sponses (3.10):

L(Y ) =

j=n∏
j=1

{
[πj]

I(Yj=0)

×

(1− πi,j)
Γ(yi,j+αnb)

Γ(yi,j+1)Γ(αnb)

(
αnb

µi,j+αnb

)αnb ( µi,j
µi,j+αnb

)yi,j
1−

(
αnb

µi,j+αnb

)αnb
I(Yi,j≥1)


× exp

{
−λ1Σp

k=1|βk| − λ2Σp
k=1β

2
k

}
(4.5)
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Taking the log of (4.5), and then taking negative expectation, we obtain an expres-

sion in the desired form of (4.2)

The expectation of the log of (4.5) with respect to the estimated parameters {π,β,µ,λ},

for Yi’s distributed as Negative Binomial Hurdle, is not available in closed form.

Therefore, some numerical method of estimation must be employed to minimize this

expression. The Bayesian approach utilizing MCMC estimates makes it an appealing

choice.

In the traditional LASSO form of penalized regression, the penalty function takes the

form of only the L1 measure portion of h(θ, λ) above. This choice of penalty function

is ineffective in certain situations, such as when a subset of predictors exhibit high

pairwise correlations, or when p� n. In the former, LASSO tends to select only one

predictor from the group, forgoing the rest, and without a clear preference among

them. For the latter, LASSO is restricted to selecting at most “n” predictors. The

addition of the L2 norm of the vector of regression coefficients, as set forth in h(θ, λ)

for elastic net, addresses both of these situations, as described by Zhou and Hastie

[2005]. First, optimization of under the elastic net penalty for data X, with sample

size = n, can be transformed to an equivalent optimization with the LASSO penalty

on augmented data X, with a sample size = n + p. In this transformed optimization

problem, X has rank p, and thus all predictor can potentially be selected. Further

more, the elastic net penalty function is strictly convex, and, as a result, assigns very
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similar coefficients to highly correlated predictors, including the same coefficient to

identical predictors in the extreme case.

As previously mentioned, the penalty functions for penalized regression can be incor-

porated into the likelihood via careful choice of prior distribution for the regression

coefficients. For Bayesian elastic net, we follow the formulation of Casella et al.

[2010]. Namely, we impose upon θ a prior distribution of a zero-mean, multivariate

Gaussian distribution with diagonal variance covariance matrix having entries of the

form τ 2((s−2
1 + λ2)−1, (s−2

2 + λ2)−1, . . . , (s−2
p + λ2)−1), where (s2

1, s
2
2, . . . , s

2
p) are in-

dependently and identically distributed exponentially distributed random variables

with mean 2λ−2
1 . Integrating out the scale terms (s2

1, s
2
2, . . . , s

2
p), the marginal distri-

butions of the regression coefficients, conditioned on τ , are as follows:

f(β,λ, τ ) ∝ exp

{
−λ1

τ 2

p∑
k=1

|βk| −
λ2

τ 2

p∑
k=1

β2
k

}
(4.6)

While this leads to a desirable unimodal posterior distribution, the full conditional

distribution is not independent of λ2.

As described in Lykou and Ntzoufras [2013], for more objective variable selection

criteria, a set of indicator variables, (κ1, κ2, . . . , κp), each identically and indepen-

dently distributed Bernoulli random variables with prior probability of success =

0.5, has been employed. This forms a new set of regression coefficients: θ?k = κkθk.

Then variable selection is performed by monitoring the posterior medians of θ?k, where
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a median value of zero means the variable is not selected.

Because of the primary interest in the novel formulation of ICAR effect using the

TLHIW, variable selection will be performed using that model only. Variable selec-

tion will be performed only on the non-zero part of the regression as the Bernoulli

part of the regression is modeled only through an intercept for simplicity. More

complex modeling of probability of zero observations, on bivariate data, is goal for

future research.

4.2 Results

The performance of the variable selection method was assessed using simulated uni-

variate Negative Binomial Hurdle distributed data on a lattice, with spatial random

effects. The simulated data were generated similarly to that in the method compar-

ison section 3.2 above, except nine covariates, each standard normally distributed,

along with an intercept was used. 15000 MCMC iterations were completed with the

first 5000 discarded as burn in. For the elastic net penalty function (35), both λ1

and λ2 were set to 0.1.

Table 9 shows results from eight separate simulations, with first three having lower

(20%-30%) percentages of zero observations and the remaining five with higher (45%
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to 65%) percentages of zero observations. Each column displays the median MCMC

values of the nine regression coefficients, β1−9. A median of ‘0’ indicates the model

did not select that variable as influential. Beside each median is a symbol indicating

the performance of the model with respect to the corresponding regression coefficient

on that particular simulation. Table 9 reflects good performance of the TLHIW Prior

model in variable selection via elastic net. Here we see appropriate selection of an

important variable, indicated with ‘+’, 91.6 % of the time (22/24). We also see

appropriate exclusion of a unimportant variable, indicated by ‘*’, 94.4% of the time

(51/54). Further more, an unimportant variable was selected, indicated by ‘!’, only

5.6% of the time (3/54), and an important variable was excluded, indicated by ‘-”,

only 8.3 % of the time (2/24). As the proportion of zeros increases, the model may

be more likely to select a non-important variable, but only slightly if at all. One out

of three for lower proportions of zeros, and two out of five for higher proportions of

zeros, are not significantly different for these sample sizes, and the model still ‘dese-

lects’ these non-important variables for the majority of time for either level of zeros

in these simulations. The proportion of zeros doesn’t appear to affect the selection

of important variables. Again, one in three for lower proportions and one in four for

larger proportions are not significantly different.
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Table 4.1: Univariate Variable Selection

UNIVARIATE VARIABLE SELECTION
A median of ‘0’ indicates variable not selected

(”+” = important variable selected)
(”*” = unimportant variable not selected)

(”!” = unimportant variable selected)
(”-” = important variable not selected)

TLHIW
MCMC median

sim1 sim2 sim3 sim4 sim5 sim6 sim7 sim8
%zero %zero %zero %zero %zero %zero %zero %zero

variable 28.1 26 28.3 52.5 60 61.6 51.2 47.2
coefficient true
β(1) −2.77 −2.66+ −2.53+ −2.66+ −2.43+ −2.69+ −2.91+ −2.6+ −2.71+
β(2) 0 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0.192! −0.048!
β(3) 0 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗
β(4) 0 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗
β(5) 0 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗
β(6) −4.3 −4.12+ −3.86+ −3.94+ −3.2+ −4.46+ −4.42+ −4.03+ −3.96+
β(7) 0 0∗ 0.26! 0∗ 0∗ 0∗ 0∗ 0∗ 0∗
β(8) −1.5 −1.25+ −1.7+ 0− −1.69+ −1.18+ 0− −1.49+ −1.16+
β(9) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗
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Chapter 5

Summary and Conclusions

The effectiveness of the bivariate ZINBH regression model with random spatial ef-

fects, as developed in this manuscript, has been demonstrated for both a standard

regression model and, univariately, in variable selection. Employing ICAR effects

to model spatial dependency can help account for random noise and spatial influ-

ences that may accompany data taken over a lattice. Using a Bayesian approach

we are able to gain ground on the complex and challenging problem of successfully

modeling zero-inflated data with spatial dependencies. Also, the Bayesian approach

allows simple and effective implementation of penalized regression, specifically elas-

tic net, as means for objective variable selection. Introducing a multi-level prior

structure into the Wishart scale matrix of multivariate normally distributed ICAR

effect, we reduce the chance of subjective bias in spatial correlations and ensure a

non-informative posterior distribution for these correlations.
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Suggestions for further research include extending the occurrence portion of the

regression beyond an intercept and include more covariates. Moreover, a more de-

tailed neighborhood structure, beyond edge sharing, could improve the sensitivity

and accountability of the spatial relationships present in the model. Also, extend-

ing the model to a non-hurdle model, where zero observations can originate from

the abundance portion of the regression, would further expand the applications of

this model. New approaches which would decrease the MCMC simulation run time

would improve the usefulness of this method. Such approaches might include run-

ning the analysis totally within R, avoiding the significant limitations of WinBUGS.

In addition, because of the complex nature of the zero-inflated models, it would be

very advantageous to have a more objective measure of the fit of the model to the

data, perhaps in the use of posterior predictive distributions. Finally, extension to a

Spatial-Temporal model would expand the use of this model in many areas including

epidemiology and economics.
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Appendix

MCMC trace plots for occurrence regression coefficients: (a), (b): the graphs show
the trace of iteration values of α for simulated data of Y1 for ZINBH under TLHIW
and fixed scale matrix prior models, respectively. (c), (d): show the trace of iteration
values of α for simulated data of Y2 for ZINBH under TLHIW and fixed scale matrix
prior models, respectively. The horizontal lines represent the true values.
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MCMC trace plots for dispersion parameters: (a), (b): the graphs show the trace
of iteration values of αnb for simulated data of Y1 for ZINBH under TLHIW and fixed
scale matrix prior models, respectively. (c), (d): show the trace of iteration values of
αnb for simulated data of Y2 for ZINBH under TLHIW and fixed scale matrix prior
models, respectively. The horizontal lines represent the true values.
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MCMC trace plots for abundance regression coefficients for simulated data of Y1

for ZINBH: 1(a), 2(a), 3(a), 4(a):the graphs show the trace of iteration values of
β1, . . . , β4, respectively, under TLHIW and fixed scale matrix prior models. 1(b),
2(b), 3(b), 4(b):the graphs show the trace of iteration values of β1, . . . , β4, respec-
tively, under fixed scale matrix prior models. The horizontal lines represent the true
values.
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MCMC trace plots for abundance regression coefficients for simulated data of Y2

for ZINBH: 1(a), 2(a), 3(a), 4(a):the graphs show the trace of iteration values of
β1, . . . , β4, respectively, under TLHIW and fixed scale matrix prior models. 1(b),
2(b), 3(b), 4(b):the graphs show the trace of iteration values of β1, . . . , β4, respec-
tively, under fixed scale matrix prior models. The horizontal lines represent the true
values.
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Posterior predictve Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 38, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 38, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 54, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 54, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 60, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 60, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 73, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 73, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 94, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 94, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 97, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 97, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 156, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 156, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 203, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 203, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 330, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 330, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 420, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 420, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 528, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 528, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 161, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 161, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 735, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 735, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 744, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 744, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 795, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 795, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y1 for ZINBH and Negative
Binomial at site 890, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y1 for
ZINBH and Negative Binomial at site 890, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 72, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 72, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 141, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 141, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 240, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 240, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 305, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 305, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 312, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 312, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 335, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 335, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 447, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 447, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 530, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 530, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 593, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 593, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictve Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 625, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 625, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictve Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 688, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 688, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 712, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 712, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 773, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 773, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 877, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 877, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 971, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 971, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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Posterior Predictive Plots for Simulated Data: (a), (c): The histograms show the
posterior predictive distribution of simulated data of Y2 for ZINBH and Negative
Binomial at site 992, respectively under two-level inverse-Wishart prior. (b), (d):
The histograms show the posterior predictive distribution of simulated data of Y2 for
ZINBH and Negative Binomial at site 992, respectively under fixed inverse-Wishart
prior. The vertical lines represent the observed values.
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MCMC trace plots for occurrence regression coefficient for MI Crime Data: (a),
(b): the graphs show the trace of iteration values of α for Murder and Non-negligent
Manslaugher for ZINBH under TLHIW and fixed scale matrix prior models, respec-
tively. (c), (d): show the trace of interation values of α for Buglary Forced Entry for
ZINBH under TLHIW and fixed scale matrix prior models, respectively.
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MCMC trace plots for dispersion parameters for MI Crime Data: (a), (b): the
graphs show the trace of iteration values of αnb for Murder and Non-negligent
Manslaugher for ZINBH under TLHIW and fixed scale matrix prior models, re-
spectively. (c), (d): show the trace of interation values of αnb for Buglary Forced
Entry for ZINBH under TLHIW and fixed scale matrix prior models, respectively.
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MCMC trace plots for abundance regression coefficients parameters for MI Crime
Data, Murder and Non-negligent Manslaughter : (a), (b): the graphs show the
trace of iteration values of β1 for ZINBH under TLHIW and fixed scale matrix prior
models, respectively. (c), (d): show the trace of interation values of β2 for ZINBH
under TLHIW and fixed scale matrix prior models, respectively.(e), (f): show the
trace of interation values of β3 for ZINBH under TLHIW and fixed scale matrix prior
models, respectively.
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MCMC trace plots for abundance regression coefficients parameters for MI Crime
Data, Murder and Non-negligent Manslaughter : (a), (b): the graphs show the
trace of iteration values of β4 for ZINBH under TLHIW and fixed scale matrix prior
models, respectively. (c), (d): show the trace of interation values of β5 for ZINBH
under TLHIW and fixed scale matrix prior models, respectively.(e), (f): show the
trace of interation values of β6 for ZINBH under TLHIW and fixed scale matrix prior
models, respectively.
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MCMC trace plots for abundance regression coefficients parameters for MI Crime
Data, Burglary Forced Entry : (a), (b): the graphs show the trace of iteration values
of β1 for ZINBH under TLHIW and fixed scale matrix prior models, respectively. (c),
(d): show the trace of interation values of β2 for ZINBH under TLHIW and fixed
scale matrix prior models, respectively.(e), (f): show the trace of interation values of
β3 for ZINBH under TLHIW and fixed scale matrix prior models, respectively.
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MCMC trace plots for abundance regression coefficients parameters for MI Crime
Data, Burglary Forced Entry: (a), (b): the graphs show the trace of iteration values
of β4 for ZINBH under TLHIW and fixed scale matrix prior models, respectively. (c),
(d): show the trace of interation values of β5 for ZINBH under TLHIW and fixed
scale matrix prior models, respectively.(e), (f): show the trace of interation values of
β6 for ZINBH under TLHIW and fixed scale matrix prior models, respectively.
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Posterior Predictive Plots for Michigan Crime Data: Murder and Non-negligent
Manslaughter (a), (c), and (f): The histograms show the posterior predictive distri-
bution of the data for ZINBH at sites 4, 8 and 10 respectively, under TLHIW prior.
(b), (d), and (f): The histograms show the posterior predictive distribution of the
data for ZINBH at sites 4, 8 and 10 respectively, under fixed inverse-Wishart prior.
The vertical lines represent the observed values.
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Posterior Predictive Plots for Michigan Crime Data: Burglary Forced Entry. (a),
(c), and (f): The histograms show the posterior predictive distribution of the data
for ZINBH at sites 12, 56 and 81 respectively, under TLHIW prior. (b), (d), and (f):
The histograms show the posterior predictive distribution of the data for ZINBH at
sites 12, 56 and 81 respectively, under fixed inverse-Wishart prior. The vertical lines
represent the observed values.
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