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ESTIMATING IBNR RESERVES
WITH ROBUST STATISTICS

Daniel Cheung, Ph.D.

Western Michigan University, 1997

There is often a considerable time lag between an incurred of an accident, such as 

medical malpractice or product liability, and the time it is reported to the insurance 

company. These Incurred But Not Reported (IBNR) losses need to be predicted in order 

to determine the necessary loss reserves. Many actuarial methods have been developed 

for IBNR reserves estimation. However, none of the methods being used for loss 

reserving is robust to outliers, nor do they provide adequate statistical inferences to 

support the actuarial decisions. The rank-based method proposed in this thesis is robust 

to outliers, and provides statistical inference for testing hypotheses. This rank-based 

method also calculates the R2 , an indicator of goodness of fit, and approximates the 

standard error for calculating the confidence interval of IBNR.
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CHAPTER I

LOSS RESERVING

1.1 Introduction

One of the major tasks that an actuary routinely performs is Loss Reserve 

Analysis. The objective of Loss Reserve Analysis is to estimate the financial liability of 

an insurance company. Insurance companies rely on the results of Loss Reserve Analysis 

to make important financial decisions such as investment, pricing, and corporate planning. 

The insurance commissioner of each state relies on the results of Loss Reserve Analysis 

to determine the financial strength of an insurance company. If an insurance company is 

found to be inadequately reserved, it is not allowed to continue selling insurance in that 

state. Insurance companies also need to submit their results of Loss Reserve Analysis to 

the state insurance commissioner’s office in order to request any insurance price increase. 

Outside investors also use the results of Loss Reserve Analysis to determine the financial 

strength of an insurance company for investment purposes. In short, results of Loss 

Reserve Analysis are major instruments for making financial decisions concerning an 

insurance company.

Some claims tend to have a short reporting lag, i.e. the time between an accident's 

occurrence and the date reported to the insurance company. With the experiences of 

claim adjusters and with a large number of similar claims, it is relatively easy to estimate

1
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the reserves for reported claims. However, some claims tend to have much longer 

reporting lag, as long as 5 or more years. In fact, the reporting lags for claims such as 

medical malpractice or product liability can be longer than 10 years. Claims Incurred But 

Not Reported are generally referred to as IBNR claims in the actuarial profession. 

Estimating the loss reserves needed for the IBNR claims is always a great challenge to 

actuaries.

The most commonly used method for estimating IBNR claims reserve needed is 

called the Chain Ladder Method which is taking the averages of loss development 

patterns from the past to predict the future loss incurred development. The advantage of 

the chain ladder method is its simplicity of the estimation process and relative ease of 

interpreting its results. Anyone who can perform simple arithmetic can complete the 

IBNR reserve estimation.

While I was working as a loss reserve analyst at The St. Paul Companies, one of 

the largest casualty property insurance companies, the chain ladder method was the main 

loss reserving method the company relied on. While doing loss reserve analysis using the 

chain ladder method, I frequently experienced frustrations as follows:

One major problem of the Chain Ladder Method is that it heavily depends on the 

average of the loss development pattern from the past. Since it heavily depends on the 

average of the past it is not robust to outliers. If there is one very large outlier in the past 

history, it can possibly skew the prediction significantly. This method also assumes that 

the losses incurred for accident years are independent. It measures only the loss 

development pattern within each accident year. It does not evaluate any trends for loss
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incurred along the accident years. If there is a skewed loss development pattern caused 

by outliers and is multiplied to the accident year's latest incurred loss data, it can 

tremendously over or under predicts the IBNR reserves for that accident year.

Another deficiency of the Chain Ladder Method is it does not use any statistical 

procedures to predict the IBNR reserve needed. Results of the method can not be tested 

with any statistical tests. Without the values of dispersion, estimate of scale, standard 

errors, or R2 analysts who use this method are not able to determine the reliability of the 

results nor can they do any hypotheses testing. All they can do is make comments like “it 

looks good” or “it doesn’t look good.”.

Since the chain ladder method relies on analysts to select loss development factors 

based on averages, the results of the method would depend on many human factors. 

Results of the loss reserve analysis tend to vary among analysts. Since results are not 

estimated statistically, even if it was analyzed by one analyst, the results could still be 

varied by human factors.

In addition, if the same loss reserve estimation for each line of business is needed 

to be done routinely every 3 or 6 months, why not develop a statistical routine to estimate 

the results automatically and allow the loss reserve analysts to monitor the estimation 

results only.

Over the years, other statistical methods have been developed to estimate IBNR 

reserves with different forms of regression analyses. One that is commonly known is 

called De Vylder's Least Square Method (1978). De Vylder's Least Square Method 

(DVLS) takes a triangular data matrix to estimate the loss incurred patterns in two
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directions, following the loss development years and the accident years, with least square 

estimations. This method requires iteration to find the unique solution. DVLS method 

generally converge and does not take many iterations to find the unique solution.

One deficiency in this method is it is not a robust procedure. Since it relies on 

least square estimation, if there is one very large outlier, it will skew both the loss 

development pattern and the ultimate loss incurred. In fact, this method is so sensitive 

to outlier that only one large outlier is sufficient to generate unacceptable results. In 

addition, this method is not able to test the results of the estimation. Hence, analysts are 

not able to determine the goodness of fit nor testing any hypotheses.

Since this method relies on least square estimation, it requires a relatively large 

data set to produce reliable results. Somehow it is not possible that an actuary will always 

be guaranteed to have a large data set to perform Loss Reserve Analysis. Least square 

estimation on small data sets are more effected by an outlier than larger data sets.

Throughout the years that I was doing loss reserve analysis for The St. Paul 

Companies, DVLS method had been used often to predict IBNR reserves needed. As for 

the reasons stated above, its results were generally acceptable when estimating IBNR 

reserves for loss data with stable distribution and free of outlier such as Workers’ 

Compensation or Personal Property Damage. But when it was used to estimate IBNR 

reserves for loss data with unstable or long tail distributions such as Product Liability or 

Professional Liability, DVLS method did not generate acceptable results.

Other published statistical methods for Loss Reserve Analysis tend to have the 

same problems the DVLS method has. They are not robust to outliers, and require large
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data sets in order to produce reliable results. They also do not provide statistical 

inference for testing hypotheses.

For those line of businesses where the existing loss reserving methods are not able 

to accurately estimate the IBNR reserves, insurance companies can possibly over reserve 

or under reserve them. If one line of business is over reserved, consumers are over 

charged; if it is under reserved, consumers are not getting the proper protection. That is 

a lose/lose situation for consumers. This is why the state insurance commissioner requires 

insurance companies to set the reserve for each line of business adequately. However, if 

there is not a loss reserving method that helps the state insurance commissioner to 

monitor those line of businesses with unstable distributions or with outliers, insurance 

companies can easily take advantage of the situation. There were numerous reported 

incidences that some insurance companies were found guilty of over charging consumers 

for policies such as medical malpractice or professional liability and consequently were 

forced to return premiums back to their customers. Without a loss reserving method 

accurately predicts the loss development, those violations are usually don’t get caught for 

many years. Even if a insurance company is forced to return premiums back to its 

customers, the insurance company can still benefit from the extra investment income from 

the extra loss reserves for few years. In another word, a robust statistical loss reserving 

method which accurately estimates the loss reserves for all lines of businesses can protect 

insurance companies from under or over reserve, and it can protect consumers from being 

over charged as well.

The objective of my doctoral thesis is to develop a Non-Parametric statistical
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procedure to estimate the IBNR reserve needed which is robust to outliers and unstable 

loss development patterns. The advantages for this proposed procedure are as follows:

1. The estimation is asymptotically distribution free.

2. It is robust to outliers and robust to unstable loss development patterns.

3. It does not require a large data set in order to produce reliable results.

4. It provides statistical inference for testing hypotheses. This means actuaries 

who use this procedure could determine if the estimates are statistically acceptable.

5. It calculates the R2, an indicator of goodness of fit.

6. It approximates the standard error for IBNR and hence, a confidence interval 

for IBNR can be calculated.

7. If the estimates are tested to be statistically acceptable, they can be used in 

further actuarial prediction. Estimates can also be used in other loss reserving methods 

such as chain-ladder method or Bonheutter-Ferguson method.

The fundamental assumption for this proposed procedure is that the amount of 

claims incurred in a particular development year and a particular accident year is the 

product of two unknown factors. The two factors are the total amount of claims incurred 

for that particular accident year and the loss development factor for that particular 

development year. Let Yy be the incurred loss for the ith accident year and the jth 

development year. Let Xj be the total incurred loss for the ith accident year and Pj be the 

loss development factor for the jth development year. Then
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The unknown quantities of Xj and Pj are estimated using rank-based estimation. 

As it is stated above, the rank-based estimation is robust to outliers and robust to unstable 

loss development patterns. In addition, the rank-based estimation calculates the 

dispersion and scale values which can be used for testing hypotheses, goodness of fit, and 

estimating confidence interval for IBNR. A few hypotheses testings are suggested to 

determine the reliability of the estimates.

The results of this rank-based estimation will be compared with the results 

estimated by using the Chain Ladder, DVLS methods, and other methods for estimating 

IBNR reserves. The objectives of the comparison are:

1. The robust estimation of IBNR reserves will be very close to the estimations 

calculated by the Chain Ladder and DVLS methods if the data set has stable loss 

development pattern.

2. The estimation calculated by this robust procedure will be far superior 

compared to the estimations of other classical methods if there is outlier within the data 

set.

The performance of these loss reserving methods are measured based on the 

stability of the estimation for various types of data sets, data sets with stable loss 

development pattern as well as data sets contain outlier and contaminated loss incurred 

data.

Casualty Actuarial Society sponsors a fall conference each year called Loss 

Reserve Seminar. Actuaries throughout the North America will get together to discuss 

any issues related to loss reserving. The theme for this year’s conference is Measuring
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the Performance of Reserving Methods. This thesis has been submitted to the conference 

committee and was chosen to be presented at the conference in September.

1.2 Loss Reserve Analysis

One of the major responsibilities for a casualty actuary is to estimate the 

provisions of financial liabilities for an insurance company to its policyholders. All 

insurance companies are required to set up adequate reserves to pay for claims which 

have been incurred and reported as well as those which have been incurred but not yet 

been reported. The main purpose of these reserves is to ensure the protection of insured 

so that if a claim is filed to the insurer, there will be sufficient funds to pay the claimants 

despite of a first or third party claims.

The insurance commissioner of each state requires that each insurance company 

which does business in that state to provide a financial statements each year to prove that 

the insurance company has adequate reserves. The financial statement which is filed with 

the state insurance commissioner's office usually need to be supported by a certified 

external auditor to ensure the insurance company has adequate reserves, not under or 

over reserves.

It is neither difficult nor is it the actuary's responsibility to estimate the financial 

liability of a claim incurred and reported to the insurance company. If a claim is reported 

to the insurance company, a claim adjuster will estimate the total liability for that claim 

when the claim is closed. A claim can not be closed until all financial responsibilities have 

been fulfilled. That is why some workers' compensation claims or product liability claims
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remain open for many years. The summation of the estimates for all claims incurred in 

one year (Accident Year) and are reported is called total case reserves. Since case 

reserves are estimated case by case and the facts for each individual claim are known to 

the claim adjuster, it is not difficult to determine a relative adequate reserves for all claims 

reported. The difficult part and this is the responsibility of an actuary to estimate the 

adequate reserves for those claims which have been Incurred But Not Reported (IBNR). 

Since the IBNR reserves are not estimated case by case, it is also referred to as the non­

case reserves.

Loss reserving is the term used to denote the actuarial procedures of estimating 

the amount of case and non-case loss reserves.

1.3 Importance of Accurate Loss Reserves

It was mentioned above that all insurance companies are required to show 

evidence of adequate loss reserves, not over or under reserves. If an insurance company 

is found to be under reserve, that means the financial strength of this company is 

questionable and it may not have enough reserves to pay for all the claims reported and 

the claims incurred but not reported. Insolvent insurance companies are not be allowed 

to continue to sell insurance policies to the public. Because it does not have the financial 

strength to keep its contractual obligations to its policyholders.

In a simplified term, the profit of an insurance company is calculated as the total 

income minus the total expenses. Total expenses includes the loss reserves. Under 

estimating the loss reserves leads to under estimating the expenses. This means its profit
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earning could possibly be over stated. Insurance companies share their profits by paying 

dividends to their shareholders if they are stock owned companies, or to their 

policyholders if they are Mutual companies (A mutual insurance company is owned by its 

policyholders). An under reserve insurance company tends to over pay its shareholders 

or policyholders with dividends. Over paying of dividends would further threaten the 

solvency of the insurer.

On the other hand, if an insurance company is found to be over reserved, its profit 

earnings are possibly under stated. This means its shareholder or policyholders are under 

paid with dividends. One of the major factor that pricing actuaries use to determine the 

insurance premium is the profit earnings for that particular line of business. If the profit 

earning for that particular business is under stated, the insurance premium for that 

business could possibly be over charged. That is the reason why an insurance company 

that wants to file for rate increase at the state insurance commissioner's office, has to 

submit along with the loss reserves information for that line of business.

A major part of income for an insurance company comes from investment income. 

Premium received from policyholders is not simply put in bank waiting to pay losses. 

Portion of the premium received is reserved for operating expenses and claims reported. 

The remaining premium received will be placed in different types of investments. Some 

investments are short term and some are long term. Some high return investments, such 

as real estate, do not allow assets to be liquidated for a long period of time. Investment 

department for an insurance company depends heavily on a loss pay out schedule 

estimated by the actuarial department. Under or over estimating the ultimate loss reserves
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can distort the potential investment income for an insurance company. In order for the 

investment department to manage the company's financial portfolio, actuary needs to 

predict the loss paid out schedule for each line of business accurately.

1.4 IBNR Reserves

Suppose a surgeon performed an procedure for his patient in June of 1990. His 

patient died in July of 1993 and it was determined that the cause of death was the 

surgeon's negligence in that particular procedure. This accident was reported to the 

insurer in September of 1993. Though this claim was unknown to the insurer at year end 

1990, according to the principle of actuarial accounting, the financial liability of this claim 

should have been recognized in the 1990 financial statement, the year that this accident 

incurred. The estimated amount of liability for all these incurred claims which are not 

reported to insurer as of the date of financial statement is called the IBNR reserves.

Additional to estimating the non-case reserves, actuaries also need to estimate the 

change of case reserves. Some reported claims could possibly be over reserved due to 

unexpected early claim closing, salvages, or subrogation. On the other hand, some 

reported claims could also be under reserved due to unforeseeable legal liabilities. To 

better illustrate the robust procedures for estimating IBNR reserves, throughout this 

thesis, IBNR reserves means non-case reserves plus the change of case reserves.

As the simple illustration above has shown, it is not easy to determine the adequate IBNR 

reserves because the facts and figures for those claims are unknown to the insurer. 

Various methods have been used by actuaries to estimate the IBNR reserves. In general
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IBNR reserves are estimated based on historical claims paid out amounts and their paid 

out pattern. The most commonly used method is called Chain Ladder Method which is 

based on averages of loss development factors. Other methods are based on statistical 

analyses such as regression analyses, time series, credibility theory, and compound 

Poisson distributions.

IBNR reserves are estimated by different accounting periods such as accident 

year, report year, calendar year, policy year, or fiscal year. Most insurance companies 

analyze their loss reserves annually, but some would analyze their reserves quarterly, 

or semiannually. Loss data can be categorized into 3 types: direct, net, and ceded 

losses. Losses are analyzed either gross or net of salvages and subrogation. Actuary 

group loss data of different lines of businesses with similar loss development pattern 

into a larger data set to increase the credibility of the analysis. These groups are 

typically referred to as: (a) Medical Malpractice, (b) Professional Liability, (c) 

Workers' Compensation, (d) Bonds, (e) Personal Liability, (f) Commercial Liability, 

(g) Ocean Marine, (h) Inland Marine, (i) Property Damage, (j) Excess, and (k) 

Reinsurance.

Table 1 displays a typical claims data set which represents the liability claims 

incurred over a five-year period, 1990-1994 in units of thousands of dollars. Similar 

data sets are used by actuaries to estimate the IBNR reserves. Throughout this thesis, 

the data set of Table 1 will be used to illustrate the various methods presented.

Table 1 indicates that $250,000 incurred losses (paid losses plus case reserves) 

corresponding to accidents incurred and reported between 1/1/1990 and 12/31/1990.
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Table 1 

Cumulative Incurred Losses

13

Loss
Development

Year

Accident Year

1990 1991 1992 1993 1994

1 250 267 298 289 300

2 550 582 642 601

3 667 702 766

4 717 757

5 733

$550,000 incurred losses for the second loss development year for accident year 1990 

represented the cumulative paid losses plus case reserves for accidents incurred during 

1990 and reported before year end 1991. As the data set above indicates, loss 

development gradually decreases in the fourth and fifth years. For some insurance 

liabilities such as auto liability or property damage, the loss development would last for 

only 3 or 4 years. However, other insurance liabilities could possibly have further loss 

development incurred beyond the fifth loss development year. In fact, the loss 

developments for some insurance liabilities such as workers' compensation, product 

liability, and professional liability could extend well beyond 10 or 15 years. It is very 

important to have data sets which cover the entire loss development for that particular 

line of business.

The triangular shape of the data set indicated that the loss incurred data was 

collected at year end 1994 and it was assumed there were no further loss information
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was available beyond 1994. Therefore, for accident year 1994, only one, the first loss 

development year incurred, is recorded. And for accident year 1993, 2 loss 

development years, the first loss development year which is 1993 and the second loss 

development year which is 1994, are recorded. Since the recorded loss incurred 

represents the total loss development for each accident year, the loss incurred data 

increased along with the loss development year. Without loss of generality, it is 

assumed there are only five years of loss development for this particular insurance 

liability.

Table 2 displays the incremental loss incurred for the data set displayed on 

Table 1. Loss data for each cell represents the losses paid plus the change of case 

reserves within that particular loss development year for one particular accident year. It 

is assumed that the error for each of the incremental loss incurred data is identically and 

independently distributed.

The actuarial work of estimating IBNR is to estimate each of the lower 

triangular cells accurately based on the recorded loss incurred activities. For accident 

year 1994, there is only one loss incurred data recorded which makes the predicted 

IBNR reserves for the following loss development years very sensitive to this loss 

amount. It is assumed that the cumulative or incremental development pattern for paid 

or incurred losses are stable across the accident years. It is also assumed that the paid 

and incurred losses grow in a stable pattern along the accident years due to inflation and 

the growth of business. This means that each of the lower triangular cells, for 

example, the second loss development year for accident year 1994, can be estimated
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based on the previous accident year's loss development patterns and the growth 

experience for this business along the accident years.

Table 2 

Incremental Incurred Losses

Loss
Development

Year

Accident Year

1990 1991 1992 1993 1994

1 250 267 298 289 300

2 300 315 344 312

3 117 120 124

4 50 55

5 16
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CHAPTER II

TRADITIONAL METHODS OF IBNR ESTIMATION

2.1 The Chain Ladder Method

Many actuarial methods have been published for estimating IBNR reserves. 

Among those methods, the chain ladder method is the most commonly used in the 

actuarial profession. It is based on the assumption that loss development patterns for all 

accident years are stable. Age-to-age loss development factor for i to i+1 development 

years is the ratio of the cumulative loss incurred for the i+1 loss development year to the 

cumulative loss incurred for the i development year. An age-to-age loss development 

factor for each i to i+1 development years are selected to predict future loss incurred 

development. The selected age-to-age loss development factors are picked based on the 

averages or weighted averages of loss development factors across the accident years. 

Predicted incurred are calculated by multiplying the selected age-to-age loss development 

factors to the latest loss incurred for each of the accident year.

2.2 Numerical Illustration for the Chain Ladder Method

Chain ladder method can be easily illustrated by using the data set displayed in 

Chapter I.

16
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Table 3 

Cumulative Loss Incurred

17

Loss Accident Year
Development

Year 1990 1991 1992 1993 1994

1 250 267 298 289 300

2 550 582 642 601

3 667 702 766

4 717 757

_________ 5 _ _ _ 733

Table 3 displays the losses incurred between accident years 1990 and 1994. Age- 

to-age loss development factors are then calculated based on the data set displayed above. 

The age-to-age loss development factor for loss development year 1 to loss development 

year 2 for accident year 1990 for instance is calculated at 2.20 which is the ratio of 550 

to 250. Age-to-age loss development factors for the other accident years are calculated 

in the same manner.

Table 4 displays age-to-age loss development factors for the data set displayed on 

Table 3. Table 5 displays the averages and the weighted averages for age-to-age loss 

development factors across the accident years. Selected age-to-age loss development 

factors are then picked to calculate the future incurred losses for each accident year. The 

most recent incurred loss amount for each accident year is used to predict the future 

incurred loss by multiplying it to the selected age-to-age loss development factors.
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Table 4

Age-to-age Loss Development Factors

Loss
Development

Year

Accident Year

1990 1991 1992 1993 1994

1 -2 2.200 2.180 2.154 2.080

2 -3 1.213 1.206 1.193

3 -4 1.075 1.078

4 -5 1.022

Table 5

Selected Age-to-age Loss Development Factors

Loss
Development

Year

Loss Development Factors

Average Weighted
Average

Selected

1 -2 2.153 2.151 2.152

2 -3 1.204 1.203 1.204

3 -4 1.077 1.077 1.077

4 -5 1.022 1.022 1.022

As the selected age-to-age loss development factors show, picked with reference 

to the average and weighted average of recorded incurred loss development, it is believed 

that the incurred loss grows 115.2% from the development year 1 to development year

2. And continues to grow 20.4% from development year 2 to development year 3. For 

accident year 1994, the current incurred loss recorded is $300,000. If the current
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incurred loss applies to the selected age-to-age loss development factor, the predicted 

incurred loss for development year 2 for accident year 1994 calculates as 300 x 2.152 = 

645.6. The predicted incurred loss for development year 3 calculates as 645.6 x 1.204 

= 777.3. The same calculation process continued will reflect an 856 incurred loss for 

development year 5 for accident year 1994. It is assumed that there is no more 

development after the 5th loss development year. This implies the predicted IBNR 

reserve for accident year 1994 is 856 - 300 = 556. Predicted IBNR reserves are estimated 

with the same process for all other accident years prior to 1994.

Table 6

Predicted Cumulative Loss Incurred

Loss
Development

Year

Accident Year

1990 1991 1992 1993 1994 Total

1 300

2 601 646

3 766 724 777

4 757 825 779 837

5 733 774 843 796 856

Total IBNR 
Reserves 0 17 77 195 556 845

Table 6 displays the predicted loss incurred calculated based on chain ladder 

method. Table 6 also displays the predicted IBNR reserves for all accident years. IBNR 

reserves may also be calculated for individual development years of each accident year to
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estimate the IBNR reserves needed for future calendar years.

Table 7 displays the predicted IBNR reserves for each particular accident year 

which is then used to determine if this insurance company is adequately reserved. The 

total IBNR reserves estimated using the chain ladder method for the 5 accident years is 

845. Table 7 also displays the IBNR emerge schedule for each future calendar year. As 

the section Importance of Accurate Loss Reserve in Chapter I stated, investment 

department requires information similar to that displayed in Table 7 in order to make 

proper investment decisions. Therefore, an accurately predicted Table 7 can improve the 

potential income of an insurance company.

Table 7

Calendar Year IBNR Reserves

Accident Year
Calendar Year

1990 1991 1992 1993 1994 Total

1995 0 17 59 123 346 545

1996 0 0 18 55 131 204

1997 0 0 0 17 60 77

1998 0 0 0 0 19 19

Total IBNR 
Reserves 0 17 77 195 556 845

As the illustration has shown, the basic objective of IBNR reserve estimation is 

to predict the lower triangular loss incurred data based on the upper triangular loss 

incurred data.
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2.3 Deficiencies of the Chain Ladder Method

The primary reason that the chain ladder method is the most commonly used 

method for IBNR reserve estimation is its relatively simple calculation method and easy 

comprehension. It simply predicts IBNR reserves based on ratios of the incurred loss for 

one development year to the incurred loss from a previous development year. Age-to-age 

loss development factors which are used to predict future incurred losses are selected 

from either the average or weighted average of the loss incurred ratios from one 

development year to its previous year. This method does not require sophisticated 

computer software to do the estimation. Nor does it need any complicated statistical 

procedures to predict IBNR reserves. Actuaries can usually accomplish IBNR estimation 

by using a personal computer equipped with spreadsheet software.

Despite its simplicity, the chain ladder method has two major problems. The first 

is the age-to-age loss development factors that are used to predict fUture incurred losses 

are selected based on average or weighted average of loss development ratios. This 

means if there is an outlier, a very large loss year for one accident year, it would generate 

an extremely large loss development ratio. The average loss development ratio for that 

development year could possibly be extraordinarily large. If an exceptional large age-to- 

age loss development factor is selected, the predicted incurred losses for that particular 

development year for all accident years will be over estimated.

Breakdown point is defined to be the maximum proportion, e, of gross outlier 

contamination that a data set can tolerate without breaking down the estimating
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procedure. Since the chain ladder method heavily depends on averages or weighted 

averages, it takes only one outlier, a data point close to infinity to break down the 

method. This implies that the breakdown point for the chain ladder method is equal to

0.

The second deficiency this method has is it does not have any statistical properties. 

It does not measure the variance for the loss development ratios between accident years. 

This means it is not possible to perform any statistical tests in evaluating the reliability of 

the predictions using this method.

In addition, selected age-to-age loss development factors are picked based on 

averages, it does not reflect any loss incurred trends along the accident years. For 

instance, due to advanced technical claim handling using latest electronic aides such as 

portable personal computers, claims incurred in recent accident years can be paid out or 

closed earlier. This would lead to larger losses incurred for the first and second 

development years and smaller loss development for the cumulative incurred in later 

development years. This means loss development ratios for the first and second 

development years should decrease following the accident years. If the average loss 

development ratios are selected as the age-to-age loss development factors for predicting 

the future loss incurred, they would be too large in relation to the loss development ratio 

trends. Application of over exaggerated loss development factors to the initial loss 

incurred for the most recent accident year, which is already larger than prior accident 

years' due to the increasing trends, the predicted IBNR reserve for the most recent 

accident year will consequently be excessively too large.
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2.4 De Vylder's Least Squares Method

The fundamental assumption of the De Vylder's Least Squares Method (DVLS), 

Estimation of IBNR Claims by Least Squares (1978), is that the amount of claims 

incurred in a particular development year in a particular accident year is the product of 

two unknown factors. The two factors are the total amount of claims incurred for that 

particular accident year and the loss development factor for that particular development 

year. Let Yg be the incurred loss for the ith accident year and jth development year. Let 

X; be the total incurred loss for the ith accident year and P, be the loss development factor 

for the jth development year.

Y, = X . P j  (2)

The unknown quantities of X; and Pj are estimated from the solution to the 

following argument:

n m-i~ 1
Minimize £  £  (Y  -X,P f  (3)

1 = 1 J - 1

where n is the number of accident years and m is the number of development years.

If Xj and Pj are the solution for (3), then
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* :  = c x fi

p '  = L  ( c>0 ) 
' c

24

(4)

are also solutions to (3), since X; P, = X/ ?■. This means that the argument (3) is 

indeterminate. The indetermination of argument (3) can be eliminated by introducing a 

constraint such as

E p, -  '• (5)
y = l

This constraint will force (3) to have one solution

Let c = 53 Pr
7  =  1

X* = cXp (6)

c

2.5 Iterative Solution for the Minimization

The partial derivatives in X; and P, for equation (3) lead to the following 

equations:
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These equations can be solved iteratively. It is convenient to start with

as the initial values for P/s in (7) to obtain the values for X/s. Using the calculated values 

o f  X/s to obtain the values of Pj in (8) and then recalculate X/s and P/s again until the 

solutions converge.

2.6 Model With Inflation Effects

In the model with inflation effects, the Y/s are approximated by expressions Xp 

Pj, and U where U is the appropriate incurred loss inflation index. The unknown 

quantities of X;, Pj5 and U can be estimated by solving the following argument:

n m-i^l

Minimize £  £  (T -  X f U " ' ) 2 (10)
/=i r - \

In practice, the incurred loss inflation index U is usually pre-determined. In order 

to solve argument (10), we need to first solve argument (3) by using the iteration method
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mentioned above. Let X/ and P,’ be the solution of (10) and taking into account of 

indetermination,

c = E p,
y=i

cX[ 
X  = — -

U ‘

p!p. = —t -

(i i)

cU J

Then X;, Pj, and LP+J are the solutions of argument (10).

2.7 Numerical Illustration for De Vylder’s LS Method

Using the same data displayed in Table 3 to estimate the ultimate loss incurred, 

Xj's, and the loss development factors, P/s, with the assumption that the inflation index 

for those accident years are 1.

Table 8 displays the incremental loss data for the loss data displayed in Table 3. 

The solutions calculated by iteration method are as shown in Table 9.

With the estimated value of X; and Pj, future incurred losses can be estimated as 

shown in Table 10.

The total IBNR reserves estimated for all accident years using the DVLS method 

is 645 which is significantly lower than the total IBNR reserves estimated using the chain 

ladder method.
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Table 8 

Incremental Loss Incurred

Loss
Development

Year

Accident Year

1990 1991 1992 1993 1994

1 250 267 298 289 300

2 300 315 344 312

3 117 120 124

4 50 55

5 16

Table 9

Estimated X's and P's Using DVLS

Accident Year 1990 1991 1992 1993 1994

Ultimate Incurred 697 701 733 654 671

Development Year 1 2 3 4 5

Portion Paid 0.368 0.404 0.146 0.063 0.019

Age-to-age loss development factors for this data set can be calculated with the 

estimated P/s.

Fk = J-k— , where k = . (12)

Fk is the age-to-age loss development factor for development year k to k+1. The
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calculated age-to-age loss development factors for this data set are shown in Table 11.

Table 10 

Predicted IBNR Reserves

Loss
Development

Year

Accident Year

1990 1991 1992 1993 1994

2 271

3 95 98

4 46 41 42

5 13 14 12 13

Total IBNR 
Reserves 0 13 60 148 424

Table 11

Loss Development Factors Comparison

Development Year
Loss Development Factors

DVLS Chain-Ladder

1 -2 2.098 2.157

2 -3 1.189 1.204

3 - 4 1.069 1.077

4 - 5 1.019 1.022

The calculated age-to-age loss development factors by the DVLS methods are 

very close to the age-to-age loss development factors selected based on average on age- 

to-age loss development ratios in the chain ladder method. However, the selected age-to-
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age loss development factors for the chain ladder method are consistently larger than the 

calculated development factors for the DVLS method. This is the reason the estimated 

IBNR reserves for the chain ladder method is significantly larger than the estimated IBNR 

reserves using the DVLS method.

2.8 Deficiencies of De Vylder's Least Squares Method

De Vylder's least squares method estimates the X/s, loss incurred ultimates, and 

the P/s, incremental loss development factors, that minimizes the argument

n m

E E ( V  W -  <13>»=i j -I

If there is one outlier in the data set, the whole estimation will be changed. If the 

outlier is significantly larger than the other loss data, the estimated incurred ultimates and 

so are the estimated incremental loss development factors will be distorted so much that 

could generates unreasonable predicted future incurred losses. This implies the 

breakdown point for this method is equal to zero.

Table 12 displayed a contaminated data set that one loss incurred data in Table 8 

is replaced with an unusual large number. The incremental loss incurred for the 2nd loss 

development year for accident year 1992 has been changed from 344 to 1000. Future 

incurred losses and IBNR reserves were then estimated with De Vylder's least squares 

method.
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Table 12 

Contaminated Data Set

30

Loss
Development

Year

Accident Year

1990 1991 1992 1993 1994

1 250 267 298 289 300

2 300 315 1000 312

3 117 120 124

4 50 55

5 16

Estimating the IBNR reserves for the data above with De Vylder's Least Squares 

Method will generate the following results shown in Table 13.

Table 13 

Distorted DVLS Estimates

Accident Year 1990 1991 1992 1993 1994

Ultimate
Incurred

W/O Outliers 697 701 733 654 671

W Outliers 610 612 1466 553 943

Development Year 1 2 3 4 5

Portion
Paid

W/O Outlier 0.368 0.404 0.146 0.063 0.019

W Outlier 0.262 0.550 0.095 0.072 0.022

With the estimated value of X; and Pj, future incurred losses can be estimated as 

in Table 14.
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Table 14

Distorted DVLS Predicted IBNR Reserves

Loss Accident Year
Development

Year 1990 1991 1992 1993 1994

2 519

3 52 89

4 106 40 68

5 13 32 12 20

Total IBNR 
Reserves 0 13 138 104 696

The total IBNR is estimated as 951. As the tables above have shown, just one 

outlier significantly changes the estimated IBNR reserve needed. In Addition, the 

estimated loss development factors were also changed tremendously due to that one 

outlier as shown in Table 15.

This simple example demonstrates that the De Vylder's Least Squares method is 

not robust to outliers.

Compared to the incurred ultimates estimated by chain ladder method, the results 

estimated by this method are not sensitive to the accident year incurred trend. By looking 

at the data triangle, Table 16, one could easy see that there is an increasing trend for the 

incurred losses along the accident year. However, the ultimate incurred losses for 

accident years 1993 and 1994 estimated by the De Vylder’s least squares method, as 

Table 17 shown, are smaller than the one for accident year 1990 which is inconsistent
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with what the data triangle shows.

Table 15

Estimated Loss Development Factors Comparison

Development Year
Estimated Loss Development Factors

Without Outlier With Outlier

1 -2 2.098 3.012

2 -3 1.189 1.117

3 -4 1.069 1.080

4 -5 1.019 1.022

Table 16 

Incremental Loss Incurred

Loss Accident Year
Development

Year 1990 1991 1992 1993 1994

1 250 267 298 289 300

2 300 315 344 312

3 117 120 124

4 50 55

5 16

The last but rather important deficiency for this method is it does not provide any 

statistical inferences for testing hypotheses. Actuaries using this method would not be 

able to determine if the estimated IBNR reserves and the calculated loss development
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factors are statistical acceptable.

Table 17 

Estimated Loss Incurred Ultimates

Accident Year
Estimated Incurred Ultimates

1990 1991 1992 1993 1994

Chain Ladder 733 774 843 796 856

De Vylder’s 697 701 733 654 671
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CHAPTER III

ROBUSTIFICATION OF DE VYLDER’S LEAST SQUARES METHOD

3.1 Norm

A Norm is a non-negative function, ||.||, defined on R" with the following 

properties:

1. ||y|| > 0 for all y

||y|| = 0 if and only if y = 0

2. ||ay|| = |a| ||y|| for all real a

3. ||y -t- z|| < ||y|| + ||z||

The distance between two vectors is d(z,y) = ||z - y||.

Given a linear model,

Y = X  P + e, (14)

where Y' = (Yb...,Yn) is an N  x I observation vector, X' is an n * p  matrix whose 

columns x,,...,xp are linearly independent, P' = (Pj,...,Pp) is a p  * 1 vector of unknown 

regression parameters, and e' = ( e , , . . .^  is a Af x 1 vector of iid errors from some 

absolutely continuous distributionF and with density/ With a specified norm, ||.||, (3 can 

then be estimated as

34
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P = argmin || Y  -  A'pH

35

(15)

The dispersion function induced by the norm is given by,

D(P) = | Y -  A'Pl . (16)

D((3) is a convex and continuous function of P which is differentiable almost everywhere. 

P can be estimated by minimizing D(p). The gradient process is defined by the function

m  = ( i7>«P

where S((3) is a nonincreasing function. Its discontinuities are the points where D(p) is 

nondiflferentiable. The minimizing value is a value where S((3) = 0. Hence, estimating the P 

can then be expressed as solving the equation

S(P) = 0 . (18)

3.2 Lj-Norm 

The square of the Lr Norm is defined as

WI2 = 5 > ,2 • (19)
; = 1

The dispersion function for the linear model (14) induced by the L2-Norm is
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and the gradient function induced by the £r norm is

S(P) = -2 X '(Y  -  XP) (21)

Solving S(fi) = 0 is hence equivalent to

X ' Y  = X 'XP . (22)

Since X  is full rank and so does XX,  hence X X  is invertible. The solution to the equation 

(22)is then

P = (X 'X l - 'X 'Y  . (23)

The estimation derived from the L2-Norm is commonly known as the least square 

estimation. When it is further assumed that the errors are normally distributed

e ~ Nn(0,a2ln) , (24)

then

1. P is also the Maximum Likelihood Estimator of p.

2. $ -

-j ( n - p -  1 ) j2 _ „2 J ■ I A.n-p-1
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4. The standard error of is estimated by s[{X'X) ' I]l’/2,

where

= _ L i r  - x f a l . (25)
n -p

It can be shown that the estimation of De Vylder’s least squares method is derived 

from the L2-Norm. Let Yy be the incurred loss for accident year i and development year 

j. Let X; be the ultimate incurred loss for accident year i and let Pj be the proportion of 

loss being paid for development year j. Then

Y = XP 

and X ' Y  = X'X P
(26)

This implies the P's can be estimated by solving the equation

P = ( X 'X ) - lX ' Y  (27)

which is equivalent to the estimation of P's in De Vylder's least square method. The same 

implication applies to the estimation of X’s.

In the De Vylder's least square method, P's are estimated by the equation

As it was mentioned in Chapter II, if there is a incurred loss in the jth development year
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that is an outlier, an extremely large loss relative to other incurred losses, the predicted 

Pj will be over estimated. Then when the predicted P's are used to estimate the Xs,

. E V,
X, -    , (29)

T , P j
J -1

the predicted X's will also be distorted. This means if there is one extremely large outlier, 

this estimation will break down. Using the definition of breakdown point stated in 

Chapter II, the breakdown point for the L2-Norm is 0.

3.3 L,-Norm

The L,-Norm is defined as

m ^ E k i .  (3°)
/  = !

Given a linear model

Y = XP + e (31)

where Y is an N  * I observation vector, X is an N  x p  matrix of known regression 

constants, p is a/7 x I vector of unknown regression parameters, and e is an N  * 1 vector 

of iid errors with distribution function F  and density function /which is symmetric about 

0. Assume the scalar intercept for this linear model is 0. The dispersion function induced
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by the Lr Norm is

1-1 r< - £ mi=i
(32)

and the gradient function for each Pj is given by

S(P;) = 'E.x.w K - E M
1=1 \ y'=i

(33)

where sgn(u) = 1 if u > 0,

sgn(u) = 0 if u = 0, and 

sgn(u) = -1 if u < 0.

Pj can then be estimated by solving the equation

S( P,) = 0. (34)

Since S(P) is a step function, more than one P estimates could possibly exist. 

With the same assumption of the De Vylder's method

Y,  -  M  • (35)

the dispersion functions for estimating Pj and Xj are

DiP) = E ft - xf\I-1
(36)
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and

= E  f t  -  -V ,| (37)
y'=i

respectively. The corresponding gradient functions are

dD(P)  *
= s P - = E w ;  - - wdr  1=1

dD(X)  *O'"/ WQ = —3̂  = E P /lP 'd ', -  X.P,)0A.t y=i

(38)

This implies that X’s and P's can be estimated by solving the following equations

S(P) -  0
(30)

and S(X) = 0 .

In the process of estimating IBNR reserves, X's and P's can then be estimated by

first let

P = —, j  = (40)
m

as the initial values of P. Then solve for X, such that

" ‘ E W - W -  (4 o
/=i

Take the estimated value of X's and solve for P such that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o  *  £  xwnLY" - x,fj)
i=l

41

(42)

Recalculate X/s and Pj's again until the solutions converge.

3.4 Numerical Illustration for L, Estimation

As it was stated above, the gradient function for the Lr Norm is a non-increasing 

step function. The values of Xt and P. cannot be calculated directly from the 2 

equations (41) and (42). A numerical method is needed to solve for X and A . For this 

numerical illustration, the bisection algorithm is used.

For comparison, the same data set is used to estimate the X*, total incurred loss 

for accident year i, and Pj5 the proportion of incurred losses for loss development year j, 

with the L,-Norm estimation. Table 18 displays the estimated value for X/s and Pj's.

Table 18

Estimated X's and P's Lr Norm Estimation

Accident Year 1990 1991 1992 1990 1994

Ultimate Incurred 699 734 801 727 839

Development Year 1 2 3 4 5

Portion Paid 0.341 0.409 0.159 0.068 0.023

With the estimated values of Xi's and Pj’s, future incurred losses can be estimated
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as shown in Table 19.

Table 19 

Predicted IBNR Reserves

Loss Accident Year
Development

Year 1990 1991 1992 1993 1994

2 343

3 116 134

4 55 50 57

5 17 18 17 19

Total IBNR 
Reserves 0 17 73 182 553

Estimated total IBNR reserves for the 5 accident years is 825. This is very close 

to the total IBNR reserves estimated using the chain ladder method.

3.5 Weighted L,-Norm

Let R( | Xj |) be the rank of| Xj| among | xx | ,..., | x„ | . Then consider the function

M i 3 = £ * ( W ) k l  • ( 4 3 )
;=i

Hettmansperger and McKean (1983) showed that ||x||3 is a norm on Rn. Given the same 

linear model of (31), let
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(44)

Then the dispersion function induces by this norm is

0 (P) = E * ( k l ) k l , (45)
/=i

and the gradient function for this norm is

S(P) = £  xA \ e,\)sgn{ei) (46)

Given the ||x||3 and the assumption stated in (35), Xt and P; can be estimated by 

solving the following equations

m

o 4 E P,R(\ r,, - X.PfisgrKY,, - X,P)
7=1

(47)

and 0 ± £  X,R(\Yt/ -  X f ^ s g , ^  -  X,P)
I- 1

respectively.

Table 20 displays the estimated value of X/s and Pj's for the same data set using 

the ||x||3 norm. With the estimated values of X/s and Pj's, future incurred losses can be 

estimated as shown in Table 21.

Estimated total IBNR reserves for the 5 accident years is 849. Again, this is very 

closed to the total IBNR reserves estimated using the LI-Norm and chain ladder method.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

Table 20

Estimated X's and P's Weighted L,-Norm Estimation

Accident Year 1990 1991 1992 1993 1994

Ultimate Incurred 732 772 846 796 860

Development Year 1 2 3 4 5

Portion Paid 0.349 0.406 0.153 0.070 0.022

Table 21 

Predicted IBNR Reserves

Loss Accident Year
Development

Year 1991 1990 1993 1994

2 350

3 121 131

4 59 56 60

5 17 19 17 19

Total IBNR 
Reserves 0 17 78 194 560

3.6 Pseudo-Norm

An operator ||.||. is called a pseudo-norm if it satisfies the following conditions:

1. ||y||* > 0 for all y € R"

2. ||ay||. = | a| ||y||, for all real a e R, y e R”
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3. ||y + z||. n ||y||. + ||z||. for all y,z e Rn

4. Ilyll. — 0 if and only if yt = — = yn

Note that the regular norm satisfies all the properties above except the fourth property, 

the norm of a vector is 0 if and only if the vector is 0 .

McKean and Schrader (1981) showed that the function

limi. = S > ( * 0 u))u, , (48)
; = 1

where a(i) are scores such that a(i) g * a(n) and £  a(I) = 0, is a pseudo-norm. 

In addition, for general scores of the form

«,(0 = 9 (49)

<p(u) satisfies the following assumptions:

1. <p(u) is a nondecreasing function defined on the interval (0 ,1),

2 . f \ ( u ) d u  = 0 ,and 
Jo

3. [ l<p2(u)du = I.
Jo

The corresponding pseudo-norm for scores generated by <p(u) is denoted as

ll“ ll<p = E  • ( 5 ° )
/ = i

For example, Wilcoxon pseudo-norm is generated by the linear score function
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<p,(//) = / l 2 (w - \ ) (51)

and the sign pseudo-norm is generated by the score function

<Ps(w) = sgn(2u -  1). (52)

3.7 R-Estimate

Let

a
Y = [  1 X]

Pi
+ e (53)

where Y is a N  x / observation vector, 1 is an N  * 1 column vector of ones, X is an 

N  x p  matrix of known regression constants, a is the scalar intercept parameter, P is a 

p  x j  vector or unknown regression parameters, and e is an N * 1 vector of iid errors 

with distribution function F  and density function/ .  Note that the density function of e is 

not necessary to be symmetric about 0. Hence the median of the distribution of Y; is
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where x? is the /th row of X.

Let Xc denote the centered X-matrix, i.e.

(55)
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where x is the mean of the /th column of X. Then (53) can be written in the form

Y  = [1 X c\ + . (56)

Definition 1. Let D(a)  be a measure of variability that satisfies two properties:

1. D(Y + la) = D(Y)

2. D(-Y) = D(Y)

for every N *  I  vector Y and scalar a. Then D(») is called an even, location free measure 

of dispersion.

If D(») is an even and location free dispersion function, then 

D (Y- l a -Xf i )  = D (Y- l a - X cfi) = D (Y -X c/3) = D (Y-X p) where a* = a  + x 'p  and 

x '  = (xv ...,xp) . Hence, when estimating (3 with D(»), the results will not be changed if 

either X or Xc is used.

Definition 2. A rank estimate (R estimate) of P is the value p which minimizes

D(Y -X p )  = £  a[R(Y, -  x f o W ,  -  */P) (57)

where R(Yt - Jtf ’P) is the rank of Yt - x t'/? among Y, - x /p , ..., YN - x N'P.

Unlike the least square, this even, location free measure is a linear, rather than 

quadratic, function of the residuals. Since the influence of outlier enters in a linear rather 

than quadratic fashion, it is hoped that the estimates generated by the R estimate will be 

more robust than least-squares estimates.
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As the properties of the pseudo-norm indicate, this function D(Y - X(3) is a 

nonnegative, continuous, and convex function of p.

The gradient function of D(Y - Xfi) is given by

J L -m r  -  xp) = £  m y ,  -
a\ij ,=i

= - E  <*, -  -  */P)]; = l

(58)

forj=l,...,p. Let

s / r  -  a p) = -  *P>

= E  ( \  -  -  */P>l; = l

(59)

and let

S(Y  -  Xp) =

'$ ,(*  - x p y

^ p(F  - X p);

(60)

Then estimating p is to solve the equation

S(Y  -  Xp) = 0 (61)

The Wilcoxon score function where
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a(<) = < K - 4 )
iV t  1

(62)
and <f)(w) = f i2 ( u  -  7 ) ,

will be used as the score function for the R-estimate throughout the rest of this thesis. 

Note that the Wilcoxon score function has the following two properties:

= 0

and j <J)2(u)du == 1 .

Though the $ is estimated independent to the intercept parameter a, it is 

estimated with the assumption that the intercept parameter exist. If the distribution of e 

is assumed to be symmetric and $ is estimated using the Wilcoxon scores, the intercept 

parameter a can be estimated as the Walsh averages of the residuals; i.e. let

rj = Yt -  jc/ft , where i = I,...,Ar , (64)

be the residuals. Then

ft = medISJ r , + rj (65)

If the distribution of e is not assumed to be symmetric and ft is estimated with the 

Wilcoxon scores, the intercept parameter a can be estimated as the median of the
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residuals,

a = med(rt) . (6 6 )

3.8 Estimating IBNR Reserves With R-estimates

With the same assumption in (35) for incurred losses, Xt can be estimated by 

solving the equation

0 * E  (P, -  n w r „  - x ,P fi
y=i

-where P = ——

with

as the initial value of Pr Then PJ can be estimated by solving the equation

0 » £  (X, -  X ) a m „  - X,P)]
/=1

-  Z*'
where X  = —

(67)

P = — , fory = 1,...,#» (6 8 )
J m

(69)

Recalculating Xj's and Pj's again until the solutions converge.

One problem does exist with using the general R-estimate method to estimate 

IBNR reserves. According to the linear model in (35), there are no intercept parameters
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for estimating X/s and Pj's. However, R-estimate is based on the assumption that an 

intercept does exist while estimating the slope. Consequently, estimating X/s and Pj's with 

iteration without estimating intercepts while using R-estimate will not converge.

Dixon and McKean (1996) provided a simple solution for this problem. It was 

suggested to estimate a dummy intercept parameter with the estimation stated above after 

the slope was estimated with R-estimate. Using the predicted intercept and slope 

parameters to calculate the predicted values. Then project the predicted value to the 

plane which has no intercept. Refer to Appendix A for the algorithm for estimating IBNR 

reserves with R-estimate.

Table 22 displays the estimated value of X/s and Pj's for the same data set using 

the || x || 3 norm.

Table 22

Estimated X's and P's With R-estimate

Accident Year 1990 1991 1992 1993 1994

Ultimate Incurred 697 714 729 654 675

Development Year 1 2 3 4 5

Portion Paid 0.370 0.403 0.145 0.063 0.019

With the estimated values of Xj's and Pj's, future incurred losses can be estimated 

as shown in Table 23. Estimated total IBNR reserves for the 5 accident years is 647 

which is very close to the total IBNR reserves estimated by the De Vylder's least square
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method.

Table 23 

Predicted IBNR Reserves

Loss
Development

Year

Accident Year

1990 1991 1992 1993 1994

2 272

3 95 98

4 46 41 42

5 14 14 12 13

Total IBNR 
Reserves 0 14 60 148 425

3.9 Iteration Procedures

Two iteration procedures are needed to estimate IBNR reserves with the non- 

parametric methods described above. One is needed to solve the gradient function S(P). 

Since S(P) is a non-increasing step function, a iterative algorithm is needed to estimate 

the p.. The gradient function S(P) does not necessary have one unique solution. In fact, 

it could have infinitely many solutions. Since S(P) is a step function it is not easy to show 

that other iterative algorithms will perform better than the binary-search method because. 

Other numerical methods such as Newton's method have been tested against the binary- 

search method to solve for S(p) and found did not perform better than the binary-search 

method. For its simplicity, binary-search is used to solve for S(P) for the non-parametric
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methods described above.

In order to use the binary-search method to solve the gradient function, two initial 

values, a and b such that S(a) * S(b) < 0, are needed. Let a < b, then S(a) > S(b) for S(P) 

is a non-increasing function. For the linear model without intercept parameter

Y = X P , (70)

it is safe to assume that

Y
mm<— I < B < max (71)

Thus let

a -  min^
Ur

• and b = max- (72)

be the two initial values for solving S(P). Note that S(a) > 0 and S(b) < 0 imply that S(a) 

x S(b) < 0 which means a < P < b.

Two stopping procedures were tested for the binary-search method. Assume the 

value of tolerance e >0 has been determined. P j , . . .  , p n  are generated until the following 

2 conditions are met:

IP, (73)

or
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k  -  P*-i
P„

< e , where P„ > 0 (74)

Without additional knowledge about the gradient function or P, the inequality (74) is the 

best stopping criteria to apply because it measures the relative error. The stopping criteria 

of (74) is used for the iteration methods described above.

One would want to know the number of iteration, n, that is needed for the 

estimated parameter to converge. Let P„ be the true value of p. Then

P„ ~ Pol * , n  > \
2"

(75)

One can easily determine the minimum number of iteration, n, as follow:

-log
/  \  8

n > \ b ~a)
log 2

(76)

3.10 Convergence of the Estimation Procedure

The second iteration method is needed to calculate the Xj’s and Pj’s. Xj’s are 

estimated first with the initial values of Pj’s as the independent variables. Then Pj’s are 

estimated with the estimated Xj’s as the independent variables. Xj’s and Pj’s again are 

estimated until they converge. Each iteration is intend to minimize the dispersion function 

in terms of Xj’s and in terms of Pj’s. If Xj’s and Pj’s are the solution of the original model
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(77)

then

p
X[ = cXt , Pj = — , where c > 0 (78)

is also a solution because X/Pj' = XjPj. Thus, the solutions generated by the iteration is 

indeterminate. As it was mentioned in Chapter II, the indeterminate can be eliminated by 

a constraint such as

Different solutions can be generated by the iteration method depending on the 

initial values of the Pj's. However, all these different solutions are connected by the 

constraint (79). Since the Xj’s and Pj’s do not have unique solutions, it is not necessary 

to iterate the estimation until both Xj’s and Pj’s converge. The estimates obtained after 

four or five iterations can be considered as limit solutions from the practical point of view.

Numerous data sets have been tested with these non-parametric iteration methods. 

After a few iterations, the Xj’s tend to jump between 2 sets of numbers. Though the 2 

sets of numbers differ very little, they do not necessarily converge. On the other hand the 

Pj’s tend to converge very well after a few iterations. Using the stopping criteria (74) to 

measure the estimated Pj's to determine the convergence of the iteration does generate
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consistent results.

3.11 Deficiencies of Rank-Based Iteration Method

The non-parametric methods described above are robust to outliers. However, 

as McKean and Hettmansperger (1996) has shown, the influence function of is given 

by

IF(x,y, f^) = tE 'V F O O )*  , (80)

where E is the variance-covariance matrix of x, t  is the scale parameter, and <p(«) is the 

score function corresponding to the R-estimate. This indicates that the influence function 

of is bounded in the y-space but not in the x-space. Figure 1 of Appendix B displays 

a simple example that the R-estimates are robust to outlier in the y-space. Figure 2 of 

Appendix B displays a different example which shows that the R-estimates are not robust 

to outlier in the x-space.

Since the R-estimate is robust in the y-space but not in the x-space, estimating the 

Xj's and Pj's with iteration by this method is not robust to outliers. If there is a 

significantly large incurred loss in the data set, an outlier to the y-space, one of the initial 

estimated Xj will be much larger than the others. Then when the P/s are being estimated 

with the estimated Xj's as the independent variable, the unusually large Xs will become 

an outlier in the x-space which will cause unreasonable estimation for the Pj's. While 

estimating the Xj's again with the distorted estimated Pj's as the independent variable,
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outlier in the x-space again, the estimated Xj's will be distorted. Refer to Appendix B for 

a numerical illustration.

In addition to not being robust to outliers, the non-parametric methods introduced 

above do not provide statistical inferences for hypotheses testing. This means that 

analysts who choose to use these methods to estimate IBNR reserves will not be able to 

determine if the results are statistically acceptable.

A one-step method which estimating IBNR reserves with general R-estimate will 

be introduced in Chapter IV that is robust to outliers. This method also provides 

statistical inferences for hypotheses testing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER IV

THE LOG-MULTIPLICATIVE MODEL

4.1 Introduction

A log-multiplicative model was introduced by Kremer (1982) which takes De 

Vylder’s multiplicative model and add a multiplicative lognormal random error,

r*  = (81)

where Xj is a column effect for accident year i and P, is a row effect for loss development 

year j. The product of Xj and Pj will correspond to the amount of claims occurred during 

accident year i incurred on development year j. The random error, Ey, are independent, 

identically distributed lognormal random, LN(0,a2), and with density function

i - - M fJ{t\a2) = — —  e ^  ° t > 0 . (82)
yjlnat

Taking the logarithm on both sides of (81), the multiplicative model can be 

changed into a additive linear model

log Y'j = logX' + logP + log£y . (83)

Let N be the number of incremental incurred losses, Yy-, and Z be a N x 1 vector that

58
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Z  =

log Yu

log y lm 

log r 2l

log Y.2m

(84)

log^„

Let p be the number o f parameters, p = m+n-1, then P be a p x 1 vector,

log*,

log*„

log P2

log Pm

(85)

Note that the P, is set equal to 1 (or log P, = 0) in order to ensure the regression matrix 

not to be singular. Let W be a N x p design matrix,
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W =

1 0 ... 0 0 0 0 ... 0

1 0 ... 0 1 0 0 ... 0

1 0 ... 0 0 1 0 ... 0

1 0 . . .

0 1 . ..

0 1 ...

0 1 . . .

0 0 0 0 ..

0 0 0 0 ..

0 1 0  0 .. 

0 0 10 . .

. 1

. 0

. 0

. 0

0 1 . ..  0 0 0 0 ...1

0 0 ... 1 0 0 0 ... 1

(86)

Let Cjj = log Then ^  are iid N(0,a2) random variables. Let e be a N x 1 vector of ̂ . 

The model (83) can then be expressed as a linear model,

Z  = W$+e  . (87)

4.2 Least Squares Estimation

One can easily verify that the maximum likelihood estimator of P for the linear 

model (87), which is the same as the least square estimator, is

P = (WfW)~l W'Z .

The unbiased estimator of o2 is
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N -p  N -p

where SS is the sum of square residuals. It is also well know that:

1. ^ Has a multivariate normal distribution MN(P, o2( W'W ) 1),

a22. ( N - p ) —  has a x2 distribution with (N-p) degrees of freedom,
a2

3. 3 and n2 are independent,

4. (p,SS) are jointly complete and sufficient statistics for (P, a2). 

With the estimated P, the estimated Xj’s and P,’s can be calculated as follow:

Xt = exp[PJ , for i = 2 ,

Pj = exp[Py>„_2] , fory = 2,.. .vm

(90)

and

X = ex.

P, -  CP,

where C = ^2 Pj
;=i

IBNR reserves needed is estimated as

(91)

i=2 y=l
(92)
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The same data set which is used in the previous chapters to estimate the Xj, total 

incurred loss for accident year i, and P,, the proportion o f incurred losses for loss 

development year j, with the log-multiplicative model. Table 24 displays the estimated 

value for Xj's and P/s.

Table 24

Estimated X's and P's LS Estimation

Accident Year 1990 1991 1992 1993 1994

Ultimate Incurred 734 778 835 798 856

Development Year 1 2 3 4 5

Portion Paid 0.351 0.404 0.154 0.069 0.022

With the estimated values of Xj's and P/s, future incurred losses can be estimated 

as displayed in Table 25.

The total IBNR estimated by this log-multiplicative model is 844 which is very 

close to the one estimated by chain ladder method. This method seems to provide good 

estimation as long as the data set being analyzed has stable loss distribution and is free of 

outliers. On the other hand, as it is shown in Table 25 and Table 26, this method 

generates unreasonable estimation if there is outlier in the data set. As it was done in the 

previous chapters to test this method, a incremental loss incurred has been replaced with 

an outlier. Xj's and P/s are then estimated as shown in Table 27.
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Table 25

Least Squares Predicted IBNR Reserves

Loss Accident Year
Development

Year 1990 1991 1992 1993 1994

2 346

3 123 132

4 58 55 57

5 17 18 18 19

Total IBNR 
Reserves 17 76 0 555

Table 26 

Contaminated Incurred Data

Loss
Development

Year

Accident Year

1990 1991 1992 1993 1994

1 250 267 298 289 300

2 300 315 1000 312

3 117 120 124

4 50 55

5 16

Additional to the estimated total accident year incurred losses, X’s, has been 

distorted, the loss development year incurred portions, P’s, are also distorted. Note that 

there is only one outlier which is not so extraordinary large was contaminating the data
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set. However, all the estimated accident year total incurred losses along with all the 

estimated loss development year incurred portions have been distorted.

Table 27 

Estimated X's and P's With Outlier

Accident Year 1990 1991 1992 1993 1994

Ultimate Incurred 766 812 1244 785 962

Development Year 1 2 3 4 5

Portion Paid 0.312 0.470 0.131 0.067 0.021

With the estimated values of Xj's and P/s, future incurred losses are estimated as 

displayed in Table 28. The estimated total IBNR reserves for this data set is 960 which 

is much larger than the one estimated without outlier. Further sensitivity studies have 

been done to compare this least square method with the Rank-based method which is 

introduced in the following section. The results of the sensitivity studies are shown in the 

next chapter.

4.3 Rank-based Linear Model 

Consider the linear model

Z  = a l + V$+e , (93)

where Z' = (Z,,...,ZN) are observations, 1' = V is an N * p centered, full rank
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design matrix, P' = (P,,...,Pp) and e' = (e!,...^ ) are iid errors from some absolutely 

continuous distribution F with density f  and median 0. The unknown parameters are a 

and p. It is convenient to keep the intercept parameter a  and the vector of regression 

parameters P separate.

Table 28 

Predicted IBNR Reserves

Loss
Development

Year

Accident Year

1990 1991 1992 1993 1994

2 452

3 103 126

4 83 53 64

5 17 26 16 20

Total IBNR 
Reserves 0 17 109 172 662

Consider the general R pseudo-norm discussed in Chapter III which is given as

M<p = E  a(R(v) ) v, (94)

where a(l) < a( 2) < ... < a(n) is a set of scores generated as

* (0  = <P(-V)

for some nondecreasing score function <p(u) defined on the interval (0,1) and standardized
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such that

j  q>(u)du = 0 

and Jtp2{u)du = 1

Recall that the Wilcoxon scores are generated by the linear score function 

<p(r/) = \J\2(u -  -i-) and throughout this chapter, the Wilcoxon score function will be 

used for the R-estimates.

The dispersion function for this linear model can be defined as

Z)S(P) = \Z  -  FP IS

(97)
= £  a(R(Z, -  v/p))(Z, -  v/P) ,

; = l

where v/ is the rth row of V. Note that the matrix V is centered by subtracting the 

column means to get Vc = V - 1 (v,,...,yv) where vf is the mean of the ith column of V. 

As it was stated in Chapter III, either V or Vc can be used without altering the estimates 

while working with £>*(•). Throughout this chapter, V is written as the centered matrix.

Jaeckel (1972) showed that DR(P) is continuous and convex in p. Hence, the 

estimate of P is a value that minimizes DR(P). Note again that the pseudo-norm is 

invariant to a, the intercept, which can be estimated by a location estimate of the residuals 

as described in the previous chapter.

The dispersion function DR(P) is differentiable almost everywhere. Let SR(P) be
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the gradient function of DR(P) such that

s(P> = -»/?))»,
Op / = !

67

(98)

The estimate of P is a vector of ft that satisfies the equation

S(ft«) ± 0 . (99)

Let 2  be a positive definite matrix that

2 = limn_  n x V 'V  , ( 100)

t  be the scale parameter, and <p(u) be a score function. Then the influence function for 

the R-estimate for this linear model is given by

IF(v,z) = t 2 1<p(F(z -  vP))v . (101)

This indicates that the influence function for ft^ is bounded in the y-space but not in the 

x-space. Since the influence function is unbounded in the x-space, the R-estimates are 

susceptible to a large distortion when there is contamination in x. This implies that the 

breakdown point of the R-estimates in regression is 0. However, this will not be a 

problem for this linear model because the variable V is a designed matrix which is not a 

realization of a random vector.

Let po be the true parameter vector. The asymptotic distribution of the R- 

estimates is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

(102)

which provides the basis for estimation and standard error of the estimators. The scale 

parameter t  is defined by

1 { A F - ' m )
du . (103)

In the case where Wilcoxon scores are used, t  becomes

1T =
J n j f { u ) d u

(104)

Note that the distribution of the least square estimate is

-  P„) -  /V(0 ,oJE - ')  . (105)

This implies the asymptotic relative efficiency (ARE) for the R-estimate relative to the 

least square estimate is

o2
* = — • (106)

In the case where Wilcoxon scores are used, the ARE of the R-estimate becomes
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(107)

If the error distribution is normal, the ARE for the R-estimate is equal to 0.955 which 

means less than 5% of efficiency relative to the optimal estimate is lost. However, if the 

distribution for the error is long tailed, the ARE for the R-estimate relative to the classical 

analysis will be substantially larger than 1.

For the linear model stated above, the intercept parameter estimate a denote the 

location R-estimate computed from the residuals et = Zi ~v '^R. Assuming that the error 

distribution is symmetric about 0, the R-estimate of the intercept parameter, a, is the 

value a which minimizes the dispersion function

£>'(«) = • (108)
; = 1

Minimizing D*(a) is equivalent to solving the equation

s ’(a ) = i 2 a ' ( R ' ( \ e i -a\)sgn(ei -a )  = 0 , (109)
i=i

where R*(») is the rank among the absolute value and a '(i) = <p’(— )• <p’(w) isw-l

nonnegative and nondecreasing on (0 , 1). Then a is a Hodges & Lehmann (1963) type 

of estimate of the intercept. If the Wilcoxon scores are used then
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a = med
I - ^

e, +ej 
\ 2

, where i < j ( 110)

This is the Walsh average of the residuals. McKean and Hettmansperger (1978) showed 

that

r
a

N A  0, t 2S ‘) ( 111)

Note that a and are asymptotically independent because of the centered design 

described above.

Since the distribution theory for does not require the error distribution to be 

symmetric, the intercept parameter a can be estimated as

aR = med(e,) . ( 112)

This identifies the intercept as the median of the residuals. If the intercept parameter a 

is estimated as the median of the residuals, t 2S _1 in (111) is replaced by

0 t 2S 1
(113)

where

2 1To =
4 / 2(0 )

(114)
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As it was stated above, the asymptotic distribution for a is normal with mean 0 

2
and variance xs . This normal distribution can be used to approximate probabilities 

concerning the sample median. When the underlying form of the distribution is unknown, 

this asymptotic variance must be estimated. Theorem below provides the key to the 

estimation of the asymptotic variance.

Theorem 1. Suppose S(0) is a Pitman Regular estimating function with efficacy c. Let 

L be the length of the corresponding confidence interval. Then

# 4 '
z z aJ2  c

where 0  is the unique median.

Refer to McKean and Hettmansperger (1996) for the proof of this theorem. 

Based on this theorem, the asymptotic standard error, the square root of the asymptotic 

variance, for the sample median can be estimated. McKean and Schrader (1984) 

suggested an estimator of t ,  on a normal approximation to the length o f a 100(1 - a)% 

distribution-free confidence interval for 0. The resulting estimator of the asymptotic 

standard error of the residuals is given by

(U6)
LCaJ2

where
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* = —  (117)

and Zan is the 100(1 - a/2) percentile of the standard normal distribution. Note that 

(eN-k+peit) *s asymptotic confidence interval for the aR.

As a simple example, take a = 0.05, = 2, then k = - \fN. The

asymptotic confidence interval for the aR will be

(118)

and the estimate of the asymptotic standard error for the aR is given by

t j  =  V  - 1 - -  ------- 1 . - -7  . (119)

Sheather and McKean (1987) discuss different approaches to the estimation of this 

standard error.

Based on the asymptotic distribution for the 0 stated above, the asymptotic 

confidence interval for a linear function h'P is given by

* ± W -p-i&Mr'n-'h , (120)

4.4 Estimates of the Scale Parameter t

Let e; be the residuals of the estimate that
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e, = z r * ~ vi h  ■

Let

H(t) = P{\ex-e 2\<t)
( 122)

= f[F(ex +t)-F(e2-t)]dF(e2) ,

where t > 0. H(t) = 0 if t < 0. Let h(t) denote the density of H(t). Then upon 

differentiating under the integral sign in (122), it follows that

hi0) = 2 J / 2ie2)de2 . (123)

From (104),

T  =
^ 2  j f 2iu)di^ fihiQ) ' (124)

So to estimate t, h(0) needs to be estimated. As estimate of H(t), consider the following 

empirical distribution function

= (125)
iv 1=1 ;=1

where !(•) is the indication function. An estimate of h(0) is an estimate of the form

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

h{0) = . (126)
h

With the bias corrected empirical derivative,

T = \i
N  *N

(127)
N - P - 1

For moderate sample sizes that the ratio of N/p exceeds 5, it is recommended 8 = .80 

where

Hn \S )
',v  = ■ ( 128)

For a ratio less than 5, larger values of 8 , around .90 is recommended.

4.5 Hypotheses Testing

Consider the hypotheses

H0: A/p = 0 versus HA: Mp * 0, (129)

where M is a full row rank q x p  matrix which determines the linear combination of the 

components of P under test. Let DR(full) denote the minimum value of the dispersion 

function (98) when the full model is fit. Let DR(Red) denote the minimum value of the 

dispersion function (98) when the reduced model is fit. Model (93) based on Hq is the
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reduced model.

The F  test of the hypotheses for the least square estimation is based on the 

standardized reduction of the sums of squares between fitting the reduced model and the 

full model. The F  test of the hypotheses for the rank-based estimation is similar to the 

least square. Decision is made based on the reduction in dispersion given by

RD = DR(Red) -  DR(Fulf). (130)

McKean and Hettmansperger (1976) showed that under Hg, and the same regularity 

conditions used to establish the asymptotic theory for j^ ,

RD
tr q DFR = — T -  -  (131)

2

distribution. McKean and Sheather (1991) showed that the use of F  critical values with 

q and N - p - 1 degree of freedom instead of x2 critical values provide stable significance 

levels for a broad range of underlying error distributions and moderate sample sizes. 

Hence the test based on FR can be summarized in a robust analysis of variance table, Table 

29, which is similar to the classical ANOVA table. For an asymptotic level a test, reject 

H0 if Fr ;> F(a,q,N-p-l).

McKean and Hettmansperger (1976) showed that the test based on FR is 

consistent under the same regularity conditions. Under a sequence of contiguous 

alternatives, FR converges in distribution to a noncentral x2 with the same noncentrality
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parameter as the least squares F  test with x2 replacing o2. Hence the asymptotic relative 

efficiency of the FR test statistic to the least squares F  test statistic is

a2
« = —  • (132)

T2

Thus Fr test statistic possesses both robustness of validity and robustness of efficiency.

Table 29

Rank-based ANOVA Table for Hq: MP = 0

Source Reduction in Dispersion df
Mean Reduction 

in Dispersion Fr

Regression RD=DR(Red)-DR(Full) q RD/q

RD/q
i/2

Error N-p-1 x/2

This reduction in the dispersion test discussed above is similar to the likelihood 

ratio test in classical inference. There are two other tests usually discussed in classical 

inference. They are the Wald test and the Rao-scores test. The rank-based analogues of 

the Wald test is a quadratic form in full model estimates and is given by

p  = (hfa'yiny'n'MVi/rttiR
R.Q ' v /

Provided x is a consistent estimate of x. It follows from the asymptotic distribution of
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( ^ , ( 111), that under/^ qFKQ has an asymptotic x2 distribution. Hence the test statistics 

Fr and Fr q have the same null asymptotic distributions and the difference of the test 

statistics converges to zero. Similar to reduction in dispersion test, reject H0 if 

Frq > F(a,q,N-p-\)foT an asymptotic level a test.

Refer to Hettmansperger and McKean (1983) for the discussion of the rank-based 

analogues of the Rao-scores test and the geometries of the three rank-based tests.

4.6 Goodness of Fit Determination

If a linear model has been fitted, summary statistics are needed to determine how 

good the fit was. One of the most widely used summary statistics for fits based on least 

square estimates is R2, the proportion of the variance accounted for in fitting the 

predictors V.

r 2  .  S S (0 ) -  g ( g )
SS( 0)

where SS(0) is the sum of square error of Z when no predictors are fit and .S.S(ft) is the 

sum of square error when ft is fitted.

The analogue for the R-estimates is the proportion of dispersion accounted for in 

fitting the predictors V. Hence the dispersion accounted for by fitting V is given by

. _ Ds(0) -  D $ )

**■' D jp)   '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78
where DR(0) is the dispersion of Z when no predictors are fitted. This summary statistic 

satisfies many of the properties that R2 has such as its value is between 0 and 1. It has the 

value of 1 for a perfect fit and it increases if a supermodel, a model which contains the 

predictors V as a proper subset, is fit. It seems that this is an intuitively pleasing 

summary statistic. However, as Witt, Naranjo, and McKean (1994) showed, is not

robust. The denominator of the R ^x has an unbounded influence function.

The numerator, though, is the numerator of the test statistic

£>;j(0) - SWA)

Fr -   f  • (136)
2

to test the hypotheses

H0: p = 0 versus HA\ p * 0 . (137)

Witt, Naranjo, and McKean (1995) showed that the influence function for FR is bounded 

in the y-space but is unbounded in the x-space. Note that for least square,

SS(0) - ssd?)

■ <i38>
n - p - 1

for testing the hypotheses (137). Algebraically, it can be shown that

F,

F  + ":P~XLS P
(139)
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4.7 EBNR Reserve Estimation
79

Let Yg be non-negative random variables which represent the incremental incurred 

losses paid by development year j for claims occurred in accident year i where i = l,...,n 

and j = l,...,m. A random error Efj is added to the multiplicative model used by the De 

Vylder linear regression method such that

V,j = XIPjE,] • (140)

This multiplicative model can be changed into an additive model by taking a logarithm of 

both sides of the equation.

logYl} = \ogXt + logP + log£y . (H i)

With the logarithmic transformation, this model can be expressed as a linear model 

introduced above. Let

Z  = l a  + VP+e (142)

where
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Z  = (143)

log r ii

l ° g ^  

log ̂ 21

log^m

log^nm

Let N be the number of observations in Z. In order to ensure the regression matrix not 

to be singular, there is one necessary constrain that the P, is set equal to 1.

As it was mentioned in the previous chapter that for rank-based estimation, P is 

being estimated with the assumption that intercept exists. The linear model (87) does not 

have an intercept. As it was described in Chapter III, one way to solve this problem is
A

to estimate a dummy intercept after P is estimated. Then project the predicted values, Z , 

to the plain without intercept. This problem can also be taken care of by setting a = log 

X, and then let

p.. = log(—̂ —-) , for k = 1 ,...,« -1

and P ^ .j  = logPM , for / = l,...,/n-l

(144)

In other word, let the first accident year incurred loss ultimate as the intercept and let the 

other accident year effects as the factors of the first accident year incurred loss ultimate. 

Then
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logX - a

P =
logX n -  a 

log P2

lo g ^

81

(145)

Let p be the number of parameters in p. Then V is a N * p design matrix where

V =

0 0 . .. 0 0 0 0 .... 0

0 0 . .. 0 1 0 0 . .. 0

0 0 . .. 0 0 1 0 .... 0

0 0  ... 0 0 0 0 ... 1

1 0  ... 0 0 0 0 ... 0

1 0 ... 0 1 0 0 ... 0 

1 0 ... 0 0 1 0 ... 0

1 0 ... 0 0 0 0 ... 1

0 1 ... 0 0 0 0 ... 0

0 0  ... 1 0 0 0 ... 1

(146)

Then this log-multiplicative model becomes the linear model (93). Solve the equation 

(98) to get the value of p . Then calculate the residuals e with the estimated P such that

i t = Z r v ' p ,  ( 1 4 7 )
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and the intercept parameter a  can be estimated as the median or the Walsh average of the 

residuals.

With the estimated a and P, the estimated X and P can be calculated as follow:

X x = exp[a] ,

Xx = A^exptP,.,] , for / = 2 ,

Pj = exP[Py.n-2] . fo rV = .

Record the constrain that is needed for Pj estimate that

Let

then

and Pj
P

j

C

(148)

Y ,P .  = l (149)
J - \

C = Y ,P j ^  (150)
y=»

(151)

The IBNR reserves needed can be estimated as
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IBNR =
1=2 1 = 1

4.8 Confidence Intervals

Let

K  = I V

a
and Pm =

’  p

(153)

Then the model (142) becomes

(154)

It was stated in the previous sections that for the rank-based estimation, the asymptotic 

confidence interval for a linear function h'P,,, is given by

b ' K ±  w

Let h , ’ = [10 ... 0], then A/P^is the estimated intercept and

S£tI =

is the standard error for the estimated intercept. 

Theorem 2. If

(155)

(156)
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and if g is differentiable at p, then g(XJ  is N(g(g),[g’(p)] <v)-

An approximation for the variance of g(X„) is given by Theorem 2 that if

W X J  = oI and X, -  p 

then Varlg(X,)] « fe'fti))2^  ■

Recall that the estimated first accident year ultimate

X, = exp[* ,'^] . (159)

Let X x be a function of , then

= Si hi  P9) = exp[*/fv]

and g ' { h $ v ) = ejcp[*/fl„] .
(160)

Based on Theorem 2 the standard error forZj is

g X k $ , ) S E vl = e x p ti/^ JS E ,, . (161)

From (151) and Theorem 2, the standard error for the estimated first year accident 

ultimate, X{ is

C exp[*,'f,]SE„ . (162)
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and the asymptotic confidence interval for X x can be calculated as

± ’(̂ - P- , ,C exp [h ;^] iJh ;(K 'K )- 'k ,  . (163)

Let h2 = [1 1 0  ••• 0], then

X2 = exp [A* j^ ] . (164)

Then the asymptotic confidence interval for the estimated second accident year 

ultimate,X2, can be calculated as

* j 'f ,  ±  W ■ (165)

For properly setting the h vector, the asymptotic confidence intervals for other 

estimated accident year ultimates and the estimated loss development year paid portions 

can then be calculated by the same manner as described above.

Note that the estimated IBNR can be written as a function of the estimated 

parameters,

IBNR = £  exp[p, expfP ] (166)
/= 1  J - \

where p is the number of parameters including the intercept. The multi-dimensional A 

method provides an approximation for the variance of IBNR. Let IBNR be a function of

P,
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IBNR = scpp p2, ... ,p p  , (167)

then

1M / 2WK] .
ap, i<y ap, apyM

(168)

Let d be the partial derivative matrix of the parameters such that

d =

dg
aPi

dg"

dg

where IBNR = g(PPP2,...,p ),then the variance of EBNR is approximated by

Var[IBNR\ « x ld ' (K 'K ) ld

The standard error for IBNR can also then be calculated. The confidence interval for the 

IBNR will be

IBNR ± (171)

Sometimes the formula for the standard error of an estimate can not be derived

analytically, then an estimate can be obtained by means of the bootstrap method. This
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means the standard error for IBNR estimate can be obtained by bootstrap method. Let

Z, = K $  (172)

where K; is the ith row of K, and let r; be the residuals corresponding to the estimated Z; 

such that

/•, = Z ,-Z , . (173)

Residuals are randomly picked and added to Zi to form a new dependent matrix Z*. A 

new IBNR then be estimated with the Z*. Repeat the same process for many times, such 

as 1000 times. The standard deviation of the new estimated IBNR’s will be the bootstrap 

estimate of standard error for the IBNR.

4.9 Numerical Example

The same data set displayed on the previous chapter will be used to estimate the 

X; and Pj. Note that a computer software titled "RGLM", a Robust General Linear Model 

package developed by Kapenga, McKean, and Vidmar was used to estimate the value of 

a and P for this linear model. In addition to calculating the R-estimate, RGLM also 

provides results estimated by least square for comparison. Table 30 and Table 31 show 

the rank-based and least square estimates for a  and P calculated by the RGLM. The 

estimated X's and P's are then calculated using the estimated values of a and p.
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Table 30

Comparison of R-based and Least Square Estimates

Parameter R-estimate Least Squares

a 5.555316 5.550020

Pi 0.057406 0.058802

P2 0.130695 0.129618

P3 0.083298 0.083722

P4 0.150622 0.153760

Ps 0.142007 0.141943

Ps -0.823074 -0.822846

P7 -1.617730 -1.619740

i .  - -2.780570 -2.777430

Table 31

Estimated X's and P's Comparison

Rank-based Least Square

X P X P

1 735.97 0.3506 733.62 0.3507

2 779.45 0.4041 778.04 0.4141

3 838.72 0.1540 835.14 0.1540

4 799.90 0.0695 797.68 0.0694

5 855.60 0.0217 855.55 0.0218

Table 31 indicates that the estimated X's and P's using rank-based and least square 

method are almost identical for this data set. Figure 1 displays the q-q plot for the least
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square estimated residuals. Figure 2 displays the q-q plot for the rank-based estimated 

residuals. Both figures indicate the errors of this data set are normally distributed.

Using the estimated X's and P's above, IBNR reserves needed can be calculated 

as shown in Table 32:

Table 32

Rank-based Estimated IBNR Reserves Needed

Accident Year 1991 1992 1993 1994 Total

R-Estimate 17 77 196 556 845

Least Square 17 76 196 556 844

The rank-based estimated total reserves needed, 845, is identical to the one 

estimated by the chain ladder method and is very close to the one estimated by the least 

square estimation. This indicates that least square and rank-based estimations both 

generate good results when the errors have normal distribution.

The calculated R2 for this estimation is 98.71% which indicates this log- 

multiplicative model is a good fit for this data set.

The estimated scale, i  for this data set is 0.075. The standard error for the 

estimated parameters are shown in Table 33. With the estimated scale, the 95% 

confidence intervals for the estimated accident year ultimates are calculated as shown in 

Table 34.
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Table 33 

Estimated Standard Error

. . .  ft, Standard Error

1 0.0504

2 0.0530

3 0.0593

4 0.0690

5 0.0910

6 0.0530

7 0.0593

8 0.0690

9 0.0910

Table 34

Confidence Intervals for Estimated Ultimates

Accident
Year

Confidence Interval

Upper Limit Lower Limit

1990 801 671

1991 848 711

1992 916 761

1993 881 719

1994 966 746

The standard error for the estimated IBNR approximated based on the A method 

is 35.66. Then the 95% confidence interval for the estimated IBNR is (753,937). The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



standard error estimated by the bootstrap method is 30.99 and the 95% confidence 

interval for the estimated IBNR is (765,925).

4.10 Hypotheses Testing

Let

Z  = K$+e (174)

where K = [1,V] and P includes the intercept parameter. Let

M  =

1 0 0 0 0 0 0 0 0  

1 1 0 0 0 0 0 0 0 

1 0 1 0 0 0 0 0 0 

1 0 0 1 0 0 0 0 0 

1 0  0 0 1 0  0 0 0

(175)

and consider the hypotheses

Hq : Afp = 0 versus HA : Afp * 0 (176)

Under the null hypothesis, there is no significant accident year effect for this data set. The 

calculated value of FR given by the RGLM is 3.618. The F( 05.5i6) = 4.39 and F( 1;S 6) = 3.11 

which indicates that there is significant accident year effect at 0.1 level of significance but 

not significant at 0.05 level of significance.

Consider another hypotheses that
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Hq : A/(l = 0 versus HA : A/p * 0 , (177)

where

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0
M  = (178)

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

Under this null hypothesis, there is no loss development effect for this data set. The 

calculated FR given by RGLM is 106.771. The F(0S;46) = 4.53 and F(1;46)= 3.18 which 

indicates that the loss development effect for data set is significant.

For this example, the results of the hypotheses suggesting that the loss 

development effect strongly predicting the amounts of loss incurred at different loss 

development period. However, the accident year effect are statistically significant in 

predicting the loss incurred amount only at 0.10  or larger level of significance.

One can use the same procedure of hypotheses testing to evaluate all parameters 

together, each individual parameter, or any types of combination by setting a proper 

design matrix M.

The F values calculate by least square method given by the RGLM is 25562.9 for 

the accident year effects and 1695.73 for the loss development effects. This indicates that 

based on least square method, both accident year and loss development effects are 

significantly predicting the loss incurred amounts for this data set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.11 Rank-based Estimation vs Least Squares Estimation

If the estimates and the hypotheses testing results for the rank-based method and 

the classical least square method are so close, why would anyone choose to use the rank- 

based method rather than the classical least square method? As it was mentioned above, 

both least square estimation and rank-based estimation generate acceptable results as long 

as the errors for the linear model distributed fairly normal and free of outlier. However, 

if the error distribution is skewed toward right or left as well as error with long tail, or 

if there is one or more significantly large outlier, the results estimated by least square will 

be distorted. As it will be shown in the following chapter with greater detail, rank-based 

estimation is robust to outlier and is relatively more efficient when the error is long tailed 

comparing to least square estimation.

As it was mentioned in the previous chapter, for rank-based estimation, the 

influence of outlier enters in a linear rather than quadratic fashion, the estimates generated 

by the rank-based estimation are more robust than the least square estimates. Unlike the 

least square estimation, the predicted total IBNR reserve estimated by rank-based 

estimation for a data set contaminated with outlier change very little compare to the one 

estimated without outlier. In addition, the rank-based estimated IBNR reserve for each 

accident year is not distorted despite there is an outlier in the data set. It is rather more 

important that the incurred portion for each loss development year has not been changed 

due to the outlier. This means the loss development distribution which is used to predict 

the loss incurred for future accident years will not be changed due to significantly large
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outlier.

Chapter V discusses the robustness for the rank-based method in greater detail 

and also presents a sensitivity study for this method relative to least square estimation.
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CHAPTER V

RANK-BASED ESTIMATION EVALUATION

5.1 Influence Function

Consider the linear model from the last two chapters

Z  = a l + V f S + e .  (179)

As it was stated in Chapter IV that the influence function of the R-estimate is given by

I F ( v , z $ r ) = t S ' 1(p(F(r))v . (180)

This indicates that the influence function for is bounded in the y-space but not in the 

x-space. Since the independent variable V for the linear model (179) is a design matrix, 

it should not have contamination in the x-space, so there should not be any distortions on 

the estimates.

A sensitivity analysis has been done to test this rank-based method with the same 

data set that was tested with other methods. As the same way De Vylder’s least squares 

method was tested, as shown in Table 35, a loss incurred was substituted with a 

significantly large number to see if this contamination would distort the results. The 

incremental loss incurred for the 2nd loss development year for accident year 1992 was 

changed from 344 to 1000.

97
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Table 35 

Contaminated Data Set

Loss
Development

Year

Accident Year

1990 1991 1992 1993 1994

1 250 267 298 289 300

2 300 315 1000 312

3 117 120 124

4 50 55

5 16

Estimating the IBNR reserves for the data above with rank-based method 

generates the results in Table 36.

Table 36 

Distorted Estimates

Accident Year 1990 1991 1992 1993 1994

Ultimate Incurred 729 778 861 772 866

Development Year 1 2 3 4 5

Portion Paid 0.346 0.409 0.154 0.069 0.022

With the estimated value of Xj and Pj, future incurred losses can be estimated as 

shown in Table 37.

The results displayed above shows that a large contaminated data that would
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distort the estimates for the chain ladder method, De Vylder’s method, and other non- 

parametric iteration methods do not distort the rank-based estimates. The total reserve 

estimate for all accident years 851 is not significantly different from the one estimated 

without the contamination 845. It is more important that the estimated loss incurred 

portion for the loss development years are not changed due to the contamination.

Table 37

Distorted Predicted IBNR Reserves

Loss
Development

Year

Accident Year

1990 1991 1992 1993 1994 Total

2 354

3 119 133

4 60 53 60

5 17 19 17 19

Total IBNR 
Reserves 0 17 79 189 566 851

In order to further test the sensitivity of the rank-based method, the contaminated 

data are changed from 1,000 to 5,000 and 10,000. Table 38 and Table 39 below display 

the results of the two contaminated data sets estimated with the rank-based method.

Tables 38 and 39 showed that contaminations did not distort the results estimated 

by the rank-based method which confirmed that the influence function for the R-estimates 

is bounded in the y-space. And they also indicate that the magnitude of the contamination 

does not affect the results of the R-estimates.
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Table 38

Estimated Total Incurred Comparison

Contamination

Accident Year

1990 1991 1992 1993 1994

Estimated Total Incurred

No 736 779 839 800 856

1000 729 778 861 772 866

5000 728 776 861 781 867

10000 728 776 861 775 867

Table 39

Estimated Portion Paid Comparison

Contamination

Accident Year

1990 1991 1992 1993 1994

Estimated Total Incurred

No 0.351 0.404 0.154 0.070 0.022

1000 0.346 0.409 0.154 0.069 0.022

5000 0.346 0.409 0.154 0.069 0.022

10000 0.346 0.409 0.154 0.069 0.022

This is very important for loss reserve analysis because the loss development 

pattern should not be changed just because there is one extraordinary large paid incurred 

or loss reserve set aside due to an unforeseeable catastrophe. It is also important that the
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loss development patterns and the total reserve needed for all accident years should not 

be distorted by the magnitude of the unusual large loss happen in one particular loss 

development year for one particular accident year.

Using the estimated incurred portion for loss development years, P, age-to-age 

loss development can then be calculated as shown in Table 40.

Table 40

Estimated Loss Development Factors Comparison

Loss
Development

Year

Loss Development Factors

Chain Ladder De Vylder’s 
LS

Least Square Rank-Based

1 - 2 2.152 2.098 2.151 2.151

2 -3 1.204 1.190 1.204 1.204

3 - 4 1.077 1.069 1.076 1.077

4 -5 1.022 1.019 1.022 1.022

As Table 39 shown, the rank-based estimated loss development factors are 

identical to the selected loss development factors for the chain ladder method. On the 

other hand, the loss development factors estimated by De Vylder’s method are different 

from both chain ladder and rank-based methods.

Since the rank-based method generates consistent estimation for the loss 

development pattern, the loss development factors estimated by rank-based method can 

be used for other loss reserve methods such as chain ladder method or Bonheutter- 

Ferguson method. These methods require actuaries to input the loss development factors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in order to predict the IBNR. One can use the loss development factors estimated by the 

rank-based method along with chain ladder or Bonheutter-Ferguson methods to predict 

the IBNR reserves and compare them with the IBNR reserves estimated by the rank- 

based method to ensure the accuracy of the estimation.

5.2 Breakdown Study

It was shown that the influence function for the rank-based method was bounded 

in the y-based. However, it is not guarantee that a contaminated loss data will not distort 

the loss data or the loss incurred prediction. Keep in mind that loss incurred data sets are 

triangular matrixes with accident years as the columns and with loss development years 

as the rows. Because of the shape of the loss data triangles, it is not practical to make a 

general statement concerning the breakdown point for the rank-based method. It is not 

just the portion of the contaminated data contain in the data set but also the location of 

the contaminated data within the loss data triangle that will affect the outcome of the 

estimation. In addition, each contaminated data will affect both the row effect as well as 

the column effect.

A simulation study has been done to evaluate the results of the rank-based 

estimates when one contaminated data is placed at all possible location of the data set. 

Numerous sizes of data triangles have been tested to confirm the validity of the results for 

this analysis. As it was showed in the previous section, one contaminated data would not 

affect the results of the R-estimates. However, if it was placed at the comers of the data 

triangle the results of the estimation will be distorted. The data set that was used in the
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previous chapters displayed again in Table 41 to help illustrating the sensitive locations 

of a data triangle.

Table 41 

Incremental Loss Incurred

Loss
Development

Year

Accident Year

1990 1991 1992 1993 1994

1 250 267 298 289 300

2 300 315 344 312

3 117 120 124

4 50 55

5 16

If there is a contaminated data at the upper right corner of the data triangle, the 

estimated Pj’s will not be distorted. However, the Xj’s will be estimated as shown in 

Table 42.

Table 42

Distorted Ultimate Incurred Estimates

Accident Year 1990 1991 1992 1993 1994

Ultimate Incurred 735 779 839 800 2852

Note that the ultimate incurred for accident year 1994 is much larger than the 

ultimates incurred for the prior accident years. It is because apply the exaggerated
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incurred loss, 1000, which is the only incurred loss data for that accident year to the 

estimated loss development factors will result with a extraordinary large ultimate incurred. 

In a practical point of view, it can not simply conclude that it is a bad estimation. Other 

factors could possibly cause the extraordinary large incurred loss for that accident year 

that leads to much larger ultimate incurred loss. However, it is still a good indicator for 

further investigation.

If a contaminated incurred loss, 1000, is placed at the lower left comer, both the 

estimated Xj’s and the estimated Pj’s are significantly distorted. The paid out porting for 

each loss development year Pj and the ultimate incurred loss for each accident year are 

estimated as shown in Table 43.

Table 43 

Distorted Pj and Xj Estimates

Accident Year 1990 1991 1992 1993 1994

Ultimate Incurred 1720 1822 1960 1869 2000

Development Year 1 2 3 4 5

Portion Paid 0.150 0.173 0.066 0.030 0.581

Since there is only one data for the 5th loss development year, one contaminated 

data will shift the estimated Pj’s enough to distort the estimated X;‘s.

Numerous Simulations have been done to determine the largest portion of 

contaminated data within one row or one column without breaking down this rank-based
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method. Different numbers of outliers were randomly put within one row or one column 

of a data set and a check was performed to see if the estimated results were significantly 

distorted. The same process was done on data set with different sizes. The results of the 

simulations have consistently shown that if 50% or more data within one row or one 

column are contaminated, the results of the rank-based estimation will significantly be 

distorted. This means if there is one contaminated data, there will be 6 places within the 

triangular data set that can breakdown this rank-based method. Table 44 shows the 6 

places that can breakdown the method.

Table 44

Places That Break Down R-estimation With 1 Outlier

Loss Accident Year
Development

Year 1990 1991 1992 1993 1994

1 XXX XXX

2 XXX

3

4 XXX XXX

5 XXX

Note that the same 6 places apply to other sizes of data triangles if there is one 

contaminated data. For a 5x5 data triangle, 40% ( 6/15 ) of the time results of the 

estimation should be distorted if there is one outlier. For a 6x6 data triangle, 28.6% ( 

6/21) of the time results of the estimation should be distorted if there is one outlier. The
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same calculation can apply to data set with different sizes. Let C1 be the percentage of 

time that the results of the R-estimation is distorted if there is one contaminated data in 

a nxn data triangle.

Cl =
n(n * 1) (181)

Equation (181) indicates that as the size of the data triangle increase, the probability that 

the rank-based method would breakdown with one outlier decreases.

Simulations have been done to confirm the calculation above. Total IBNR reserve 

was estimated with one contaminated data randomly put in the same 5x5 data set which 

has been used for illustration and repeating this process for 1,000 times. 41.5% of the 

results were distorted significantly.

Let C2 be the probability that a nxn data triangle would breakdown with two

outlier.

C2 =  1. n - iM i
ND

2

(182)

where

ND = .
2 (183)

For a 5x5 data triangle, C2 is calculated as 77.2%. Two outliers were randomly put in
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the 5x5 data triangle to estimate the total IBNR reserve with rank-based method and 

repeating this process for 1000 times. 76.2% of the time the estimated results were 

significantly distorted. Note that when the data triangle is relative small, such as 5x5, the 

probability that the results are being distorted by just two outliers are very high, over 3/4 

of the time. However, when the size of the data triangle increases, the probability that the 

results will be distorted by two outlier decreases significantly. For example, if there are 

two outlier within a 10x 10 data triangle, the probability that this rank-based method 

breaking down is only 22%.

Note that the intercept parameter is estimated as the median of the Walsh averages 

of the residuals after the slope parameters are estimated and the breakdown point for the 

Walsh averages estimation is known to be around 0.29. This means the intercept 

estimation for the rank-based method will breakdown if there is more than 29% of 

contaminated data within the data triangle. Despite the location of the contaminated data, 

as long as there are 29% or more contaminated data within the data triangle, this rank- 

based method for sure will breakdown.

5.3 Confidence Interval

A simulation study has been done to evaluate the standard error approximated by 

the delta method. Known Xj’s and Pj’s are set to create a loss incurred data triangle 

which means the true IBNR is known also. Taking a logarithm transformation for the 

created Y, = Xj Pj5 to change the multiplicative model to a additive model
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Z  = logF

108

(184)

Randomly pick errors, e, with normal distribution N( 0, o2 ) and added to Z to create Z* 

where

Z '  = la  + Vp+e . (185)

An IBNR is estimated based on Z* by the rank-based estimation and a 90% 

confidence interval for the estimated IBNR is constructed also. Then check if the true 

IBNR falls within this constructed IBNR confidence interval. Repeat this process for 

1000 times to count the number of estimated IBNR confidence intervals contain the true 

IBNR. After 1000 simulations have been done, there were 896 out of 1000, 89.6%, 

estimated IBNR confidence intervals contain the true IBNR which indicated the standard 

error approximated by the delta method is quite accurate.

5.4 Comparison of Least Squares and Rank-based Estimates

Chapter IV showed that the results of the least square and rank-based estimates 

are very close if there is no extraordinary large loss data within the loss triangle. They 

both generate reasonable results compared to other loss reserving methods. However, 

if there is an outlier in the data triangle, the results estimated by the least square will be 

distorted. The second advantage of rank-based estimates over the least square estimates 

is the magnitude of the outlier does not affecting the results of the rank-based estimation. 

This estimation is very similar to how an actuary estimating IBNR reserves uses the chain
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ladder method. If there is a extraordinary large loss incurred in one particular loss 

development year for one particular accident year which generates an extraordinary aga- 

to-age loss development factor, the loss reserve analyst would usually down weight that 

particular age-to-age loss development factor while picking the selected loss development 

factors. This down weighting process will prevent the predicted IBNR reserves being 

over projected by that extraordinary loss incurred.

A contaminated loss data was placed in the same data set, Table 45, that has been 

tested with to compare the results. The incurred loss for the third loss development year 

for accident year 1992 has been replaced with a much larger loss incurred of 500.

Table 45 

Contaminated Data Set

Loss
Development

Year

Accident Year

1990 1991 1992 1993 1994

1 250 267 298 289 300

2 300 315 344 312

3 117 120 500

4 50 55

5 16

Estimating the total IBNR reserves for the data set above with least square and 

rank-based methods. Then increase the outlier to 1,000, 5,000, and 10,000.

Table 46 displays the results estimated by the rank-based method and the least

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110
squares method. Note that the results estimated by the rank-based method were not 

distorted by the magnitude of the contaminated loss data. On the other hand, the results 

estimated by least square method were distorted significantly by the outlier, and the 

distortion increased as the magnitude of the outlier increased.

Table 46 

R-estimates Vs LS-estimates

Contaminated
data

Estimated Total IBNR Reserves

Rank-based Least-square

No 845 844

500 862 1,065

1,000 861 1,216

5,000 865 1,724

10,000 862 2,037

5.5 Testing With Real Loss Data Sets

The rank-based method was tested with real loss data of various lines of 

businesses from various sizes of insurance companies and from large corporations which 

are self-insured or which have very high self-retention. Figures 3 through 7 display the 

predicted IBNR reserves estimated by the rank-based method from five different lines of 

insurance businesses along with the results of the chain ladder method for comparison. 

Note that the loss matrix under the chain ladder estimates is a cumulative loss data while 

the loss data matrix under the rank-estimates is an incremental loss data. Also the bold
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printed data are the predicted loss data and the light print are the historical loss data. 

Under the age-to-age loss development factors triangle, the Walsh average and median 

of the age-to-age loss development factors for the corresponding column are displayed 

along with the average.

Figure 3 displays the loss data as well as the estimations for Homeowner’s 

Liability which loss development is very stable and has a relatively short tail. The rank- 

based estimation shows a very good fit, the R2 of the estimation is over 98%. The 90% 

confidence interval for the IBNR reserves is between $8.2 and $10.8 million. Note that 

the total IBNR reserves estimated by the rank-based estimation is very close to the one 

estimated by the chain ladder method.

Figure 4 displays the loss data from Workers’ Compensation which loss 

development is very stable but has a long tail. Again, the rank-based estimation has a very 

good fit, the R2 of the estimation is over 96%. The results of the rank-based estimation 

are very close to the results of the chain ladder method.

Figure 5 displays the loss data from Other Liability for occurrence policies. The 

age 1 to age 2 loss development factors showed possible 1 or 2 outliers. Since there are 

outliers within the loss development factors, the Walsh average and the median do 

provide additional information that helps picking the selected factors. Despite of the 

outliers, the rank-based estimation still has a good fit, the R2 o f the estimation is almost 

91%. The results of the rank-based estimation is still relatively close to the results of the 

chain ladder method.

Figure 6 displays the loss data from Medical Malpractice for occurrence policies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Chaln-Ladder Estimates: Homeowners
Age-To-Age Loss Development Factors:

DY 1-2 DY 2-3 DY3-4 DY4-5 DY5-6 DY 6-7 DY 7-8 DY 8-9 DY 9-10

1986 1.307 1.048 1.028 1.017 1.010 1.005 1.003 1.002 1.001
1987 1.379 1.035 1.028 1.016 1.010 1.006 1.003 1.002
1988 1.346 1.044 1.024 1.012 1.009 1.005 1.003
1989 1.386 1.040 1.027 1.008 1.008 1.004
1990 1.339 1.044 1.023 1.014 1.008
1991 1.316 1.049 1.024 1.013
1992 1.269 1.034 1.015
1993 1.286 1.059
1994 1.258
1995

Average 1.321 1.044 1.024 1.013 1.009 1.005 1.003 1.002 1.001
Walsh Avg 1.322 1.044 1.025 1.013 1.009 1.005 1.003 1.002 1.001

Median 1.316 1.044 1.024 1.013 1.009 1.005 1.003 1.002 1.001
Select 1.300 1.045 1.024 1.013 1.009 1.005 1.003 1.002 1.001 Est Ultimate Est Reserves

1986 6,529,434 8,533,151 8,941,104 9,191,703 9,344,357 9,437,389 9,485,615 9,511,897 9,526,711 9,535,137 9,535,137 0
1987 6,539,819 9,016,637 9,332,038 9,588,922 9,739,104 9,837,336 9,895,435 9,923,895 9,939,756 9,949,696 9,949,696 9,940
1988 7,376,354 9,930,508 10,363,322 10,608,862 10,731,040 10,827,308 10,880,901 10,912,392 10,934,217 10,945,151 10,945,151 32,759
1989 9,154,123 12,686,923 13,195,481 13,553,875 13,664,771 13,772,370 13,821,182 13,862,646 13,690,371 13,904,261 13,904,261 63,079
1990 9,203,424 12,319,372 12,856,452 13,151,721 13,332,277 13,437,803 13,504,992 13,545,507 13,572,598 13,586,171 13,586,171 146,366
1991 10,626,497 13,982,638 14,664,517 15,017,120 15,207,705 15,344,574 15,421,297 15,467,561 15,498,496 15,513,995 15,513,995 306,290
1992 17,414,216 22,103,002 22,860,400 23,208,015 23,509,719 23,721,307 23,839,913 23,911,433 23,959,256 23,983,215 23,983,215 775,200
1993 11,302,805 14,533,920 15,388,681 15,758,009 15,962,863 16,106,529 16,187,062 16,235,623 16,268,094 16,284,362 16,284,362 895,681
1994 13,203,660 16,611,020 17,358,516 17,775,120 18,006,197 18,168,253 18,259,094 18,313,871 18,350,499 18,368,849 18,368,849 1,757,829
1995 12,787,316 16,623,511 17,371,569 17,788,486 18,019,737 18,181,914 18,272,824 18,327,642 18,364,298 18,382,662 18,382,662 5,595,346

Rank-Estimates: 150,453,499 9,604,492

DY 1 DY 2 DY 3 DY 4 DY 5 DY 6 DY 7 DY 8 DY 9 DY 10 Est Ultimate Est Reserves

1986 6,529,434 2,003,717 407,953 250,599 152,654 93,032 48,226 26,282 14,814 8,426 9,535,137 0
1987 6,539,819 2,476,818 315,401 256,884 150,182 98,232 58,099 28,460 15,861 9,100 9,948,856 9,100
1988 7,376,354 2,554,154 432,814 245,540 122,178 96,268 53,593 31,491 15,887 9,036 10,937,315 24,923
1989 9,154,123 3,532,800 508,558 358,394 110,896 107,599 48,812 33,223 16,376 10,452 13,883,233 62,051
1990 9,203,424 3,115,948 537,080 295,269 180,556 105,526 63,820 35,086 19,406 11,038 13,567,154 129,351
1991 10,626,497 3,356,141 681,879 352,603 190,585 133,719 73,689 40,511 22,407 12,745 15,490,775 283,070
1992 17,414,216 4,688,786 757,398 347,615 252,063 173,703 95,723 52,625 29,107 16,556 23,827,792 619,777
1993 11,302,805 3,231,115 854,761 379,387 208,786 143,880 79,288 43,590 24,110 13,713 16,281,434 892,753
1994 13,203,660 3,407,360 697,748 396,739 218,335 150,460 82,914 45,583 25,212 14,341 18,242,353 1,631,333
1995 12,787,316 4,113,925 746,207 424,292 233,498 160,910 88,673 48,749 26,963 15,336 18,645,869 5,858,553

0.68579 0.22064 0.04002 0.02276 0.01252 0.00863 0.00476 0.00261 0.00145 0.00082 150,359,917 9,510,910

90% Confidence Interval: 8,239,121 10,782,699
R-square: 98.41%

Figure 3. Chain Ladder Vs Rank-based Estimates, Homeowners.
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N ^ N O n A W  F̂NTcoofcM’r̂ fô co®F F F F F F N r t P J P i

V
-C

T
CO
>
Q

I P J F F

; r i  5 c
• A  F  S  F

$ n r C © S d > © n N ©  
« ^ © f © f f A t t

f- f- CM ^  CM

>-
o

f A © P ) A  Ac M t n ^ T 0 5 g < p d « o e g  
^  A ( 0 ® n n i n o  A o

CM
>•
O

A f O f f O A B
f N N N N N f f

8  8  5  8o o o  o
CM CM* CM CM

I CO CO K
—  _ j rC  cm ’
» 05  0 5  ^  CO I

CO>a S O  CO CM S f Q A P ) f  
© F t F F t f l A F r t  
r*COr«»CO<0 <0 w5<0 fOflD 

S  ©' ©* F* ©  A  ©  (O ©  P) v-CM04C0C0^^©C0Pf CM
o

CM N . ( O 05̂ C 0 C0 P f 05O5 ©  0)0 O
• © n f l 5F r t N F m ©  CMcOflOO*• co®«©F-rFCMd5<o o©3n>-

Q
C0CM©*fC0C0fs.05©

©NS M' CP A ^ Q S ©
SN f N © 6 n ® © T  

F A T . W N . F F f l K  
N O © «  r*‘ © Q f* ©* t»-c3cjcMco^inoo<oh»

CM>
O f  O P )  N  CO : 

cm" co’  cm cm n." CM* CO CO ©  F- 
f f N N N V ^ N © ©

r*.
N.
O

o

5o

2 < -o m! i l «
<  co5

' N  P5 J  ©  
I 05 05 A  05 
I 05 05 05 05

S f  ©  ©  N  CO ©  
A  ©  3  N  N  ©

f- tr>
©  05 _  _ _____ j  - - _____  -f  o ® f  co n o) f  f  g
©’  N  P) © * CO r t  f f l  «  O  F *  33

UJ

> N © A O f N P ) 3 ©g CQGQ0)Q5G5O5C5Q5 
O 5O 5 O 50 5O 5 C 5 O 5 O 5

F © O Q F © © N P ) ( f i
>  © A © © A © 3 N N ©Q f  O A f  © © A f  S  F

t n  isT co ©’  co* co" <o co* a>

^ S O ) O f N P ) 3 «

S CO 60 05 A  05 A  A  A  
O>O>O5O5O50505O)

05
N.
to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115

o:
to
UJ

o S *- m  eo px. cm t<p (p 00 <
«n c53 *  *3F CO CO <

^ c n ^ S c o S m ^ S  ft $ 5  S  S
y-  cm m  ao o> co cm ^  o  *--

>co*-cppx.v«cppx.co in <p
© m n w T ^ w N n  cm ^s n o » - ( o n o i o o  o> co

W r * f l O f f > C_ co co co rr ̂  ®
t -  OJ IA N  flO N  N CM

to

ffl
t o
E
§
to
UJ

t - « ( o c o i o c o { D » - Q i n
f d s o ) Q p r t i ‘ i f i i n®. *  T  ®. w ‘I  *“. N .  ®.
N ( p r > t ' ( O f l O N O ^ C O
CMOTCJOTOSy-COy- tF cM

55
pxTs

o
05

©
YT

3
m

k
px.
Yf §

m *

—I

I

d)>a

O)co>a

SNNNs s s s

55888© © © o

r > « n n n ( O i 0 ^ Q i A  
• - O N O O O r t  « •  «  nco •  t  •  «  w r t  f ,  s  to 
N  *  5  «  • *  S  O  * •  •
M 9 9 * * M 8 i o N 6 r

S S S S P S S S S ?^  •• NOi . i ASi Oi A0  A 
r - ‘  N  f t  O *  O *  t *  S  N  •  «  
a ) i n $ K r ( O N ^ n «  
f C 5 ® f l O { O ^ W T * W ^

05>-o

N n K ^ O V N r S ^
( O O N S O K t r ^ l A S

a ; ? s ? ' s s 3 ' s s

S S S S JS S ^ S S S  §
n A f t f t N n o a i A a  m

*

O £
S §s y

Px.
px. m

>a Y-' Y-' 3 5 5 ? 5 S 5 f 5 » S 8
f C O O O S O N O N ^

CO>*O
N « 9 ir t5 ^ “J
s e r I s s s s

frtNOS w
CO CM - .  — . ----------
r  A S K O O O I

CM
co
8O
©

>*Q
I f l K O N N M O A O O  
» * k ^ ( O r  « ? « « ? •  
T  ©. ®. rt- rt. ®. ®. ®. ^

5 ?5

P->o
05 to  CM 
tP  CO CO 
px. CM CM

85o

>*Q
i»CM̂ Nt 
y - (O CM U5 trt 
CM CO CO CM CM

CM P- h - CP 
CO CO lO (P 
CM CM CM CM

p c M » - ( n o s f “ i o n w

s s s s s s s s a s
t -  ®  N  5  P  W  ift* o f  O  «SS t p n i A N M O K t  IO(D(OIO0O8O<B

CO
>•a

f l i O N S Q N P - O ^ P  o

g
M> 0 « C M C O K e « 9 P  S

>»
Q

M- l O y-  ( 0  CM CPp*̂ t-  r*- t-  ioio to CP O' o- o*
CN CM y-  ©  
^  T* » •  f *to to to to

px. CM <J> CM t-
r x . p x . c o  -
CO CO IO

S in  c 
Q  < CO t o  I

© 5 8 3 S 3 3
t o  O  N  O  S  O  t  

‘  d  cm" Mf w  o ”  oT 
N l O r t t  N I O  in co px to K> to

** O C O C 0 0 5 ® t O N r N O  
>■ i - M T - l O C M N p t * 9 > «Q in 7 CO N CO M o

cocodcMcoVfoVcoooO N Q t O I O d N l O t r t
CM r  r - r - * . ^ N r N N

>Q
05 CN 05 CM px. GO (O 
y-  CM y— CN y— «— y—

CO ^ tO Q5 10 lO tO 
0 ) 0  0

N Q o n n m o n o n

s a s s s a E s a s
y-  S  O V  N*  CO ( O  «  O)  Q

?S«SS; 5§Qf 84

CO CO Px. t 
CM CO CO < 
CO CO px. <

i r > ® C M S 0 A  V-

lOO^COCOCOtO^fOCD

CM
>•Q

co Cp O CM CM CM CM Q 
(O 0 ( 0  7  CM CO CM CO CO CM

CO px. CM 
N  P  Ncm m co

go & px. m
5 5 3 SCM CM* CM CM

0>Cp05COCMP-px-m<OtOc o cp 9 ? c o ^ r x x p > v - t n  
n  8  ro  q  cm f f l  cm# n  «  n
to  pxT to’  CM* YT y—" CO Px
CMt- y- y-CMCMCMCMCMCM

>•O
S in m co ©

l O N r ^  
I O) Q  O) Np  9 i  ( 3  o >  c o  p  s  c 6  ®  ^  ^

to"  CO o “ pxT t o  cp’  pxT cp’  t o  CM T-M - S o o t o c o c o i o i o t o  QT- y- ^ - y- y-^-y- t“ y- w

>Q
s s ;
l r i ( D ( D M i N d » - c b N

xf tO iO IO 
CP cd cp CP

SO C O S S C M ^ Q P r
c o c M m Q ^ c p m d o  

®  5  CO O) M . CD f f )  M*. 5  N  
C> oo’ to M“’ CO pxT co" 05~ CD pxT 
s 5 o  v n o i n i n  ®  n

CM
>a

m cm < co m c *r co c110 * in o  co m
s a ­ les:!?1 CM 05 px * CM CO hx 

> l O  px. ( P

3
c

so

e < -s o 
S i l “

<  co
5

> P - t f > O Q * - C M C O ^ i nSP t t P Q O C n O Q )  
0 0 ) 0) 0) 0) 0 0 ) 0)

m p x . o > c M < _ ,  . .  .COY-COCMPx.dpx-px.CMPx.COlOO>M*Y-tOY-Y-COCO
» 00 CN CO px. Si
■ ‘  *■ ‘  co

E33 (A
UJ

I N O O O r C M n j i n
) ® C O 9 d ) 0 ) p ® m O )
10) 0) 0) 0) 0) 0) 0) 0) 0)

m px. a  cm 
0  r *  CO CMco m c» ^
c d  pxT co* o ‘  co’  o ’  O)  P-.  y-
Y- T- CO Y-

eo cm co px.
px. px. CM px. 
Y- Y-  CO CO

i a  o  ^  cm c o  j  i n

S£  S  $  S 2  9u) O) O) P  0) O)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The observed loss data does show some unstable loss development and outliers. 

However, the rank-based estimation still has a good fit, the R2 of the estimation is almost 

95%.

Figure 7 displays the occurrence loss data from Product Liability. The magnitude 

of the loss data is very small. The loss development pattern is unstable and has a 

relatively long tail. The R2 of the estimation is only 69% which indicates this is not a very 

good fit. However, the total IBNR reserves estimated by the rank-based method is not 

far off from the result estimated by the chain ladder method.

The rest of the estimations, which are not displayed in this paper, show similar 

results as displayed in Figures 3 through 7. They all seem to have reasonably good results 

and the estimated IBNR reserves are close to the ones estimated by the chain ladder 

method.
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CHAPTER VI

CONCLUSION

The intention of this paper is to apply one of the practical uses of Robust Statistics 

to the insurance industry. Loss Reserve Analysis has been a repetitive task in the actuarial 

profession. Insurance companies rely on actuaries to estimate the IBNR reserves needed 

to determine its financial strength. This is why it is critical to accurately estimate the 

IBNR reserves needed routinely, such as quarterly, semi-annually, or annually. With the 

speed and capacity of today’s computer, a tedious and repetitive loss reserve analysis can 

be accurately done with a statistical routine. However, classical statistical methods do not 

consistently deliver accurate results due to the following reasons:

1. Classical statistical methods are sensitive to outliers. Some lines of casualty 

property insurance tend to have outliers and unstable loss incurred pattern which will 

distort the classical statistical estimates.

2. Classical statistical methods need to have relatively large data sets to generate 

consistent results. For smaller or newly formed insurance companies, large data sets are 

not always available.

3. Classical statistical methods assume the distribution of the error to be normal. 

However, it is known that the distribution of IBNR reserves tend to have long tails.

As the results of this paper show, estimating IBNR reserves with the rank-based

118
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method did show positive results. This rank-based method generates consistent results 

despite outlier and contaminated data within the loss triangle. In addition, it also provides 

statistical inference for hypotheses testing. The R2 value provided by this rank-based 

method is also a valid indicator for showing the goodness of fit. This rank-based method 

also estimates the standard error for the estimated IBNR from which the 100(l-a)% 

confidence interval for IBNR can be calculated.

The positive results for this rank-based method is a good start, but there is so 

much more studies that remain to be done. There are so many existing lines of insurance 

businesses that have different types of loss distributions. It is good that this rank-based 

method is distribution free and is able to be applied to different types of loss distributions. 

Though this rank-based method shows promising results with the tested data sets, it still 

needs to be tested with more actual loss data to determine the reliability of this method.

A few questions were raised by this research and need to be addressed by further 

research work.

1. What if the loss paid out model is not multiplicative but additive. A model

such as

^  = a + P,+V e „  (186)

where a is the intercept parameter, p; is the accident year effect, and Yj is the loss 

development year effect.

2. What if there are negative numbers among the loss data. It is possible to have 

a negative number as the loss incurred data. A negative loss incurred number is indicating
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that during that particular loss development period, the total amount loss incurred paid 

out is less than the total amount of salvage and subrogation received by the insurance 

company for accidents which occurred in that accident period. Since a claim has to 

completely pay out to claimants before the subrogation process starts, it is quite possible 

that for later loss development years, the total subrogation received is larger than the total 

loss paid out for one particular accident year.

If there are negative numbers among the loss data, this multiplicative model 

introduced in Chapter IV will not work because the logarithm of a negative number is 

undefined. In this case the additive model rather than the multiplicative model may be 

more appropriate.

3. As it was shown in the previous chapters, the iterative non-parametric methods 

were not robust to outliers. They did not generate reasonable results if there was 

contaminated data within the loss incurred triangle. A high breakdown rank-based 

estimation can be used rather than those introduced in Chapter III.

4. What if other score functions are used to make the iterative methods more 

robust to outliers. Some score functions are designed for error distributions with heavy 

right tails such as the Positively Skewed Winsorized Wilcoxon score function. They 

consist of a linear piece followed by a flat piece; hence, the resulting analysis is less 

sensitive to outliers on the right. Using some of these special score functions, the iterative 

methods can possibly be robust to the outliers in the x-space.

It would be very beneficial to the IBNR reserves estimation if the non-parametric 

iterative methods are robust to outliers because they are not restricted to estimate with
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only positive loss data.

There is a robust estimation routine called Least Median Square (LMS) which 

influence function is bounded in the x-space.

Consider the following linear model:

Y , = X t p+e, , (187)

and let

e, = Yr X fi  (188)

LMS estimates p such that for all -OO <  P  <  00 ̂  P satisfies the following argument:

Minimize Med(e2) . (189)

For the results of the preliminary study, when applied to the iterative method, this 

routine does generate promising results for estimating IBNR reserves. This estimating 

method is also robust to outliers, even outlier in the x-space. However, this LMS routine 

does have its disadvantages. There are no simple numerical routine that helps locate the P 

which generates the least median of the residual square. The process of finding that 

unique (3 can be tedious and time consuming. However, again, with the tremendous 

speed and capacity of today's computer, the problem concerning this LMS routine could 

be secondary. Further study of this robust routine could be very beneficial to loss reserve 

analysis. It provides another dimension in estimating the IBNR reserves.
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Appendix A

Algorithm for Estimating IBNR Reserves 
With Iterative R-Estimate
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APPENDIX A

Algorithm for Estimating IBNR Reserves With Iterative R-Estimate 

Without loss of generality assume Wilcoxon score function <p(u) is used such that

a(0 = <p(—'—)
(.90)

and (p(w) = \f\ l{u -^ )  .

R(Uj) returns with the rank of uf amoung all u's.

Let e > 0 be the value to determine the convergency of the iteration. 

Step 1: Let

P = — , j  = (191)
1 m

as the initial values of P.

Step 2: Let Pj = Pj be the independent variable and

-  i m
r  -  - T . P ,m j-\

For i = l,...,n

Step 2a: Solve for Xt such that
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m __
o; E (PrP)m(.y,-x,p)]

7=1

124

(193)

Step 2b: Let e; be the residuals

«, = Y, r pA  • <194)

for j = l,...,m.

Solve for a dummy intercept parameter

a = med{e) . ( 195)

Step 2c: Calculate the projected value of Yfj such that

• (196)

for j = l,...,m.

Estimate X; again with the following equation

y r p* u j
= V -  • d«7)

&

Step 3: Let X; = Xt be the independent variable

n

• r = - E * .  ■ (is*)n ,=i
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Forj =

Step 3a: Solve for P] such that

0 i  '£{X,-X)a[R(Y,r XlP)] ' (I99>
7 = 1

Step 3b: Let e; be the residuals

e, = y,j - P)X! , (200)

for i =

Solve for a dummy intercept parameter

a = med(e) . (201 )

Step 3c: Calculate the projected value of Yy such that

(202)

for i =

Estimate P; again with the following equation

Pj = ^ ----  • (203)
i* I

Step 4: Check if
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(204)

If true then stop.

If false then go back to step 2.
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Appendix B

Deficiency of Non-parametric Iterative Methods: 
An Numerical Illustration
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APPENDIX B

Deficiency of Non-parametric Iterative Methods 
An Numerical Illustration

Consider the same data set being tested in Chapter II:

Table 47 

Contaminated Data Set

Loss
Development

Year

Accident Year

1990 1991 1992 1993 300

1 250 267 298 289

2 300 315 1000 312

3 117 120 124

4 50 55

5 16

Incurred loss for the second development year for accident year 1992 has been 

changed from 344 to 1000. With the Pj = 0.2 as the initial values, Xj’s were estimated 

with the weighted L-l norm estimation as shown in Table 48.

Table 48 

Distorted Xj Estimates

Accident Year 1990 1991 1992 1993 1994

Ultimate Incurred 750 968 2810 1597 1500
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Then P/s were estimated with the estimated Xj’s as the independent variables. 

The estimated X for accident year 1992 is 2810 which is an outlier in the x-space. Graph 

1 displayed the actual data along with the predicted line. Note that the predicted line was 

pulled by the outlier in the x-space. Thus the predicted P was smaller than it was 

supposed to be. The P/s were estimated as shown in Table 49.

Table 49 

Distorted P, Estimates

Development Year 1 2 3 4 5

Portion Paid 0.154 0.348 0.065 0.061 0.021

By the iteration process, the Xj then are estimated again with the distorted 

estimated values of P, as the independent variables. This means there are outlier in the x- 

space again and the estimated results of P, will be distorted.

Figure 8 demonstrates another linear data set which has no outlier. The rank- 

based estimates and the least squares estimates are almost identical. However, if there 

are outliers in the y-space, the rank-based estimates will be different from the least 

squares estimates. Figure 9 shows the results estimated by rank-based and least squares 

when there is one outlier in the y-space.

As Figure 9 shown, the rank-based estimations are robust to outlier in the y-space. 

Unlike the least square estimation, the outlier in this data set did not pulled the slope 

estimated by the rank-based method larger than it is supposed to be.
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Figure 10 shows the results estimated by rank-based and least squares when there 

is one outlier in the x-space. As Figure 10 shown, the rank-based estimations are not 

robust to outlier in the x-space. Like the least square estimation, the outlier in this data 

set pulled the slope estimated by the rank-based method larger than it is supposed to be. 

This confirms that the influence function for the R-estimates is bounded in the y-space but 

is not bounded in the x-space.
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APPENDIX C

Assumptions and Theory

C. 1 Assumptions for Asymptotic Theory

Certain assumptions on the distribution of the errors, the design matrix, and the 

scores are needed for the development of the asymptotic theories for the rank-based linear 

model. The required assumptions may be differ for each of the asymptotic theory. They 

are all placed together in this section for easy reference.

Let H denote the projection matrix where

H  =  V i V ' n ' V '  ( 206)

project onto the column space of V. The asymptotic theory assumes that the design 

matrix V for the linear model

Z  = a l  + VP+e (207)

is imbedded in a sequence of design matrixes which satisfy the following two properties. 

Note that Z is a N * 1 vector of observations. Let hm denote the leverage values of the 

diagonal entries of the N * N projection matrix H.

(D.2 ) lim max hliN = 0 f208>
1 v ’
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(£).3) lim Y!X. = S , (209)
iV-o* A'

where S  is a p * p positive definite matrix. The assumption (D.2) is known as Huber's

condition. Huber (1973) showed that the assumption (D.2) was a necessary and sufficient

design condition for the least squares estimates to have an asymptotic normal distribution

provided the error et are iid with finite variance. The Huber's condition also implied the

following assumption,

(N. 1) m ax -^ - -  0 for all k = 1 .
Is  i<.N y l

, J k

The score function <p(u) which is used by the rank-based estimation needs to

satisfy the following assumptions,

(S.l) <p(u) is a nondecreasing, square-integrable, and bounded function which is defined

on the interval (0, 1) and

i
j*cp{u)du = 0 ,
0

(211)
1
J  cp\ii)du  = 1 .
0

The following assumptions are needed for estimating the scale parameter t
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(S.2 ) <p is differentiable

137

(212)

When estimating the intercept parameter based on signed-rank scores, the assumption that 

the score function is odd about Vi is needed.

(5.3) <p / 1 - m )  = -<pfu )  . (213)

Fisher information is defined as

1(f) = f<Pfo)du , (214)

where

9 / M ,  J j q m . ( 2 I5 )

Note that the score function <pj(ii) is optimal.

The major assumption on the error density function/ for much of the rank-based 

analyses is

(EA) f  is absolutely continuous, 0 < 1(f) < °° . (216)

This assumption also implies that / i s  uniformly bounded and is uniformly continuous.
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Note that the scale parameter is defined as

T- • (217)
9 f  <P00<P/>Vw

Under the assumption (E.l) the scale parameter is well defined.

Another assumption is needed for the intercept parameter analyzes.

(£.2) _/(0e) > 0 , (218)

where 0 e denotes the median of the errors distribution.

0, = (219)

Recall that

=
2/ 6 J

(220)

Under assumption (E.2) the scale parameter t, for the intercept parameter is well defined.

C.2 Theory of Rank-Based Estimates

Consider the linear model given by (207). Let (a0 P„)’ be the vector of the true 

parameters. Then the true model is

Z = l a 0 + VV0 + e . (221)
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Recall the gradient function

S(Z -  V$) = £  o(fl(Z, -  v/PMVj . (222)
; = l

Theorem C. 1 Under the model (207),

m z  - Kp,)j = o 

Var[S(Z -  Kp„)] = a ] V V ,

where

N

E  a2(o
o2 = 1:1—  = i •N  -  1

(223)

(224)

Theorem C.2 Let S = V'V and under the assumptions of (E. 1), (D.2), (D.3), (S. 1), and 

model (207),

S(Z  -  V$0) D
 -----— ^  -  AaO,E) . (225)

yfN

Jureckova (1971) derived an asymptotic linearity result for the process S(P„)

P„) = -J: 5(P0) - ^ ' (P,'~ P°)S +0,(1) , (226)
yf l  yf t  Z

uniformly for \/^(P„ _ P0) = 0 ( 1) and the scale parameter x is given by
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. L,{jjeMJ { AF-'(«)) Jdu (227)

Integrating the right hand side of (226) will give a locally smooth approximation of the 

dispersion function D(P„) which is given by the following quadratic function:

( B - B  V P ' F f B - B  )
Q(Z-VP) = — ^ ^  -  (P -  PQyS(Z  -  Fp0) +D(Z -  ^p0) . (228)

2 t

Note that Q depends on t  and P„ so it cannot be used to estimate p. However, the 

function Q can be used to establish asymptotic properties of the R-estimates and test 

statistics.

Theorem C.3 Under the model (207) and the assumptions (E. 1), (D. 1), (D.2), and (S. 1), 

for any e > 0 and c > 0 ,

max |£ > (Z - r p ) - D ( Z - r P ) h e  
iP-Pol^V”

-  0 (229)

as n ~ °°.

This theorem shows that Q provides a local approximation to D. Result of this 

theorem can be used to obtain the asymptotic distribution of the R-estimate. Without loss 

of generality assume the true P„ = 0 . Then Q, the quadratic function, can be written as
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0 ( Z - V  P) = p/^ y p - - p  'S(Z)+D(Z) 
2x

141

(230)

Since Q is a quadratic function, it follows from differentiation that its minimizing value 

can be obtained in terms of p. Set

= A p ( p"(0-S(2) = 0 (231)
op 2 t

implies

a S(Z)
(232)

Hence, P is a linear function of S(Z). The asymptotic distribution of P can be obtained 

as the following theorem.

Theorem C.4 Under the model (207) and assumption (E. 1), (D. 1), (D.2), and (S. 1),

V ^(p-P0) °  Np(0 , t2S - f) (233)

Since Q is a local approximation to D, it would seem that their minimized values are close 

also. Jaeckel (1972) showed the proof of the following theorem.

Theorem C.5 Under the model 136 And assumption (E. 1), (D. 1), (D.2), and (S. 1),

M M ) -  0 .  (234)

Combining the results of the previous two theorems provides the asymptotic distribution
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of the R-estimate.

^ ( p - p 0) -  j y o . t ’s - ' )  (235)

Refer to McKean Hettmansperger (1996) for the proofs of the theorems above.

C.3 Theory of Rank-Based Tests

Consider the general linear hypotheses

H0: A/p = 0 versus HA: A/p * 0 , (236)

where M is a q x p matrix of full row rank. The following theorems and lemmas develop 

the asymptotic theory for this test statistic under null hypotheses. Let 0 denote the R- 

estimate of P in the full model of 136 and Q(P) denote the quadratic approximation of the 

dispersion function D(P).

Lemma C.l Under assumptions (E.l), (S.l), (D.l), and (D.2),

£>(0) -  2(0) ~ 0 . (237)

Lemma C .2 Let 0 be the minimizing value of the quadratic function Q, then under the 

assumption (E.l), (S.l), (D.l), and (D.2),

2(P) ~ 2 $ )  '  0 . (238)

Let
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[P
0

be the reduced model vector of parameters, let 4 be the reduced model R-estimate of 

Pt, and let

d ,
0

(240)

Let RD = D(^r) - D($) denote the drop in dispersion. McKean and Hettmansperger 

(1976) proved the following theorem.

Theorem C.6 Under the assumptions (E.l), (D.l), (D.2), (S.l), and Hq,

RD °  it ^
t/2

(241)

The subsequent test statistic that can be used is given by

(242)

where x is the scale parameter estimate. Although the test statistic qFR has an asymptotic 

X2 distribution, McKean and Sheather (1991) reviewed numerous small sample studies 

which indicated that it is best to compare the test static with F-critical values with q and 

n-p-1 degrees of freedom.
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Reject HqI M0 = 0 in favor or HA: MP * 0 if FR  ̂F(a,q,n-p-l) 

where a is the level of significant. These small sample studies have showed that the 

empirical a level of FR are close to the nominal values over a variety of designs, sample 

sizes and error distributions.

The rank analogue of Wald’s test is given by

_ (Mh'mV'n'MVWfolq 
hm --------------------- r2------------------  <243)t

From the asymptotic distribution of $R, theorem (235), that under HQ, qF^Q has an 

asymptotic x2 distribution. Hence the test statistics FR and F^Q have the same null 

asymptotic distribution. In fact, the difference of the test statistics converges to zero in 

probability under Hq. However, as Hettmansperger and McKean have shown, they are 

not algebraically equivalent.

C.4 Asymptotic Relative Efficiency 

Let Fu  denote the least squares classical F-test which is defined by

F l s  =  ~ z r  ■ (244)

Under the assumption of the random errors e; having finite variance o2, the null 

asymptotic distribution of qF^  is a central xq distribution. Thus both FR and F ^  have 

the same asymptotic distribution under the null hypothesis.
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The sequence of alternative models to the hypothesis H0: p2 = 0 is:

Z  = 1 a  + Vx P, + ^(0/v/w) +«, (245)

where 0 is a nonzero vector. Let

W  = 1

A2-B A X B

where X 'X  =

A x B (246)

Under the sequence of alternative models and the assumption (E.l), (D.l), (D.2), and

(S.l), qF,j has an asymptotic noncentral x2-distribution with q degrees of freedom and 

non-centrality parameter

(247)

Where W0 = lim,,^ nW. Under the sequence of alternative models, qF^ has an 

asymptotic noncentral x2-distribution with q degrees of freedom and non-centrality

parameter

(248)

The asymptotic relative efficiency of FR and F ^  is the ratio of their non-centrality

parameters,
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w  = - r -  = 4  <249>
t\ls t 2

If the distribution of the errors for a linear model is unknown, Wilcoxon score function 

is recommended to use for the R-estimate. If the distribution of the errors is normal and 

Wilcoxon scores are being used, the asymptotic relative efficiency of FR and is 95%. 

While the loss in efficiency over the classical analysis at the normal distribution is 5%, the 

gain in efficiency over the classic analysis for long tailed error distribution can be 

substantial.

McKean and Sheather (1992) showed that the empirical power of Fls at normal 

error distributions are slightly better than empirical power of FR with Wilcoxon scores. 

However, the empirical power of FR was much larger than the empirical power of if 

the error distribution had heavier tail. Note that the non-centrality parameters for the test 

statistics FR and Fls differ only in the scale parameters.

Refer to Hettmansperger and McKean (1996) for the proofs of the theories in this 

appendix.
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