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INTEGRITY OF DIGRAPHS

Robert Charles Vandell, Ph.D.

Western Michigan University, 1996

The vertex-integrity of a digraph D, denoted 1(D), is defined to be the 

m inimum over alll subsets X of the vertex set of D for the quantity IXI + 

m(D - X), where IXI is the num ber of vertices in X and m(D - X) is the 

m aximum order of a strong component in the digraph D - X. In  a like 

manner, the arc-integrity of the digraph D, denoted I’(D), is defined to be 

the minimum over all subsets Y of the arc set of D for the quantity IYI + 

m(D - Y), where IYI is the num ber of arcs inY. These two measures of the 

vulnerability of a digraph are analogous to the undirected concepts, which 

were introduced by Barefoot, Entringer and Swart in 1987.

This investigation of these two parameters centers on the vertex- 

integrity and arc-integrity for orientations of graphs in several interesting 

families, including complete graphs, complete bipartite graphs, cartesian 

products of paths, and hypercubes. Because different orientations of the 

same graph may lead to different values of the parameters, we can only 

hope to bound these values for a given graph or class of graphs. Every 

graph has an acyclic orientation, where the largest strong component is of 

order 1 . Both the vertex-integrity and arc-integrity for such an orientation 

are 1. This being the case, we focus on the maximum vertex-(arc-)integrity 

which can be attained by some orientation of the graph.
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If one can find an induced subgraph H  of a graph G for which any 

orientation o f H  has vertex-integrity 1, then  the m axim um  vertex- 

integrity w hich an orientation could attain is a t m ost IG - HI +- 1 . To that 

end, we define the decycling number of a graph G, denoted V(G), to be the 

minimum order of a subset S of the vertices of G, such that G - S is a forest 

Since G - S is acyclic, then for any orientation of G - S, the order of the 

largest strong component is 1. Therefore the maximum vertex-integrity 

over all orientations of G is at most (G) + 1. This parameter is investigated 

for the families of graphs we study in the chapter on vertex-integrity.
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CHAPTER!

INTRODUCTION

1.1 Connectivity

N etw orks are becoming more and more of a necessity for the daily 

existence o f business because of a national need for overnight delivery 

services or telecommunications. In addition there is the more localized 

netw orking of office machines. The vulnerability to disruption of such 

systems m ust be a concern to both the user and provider of such services. 

Since these networks can be modeled by graphs or digraphs, another look 

at some of the established parameters that m easure vulnerability, as well 

as perhaps some new ones, seems in  order.

The first vulnerability param eter that one usually encounters is 

connectivity. Following [1.2], we define the connectivity k(G) of a graph G 

as the m inim um  num ber of vertices one m ust remove from G so that the 

rem aining g raph  is either disconnected or a single vertex. In the same 

vein, the edge-connectivity k i(G) is the m inim um  num ber of edges which 

m ust be rem oved so that the remaining graph is either disconnected or 

trivial. A lthough these parameters are easy to work w ith and many results 

about them  are  know n, they are often not v e ry  discrim inating in 

describing the vulnerability of a graph. For example, the graphs Ki,s and P9 

show n in Figure 1.1 have the same order (num ber of vertices), the same 

size (num ber of edges), and the same connectivity, bu t they display very

1
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Figure 1.1

different connectedness behaviors w hen vertices are deleted from them. If 

the central vertex of Kx,s is removed, then no pair of rem aining vertices 

m ay communicate w ith one another, whereas if a penultim ate vertex of 

P9 is rem oved, seven vertices can still transfer inform ation and only one 

cannot (see Figure 1.1). These two graphs also have the sam e edge- 

connectivity, b u t removal of any edge horn K i ,8 still leaves eight vertices 

in contact w hile removal of a central edge of P9 means that one group of 

four vertices cannot communicate w ith the other five vertices (see Figure 

1.2).

Figure 1.2

1.2 Integrity

In an effort to overcom e the lim itations of the connectivity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



p aram eters , Barefoot, Entringer, and  Sw art [1.1] in troduced  the  

corresponding integrity parameters. The vertex-integrity (or sim ply the 

integrity) 1(G) of a graph G is defined as

1(G) = min{ IXI + m(G - X ): X c  V(G)}

where m(G) is the maximum order of a com ponent of G. The edge- 

integrity is

I'(G) = min{IYI + m (G - Y ): Y cE(G)}.

For exam ple, I(K irg) = 2 and I(P9) = 5 (see Figure 1.3, where the dark 

vertices are a set for which the integrity is achieved), while I'(Ki^) = 9 and

K 1,8

o  o — • -

Figure 1.3

I'(P9) = 5 (see Figure 1.4, where the light edges are a set for which the edge- 

integrity is achieved). In each case the graph that is the least susceptible to 

disruption has the greater (edge-) integrity.

There are m any known results on both integrity and edge-integrity, 

some of w hich compare them to other graphical parameters. For the most 

part we will be more interested in their values for specific classes of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

Figure 1.4

graphs. In their original work, Barefoot, Entringer, and Swart determined 

the integrity and edge-integrity for several families, some of which are 

given in  Table 1. We will use some of these values later to help obtain 

new results, while other results will be stated as needed.

Table 1

The Vertex-integrity and Edge-integrity of Some Graphs

Graph G 1(G) I'(G)

Complete graph Kn n n

PathPn [2 V n + l ] - 2 T2 VK1 - 1

Cycle Cn [2 Vh] - 1 pV S]

Complete Bipartite Graph Km,n 1 +- min{m,n} m + n

n-Cube Qn 0 (2n*D 2n

1.3 Directed Integrity

A directed graph or digraph  D is a finite, bu t nonempty, set of 

vertices together w ith a set of ordered pairs of vertices, called arcs. The

K 1.8
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5
digraph w ith vertex set {w, x, y, z} and arc set {(w, x), (w, y), (y, w), (z, x)} is 

pictured in  Figure 1.5. Many networks have a natural flow direction

w

y

associated w ith each of the connections the edges represent, so they can be 

m odeled by directed graphs. We are also interested in how vulnerable 

these networks are to disruption. We replace the idea of a component that 

is used in  graphs w ith the notion of a strongly connected component (or 

m ore sim ply  strong com ponent), w hich is defined as a m axim al 

subdigraph of the digraph in  which there is a directed path  from each of its 

vertices to each of the others. The maximum order of a strong component 

of D is denoted  by m(D). One im portan t difference betw een strong 

components of digraphs and components of graphs which we will utilize 

is tha t each vertex in a nontrivial strong component lies on a directed 

cycle completely contained in  the strong component.

One of the problems encountered in  the study of digraphs is the 

relative lack of families th a t are easy to w ork with, contrary to the 

situation w ith graphs. We can, however, create a digraph D from a graph 

G by replacing each edge uv in  G by either (u,v) or (v,u) but not both. Then 

D is called an orientation of  G, and G is known as the underlying graph of 

D. We note here that the num ber of vertices in a nontrivial strong

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



com ponent is at least 2 for a digraph, 3 for an  orientation of a graph, and 4 

for an  orientation of a bipartite graph.

One goal in  th is d issertation  is to investigate the  d irec ted  

counterparts to integrity. We define the vertex- integrity 1(D) of a digraph 

D, as

1(D) = min{ IXI + m (D -X ):X C V (D )}, 

and  the arc-integrity V(D) as

I'(D) = min{ IYI + m(D - Y ) : Y £  E(D)}.

Much of this dissertation deals w ith  orientations of g raphs and 

finding upper bounds for the values of some vulnerability param eters for 

them . For some im portant families, we focus on the integrity and  arc- 

integrity of these orientations.

1.4 Decycling Num ber

An upper bound for the integrity of a graph G can be described in 

term s of the covering number 0(G), which equals the m inim um  num ber 

of vertices in a set X such that each edge of G is incident w ith some vertex 

of X. For such a set X, the graph G - X is edgeless; hence

I(G )sm (G -X ) + P(G) = l +  1X1.

W e can apply this idea to the integrity of orientations of graphs. Every 

orientation of a forest is acyclic and hence contains no strong com ponent 

of order greater than 1. Thus, if we find a  maximal forest F that is an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



induced subgraph of G, then for each orientation D of G,
7

1(D)^ IGI - IFI +1.

where IGI denotes the order of a graph G.

In order to utilize this idea we define a new graphical parameter, 

w hich we call the decycling num ber. The decycling number V(G)  of a 

graph G is the minimum cardinality of a set S of vertices of G such that G - 

S is acyclic. Consequently, for each orientation D of G, 1(D) s  1 +- V(G).

The upper bound 1 + V(G) for the integrity of a graph is only an 

estimate, and in certain cases we will be able to improve upon it by taking 

advantage of nontrivial strong components.

1.5 Definitions, Notation, and Labeling

Each of the subsequent three chapters will be dealing w ith  the same 

families of graphs, so rather than repeat the definitions, notation, and 

labeling schemes in each instance, we will state them  here.

We use a(G)  to denote the independence number (order of the 

largest independent set of vertices) of a graph G and (3(G) will denote the 

covering number, as defined in Section 1.4. Using this notation a theorem 

of Gallai states that for every graph G

a(G) + (3 (G) = IGI

We also let c(G) denote the num ber of components of a graph G.

We will consider three binary operations on graphs. First, the union 

G U H  of two graphs G and H  has vertex set V(G) U V(H) and edge set E(G)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8

U E(H) (see Figure 1.6).

G : H G U H :

Figure 1.6

O Q

/ \

The join G + H  of G and H  has vertex set V(G) U V(H) and edge set 

E(G) U E(H) U {uv I u  e  V(G) and v  e  V(H)} (see Figure 1.7). We are

O
G

O
H

Figure 1.7
G + H

particularly interested in  this operation w hen the two graphs are K i and 

Cn or when they are the empty graphs and K^. The graph Ki + Cn is 

know n as the n-wheel Wn (see Figure 1.8a), while the graph is

called the complete bipartite graph Km#n (see Figure 1.8b). The sets V (k^)

W 8

(a)
Figure 1.8

(b) M
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and V (k7) are called the partite  sets, which we denote by X and  Y, 

respectively. The vertices of X will be labeled xj,..., xm and the vertices of Y 

will be labeled y i,..-,yn- Note that the smallest cycle in  Km/n has four 

vertices.

The Cartesian product G x H  of graphs G and H  has vertex set V(G) 

x V(H), w ith tw o vertices (ui,U2) and (vi,V2) being adjacent if and only if 

either (a) u i = vi and U2V2 is an edge in H  or (b) U2 = V2 and u iv i is an edge 

in G (see Figure 1.9). Another way to think of the Cartesian product is that

H

TsT?
N r
N r

G x H 
Figure 1.9

each vertex of G is replaced by a copy of H, and each edge uv of G is 

replaced by IHI edges of the form (u,x)(v,x) for every vertex x of H.

In addition, w e will need a standard labeling for the vertex set of the 

Cartesian product of two graphs. Label the vertices of graphs G and H  as gi, 

g2/— / gs and h i, h 2,.~, h&. respectively. Then the label vg  will represent the 

vertex (gi,hj) in G x H. This labeling is reminiscent of the notation for the 

entries of a matrix, where the copy of H  a t gj corresponds to the i^1 row, 

while the copy of G at hj corresponds to the j ^  column. This idea is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



particularly helpful w hen w e study the products of paths and cycles, and 

hence we introduce the following notation. Let V(*,j) represent the copy of 

G at hj and V(i,*) the copy of H  a t gi. When we need all the copies of G in 

the product from the one a t hi to the one at hj, we denote this by  V(*,i:j) 

(see Figure 1.10 for examples of this notation in the graph P3 x P4).

1,1

2.4

3,43,2

V(*,2) V(*,3:4)
Figure 1.10

The final Cartesian product for which a labeling is defined is the 

hypercube Qn. We define the labeling inductively (see Figure 1.11). Recall

o--------o
0  1

0 00 0 01

1 0 0 ' 101

110 , .111

010

Figure 1.11

O il
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that Qn = K2 * Q(n-l) tor n & 2, where Qi = K2. Label the vertices of Q i by 0  

and 1; then we produce a labeling for the vertices of Qn by adding a prefix 

of 0 to the labels of one copy of Qn-i and a prefix of 1 to the other labels. It 

will be useful to focus on specific smaller cubes w ithin a given n-cube. 

W hen possible, we use the common prefix to label the smaller cube. For 

example, for the cube Q3 of Figure 1 .11, we will denote the 2-cube with 

vertex set {000, 001, 010, 011} by Q0, while Q ll  will represent the 1-cube Qi 

induced by the vertices 110  and 111 .

The graph we use as one of the first exam ples in  each of the 

subsequent chapters is the Petersen graph P (see Figure 1.12). The 5-cyde

e

w

Figure 1.12

induced by the vertices a, b, c, d, e we will call the pentagon, while the 5- 

cyde induced by the vertices v, w, x, y, z will be called the pentagram.

There are certain notations that are unique to digraphs. One dass of 

digraphs that we use is the family of circulant digraphs D(n, S). For a 

subset S of {1, 2, ..., n  - 1}, the digraph D(n, S) has vertex set {vo, vi,..., vn_i} 

and contains the arc (vj, vj) if and only if j - i s  s(mod n) for some s 6 S (see 

Figure 1.13 for the circulant D(6, {1, 4}).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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5 f ? l

4

Figure 1.13

As in  [1.2] we denote the degree of a vertex v  by deg v, and the 

notation for the m inim um  and m axim um  degree for any vertex of a 

graph G will be 5(G) and A(G) respectively (or sim ply 6 and A w hen the 

graph is obvious). To extend this to digraphs, we denote the out(in)degree 

of a vertex v of a digraph D by deg+v  (deg'v) and  the m inim um  and 

maximum out(in)degree of a digraph D by S+(D) (6~(D)) and A+(D) (A"(D)), 

respectively (or simply 5+ (6*) and A+ (A-) w hen the d igraph D is clear).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER n

THE DECYCLING NUMBER OF GRAPHS

2.1 Definitions

A decycling set of a graph G is a set S of vertices of G such that G - S 

is acyclic. The decycling number, V(G) is the m in im um  cardinality of a 

decycling set of G. Thus, V(G) = 0 if and only if G is a forest. Moreover, if G 

is a unicyclic graph, then V (G) = 1 . The converse of this last statement is 

not true, however, since, for example, the fan g raph  Ki + 11K2 (n > 2 ) has n  

cycles yet has decycling num ber 1. A decycling se t S of cardinality V(G) is 

called a V-set of G. We decycle a graph when a subset S of the vertices of G 

is removed and G - S is acyclic.

For an example of a graph w ith decycling num ber greater than 1, 

we consider the Petersen graph P (see Figure 2.1). Certainly, to decyde this

e

w

Petersen graph
Figure 2.1

graph one m ust remove at least one vertex from  each of the 5-cycles

13
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<a,b,c,d,e> an d  <v,w,x,y,z>. Hence V(P) z  2. On the other hand, if we 

rem ove any tw o nonadjacent vertices from P, we obtain a graph of order 8 

and size 9; w hile if we remove any two adjacent vertices from P, we arrive 

at a graph of order 8 and size 10. In either case,the resulting graph contains 

cycles since the maximum size of a forest of order p  is p  - 1. However, P - 

{a, c, z} is an acyclic graph; so V(P) = 3.

Certainly, the decycling number is defined for every graph G and is 

a t m ost IGI - 2 .  There are a num ber of other interpretatons of this 

param eter. If G is a graph of order p, the decyding number V(G) is also (a) 

the m inim um  num ber of elements in a set S — V(G) so that every cycle of 

G m eets S and (b) p  less the maximum order of an induced forest in G.

For a graph G, define t(G) as the maximum cardinality of a set of 

vertices of a graph G which induces a tree. This concept was investigated 

by Erdos, Saks, and Sos in [2.6]. Their work, however, centered on the 

relationship betw een t(G) and other parameters, rather than evaluating 

the param eter for specific classes of graphs. The digraphical counterpart to 

the decycling set of a graph, called a vertex feedback set of a digraph, has 

been studied by several researchers.

The notion of the maximum order of an induced forest in a graph 

leads to an im portant tool for this study. Recall that a forest on p  vertices 

has a t m ost p  - 1 edges, from which we derive the following simple but 

useful result.

Lemma 2 .1 .1 ; Let G be a graph with p  vertices, q edges, and nonincreasing 

degree sequence di, d 2,—, dp. If S is a decyding set for G, then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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ISI

1S 1 * p - q +  Y d i  - 1 .
f=i

Proof: Removing a vertex of degree d from G destroys d  edges in the
k

graph. Hence, rem oving a set of k  vertices from G destroys at m ost Y  d;

k
edges, leaving a t least q - ^ jd ; edges in G - S. But, if G - S is a forest, then it 

m ust have at m ost p  - k - 1 edges. □

Corollary 2 .1 .2 : Let G be a graph with p vertices, q  edges, and  maximum 

degree A. If S is a decycling set of G, then

ISI (A -1) a q - p + 1.

Corollary 2.1.3: Let G be a graph with p vertices and q  edges. If S is a

decyding set of cardinality k  whose vertices have degrees si, S2,—,sk, then

p - k - l s q -  Y s ; .
1-i

Earlier w e noted that V(G) = 0 if and only if G is a forest. The graphs 

w ith decyding num ber 1 can also be quite easily characterized.

Theorem  2.1.4: Let G be a graph. Then V(G) = 1 if and only if some vertex 

v of G is contained in each cyde of G.

Proof: If V(G) = 1 and no vertex lies on all cydes of G, then there is no 

vertex v for w hich G - v is acyclic, which implies tha t V(G) > 1. On the 

other hand, if some vertex v lies on all cydes of G, then the graph G - v is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

acyclic and hence V(G) = 1 . □

We now investigate the param eter V(G) for certain families of 

graphs and w ith respect to some binary operations on graphs.

2.2 Complete Multipartite Graphs and Complete Graphs 

Theorem  2.2.1: If G is the complete m ultipartite graph K(mi,m2,...,mn) of
n

order p  with m  = max {mi}, ^ m j  = p, and n  > 1, then V(G) = p - m  -1 .

Proof: Any two pairs of vertices from different partite sets form a cycle, as 

do any three vertices from different partite sets. From these facts we see 

that any decyding set m ust in d u d e  all of the vertices from n -1  of the 

partite sets w ith a t m ost one exception. A m inim um  decycling set occurs 

when the rem aining vertices induce a star of maximum order (see Figure

2 .2  for an example w here the dark  vertices form  a minimum decyding  

set). □

K 2,3,4 
Figure 2.2

Corollary 2.2.2: For p a  2, V(Kp) = p - 2.
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2.3 Binary Operations
17

Once a param eter has been evaluated for several classes of graphs, 

we are often interested in  the value of that param eter when these graphs 

are combined. Here we look a t the operations of union, join, and Cartesian 

product (with varying degrees of success).

Observe that for any graph G the decycling num ber is the stun of 

the decycling num bers of its components. Consequently, we have the 

following result.

Theorem  2.3.1: For disjoint graphs G and H,

V(G U H ) = V(G) + V(H).

Another commonly used binary operation on graphs is the  join G 

+ H of disjoint graphs G and H, which we defined in Section 1.5 to have 

vertex set V(G) U V(H) and edge set E(G) U E(H) U {uv I u£V (G ) and 

vSV(H)}.

Theorem 2.3.2: For two graphs G and H:

V(G + H) = min{IGI +V(H), IHI + V(G)},

unless one of the graphs (say G) is edgeless and V(H) is at least IH I - I GI , 

in which case it is IHI - 1 .

Proof: In the graph G + H, any set of four vertices, two from each of the

constituent graphs, induces a cycle; so in order to decycle the graph, we can
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have at m ost a single vertex rem ain  from  one of the graphs. However, if 

any one vertex from one of the  graphs does remain, then we m ust delete 

all bu t an independent set of vertices from  the other graph in order for the 

remaining graph to be acyclic. For a  graph G without isolated vertices, a(G) 

+ p(G) = I GI . If we keep the previous fact in mind, then p(G) > V(G) in a 

g raph  G w ith  no isolated vertices since the g raph  induced  by  an 

independent set of vertices and any one other vertex is acyclic. This means 

that the m ost efficient way to decycle the join of graphs is to rem ove all of 

the vertices of one graph and a decycling set of minimum cardinality from 

the other, unless one of the graphs (say G) is edgeless and V(H) is a t least 

IHI - I GI , in which case it is m ore effective to leave a single vertex from H 

and all those in G. This gives us

V(G + H) = min{ IGI +V (H ),IH I +V(G)} 

in the tirst case and IHI - 1  in  the second. □

Corollary 2.3.3: For n  & 3, the decycling number of the wheel Wn is V(Wn) 

=  2.

Note that Theorem 2.2.1 also follows from Theorem 2.3.2.

The focus of the rem ainder of this chapter is the Cartesian product 

G x  H  of graphs G and H which w as defined in Section 1.5.

U nfortunately, there is no  sim ple form ula for the decycling 

num ber of the Cartesian product of two graphs in  terms of the decycling 

numbers of the two graphs. For example, V(P4) = 0 and V(Pn) = 0 ; yet V(P4 x 

Pn) = n.
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One result w hich will be helpful later is the decycling num ber for 

the graph P2 * G, for which sharp bounds can be found. Recall that a(G) is 

the independence num ber of G and (3(G) is the  covering number.

Theorem  2.3.4: For every graph G,

2V(G) s  V(P2 x G) s  V(G) + (3(G).

Proof: The lower bound of 2V(G) is easily seen since both copies of G in 

P2 x G m ust be decyded. To derive the upper bound, let S be a V-set for one 

copy of G w ith cardinality V(G), and let T be an  independent set of G w ith 

cardinality a(G). Then G - S is acyclic and the vertices of T have degree 1 in  

the subgraph induced by the vertices in (G - S ) U T. Hence, that graph is 

acyclic. Using Gallai's theorem this gives us V(P2 x G ) s  V(G) + (3(G). □

The lower bound can be shown to be sharp since V(P2 x C3) = 2 = 2*  

1 = 2V(C3), while the upper bound is shown to be sharp by the graph P2 x 

Pn since V(P2 x Pn) will be shown to be in /2 ], which equals V(P2) + (3(Pn).

2.4 Grid Graphs

We next consider the family of Cartesian products of paths. We 

will use the labeling of Pm x Pn described in  Section 1.5 (see Figure 2.3 for 

an example). Under this labeling, the degree of vertex v y  is (a) 4 if 1 < i < 

m and 1 < j < n; (b) 2 if i = 1, m  and j = 1, n; and  (c) 3 otherwise. Also, for 

Pm x Pn we will need  to consider specific 4-cycles in  the graph. Let C jj 

denote the 4-cycle induced by the vertices vy, vy+i, Vi+i,j+i, and Vj+^j (see 

Figure 2.3).
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T heorem 2.4.1: F o rn s 2 ,V (P 2 x P n) = [n /2 J .

Proof: Since V(Pn) = 0 and a(Pn) = |n /2 J , we have |n /2 J  as an  upper bound 

from Theorem 2.3.3. Let S be a set of fewer than [n / 2J vertices; then by the 

pigeon-hole principle, for some j = l,...,n  - 1, V(*,j:j + 1 ) n  S = 0 ,  so the 

cycle Ci,j is not destroyed. □

Theorem 2.4.2: For n  & 3, V(P3 x Pn) = |_3n/4j.

Proof: The set

S = {v1>}: j = 3 + 4k and k  = 0,1,...,f(n - 3)/4]} U 

{v2, j : j = 2k & k  = 1,2,...,[ri/2 J}

(see Figure 2.4 for an example) is a decycling set of cardinality [3 n /4 j;  

hence V(P3 x Pn) s  [3n /4 j.

Figure 2.4
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For the low er bound, we use a  greedy approach w ith  respect to 

destroying edges to select the vertices o f a decyding s e t  We w ant to choose 

as many vertices of large degree as possible in order to destroy as many 

edges as we can. To decyde the graph P3 x Pn< we can choose a t most [(n - 

1 ) / 2 J independent vertices of degree 4, since otherwise some edge will be 

covered twice and our edge count as the sum  of the degrees w on't be exact. 

The other t vertices in  the decyding set S m ust be of degree at most 3 in G - 

S. Using Corollary 2.1.3, we obtain the inequality

3 n -L (n - l) /2 J  - t - 1  a 5 n - 3 - 4 | . ( n - 1) / 2 J - 3 t

Applying some algebra on the four cases n  s  0,1, 2, 3 (mod 4), we find that 

k  = [(n - 1) / 2 J + 1 a  |3 n / 4], which completes the proof. □

Theorem 2.4.3: For n  a  2, V(P4 x Pn) = n.

Proof: The set S = {v2/i,V3,2,V2,3,v3/4,.„,vt,n : t  = 2 if n  is odd and t = 3 if n  is 

even} is a decycling set of cardinality n  (see Figure 2.5).

Figure 2.5

We establish the lower bound using Corollary 2.1.3. Let S be a V-set 

of cardinality k. Any decycling set m ust have at least one vertex of degree 

at m ost 3, since otherwise, the vertices of degree at m ost 3 form a cyde.
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Optimally the rem aining vertices have degree 4. Then Corollary 2.1.3 

implies 4n - k - l 2: 7n - 4 - 4(k - 1 ) - 3. Solving this inequality for k, w e find 

that k  a n  - 2 /3 . Hence, V(P4 x Pn) z  n  and the theorem follows. □

By Lemma 2.1.1, if we are given a decycling set S of cardinality k  in 

a graph G which has order p, size q, and non-increasing degree sequence 

di, d2,.», dp, then

p - k - l a q -  Y d t .

There may be m any decyding sets which satisfy this inequality, b u t the 

ones in which we will be most interested are those that come as dose  as 

possible to m aking it an equality. With this idea in m ind, we use the 

d e v ic e  o f  a d d in g  i n  a  s l a c k  f u n c t io n  fx(G,k), which we will call 

the margin of G at k. This gives us the equation

p - k - l  = q -  Y d j +  p(G,k).

We then solve to get

p(G,k) = p -  k - l - q + ^ d i .
l-l

The use of this function will become apparent shortly.

A subset T of the vertex set of a graph G w ith ITI = V(G) need not
k

be a decycling set even though it satisfies the inequality p - k - l a q  - T  s(
frf

of Corollary 2.1.3. There are three types of occurrences that might happen 

w ithin  the set T th a t w ould  violate assum ptions m ade about the
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param eters in the inequality and perhaps render the inequality untrue. 

First, G - T m ay have m ore than one component, which w ould decrease 

the larger side of the inequality. Then, there m ay be some edges in  G 

having both of their incident vertices in  T, thereby increasing the lesser 

side, and finally the sum  of the degrees of the vertices in  T m ay be less 

than the sum of the ITI largest degrees, which would also add to the value 

of the smaller side. This m eans that a m inim um  decycling set S of 

cardinality k can't have too m any of the aforementioned problem s. To 

keep track of these we define the outlay 6(S) of a set S of vertices. For a set 

S of cardinality k  whose vertices have degrees si, S2, ...,sk, we define 0(S) as 

the sum of (a) c(G - S) - 1, recalling that c(G) is the num ber of components 

of G; (b) e(S), which we define as the num ber of edges of G both of whose
k k

incident vertices are in S; and (c) ^ d ,  - ^ s; , where the dj are the k  largest 

degrees of the vertices of G.

Lemma 2.4.4: If S is any decyding set of Pm x P2r with m a 4, then 0(S) s  2.

Proof: There are r  vertex-disjoint 4-cydes in  both V(l:2,*) and  V(m -

l:m,*) (see Figure 2 .6 ), so we need to remove at least r vertices from the

V(l:2,*)

V(4:5,*)

X X X X X X

X X X X X X
Figure 2.6

first and the last pairs of paths P2r - This m eans that from each of these
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pairs of paths, we m ust either choose a vertex of degree at m ost 3 or a pair 

of adjacent vertices. Thus we m ust select a t least two such vertices, and the 

inequality follows. □

Lem ma 2.4.5: Let G be a graph and S a set of k  vertices of G. If 0(S) >

[x(G,k), then S is not a decycling set of G.

Proof: Let G be a graph of order p, size q, and non-increasing degree

sequence di, 6.2,..., dp, and let S be a set of k  vertices w ith degrees si, S2, ...,Sk. 

Assume S is a decyding set for which 0(S) > |x(G,k). By substitu tion  we 

derive the inequality

c(G- S )-1  + s(S) + j?d j - £ Si > p - k - l - q +
1 -1  1 -1  1 -1

This inequality can be algebraically reduced to

k
q -  V sj -e (S )> p -k -c (G -S ) .

Both sides of the inequality are expressions for the num ber of edges 

in G - S, and hence are equal. Thus we have a contradiction to the original 

assumption, and the lemma is proved. □

We will use this result along with the value

|A(Pm x Pn, k) = 3k - (m - l)(n -1)

(which is 3k - 4n + 4 for the case when m = 5) to complete some of the 

proofs that follow.
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Lemma 2.4.6: For n  > 1,

V(P5 x Pn) *
4n when n  * 0 (mod 6 )

V(P5 x Pn) 2 '4n _ 1  otherwise.

Proof: The graph P5 x Pn has 5n vertices and 9n - 5 edges. If we try to

choose a decyding set S in  a  greedy m anner w ith respect to edge removal, 

then one vertex in  S m ust have degree a t m ost 3, since the  vertices of 

degree 2 and 3 form a cyde. The remaining vertices m ay be of degree 4. If 

ISI = k, then Lemma 2.1.1 implies that 5 n - k - l a 9 n - 5  - 4(k-l) - 3, so k 2  

[4n/31 -1.

Assume that n 3  0(mod 6 ). If k  = [ 4 n /3] - 1, then |x(Ps x Pn, k) = 1, 

but, by Lemma 2.4.4, we know  9(S) 2  2; hence k  2  [4n/ 3]. □

Lemma 2.4.7: For n  = 2, 3,4, 5, 7, 8, 9,

V(P5 x Pn) = f4n/3] - 1  and V(P5 x P6) = 8 .

Proof: We have already established this result for n  = 2, 3, 4 and have

obtained the given values as lower bounds for the other values of n; so the 

examples of decyding sets show n in Figures 2.7.a and 2.7.b complete the

Figure 2.7.a
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Figure 2.7.b

proof. □

Lemma 2.4.8: For P5 x Pgt a decycling set of cardinality 11 is unique up  to 

symmetry.

Proof: For the graph G = P5 x P9, p.(G,ll) = 1. Therefore ou r decycling set 

m ust contain eleven independent vertices, ten of which have degree 4 and 

the other degree 3. Since we m ay only use one vertex of degree 3, any 

decyding set S m ust contain at least three of the vertices V2,2/ v4,2/ v2,8 and 

V4(8 (for otherwise one of the 4-cydes Ci,i, C4 4 , Ci,n . 1, C4/n .  1 will remain). 

If one of these four vertices is missing, say V2,2, then the 4-cyde C ^i m ust 

intersect S in either v \ r2 or V2,\.

It follows that if we choose v i,2, then the 4-cyde C2,i rem ains; 

while choosing V2,i leaves the 8-cyde that indudes vs,i and  V3 3 . We are 

then forced to  in d u d e  the vertices V33  and V3y  in  S, since otherwise one 

of the four 8-cydes which endose either v2,2, v4,2, V2,8 or v4,8 will remain.
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The four 4-cycles Ci,3, Ci,6, C4 6  m ust intersect S in  a t least three of the

vertices V2,4, V2,6, and  v ^ .  If one vertex, say V2,4, is not in S, then we

m ust find one vertex of degree 3 and  one of degree 4 which lie in all of the 

remaining cycles, and these two vertices m ust not be adjacent to any of the 

others. The only way to complete the decyding set is to choose V2,4 and 

either v^s or vs;5 (see Figure 2.7). The two different sets we get are dearly  

symmetric. □

We use the decycling set of Lemma 2.4.8 as a  building block in  

constucting decycling sets for grids of the form P5 x Psn+l-

Lemma 2.4.9: For each positive integer n, the minimum decycling sets for 

P 5  * P8n+l have cardinality l l n  and are of the form

S = {vjj I i = 2 or 4 and j = 2t for t = 1,2,...,4n} U 

{vy I i = 3 and j = 4t -1  for t = l,2,...2n} U 

{vy I j = 8 t  - 3 for t = l,2,...,n and i = 1 or 5}.

(see Figure 2.8 for example)

Figure 2.8

Proof: The anchor for an  induction proof is given in  Lemma 2.4.8.

Assume that the lemma holds for all n  < k. Let S be a m inim um  decycling
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set for P5 x Psk+l- We complete the proof by considering die three forms 

that a decyding set S can take.

Case 1 :S (1  V(*,8n  + 1) = 0  for some n  = 1, 2, ..., k-1. Then S fl 

V(*,l:8n  + 1) and S fl V(*,8n  + 1:8k + 1) m ust be of the prescribed form; 

hence the lem m a is true.

Case 2: IS fl V(*,l:8n  + 1)1 = 1  for some n  = 1, 2, ..., k-1. By the 

induction hypothesis, the decycling set is no t minimal for V(*,l:8n + 1 ) 

and V(*,8n + 1:8k + 1); so IS fl V(*,l:8n + 1) I > l l n  and IS fl V(*,8n  + 1:8k 

+ 1) I > ll(k-n). This implies that ISI > I lk , which is a contradiction.

Case 3: IS fl V(*,8n  + 1) I a  2 for n  = 1, 2, ...,k-l. Here we know that 

p.(Ps x Pgk+i/llk) = k , so all we need show is that 0(S) a k + 1.

Since V(Ps x P5) = 6, we know that V(*,l:5) n  S contains at least six 

vertices. Regardless of how w e place these six vertices, we m ust increase 

the outlay by at least 1. The largest independent set of vertices of degree 4 

in V(*,l:5) in the original graph  has order 6 . However, choosing such an 

independent set for inclusion in  S adds another component to G - S. 

W hether we use an independent set or not, we thus add at least 2 to the 

outlay. Using the same argument, we m ust add 2 to the ouday if I V(*,l:5) 

flS I = 7.

If the outlay is only increased by 1 for V(*,l:5) fl S, then it m ust be 

increased by another in  V(*,6:9) fl S. In this case, I V(*,6 :8 ) fl S I a  4 since 

V(P5 x Pg) = 10 and only 6 vertices were used in  V(*,l:5). Since I V(*,9) fl SI 

a 2  by assumption, either the outlay is increased by one, or vg^ and vg,4 are 

in S (see Figure 2.9). This leaves only seven vertices in V(*,6 :8 ) (see Figure

2.9 This does not automatically increase the outlay, bu t regardless of how
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V(*,6 ) V(*,8 )
Figure 2.9

we choose four of the seven, we end up  increasing the outlay by either 

isolating a vertex or choosing a vertex adjacent to another in S.

For each V (\8n  + 2,8n + 8 ) fl S, where n = - 1, we m ust also

increase the outlay by 1. Recall that V(Ps x P7) = 9 and for each of these 

subgraphs we can use a t most nine vertices in a decyding set or we get a 

contradiction. If IV(*,8n  + 5) fl SI > 2 ,  then the outlay  increases by  1 . 

W hen I V(*,8n + 5) fl SI = 2 , then either (a) the outlay is increased; (b) 

V(*,8n  + 5) fl S = {vgn+5,2, vgn+5,4} and I V(*,8n + 2:8n + 4) fl SI is at least 4; 

or (c) V(*,8n  + 5) fl S = {vgn+5,2, vgn+sr4} and I V(*,8n  + 6 :8n + 8) fl SI is at 

least 4. In any of the cases, there are only seven vertices whose indusion  

in  S does not automatically increase the outlay, bu t any choice of four of 

them will increase the outlay. If I V(*,8n  + 5) H SI = 1 , then either vgn+5,2 

(equivalently vgn+5,4) or vgn+5,3 is in S. If vgn+5,2 is in  S, then regardless of 

how  vertices are chosen for S from V(*,8n + 4) and  V(*,8n + 6 ), either a 

cycle rem ains or the outlay is increased by one. O n the other hand, if 

v 8n+5,3 is chosen for S, then we m ust also choose vgn+4,2, vgn+4/4, vsn+6,2, 

and vgn+6,4 or leave a cyde. Thus, however a vertex is chosen from V(*,8n 

+ 7) or V(*,8n  + 3) for S, the outlay increases, but if none are chosen, then a 

cyde remains.
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Thus, the outlay of the set is a t least k  + 2, which is m ore than the k  

allowed. □

Theorem  2.4.10: Let m, n, and q be integers such that

I s m s  8, q a O  and n  = 8q + m. Then 

V(P5 x Pn) = l lq  + V(P5 x Pm).

Proof: We prove the low er botm d by  induction on n. The resu lt is

trivially true for 1 s  n  s  8 . Assume it to be true for all n  s  k, where k  s  8 . If 

n  = k  + l  = 8q + m ( m < 8 ) and the set S is a decycling set of m inimum 

cardinality, then we consider the sets V(*,8t+1) for t = l,2,...,q, and their 

intersections with S.

Case 1 : At least one of the intersections (say S H V(*,8r  + 1)) is 

em pty. There m ust be a t least H r  vertices of V(*,l:8r  + 1) in  S by Lemma

2.4.9 and at least l l (q  - r) + V(Ps x Pm) vertices of V(*,8r  + l :8q + m) by the 

induction hypothesis. Hence V(Ps x Pn) & l l q  + V(Ps x Pm).

Case 2: 1 V(*,8r  + 1) n  SI = 1 for some r. Then S m ust contain at 

least l l r  vertices of V(*,l:8r) since this along with V(*,8r  + 1 ) forms a P5 x 

P 8r+1 whose decyding set is not of the type in  Corollary 2.4.9, and hence is 

n o t minimal. Therefore it contains a t least l l r  + 1 vertices. In S, V(*,8r  + 

l :8 q + m) m ust contain at least ll(q -r) + V(Ps x Pm) vertices, so V(Ps x Pn) a 

l l q  + V(P5 x Pm).

Case 3: For each r, IS D V(*,8r  + 1) I z. 2. In this case, S m ust contain 

at least l l r  - 1 vertices in V(*,l:8r) since the decycling set for V(*,l:8r  + 1) is 

n o t m inim al.

If m = 0,1, 3, 5, 7, then the last P5 x P8(q-i)+m_i m ust contain at least
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ll(q  - r) + V(P5 x Pm-i) = l l(q  - r) + V(Ps x Pm) - 1 vertices of S, which gives 

the desired result.

If m = 2, 4, 6 , then n (G ,llq  + V(Ps x Pm) - 1 ) = q - 3, q, or q+1, 

respectively, and  using an argum ent similar to that of Case 3 in  Lemma 

2.4.9, we get contradictions for all three cases.

In each of the above cases, the upper bound can be shown to hold 

by constructing a decycling set as the union of appropriate decyding sets 

from Figures 2.7 and 2.8. □

For P6 x Pn we already know the decyding num ber for n  < 6, so we 

need only consider n  a 6 .

Theorem 2.4.11: For n  a 6, V(P6 x Pn) = 5n

Proof: The decyding set

S = {v2,i I i s  l(m od 2)} U {V3,i I i s  0 or 2(mod 6 )} U 

{V4,i I i s  3 or 5(mod 6 )} U {vsri I i s  0(mod 2)}

establishes the upper bound (see Figure 2.10).

I

Figure 2.10
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5n—  . This leaves only the case n  = 0 (mod 3); say n  = 6t, whence 
3

= lOt. Suppose tha t S has cardinality k  = lOt - 1 (it cannot be less by

32

The proof of the lower bound depends on the n. Let S be a V-set of 

G. Since 6 is even, Lem ma 2.4.4 implies tha t S m ust use a t least two 

vertices that contribute a t m ost 3 to the edge count in Lemma 2 .1 .1 . 

Consequently, w hen n  * 1 (mod 3) or n  * 2 (mod 3), we have the lower 

bound of 

5n
T

Lemma 2.1.1). Then m(P6 x Pn, k) = 2. Lemma 2.4.4 implies that 0(S) = 2. In 

fact, V(*,l:2) m ust either contain a vertex x of degree 3 or a pair x, x’ of 

adjacent vertices of degree 4 (in this case x is either V3,2 or We take a 

vertex of V(*,n - l:n) analogous to x and call it y. (In passing, we note that 

at least one of x and y has degree 3.) Let S' = S - {x,y}. It follows that S' m ust 

consist of lOt - 3 independent vertices of degree 4. Note that the removal of 

any independent set of six degree-4 vertices from three consecutive 

columns leaves an isolated vertex. This w ould increase the num ber of 

components of G - S, and  thereby the outlay; so S’ cannot contain six such 

vertices. The largest independent set of degree-4 vertices in P6 x Pn that 

does not isolate a vertex is of cardinality lOt - 3. This set can be shown to be 

unique up to isomorphism as follows. Let N(i) (respectively N(i:j)) denote 

the num ber of vertices in  S - {x,y} fl V(*,i) (resp. S - {x,y} fl V(*,i:j)). Then in 

order to decycle V(*,l:2), then, we m ust have N(2) = 2. We consider two 

cases depending on the distance d between the two vertices of S' in  V(*,2).

Case 1: d  = 3. In this case the vertices are V2,2 and vs,2, w hich 

means that either V3 3  or V4,3 is the only vertex in S fl V(*,3). However, 

this then forces { v ^  V4 5 } = S fl V(*,4). The 2-1-2-1-... pattern is forced for
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5n

the rest of the independen t set; hence N(2:n-1) < ------ 3, which is a
3

contradiction.

Case 2: d = 2. W ithout loss of generality, the vertices are V3,2, and 

v5,2- Now S m ust contain V4 3  (or a cycle will remain) and V2,3* Otherwise, 

S fl V(*,4) = {v2,4, vs^}, w hich we have seen in  Case 1 leads to a 

contradiction. This im plies that S fl V(*,4) = ^ 5,4}. If not, then either a 

vertex is isolated, w hich excessively increases the outlay of S, or a cyde 

remains. We are forced to choose V2,5 and V4 3  in V(*,5) or leave a cyde 

intact, which essentially brings us back to where we started. This 2-2-1-2-2- 

1... pattern  m ust continue, and for each V(*,i) the choice of vertices is 

forced. W hen n  = 3t, this forces V(*,n-l:n) to contain at least four vertices 

of S, which w ould m ake the outlay of S too large.

In either case, for n = 3t, 5n /3  - 1 vertices is not enough to decyde 

the graph P6 x Pn/ and hence the equality holds. □

Theorem 2.4.12: V(P3S+i x P2t) = s(2t - 1) + 1.

Proof: We get the expression for the lower bound using an argum ent

similar to those in previous proofs, while the upper bound is shown by 

the set

{V2i,2j I i= l,—, 

{v2i+l,2j+l I i=h-

3 s + 1
2

3 s + 1

, 2i s  l(m od 3), and j=l,...,t-l} U

- 1 ,2i + 1 s  l(m od 3), and j = l,...,t - 1} U
2

{V3i+i,j I i = 0 ,...,s, j = 2 t if i odd, and j = 2t  - 1 if i even} □ 

Theorem 2.4.13: For n  a 7, V(P7 x Pn) = 2n-l.
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Proof: For n  even, this follows from  Theorem 2.4.12. If n  is odd, each

decyding se t m ust contain at least one vertex of degree a t m ost 3 , for 

otherwise those vertices form a cyde. Adjusting the inequality accordingly, 

we get V(P7 x Pn) a  f(6n  - 5)/3] = 2n - 1. The upper bound is shown by the 

decyding set

S = {v2,i li = 0 (mod 2)} U {v^i Ii > 1 & i s  1 (mod 2)} U 

{v4,2l d  (v5,i I i > 1 & i ** 1 (mod 2)} U 

{v 6 , i | i  ■ o (mod 2 )}

(see Figure 2.11). □

a

Figure 2.11

Theorem 2.4.14: For n  a  8, V(Pio x Pn) = 3n - 2.

Proof: Once again the even case follows from Theorem 2.4.12. W hen n  is 

odd, we get the lower bound as before and the upper bound from the set

{v;,2j I i = 2, 6, or 9 and j = 1,...,

n - 2(vi,2j+l I i = 3,5, or 8 and j = 1,...,

} U

} u  {v4,2,V4/n/v7/1,v8,n}
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(see Figure 2.12). □
35

Figure 2.12

Theorem  2.4.15: For n  a 11, V(Pi3 x Pn) = 4n - 3.

Proof: Theorem. 2.4.12 establishes the even case. The lower bound for the 

odd case is shown as before. The upper bound is demonstrated by the set

S = {v2i,2j I i = 1,3,4, or 6  and j = 1, 

{vi,2j+i I i = 3,5,9 or 11 and j = 1,..., 

{V4,2/V4,n/V7,n/V10,2/V10,n}

n 
2 

n - 2

}U

}U

(see Figure 2.13). □

In looking at the decycling sets of Theorems 2.4.12 and 2.4.13, one 

can see how the decyding set for P 7  x P n  is used to construct the sets for P13  

x Pn. This idea can be extended to the general case of Pm x Pn to produce a 

very good upper bound for the decyding number.
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Theorem 2.4.16: Let m  = 6q + r and n  = 6 s + t with l s r , t s 6 . Then V(Pm x

Pn) £ min{q(2n - 1 ) + V(Pr x Pn), s(2m - 1) + V(Pm x Pt)}.

2.5 Other Cartesian Products

A natural next step is to consider the product of paths and cycles. 

We start with the prisms P2 x Cn-

Theorem 2.5.1: For n  a  3, V(P2 x Cn) = |n /  2 J + 1 .

Proof: If the vertices of G = P2 x Cn are labeled as described in Section 1.5,

then the set S = {vi(i, ^ 2,2,  V2,4/ ^2,6,-r V2,j-2/Uj: j = 2[n/2J} is a decycling set

Figure 2.14
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of cardinality [n/ 2j  + 1 (see Figure 2.14). Since G is 3-regular of order 2n, 

every decycling set S of cardinality k  m ust contain at least [ n / 2 j  + 1 

vertices. This is because the size of a tree on IG - SI vertices is 2n - k  - 1 a 

3n - 3k which is the m inim um  size of G - S. □

Theorem 2.5.2: For n  z. 3, VOP3 x Cn) = 3n + 5

Proof: We label the vertices of P3 x Cn as described in Section 1.5. Then if 

n s  0, 2, or 3 (mod 4), the set

S = {vi(i: i = 3 + 4k & k = 0,1,... }U

{V2, j : j = 2k  & k = 1,2 ,..., } U {v3,i}

is a decyding set of G of cardinality 3n + 5 . If n  s  1 (mod 4), the set

S = {v1(i: i = 3 + 4k & k  = 0,1,..., }U

{v2, j : j = 2k  & k  = 1,2 ,...,

is a decycling set of cardinality 3n + 5

} U {v3,i,v2,n}

The lower bound is show n

through an argum ent by  cases which involves the inequality on  the size 

used in several of the previous proofs. □

Theorem 2.5.3: For n  a 3,

V(P4 x C n) =
fn + l  if n  s  l(m od 2 ) 
|n  + 2  if n  s  0 (mod 2 )
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Proof: Any decyding set of P4  x Cn m ust contain at least two vertices of 

degree 3, for otherwise a cyde of degree-3 vertices remains. A lower bound  

comes from another edge counting argum ent similar to that em ployed in  

the proof of Corollary 2.1.3. If n  is odd, this bound is shown to be sharp by 

the set (seeHgure 2.15) S = {vi,1/vi/4,v2,3,V3,2,V4/2/V5,3,...vn.i,3,vn/2}.

Figure 2.15

If n is even, then n(P 4 x Cn, n+ 1 ) = 2, so any decyding set m ust 

consist of exactly two vertices of degree 3 and an independent set of n-1 

degree-4 vertices. The independent set m ust be similar to {v2/3, v3/2, V4/2/ 

v 5,3, —vn-i,2/ vn,3}, which cannot be completed as a decyding set using only 

two vertices of degree 3; therefore if n  is even, then V(P4 x Cn) > n + 1. The 

upper bound is demonstrated by the set

S = {vi,4, v2,i, v i#2/ v 2,3, v3/2/ v4/2/ V5,3,...vn.i,2/ vn 3}

(see Figure 2.16). □

Figure 2.16
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The next product tha t we consider is tha t of two cycles. From  

C orollary 2.1.2, w e obtain the folowing prelim inary  result for such 

products.

Lemma 2.5.4: For m ,n a 3, V(Cm x Cn) 2 m n + 1

Theorem  2.5.5: For n  a 3, V(C3 x Cn) = n  + 1.

Proof: The lower bound follows from Lem ma 2.5.4. If the vertices are

labeled as described in Section 1.5, then {v^- : j s  i(mod 3)} U {v^} is a 

decycling set of cardinality n  + 1 (see Figure 2.17). This establishes the 

upper bound, and hence the result. □

Figure 2.17

Theorem  2.5.6: For n  a 3, V(C4 x Cn) = 3n
2

Proof: From Theorem 2.5.1, we have V(P2 x C4 ) = 3. Hence any decyding

set m ust m eet one of the pairs of 4-cydes Q,j and Q,j+i or Q,j and Ci+i,j in
* 0 *

at least three vertices, which gives the low er bound of —  . Label the

vertices as described in  Section 1.5. Then the set

{vifj I j ■ i(mod 4)} U {vi,j I j ■ 3(mod 4)} U 

(v3,j I j s  l(m od 4)}
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of vertices (see Figure 2.18) is a decycling set of cardinality 

completes the proof. □

f3n

40

, w hich

Figure 2.18

Another interesting product is Km x Kn. Here we think in  term s of 

the m axim um  order of an  induced forest. Clearly, an  induced forest 

cannot contain three vertices in the same complete graph, and hence no 

vertex of degree 3 (otherwise two of its neighbors lie in the same complete 

graph). Also, if the forest is not connected, it is not maximal as we can add 

a common neighbor of any pair of vertices of degree 1 from different 

components of the forest. From the two preceding statements, it can be 

seen tha t a m axim al induced  forest in  Km * Kn w ill have sim ilar 

characteristics to an n-snake (an induced path  of maximum length) in  the 

n-dimensional cube Qn (see below).

Theorem 2.5.7: F o r n a m a l ,

V(Kn x Km) =
f m (n -2 ) i f n > m  
m (n -2 ) + l  if n  = m '

Proof: If n  > m, than each induced path contains at m ost tw o vertices

from each copy of Kn. If the  vertices have the standard labeling, then  the
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set S = {vi#i, V2,1, V2,2/ v 3,2/ V3,3, . . . ,v m. i (in.2, v m. i , m_i, vm,m_!, vm,mj induces 

a pa th  of order 2m. If, on the other hand, n  = m, then any set of 2m 

vertices induces a cycle in  the product while S - {vmu m} induces a path. □

2.6 The n-Dimensional Cube

The final Cartesian product of graphs that we consider here is the 

n-cube Qn. As m entioned before, one type of maximal tree in  Qn is a path 

which we call the n-snake. Unfortunately, as n  gets large, an n-snake is not 

an induced forest of maxim um  order. There are two fairly standard ways 

of describing the n-cube, both of which will be used here. First, one can 

take the vertices to be binary sequences of length n. Two vertices are 

adjacent if their sequences differ in exactly one position. This perspective 

lends itself nicely to coding theory, which we will use to find large induced 

forests and thus some upper bounds for the decycling number. The m ore 

traditional graph theory approach is to define Q n  inductively as K 2 *  Q n - i  

w ith  Q i  =  K 2 . Label the vertices of Q i  as 0 and 1; then we obtain an 

inductive labeling for the vertices of Q n  =  K 2 *  Q n-1 by adding a prefix of 0 

to the labels of one copy of Q n - i  and a prefix of 1 to the other labels. Using 

either concept we arrive at the same graph w ith the same labeling.

For n s 8, the value of V(Qn) is dem onstrated by the follow ing 

collection of lemmas and  previously known results.

Lemma 2.6.1: V(Q3) = 3.

Proof: From Lemma 2.1.1, if the cardinality of a minimum decycling set is 

k, then 23 - k  - 1 s  3C23"1) - 3k; so k & 3. Let F be a maximum induced forest
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in  Q3 . If A(F) = 2, then F is isomorphic to P5; and  if A(F) = 3, then  F is the 

graph Ki,3 U Ki (otherwise we get a  cycle). Each of these forests has five 

vertices; so ISI s  3. Hence V(Q}) = 3. □

Lemma 2 .6 .2 : V(Q4) = 6 .

Proof: An implication of Theorem 2.3.4 (on the decyding num ber of P2 x 

G) is that a decyding set for Q4 m ust have at least six vertices. W e get our 

m axim um  induced  fo rest using  coding theory. Let A (n,d) be the 

maximum num ber M of codewords in  any (n,M,d) code (with w ords of 

length n such that any pair of codewords differ in a t least d positions). The 

value of A(4,4) is 2. Any set of codewords in a (4,2,4) code along w ith the 

vertices ad jacen t to them  (e.g., (OOOQ.QQOI.QQIQ.OIQO.IQQQ) U 

{1111 ,1110,1101 ,1011 ,0111}) induces a forest of order 10  (since the distance 

between codewords is 4, we obtain a union of stars); hence the upper 

bound for V(Q4) is 6 . □

These maximal forests and the assodated m inim um  decyding sets 

of Q4 are unique up to isom orphism. Since we require this fact in the 

proof of the next case, w e justify it in  the following lemma.

Lemma 2.6.3: In Q4, every maximum induced forest is of the form  2Ki,4, 

where the distance between the central vertices is 4.

Proof: Consider two copies of Q 3 m aking up Q4 . Each copy m ust be

decyded by removing three vertices. This leaves a copy of either P5 or Ki,3 

U Ki in each Q3. Not both can be P5 since, by the pigeon-hole prindple, one 

path m ust have a t least two vertices adjacent to vertices in the o ther path,
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and  these force an induced cycle. If only one is a P5, then either it has two 

vertices adjacent to the Ki,3, or three vertices adjacent to the associated 

decycling set. In either case, a cycle is induced. In  the final case w hen the 

forests in  each copy of Q3 are K1 3  U Ki, then w hen the distances between 

the vertices of degree 3 in  the two Ki,3 is less than 4, one star has a pair of 

pendant vertices adjacent to the same vertex of the other K i,3 (see Figure 

2.19). □

Figure 2.19

Lemma 2.6.4: V(Qs) a  14.

Proof: Let S be a decyding set for Q5 . Lemma 2.1.1 states th a t if the

cardinality of S is k, then

25- k - 1*5(25-1)-5k,

so k  * 13. Assume that S has cardinality 13, and recall that Qs = K2 x Ck = 

C4 x Q3 . The vertices w ith  the first two coordinates 00 induce a Q3 as do
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those which begin 01, 10, and  11. For convenience we will call these 3- 

cubes Q00, Q01, Q10, and  Q ll ,  respectively. Since k  = 13, S m u st intersect 

one of the 3-cubes (say Q l l )  in  exactly four vertices while it m eets the 

other three in precisely three vertices. Once the decyding set for Q00 is 

chosen, then from Lemma 2.6.3, the decycling sets for Q01 and  Q10 are 

forced upon  us and have the sam e labels except for the  first two 

coordinates. By symmetry, each of the five vertices in  the Q10 forest are 

adjacent to the corresponding vertex (same final three coordinates) in  Q01 

in the graph (Q4 - Q ll)  - S, so no m atter how we remove the four vertices 

from Q ll ,  a cyde will rem ain. This implies that V(Qs) a 14. (The upper 

bound is established by the decyding set {00011 , 00110 , 00101, 01000 , 01001, 

01010, 01100, 10100, 10010, 10001, 10111, 11011, 11110, 11101}) □

Lemma 2.6.5: V(Qg) s  112.

Proof: The lower bound of 112 comes from Theorem 2.3.4 while an upper 

bound of 112 comes from  coding theory. It is known that A(8,4) = 16. The 

subgraph F of Qs induced by the vertices assodated w ith an (8,16,4) code 

and the neighbors of those vertices is a forest of order 144; hence V(Qg) - F 

is a decyding set of cardinality 112 . □

For n  = 6, 7, the decyding numbers are derived from Theorem 2.3.4 

and the cases when n  = 5 and n  = 8 .

Theorem  2.6.6: For the n-cube, V(Qn) is

n 1 2 3 4 5 6 7 8

V(Qn) 0 1 3 6 14 28 56 112
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For cubes of dimension n  > 8  Theorem 2.3.3, along w ith  the fact 

that the independence num ber of Qn is 2n_1, give the bounds 112 -2 n"8 s  

V ( Q n) ^  112 + 27 + ... + 2n*2. These bounds are no t very close. W hen n  is 

smaller, coding theory improves the upper bound a little. Recall that a 

distance-4 code along w ith its adjacent vertices induce a forest, so V(Qn) <;

2n - (n+l)A(n,4). It is known that A(9,4) = 20, 38 s  A(10,4) s  40, 72 s  A (ll,4)

< 80, 144 s  A(12,4) < 160, and A(13,4) = 256. We can use the low er bounds 

m entioned here to derive upper bounds for the decyding num bers, and 

extend our results for V(Qn) as shown in Table 2.

Table 2  

Bounds on V(Qn)

n Lower Bound U pper Bound

8 112 112

9 224 312

10 448 606

11 896 1184

12 1792 2224

13 3584 4680

2.7 Edge Decycling Index

I t  is natural to consider the analogous concept for edge deletion. 

The edge decyding index V’(G) of G is defined as the minimum cardinality
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of a set S of edges of G for which G - S is acyclic. However this concept is 

already known as the cycle rank r(G) of the graph, and if G is a (p,q) graph, 

then r(G) = V'(G) is know n to be q - p  + 2 - c(G), where c(G) is the num ber 

of components of G.
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CHAPTER m

THE INTEGRITY OF ORIENTED GRAPHS 

3.1 Definitions

A nalogous to the  graphical definition, the vertex-in tegrity , or 

simply integrity, 1(D) of a digraph D is the minimum value over all proper 

subsets S of the vertex set of the sum  m(D - S) + IS I , where m(D - S) 

denotes the order of a largest strong component of D - S. We will call a set 

S an I-set of D if 1(D) = ISI + m (D -S).

3.2 Integrity of Digraphs

We begin w ith  a preliminary result on the integrity of digraphs.

Proposition 3.2.1: If F is a subdigraph of D, then 1(F) < 1(D).

Proof: Let S be any I-set for D and let T = S n  V(F). Then m(D - S) > m(F - 

T) since the vertices of any strong com ponent of F - T are contained in  a 

strong component of D - S, and ISI < IT I . Therefore 1(D) = m(D - S) + ISI > 

m (F -T )+  ITi > 1(F). □

Other links betw een the integrity of a digraph and its subdigraphs 

involve the m axim um  order of a strong component of the d igraph and 

the integrity of certain subdigraphs.

Proposition 3.2.2: Let D be a nontrivial digraph. Then (a) 1(D) < m(D), and

47
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(b) 1(D) < 1 + I(D - v) for any vertex v  in D.

Proof: By definition 1(D) = m m ){m(D - S) + IS I} < m(D - 0 )  + 101, hence

part (a) is true.

Let S be an I-set for D - v. Then

1 ( D ) < I S u { v } l + m ( D - ( S u  {v}))<

1 + ISI + m((D - v) - S) = 1 + I(D - v)

which proves part (b). □

Induced subdigraphs can also help define the integrity of a digraph 

recursively.

Theorem  3.2.3: For a nontrivial digraph D,

1(D) = min{m(D),l + m in I(D - v)}.
veV(D)

Proof: By Lemma 3.2.2,1(D) < m(D) and

1(D) < 1 + m in I(D - v).
veV(D)

For the reverse inequality, assume that S is an I-set for D of smallest order.

If S = 0 ,  then 1(D) = m(D), so the desired result holds. So assume that S *

0 .  Then 1(D) < m(D). Let v be a vertex in S and  let S' = S - v. Then it

follows that

1(D) = ISI + m(D-S) = 1 + IS’I + m((D - v) - S')
> 1 + I(D - v) > 1 + min I(D - v).

veV(D)
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Now suppose that for some x g  S, I(D - x) > 1(D) -1 . Let R be an  I-set of D - x 

and let R ' = R u  {x}. Then

1(D) < I(D -x )  + 1 = 1 + IRI + m((D- x) - R) =

IR' I + m(D - R') < 1(D),

which is a contradiction. Hence, if S *  0 ,  then 1(D) = 1 + m in I(D-v). □
veV{D)

Corollary 3.2.4: For a nontrivial strongly connected digraph D, 1(D) = 1 + 
m inl(D-v).
veV (D )

For a d igraph D, let D' denote the converse digraph, that is, the 

digraph in which all the arcs of D are reversed. The two digraphs D and D' 

have the same partition of their vertex sets into strong com ponents, 

which leads to the following proposition.

Proposition 3.2.5: 1(D) = I(D').

A lthough a characterization of digraphs w ith integrity 1 is clear, the 

case where the integrity is 2  is more interesting.

Proposition 3.2.6: A digraph has integrity 1 if and only if it is acyclic.

Theorem 3.2.7: A directed graph has integrity 2 if and only if it is not

acyclic and either some vertex is on every dicycle or m(D) = 2.

Proof: To prove the first condition, we assume 1(D) = 2 and m(D) > 2. If S 

is an I-set, then IS I = m(D - S) = 1 . Consequently, some vertex v lies on 

every dicycle in  D.
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In order to show the converse, assume m(D) > 2 and some vertex v 

lies on every dicycle. Then D - v is acyclic, and  so m(D - v) = 1. If, on the 

other hand, m(D) = 2, then 1(D) < 3, bu t the rem oval of any single vertex 

will leave at least one vertex. In either case 1(D) = 2. □

Recall from  Section 1.5 tha t 5+ (D) (respectively  5"(D)) is the 

minimum out(in)degree among the vertices in  D.

Theorm 3.2.8: 1(D) > max{5+(D), 5"(D)} + 1.

Proof: Let r = max{8+(D), 5"(D)}. Then D contains a strong component of 

order at least r + 1, otherwise in the strong com ponent which dominates 

all other strong components there m ust be a vertex v with deg_(v) < r. For 

any I-set S, max{8+(D - S), 8'(D - S)} > max{5+(D), 5~(D)} - ISI = r - IS I . 

Hence D - S contains a strong component of order at least r - ISI + 1. 

Therefore, 1(D) = IS I + m(D - S) > ISI + r - ISI + 1 = r + 1. This 

demonstrates the inequality. □

3.3 Orientations of Graphs

As was m entioned in  Chapter I, one of the problems w e need to 

deal w ith is the relative lack of nice classes of digraphs to w ork with. We 

can, however, create a digraph from a graph by letting the vertex set of the 

digraph be the vertex set of the graph, and (a) replacing each edge uv with 

both arcs uv and vu , or (b) replacing each edge uv w ith exactly one of the
—4 —4

arcs uv or vu. In case (a) the integrity of the d igraph is the integrity of the 

graph, so nothing more need be said.

Any digraph D derived as in (b) is called an orientation of the graph
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G, and  G is called the underlying graph of D. W e focus our attention on 

orientations of certain families of graphs.

Since the integrity values for several classes of graphs have been 

found, it will be useful to know how  the integrity of a graph G is related to 

the integrity of an orientation D of G.

Proposition 3.3.1: 1(D) < 1(G).

Proof: For any I-set S of G,

ISI + m (D - S) < ISI + m ( G - S)

since the vertices of any strong com ponent of D m ust lie w ih tin  a 

connected component of G. □

There are classes of graphs for which each graph has an  orientation 

which demonstrates the sharpness of this bound. The set of null (edgeless) 

graphs on n  vertices is a trivial example. A less trivial example is the 

following: take n  > 2 copies of the circulant digraph D(7,{1,2,4}), which has 

connectivity 3 [3.9], and identify the n  vertices labelled 0 (see Figure 3.1 for 

the case n  = 2). The digraphs and the underlying graphs all have integrity 

7.

Another fact peculiar to oriented graphs is that there are no strong 

com ponents of o rder 2. For any graph w ith  q edges there are 29 

orientations of the edges and, if the graph contains a cycle, distinct 

orientations can have distinct integrities. This m eans that, w ith  the 

exception of forests, w e can only hope to obtain a range for the integrity of 

the  o rien ta tio n s of a p a rticu la r g raph . Every g raph  has an
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5 2

4

3

5

4

3

2
Figure 3.1

acyclic orientation, so the (sharp) low er bound  is always 1. We will 

therefore  focus our a tten tion  on the  m axim um  in tegrity  of any 

orientation of a graph G, which we denote 1(G). The integrity for several 

classes of graphs was given in Section 1.2, so we have upper bounds for the 

integrity of orientations of the graphs in these classes. In addition, given a 

graph G w ith decycling set S, then G - S is acyclic, as is any orientation of G 

- S. This gives the following result:

Proposition 3.3.2: 1(G) < V(G) + 1.

Thus, the results of Chapter II p rov ide  upper bounds for the 

integrity of several classes of graphs. W e w ill use orientations of these 

classes of graphs as a starting point for our study.

The following observations on the integrity of orientations of forests 

and cycles are corollaries of Proposition 3.2.6 and Theorem 3.2.7.

Proposition 3.3.3: The integrity of any orientation of a forest is 1.
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Proposition 3.3.4: If D is an orientation of a cycle, then 1(D) = 2 if D is a 

directed cycle and 1(D) = 1 otherwise.

As in Chapter EE, we use the Petersen graph as an example. Using the 

labelling of Figure 3.2, we note that at

e

w

Petersen Graph
Figure 3.2

least three of the edges incident w ith  b o th  the pentagon an d  the 

pentagram  m ust be oriented the same way (say from the pentagon to the 

pentagram). Hence, at most two of the arcs (say ai and aj) are oriented the 

other way. If we remove the vertex in the pentagon away from aj and the 

vertex on  the pentagram away from aj, then there can be no directed cycles 

rem aining in  the digraph, and so I(P) < 3. This bound can be attained 

w hen both the pentagon and the pentagram are oriented cycles and exactly 

two edges are oriented from the pentagon to  the pentagram, and hence 

I(P) is 3.

3.4 Tournam ents

We next discuss bounds for the integrity of tournaments of small 

order. It follows from Proposition 3.2.6 that a  tournam ent T has integrity 1
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if and only if it is transitive. The maximum integrity of tournam ents of 

small order w ill be found using known results about the structure  of 

tournam ents an d  circulant digraphs. A m ost helpful resu lt is the 

following theorem  of Parker and Reid [3.6] on the m inim um  num ber of 

vertices that a tournam ent m ust have in order to guarantee that it contain 

a transitive n-tournam ent.

Theorem  3.4.1: Let f(n) denote the minimum num ber r such tha t every

tournam ent of order r contains a transitive n-tournam ent. T hen the 

values of f(n) are given in Table 3 below.

Table 3 

Values of f(n) for Small n

n
order of transitive 

subtoum am ent

f(n) 
order of 

tournam ent

1 1

2 2

3 4

4 8

5 14

6 28

and 2<*-i>/2 <  f(n) < 7-2n_4 , for n  > 6 . □
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This theorem leads to the following upper bound for the integrity of 

an orientation of a graph.

Theorem 3.4.2: If D is an orientation of a graph G on n  vertices for which 

f(a) < n < f(a + 1), then

1(D) < n  - a + 1.

Proof: Let D be an orientation  of a graph G of order n. Let T be a

tournam ent containing D. Since there is some set of n  - a vertices S for 

which T - S is a transitive a-tournam ent, then n - a + 1 > I(T). Since I(T) > 

1(D), the result follows. □

The value of i(K n) for n  <  28 will be determined through a series of 

lem m as.

Lemma 3.4.3: For all n, X(Kn_i) < i(K n) ^  l(K n-i)+l.

Proof: The first inequality follows from Proposition 3.2.1. Suppose that

the second inequality is false. Then for some tournam ent T on n vertices 

I(T) = I(Kn) > l(Kn.i) + 2. Let v  be any vertex in T, let T* = T - v, and let S* 

be any I-set for T*. Now, I(T) <  m(T - (S* u  {v})) + IS* u  {v}) I = m(T* - S*) 

+ IS* I + 1 = I(T*) + 1 < i(K n), which is a contradiction. □

Corollary 3.4.4: If r and s are positive integers for which I(K r+s) = I(K r) + 

s, then for 0 < i < s, !(Kr+i) = I(K r) + i. □

Lemma 3.4.5: I(Ki) = l(K2) = 1.
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Proof: Every tournam ent on either one or two vertices is acyclic. □

56

Lemma 3.4.6: I (K3) = i(Ki) = 2.

Proof: The oriented 3-cycle and Theorem 3.2.7 show  that I(K 3) = 2, while 

Theorem 3.4.1 implies that ifiQ) < 2. Lemma 3.4.2 completes the proof. □

Lemma 3.4.7: I(K7) = I(Kg) = 5.

Proof: Let T be the rotational tournam ent D(7,{1,2,4}). Since it has

connectivity 3 [3.9] and contains no transitive 4-toumament, it has a set S 

of three vertices such that T - S is not strong. It follows that T - S m ust 

have two strong components, a 3-cyde and a single vertex, one of which 

m ust dominate the other. Removal of fewer than  three vertices from  T 

leaves a strong com ponent of order at least 5, taking away three vertices 

leaves a strong component of order a t least 3, bu t removal of three vertices 

w hich disconnect the d igraph  along w ith one of the vertices in  the 

remaining 3-cyde leaves a transitive 3-tournament, so l(K7) > 5.

It follows from Theorem 3.4.1 that !(Ks) <  5, and so by Theorem  

3.4.2,I(K7) = 1(K8) = 5. □

Lemma 3.4.8: I(Ki3) = l(Ki4) = 10.

Proof: Let T be the tournam ent D(13,{1,2,3,5,6,9}). Then from [3.9] we know 

k(T) = 6 but contains no transitive 5-toumament. Therefore, if I(T) < 10, it 

m ust contain a set S of six vertices whose rem oval leaves no  strong 

component of order greater than  3. Since T contains no transitive 5- 

toumament, T - S m ust have two strong components of order 3 and  one of
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order 1 on the seven rem aining vertices. The condensation of these 

components m ust form a transitive 3-tournament [3.4]. If two vertices are 

chosen from each of the components of order 3, then those four vertices, 

along with the component of order 1, form a transitive 5-toumament, and 

this is a contradiction. Therefore, w hen six vertices are rem oved, some 

strong component m ust have order 4 or greater. W hen seven or eight 

vertices are removed, some strong com ponent must have order at least 3 

(given that there is no transitive 5-toumament), so I(T) > 10. Hence I(K i3) 

is at least 10 .

Now let T be any tournam ent of order 14. By Theorem 3.4.1, T has a 

transitive 5-toumament. Therefore it m ust contain a set S of nine vertices 

whose removal leaves a transitive 5-toumament. Hence I(T) < 10. Since T 

was arbitrary, this implies that I(K i4) < 10 , and the result follows. □

Lemma 3.4.9: I(K27) = l(K28) = 23.

Proof: From Theorem 3.4.1, l(K 28) ^  23. To prove the lower bound, note 

that the quadratic residue tournam ent QT27 contains no transitive 6 - 

toumament. We now demonstrate that I(QT27) > 23.

Assume that I(QT27) < 22, and let S be an I-set. We will show that 

regardless of the order of S the tournam ent QT27 - S m ust contain a 

transitive 6-tournam ent, and this yields a contradiction. Let T* denote 

QT27 - S. Then m(T*) = I(QT27) - I S I .

Case 1: ISI = 21 or 20. Then m(T*) m ust be 1, and so T* contains a 

transitive 6-tournam ent.

Case 2 : ISI =19. Then m(T*) < 3 . The subtoum am ent induced by
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any two vertices from each strong com ponent of order 3 together w ith  the 

vertices from the trivial strong com ponents is a transitive tournam ent 

and has at least order 6 .

Case 3: ISI <18. Let H  be a strong component of maximum order in  

QT27 - S and let F = QT27 - S - H. Because of the constraints on ISI and 

I(QT27), the order of F m ust be at least 4. Each vertex of F either has arcs to 

all of the vertices in  H  or from all o f them. If IHI > 3 , then both H  an d  F 

contain transitive 3-tournaments, an d  those six vertices either induce a 

transitive 6-tournam ent or contradict the fact that H  was of m axim um  

order. If, on the other hand, IHI < 4 ,  then any set of two vertices from  

each strong component of order 3 along w ith  the vertices in  the strong 

components of order 1 in D - S induce a transitive tournam ent of o rder at 

least 6 . In either case, a tran sitive  6 -tournam ent is forced, w hich  

contradicts the structure of the digraph.

All of the above cases combined imply that I(K27) = I(K2s) = 23. □

Using Lemmas 3.5.3 - 3.5.9, along w ith Corollary 3.5.4 to fill in  the 

gaps, we obtain the following theorem  on the maximum integrity  for 

tournaments of order 28 or less:

Theorem 3.4.10: For 2 < p < 28, and

f(n) < p < f(n+l), then  I(Kp) = p - n + 1.

If we compare the previous result to Theorem 3.4.2 we note tha t for 

small p, I(Kp) has the maximum integrity attainable for any graph  on  p 

vertices. If we recall that a g raph  G has integrity IGI (which is the
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maximum possible integrity) if and  only if G is complete, then it seems 

natural to expect this to extend to !(Kp) for all values of p, that is:

Conjecture: For p > 2, if f(n) < p < f(n + 1), then ! (Kp) = p - n  + 1.

Theorem 3.4.11: For any positive integers n  and  a w ith 1 < a < i(Kn), there 

exists a tournam ent T on  n  vertices w ith I(T) = a.

Proof: From Lemma 3.5.5 we know I(K 2) = 1, while Lemma 3.5.3 states 

i(Kn_i) < i(K n) <  I(Kn_i) + 1 . Combining these two lemmas gives us the 

fact that there is some tournam ent T on at m ost n  vertices w ith I(T) = a. 

Complete T by adding an (n - a)-transitive tournam ent R for which all the 

arcs between R and T are oriented into T (see Figure 3.3 for an example). 

□

We now  consider orientations of complete b ipartite graphs Km n 

w ith partite sets X and Y of order m  and n, respectively. W ithout loss of

A tournam ent on 7 vertices w ith  integrity 3 
Figure 3.3

3.5 Bipartite Tournam ents
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generality, we henceforth assume m < n. These digraphs, which we denote 

by are known as bipartite tournaments. In such digraphs, the order of 

any non-trivial strong com ponent m ust be at least 4. One w ay in w hich 

the low er bound for the integrity of these tournaments can be achieved is 

for all arcs to be oriented from one partite  set to the other. The upper 

bound i(Km,n) is determ ined in  the following theorem.

Theorem 3.5.1: If m  < n, then I(Km̂ ) = m.

Proof: From Theorem 2 .2 .1 , we know that V(Km,n) = m  - 1, and hence by 

Proposition 3.3.2, I(Tm,n) < m. To show the reverse inequality, we use a 

construction. We construct the digraph D as follows: Let X = { xi, X2, ..., xm } 

and Y = { yi, y2, ..., yn }• Orient the edge Xi,yj as (yj,xO unless i = j  in which 

case orient the edge as (xi,yj). Since the removal of any one vertex can 

destroy a t most one arc from  X into Y, and since any pair of arcs from X 

into Y lie in a directed 4-cyde, for any subset S of the vertex set w ith ISI = 

k < m - 1, m(D - S) > 2(m - k), and so ISI + (D - S) > m - 1 . This implies that 

I(Tm,n) ^  m, and the theorem follows. □

Figure 3.4

Results from the previous two sections can be com bined to give 

rough bounds for the maximum integrity for the orientations of complete 

m ultipartite graphs.
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k

Theorem 3.5.2: When ri < X2 -•••- he and n  = , then
i=l

ri = i(K(ri,n-ri)) < f(K(ri, tt,..., 1*)) < 

min{!(Kn)A - he}.

3.6 Binary Operations

For orientations of the union of graphs, the bounds derived  for 

integrity of unions of graphs turn out to be the best possible bounds.

Theorem 3.6.1: For G = u  G ,
i=l 1

max f(Gi) < 1(G) < f  l(G J - n + 1 .

Proof: The lower bound comes from Proposition 3.2.1, while the upper

bound is is derived from Proposition 3.3.2 and the corresponding bound 

for graphs. □

The graph G u  (n - 1)K2 dem onstrates the sharpness of the lower 

bound while nCn+i is an example in which the upper bound is attained.

A n upper bound for the integrity of an orientation of the join of 

two graphs is implied by the graphical bounds, and  can be show n to be 

sharp by wheel graphs.

Theorem 3.6.2: !(G + H) < min{l(G) + I H I , 1(H) + IG I}.

Proof: Let D be an orientation of G + H  for which 1(D) = I(G + H), let S be 

an I-set of D, and let F be an I-set for G. Now 1(D) = m(D - S) + ISI < m(G -
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F) + I V(F) u  V(H) I since S is an I-set of G + H. However, m(G - F) + I V(F) 

u  V(H)I = m(G - F) + IFI + IHI = 1(G) + IHI < 1(G) + IHI .  The same 

argum ent shows that I(G  + H) < 1(H) + 1G I, which completes the proof. 

□

Corollary 3.6.3: For the wheel Wn with n > 3, I(W n) = 3.

Proof: By Theorem 3.6.2, I(W n) £ 3. The oriented wheel in  which the n- 

cycle is a directed cycle and two edge disjoint triangles are oriented as cycles 

shows that the

Figure 3.5

upper bound is sharp. □

3.7 Products of Paths and Cycles

From Chapter II and Proposition 3.3.2 we have V(Pm x Pn) + 1 as an 

upper bound for i (Pm x Pn). This bound turns out to be exact for small n, 

b u t as n  increases it is m ore efficient to allow  nontriv ial strong 

components, of relatively small order. We will see in this section that the 

value for I(Pm x Pn) will be bounded above by the m inim um  of several
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functions. The decyding num ber of (Pm x Pn) plus 1 will usually be sharp 

for small n, w hile allowing larger strong com ponents will give a pair of 

bounds. One reason for this is the fact that since Pm x Pn is bipartite, there 

can be no strong components of order 2 or 3.

Theorem 3.7.1:

Proof: Label the vertices and 4-cydes of the graph as in Chapter n. Then D, 

the orientation in  which the 4-cycles are oriented alternately dockwise and 

counter-clockwise (see Figure 3.6), will be show n to attain the maximum

integrity. Because the underlying graph is bipartite, strong components are 

either trivial or of order at least 4. In fact, if w e use the notation of Chapter 

n, each strong component is either trivial or a P2 x  Pr of the form V(*,i:j). 

Given an I-set S, a strong component of D - S is either of the form V(*,i:j), 

in w hich case m(D - S) = 2(j - i + 1) or the maxim um  order of a strong 

component is 1. If m(D - S) = 1, then since D has Ln/2j vertex disjoint 4- 

cydes, ISI > Ln/2j. Hence 1(D) = Ln/2j + 1, w hich is the general upper 

bound of V(P2 x Pn) + 1 from Chapter n. If m(D - S) > 1, then assume D - S

i(P 2 x Pn) = m ini —+ 1

Figure 3.6
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has k + 1 strong components of near uniform  order. If we rem ove the 

vertex V2,\ from the graph, then  V(*,l:i) is disconnected from  the rest of 

the d igraph (see Figure 3-6). This means that we need to rem ove only k 

vertices to  get k + 1 strong components. To get nearly uniform  strong 

com ponents, the order of largest strong com ponent will be 2["(n - k)/(k  +

1)1. This gives the integrity

1(D) = k + 2T(n-k)/(k + 1)1 = 

k + 2l n / ( k  + 1)J < k + 2n / (k  + 1)

(recall that fa / b l  = L(a + b - l ) / b J ) .  For fixed n, the m inim um  value of the 

expression can be found by differentiating with respect to k, setting the 

derivative equal to 0, and solving for k in terms of n. W hen we do that, 

we get k = V2 n - 1, which may be a non-integer. Since we w ant k to be an 

integer, we can choose either k = T V2n - l l  or k = L V2n - 1J. As can be seen 

by the graph in Figure 3.7, the value we should choose for k to minimize

+i

- 3

n + 1

ivsj - 3

n
Figure 3.7
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the expression ISI + m(D - S) depends upon  n. Thus 1(D) is the m inim um  

of the  three exprssions stated in the theorem , w hich dem onstrates the 

lower bound.
~ n -t"

To show the upper bound, let t = Ln/kJ, k = |"V2n -  l] , r = t + 1 J

= [V2 n  -  l j ,  and s = n-1
j + 1 . Then one of the sets Si = {vi,2, v i,4,...vi72t}, S2

= {vi,r+l, vi^r+2,..., v i;kr+k}, or S3 = {vi,s+i,v i72s+2/ - ,v i /js+j} attains the upper 

bound. □

Later we use a technique of the next theorem to get a general upper 

bo u n d  for I(P m * Pn)/ so here we go through all the details as an  

illustration of the method.

Theorem  3.7.2:

[V3nJ + 3

I(P3 xPn) < inin 

n  + 1

3n
4

[V3KJ -  2, [V3n] + 3

+ 4,

n + 1
*

- 2

Proof: From Chapter II and  Theorem 3.3.2 we know that I(P3 x Pn) <
3n

+ 1. This can be im proved upon w hen n = 0 (mod 4) to as

follows. W hen n = 4, rem ove V2,2 and V2 ,3 . If a strong com ponent 

rem ains, it m ust be a directed 10-cycle (see Figure 3.8(a)). Now to rem ove 

V2,2 and  V2,4 . If a strong component remains, it m ust be a directed 8 -cycle 

w ith  the orientation of the arcs determ ined by the orientation of the 10- 

cycle (see Figure 3.8(b)). It follows that rem oving V2,2 and V13  leaves no
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(a) <M
Figure 3.8

(c)

nontrivial strong component (see Figure 3.8(c)). Thus I (P3 x P4) < 3. W hen 

n  = 4t for some positive integer t, then the decycling set S = {v2,i I i = 0(m od

2)} v  {[v3,j I j = 3(mod 4)} for V(*,l:4t - 4) along with two vertices chosen as 

in the n  = 4 case for V(*,4t - 3:4t) demonstrate the upper bound of 3t. Recall 

that w hen n = 0 (mod 4), then [3n /  4 j + 1 = [3n /  4"], and hence I(P3 x  Pn) 

< [3n /4*]. For n  = 3, 4, 5, 6 , 8 , and 9, these bounds will be show n to be 

sharp. However, for larger n, we get a better bound if we allow nontrivial 

strong components. Since two arcs betw een V(*,i) and  V(*,i + 1) m ust be 

oriented in the same direction, there can be at most one oriented the other 

way. If we remove the vertex in V(*,i) of such an arc, then V(*,l:i) is 

disconnected from the rest of the digraph (see Figure 3.9). This means that

a set S need only contain k vertices in  order that D - S have at least k  + 1 

strong components. Note that the other two vertices in  V(*,i) could still 

be in a strong component containing V(*,l:i - 1), and if we try to keep the

Figure 3.9
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components of approxim ately uniform order, then the order of the largest 

strong component of D - S w ould be at m ost either 4 (when the vertices are 

chosen from alternating P3 's) or 3f(n - k )/(k  + 1)1 + 2. This gives an upper 

bound for the integrity o f either [n  /  2j + 4  w hen m(D - S) = 4, or k + 3f*(n - 

k )/(k  + 1)1 + 2 = k + 3|_n/(k + 1 )J + 2 < k + 3 n /(k  + 1) + 2 otherwise. Using 

calculus as before, we find  tha t for fixed n  this second function has a 

minimum value when k = V3n - 1. Again, for our purposes we need k to 

be an integer, so k can be either j^/3n - l j  or |"V3n - l"|, and  hence the

theorem follows. □

Corollary 3.7.3: For 3 < n  < 9 ,1 (P3 x Pn) is given in Table 4.

Table 4

Maximum Integrity for Orientations of P3 x Pn

n I(P3xPn)

3 3

4 3

5 4

6 5

7 5

8 6

9 7

Proof: The upper bounds for all bu t n  = 7 were demonstrated in Theorem
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3.7.2. The lower bounds w ill be show n by giv ing  an  example of an  

orientation which attains the integrity (see Figure 3.10).

Figure 3.10

For the case n = 7, let D be an orientation of P3 x  P7, and remove the 

vertices V2 ,2, V2,3, V2,5, and V2,6 from D. If there is a nontrivial strong 

component left, it m ust include two degree-2  vertices in  the same copy of 

P3, w ithout loss of generality v i,i and V3,i (see Figure 3.11(a)). Next, we
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(a)

Figure 3.11

remove V2,i, V2 3 , V2,5, and V2,6 from D, if a nontrivial strong component 

of w hat remains contains V2,i, then no vertex in V(*,l:3) can lie in a strong 

component of D - {vi,2, V2/3}, otherwise no vertex in  V(*,l:3) can lie in  a 

strong component of D - {V24 , V2 3 }. The last two vertices in  an I-set will be 

chosen from V(*,4:7) as in Theorem 3.7.2 for P3 x P4. □

In the general case, we mimic a technique of the last theorem , 

noting that a t most L m /2 j  vertices m ust be rem oved from  V(*,i) in  an 

orientation of Pm x Pn to disconnect V(*,l:i) from the rest of the digraph.

Theorem 3.7.4: For m < n,

m
2

I(Pm x Pn) < min{V(Pm x Pn) + 1 , 

n  + 1+ m fvsn
m
2

m }.

Proof: The first term in  the m inim um  comes from  Theorem 3.3.2. For

the final two terms, we start by recalling that w hen we remove L m /2 j 

vertices from V(*,i) and disconnect V(*,l:i) from the rest of the digraph a
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strong component containing V(*,l:i - 1) could still contain the remaining 

[m /21  vertices of V(*4). Hence, the largest o f the components could have 

as m any as mf(n - k )/(k  + 1)1 + [~m/2l vertices. Thus,

1(D) < Lm/2jk + mT(n - k)/(k  + 1)1 + T m /2 l  =

Lm /2j(k - 1) + mLn/(k + 1)J + m  < 

m  + m(k - l ) /2  + m n /(k  + 1).

We use calculus w ith  fixed m and n, to find  tha t the m inim um  of the 

original function occurs when k is either [~V2n - l"| or [V2n - i j .  □

Theorem 3.7.5: i(Pmx Qi) ^

min{V(Pm x Cn) + 1,

|V 2 n  - 2 - l j  

- l]

m
2

+ m n
V2 n  - 2

m n
. 2 .

+ m
V2 n  - 2

}•

Proof: The only difference betw een this and  the previous argum ent is

that the second graph in the product is a cycle, so w hen we pu t in the k 

partitions as before w e get only k components. Thus the maximum order 

of a near-uniform strong component in this case w ill be m

Hence the inequality

"n - k" "m"+ ——
k 2

m
2

1(P m x Cn) -

n  - 1

m
k + m n - k ’m

— — +
. 2 . k 2

(k - 1) + m m(k -  1) m (n - 1)
+ m < —^ — - + m.

A pplying calculus w e find that the last expression  is m inim al, w ith
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regards to fixed m and n, when k is either |j\/2n  -  2 j  or |~V2 n  -  2 *|.

W hen these are substituted into the first expression of the inequality, and 

the result is simplified, we get the desired values. □

Corollary 3.7.6: I(CmxC n) <

min{V(Cm x C n) + 1 ,

Proof: One can see that the extra edges of the cycles w ill not change the 

disconnection principle used in the proof of Theorem 3.7.4. The bounds 

on the orders of the strong  components and the calculus a ren ’t any 

different either, hence we get the same bound if w e allow nontriv ial 

strong components. □

One of the most im portant product graphs is the n-cube. It seems 

that the behavior of the integrity of an orientation of Q n depends very 

m uch on n. For n  = 2 or 3, then 2n‘2 + 1 is a sharp u p p er bound for the 

integrity of an orientation, bu t when n  is large, the upper bound show n in

[3.3] for graphs, and hence for their orientations, of O(2nlogn /V n) is better. 

This is w orth further analysis, but appears to be very difficult.
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CHAPTER IV

ARC-INTEGRITY OF ORIENTED GRAPHS 

4.1 Definitions

In C hapter III we w ere interested in  the effect th a t rem oving 

vertices had  o n  oriented graphs. In this chapter w e look at the arc 

counterpart. The arc-integrity , I '(D)  of a digraph D is defined as the 

minimum value of m(D - S) + ISI over all subsets S of the arc set of D. A 

set S is an V-set of D if I'(D) = ISI + m(D - S).

4.2 Arc-integrity of Digraphs

We begin w ith some preliminary results about arc-integrity.

Proposition 4.2.1: If F is a subdigraph of D, then I'(F) < I'(D).

Proof: Let S be  an I'-set for D. Then m(F - S) < m(D - S) since any strong 

component of F - S m ust be contained in a strong com ponent of D - S. 

Hence,

I’(D) = m (D - S) + ISI >m (F - S ) +  I S n F I  >I'(F). □

The arc-integrity of a digraph is related to its in tegrity  in  the 

following m anner.

Theorem 4.2.2: For every digraph D, I'(D) > 1(D).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Proof: Let T be an I'-set for D and let S be the set of vertices of out-degree 

at least 1 in the digraph induced by  T. Clearly, ITI > 1SI and m(D - T) > 

m(D - S). Hence,

I’(D) = IT I + m(D-T) > ISI + m(D-S) > 1(D). □

This relationship does no t imply that all properties of integrity hold 

for arc-integrity. For example, by  Theorem 3.2.3, the integrity of a digraph 

D is closely related to the integrities of the family of digraphs D - v, where 

v is a vertex in D. However, there is no corresponding relationship for arc- 

integrity. The main problem here is that even though we are rem oving 

arcs from the digraph, strong com ponents are m easured in  term s of

vertices. In  the vertex case, the removal of a single well-selected vertex can

often decrease the order of a largest component; while in  the arc case we 

m ust disconnect the d igraph to reduce the order of the largest strong 

component. The family of d rcu lan t digraphs D(6t + 1,{1,2,3}) w here t is a 

nonnegative integer is an example of this (removal of any single vertex 

decreases the order of the largest strong com ponent w hile w e m ust 

remove at least three arcs to accomplish the same decrease).

Nevertheless, there are some relationships betw een arc-integrity 

and strong components. The next proposition gives a sharp upper bound, 

while those that follow relete arc-integrity to other parameters.

Theorem 4.2.3: For a digraph D, 1 < I’(D) < m(D) < ID I .

Proof: Let S be the empty set of arcs. Then

1(D) = nun {m(D- T) + I T I} < m (D -S ) +  ISI =m(D)< IDI.  □
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Theorem 4.2.4: For digraph D,

I'(D) > max{8+(D), 8-(D)} + 1.

Proof: From Theorem 4.2.2 we know I'(D) > 1(D) and from Theorem 3.2.8 

we have tha t 1(D) > max{8 +(D), 8 "(D)} + 1, and  hence the inequality  

follows. □

Recall that D' is defined to be the orientation obtained by reversing 

all the arcs of D. Any strong component in  D is also a strong com ponent in 

D’, which gives the following result.

Theorem 4.2.5: For every digraph D, I’(D') = F(D).

The following characterizations are fairly straight forw ard bu t will 

be helpful.

Theorem 4.2.6: For any digraph D the following are equivalent: (a) 1(D) = 

1, (b) I’(D) = 1, and (c) D has no dicycles.

Proof: From Proposition 3.2.6 we know that (a) and  (c) are equivalent. If D 

has no dicycles, then, by definition, I’(D) = 1. O n the other hand, if I'(D) = 1 

then the order of a largest strong component m ust be 1, and so D is acyclic. 

Hence (b) and (c) are equivalent. □

Theorem 4.2.7: A  digraph has arc-integrity 2 if and  only if it has at least

one dicycle and  either some arc is on all of the dicycles or the o rder of a 

largest strong component is 2 .
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Proof: Assume I’(D) = 2. Then D m ust contain a directed cycle. If m(D) > 2, 

then there m ust be some arc which lies on  all dicydes. If not, then for each 

arc e, m(D - e) > 1, so m(D - S) > 1, which is a contradiction to  the 

assum ption that I'(D) = 2.

If D contains a dicyde and the arc e lies on all dicydes, then m(D - e) 

= 1, so I’(D) < 2. O n the other hand  if m(D) = 2, then I'(D) < 2; b u t for any 

subset S of the arc set m(D - S) ^  1. In either case, I'(D) = 2. □

Note that if 1(D) = 2, then I'(D) can be arbitrarily large (see Figure 4.1 

for an  example, the 4-flower, w ith integrity 2 and arc-integrity 4).

Figure 4.1

4.3 Orientations of Graphs

Similar to w hat we did in  Chapter m , we note that w hen D is an 

orientation of a graph  G and S' is a subset of the arc set of D w hich 

corresponds to a subset S of the edge set of G, a strong component of D - S' 

m ust be contained in  a connected com ponent of G - S. This gives the 

following lemma.

Lemma 4.3.1: If D is an  orientation of the graph G, then I'(D) < I'(G). □
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Thus a natural upper bound for the arc-integrity of a digraph is the 

edge-integrity of the underlying graph. This bound  will be more helpful 

for arc-integrity than the corresponding bound for the integrity.

We now consider the arc-integrity of the classes of oriented graphs 

considered in Chapter HI. As w ith integrity, the arc-integrity for different 

orientations of the same graph will generally not be the same. As noted 

before, every graph has an acyclic orientation; so the sharp lower bound  

for the arc-integrity of an orientation of a graph is always 1. Also, it follows 

from Proposition 4.2.3, that each orientation D of a graph G on p vertices 

has I'(D) < p. The maximum arc-integrity for the class o f orientations o f G , 

denoted i'(G), is the maximum arc-integrity attained by any orientation of 

G.

As in the two preceding chapters, our first nontrivial example will 

be the Petersen graph (Figure 4.2). If D is an  orientation of P in which each

e

Petersen Graph
Figure 4.2

of the sets {a, b, c, d, e} and {v, w, x, y, z} induce a 5-cycle, then Theorems 

3.2.7 and 4.2.2 im ply that I'(D) > 3, and  hence so is I'(P)- As was 

dem onstrated in  Chapter m , for each orientation D of P there are two
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vertices, say x and y, for which m(D - {x,y}) = 1. Each of these vertices has 

either indegree or outdegree at most 1. If the two arcs associated with these 

degrees are removed, then the resulting d igraph is acyclic, and so ! ’(P) < 3. 

We can combine the inequalities to give I'(P) = 3.

Notice that for the Petersen graph, f(P) = I'(P)- It is not generally the 

case that 1(G) = I ‘(G). We know that this statem ent is true for forests, and  

the following lemma gives another sufficient condition for this to be the 

case.

Theorem 4.3.2: For any graph G w ith A(G) < 3, I(G)= I ’(G).

Proof: Assume that A(G) < 3. From Theorem 4.2.2, we have I'(D) > 1(D),

and hence f(G) < i '(G). Assume D is an orientation of G for which ! ’(G) = 

I’(D) > I (G) (hence I'(D) > 1(D)), and let S be an  I-set of D. For each vertex v 

in S, either deg+(v) or deg'(v) is 1. Thus, there is a single arc e incident 

w ith v such that if e is removed from D, then  v constitutes a nontrivial 

strong component of D - e. Let T be a collection of such arcs, one incident 

w ith each vertex v in  S. Clearly ISI > ITI and  m(D - S) > m(D - T); so

1(D)* ISI + m ( D - S ) >  ITI + m(D - T) > I'(D),

which is a contradiction. Therefore the equality holds. □

From Proposition 4.2.7 and Theorem 4.2.8 we derive the following

result.

Theorem 4.3.3: For every integer n  > 3, !'(Cn) = 2 .
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4.4 Bipartite Tournam ents
78

Consider the complete bipartite graph  Kn,m/ w ith  partite sets X = {xi, 

X2,—,xn} and Y = {yi,y2,—,ymK Recall that the sm allest order a nontrivial 

strong component can have is 4.

Theorem  4.4.1: For every integer m > 2, 1X^2,m) = Lm/2j + 1.

Proof: Every 4-cyde m ust contain both of the vertices xi and X2 in  the first 

partite  set. Clearly, min{deg'(xi), deg+(xi), deg-(x2), deg+(x2)} < Lm /2j. 

W ithout loss of generality assume the m inim um  is deg '(xi). Then the 

rem oval of all arcs incident to xi will destroy all dicycles, and  hence 

I '(K 2,m) -  l m / 2 j  + 1. Let D be the orientation of K2,m m which the only 

arcs from X to Y are (xi,yj) where j = 1 ,2 ,..., Lm/2_|, or (x2,yj) where j = 

Lm/2j + 1, Lm/2j + 2,...,m (see Figure 4.3). Then T(D) = Lm/2j + 1, and thus 

the upper bound is achieved. □

Recall that in Chapter IE we used the decycling number of a graph G 

in order to derive an upper bound for 1(G). We use a similar approach to 

find upper bounds for IXK3,m)-

For a digraph D, a subset T of the arc set of D is called a feedback arc 

set if every directed cycle in D contains some arc of T ( or m(D - T) = 1).

Figure 4.3
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The feedback arc index V'(D) of a digraph D is the m inim um  cardinality of 

a feedback arc set. Note that if D is an oriented graph, then  I'fD) < V’(D) + 

1.

Lemma 4.4.2: If D is an orientation of K^m, then V'(D) <["2 m/ 3~1.

Proof: W ithout loss of generality we m ay assum e tha t D is strongly

connected. For each vertex yi in  Y, either deg+(yO or deg"(yO equals 1. Label 

the arc associated w ith  degree 1 incident w ith  yi as ej. Let E be the 

collection of the arcs e,. Note that IEI < m, and that every directed cycle of 

length 2k m ust contain exactly k arcs of E. We com plete ti e proof by 

induction.

W hen m = 3, then we m ust remove at most tw o arcs of E in order 

for the rem aining digraph to have no directed cycles. Suppose k is the 

smallest value of m for which some orientation D of K3 ,m has V'(D) > 

r2 m /3 l .  We can assume that IEI = k, for otherwise D is not strongly 

connected. If all of the arcs of E are removed from D, then  m(D - E) = 1. For 

distinct vertices Xj and Xj in  X, let Y+ be the set of outneighbors of xj by arcs 

of E, let Y" be the set of inneighbors of Xj by arcs of E, and let Y* = Y - (Y+ u  

Y"). All the vertices in Y+ u  Y" are inneighbors to Xj and  outneighbors 

from Xj; hence any directed cycle in D m ust contain a vertex of Y*, the 

order of the largest strong component of the rem aining graph is 1. All we 

need now show is that for some pair x,, Xj, the cardinality of the set of arcs 

of E either incident to Xi or incident from Xj is at least L k /3 j. If this is not 

true, then for all (i,j) = (1,2), (13), (23), (2,1), (3,1), (3,2) the cardinality of the 

set of arcs of E either incident to X{ or incident from Xj is strictly less than
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Lk/3_J. H ow ever, if we sum  the cardinalities of these sets we should get 

2 1E I, w hich equals 2k; hence we get a contradiction, and  the theorem 

holds. □

Theorem 4.4.3: For m > 3, I'CK^m) = f2 m /3 l + 1.

Proof: The upper bound for I'(K3,m) was dem onstrated in Lemma 4.5.2; 

while the orientation of K3 ,m for which the set E is {(xi,yp s  j (mod 6 )} 

{(yj,xi):i + 3 = j (mod 6)} has arc-integrity T2m/3l + 1. □

4.5 Tournaments

W hen we remove a vertex from a tournam ent, the result is also a 

tournam ent. This simple fact was used in prov ing  some results on the 

integrity o f tournam ents in the previous chapter. H ow ever, the same 

cannot be said  for arc removal; so we will have to be a litt more 

resourceful. N onetheless, an argum ent sim ila r to th a t used for 

tournam ents in  Chapter HI will be helpful. For a given positive integer n, 

let g(n) denote the m axim um  num ber k of arcs for w hich every n- 

toum am ent contains a set of k arcs that generate no cycles. Then an upper 

bound for I'(K n) is I E(Kn) I - g(n) + 1. If n  is small, then this bound is better 

than the bound from Section 1.2 of I'(Kn) ^ n.

The maximum arc-integrity of tournam ents of order n  is given in 

the following theorem.

Theorem 4.5.1: l'(Tn) = «

' 1 if n  = 1, 2  

2 if n = 3, 4
4 if n  = 5
n if n > 6
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Proof: If n  < 6, the upper bound for I'(Tn) follows from  Theorem 4.5.2 due 

to Reid [4.6].

Theorem 4.5.2: For n  < 8, the values of g(n) are given in  Table 5.

Table 5

Maximum Num ber of Arcs g(n) W hich Generate 
No Cycles in Any Orientation of Kn

n g(n)

2 1

3 2

4 5

5 7

6 10

7 13

8 20

For n  < 5, the regular or near-regular tournam ent on n vertices has 

the arc-integrity stated in  the theorem.

W hen n  = 6 , the near-regular tournam ents all have arc-integrity of 

at least 5, and if T is the tournament of Figure 4.4, then I'(T) = 6 .

For the case n  > 7, then each regular or near-regular n-tournam ent 

T has arc-integrity n. Suppose this is not so, and  let k be the m inim um  

value for w hich it does not hold. Let T^ be a regular or near-regular
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tournam ent on k vertices for which I'(Tic) < k, and let S an I'-set for Tk. Let

Figure 4.4

r be the order of the dom inating strong component R of Tk - S. Note that 

we can assume r < Lk/2_|; otherwise we look at the converse of Tk and 

remove the arcs associated w ith S. We m ust look at two cases depending 

upon the parity of k.

Case 1. The integer k = 2t + 1 is odd. Here Tk is regular. The set S

which is equivalent to the statement r2 - (2t + 2)r + 2(2t + 1) > 0, which can 

be factored to give(r - k)(r - 2) > 0. Since r < k, we know that r < 2 for the 

inequality to be true. However, if r = 1, then Tk - R is near-regular of order 

k -1 ; so I'(Tk) = IS I + m(Tk - S) = t + IS (Tk - R) I + m((Tk - R) - S), which 

is at least t  + I'(Tk - R) > k. This is a contradiction to our assumption.

Case 2. The integer k  = 2t is even. Here Tk is near-regular. This

m ust contain at least rt + r,

means that S contains a t least (t - l)r - arcs into vertices of R; so
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which w hen sim plified and  factored is(r - (k - 2))(r - 2) > 0. As in the 

previous case r m ust be at most 2; hence r = 1. Now S m ust contain at least 

the arcs into R, so ISI > t  -1 . This implies that m(Tk - S) < t + 1, hence we 

can use an argum ent sim ilar to the one which dem onstrated IRI = 1 to 

argue that the order of R*, the strong component of Tk - S dom inated by 

all other components, is 1 as well. Therefore S must contain all arcs into R 

and all arcs out of R*, so ISI > (t - 1) + (t - 1) - 1 = 2t - 3. We know that I'(Tk) 

< 2t, and hence m(Tk - S) < 2. This implies that m(Tk - S) = 1, therefore ISI 

will be at least k  - 1 since at least tw o more arcs m ust be removed for this 

to be achieved. This contradicts the assum ption on I'(Tk), and the theorem 

is proved. □

4.6 Unions of Graphs

As in the previous chapter, w e get some general bounds for the 

maximum arc-integrity for orientations of three of the most w idely used 

binary operations on graphs, unions, joins, and cartesian products.

Theorem 4.6.1: max{r(Gi)} < I '(  u G i )  < t  i'(Gi) - n  + 1.
I i a  1

1=1

Proof: The first inequality is a corollary of Theorem 4.2.1. The second

inequality is derived from  Lemma 4.3.1 and the theorem  of [4.1] which 

states that for graphs G i, G2,..., Gn I’( i  GO < Y  I’(Gi) - n  + 1. □
i =  1
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These bounds are shown to be sharp by  Cn u  (n - 1)K2 and nCn+i.

4.7 Products of Paths and Cycles

The m axim um  arc-integrity for P2 x Pn comes as a corollary to 

Theorems 3.7.1 and 4.3.2.

Corollary 4.7.1:1'(P2 x Pn) =

min{ n 1 —  +  1
2

, |"V2n"| + 2
n  - 1 - 3,[V2nJ + 2 n  - 1

L̂ J - 3|.

The argum ent for the arc-integrity of P3 x Pn is similar to that used 

in Theorem 3.7.2 on the integrity of P3 x Pn.

Theorem 4.7.2: I'(P3 x  Pn) =

min{n,["V3n-3"| + 3 n
[V 3n-3]

- l , [V 3 n -3 j  + 3 n
[V3n-3

“ 11-

Proof: Let D be an orientaion of P3 x Pn. Then as in Theorem 3.7.2, there is 

some single arc betw een V(*,i) and  V(*,i+1) whose removal leaves V(*,l:i) 

disconnected from V(*,i + l:n) (see Figure 4.5). This means that there is a 

set S of k arcs for which D - S has at least k  + 1 strong components.

The digraph derived by extending the orientation of P3 x  P5 in 

Figure 4.6 to the general case P3 x Pn (orient the arcs of the 4-cycle Q j  

clockwise if i + j is even and counter-clockwise if the sum  is odd) attains
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Figure 4.5

the lower bound for the theorem. In this orientation, removal of an arc 

contained in V(*,2) increases the num ber of strong components by  a t least

Figure 4.6

1. These components are either of the form V(*,i:j) (of order 3(j - i + 1)) or 

are trivial. Let T be an I'-set for D of order k. As in  Theorem 3.7.2 the 

orders of the components of D - T should be nearly equal. Therefore, m(D -

T) will either be 1 or 3 ——— .
k + 1

Case 1: m(D - T) = 1. There are n  - 1 pairwise arc-disjoint 4-cycles (the 

Q,j where i + j is even), so we need to remove at least n  - 1 arcs. However, 

if the arcs of V(2,*) are rem oved the remaining digraph has no dicycles.

Case 2: m(D - T) = 3 n
k + 1

. In a manner sim ilar to the previous

chapter, calculus is used to find the arc-integrity. Here

I’(D) = k + 3i”n /(k + l)l = k + 3l(n+k)/(k+l)J < 

k + 3(n+k)/(k+l).

The last expression is m inim ized w hen k = V3n - 3 - 1. Hence, the first
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expression (arc-integrity) is m inim ized when k is either T V3n - 3 - l l  or 

LV3n - 3 - l j .  W hen these values are substitu ted  into the arc-integrity 

expression we get the desired values.

Let r = TV3n - 3 l  and s = LV3n - 3j ,  and  let (vt,i,vt,i+i) be an arc 

w hose removal leaves V(*,l:i) disconnected from  V(*,i + l:n). Then the 

upper bound is demonstrated w hen D is an orientation of P3 x Pn and T is 

one of the following sets:

Ti = {(vt,i/Vt,i+i) I i = l,...,n - 1}

T2 = {(vt,i,vtfi+i) I i = j(Tn/rl+1), and  j = l,...,r}

T3 = {(vt^ v t,i+i) I i = jCfn/sl+l), and j = l,...,s}. □

Theorem  4.7.3: W hen m < n, then I'(Pm x Pn) -

min{(n - l)Lm/2j + 1,

m ([V2n - 2]  - l) + m
n

. 2 . [V2n - 2]

m ([V2n - 2 j - l) + m
n

. 2 . |V2n - 2j

Proof: Let D be an orientaion of Pm x Pn. As in Theorem 3.7.3, there is

some set of Lm /2j arcs between V(*,i) and V(*,i+1) whose removal leaves 

V(*,l:i) disconnected from V(*,i + l:n). This means that there is a set S of 

Lm/2jk arcs for which D - S has at least k + 1 strong components.

The upper bound for the theorem  is show n as follows. For fixed j 

there is a set of L m /2 j arcs of the form (v^j, V{rj+i) w hose rem oval 

disconnects V(*,l:j) from V(* i + l:n). Let T be a set of k such disconnecting
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sets, chosen in  a w ay that the orders of the components of D - T are 

approxim ately uniform, as in Theorem 3.7.3. Here, m(D - T) will either be 

1 or ml"n/(k + 1)1.

Case 1: Let k = n  - 1. Then m(D - T) = 1 and hence, the m inimum 

occurs at the first expression.

Case 2: For k  < n - 1, choose k to minim ize [_m/2jk + m T n/(k+ l)l. 

Recall that 1(D) < L m /2jk  + ml"n/(k + 1)1 = [ m /2 jk  + mL(n + k )/(k  +- 1)J < 

(m /2 )k  + m (n /(k  + 1). The final expression has a m inim um  w hen k =

V2 n  - 2  - 1, and hence the first expression attains its m inimum w hen k 

is e ither T V2n - 2 - l l  or L V2n - 2 - l j .  W hen these values are 

substitu ted into the the first expression w e get the last two terms in the 

m inim um  of the theorem. □

Theorem  4.7.4: I'(Pm x Qi) -

min{(n + l)Lm /2j + 1, 

[V 2 n  -  2 + l ]

|_V2 n  -  2 + l j

m n
_ 2

+ m
[V2n  -  2 ]

m n
. 2 .

+ m
[V2 n  -  2 J

Proof: Let D be an orientation of Pm x Cn- Between V(i,*) and V(i + 1,*)

(for i = 1,2) there are at least ("m/2l arcs oriented from one of the Pm to the 

other, hence at m ost Lm/2j oriented in the other direction. Remove k > 1 

of these sets of Lm/2j arcs so that the sets are as evenly spaced as possible. If 

all the sets are oriented in the "same direction" (see Figure 4.7 w here the 

do tted  arcs are the arcs which are rem oved and the dotted line traces a
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d irec ted  cycle w hich  rem ains), th en  the d ig ra p h  m igh t n o t be 

disconnected. If one of the k sets is replaced by the 2Lm /2j arcs which are

Figure 4.7

oriented in the opposite direction, then rem oval of this new set T 

separates D into at least k components.

If k = n, then m(D - T) = 1. Therefore I'(D) < (n + l)L m /2 j + 1 . 

Assume k < n, then we w ant to minimize (k+l)Lm/2j + mTn / k l  (which is 

at least I’(D)) w ith  respect to k. Using calculus as before, we find the 

minimum occurs w hen k is either TV2n  - 2 l  o r  LV2n - 2 J, and hence, 

the theorem follows. □

Theorem 4.7.5: For m  < n,

I ’(Cm x Cn) < min{(n + l ) lm /2 j  + m,

Proof: The addition of the extra arcs does not change the disconnection

principle used in Theorem 4.7.4, nor the calculus involved in  finding the

k=n, the number m(D-T) m ay be m. Hence, we get the first expression. □

last two bounds. The only difference between the argum ents is that w hen
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