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INTEGRITY OF DIGRAPHS

Robert Charles Vandell, Ph.D.

Western Michigan University, 1996

The vertex-integrity of a digraph D, denoted I(D), is defined to be the
minimum over alll subsets X of the vertex set of D for the quantity [X| +
m(D - X), where [XI is the number of vertices in X and m(D - X) is the
maximum order of a strong component in the digraph D - X. In a like
manner, the arc-integrity of the digraph D, denoted I'(D), is defined to be
the minimum over all subsets Y of the arc set of D for the quantity Y| +
m(D - Y), where Y| is the number of arcs inY. These two measures of the
vulnerability of a digraph are analogous to the undirected concepts, which
were introduced by Barefoot, Entringer and Swart in 1987.

This investigation of these two parameters centers on the vertex-
integrity and arc-integrity for orientations of graphs in several interesting
families, including complete graphs, complete bipartite graphs, cartesian
products of paths, and hypercubes. Because different orientations of the
same graph may lead to different values of the parameters, we can only
hope to bound these values for a given graph or class of graphs. Every
graph has an acyclic orientation, where the largest strong component is of
order 1. Both the vertex-integrity and arc-integrity for such an orientation
are 1. This being the case, we focus on the maximum vertex-(arc-)integrity

which can be attained by some orientation of the graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



If one can find an induced subgraph H of a graph G for which any
orientation of H has vertex-integrity 1, then the maximum vertex-
integrity which an orientation could attain is at most |G - H! + 1. To that
end, we define the decycling number of a graph G, denoted V(G), to be the
minimum order of a subset S of the vertices of G, such that G - S is a forest.
Since G - S is acyclic, then for any orientation of G - S, the order of the
largest strong component is 1. Therefore the maximum vertex-integrity
over all orientations of G is at most (G) + 1. This parameter is investigated

for the families of graphs we study in the chapter on vertex-integrity.
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CHAPTERI
INTRODUCTION
1.1 Connectivity

Networks are becoming more and more of a necessity for the daily
existence of business because of a national need for overnight delivery
services or telecommunications. In addition there is the more localized
networking of office machines. The vulnerability to disruption of such
systems must be a concern to both the user and provider of such services.
Since these networks can be modeled by graphs or digraphs, another look
at some of the established parameters that measure vulnerability, as well
as perhaps some new ones, seems in order.

The first vulnerability parameter that one usually encounters is
connectivity. Following [1.2], we define the connectivity x(G) of a graph G
as the minimum number of vertices one must remove from G so that the
remaining graph is either disconnected or a single vertex. In the same
vein, the edge-connectivity x1(G) is the minimum number of edges which
must be removed so that the remaining graph is either disconnected or
trivial. Although these parameters are easy to work with and many results
about them are known, they are often not very discriminating in
describing the vulnerability of a graph. For example, the graphs Kj g and Pg
shown in Figure 1.1 have the same order (number of vertices), the same

size (number of edges), and the same connectivity, but they display very
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Figure 1.1

different connectedness behaviors when vertices are deleted from them. If
the central vertex of Kj g is removed, then no pair of remaining vertices
may communicate with one another, whereas if a penultimate vertex of
Pg is removed, seven vertices can still transfer information and only one
cannot (see Figure 1.1). These two graphs also have the same edge-
connectivity, but removal of any edge from Kj g still leaves eight vertices
in contact while removal of a central edge of P9 means that one group of

four vertices cannot communicate with the other five vertices (see Figure

1.2).
Q
o OO Qe OO Qe Qe Qe
Py
o)
KLS
Figure 1.2
1.2 Integrity

In an effort to overcome the limitations of the connectivity
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parameters, Barefoot, Entringer, and Swart [1.1] introduced the
corresponding integrity parameters. The vertex-integrity (or simply the
integrity) I(G) of a graph G is defined as

I(G) = min{IX! + m(G - X) : X c V(G)}

where m(G) is the maximum order of a component of G. The edge-
integrity is
I'G) =min{l Y| + m(G-Y): Y cEG)}

For example, I(Kj,g) = 2 and I(Pg) = 5 (see Figure 1.3, where the dark
vertices are a set for which the integrity is achieved), while I'(K 8) = 9 and

Q
O- - O——@ OO O @ O O]
} ”
K 18
Figure 1.3

I'(Pg) = 5 (see Figure 1.4, where the light edges are a set for which the edge-
integrity is achieved). In each case the graph that is the least susceptible to
disruption has the greater (edge-) integrity.

There are many known results on both integrity and edge-integrity,
some of which compare them to other graphical parameters. For the most

part we will be more interested in their values for specific classes of
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graphs. In their original work, Barefoot, Entringer, and Swart determined
the integrity and edge-integrity for several families, some of which are
given in Table 1. We will use some of these values later to help obtain
new results, while other results will be stated as needed.

Table 1
The Vertex-integrity and Edge-integrity of Some Graphs

Graph G I(G) I'(G)
Complete graph Ky n n
Path Py, [24n+1]-2 [2vn]-1
Cyde Cp [Z\fﬁ 1-1 [2«/3 |
Complete Bipartite Graph Km,n 1 + min{m,n} m+n
n-Cube Qp O(2n-1) 20

1.3 Directed Integrity

A directed graph or digraph D is a finite, but nonempty, set of

vertices together with a set of ordered pairs of vertices, called arcs. The
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digraph with vertex set {w, x, y, z} and arc set {(w, x), (w, y), (y, w), (z, x)} is
pictured in Figure 1.5. Many networks have a natural flow direction

z®
Figure 1.5

associated with each of the connections the edges represent, so they can be
modeled by directed graphs. We are also interested in how vulnerable
these networks are to disruption. We replace the idea of a component that
is used in graphs with the notion of a strongly connected component (or
more simply strong component), which is defined as a maximal
subdigraph of the digraph in which there is a directed path from each of its
vertices to each of the others. The maximum order of a strong component
of D is denoted by m(D). One important difference between strong
components of digraphs and components of graphs which we will utilize
is that each vertex in a nontrivial strong component lies on a directed
cycle completely contained in the strong component.

One of the problems encountered in the study of digraphs is the
relative lack of families that are easy to work with, contrary to the
situation with graphs. We can, however, create a digraph D from a graph
G by replacing each edge uv in G by either (u,v) or (v,u) but not both. Then
D is called an orientation of G, and G is known as the underlying graph of

D. We note here that the number of vertices in a nontrivial strong
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component is at least 2 for a digraph, 3 for an orientation of a graph, and 4
for an orientation of a bipartite graph.

One goal in this dissertation is to investigate the directed
counterparts to integrity. We define the vertex- integrity I(D) of a digraph
D, as

I(D)=min{I X! + m(D - X) : XC V(D)},
and the arc-integrity I'(D) as
I'D) =min{l Y! + m(D-Y): Y S ED)}.

Much of this dissertation deals with orientations of graphs and
finding upper bounds for the values of some vulnerability parameters for
them. For some important families, we focus on the integrity and arc-

integrity of these orientations.
1.4 Decycling Number

An upper bound for the integrity of a graph G can be described in
terms of the covering number (G), which equals the minimum number
of vertices in a set X such that each edge of G is incident with some vertex

of X. For such a set X, the graph G - X is edgeless; hence
I(G)sm(G-X)+B(G)=1+ IXI.

We can apply this idea to the integrity of orientations of graphs. Every
orientation of a forest is acyclic and hence contains no strong component

of order greater than 1. Thus, if we find a maximal forest F that is an
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induced subgraph of G, then for each orientation D of G,
ID)s IGI - IFl +1.

where |Gl denotes the order of a graph G.
In order to utilize this idea we define a new graphical parameter,
which we call the decycling number. The decycling number V(G) of a
graph G is the minimum cardinality of a set S of vertices of G such that G -
S is acyclic. Consequently, for each orientation D of G, I(D) = 1+ V(G).
The upper bound 1 + V(G) for the integrity of a graph is only an
estimate, and in certain cases we will be able to improve upon it by taking

advantage of nontrivial strong components.
1.5 Definitions, Notation, and Labeling

Each of the subsequent three chapters will be dealing with the same
families of graphs, so rather than repeat the definitions, notation, and
labeling schemes in each instance, we will state them here.

We use a(G) to denote the independence number (order of the
largest independent set of vertices) of a graph G and B(G) will denote the
covering number, as defined in Section 1.4. Using this notation a theorem

of Gallai states that for every graph G

a(G) +B(G) = |Gl

We also let ¢(G) denote the number of components of a graph G.
We will consider three binary operations on graphs. First, the union
G U H of two graphs G and H has vertex set V(G) U V(H) and edge set E(G)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



U E(H) (see Figure 1.6).

Figure 1.6

The join G + H of G and H has vertex set V(G) U V(H) and edge set
E(G)UEMH) U {uv | u € V(G) and v € V(H)} (see Figure 1.7). We are

0]

G H G+H
Figure 1.7
particularly interested in this operation when the two graphs are K; and
Cn or when they are the empty graphs K, and ¥_. The graph Kj + Cj is
known as the n-wheel Wp, (see Figure 1.8a), while the graph K, + K, is
called the complete bipartite graph Km n (see Figure 1.8b). The sets V(K_)

y
% . 1
y
x 2
2
X y3
W8 3
K y
) 3.4

(a) (b 4
Figure 1.8
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and V(K,) are called the partite sets, which we denote by X and Y,
respectively. The vertices of X will be labeled xi,..., xm and the vertices of Y
will be labeled y1i,...,yn. Note that the smallest cycle in Ky, n has four
vertices.

The Cartesian product G x H of graphs G and H has vertex set V(G)
x V(H), with two vertices (uj,uz) and (v1,v3) being adjacent if and only if
either (a) uj = v1 and uyv; is an edge in H or (b) up = v2 and ujv; is an edge

in G (see Figure 1.9). Another way to think of the Cartesian product is that

H: O \\OO

Gx H
Figure 1.9

each vertex of G is replaced by a copy of H, and each edge uv of G is
replaced by |H| edges of the form (u,x)(v,x) for every vertex x of H.

In addition, we will need a standard labeling for the vertex set of the
Cartesian product of two graphs. Label the vertices of graphs G and H as g,
82, 8s and hy, hy,..., hy, respectively. Then the label v;; will represent the
vertex (gjh;) in G x H. This labeling is reminiscent of the notation for the
entries of a matrix, where the copy of H at g; corresponds to the ith row,

while the copy of G at hj corresponds to the jth column. This idea is
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"

particularly helpful when we study the products of paths and cycles, and
hence we introduce the following notation. Let V(*j) represent the copy of
G at hj and V(i,*) the copy of H at g;. When we need all the copies of G in
the product from the one at h; to the one at hj, we denote this by V(*ij)
(see Figure 1.10 for examples of this notation in the graph P3 x Py).

o O ~O-
Vil T’ 1.2 V13 T’m

* q -O-
V(zl ) R’ 2'1 Ffu V2'3 ?’2,4

A,

31 32 33 34
V(*lz) V(*,3:4)
Figure 1.10

The final Cartesian product for which a labeling is defined is the
hypercube Qn. We define the labeling inductively (see Figure 1.11). Recall

001
00 01 0 00

10 11

010 011

Figure 1.11
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11
that Qn = K2 x Q(n-1) for n = 2, where Q; =K. Label the vertices of Q; by 0

and 1; then we produce a labeling for the vertices of Qn by adding a prefix
of 0 to the labels of one copy of Qn.1 and a prefix of 1 to the other labels. It
will be useful to focus on specific smaller cubes within a given n-cube.
When possible, we use the common prefix to label the smaller cube. For
example, for the cube Q3 of Figure 1.11, we will denote the 2-cube with
vertex set {000, 001, 010, 011} by QO, while Q11 will represent the 1-cube Q
induced by the vertices 110 and 111.

The graph we use as one of the first examples in each of the
subsequent chapters is the Petersen graph P (see Figure 1.12). The 5-cyde

Petersen graph
Figure 1.12

induced by the vertices a, b, ¢, d, e we will call the pentagon, while the 5-
cycle induced by the vertices v, w, X, y, z will be called the pentagram.
There are certain notations that are unique to digraphs. One class of
digraphs that we use is the family of circulant digraphs D(n, S). For a
subset S of {1, 2, ..., n - 1}, the digraph D(n, S) has vertex set {vg, v1,..., Vn-1}
and contains the arc (vj, vj) if and only if j - i = s(mod n) for some s €S (see

Figure 1.13 for the circulant D(6, {1, 4}).
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Figure 1.13

As in [1.2] we denote the degree of a vertex v by deg v, and the
notation for the minimum and maximum degree for any vertex of a
graph G will be 8(G) and A(G) respectively (or simply & and A when the
graph is obvious). To extend this to digraphs, we denote the out(in)degree
of a vertex v of a digraph D by deg*v (degv) and the minimum and
maximum out(in)degree of a digraph D by §+(D) (3-(D)) and A+(D) (A-(D)),
respectively (or simply 6+ (3-) and A* (A-) when the digraph D is clear).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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CHAPTER II
THE DECYCLING NUMBER OF GRAPHS
2.1 Definitions

A decycling set of a graph G is a set S of vertices of G such that G - S
is acyclic. The decycling number, V(G) is the minimum cardinality of a
decycling set of G. Thus, V(G) =0 if and only if G is a forest. Moreover, if G
is a unicyclic graph, then V (G) = 1. The converse of this last statement is
not true, however, since, for example, the fan graph K; + nK; (n 22) has n
cycles yet has decycling number 1. A decycling set S of cardinality V(G) is
called a V-set of G. We decycle a graph when a subset S of the vertices of G
is removed and G - S is acyclic.

For an example of a graph with decycling number greater than 1,
we consider the Petersen graph P (see Figure 2.1). Certainly, to decycle this

Figure 2.1

graph one must remove at least one vertex from each of the 5-cycles

13
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<a,b,c,d,e> and <v,w,x,y,z>. Hence V(P) 2 2. On the other hand, if we
remove any two nonadjacent vertices from P, we obtain a graph of order 8
and size 9; while if we remove any two adjacent vertices from P, we arrive
at a graph of order 8 and size 10. In either case,the resulting graph contains
cycles since the maximum size of a forest of order p is p - 1. However, P -
{a, ¢, z} is an acyclic graph; so V(P) = 3.

Certainly, the decycling number is defined for every graph G and is
at most |G| - 2. There are a number of other interpretatons of this
parameter. If G is a graph of order p, the decydling number V(G) is also (a)
the minimum number of elements in a set S & V(G) so that every cycle of
G meets S and (b) p less the maximum order of an induced forest in G.

For a graph G, define t(G) as the maximum cardinality of a set of
vertices of a graph G which induces a tree. This concept was investigated
by Erdos, Saks, and Sés in [2.6]. Their work, however, centered on the
relationship between t(G) and other parameters, rather than evaluating
the parameter for specific classes of graphs. The digraphical counterpart to
the decycling set of a graph, called a vertex feedback set of a digraph, has
been studied by several researchers.

The notion of the maximum order of an induced forest in a graph
leads to an important tool for this study. Recall that a forest on p vertices
has at most p - 1 edges, from which we derive the following simple but

useful result.

Lemma 2.1.1: Let G be a graph with p vertices, q edges, and nonincreasing

degree sequence dj, d3,..., dp. If S is a decycling set for G, then
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IS}
ISIsp-q+ ¥d, -1.

tel

Proof: Removing a vertex of degree d from G destroys d edges in the
k
graph. Hence, removing a set of k vertices from G destroys at most Y d,

tm=]

k
edges, leaving at least q - zdi edges in G - S. But, if G - S is a forest, then it
must have at most p - k-1 edges. O

Corollary 2.1.2: Let G be a graph with p vertices, q edges, and maximum
degree A. If S is a decycling set of G, then

ISt(A-1)2q-p+1.

Corollary 2.1.3: Let G be a graph with p vertices and q edges. If S is a
decydling set of cardinality k whose vertices have degrees sy, sj,...,sk, then

p-k-1=2q- isi.
1=l

Earlier we noted that V(G) = 0 if and only if G is a forest. The graphs
with decyding number 1 can also be quite easily characterized.

Theorem 2.1.4: Let G be a graph. Then V(G) = 1 if and only if some vertex
v of G is contained in each cycle of G.

Proof: If V(G) = 1 and no vertex lies on all cycles of G, then there is no
vertex v for which G - v is acyclic, which implies that V(G) > 1. On the
other hand, if some vertex v lies on all cycles of G, then the graph G - v is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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acyclic and hence V(G)=1. O
We now investigate the parameter V(G) for certain families of

graphs and with respect to some binary operations on graphs.

2.2 Complete Multipartite Graphs and Complete Graphs

Theorem 2.2.1: If G is the complete multipartite graph K(mj,my,....myp) of
order p with m = max{mi}, Zmi=p, andn>1,thenV(G)=p-m-1.

Proof: Any two pairs of vertices from different partite sets form a cycle, as
do any three vertices from different partite sets. From these facts we see
that any decycling set must include all of the vertices from n-1 of the
partite sets with at most one exception. A minimum decycling set occurs
when the remaining vertices induce a star of maximum order (see Figure
2.2 for an example where the dark vertices form a minimum decycling

set). O

Corollary 2.2.2: Forpz2, V(Kp) =p-2.
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17
2.3 Binary Operations

Once a parameter has been evaluated for several classes of graphs,
we are often interested in the value of that parameter when these graphs
are combined. Here we look at the operations of union, join, and Cartesian
product (with varying degrees of success).

Observe that for any graph G the decycling number is the sum of
the decycling numbers of its components. Consequently, we have the

following result.

Theorem 2.3.1: For disjoint graphs G and H,

V(G U H) = V(G) + V(H).

Another commonly used binary operation on graphs is the join G
+ H of disjoint graphs G and H, which we defined in Section 1.5 to have
vertex set V(G) U V(H) and edge set E(G) U E(H) U {uvIueV(G) and
vEV(H)).

Theorem 2.3.2: For two graphs G and H:
V(G + H)=min{| Gl + V(H), IHI + V(G)},

unless one of the graphs (say G) is edgeless and V(H) is at least |H| - |G/,
in which caseitis 1HI - 1.

Proof: In the graph G + H, any set of four vertices, two from each of the
constituent graphs, induces a cycle; so in order to decycle the graph, we can
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have at most a single vertex remain from one of the graphs. However, if

any one vertex from one of the graphs does remain, then we must delete
all but an independent set of vertices from the other graph in order for the
remaining graph to be acyclic. For a graph G without isolated vertices, a(G)
+ B(G) = IGI. If we keep the previous fact in mind, then B(G) > V(G) in a
graph G with no isolated vertices since the graph induced by an
independent set of vertices and any one other vertex is acyclic. This means
that the most efficient way to decycle the join of graphs is to remove all of
the vertices of one graph and a decycling set of minimum cardinality from
the other, unless one of the graphs (say G) is edgeless and V(H) is at least
IH! - IGI, in which case it is more effective to leave a single vertex from H

and all those in G. This gives us
V(G+H)=min{I G| + V(H), [H| + V(G)}
in the tirst case and |HI - 1 in the second. O

Corollary 2.3.3: For n = 3, the decycling number of the wheel Wy, is V(W)
=2.

Note that Theorem 2.2.1 also follows from Theorem 2.3.2.

The focus of the remainder of this chapter is the Cartesian product
G x H of graphs G and H which was defined in Section 1.5.

Unfortunately, there is no simple formula for the decycling
number of the Cartesian product of two graphs in terms of the decycling
numbers of the two graphs. For example, V(P4) = 0 and V(Py) = 0; yet V(P4 x
Pn)=n.
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One result which will be helpful later is the decycling number for

the graph P> x G, for which sharp bounds can be found. Recall that a(G) is

the independence number of G and B(G) is the covering number.
Theorem 2.3.4: For every graph G,
2V(G) s V(P2 x G) s V(G) + B(G).

Proof: The lower bound of 2V(G) is easily seen since both copies of G in
P; x G must be decycled. To derive the upper bound, let S be a V-set for one
copy of G with cardinality V(G), and let T be an independent set of G with
cardinality a(G). Then G - S is acyclic and the vertices of T have degree 1 in
the subgraph induced by the vertices in (G - S ) U T. Hence, that graph is
acyclic. Using Gallai's theorem this gives us V(P2 x G) = V(G) + B(G).

The lower bound can be shown to be sharp since V(P; x C3) =2=2 ¢
1 = 2V(C3), while the upper bound is shown to be sharp by the graph P, x
Py, since V(P2 x Pn) will be shown to be [n/2], which equals V(P3) + B(Py).

2.4 Grid Graphs

We next consider the family of Cartesian products of paths. We
will use the labeling of Py x P described in Section 1.5 (see Figure 2.3 for
an example). Under this labeling, the degree of vertex vjjis (a)4if 1 <i<
mand 1 <j<n;(b)2ifi=1mandj=1 n; and (c) 3 otherwise. Also, for
Pm x Pn we will need to consider specific 4-cycles in the graph. Let C;;
denote the 4-cycle induced by the vertices vij, vij+1, Vi+1,j+1, and vi+1,j (see

Figure 2.3).
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Theorem 2.4.1: Forn=2, V(Pyx Pp)=|n/2].

Proof: Since V(Py) = 0 and a(Py) = |[n/2], we have |n/2] as an upper bound
from Theorem 2.3.3. Let S be a set of fewer than [n/2] vertices; then by the
pigeon-hole principle, for some j = 1,..n - 1, V(*jj + 1) N S = G, so the
cycle Cy,jis not destroyed. O

Theorem 2.4.2: Forn =3, V(P3x Pp) =[3n/4].
Proof: The set

S= {Vl,]' :j =3+4kand k= 0,1,...,[(11 - 3)/4]} U
{vai:j=2k &k=12..[|n/2}}

(see Figure 2.4 for an example) is a decycling set of cardinality |3n/4];
hence V(P3 x Pp) s [3n/4].

Figure 2.4
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For the lower bound, we use a greedy approach with respect to

destroying edges to select the vertices of a decycling set. We want to choose
as many vertices of large degree as possible in order to destroy as many
edges as we can. To decycle the graph P3 x Py, we can choose at most |(n -
1)/ 2] independent vertices of degree 4, since otherwise some edge will be
covered twice and our edge count as the sum of the degrees won't be exact.
The other t vertices in the decycling set S must be of degree at most 3in G -
S. Using Corollary 2.1.3, we obtain the inequality

3n-|(n-1)/2] -t-125n-3-4{(n-1)/2]-3t

Applying some algebra on the four cases n = 0, 1, 2, 3 (mod 4), we find that
k=|(n-1)/2] +t=]|3n/4], which completes the proof. O

Theorem 2.4.3: Fornz=2, V(P4 xPy)=n.

Proof: ThesetS = {v2,1,v3,2,v2,3V34,...Ven:t=2ifnisoddand t=3ifnis

even} is a decycling set of cardinality n (see Figure 2.5).

e
S D S

P, x B

Figure 2.5

We establish the lower bound using Corollary 2.1.3. Let S be a V-set
of cardinality k. Any decycling set must have at least one vertex of degree

at most 3, since otherwise, the vertices of degree at most 3 form a cycle.
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Optimally the remaining vertices have degree 4. Then Corollary 2.1.3

implies 4n -k - 1 = 7n - 4 - 4(k - 1) - 3. Solving this inequality for k, we find
that k = n - 2/3. Hence, V(P4 x P,) 2 n and the theorem follows. g

By Lemma 2.1.1, if we are given a decycling set S of cardinality k in
a graph G which has order p, size q, and non-increasing degree sequence
dy, d,..., dp, then

k
p-k-1=2q- Zdi.
There may be many decycling sets which satisfy this inequality, but the
ones in which we will be most interested are those that come as close as
possible to making it an equality. With this idea in mind, we use the
device of adding in a slack function u(Gk), which we will call
the margin of G at k. This gives us the equation
p-k-1 =q-idi +w(Gk).

1wl
We then solve to get

k
wGk)=p-k-1-q+ Y d,.
P 8>
The use of this function will become apparent shortly.
A subset T of the vertex set of a graph G with Tl = V(G) need not
k

be a decycling set even though it satisfies the inequality p-k-1=2q - 2 s,

1=l
of Corollary 2.1.3. There are three types of occurrences that might happen

within the set T that would violate assumptions made about the
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parameters in the inequality and perhaps render the inequality untrue.

First, G - T may have more than one component, which would decrease
the larger side of the inequality. Then, there may be some edges in G
having both of their incident vertices in T, thereby increasing the lesser
side, and finally the sum of the degrees of the vertices in T may be less
than the sum of the I T| largest degrees, which would also add to the value
of the smaller side. This means that a minimum decycling set S of
cardinality k can't have too many of the aforementioned problems. To
keep track of these we define the outlay 6(S) of a set S of vertices. For a set
S of cardinality k whose vertices have degrees s, s, -..,sk, we define 6(S) as
the sum of (a) c(G - S) - 1, recalling that ¢(G) is the number of components
of G; (b) £(S), which we define as the nuritber of edges of G both of whose

incident vertices are in S; and (c) zdi - Zsi , where the d; are the k largest

i=1 1=

degrees of the vertices of G.
Lemma 2.4.4: IfS is any decydling set of Py x P2 with m = 4, then 6(S) = 2.

Proof: There are r vertex-disjoint 4-cycles in both V(1:2,*) and V(m -

1:m,*) (see Figure 2.6), so we need to remove at least r vertices from the

V(1:2,%) X X X X X X
V(4:5,%) X X X X X X
Figure 2.6

first and the last pairs of paths Pp,. This means that from each of these
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pairs of paths, we must either choose a vertex of degree at most 3 or a pair

of adjacent vertices. Thus we must select at least two such vertices, and the
inequality follows. O

Lemma 2.4.5: Let G be a graph and S a set of k vertices of G. If 8(S) >
u(G,k), then S is not a decycling set of G.

Proof: Let G be a graph of order p, size q, and non-increasing degree
sequence di, dp,..., dp, and let S be a set of k vertices with degrees sy, sp, ...,5k.
Assume S is a decycling set for which 8(S) > u(G,k). By substitution we
derive the inequality
k k k
c(G-5)-1+¢(S)+ Zdi - Zsi >p-k-1-q+ Zdi.
This inequality can be algebraically reduced to
q- isi -e(S)>p-k-c(G-9).
&
Both sides of the inequality are expressions for the number of edges
in G - 5, and hence are equal. Thus we have a contradiction to the original

assumption, and the lemma is proved. O
We will use this result along with the value
WPmxPp, k)=3k-(m-1)n-1)

(which is 3k - 4n + 4 for the case when m = 5) to complete some of the

proofs that follow.
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Lemma 2.4.6: Forn>1,

V(P5 x Pp) = [ 11-32] when n = 0(mod 6)

V(P5x Pp) = [4_;1_] -1 otherwise.

Proof: The graph P5x Pp has 5n vertices and 9n - 5 edges. If we try to
choose a decycling set S in a greedy manner with respect to edge removal,
then one vertex in S must have degree at most 3, since the vertices of
degree 2 and 3 form a cycle. The remaining vertices may be of degree 4. If
IS| =k, then Lemma 2.1.1 implies that5n-k-129n-5-4(k-1)-3,s0k 2
[4n/3]-1.

Assume that n = O(mod 6). If k = [4n/3] - 1, then u(P5 x Py, k) = 1,
but, by Lemma 2.4.4, we know 6(S) = 2; hencek = [4n/3]. O

Lemma 2.4.7: Forn=2,3,4,5,7,8,9,

V(Ps5 x Pp) =[4n/3]- 1 and V(P5 x Pg) = 8.

Proof: We have already established this result for n = 2, 3, 4 and have
obtained the given values as lower bounds for the other values of n; so the

examples of decycling sets shown in Figures 2.7.a and 2.7.b complete the

\
L@ + & 8- 9
o +% -—

REREN

Figure 2.7.a
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proof. O

Lemma 2.4.8: For Ps x Pg, a decycling set of cardinality 11 is unique up to
symmetry.

Proof: For the graph G = P5 x Py, u(G,11) = 1. Therefore our decycling set
must contain eleven independent vertices, ten of which have degree 4 and
the other degree 3. Since we may only use one vertex of degree 3, any
decycling set S must contain at least three of the vertices vy 3, v4,2, v2,8 and
v4,8 (for otherwise one of the 4-cycles C1,1, C4,1, C1,n -1, C4,n - 1 will remain).
If one of these four vertices is missing, say v,2, then the 4-cycle Cy 1 must
intersect S in either vy 3 or vy ;.

It follows that if we choose vy, then the 4-cycle C3,; remains;
while choosing v3,; leaves the 8-cycle that includes v51 and v3 3. We are
then forced to include the vertices v33 and v37 in S, since otherwise one

of the four 8-cycles which enclose either v; 5, v4,2, v2,8 or v4 g will remain.
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The four 4-cycles Cy,3, C4,3, C1,6, C4,6 must intersect S in at least three of the

vertices v2,4, V4,4, V2,6, and va 6. If one vertex, say v; 4, is not in S, then we
must find one vertex of degree 3 and one of degree 4 which lie in all of the
remaining cycles, and these two vertices must not be adjacent to any of the
others. The only way to complete the decycling set is to choose v3 4 and

either vy 5 or vs 5 (see Figure 2.7). The two different sets we get are clearly
symmetric. O

We use the decycling set of Lemma 2.4.8 as a building block in
constucting decycling sets for grids of the form Ps x Pgp+3.

Lemma 2.4.9: For each positive integer n, the minimum decycdling sets for

Ps x Pgp+1 have cardinality 11n and are of the form

S= {vi,j li=2or4andj=2tfort=12,..4n} U
{vi,j li=3andj=4t-1fort=12..2n} U
{vi,]- lj=8t-3fort=12,..,nandi=1or5}.

(see Figure 2.8 for example)

el AT
ettt

Figure 2.8

&

Proof: The anchor for an induction proof is given in Lemma 2.4.8.

Assume that the lemma holds for all n < k. Let S be a minimum decycling
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set for Ps5 x Pgk+1. We complete the proof by considering the three forms

that a decycling set S can take.

Case 1: SN V(*8n+1)=O forsomen =1, 2, .., k-1. Then S N
V(*1:8n + 1) and S N V(*,8n + 1:8k + 1) must be of the prescribed form;
hence the lemma is true.

Case 2: 1SN V(*1:8n + 1)| =1 for some n =1, 2, ..., k-1. By the
induction hypothesis, the decycling set is not minimal for V(*1:8n + 1)
and V(*,8n + 1:8k + 1); so ISN V(*1:8n + 1)| >1In and IS N V(*8n + 1:8k
+1)| > 11(k-n). This implies that IS| > 11k, which is a contradiction.

Case3: ISNV(*8n+ 1)l 22forn =1, 2, ..., k-1. Here we know that
w(Ps5 x Pgk+1,11k) = k, so all we need show is that 6(S) =k + 1.

Since V(P5 x Ps) = 6, we know that V(*,1:5) N S contains at least six
vertices. Regardless of how we place these six vertices, we must increase
the outlay by at least 1. The largest independent set of vertices of degree 4
in V(*1:5) in the original graph has order 6. However, choosing such an
independent set for inclusion in S adds another component to G - S.
Whether we use an independent set or not, we thus add at least 2 to the
outlay. Using the same argument, we must add 2 to the outlay if |V(*1:5)
NSt =7.

If the outlay is only increased by 1 for V(*,1:5) N S, then it must be
increased by another in V(*,6:9) N S. In this case, 1V(*6:8) N S | = 4 since
V(Ps5 x Pg) = 10 and only 6 vertices were used in V(*1:5). Since [ V(*9) N S|
z 2 by assumption, either the outlay is increased by one, or vg > and vg 4 are
in S (see Figure 2.9). This leaves only seven vertices in V(*,6:8) (see Figure

2.9 This does not automatically increase the outlay, but regardless of how
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we choose four of the seven, we end up increasing the outlay by either

4
3
D

[

V(*,6) v(.8)
Figure 2.9

isolating a vertex or choosing a vertex adjacent to another in S.

For each V(*,8n + 2,8n + 8) N S, where n = 1,...k - 1, we must also
increase the outlay by 1. Recall that V(P5 x P7) = 9 and for each of these
subgraphs we can use at most nine vertices in a decycling set or we get a
contradiction. If 1V(*8n + 5) N S| > 2, then the outlay increases by 1.
When [V(*8n + 5) N S| = 2, then either (a) the outlay is increased; (b)
V(*8n + 5) N S = {vgn+5,2, van+5,4} and | V(*,8n + 2:8n + 4) N S| is at least 4;
or (c) V(*8n +5) NS = {vgn+5,2, Van+5,4} and 1V(*,8n + 6:8n + 8) N S| is at
least 4. In any of the cases, there are only seven vertices whose inclusion
in S does not automatically increase the outlay, but any choice of four of
them will increase the outlay. If 1V(*,8n + 5) N S| = 1, then either vgn+5,2
(equivalently vgn+s5,4) Or vgn+5,3is in S. If vgn+5,2 is in S, then regardless of
how vertices are chosen for S from V(*,8n + 4) and V(*,8n + 6), either a
cycle remains or the outlay is increased by one. On the other hand, if
Vgn+5,3 is chosen for S, then we must also choose vgn+4,2, V8n+4,4, V8n+6,2/
and vgn+6,4 or leave a cycle. Thus, however a vertex is chosen from V(*,8n
+7) or V(*,8n + 3) for S, the outlay increases, but if none are chosen, then a

cycle remains.
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Thus, the outlay of the set is at least k + 2, which is more than the k

allowed. O
Theorem 2.4.10: Let m, n, and q be integers such that

1sms8 q=0andn=_8q+m. Then

V(Ps5 x Pp) = l1q + V(Ps5 x Ppy).

Proof: ~We prove the lower bound by induction on n. The result is
trivially true for 1 s n = 8. Assume it to be true for all n s k, where k = 8. If
n=k+1=8q+m (m <8)and the set S is a decycling set of minimum
cardinality, then we consider the sets V(*,8t+1) for t = 1,2,...,q, and their
intersections with S.

Case 1: At least one of the intersections (say S N V(*8r + 1)) is
empty. There must be at least 11r vertices of V(*1:8r + 1) in S by Lemma
2.4.9 and at least 11(q - r) + V(P5 x P,) vertices of V(*,8r + 1:8q + m) by the
induction hypothesis. Hence V(Ps x Pp) = 11q + V(Ps x Prp).

Case 2: IV(*,8r + 1) N S| =1 for some r. Then S must contain at
least 11r vertices of V(*,1:8r) since this along with V(*,8r + 1) forms a Ps x
Pgr+1 whose decycling set is not of the type in Corollary 2.4.9, and hence is
not minimal. Therefore it contains at least 11r + 1 vertices. In S, V(*,8r +
1:8q + m) must contain at least 11(q-r) + V(Ps x Pp,) vertices, so V(P5 x Pp) =
11q + V(P5 x Py).

Case 3: For each r, 1SN V(*,8r + 1)| 2 2. In this case, S must contain
at least 11r - 1 vertices in V(*1:8r) since the decycling set for V(*1:8r + 1) is
not minimal.

Ifm=0,1,3,5 7, then the last P5 x Pg(q-1)+m-1 must contain at least
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11(q - r) + V(P5 x Pm-1) = 11(q - r) + V(P5 x Pp) - 1 vertices of S, which gives
the desired result.

Ifm =2, 4, 6, then u(G,11q + V(P5 x Pp) - 1) = q - 3, g, or g+1,
respectively, and using an argument similar to that of Case 3 in Lemma
2.4.9, we get contradictions for all three cases.

In each of the above cases, the upper bound can be shown to hold
by constructing a decycling set as the union of appropriate decycling sets
from Figures 2.7 and 2.8. O

For Pg x P, we already know the decycling number for n < 6, so we

need only consider n 2 6.

Theorem 2.4.11: Forn=z6, V(Pg x Pp) = [-533] .

Proof: The decycling set

S = {vo,ili=1(mod 2)} U {v3ili =0 or 2(mod 6)} U
{vg,ili =3 or 5(mod 6)} U {vs,!i= 0(mod 2)}

establishes the upper bound (see Figure 2.10).

- ¢ ¢ o [ o

- ——
——

-9- -4

+

Figure 2.10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31



32
The proof of the lower bound depends on the n. Let S be a V-set of

G. Since 6 is even, Lemma 2.4.4 implies that S must use at least two
vertices that contribute at most 3 to the edge count in Lemma 2.1.1.
Consequently, when n =1 (mod 3) or n = 2 (mod 3), we have the lower

bound of

_5_1_‘1_J . This leaves only the case n = 0 (mod 3); say n = 6t, whence

[%rl} = 10t. Suppose that S has cardinality k = 10t - 1 (it cannot be less by

Lemma 2.1.1). Then m(Pg x Pp, k) = 2. Lemma 2.4.4 implies that 8(S) = 2. In
fact, V(*,1:2) must either contain a vertex x of degree 3 or a pair x, x' of
adjacent vertices of degree 4 (in this case x is either v3 2 or v4,). We take a
vertex of V(*n - 1:n) analogous to x and call it y. (In passing, we note that
at least one of x and y has degree 3.) Let S' =S - {x,y}. It follows that S' must
consist of 10t - 3 independent vertices of degree 4. Note that the removal of
any independent set of six degree-4 vertices from three consecutive
columns leaves an isolated vertex. This would increase the number of
components of G - S, and thereby the outlay; so S’ cannot contain six such
vertices. The largest independent set of degree-4 vertices in Pg x Py that
does not isolate a vertex is of cardinality 10t - 3. This set can be shown to be
unique up to isomorphism as follows. Let N(i) (respectively N(i;j)) denote
the number of vertices in S - {x,y} N V(*i) (resp. S - {x,y} N V(*ij)). Then in
order to decycle V(*1:2), then, we must have N(2) = 2. We consider two
cases depending on the distance d between the two vertices of S' in V(*,2).
Case 1: d = 3. In this case the vertices are v32 and vs,2, which
means that either v3 3 or vy 3 is the only vertex in S N V(*,3). However,

this then forces {v4,2, v4,5} =S N V(*4). The 2-1-2-1-... pattern is forced for
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the rest of the independent set; hence N(2:n-1) < %n—-S, which is a

contradiction.

Case 2: d = 2. Without loss of generality, the vertices are v3 7, and
vs,2. Now S must contain vy 3 (or a cycle will remain) and v 3. Otherwise,
SN V(*4) = {v2,4, v5,4}, which we have seen in Case 1 leads to a
contradiction. This implies that S N V(*4) = {vs 4}. If not, then either a
vertex is isolated, which excessively increases the outlay of S, or a cycle
remains. We are forced to choose v3,5 and vy 5 in V(*5) or leave a cycle
intact, which essentially brings us back to where we started. This 2-2-1-2-2-
1... pattern must continue, and for each V(*i) the choice of vertices is
forced. When n = 3t, this forces V(*,n-1:n) to contain at least four vertices
of S, which would make the outlay of S too large.

In either case, for n = 3t, 5n/3 - 1 vertices is not enough to decycle
the graph Pg x Py, and hence the equality holds. O

Theorem 2.4.12: V(P3s+1 x P2y) =s(2t-1) + 1.

Proof: We get the expression for the lower bound using an argument
similar to those in previous proofs, while the upper bound is shown by

the set

{vai gl i=1,-.., [3—5-22J 2i = 1(mod 3), and j=1,...t-1} U

3s+1

(vais1, o1 li=Lmn [ J -1,2i+1=1(mod 3), and j = 1,...t -1} U

{v3i+1,jli=0,..,5,j=2tifiodd, andj=2t-1ifi even} O

Theorem 2.4.13: Forn =7, V(P7 x Py) = 2n-1.
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Proof: For n even, this follows from Theorem 2.4.12. If n is odd, each
decycling set must contain at least one vertex of degree at most 3, for
otherwise those vertices form a cycle. Adjusting the inequality accordingly,
we get V(P7 x Pp) = [(6n - 5)/3] = 2n - 1. The upper bound is shown by the
decydling set

S={vyili=0(mod2)} U {v3ijli>1&i=1(mod2)}U
{vg2} U {vsili>1&i=1(mod2)} U

{vs,i|i = 0 (mod 2)}

(see Figure 2.11). O

T

41—~

-
19199
Bususasuse

Figure 2.11

I
:

Theorem 2.4.14: Forn=8, V(P19 xPp)=3n-2.

Proof: Once again the even case follows from Theorem 2.4.12. When n is

odd, we get the Jower bound as before and the upper bound from the set

(vigili=2 6 0r9andj=1,.., [IZ‘-J} U

-

. . n
{vi,j+11i=3,5 or8andj=1,.., l—z——]} U {v4,2,V4,nv7,1,V8,n}
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(see Figure 2.12). 0
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Figure 2.12

Theorem 2.4.15: Forn =11, V(P13 x Pp) =4n-3.

Proof: Theorem 2.4.12 establishes the even case. The lower bound for the

odd case is shown as before. The upper bound is demonstrated by the set

S ={vzigli =134, or 6 andj =1,., [le]} U

tvigerli=3590r1landj=1,.., Inézl} U
(V4,240 97,0, V10,2V10,0}

(see Figure 2.13). O

In looking at the decycling sets of Theorems 2.4.12 and 2.4.13, one
can see how the decycling set for P7 x Py, is used to construct the sets for P13
x Pp. This idea can be extended to the general case of Py x Pp to produce a

very good upper bound for the decycling number.
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Theorem 2.4.16: Letm =6q +randn=6s + twith1=r, t 6. Then V(P x
Ppn) s min{q(2n - 1) + V(P x Pp), s(2m - 1) + V(P x Py)}.

2.5 Other Cartesian Products

A natural next step is to consider the product of paths and cydles.
We start with the prisms P x Cp,.

Theorem 2.5.1: Fornaz3, V(P2 xCy)=[n/2]+1.

Proof: If the vertices of G = Pg x Cy, are labeled as described in Section 1.5,

then the set S = {v1,1, v2,2, V2,4, V2,6, V2,j-2,4j :j =2|[n/2]} is a decycling set

Figure 2.14
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of cardinality [n/2] + 1 (see Figure 2.14). Since G is 3-regular of order 2n,
every decycling set S of cardinality k must contain at least |n/2} + 1
vertices. This is because the size of a tree on |G -S| verticesis 2n-k-1 =

3n - 3k which is the minimum size of G -S. O

Theorem 2.5.2: Fornz3,V(P3xCp) = lSn S J

4

Proof: We label the vertices of P3 x C, as described in Section 1.5. Then if
n =0, 2, or 3 (mod 4), the set

S = {vi; :i=3+4k&k=0,1,...,[%l}u

(vaj:j=2k &k =12,.., %J} U {vaa}

3n+5
4

is a decycling set of G of cardinality l .Ifn=1 (mod 4), the set

5= {Vu:i=3+4k&k=0,1,...,l-2—]} U
{VZ,]' : ] =2k &k=1.2,.., [%J} U {V3'1,V2'n}

3n+>5 . The lower bound is shown

is a decycling set of cardinality [

through an argument by cases which involves the inequality on the size

used in several of the previous proofs. O

Theorem 2.5.3: Fornz3,

n+1 ifn=1(mod 2)

V(Pyx Cp) = {n+2 ifn=0(mod 2)°
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Proof: Any decycling set of P4 x C; must contain at least two vertices of

degree 3, for otherwise a cycle of degree-3 vertices remains. A lower bound
comes from another edge counting argument similar to that employed in
the proof of Corollary 2.1.3. If n is odd, this bound is shown to be sharp by

the set (seeFigure 2.15) S = {v1,1,V1,4,V2,3,V3,2,V4,2,V5,3,.-.-Vn-1,3,Vn,2}-

A O o
T

Figure 2.15

If n is even, then u(Pq x Cp, n+l) = 2, so any decycling set must
consist of exactly two vertices of degree 3 and an independent set of n-1
degree-4 vertices. The independent set must be similar to {v2,3, v32, v4,2,
V5,3, ...Vn-1,2, Vn,3}, which cannot be completed as a decycling set using only
two vertices of degree 3; therefore if n is even, then V(P4 x Cp) > n + 1. The

upper bound is demonstrated by the set
= {V1,4, V2,1, V1,2, V2,3, V3,2, V4,2, V5,3,...Vn-1,2, Vn,3}

(see Figure 2.16). O

e

Figure 2.16
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The next product that we consider is that of two cycles. From

Corollary 2.1.2, we obtain the folowing preliminary result for such
products.

Lemma 2.54: Formnaz3, V(Cp xCp) 2 [

mn-+1
5

Theorem 25.5: Forn=3,V(C3xCp)=n+1.

Proof: The lower bound follows from Lemma 2.5.4. If the vertices are
labeled as described in Section 1.5, then {vj,j:j= ilmod 3)} U {v1,3} is a
decycling set of cardinality n + 1 (see Figure 2.17). This establishes the
upper bound, and hence the result. g

B T 1t
41 .tﬁ

Figure 2.17

Theorem 2.5.6: Fornz3,V(CyxCp)= P—zr—l-] .

Proof: From Theorem 2.5.1, we have V(P2 x C4) = 3. Hence any decycling
set must meet one of the pairs of 4-cycles Cjj and Cij+1 or Cjj and Cj41j in

at least three vertices, which gives the lower bound of [%11] Label the

vertices as described in Section 1.5. Then the set

{vij | j=i(mod 4)} U fvijlijs= 3(mod 4)} U
{v3j | j = 1l(mod 4)}
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of vertices (see Figure 2.18) is a decycling set of cardinality [?En-], which

completes the proof. O

4———1—4 4 re
' -
+T Tt 1
+ T

Figure 2.18

Another interesting product is Ky x Kp. Here we think in terms of
the maximum order of an induced forest. Clearly, an induced forest
cannot contain three vertices in the same complete graph, and hence no
vertex of degree 3 (otherwise two of its neighbors lie in the same complete
graph). Also, if the forest is not connected, it is not maximal as we can add
a common neighbor of any pair of vertices of degree 1 from different
components of the forest. From the two preceding statements, it can be
seen that a maximal induced forest in Ky x K, will have similar
characteristics to an n-snake (an induced path of maximum length) in the

n-dimensional cube Qp (see below).

Theorem 25.7: Fornam=z=1,

m(n-2) ifn>m
m(n-2)+1 ifn=m’

V(Kn x Ken) = {

Proof: If n > m, than each induced path contains at most two vertices

from each copy of Kp. If the vertices have the standard labeling, then the
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set S = {v1,1, V2,1, V2,2, V3,2, V3,3,--+Vm-1,m-2, Vm-1,m-1, Vm,m-1, Vm,m} induces
a path of order 2m. If, on the other hand, n = m, then any set of 2m

vertices induces a cycle in the product while S - {viqum} induces a path. o
2.6 The n-Dimensional Cube

The final Cartesian product of graphs that we consider here is the
n-cube Qn. As mentioned before, one type of maximal tree in Qy is a path
which we call the n-snake. Unfortunately, as n gets large, an n-snake is not
an induced forest of maximum order. There are two fairly standard ways
of describing the n-cube, both of which will be used here. First, one can
take the vertices to be binary sequences of length n. Two vertices are
adjacent if their sequences differ in exactly one position. This perspective
lends itself nicely to coding theory, which we will use to find large induced
forests and thus some upper bounds for the decycling number. The more
traditional graph theory approach is to define Qy inductively as K3 x Qn-1
with Qi = Kp. Label the vertices of Qj as 0 and 1; then we obtain an
inductive labeling for the vertices of Qn = K2 x Qp-1 by adding a prefix of 0
to the labels of one copy of Qn-1 and a prefix of 1 to the other labels. Using
either concept we arrive at the same graph with the same labeling.

For n = 8, the value of V(Qp) is demonstrated by the following

collection of lemmas and previously known results.
Lemma 2.6.1: V(Q3)=3.

Proof: From Lemma 2.1.1, if the cardinality of a minimum decycling set is
k, then 23 -k -1 2 3(23-1) - 3k; so k = 3. Let F be a maximum induced forest
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in Qa. If A(F) = 2, then F is isomorphic to Ps; and if A(F) = 3, then F is the
graph K13 U K; (otherwise we get a cycle). Each of these forests has five
vertices; so I1S| =3.Hence V(Q3)=3. O

Lemma 2.6.2: V(Qy) =6.

Proof: An implication of Theorem 2.3.4 (on the decycling number of P3 x
G) is that a decycling set for Q4 must have at least six vertices. We get our
maximum induced forest using coding theory. Let A(n,d) be the
maximum number M of codewords in any (n,M,d) code (with words of
length n such that any pair of codewords differ in at least d positions). The
value of A(4,4) is 2. Any set of codewords in a (4,2,4) code along with the
vertices adjacent to them (e.g., {0000,0001,0010,0100,1000} U
{1111,1110,1101,1011,0111}) induces a forest of order 10 (since the distance
between codewords is 4, we obtain a union of stars); hence the upper

bound for V(Qyq) is 6. O

These maximal forests and the associated minimum decycling sets
of Q4 are unique up to isomorphism. Since we require this fact in the

proof of the next case, we justify it in the following lemma.

Lemma 2.6.3: In Qg every maximum induced forest is of the form 2Kj 4,

where the distance between the central vertices is 4.

Proof: Consider two copies of Q3 making up Qg. Each copy must be
decycled by removing three vertices. This leaves a copy of either Ps or K1,3
U Kj in each Q3. Not both can be Ps since, by the pigeon-hole principle, one
path must have at least two vertices adjacent to vertices in the other path,
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and these force an induced cycle. If only one is a Ps, then either it has two

vertices adjacent to the Kj 3, or three vertices adjacent to the associated
decycling set. In either case, a cycle is induced. In the final case when the
forests in each copy of Q3 are K1,3 U Kj, then when the distances between
the vertices of degree 3 in the two Kj,3 is less than 4, one star has a pair of
pendant vertices adjacent to the same vertex of the other K;,3 (see Figure
2.19). o

Figure 2.19

Lemma 2.6.4: V(Qs) = 14.

Proof: Let S be a decycling set for Qs. Lemma 2.1.1 states that if the
cardinality of S is k, then

25-k-1=25(251) -5k,

so k 2 13. Assume that S has cardinality 13, and recall that Qs =Ky x Q4 =
C4 x Q3. The vertices with the first two coordinates 00 induce a Q3 as do
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those which begin 01, 10, and 11. For convenience we will call these 3-

cubes Q00, Q01, Q10, and Q11, respectively. Since k = 13, S must intersect
one of the 3-cubes (say Q11) in exactly four vertices while it meets the
other three in precisely three vertices. Once the decycling set for Q00 is
chosen, then from Lemma 2.6.3, the decyding sets for Q01 and Q10 are
forced upon us and have the same labels except for the first two
coordinates. By symmetry, each of the five vertices in the Q10 forest are
adjacent to the corresponding vertex (same final three coordinates) in Q01
in the graph (Qg4 - Q11) - S, so no matter how we remove the four vertices
from Q11, a cycle will remain. This implies that V(Qs) = 14. (The upper
bound is established by the decycling set {00011, 00110, 00101, 01000, 01001,
01010, 01100, 10100, 10010, 10001, 10111, 11011, 11110, 11101}) O

Lemma 2.6.5: V(Qg) s 112.

Proof: The lower bound of 112 comes from Theorem 2.3.4 while an upper
bound of 112 comes from coding theory. It is known that A(8,4) = 16. The
subgraph F of Qg induced by the vertices associated with an (8,16,4) code
and the neighbors of those vertices is a forest of order 144; hence V(Qg) - F
is a decycling set of cardinality 112. O

For n = 6, 7, the decydling numbers are derived from Theorem 2.3.4

and the cases whenn =5 and n = 8.

Theorem 2.6.6: For the n-cube, V(Qp) is
n 1 2 3 4 5 6 7 8
VQn) O 1 3 6 14 28 56 112
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For cubes of dimension n > 8 Theorem 2.3.3, along with the fact

that the independence number of Qy is 271, give the bounds 112-2n-8 <
V(Qn) s 112 + 27 + ... + 27-2, These bounds are not very close. When n is
smaller, coding theory improves the upper bound a little. Recall that a
distance-4 code along with its adjacent vertices induce a forest, so V(Qp) =
2n - (n+1)A(n,4). It is known that A(9,4) = 20, 38 = A(10,4) < 40, 72 s A(11,4)
< 80, 144 s A(12,4) < 160, and A(13,4) = 256. We can use the lower bounds
mentioned here to derive upper bounds for the decycling numbers, and

extend our results for V(Qyp) as shown in Table 2.

Table 2
Bounds on V(Qp)
n Lower Bound Upper Bound
8 112 112
9 224 312
10 448 606
11 896 1184
12 1792 2224
13 3584 4680
2.7 Edge Decycdling Index

It is natural to consider the analogous concept for edge deletion.

The edge decycling index V'(G) of G is defined as the minimum cardinality

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46
of a set S of edges of G for which G - S is acyclic. However this concept is

already known as the cycle rank r(G) of the graph, and if G is a (p,q) graph,
then r(G) = V'(G) is known to be q - p + 2 - ¢(G), where ¢(G) is the number

of components of G.
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CHAPTER IIT

THE INTEGRITY OF ORIENTED GRAPHS
3.1 Definitions

Analogous to the graphical definition, the vertex-integrity, or
simply integrity, (D) of a digraph D is the minimum value over all proper
subsets S of the vertex set of the sum m(D - S) + IS|, where m(D - S)
denotes the order of a largest strong component of D - S. We will call a set

Sanl-set of Dif I[D) = IS+ m(D -9S).
3.2 Integrity of Digraphs
We begin with a preliminary result on the integrity of digraphs.
Proposition 3.2.1: If F is a subdigraph of D, then I(F) < (D).

Proof: LetS be any I-set for D andlet T = S V(F). Then m(D - S) 2 m(F -
T) since the vertices of any strong component of F - T are contained in a
strong component of D -S, and |S| < |IT|. Therefore (D) =m(D -S) + I1S| 2
mF-T)+ ITI 2I(F). g

Other links between the integrity of a digraph and its subdigraphs
involve the maximum order of a strong component of the digraph and

the integrity of certain subdigraphs.

Proposition 3.2.2: Let D be a nontrivial digraph. Then (a) I(D) < m(D), and

47
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(b) (D)<1+ ID - v) for any vertex v in D.

Proof: By definition I(D) = min {m(D -S) + ISI} < m(D - @) + |1, hence

SgV(D)
part (a) is true.
Let S be an I-set for D - v. Then

ID)SISUH +mD-Suiv})<
1+ 1Sl +m((D-v)-S)=1+ID-v)

which proves part (b). o

Induced subdigraphs can also help define the integrity of a digraph

recursively.

Theorem 3.2.3: For a nontrivial digraph D,

(D) = min{m(D),1 + min I(D - v)}.

Proof: By Lemma 3.2.2, (D) < m(D) and

ID)<1+ v%)I(D -Vv).
For the reverse inequality, assume that S is an I-set for D of smallest order.
If S = @, then I(D) = m(D), so the desired result holds. So assume that S #

@. Then I(D) < m(D). Let v be a vertex in S and let $' = S - v. Then it
follows that

ID)=ISI +m(D-S)=1+ ISl +m((D-v)-5)
21+ID-v)21+ vrer‘1,i(11:)1)I(D-v).
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Now suppose that for some x € S, I(D - x) > I(D) - 1. Let R be an I-set of D - x

and let R' = R u {x}. Then

ID)<I(D-x)+1=1+ IRl +m({(D-x)-R) =
IRl + m(D -R') < ID),

which is a contradiction. Hence, if S# J, then (D) =1 + ‘r’n.;l;(rg; I(D-v). o

Corollary 3.2.4: For a nontrivial strongly connected digraph D, I(D) =1 +

‘Irtel‘Jl.(g I(D-v).

For a digraph D, let D' denote the converse digraph, that is, the
digraph in which all the arcs of D are reversed. The two digraphs D and D'
have the same partition of their vertex sets into strong components,

which leads to the following proposition.
Proposition 3.2.5: I(D)=1(D").

Although a characterization of digraphs with integrity 1 is clear, the

case where the integrity is 2 is more interesting.
Proposition 3.2.6: A digraph has integrity 1 if and only if it is acyclic.

Theorem 3.2.7: A directed graph has integrity 2 if and only if it is not

acyclic and either some vertex is on every dicycle or m(D) = 2.

Proof: To prove the first condition, we assume I(D) = 2 and m(D) > 2. If S
is an I-set, then IS| = m(D - S) = 1. Consequently, some vertex v lies on

every dicycle in D.
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In order to show the converse, assume m(D) > 2 and some vertex v
lies on every dicycle. Then D - v is acyclic, and so m(D - v) = 1. If, on the
other hand, m(D) = 2, then I(D) < 3, but the removal of any single vertex

will leave at least one vertex. In either case I(D) = 2. O

Recall from Section 1.5 that 3*+(D) (respectively &-(D)) is the

minimum out(in)degree among the vertices in D.
Theorm 3.2.8: I(D) 2 max{6+t(D), (D)} + 1.

Proof: Letr = max{3*(D), 8- (D)}. Then D contains a strong component of
order at least r + 1, otherwise in the strong component which dominates
all other strong components there must be a vertex v with deg~(v) < r. For
any I-set S, max{8+(D - S), 6-(D - S)} 2 max{6*+(D), (D)} - ISI =r - ISI.
Hence D - S contains a strong component of order at least r - I1SI + 1.
Therefore, I(D) = ISI + m(D -S) 2 ISI + r - IS| +1 =r + 1. This

demonstrates the inequality. O
3.3 Orientations of Graphs

As was mentioned in Chapter I, one of the problems we need to
deal with is the relative lack of nice classes of digraphs to work with. We
can, however, create a digraph from a graph by letting the vertex set of the
digraph be the vertex set of the graph, and (a) replacing each edge uv with
both arcs uv and ;u, or (b) replacing each edge uv with exactly one of the
arcs uv or vu. In case (a) the integrity of the digraph is the integrity of the
graph, so nothing more need be said.

Any digraph D derived as in (b) is called an orientation of the graph
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G, and G is called the underlying graph of D. We focus our attention on

orientations of certain families of graphs.
Since the integrity values for several classes of graphs have been
found, it will be useful to know how the integrity of a graph G is related to

the integrity of an orientation D of G.
Proposition 3.3.1: I(D) < I(G).
Proof: For any I-set S of G,
ISI +m(D -S) < IS +m(G -5)

since the vertices of any strong component of D must lie wihtin a

connected component of G. O

There are classes of graphs for which each graph has an orientation
which demonstrates the sharpness of this bound. The set of null (edgeless)
graphs on n vertices is a trivial example. A less trivial example is the
following: take n = 2 copies of the circulant digraph D(7,{1,2,4}), which has
connectivity 3 [3.9], and identify the n vertices labelled 0 (see Figure 3.1 for
the case n = 2). The digraphs and the underlying graphs all have integrity
7.

Another fact peculiar to oriented graphs is that there are no strong
components of order 2. For any graph with q edges there are 29
orientations of the edges and, if the graph contains a cycle, distinct
orientations can have distinct integrities. This means that, with the
exception of forests, we can only hope to obtain a range for the integrity of

the orientations of a particular graph. Every graph has an
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Figure 3.1

acyclic orientation, so the (sharp) lower bound is always 1. We will
therefore focus our attention on the maximum integrity of any
orientation of a graph G, which we denote I(G). The integrity for several
classes of graphs was given in Section 1.2, so we have upper bounds for the
integrity of orientations of the graphs in these classes. In addition, given a
graph G with decycling set S, then G - S is acyclic, as is any orientation of G
- S. This gives the following result:

Proposition 3.3.2: I(G)<V(G) + 1.

Thus, the results of Chapter II provide upper bounds for the
integrity of several classes of graphs. We will use orientations of these

classes of graphs as a starting point for our study.

The following observations on the integrity of orientations of forests

and cycles are corollaries of Proposition 3.2.6 and Theorem 3.2.7.

Proposition 3.3.3: The integrity of any orientation of a forest is 1.
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Proposition 3.3.4: If D is an orientation of a cycle, then [D) =2 if Dis a

directed cycle and I(D) = 1 otherwise.

As in Chapter II, we use the Petersen graph as an example. Using the
labelling of Figure 3.2, we note that at

Petersen Graph
Figure 3.2

least three of the edges incident with both the pentagon and the
pentagram must be oriented the same way (say from the pentagon to the
pentagram). Hence, at most two of the arcs (say aj and aj) are oriented the
other way. If we remove the vertex in the pentagon away from aj and the
vertex on the pentagram away from aj, then there can be no directed cycles
remaining in the digraph, and so I(P) < 3. This bound can be attained
when both the pentagon and the pentagram are oriented cycles and exactly
two edges are oriented from the pentagon to the pentagram, and hence

I(P)is 3.
3.4 Tournaments

We next discuss bounds for the integrity of tournaments of small

order. It follows from Proposition 3.2.6 that a tournament T has integrity 1
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if and only if it is transitive. The maximum integrity of tournaments of
small order will be found using known results about the structure of
tournaments and circulant digraphs. A most helpful result is the
following theorem of Parker and Reid [3.6] on the minimum number of
vertices that a tournament must have in order to guarantee that it contain

a transitive n-tournament.

Theorem 3.4.1: Let f(n) denote the minimum number r such that every
tournament of order r contains a transitive n-tournament. Then the

values of f(n) are given in Table 3 below.

Table 3
Values of f(n) for Small n

n f(n)
order of transitive order of
subtournament tournament
1 1
2 2
3 4
4 8
5 14
6 28

and 20-1)/2 < f(n) £7-2n4 forn>6. O
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This theorem leads to the following upper bound for the integrity of

an orientation of a graph.

Theorem 3.4.2: If D is an orientation of a graph G on n vertices for which
f(a) <n < f(a + 1), then

ID)<sn-a+1.

Proof: Let D be an orientation of a graph G of order n. Let T be a
tournament containing D. Since there is some set of n - a vertices S for
which T - S is a transitive a-tournament, then n - a + 1 2 I(T). Since I(T) 2

I(D), the result follows. O

The value of I(Kpy) for n < 28 will be determined through a series of

lemmas.
Lemma 3.4.3: For all n, I(Kp.1) € IKq) € I(Kn1)+1.

Proof: The first inequality follows from Proposition 3.2.1. Suppose that
the second inequality is false. Then for some tournament T on n vertices
I(T) = I(Kq) = I(Kp.1) + 2. Let v be any vertex in T, let T* = T - v, and let S*
be any I-set for T*. Now, I(T) < m(T - (S* U {v})) + IS* U {v})| = m(T* - S%)

+ 15*1 +1 =I(T*) + 1 < I(Kp), which is a contradiction.

Corollary 3.4.4: Ifr and s are positive integers for which I(Ky.s) = I(K;) +
s, thenfor 0 <i<s, I(Kei) = I(Kp) +i. O

Lemma 3.4.5: I(K;) = I(Ky) = 1.
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Proof: Every tournament on either one or two vertices is acyclic. O
Lemma 3.4.6: I(K3)= [(Kg) =2.

Proof: The oriented 3-cycle and Theorem 3.2.7 show that I(K3) = 2, while
Theorem 3.4.1 implies that I(Ky) <2. Lemma 3.4.2 completes the proof. O

Lemma34.7: I(K7)=I(Ksg)=5.

Proof: Let T be the rotational tournament D(7,{1,2,4}). Since it has
connectivity 3 [3.9] and contains no transitive 4-tournament, it has a set S
of three vertices such that T - S is not strong. It follows that T - S must
have two strong components, a 3-cycle and a single vertex, one of which
must dominate the other. Removal of fewer than three vertices from T
leaves a strong component of order at least 5, taking away three vertices
leaves a strong component of order at least 3, but removal of three vertices
which disconnect the digraph along with one of the vertices in the
remaining 3-cycle leaves a transitive 3-tournament, so I(K7) = 5.

It follows from Theorem 3.4.1 that I(Kg) < 5, and so by Theorem
342, 1(K) = 1(Kg) =5. O

Lemma 3.4.8: I[(Ky3) = I(Kyq) = 10.

Proof: Let T be the tournament D(13,{1,2,3,5,6,9}). Then from [3.9] we know
k(T) = 6 but contains no transitive 5-tournament. Therefore, if I(T) < 10, it
must contain a set S of six vertices whose removal leaves no strong
component of order greater than 3. Since T contains no transitive 5-

tournament, T - S must have two strong components of order 3 and one of
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order 1 on the seven remaining vertices. The condensation of these
components must form a transitive 3-tournament [3.4]. If two vertices are
chosen from each of the components of order 3, then those four vertices,
along with the component of order 1, form a transitive 5-tournament, and
this is a contradiction. Therefore, when six vertices are removed, some
strong component must have order 4 or greater. When seven or eight
vertices are removed, some strong component must have order at least 3
(given that there is no transitive 5-tournament), so I(T) 2 10. Hence 1(K13)
is at least 10.

Now let T be any tournament of order 14. By Theorem 3.4.1, T has a
transitive 5-tournament. Therefore it must contain a set S of nine vertices
whose removal leaves a transitive 5-tournament. Hence I(T) < 10. Since T

was arbitrary, this implies that I(Ky4) < 10, and the result follows. O
Lemma 3.4.9: I(Ky7) = I(Kpg) = 23.

Proof: From Theorem 3.4.1, I(K2g) < 23. To prove the lower bound, note
that the quadratic residue tournament QT7 contains no transitive 6-
tournament. We now demonstrate that [(QT,7) 2 23.

Assume that I(QT27) < 22, and let S be an I-set. We will show that
regardless of the order of S the tournament QT27 - S must contain a
transitive 6-tournament, and this yields a contradiction. Let T* denote
QTy7 - S. Then m(T*) = (QT>7) - ISI.

Case 1: IS| =21 or 20. Then m(T*) must be 1, and so T* contains a
transitive 6-tournament.

Case 2: IS| = 19. Then m(T*) £3. The subtournament induced by
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any two vertices from each strong component of order 3 together with the
vertices from the trivial strong components is a transitive tournament
and has at least order 6.

Case 3: IS| £18. Let H be a strong component of maximum order in
QTjy7 - S and let F = QT,7 - S - H. Because of the constraints on S| and
I(QT5y), the order of F must be at least 4. Each vertex of F either has arcs to
all of the vertices in H or from all of them. If [H{ > 3, then both H and F
contain transitive 3-tournaments, and those six vertices either induce a
transitive 6-tournament or contradict the fact that H was of maximum
order. If, on the other hand, |HI| < 4, then any set of two vertices from
each strong component of order 3 along with the vertices in the strong
components of order 1in D - S induce a transitive tournament of order at
least 6. In either case, a transitive 6-tournament is forced, which
contradicts the structure of the digraph.

All of the above cases combined imply that 1(Ky7) = I(Kas) =23. O

Using Lemmas 3.5.3 - 3.5.9, along with Corollary 3.5.4 to fill in the
gaps, we obtain the following theorem on the maximum integrity for

tournaments of order 28 or less:
Theorem 3.4.10: For2< p<28,and
f(n) < p < f(n+1), then i(Kp) =p-n+1.

If we compare the previous result to Theorem 3.4.2 we note that for
small p, i(Kp) has the maximum integrity attainable for any graph on p
vertices. If we recall that a graph G has integrity |G! (which is the
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59
maximum possible integrity) if and only if G is complete, then it seems

natural to expect this to extend to i(Kp) for all values of p, that is:
Conjecture: For p22,if f(n)<p<f(n+1),then I[(Kp)=p-n+L

Theorem 3.4.11: For any positive integersnand a with1<a< I(Kp), there

exists a tournament T on n vertices with I(T) = a.

Proof: From Lemma 3.5.5 we know I(K;) = 1, while Lemma 3.5.3 states
I(Kn) € I(Ky) < I(Kq.p) + 1. Combining these two lemmas gives us the
fact that there is some tournament T on at most n vertices with I(T) = a.
Complete T by adding an (n - a)-transitive tournament R for which all the
arcs between R and T are oriented into T (see Figure 3.3 for an example).

a

pel

A tournament on 7 vertices with integrity 3
Figure 3.3

3.5 Bipartite Tournaments

We now consider orientations of complete bipartite graphs Km n

with partite sets X and Y of order m and n, respectively. Without loss of
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generality, we henceforth assume m < n. These digraphs, which we denote
by T, are known as bipartite tournaments. In such digraphs, the order of
any non-trivial strong component must be at least 4. One way in which
the lower bound for the integrity of these tournaments can be achieved is
for all arcs to be oriented from one partite set to the other. The upper

bound I(Km,n) is determined in the following theorem.
Theorem 3.5.1: If m < n, then I(Kpn) =m.

Proof: From Theorem 2.2.1, we know that V(Km,n) = m - 1, and hence by
Proposition 3.3.2, I(Tm,n) < m. To show the reverse inequality, we use a
construction. We construct the digraph D as follows: Let X = { x, X2, ..., Xm }
and Y = { y1, ¥2, ..., yn }. Orient the edge x;,y; as (yjxi) unless i = j in which
case orient the edge as (x;Yj). Since the removal of any one vertex can
destroy at most one arc from X into Y, and since any pair of arcs from X
into Y lie in a directed 4-cycle, for any subset S of the vertex set with IS| =
k<m-1,m({D-S)=2(m-k), and so IS| + (D -S) > m - 1. This implies that

I(Tmn) 2 m, and the theorem follows. O

Figure 3.4

Results from the previous two sections can be combined to give
rough bounds for the maximum integrity for the orientations of complete

multipartite graphs.
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k
Theorem 3.52: Whenri<ry<.<rgandn= ) r;, then

i=1

r1 = I(K(r3,nr1)) € IK(r1, r2--. 1)) <
min{I(Kn)n - 1}

3.6 Binary Operations

For orientations of the union of graphs, the bounds derived for

integrity of unions of graphs turn out to be the best possible bounds.

Theorem 3.6.1: ForG = _kx_‘JlGi,
max [(G)) s I(G) < Y I(G;)-n + 1.
! i=1

Proof: The lower bound comes from Proposition 3.2.1, while the upper
bound is is derived from Proposition 3.3.2 and the corresponding bound

for graphs. o

The graph G U (n - 1)Kz demonstrates the sharpness of the lower
bound while nCp.1 is an example in which the upper bound is attained.

An upper bound for the integrity of an orientation of the join of
two graphs is implied by the graphical bounds, and can be shown to be
sharp by wheel graphs.

Theorem 3.6.2: (G + H) < min{I(G) + | HI, I{H) + IGI}.

Proof: Let D be an orientation of G + H for which I(D) = I(G + H), let S be
an I-set of D, and let F be an I-set for G. Now I(D) =m(D - S) + IS| <m(G -
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F) + IV(F) U V(H)! since S is an I-set of G + H. However, m(G - F) + | V(F)
U VH)| =m(G-F) + IFl + |HI =I(G) + |HI € I(G) + [HI. The same
argument shows that I(G + H) < I(H) + |G, which completes the proof.
o

Corollary 3.6.3: For the wheel Wy, with n > 3, I(Wp) = 3.

Proof: By Theorem 3.6.2, I(Wp) < 3. The oriented wheel in which the n-
cycle is a directed cycle and two edge disjoint triangles are oriented as cycles
shows that the

Figure 3.5
upper bound is sharp. O
3.7 Products of Paths and Cycles

From Chapter II and Proposition 3.3.2 we have V(P x Py) + 1 as an
upper bound for I(Py X Py). This bound turns out to be exact for small n,
but as n increases it is more efficient to allow nontrivial strong
components, of relatively small order. We will see in this section that the

value for I(Py x P,) will be bounded above by the minimum of several
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functions. The decycling number of (Pm x Ppn) plus 1 will usually be sharp
for small n, while allowing larger strong components will give a pair of
bounds. One reason for this is the fact that since Py, x Py is bipartite, there

can be no strong components of order 2 or 3.

Theorem 3.7.1:

[V2n
[V2n |+ 2[[‘:[—;_5]] - 3}.

Proof: Label the vertices and 4-cycles of the graph as in Chapter II. Then D,

I(P, x Pp) = mm“-rzlnj,l'\fz—n'ln{ n+1__]_ 3,

the orientation in which the 4-cycles are oriented alternately clockwise and

counter-clockwise (see Figure 3.6), will be shown to attain the maximum

PORAY AN,

Figure 3.6

integrity. Because the underlying graph is bipartite, strong components are
either trivial or of order at least 4. In fact, if we use the notation of Chapter
II, each strong component is either trivial or a P; x P, of the form V(*,ij).
Given an I-set S, a strong component of D - S is either of the form V(*,ij),
in which case m(D - S) = 2(j - i + 1) or the maximum order of a strong
component is 1. If m(D - S) = 1, then since D has [n/2] vertex disjoint 4-
cycles, IS1 2 |n/2]). Hence (D) = Ln/2] + 1, which is the general upper
bound of V(P; X Py) + 1 from Chapter II. If m(D - S) > 1, then assume D - S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



has k + 1 strong components of near uniform order. If we remove the
vertex v2,; from the graph, then V(*1:) is disconnected from the rest of
the digraph (see Figure 3.6). This means that we need to remove only k
vertices to get k + 1 strong components. To get nearly uniform strong
components, the order of largest strong component will be 2[(n - k)/(k +

1)1 This gives the integrity

D)=k +2(n-k)/(k +1)]=
k+2dn/(k + 1)<k +2n/(k + 1)

(recall that [a/b]=|(a+b-1)/b]). For fixed n, the minimum value of the
expression can be found by differentiating with respect to k, setting the
derivative equal to 0, and solving for k in terms of n. When we do that,
we getk = V2n - 1, which may be a non-integer. Since we want k to be an
integer, we can choose either k =[v2n -11or k = v2n - 1]. As can be seen

by the graph in Figure 3.7, the value we should choose for k to minimize

15“ B‘-HJ

L r r
- T i \l’ 20 1+2 n+l -3
= [Van]
%0 10 ( 5
-~ n+l
k= 1 HZ;J-#Z [JKJ -3

]lI
1 M

5 10 15 20 25 30

Figure 3.7
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the expression 1S! + m(D - S) depends upon n. Thus I(D) is the minimum
of the three exprssions stated in the theorem, which demonstrates the

lower bound.

To show the upper bound, let t ={n/kJ, k = [.«fZ—IT 1-] = I’t-i-l-l j
= L\/ - 1J ands = L fl Then one of the sets S1 = {v1,2, v14,...v1,2¢}, S2

= {V1,r+1, V1,242, V1 kr+k}, OF S3 = {V1,5+1,V1,25+2---,V1 js+j} attains the upper

bound. O

Later we use a technique of the next theorem to get a general upper
bound for I(Pm X Pn), so here we go through all the details as an

illustration of the method.

Theorem 3.7.2:

eoerazen B3]+

R

Proof: From Chapter I and Theorem 3.3.2 we know that I(P3 x Pp) <

3n . ) 3n
Y + 1. This can be improved upon when n = 0 (mod 4) to Vi

follows. When n = 4, remove v2,2 and v2,3. If a strong component
remains, it must be a directed 10-cycle (see Figure 3.8(a)). Now to remove
v2,2 and vz 4. If a strong component remains, it must be a directed 8-cycle
with the orientation of the arcs determined by the orientation of the 10-

cycle (see Figure 3.8(b)). It follows that removing v2 7 and v1 3 leaves no
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(@) (b) (c)
Figure 3.8

nontrivial strong component (see Figure 3.8(c)). Thus I(P3 x P4) < 3. When
n = 4t for some positive integer t, then the decycling set S = {v3;li = 0(mod
2)} v {[v3,lj = 3(mod 4)} for V(*,1:4t - 4) along with two vertices chosen as
in the n = 4 case for V(*4t - 3:4t) demonstrate the upper bound of 3t. Recall
that when n =0 (mod 4), then [3n/4] + 1 = [3n/4], and hence I(P3x Pp)
<[3n/4]. Forn=3, 4,5, 6, 8 and 9, these bounds will be shown to be
sharp. However, for larger n, we get a better bound if we allow nontrivial
strong components. Since two arcs between V(*,i) and V(*i + 1) must be
oriented in the same direction, there can be at most one oriented the other
way. If we remove the vertex in V(*i) of such an arc, then V(*1:i) is

disconnected from the rest of the digraph (see Figure 3.9). This means that

Figure 3.9

a set S need only contain k vertices in order that D - S have at least k + 1
strong components. Note that the other two vertices in V(*,i) could still

be in a strong component containing V(*,1:i - 1), and if we try to keep the
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67
components of approximately uniform order, then the order of the largest

strong component of D - S would be at most either 4 (when the vertices are
chosen from alternating P3's) or 3[(n - k)/(k + 1)] + 2. This gives an upper
bound for the integrity of either [n/2| + 4 whenm(D-S) =4, 0or k + 3 (n-
K/k+1)1+2=k+3n/(k +1)J+2<k +3n/(k + 1) + 2 otherwise. Using
calculus as before, we find that for fixed n this second function has a
minimum value when k = v3n - 1. Again, for our purposes we need k to

be an integer, so k can be either l_\/-3_n. - 1_] or [Jfﬁ - 1], and hence the

theorem follows. O
Corollary 3.7.3: For3<n<9, I(P3 % Py) is given in Table 4.

Table 4

Maximum Integrity for Orientations of P3 x Pp

n I(P3xPp)
3 3
4 3
5 4
6 5
7 5
8 6
9 7

Proof: The upper bounds for all but n = 7 were demonstrated in Theorem
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3.7.2. The lower bounds will be shown by giving an example of an

orientation which attains the integrity (see Figure 3.10).

3

>

‘
—>

-

Figure 3.10

For the case n = 7, let D be an orientation of P3 x P7, and remove the
vertices v2,2, v2,3, v2,5, and v2,6 from D. If there is a nontrivial strong
component left, it must include two degree-2 vertices in the same copy of

P3, without loss of generality v1,1 and v3,1 (see Figure 3.11(a)). Next, we
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() (b)

© 7 CY)
Figure 3.11

remove V2,1, v2,3, V2,5, and vz ¢ from D, if a nontrivial strong component
of what remains contains vy, then no vertex in V(*,1:3) can lie in a strong
component of D - {vy,, v2,3}, otherwise no vertex in V(*1:3) can lie in a
strong component of D - {v3,1, v2,3}. The last two vertices in an I-set will be

chosen from V(*4:7) as in Theorem 3.7.2 for P3x Ps. O

In the general case, we mimic a technique of the last theorem,
noting that at most Lm /2] vertices must be removed from V(*,1i) in an

orientation of Py, x Py, to disconnect V(¥,1:i) from the rest of the digraph.

Theorem 3.7.4: Form<n,

[(Pm % Pn) € min{V(Pm x Pn) + 1,
o - 2] m[ f‘_@g] 22« mh%n__ﬂ}.

Proof: The first term in the minimum comes from Theorem 3.3.2. For

the final two terms, we start by recalling that when we remove L m/2]

vertices from V(*i) and disconnect V(*,1:i) from the rest of the digraph a
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strong component containing V(*,1:i - 1) could still contain the remaining

[m/27 vertices of V(*,i). Hence, the largest of the components could have
as many as ml (n - k)/(k + 1)1 +[m/2] vertices. Thus,

(D) <lm/2Jk + ml(n- k)/(k + 1)1 +[m/2] =
lm/2)x-1) + mln/(k + 1))+ m <
m + m(k - 1)/2 + mn/(k + 1).

We use calculus with fixed m and n, to find that the minimum of the
original function occurs when k is either HZn - l-l or L«JZn - 1J. a

Theorem 3.7.5: I(PmxCp) <

min{V(Pm x Cn) + 1,

(3573 ol
R

Proof: The only difference between this and the previous argument is
that the second graph in the product is a cycle, so when we put in the k

partitions as before we get only k components. Thus the maximum order

of a near-uniform strong component in this case will be m”n 1-( k] + [-r;—]

Hence the inequality

IPmxCp) s lEZI—Jk + ml'n - k_] + l:f‘l] =

K 2
Dk -1+ m| 2=
S e m]

1J+msm(k-1) L, -1
Applying calculus we find that the last expression is minimal, with

> K m.
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regards to fixed m and n, when k is either I_«/Zn - 2_] or |- \2n - 2].

When these are substituted into the first expression of the inequality, and

the result is simplified, we get the desired values. O

Corollary 3.7.6: I(CyxCp) <

min{V(Cm xCp) +1,

m n
N2n - 2 - 1| =] + m| =———]|,
AR m{vzn-zl
m n
V2n - 2 - 1|—| + m| ——=1}.
[V LJ L/Zn-zl}
Proof: One can see that the extra edges of the cycles will not change the
disconnection principle used in the proof of Theorem 3.7.4. The bounds
on the orders of the strong components and the calculus aren't any
different either, hence we get the same bound if we allow nontrivial

strong components. O

One of the most important product graphs is the n-cube. It seems
that the behavior of the integrity of an orientation of Qn depends very
much on n. For n = 2 or 3, then 2»2 + 1 is a sharp upper bound for the
integrity of an orientation, but when n is large, the upper bound shown in
[3.3] for graphs, and hence for their orientations, of O(2rlogn/ V) is better.
This is worth further analysis, but appears to be very difficult.
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CHAPTER IV
ARC-INTEGRITY OF ORIENTED GRAPHS
4.1 Definitions

In Chapter III we were interested in the effect that removing
vertices had on oriented graphs. In this chapter we look at the arc
counterpart. The arc-integrity, I'(D) of a digraph D is defined as the
minimum value of m(D - S) + |S| over all subsets S of the arc set of D. A

set Sis an I'-set of D if I'(D) = IS| + m(D - S).
4.2 Arc-integrity of Digraphs
We begin with some preliminary results about arc-integrity.
Proposition 4.2.1: If F is a subdigraph of D, then I'(F) < I'(D).

Proof: Let S be an I'-set for D. Then m(F - S) < m(D - S) since any strong
component of F - S must be contained in a strong component of D - S.

Hence,
I'D)=m@D-S)+ ISI2m(F-S)+ ISNFI 2T'(F). o

The arc-integrity of a digraph is related to its integrity in the

following manner.

Theorem 4.2.2: For every digraph D, I'(D) = I(D).
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Proof: Let T be an I'-set for D and let S be the set of vertices of out-degree
at least 1 in the digraph induced by T. Clearly, IT! 2 ISl and m(D -T) =
m(D - S). Hence,

I(D) = IT! +m(D-T) 2 IS!| +m(D-S)=2I(D). O

This relationship does not imply that all properties of integrity hold
for arc-integrity. For example, by Theorem 3.2.3, the integrity of a digraph
D is closely related to the integrities of the family of digraphs D - v, where
v is a vertex in D. However, there is no corresponding relationship for arc-
integrity. The main problem here is that even though we are removing
arcs from the digraph, strong cocmponents are measured in terms of
vertices. In the vertex case, the removal of a single well-selected vertex can
often decrease the order of a largest component; while in the arc case we
must disconnect the digraph to reduce the order of the largest strong
component. The family of circulant digraphs D(6t + 1,{1,2,3}) where t is a
nonnegative integer is an example of this (removal of any single vertex
decreases the order of the largest strong component while we must
remove at least three arcs to accomplish the same decrease).

Nevertheless, there are some relationships between arc-integrity
and strong components. The next proposition gives a sharp upper bound,

while those that follow relete arc-integrity to other parameters.
Theorem 4.2.3: For adigraph D, 1<I'(D) s m(D)< IDI.
Proof: LetS be the empty set of arcs. Then

I(D) = min m(D-T)+ ITI}<Sm(D-S)+ IS| =m(D)< IDI. O

TgQE(D)
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Theorem 4.2.4: For digraph D,
I'(D) 2 max{3*(D), 6-(D)} + 1.

Proof: From Theorem 4.2.2 we know I'(D) 2 I{(D) and from Theorem 3.2.8
we have that I(D) 2 max{§+(D), 6°(D)} + 1, and hence the inequality

follows. O

Recall that D' is defined to be the orientation obtained by reversing
all the arcs of D. Any strong component in D is also a strong component in

D', which gives the following result.
Theorem 4.2.5: For every digraph D, I'(D') = I'(D).

The following characterizations are fairly straight forward but will

be helpful.

Theorem 4.2.6: For any digraph D the following are equivalent: (a) I(D) =
1, () I'(D) =1, and (c) D has no dicycles.

Proof: From Proposition 3.2.6 we know that (a) and (c) are equivalent. If D
has no dicycles, then, by definition, I'(D) = 1. On the other hand, if I'(D) = 1
then the order of a largest strong component must be 1, and so D is acyclic.

Hence (b) and (c) are equivalent. O

Theorem 4.2.7: A digraph has arc-integrity 2 if and only if it has at least
one dicycle and either some arc is on all of the dicycles or the order of a

largest strong component is 2.
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75
Proof: Assume I'(D) = 2. Then D must contain a directed cycle. If m(D) > 2,

then there must be some arc which lies on all dicycles. If not, then for each
arce, m(D -e) > 1, so m(D - S) > 1, which is a contradiction to the
assumption that I'(D) = 2.

If D contains a dicycle and the arc e lies on all dicycles, then m(D - e)
=1, so I'(D) < 2. On the other hand if m(D) = 2, then I'(D) < 2; but for any
subset S of the arc set m(D - S) 2 1. In either case, (D) =2. 0

Note that if I(D) = 2, then I'(D) can be arbitrarily large (see Figure 4.1
for an example, the 4-flower, with integrity 2 and arc-integrity 4).

Figure 4.1
4.3 Orientations of Graphs

Similar to what we did in Chapter III, we note that when D is an
orientation of a graph G and S' is a subset of the arc set of D which
corresponds to a subset S of the edge set of G, a strong component of D - S'
must be contained in a connected component of G - S. This gives the

following lemma.

Lemma 4.3.1: If D is an orientation of the graph G, then I'(D) < I'(G). O
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Thus a natural upper bound for the arc-integrity of a digraph is the
edge-integrity of the underlying graph. This bound will be more helpful
for arc-integrity than the corresponding bound for the integrity.

We now consider the arc-integrity of the classes of oriented graphs
considered in Chapter Il. As with integrity, the arc-integrity for different
orientations of the same graph will generally not be the same. As noted
before, every graph has an acyclic orientation; so the sharp lower bound
for the arc-integrity of an orientation of a graph is always 1. Also, it follows
from Proposition 4.2.3, that each orientation D of a graph G on p vertices
has I'(D) < p. The maximum arc-integrity for the class of orientations of G,
denoted 1'(G), is the maximum arc-integrity attained by any orientation of
G

As in the two preceding chapters, our first nontrivial example will
be the Petersen graph (Figure 4.2). If D is an orientation of P in which each

c
Petersen Graph
Figure 4.2

of the sets {a, b, c, d, e} and {v, w, x, y, z} induce a 5-cycle, then Theorems
3.2.7 and 4.2.2 imply that I'(D) 2 3, and hence so is I'(P). As was

demonstrated in Chapter III, for each orientation D of P there are two
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vertices, say x and y, for which m(D - {x,y}) = 1. Each of these vertices has
either indegree or outdegree at most 1. If the two arcs associated with these
degrees are removed, then the resulting digraph is acyclic, and so 1'(P) < 3.
We can combine the inequalities to give I'(P) = 3.

Notice that for the Petersen graph, 1(P) = I'(P). It is not generally the
case that 1(G) = 1'(G). We know that this statement is true for forests, and
the following lemma gives another sufficient condition for this to be the

case.
Theorem 4.3.2: For any graph G with A(G) < 3, I(G)=1'(G).

Proof: Assume that A(G) < 3. From Theorem 4.2.2, we have I'(D) = I(D),
and hence I(G) < I'(G). Assume D is an orientation of G for which I'(G) =
I'(D) > 1(G) (hence I'(D) > I(D)), and let S be an I-set of D. For each vertex v
in S, either deg*(v) or deg™(v) is 1. Thus, there is a single arc e incident
with v such that if e is removed from D, then v constitutes a nontrivial
strong component of D - e. Let T be a collection of such arcs, one incident

with each vertex v in S. Clearly I1S| 2 IT| and m(D -S) 2m(D - T); so
ID)=1Sl +m(D-S)2 ITl + m(D-T) 2I'(D),
which is a contradiction. Therefore the equality holds. O

From Proposition 4.2.7 and Theorem 4.2.8 we derive the following

result.

Theorem 4.3.3: For every integer n 2 3, I'(Cp) = 2.
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4.4 Bipartite Tournaments

Consider the complete bipartite graph Kn m, with partite sets X = {x;,
x2,.Xn} and Y = {y1,y2,-...ym}. Recall that the smallest order a nontrivial

strong component can have is 4.
Theorem 4.4.1: For every integer m > 2, I'K2,m) = lm/2}+1.

Proof: Every 4-cycle must contain both of the vertices x; and x; in the first
partite set. Clearly, min{deg-(x1), deg*(x1), deg=(xz), deg*t(x2)} <lm/2].
Without loss of generality assume the minimum is deg’(x;). Then the
removal of all arcs incident to x; will destroy all dicycles, and hence
I'(K2,m) sLm/2] + 1. Let D be the orientation of K3 m in which the only
arcs from X to Y are (x1,yj) wherej=1,2,.., Lm/2], or (x2,yj) where j =
lm/2]+1,lm/2] + 2,...m (see Figure 4.3). Then I'D) =Lm/2] + 1, and thus
the upper bound is achieved. g

Recall that in Chapter IIT we used the decycling number of a graph G
in order to derive an upper bound for I(G). We use a similar approach to
find upper bounds for I'(K3 m).

For a digraph D, a subset T of the arc set of D is called a feedback arc

set if every directed cycle in D contains some arc of T ( or m(D - T) = 1).
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The feedback arc index V'(D) of a digraph D is the minimum cardinality of

a feedback arc set. Note that if D is an oriented graph, then I'(D) < V(D) +
1.

Lemma 4.4.2: If D is an orientation of K3 m,, then V'(D) < [2m, 31.

Proof: Without loss of generality we may assume that D is strongly
connected. For each vertex y;j in Y, either deg*(y;) or deg=(y;) equals 1. Label
the arc associated with degree 1 incident with y; as ej. Let E be the
collection of the arcs e;. Note that |El <m, and that every directed cycle of
length 2k must contain exactly k arcs of E. We complete tte proof by
induction.

When m = 3, then we must remove at most two arcs of E in order
for the remaining digraph to have no directed cycles. Suppose k is the
smallest value of m for which some orientation D of K3 m has V'(D) >
[2m /3] We can assume that IEl =k, for otherwise D is not strongly
connected. If all of the arcs of E are removed from D, then m(D - E) = 1. For
distinct vertices x; and xj in X, let Y+ be the set of outneighbors of x; by arcs
of E, let Y- be the set of inneighbors of x; by arcs of E, and let Y* = Y - (Y*+ U
Y-). All the vertices in Y+ U Y- are inneighbors to x; and outneighbors
from xj; hence any directed cycle in D must contain a vertex of Y*, the
order of the largest strong component of the remaining graph is 1. All we
need now show is that for some pair x;, xj, the cardinality of the set of arcs
of E either incident to x; or incident from Xj is at least Lk/3]. If this is not
true, then for all (ij) = (1,2), (1,3), (2,3), (2,1), (3,1), (3,2) the cardinality of the

set of arcs of E either incident to x; or incident from Xj is strictly less than
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Lk/3J. However, if we sum the cardinalities of these sets we should get
21El, which equals 2k; hence we get a contradiction, and the theorem
holds. O

Theorem 4.4.3: Form >3, I'(K3m) =[2m/31+ 1.

Proof: The upper bound for I'(K3m) was demonstrated in Lemma 4.5.2;
while the orientation of K3,m for which the set E is {(x; yji = j (mod 6)}

{(yjxi)i + 3 =] (mod 6)} has arc-integrity [2m/31+ 1. O
4.5 Tournaments

When we remove a vertex from a tournament, the result is also a
tournament. This simple fact was used in proving some results on the
integrity of tournaments in the previous chapter. However, the same
cannot be said for arc removal; so we will have to be a litt more
resourceful. Nonetheless, an argument similar to that used for
tournaments in Chapter III will be helpful. For a given positive integer n,
let g(n) denote the maximum number k of arcs for which every n-
tournament contains a set of k arcs that generate no cycles. Then an upper
bound for I'(Ky) is |E(Kp) | - g(n) + 1. If n is small, then this bound is better
than the bound from Section 1.2 of I'(Kp) < n.

The maximum arc-integrity of tournaments of order n is given in

the following theorem.

lifn=12
Theorem 4.5.1: I'(Tp) = 2in=34

4ifn=>5

nifn2z6
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Proof: If n <6, the upper bound for I'(Tn) follows from Theorem 4.5.2 due

to Reid [4.6].
Theorem 4.5.2: For n < 8, the values of g(n) are given in Table 5.
Table 5

Maximum Number of Arcs g(n) Which Generate
No Cycles in Any Orientation of Kn

n g(n)
2 1
3 2
4 5
5 7
6 10
7 13
8 20

For n £ 5, the regular or near-regular tournament on n vertices has
the arc-integrity stated in the theorem.

When n = 6, the near-regular tournaments all have arc-integrity of
at least 5, and if T is the tournament of Figure 4.4, then I'(T) = 6.

For the case n 2 7, then each regular or near-regular n-tournament
T has arc-integrity n. Suppose this is not so, and let k be the minimum

value for which it does not hold. Let Tx be a regular or near-regular
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tournament on k vertices for which I'(Tk) < k, and let S an I'-set for Tj. Let

Figure 4.4

r be the order of the dominating strong component R of Ty - S. Note that
we can assume r < | k/2]; otherwise we look at the converse of Ty and
remove the arcs associated with S. We must look at two cases depending
upon the parity of k.

Case 1. The integer k = 2t + 1 is odd. Here Tk is regular. The set S

r r
must contain at least rt - ( ) arcsof R;sok =2t +1 > I'(Tg) rt- (2) +r,

2
which is equivalent to the statement r2 - (2t + 2)r + 2(2t + 1) > 0, which can
be factored to give(r - k)(r - 2) > 0. Since r < k, we know that r < 2 for the
inequality to be true. However, if r = 1, then Tk - R is near-regular of order
k-1,50I'(Tk) = ISI + m(Tg-S)=t+ IS (Tk -R)| + m((Tk - R) - S), which
is at least t + I'(Tk - R) 2 k. This is a contradiction to our assumption.

Case 2. The integer k = 2t is even. Here Ty is near-regular. This

. r
means that S contains at least (t - 1)r - ( 2) arcs into vertices of R; so
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k=2t>I'(T)=2(t-1)r- G)-&-r,

which when simplified and factored is(r - (k - 2))(r - 2) > 0. As in the
previous case r must be at most 2; hence r = 1. Now S must contain at least
the arcs into R, so 1SI 2t - 1. This implies that m(Tk - S) £t + 1, hence we
can use an argument similar to the one which demonstrated IRl =1 to
argue that the order of R*, the strong component of Tk - S dominated by
all other components, is 1 as well. Therefore S must contain all arcs into R
and all arcs out of R*, so ISI > (t-1) + (t- 1) - 1 =2t - 3. We know that ['(Ty)
< 2t, and hence m(T - S) < 2. This implies that m(Ty - S) = 1, therefore S|
will be at least k - 1 since at least two more arcs must be removed for this
to be achieved. This contradicts the assumption on I'(Tk), and the theorem

is proved. 0O
4.6 Unions of Graphs

As in the previous chapter, we get some general bounds for the
maximum arc-integrity for orientations of three of the most widely used

binary operations on graphs, unions, joins, and cartesian products.

Theorem 4.61: max(I'(Gi} < T'( 8 G) <Y T(G)-n+1.
vE i=1

Proof: The first inequality is a corollary of Theorem 4.2.1. The second
inequality is derived from Lemma 4.3.1 and the theorem of [4.1] which

states that for graphs G, Ga,..., Gn I'(igalGi) < i I'Gi)-n+1. 0O
- i=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



These bounds are shown to be sharp by Cp v (n - 1)K3 and nCp ..
4.7 Products of Paths and Cycles

The maximum arc-integrity for Pz x P, comes as a corollary to

Theorems 3.7.1 and 4.3.2.

Corollary 4.7.1: I'(P2 X Pp) =

min{l:rzl . 1J, [Vzn] + z[ﬁ[;_n } 3,v2n] + Z[LWJ]

The argument for the arc-integrity of P3 X Py, is similar to that used

...A

in Theorem 3.7.2 on the integrity of P3 x Pp.

Theorem 4.7.2: 1'(P3xPp) =
oo 5T ey AL g

Proof: Let D be an orientaion of P3 x P,,. Then as in Theorem 3.7.2, there is
some single arc between V(*,i) and V(*i+1) whose removal leaves V(*1:i)
disconnected from V(*,i + 1:n) (see Figure 4.5). This means that there is a
set S of k arcs for which D - S has at least k + 1 strong components.

The digraph derived by extending the orientation of P3 x Ps in
Figure 4.6 to the general case P3 x Py (orient the arcs of the 4-cycle Cj;

clockwise if i + j is even and counter-clockwise if the sum is odd) attains
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Figure 4.5

the lower bound for the theorem. In this orientation, removal of an arc

contained in V(*,2) increases the number of strong components by at least

Figure 4.6

1. These components are either of the form V(*i:;j) (of order 3(j -i + 1)) or
are trivial. Let T be an I'-set for D of order k. As in Theorem 3.7.2 the

orders of the components of D - T should be nearly equal. Therefore, m(D -

T)willeitherbelors[ n —I
k+1

Case 1: m(D - T) = 1. There are n - 1 pairwise arc-disjoint 4-cycles (the
Cjj where i +j is even), so we need to remove at least n - 1 arcs. However,

if the arcs of V(2,*) are removed the remaining digraph has no dicycles.

Case22m(D-T) = S[k n 1.|. In a manner similar to the previous
<+

chapter, calculus is used to find the arc-integrity. Here

I'(D) =k + 3 n/(k+1)]1 =k + 3 (n+k)/(k+1)] <
k + 3(n+k)/ (k+1).

The last expression is minimized when k = v/3n - 3 - 1. Hence, the first
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expression (arc-integrity) is minimized when k is either [V3n -3 -1] or
Lv3n - 3 - 1]. When these values are substituted into the arc-integrity
expression we get the desired values.

Letr=[v3n - 31and s =L3n - 3], and let (vti,Vti+1) be an arc
whose removal leaves V(*1:i) disconnected from V(*i + 1:n). Then the
upper bound is demonstrated when D is an orientation of P3 x P and T is

one of the following sets:

T]. = {(Vt,ilvt,i+l)l i= 1,...,11 - 1}
Tz = {(veiveien) | =i n/ri+1), and j = 1,....1}
T3 = {(veiveie) | i=jfn/sHl), andj=1,...8}. O

Theorem 4.7.3: When m < n, then I'(Pm XPp) <

min{(n - lm/2] + 1,

BIERR ]

[ ) - ol

Proof: Let D be an orientaion of Py, X Py. As in Theorem 3.7.3, there is
some set of Lm /2] arcs between V(*,i) and V(*i+1) whose removal leaves
V(*,1:i) disconnected from V(*,i + 1:n). This means that there is a set S of
Lm/2lk arcs for which D - S has at least k + 1 strong components.

The upper bound for the theorem is shown as follows. For fixed j
there is a set of Lm/2] arcs of the form (Vijs Vij+1) whose removal

disconnects V(*,1:) from V(*i + 1:n). Let T be a set of k such disconnecting
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sets, chosen in a way that the orders of the components of D - T are
approximately uniform, as in Theorem 3.7.3. Here, m(D - T) will either be
lor mrn/(k + 1)-1.

Case l: Let k =n-1. Then m(D - T) = 1 and hence, the minimum
occurs at the first expression.

Case 2: For k < n - 1, choose k to minimize [m/2Jk + m/n/(k+1)1
Recall that I(D) < Lm/2Jk + m/n/(k + 1)1 =Lm/2Jk + ml(n + k)/(k + 1)) <
(m/2)k + m(n/(k + 1). The final expression has a minimum when k =
v2n - 2 - 1, and hence the first expression attains its minimum when k
is either [v2n - 2 - 1] or Lv2n - 2 - 1]. When these values are
substituted into the the first expression we get the last two terms in the

minimum of the theorem. O
Theorem 4.7.4: I'(PmxCp) <

min{(n + Hlm/2] + 1,

fm+1][§J+m[. n__|

on -2
I_-\/EH_-_Z- + lJ[—z—J + m[:——————m }

Proof: Let D be an orientation of P, X Cp. Between V(i,*) and V(i + 1,%)
(for i = 1,2) there are at least [m /21 arcs oriented from one of the Pm to the
other, hence at most Lm/2] oriented in the other direction. Remove k > 1
of these sets of Lm/2 ] arcs so that the sets are as evenly spaced as possible. If
all the sets are oriented in the "same direction” (see Figure 4.7 where the

dotted arcs are the arcs which are removed and the dotted line traces a
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directed cycle which remains), then the digraph might not be
disconnected. If one of the k sets is replaced by the 2. m/2] arcs which are

oriented in the opposite direction, then removal of this new set T
separates D into at least k components.

If k = n, then m(D - T) = 1. Therefore I'(D) < (n + 1)lm/2]+ 1.
Assume k < n, then we want to minimize (k+1)lm/2]+ m/n/k] (which is
at least I'(D)) with respect to k. Using calculus as before, we find the
minimum occurs when k is either [v2n - 2] or [V2n - 2 J, and hence,

the theorem follows. O
Theorem 4.7.5: Form <n,

I(Cm % Cpn) < min{(n + 1_)Lm/ 2] +m,
I-w/2n-2+1.|[%‘—J+m—————n————,

el
[Van -2 + 1_][-1—;—J +m —————L ,_____Znn_ 7] 3

Proof: The addition of the extra arcs does not change the disconnection
principle used in Theorem 4.7.4, nor the calculus involved in finding the
last two bounds. The only difference between the arguments is that when

k=n, the number m(D-T) may be m. Hence, we get the first expression. O
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