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EFFICIENT DOMINATING SETS IN ORIENTED TREES

Quan Yue, Ph.D.

Western Michigan University, 1995

An oriented graph Cr is said to have an efficient dominating set S  if 5  is a 

set of vertices of cf and for each vertex v of Cr, either v is in S  and v is adjacent 

to no other vertex in S, or v is not in S  but is adjacent from precisely one vertex 

of S. Not every oriented graph has an efficient dominating set and some oriented 

graphs may have more than one efficient dominating set. Barkauskas and Host 

showed that the problem of determining whether an oriented graph has an efficient 

dominating set is NP-complete.

In Chapter I, we introduce the basic definitions and study the elementary 

properties of efficient dominating sets for an oriented graph in general. Then we 

discuss the properties of efficient dominating sets for a tree T.

In Chapter II, we use combinatorial enumeration techniques to obtain re

cursive formulas for finding the number of efficient dominating sets among all 

unlabeled oriented trees (rooted or unrooted) of order p. These formulas are used 

to generate the number of efficient dominating sets among all unlabeled oriented 

trees (rooted or unrooted) of order p for each p up to 150. Then we use analysis 

methods, numerical analysis methods, and the methods of estimation of error to 

obtain asymptotic formulas for the number of efficient dominating sets in unla

beled oriented trees (rooted or unrooted). In particular, the limit of the pth root 

of the average number of efficient dominating sets per tree (rooted or unrooted) 

is determined.
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We also define the number of efficient dominating sets in labeled oriented 

trees. In Chapter III, we obtain analytic formulas for the number of efficient 

dominating sets among all labeled oriented trees by using the Multivariate La

grange Formula. Then we use these formulas to determine the number of efficient 

dominating sets among all labeled oriented trees of order p for each p up to 45. 

Asymptotic formulas, and the limit of the pth root of the average number of 

efficient dominating sets per labeled tree are determined as well.

The number of efficient dominating sets for a particular tree T  is the num

ber of efficient dominating sets among all orientations of T. The maximum trees 

of order p are the trees which have the maximum number of efficient dominating 

sets among all trees of order p. In Chapter IV, we modify the algorithm given by 

Barkauskas and Host to find the maximum trees of order p for each p up to 23. 

Some interesting properties of maximum trees are given, in particular we show 

that maximum trees can have arbitrarily large height. The structure of maximum 

trees is discussed.

We conjectured the maximum trees of order p for each p up to 3300. And 

we predicted that the limit of the pth root of the number of efficient dominating 

sets for maximum trees is 1.8525....

We conclude with some open problems in Chapter V for further study.
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CHAPTER I

PRELIMINARIES

1.1 Introduction to Efficient Dominating Set

Let G(V, E) be a graph with vertex set V  and edge set E. A vertex v is 

said to dominate itself and its neighbors. A set S  C V  is said to be a dominating 

set of G if for every vertex v of G, v is dominated by at least one member of

S. Based on this definition, various concepts can be introduced. Among those 

include an independent dominating set, in which no two vertices in S  are adjacent, 

a minimum dominating set, in which S  has minimum cardinality, and an efficient 

dominating set, in which every vertex v of G is dominated by exactly one member 

of S. These definitions and others, as well as a bibliography on dominating sets, 

can be found in [9].

Barkauskas and Host [1] extended the concept of efficient dominating sets 

to oriented graphs and made the following definition:

D efinition 1 A vertex v of an oriented graph 7% dominates itself and all vertices 

adjacent from v. A set S  of vertices of (j is an efficient dominating set for (j if 

every vertex of ~Cr is dominated by exactly one member of S.

Can a graph G be oriented so that the orientation gives rise to an efficient 

dominating set? The following proposition answers the question positively.

P roposition  1 Any graph G can be oriented in such a way so that the oriented 

graph Cr of G has an efficient dominating set.

1
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Proof: Take any maximal independent set S of vertices of G. For each

vertex v of G not in S, choose a neighbor u of v in S and orient the edge from u 

to v. For every other neighbor w of v in S, orient the edge from v to w. All other 

edges of G can be oriented arbitrarily. Then 5  is an efficient dominating set for 

oriented graph Cr of G. □

An oriented graph Cr may have none, one, or more than one dominating 

set. For example in Figure 1, Gi has no efficient dominating set; has only one 

efficient dominating set S  =  {1,3}; and G3 has the two efficient dominating sets 

Si =  {1,3} andS 2 =  {2,4}.

-*— n  i< 2 If—

Figure 1. Three Oriented Graphs.

Barkauskas and Host [1] showed that the problem of determining whether 

an oriented graph has an efficient dominating set is NP-complete.

1.2 Efficient Dominating Sets of Trees

For trees we have the following proposition (also mentioned in [1]):

P roposition  2 Each orientation of a tree T  produces at most one efficient dom

inating set.

Proof: Assume 7  ̂is an orientation of tree T  and suppose, to the contrary, 

that 7  ̂ has two efficient dominating sets, Si and S2. Since S\ ^  S2, we may 

assume, without lose of generality, that there exists a vertex v\ € Si — S2. Now, v\
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must be dominated by a unique vertex W\ E S2 — Si. Similarly, since w\ E S2 — Si, 

w\ must be dominated by a unique vertex v2 E (Si — Vi) — S2 and so on. Since 7  ̂

is acyclic, this process never repeats a vertex. Thus we have an infinite directed 

path viwiv2w2..., contradicting the finite order of 2 .̂ □

As an immediate consequence, we have the theorem:

Theorem  1 The number of efficient dominating sets for a tree T  is equal to the

number of orientations for which T  can be efficiently dominated.

The significance of this theorem is that it allows us to replace the problem 

of counting the number of efficient dominating sets for a tree T  by the problem 

of counting the number of orientations, each of which has an efficient dominating 

set of T.

Since each unlabeled tree T  of order p has at most 2P_1 orientations and 

each labeled tree of order p  has exact 2P_1 orientations, from Proposition 1 and 

Proposition 2 we have the following theorem:

Theorem  2 The number of efficient dominating sets for an unlabeled or for a 

labeled tree T  of order p lies between 1 and 2P_1.

For basic terminologies the readers are referred to Chartrand and Lesniak 

[7]. For related results, see [1], [2], [3], [4], [5], and [6].
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CHAPTER II

EFFICIENT DOMINATING SETS IN UNLABELED ORIENTED TREES

We would like to enumerate the number of efficient dominating sets in 

rooted and in unrooted trees. In order to accomplish this work, we introduce 

four ordinary generating functions and obtain recursive formulas for the number 

of efficient dominating sets for rooted trees. Then we find the recursive formulas 

for the number of efficient dominating sets for unrooted trees. Finally, we use 

asymptotic analysis and obtain asymptotic formulas.

The notation and terminology follow that in Harary and Palmer [11] (Chapt. 

9.5). In particular, Z (Sn) =  Z (Sn; s\,S 2 , ..., s„) is the cycle index for the symmet

ric group Sn acting on n objects. This is a polynomial in n variables s%, s2,..., sn. 

For any generating function g(x), Z(S„;g(x)) is a shorthand representation of the 

substitution si =  g{x),S2 =  g{x2)... in Z(S„).

2.1 Generating Functions

We let

A(x) = j r  Apxp (1)
p = i

be the generating function in which Ap is the number of efficient dominating sets 

among all rooted trees of order p  which have the root in the dominating set. (The 

root is dominated by itself.)

Let

4
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C(x) = f l Cpx’> (2)
p = l

be the generating function in which Cp is the number of efficient dominating sets 

among all rooted trees of order p  which have the root dominated by one of its 

children. (The root is dominated from inside.)

We let the third series be

B(x ) = ' £ B p3?. (3)
p = i

In this series B(x), we would like to count sets that are nearly efficient 

dominating sets. With the exception of the root, every vertex in such a tree will 

be efficiently dominated by a unique vertex in the dominating set S. But the root 

is neither in S  nor is it dominated by any vertex in S. Such an oriented tree is 

not efficiently dominated, but it can be a branch in a larger efficiently dominated 

oriented tree provided that the new root is in the efficient dominating set of the 

larger tree and the new root dominates the root of the branch. Consequently we 

refer to this case as the root being dominated from outside.

It is not necessary, but for convenience we introduce a fourth series. Let

E(*) =  E 3 ,  (4)
P=1

be the generating function in which Ep is the number of efficient dominating sets 

among all rooted trees of order p.

Observe that the number of efficient dominating sets among all rooted trees

of order p equals Ap +  Cp since for any efficient dominating set S, the root must

either be in S  or be dominated by one of its children.
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Thus we have

E(x) = A(x) +  C{x). (5)

It may seem that B(x) is not involved in counting the number of efficient 

dominating sets, but we shall soon see that it is needed to calculate A(x) and 

C(x).

2.2 Functional Relations for the Counting Series

Our object is to find the number of efficient dominating sets among all 

rooted trees of order p. In the previous section we saw that this number is equal 

to Ap + Cp. We first find the functional relations among A(x), B(x) and C(x) then 

generate Ap, Bp, Cp for every p up to 150.

T heorem  3 For the functions introduced in (1), (2) and (3), the following equa

tions hold:

A{x) =  l E  Z(S„  B W ) 1 E  Z(S„,C(z))] (6)
n = 0  n=0

B(x) =  * E  Z(S„, A (x )) ]E  Z{S„,2C(x))) (7)
n = 0  n=0

C(x) =  A(x)B{x). (8)

Proof: First observe by Proposition 2 that if 7  ̂is an oriented tree having 

an efficient dominating set, then every branch of 7  ̂must be one of type A, type 

B  or type C. On the other hand, any oriented tree 7  ̂ that is type A, type B  or
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type C  must have the property that it is built by a root and some (possibly none) 

oriented branches (of type A, type B  or type C). Further, the oriented edges 

joining the root of T * with the roots of the branches must be oriented “suitably”.

Now we examine the structure of rooted trees of type A, type B  and type

C.

For rooted trees of type A, any branch of type A  is invalid. On the other 

hand it can have any number of branches of type B  if the edge is oriented from 

the root of the tree to the root of the branch, and it can have any number of 

branches of type C if the edge is oriented from the root of the branch to the root 

of the tree. See Figure 2.

A

Figure 2. The Structure of a Rooted Tree of Type A.

This allows us to deduce the following equation for A(x) :

A(x) =  * [ £  Z (S„  fl(*))][£; Z(Sn,C(x))]. (9)
n=0 n=0

In this expression, the factor x  accounts for the root. Each Z (Sn, B(x)) 

allows for n branches of type B. And similarly, each Z(S„tC(x)) allows n branches 

of type C. Thus the structure shown in Figure 2 leads us to equation (9).

For rooted trees of type B, any branch of type B  is invalid. It can have any 

number of branches of type A  if the edge is oriented from the root of the tree to
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the root of the branch, and it can have any number of branches of type C  whose 

edge can be oriented in either direction. See Figure 3.

Figure 3. The Structure of a Rooted Tree of Type B.

So

m  = * E  Z(S,X («))]E  Z(5„,2CM)].
n= 0  n=0

(10)

For rooted trees of type C, it must have precisely one branch type A  and 

the rest of it must be a rooted tree of type B. Also the edge must be oriented 

from the root of the branch to the root of the tree of type B. See Figure 4.

Figure 4. The Structure of a Rooted Tree of Type C.

So
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C{x) =  A(x)B(x). (11)

□

2.3 Recurrence Relations and Numerical Values for Rooted TVees

Although the following three equations can be derived from (1), (2) and 

(3) (see [11] ), we would like to use combinatorial arguments to obtain them.

A{x) = x  f ]  (1 +  xk +  x2k +  . . . )Bfc+Cfc (12)
k=l

B(x) = x ] J ( l  + xk + x2k + . . .)^ +2C‘ (13)
fc=l

C(x) = A(x)B(x). (14)

See Figure 2 again, we examine the following expression:

* n ( l  +  z fc +  *2fc+  •••)** f l ( l + a ; A: +  a:2fc +  ...)c*. (15)
fc=i k= l

In this expression, x  counts the root. The number 1 represents no branch of 

order k; the term x k represents one branch of order k, x2k represents two branches 

of order k, and so on. The number Bk represents the number of ways to select a 

branch of type B  of order k, Ck represents the number of ways to select a branch 

of type C of order k.

Then observe that the product of all these is, by the structure of type A,

A(x). That is equation (12). By the same fashion arguments, we can get (13).
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And of course (14) is true.

Knowing that A\ =  1, B\ =  1, C\ = 0 ,  theoretically these recurrence 

relations allow us to compute A p, Bp, Cp for any particular p. For example, if we 

want to calculate A m, Bm, Cm, we only need to know Ap, Bp, Cp for each p up to 

m — 1.

In order to determine A p, Bp, Cp for each p up to 150 more efficiently we 

need to modify (12), (13) and (14).

In equation (12) we rewrite the geometric series and then use the binomial 

theorem with negative exponents to get

Formally expanding the product of two series in (14) gives

C(x) = f ; C E A kBn- k)xn. (18)
n=2 Jt=l

To find out the formulas to calculate Ap, Bp, Cp for each p up to 150,

we first introduce some notation. Let f(x )  =  £  f nxn be any power series, then

00

A{x) =  x  n  (i +  Xk + x2k +  ...)Bfc+Cfc

OO

=  X  11(1 — Xk)~Bk Ck

(16)

Similarly, from (13) we liave

(17)

OO
n = 0
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[xp]f(x) = f p. For example [xp\e~x =

Now suppose we would like to find Am, 5 m,and Cm (1 <  m  <  150), then

Am =  [*m]

[*"]

Jt=l /=o \  * /
fBk + Ck + 1 -  x j

n  l £ j f '4t + 2C,‘ + , “ 1V "fc=l /=0 V 1 J
X

m —1

Cm =  ̂1 AftBm—k’ 
k= 1

(19)

(20)

(21)

With the aid of a computer and Mathematica, these three formulas provide 

Ap, Bp,and Cp for each p up to 150.

2.4 Equations and Numerical Values for Unrooted Trees

Now we are in the position to determine the number of efficient dominating 

sets among all unrooted trees of order p.

We have seen that

E(x) = A(x) + C(x) (22)

is the generating function in which Ep is the number of efficient dominating sets

among all rooted trees of order p.

We let

OO

e ( x ) =  e Px ?  (23)
p=i

be the generating function in which ep is the number of efficient dominating sets
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among all unrooted trees of order p.

Theorem  4 The counting series e(x) satisfies

e(x) =  A(x) — A(x)C(x) — C2(x). (24)

Proof: We will use the following Theorem (Dissimilarity characteristic

theorem for trees) due to Otter [13] and presented in [11].

Theorem  5 For any tree T  of order p

1 = p * -q *  + s. (25)

In the equation p* is the number of dissimilar vertices of T, or more pre

cisely, the number of equivalence classes of vertices of T  under action of the sym

metric group of Sp; q* is the number of dissimilar edges of T, or more precisely, the 

number of equivalence classes of edges of T  under action of the symmetric group

of Sp\ s is the number of symmetric edges of T  under action of the symmetric

group of Sp.

To illustrate the Theorem 5, we look the tree Ti and the tree T-i both of 

order 8 in Figure 5.

For tree T\, p* =  5, q* =  4 and s =  0, so 1 =  p* — q* + s. For tree T2, 

p* =  4, q* =  4 and s =  1, hence 1 =  p* — q* +  s.

Observe that each unrooted tree T  can give rise to exactly p* different 

rooted trees and each unrooted tree T  can be “rooted” at an edge in q* different 

ways. Also observe that for any unrooted tree T, two end vertices of a symmetric 

edge (if there is any) must be in the center of T. So s equals 0 or 1.
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Ti T2
Figure 5. Two Trees of Order 8.

Now we apply Theorem 5 to our problem. First note s =  0 since there is 

no symmetric edge in any oriented tree. Sum (25) over all unrooted oriented trees 

that have an efficient dominating set and that have exactly p vertices. The result 

is

(26)

but E  1 =  ep and Ep* =  Ep- Furthermore, E  9* is the number of efficient dom

inating sets among all trees that are rooted at an edge and have the order of p. 

There are nine possible ways to attach two oriented branches to an rooted edge, 

but only three ways are valid. First, if the receiving branch is type A  then the 

sending branch must be type C. Secondly, if the receiving branch is type B  then 

the sending branch must be type A. Thirdly, if the receiving branch is type C 

then the sending branch must be type C. See Figure 6.

Figure 6. Three Ways to Attach Two Oriented Branches to an Rooted Edge.
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Consequently, we have

e(x) =  E(x) — \A(x)C(x) +  B(x)A(x) +  C(x)C(x)], (27)

or

e(x) — E(x) — A(x)B(x) — A(x)C(x) — C 2 (x). (28)

Recalling that E(x) =  A(x) +  C(x) and C(x) = A(x)B(x), we get

e(x) =  A(x) — A(x)C(x) — C2 (x). (29)

a
We have AP,BP and Cp for every p up to 150 in hand, using (29) we can 

determine ep for each p up to 150.

Results of the computations for Ap, Bp, Ep, and ep for each p  up to 20 are 

reported in Table 1.

In order to determine the asymptotic formulas, we need several lemmas. 

The first lemma allows us to treat each generating function A(x),B(x), C(x) and 

e(x) as an analytic function.

Lem m a 1 The power series A(x), B(x) and C(x) all have radius of convergence 

greater than 0.169.

Proof: For each rooted tree T  of order p (p > 1), by Theorem 2 the tree 

T  has at most 2P_1 efficient dominating sets. As a consequence, each of Ap, Bp, 

and Cp is bounded above by 2P-17),, where Tp is the number of rooted trees of 

order p.

2.5 Asymptotic Behavior
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Now let r„, rj,, rc denote the radius of convergence for A{x), B(x) and C(x) 

respectively, then

r„ = > :___ !— —  >  __ [ =  P'3jj8 " >  0.169 (30)

where 0.338... is well known as the radius of convergence for T(x) = £  Tpxp.
p=i

In the same fashion

rb >  0.169 and rb >  0.169. (31)

□

Lem m a 2 The power series A(x),B(x) and C(x) have the same radius of con

vergence.

That is r = ra = rb = rc.

Proof: Recall that

A(x) = x  f j ( 1+ x k + x 2k +  ...)Bt+c*. (32)
k=l

Dividing both sides by x  and then taking logarithm on both sides gives us

l o g ( ^ )  =  j t ( B k +  Ck) log(l +  xk +  x2k +  ...) 
X k=1

l o g ( ^ )  =  S (B »  +  Ck) log(l -  * V
X k= 1
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x  i

Thus for any x G [0, ra), we have

(33)

A (.) =  , e x p ( | ^ l ± ^ l )

=  zexp(B(a:) + C(x) +  Y  ~   ̂+ C^X (34)
j = 2  J

> xexp(B(x) + C(x)).

From this we see that ra <  r& and ra < rc.

By a similar line of reasoning, for any x > 0, we obtain

B{x) =  x e x p ^ ^ l i ^ M )

= x exp(A(x) +  2C(x) +  Y  ^   ̂+  2^ X ^) (35)
j = 2 3

> xexp(^4(a;)+2C(a;)).

From this we see that n  < ra and r;, < rc.

And of course we have

C(x) = A(x)B(x). (36)
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From this it is easy to see re <  ra and rc <  r*. All these inequalities together 

imply

r = ra = n  = rc. (37)

Lem m a 3 The limits of A(x),B(x) and C(x) as x  r~ exist and are equal to 

A(r),B(r) andC(r), respectively. Consequently, each of A(x),B(x) andC(x) has 

the unique singularity at x  =  r on the circle of convergence.

Proof: Since A(x) satisfies the functional equation (33), for all x  in (0, r) 

we have

log(A(x)/x) =  B (x ) +  C(x) +  Y  B~X  ̂+  C^ X  ̂ ^  c ix)- (38)
j=2 3

From this it follows that

cw/x < I (39)
log(^(rc)/l) -  x '  1 1

Note that C(x) = A(x)B(x). Then we have

. (A(x)/x) 1
B(x) x < -•  (40)log(A(x)/x) x  v '

Hence both A(x) and B(x) are bounded above on the interval (0,r). Since both 

A(x) and B(x) are monotone increasing with respect to x , the left limits at r must 

exist and we have

a =  lim A(x) =  A(r) (41)
x-n*-

b = lim B(x) =  B(r) (42)
x-+r~
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ab =  lim A(x)B(x) = A(r)B(r).
x-*r'

(43)

Lem m a 4 For the series A(x) and B(x), the following equality holds:

a2b +  2ab2 +  4ab =  1. (44)

Proof: We first define the complex valued functions F(x,y, z) and G(x, y, z ), 

where x, y and z are considered as complex variables:

F(x , y,z) = x  exp(2 +  yz + £  —   ̂+  C X̂ -  y
j - 2 0

n (  \ ( . o v2' A (x j) + 2 C(xj ).G(x, y,z) = x  exp(y + 2yz + 2 ^  . -  z

and consider the equations

j=2

(45)

F {x ,y ,z ) = 0  

G{x,y,z) = 0

We can show that

(46)

(47)
y = A{x) 

z =  B(x)

is the unique analytic solution of (46) in the open disk of |x| <  r.

Note that for fixed y and z, the functions F(x, y, z) and G(x, y, z) have 

a  unique singularity at x = r  on the circle of |a:| =  r. The previous lemma 

implies that F(r,a,b) = 0 and G(r,a,b) =  0. Furthermore note that F(x,y ,z)  

and G(x, y, z) are both analytic in each variable separately in a neighborhood of 

(r,a,b).
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Now since

F (r’“ ' 6) =  ° }  (48)
G(r, a, b) =  0

we know, by the implicit function theorem, that the determinant

F y  F z 

G y  G z

at the point (r, a, b) must be zero; otherwise, there are the unique solutions y = 

y(x) and 2 =  z(x) in (45). Both functions of y(x) and z{x) are analytic in a 

neighborhood of r, especially at x =  r. Such solutions have to be y = A(x) and 

z =  B(x) but clearly neither A(x) nor B(x) is analytic at x  =  r.

Now the determinant at the point (r, a, b) is

F y F z

G y G z
i = r
y=a
z^ b

z{F + y ) - l  (1 +  y){F +  y) 

(1 +  2*)(G +  *) 2y(G + z ) - l x= r
y=a
z=b

ab — 1 a2 +  a 

2b2  + b 2 ab— 1

= —a2b — 2ab2 — 4ab+l.

Letting — a2b — 2ab2 — 4ab +  1 =  0, we get a2b +  2ab2 + 4ab =  1. □
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Lem m a 5 Each of the numerical values for r, a and b is bounded above by r < 

0.34, a < 1 and b <  1. Consequently,

± m + m < 2 a n i ± ^ i ^ m < 2 . (49)
j=l 3 j=l 3

Proof: We first show that r  <  0.34. Recall that Proposition 1 guarantees 

every rooted tree has at least one orientation 7  ̂ such that 7^ has an efficient 

dominating set. This gives Ep >  Tp for each p, where we recall that Ep is the 

number of efficient dominating sets among all oriented rooted trees of order p and 

Tp is the number of rooted trees of order p. From Ep > Tp, we get r < 0.338... < 

0.34, where 0.338... is the radius of convergence for T(x) =  Tpxp.

To show a <  1, we assume that a >  1. Recall that (35) states

B(x) =  xexp(.A(x) +  2C{x) +  ^  -^(^ ) +  2C,(x ')^
j=2 3

Letting x  approach to r from left on both sides of (50), we get

b =  r  exp (a +  2a6 +  £  2C(rJ) ) >  r  exp(a)
i=2 3

Recalling that r  > 0.169 and the assumption of a >  1, we have b > 0.169e>

0.45.

Now since a > 1 and b > 0.45 we could get a2b +  2ab2 +  4a6 >  4ab >  1, 

contradicting Lemma 4. Thus a < 1.

By similar arguments, we can show b < 1.
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By 6 =  rexp(J3  ) ,"^2C(r r > 0.169, and b <  1, we get
j =l •?

(51)

Likewise, we have

j=i

Note that (34) and (35) give us

E £ M + £ M < 2  m

0 =  , e x p ( g g ( r i ) + C M ) (53)
j = l  -7

and

,£ M (rO  +  2C(r*K6 = r exp (2j---------- :--------). (54)
i = i  J

We would like to use the truncated series with 150 terms of Y,jLi -fl(r,)+c (r)) 

and A{ri)+2C(r>) jQ an(j (54) fin(i numerical values of r, a and b. To 

ensure accuracy, we need to analyze the errors created by truncating the series 

after 150 terms. We use rt =  a /  exp(£]i°i B(ri)+C(ri)^  at = r e x p ^ j®9 ^ ■)+c(rJ))i 

and bt =  r exp(2 ]=i ) to denote the values given by the truncated series.

The next lemma guarantees the accuracy for r, a and b after we excise the “tails” 

Si = E £ i 5i and 6 2 =  £ £ 151

Lem m a 6 The following inequalities hold:

A r =  |r — rt| < 10-69 (55)
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A  a =  \a -  a,| <  10~69 (56)

A b =  \ b - b t\ <  10-69. (57)

Proof: We first estimate the remainders £i =  ^ (r ) + ^ (r ) an(j
i = i5 i  3

“  A(r*) +  2C'(r>) . ,
S2  = 2 2  --------- :---- -—- and show that

j=151 3

£1 < 1.06 x 10" 7° and 6 2 <  1.06 x 10_7°. (58)

Observe that

=  g  B t f )  +  C jr i )  =  g  S i ^ BhrJk +  CkVlk)

j= 1 5 1  3  j = 151 3

00 150 00

=  ““H E  B krjk~™ + Ckrjk~150] 
j=151 3 k=1

_  r i50 Bkrj k ~ 150 + Ckrjk~150]
j=151 3  fc=l

_  r 150

=  r 150

E  F t W E  Bkr«+15°)fc-i50 +  c^O-HSOjfc-iso]
i=i U +  10UJ Jt=i

£  ( U l m E  + Ckr>™ S0(*-1)]_
j=1 U +  10UJ fc=l

Since r < 1, we may discard part of the exponents to obtain the bound
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41 -  r l“ £ ( J T l 5 0 j [S B‘ r i i + C ‘r#1

<  ruo £  W r ’L t C W )  <  (0.34)150 x 2 (by lemma 5 )
j =  1 •?

<  1.06 x lO -70.

Similarly, we have 62  =  Y] ~.(r  ̂+  ^ ( r ) <   ̂gg x jq-70
i=i5i 3

Rewriting (53), we find that

,™ B {ri)  + C{ri) , cx 
o = r exp(2j  —" — — + 6i)>

j = 1 J

which gives a =  ateSl and

a rtr =

Prom this it follows that

exp(X, ■— —  + 6 1 )
j =1 3

A r =  |r  -  r,| =  |r -  re*1 | =  r(eSl -  1) =  r[(l +  £i +  |v +  ...) -  1] 

<  r6 ie < 0.34 x (1.06 x 10"7O)e < 10~69

and

A a — \a — at| — Jr^e 1̂ — 0(| — at(eSl — 1) — a([(l 4* +  ...) — 1]

<  at6 ie < a6 \e <  1 x (1.06 x lQ-70)e <  10~69.
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Likewise,

6=rexp^ 5 W 4 £ ( r i ) +62)
j=i 3

gives A 6 =  |6 — 6,| <  bt6 2e < bS2e <  1 x (1.06 x 10-70)e <  10-69. □ 

Lem m a 7 The approximation values for r, a and b are as follows:

25

r =  0.206 079 634 299 225... 

a =  0.405 548 150 115 438... 

b = 0.462 567 127 877 550... 

Proof: By the previous lemma, we can use

(59)

and

/ i ,  u , ™ B (r ’) + C(r’) s a = r exp (b +  a6 +  y .  —*——— -—-)
j=2 3

b =  rexp(a +  2a6 +  £  ^ ( rJ) + 2C(r>)  ̂
j=2 3

to calculate r, a and b with a guaranteed accuracy of 10-69. 

Solving a2b +  2ab2 +  4a6 =  1 for a, we obtain

(60)

(61)

a =
^ 62(6 + 2)2 + & + 6(6 + 2)'  

From(60) and (61), we obtain

(62)

and

r / i .  * , ™ B ( r * )  +  C ( r i )„ r =  aexp[—(6 +  06 +  2^ - .— i )J
j=2 3

6 =  a exp(a +  06 -  6 +  £
i=2 1

(63)

(64)
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The following iteration scheme converges:

ro

bo

do

ri+1

bi+i

=  0.34 

=  1

\Jbl{bo + 2)2 +  bo +  M&o +  2)

° i + l

= I[r( + o( exp[-(&, + afi, +  £  £ W > ± iiM )]]
1  j=2 3

= 2^ ' +  a«‘ eXP(a« +  «i&i -  &«+

j=2 3

lr  | 1  ,
2 /̂&?+l(&i+l +  2)2 +  6«+i +  &«+i(f>i+i+ 2 )  J

(65)

Using (65), we determine r, a and 6 up to 69 digits after the decimal point.

The next theorem appears in Harary and Palmer [11].

T heorem  6 For the function f  suppose that the following conditions are satisfied:

1.) y =  f(x )  is analytic in\x\ < xq and Xq is the unique singularity 

on the circle of convergence;

2.) I f  f(x )  =  f nxn is the power expansion of f(x )  at the

origin, then yQ =  f nx $

3.) There is a function H(x,y) which is analytic in each variable 

separately in some neighborhood of (#0, 2/0);

4 .) H(x0,yQ) =  0;

5.) H(x, f(x))  = 0 for |#| <  #0;
* 1 d H ,  . n

'  ~dy =
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V  -q~2 (voiVo)? 0 - 

Then f(x )  can be expanded about x0  :

f(x )  = f ( x 0) +  £  lk(xo -  x)k/2. 
k=l

1/  h  7̂  0, then

f n  ~

And i f l \  = 0 6ut /3 ^  0, then

* 3h(xo) 3 / 2  r{x0)~n i
fn ~  4-v/tt n5/2

Lem m a 8 Each of the functions A(x),B(x),C(x), and e(x) satisfies the condi

tions in the Theorem 6 .

Proof: We begin by showing that A(x) satisfies the conditions in Theorem

6.

Take y =  A(x) and Xq = r ; then it is easy to see that the conditions 1.) 

and 2.) are satisfied, and yo =  a.

Recall that (45) states

F(x, y, z) =  x  exp(2 +  yz + £  B(x_) + C (x  ) ) -  y
j = 2  3

n<  ̂ , £ ,A {x i)+ 2 C {x i) ,  fG{x,y,z) = xexp(y + 2yz + J2  ---- “ -) -  z
j = 2 J  )

and (48) says that

F(r, a, b) =  0 

G(r, a,b) = 0
,

where z =  B(x).

2 0 F 1 n3/2 J'
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t /-it \ i n  £ ^ A { x i ) + 2 C(xi). , ,In G[x,y, z) =  xexp(j/ +  2yz +  > —— -—:----------- -  2, observe that
j=2 J

Gz(r, a, b) =  [2j/(G +  -?)]x=r =  2ab — 1 ^ 0 .  (66)
2=b

By the implicit function theorem, there is a unique solution z = z(x,y) in some

neighborhood of (r,a) with z(r,a) = b and zy(r,a) =  — 7M -1—̂ rr-
Gz(r, o, 0)

Take

H(x, y) -  F(x, y, z(x, y)) =  x  exp(2(a;, y) + yz{x, y) +  £  ^  ) + C X̂ ) ) _  y .
j=2 J

(67)

Then the function H(x, y) is analytic in each variable separately in some 

neighborhood of (r,a); H(r,a) =  F(r,a,b) =  0; H(x,A(x))  =  0 for |m| < r; thus, 

the conditions of 3.), 4.) and 5.) are satisfied.

To show condition 6.) is satisfied, note that

0H(x, y) _  rdFjx, y, z) dF(x,y, z )d z (x ,y ) .
dy dy dz dy (68)

=  {>(*, y)[F(x, y , z{x, y)) + y] -  1} +  (1 +  y)[F(x, y, z(x, y)) +  y](:^ 1 ).

Since z(r,a) = b, Gy(r,a, z(r,a)) = Gy(r,a,b) =  262 +  &, Gz(r,a,b) = 2 a b - l ,  and 

F(r,a,z(r, a)) =  0, we have

d H i s n. ,1 /, \ r—(262 +  b).- g ^ M  = [fta _  1] + ( i  +

_  —a26 — 2a62 — 4a6 +  1
2a6 — 1 

=  0 by Lemma 4.

So condition 6.) is satisfied.
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To show condition 7.) is satisfied, note that

d2 H(x,y) _  d2F(x ,y ,z )  d2F(x,y ,z)  dz(x,y) 
dy2 dy2 dydz dy

d F (x ,y , z )d 2 z(x,y) 
dz dy2

Then we can show that (r, a) ^  0. Therefore, A (a;) satisfies all conditions in

Theorem 6.

By similar reasoning, B{x),C(x), and e(x) satisfy all conditions in Theo

rem 6. □

In view of Theorem 6, we see that in order to obtain the asymptotic formula 

for /„, we need the value of li or I3 (in the case of li =  0). Later we shall see 

that in order to get the value of /1 or I3 , the derivative f '(x)  is needed. For our 

problem we need A'(x) and B'{x). The next lemma is developed to find A'(x) and

B>{x).

Lem m a 9 The derivatives A'{x) and B'(x) take the following expressions:

(70)

(71)
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NA(x)  =  — >l(ar)[l +  B(x) — C(x) + xP’(x) — 2xC(x)P'(x)+ 

xB(x)Q,(x) + xC(x)Q'(x)\,

NB(x)  =  —B(x)[l +  A{x) +  C(x) +  xQ'(x) +  2xC(x)P'(x)+  

xA{x)P'(x) — xC(x)Q'(x)\,

j=2

Q(x) =  f )  A (x‘)+ 2 C (x’) '

(72)

(73)

(74)

(75)
j=2 

and

D(x) =  x[A2( x ) B ( x )  + 2 A ( x ) B 2(x) + 4A(x)B(x) — 1], (76)

Proof: Observe that (34) and (35) give us

A(x) =  x  exp(B(x) +  C(x) +  P(x)) (77)

and

B(x) = x  exp(j4(x) +  2 C{x) +  Q(x)). (78)

Taking derivatives on both sides of (77), we get

A'(x) =  +  A(x)(B'{x) +  C'(x) +  P'(x)). (79)
X

Recalling that C(x) =  A(x)B(x) hence we have that C'(x) =  A(x)B'(x) +

A'(x)B(x), we have, after substituting in (79) and simplifying,
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[A(x)B(ar) -  1]A'(*) +  [A2 (x) +  i4(*)]fl'(*) +  ^  +  A(x)P'(s) =  0. (80)cc

In the same fashion, when we take derivatives on both sides of (78) and 

simplify, we get

[2B2(x) +  B(x)]A'(x) + [2A(x)B(x) -  l]B'(x) +  + B(x)Q'(x) =  0. (81)X

Solving the system

[A(x)B(x) -  l]A'(x) +  [A \x)  + A(x)]B'(x) + +  A(x)P'{x) =  0 1

[2B2(x) + B(s)]A'(a;) +  [2>l(a;)B(a;) - l ] J 5 '( a;) +  ^  +  B(a:)Q'(a:) =  0 |
x )

(82)

for A'(x) and B'(x), we obtain (70) and (71). □

Before stating the next theorem, we note that we can find A"(x), B"{x),

D'(x), e'(x), e"(x), and e'"(x) simply by repeatedly using (70) and (71). Also

from (76) and Lemma 4, we see that

lim D(x) =  0. (83)
*-4 r—

Theorem  7 The numbers Ap, Bp, Cp, Ep, and ep satisfy

X , =  0.118 225 232 019 2 7 4 ^  +  O ( ^ )  (84)

Bp =  0.168 498 309 958 1 9 5 ^  +  O ( ^ )  (85)
P P
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r'-p r~p
Cp = 0.123 021 283 918 9 3 6 ^  +  (86)

Ep =  0.241 246 515 938 2 1 1 ^  +  O ( ^ )  (87)

ep =  0.256 881 825 127 0 5 1 ^ +  0 ( - ^ ) .  (88)
P JP

Proof: We have seen by Lemma 8 that A(x),B(x),C(x),  and e(x) all

satisfy the conditions in Theorem 6.

To apply Theorem 6 to the function A(x) note that (xo, yo) = (r, a), A(r) =  

a, and f(x )  = A(x). Thus A(x) can be expanded as

A(x) = a - l i ( r  — x )1/2 +  l2(r -  x) + l3(r -  x ) z / 2  + ... (89)

and if h  ^  0, then

p ~  2y/ir p3/2 (90)

So we need the numerical value for l\.

Before we go on to find this numerical value for Zi, we introduce notation

designed to suppress terms in the series that do not affect the limit. We define

oj($) as a function of 6  with the property that ^lim =  c exists; consequently,

lim u{6 ) =  0.0->o+ v ’
After differentiating (89), we have

A'(x ) = ^ h (r  -  x ) ~ l / 2  -  l2 + u>((r -  x )1/2). (91)

On the other hand, rearranging (89), we have
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a - A ( x )  = l i ( r - x ) 1 /2  + u ( ( r - x ) ) .  (92)

Hence from (91) and (92) we have

A'{x)(a -  A(a:)) =  ^  +  w((r -  *)1/2). (93)

Therefore we get

lim A\x)(a  -  A(x)) = (94)

Note that limj.^,.- (a — A(x)) = 0. At the same time observe by (70) and

(83) that lim*.*,.- A'(x) =  +oo. So by L’Hospital’s Rule, we have

lim A '{x )(a -  A(x)) = lim ^ _  iim (*0) ^
x-¥r~  x-*r~  J- x->r~ A  \X J

A'{x)

Using (70) we have

lim [A'(«)]8 _  [NA{x)ID{x)?
i m ^ r -  AU^  [ D { x ) N A ,{x) _  D '(x )N A (x )]/D*(x )

(96)

=  l i n w __________[D*(x)NA'(x) -  D{x)D'(x)NA(x)]'

Observe from (72), (70), (71) and (83) that lim*.*,.- D(x)NA'(x) < +oo together 

with lim^^r- D(x) =  0, we obtain

lim D 2(x ) N A ' ( x )  = 0. (97)
a:—►r”
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So we have
[A'{x)f ,. [NA(x) ] 2

lim =  lim r— . . . (98)
x-yr~  A"(x) z->r~  [—D(x)D'(x)\

Using (72), (76), (70), and (71) then by computing gives us

=  [a(l + b — ab + pr — 2  abpr +  bqr +  abqr)2]/

[6r (8 +  7a +  a2 +  106 +  6a6 — a26 +  262 +  2a62 +  4pr+

6 apr +  a2pr -f- 2bpr +  4abpr — 2a2bpr +  4ab2pr +  4 qr+ 

aqr +  8 bqr +  2 abqr +  a2bqr +  2 b2 qr — 2 ab2 qr)\,

where

and

Thus li is determined. Finally, we have 

h(r ) 1 /2

2 y/ir

which gives

By similar arguments we have

(99)

150
p =  Pf(r) S£ J 2 r j~l [B’(ri) +  C V ')] (100)

j= 2

150
q =  Q'(r) *  £  r , - 1[̂ 4/(r-7) +  2C'{rj )\. (101)

3=2

=  0.118 225 232 019 274..., (102)

Ap =  0.118 225 232 019 2 7 4 ^  +  O ( ^ ) .  (103)

Bp =  0.168 498 309 958 1 9 5 ^  +  ° ( ^ )  (104)

and
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Cp =  0.123 021 283 918 9 3 6 ^  +  O (jg^); (105)

consequently we have

Ep = Ap + Cp = 0.241 246 515 938 2 1 1 ^  +  O ( ^ ) .  (106)

Now we apply Theorem 6 to the function e(x). Note that e(r) =  a — a2b — 

a2b2, (xo, yo) = (r, a — a2b — a2b2) and f (x)  = e(x). Thus e(x) can be expanded as

e(x) = ( a -  a2b -  a2b2) -  mi (r — x ) l / 2  +  m2(r -  a;) + m3(r — ®)3/2 +  .... (107)

By arguments similar to what we employed previously, we get

=  lim e'(a:)[(a — a2b — a2 b2) — e(a:)]. (108)It x—yr

Applications of (70), (71) and e(x) =  A{x) -  A(x)C(x) — C 2 (x) give

e'(x) =  ^ ( ^ t 1 +  B (x ) +  xFj x )  + xB(x)Q,(x)]
x

Since all functions appearing in (109) converge as x  -> r~, we know that 

e'(x) converges to a finite value as x  -> r~. Therefore

\ rrn\ — lim e'(a;)[(a — a2b — a2b2) — e(x)] = e'(r) *0 =  0. (110)
£t x —►r*“

As a consequence, mi =  0,

e(x) = (a — a2b — a2 b2) +  m2(r — ar) +  m3(r — x )3/2 4- . . . ,  (111)
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and

e'(x) =  - m 2 — |m 3(r — x)1/2 — 2 m4(r — x) +  u>((r — x)3/2). (112)

Thus if m3 0, then we have

3 m3(r)3/2rr -p .
*■ ~  -  Irssl- (113)4 0 r  p5/2

On differentiating (112), however, we have

e"{x) =  2?n3(r — x) ^ 2 +  2m4 +  ui((r — x)1/2). (114)

On the other hand, from (109) and (112), we have

.. . a(l +  b +  rp +  rbq)— m2 =  lim e (x) =  —------------------ —.
x-Yr~

Hence from (112) and (114), we have

(115)

e"(x)(e'(x) +  m2) =  +  w((r  _  ®)1/2)- (H 6)

Therefore we get

lim [—e"(x)(e'(x) +  m2)] =  |m 2. (117)i->r" o

By (114, lim ^ r-  e"{x) =  +oo (or -oo); and by (115), limx_fr-(e'(x) +  m2) =  0. 

Then using L’Hospital’s Rule, we have

^m l = lim [—e"(x)(e'(x) +  m2)] =  lim . (118)o x-n— x->i— e ix)
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Again, using (70) and (71) repeatedly, we can find e"(x) and e"'(x). Then 

by computing, we get

g
-m§ =  [a(l +  36 +  b2  + 2pr +  2 bpr — 2abpr +  4 bqr 
8

+ 2  abqr +  2 b2qr +  p2 r2 — 2 abp2 r2 +  2 bpqr2  

+2 abpqr2 + bq2 r2 4- b2 q2r2)2]/

[6r3(8 + 7a + a2 + 106 +  6 ab — a2b +  262 (119)

+2a62 +  4pr +  6 apr +  a2pr +  2bpr +  Aabpr 

—2a2bpr + 4ab2pr +  4 qr + aqr +  8 bqr +  2abqr 

-\-a2bqr + 2 b2 qr — 2 ab2qr)].

So the numerical value for m3 is determined. Finally, we have

3m3(r)3/2 _  Q 256 8gl g25 127 Q51 ,12Q,
4 y/n '

which gives

ep = 0.256 881 825 127 0 5 1 ^  +  O ( ^ ) .  (121)
p p

□
Table 2 compares Ep and ep with the values given by (87) and (88) without 

the big-0 terms denoted by Ep and ep.

We have seen that Ep =  Ap + Cp. One interesting question to ask is what is 

the percentage of contribution of Ap (or Cp ) to Ep7 As a consequence of Theorem 

7, we have the next corollary which states that the contribution of Ap is close to 

but not quite one half for large p.

Corollary 1 For Ap, Cp and Ep we have
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Table 2

The Numerical Values of Ep , ep and Approximations (!</>< 20)

p EP EP ep

1 1 1 1 1
2 2 2 1 1
3 5 5 2 2
4 17 17 5 4
5 58 58 14 12
6 217 214 42 38
7 830 825 137 126
8 3303 3278 467 436
9 13396 13329 1668 1577
10 55501 55222 6163 5880

11 2 33196 2 32266 23400 22484
12 9 92771 9 89164 90858 87773
13 42 70258 42 56867 3 59463 3 48674
14 185 35850 184 83233 14 44592 14 05796
15 810 78383 808 71973 58 83938 57 40888
16 3570 51942 3562 21293 242 45484 237 06761
17 15816 77036 15783 06674 1009 24208 988 58678
18 70433 14680 70294 43464 4238 78271 4158 34737
19 3 15107 57851 3 14531 55614 17944 67452 17627 18453
20 14 15650 84066 14 13235 55961 76590 56373 75241 40369
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P - » o o  Eplim 4 s  =  0.490 059 852 510 180... (122)

and

p->°° Ep
Q

lim -=£ =  0.509 940 147 489 820.... (123)

We recall that the number of efficient dominating sets for a particular tree

T  (rooted or unrooted) is the number of orientations of T  which can give rise 

to an efficient dominating set. From Theorem 7 we have the following corollary 

which determines the average number of efficient dominating sets per tree among 

all trees (rooted or unrooted) of order p.

Corollary 2 Let E p be the average number of efficient dominating sets per tree 

among all rooted trees of order p, and let ep be the average number of efficient 

dominating sets per tree among all unrooted trees of order p. Then

E p =  0.548 382 241 124 567(-)p +  0(-*— )
r p (124)

and

ep =  0.480 198 176 010 462(^)p +  0 ( - J— ).
r p

(125)

In particular, we have

lim =  1.141 991 512 088 998...p->°° ep (126)

and
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hm f[¥ p =  plim ^  ^  =  1.641 704 470 457 124..., (127)

where T] =  0.338 321 856 899 208... is the radius of convergence of the counting 

series T(x) =  Tpxp for rooted trees.

Proof: By using techniques similar to that used to find Ap, Bp, and Cp, 

we are able to determine the number of rooted trees of order p for each p up to 

150. Then we determine rj with 65 digits accuracy, and consequently we get

where tp is the number of unrooted trees of order p. We notice that the last two

Tp = 0.439 924 012 571 0 2 5 ^  +  O ( ^ ) (128)

and

tp =  0.534 949 606 142 3 0 7 ^  +
P°• P*'* (129)

digits of the coefficients in the asymptotic formulas of Tp and tp in Harary and 

Palmer [11] (p213 and p214) are incorrect.

Using (87), (88), (128), and (129), we have

and

=  22 =  0.480 198 176 010 4627— +  0 ( - ^ - ) \ (131)

consequently, we have

p->°° eplim §£  =  1.141 991 512 008 998... (132)
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and

Hm t f ¥ p =  Hm t f tp =  ^  =  1.641 704 470 457 124.... (133)

□
The limit given in (126) says that, on the average, a rooted tree can give 

rise to about 14% more efficient dominating sets than an unrooted tree for large 

P-

We conclude with Tables 3 and 4. Table 3 compares ~Ep and ep with the 

approximate values Ep and §p given by ignoring the big-0 terms in (130) and 

(131) (1 <  p <  30). Table 4 gives values for |^ ,  tfWp and
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Table 3

The Numerical Values of Ep, E p , ep and ep (\<>p <, 30)

p Ep Ep ep

1 1 1 1 1
2 2 1 1 1
3 3 2 2 2
4 4 4 3 3
5 6 7 5 6
6 11 11 7 9
7 17 18 12 15
8 29 29 20 25
9 47 48 35 42
10 77 78 . 58 68

11 127 128 100 112
12 208 210 165 184
13 342 345 276 302
14 562 567 457 496
15 923 930 760 814
16 1517 1527 1255 1337
17 2491 2507 2075 2195
19 4092 4115 3422 3604
19 6721 6756 5644 5916
20 11037 11091 9296 9712

21 18125 18209 15309 15945
22 29764 29893 25195 26176
23 48875 49076 41459 42974
24 80255 80568 68197 70550
25 1 31781 1 32269 1 12159 1 15823
26 2 16382 2 17147 1 84421 1 90147
27 3 55291 3 56490 3 03200 3 12166
28 5 83367 5 85252 4 98407 5 12484
29 9 57843 9 60811 8 19207 8 41347
30 15 72686 15 77367 13 46350 13 81242
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Table 4

The Numerical Values of ApIEp,Eplep, *j~Ê  and

p Ap/Ep Ep/ep & # 7

1 1.00000 1.00000 1.00000 1.00000
2 0.50000 2.00000 1.41421 1.00000
3 0.60000 1.50000 1.44225 1.25992
4 0.52941 1.33333 1.41421 1.31607
5 0.53448 1.20000 1.43097 1.37973
6 0.51613 1.57143 1.49130 1.38309
7 0.51566 1.41667 1.49892 1.42616
8 0.50954 1.45000 1.52335 1.45422
9 0.50791 1.34286 1.53387 1.48444
10 0.50549 1.32759 1.54401 1.50087

14 0.50084 1.22976 1.57185 1.54880
18 0.49836 1.19579 1.58731 1.57162
22 0.49680 1.18135 1.59716 1.58511
26 0.49574 1.17330 1.60399 1.59416
30 0.49497 1.16811 1.60900 1.60068
34 0.49438 1.16443 1.61283 1.60562
38 0.49392 1.16167 1.61586 1.60950
42 0.49355 1.15952 1.61831 1.61262
46 0.49324 1.15779 1.62034 1.61519
50 0.49298 1.15638 1.62204 1.61734

60 0.49249 1.15375 1.62531 1.62144
70 0.49214 1.15194 1.62765 1.62436
80 0.49188 1.15061 1.62940 1.62655
90 0.49168 1.14959 1.63077 1.62824
100 0.49151 1.14879 1.63186 1.62960
110 0.49138 1.14814 1.63275 1.63070
120 0.49127 1.14761 1.63350 1.63162
130 0.49118 1.14716 1.63413 1.63240
140 0.49110 1.14678 1.63467 1.63307
150 0.49103 1.14645 1.63514 1.63365

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



CHAPTER III

EFFICIENT DOMINATING SETS IN LABELED ORIENTED TREES

For labeled trees, the problem of finding the number of efficient dominating 

sets among all rooted trees of order p and the problem of finding the number of 

efficient dominating sets among all unrooted trees of order p are equivalent. This is 

because each labeled unrooted tree can be rooted in exactly p ways; consequently, 

if the number of efficient dominating sets among all labeled rooted trees of order 

p  is divided by p, the result is precisely the number of efficient dominating sets 

among all labeled unrooted trees of the same order p.

The tool used to do the counting is three interrelated exponential gener

ating functions, and the technique used to derive the exact formulas is based on 

the Multivariate Lagrange Inversion Formula.

3.1 Generating Functions

In order to enumerate efficient dominating sets in labeled rooted trees we 

introduce four exponential generating functions. The definitions of these four 

exponential generating functions are similar to those of four ordinary generating 

functions in Chapter II.

We let

A(x) = J ^ A pxp/p\ (1)
p=i

be the exponential generating function in which Ap is the number of efficient 

dominating sets among all labeled rooted trees of order p which have the root in

44
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the dominating set. (The root is dominated by itself.)

Let

C M  = f ; C pxr/p< (2)
P=1

be the exponential generating function in which Cp is the number of efficient 

dominating sets among all labeled rooted trees of order p which have the root 

dominated by one of its children. (The root is dominated from inside.)

We let the third series be

B (X) = ' £ B pX-/pl. (3)
p =  1

In this series, Bp counts sets of which the root is dominated from outside. 

We refer to this case as the root being “dominated from outside”.

For convenience we introduce a fourth series.

Let

E (x) =  £  Epxp/p\ (4)
p=i

be the exponential generating function in which Ep is the number of efficient 

dominating sets among all labeled rooted trees of order p and we have

E {x )= A {x)  + C(x). (5)

3.2 Functional Relations for the Counting Series

Our object is to find an analytic formula for the number of efficient domi

nating sets among all labeled rooted trees of order p. In the previous section we
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saw that this number is equal to Ap + Bp. We first find the functional relations 

among A(x), B(x) and C{x) and then use the Multivariate Lagrange’s Inversion 

Formula to find the analytic formulas for Ap, Bp and Cp. Based on the definitions 

of four exponential generating functions, we have the following theorem:

Theorem  8 For the functions introduced in (1), (2) and (3), the following equa

tions hold:

Proof: The idea to prove this theorem is similar to that we used to prove 

Theorem 3 in Chapter II.

By the similar arguments in the proof of Theorem 3, we obtain the following 

structure of labeled rooted trees of type A , type B  and type C.

For labeled rooted trees of type A, any branch of type A  is invalid. On the 

other hand it can have any number of branches of type B  if the edge is oriented 

from the root of the tree to the root of the branch, and it can have any number 

of branches of type C if the edge is oriented from the root of the branch to the 

root of the tree. See Figure 7.

This allows us to deduce the following equation for A(x) :

A(x) =  ®exp[B(a;) +  C(a:)] (6)

B(x) = xexp[J4(a:) +  2 C(x)\ (7)

C(x) =  A(x)B(x). (8)

(9)
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Figure 7. The Structure of Labeled Rooted Tree of Type A.

In this expression, the factor x  accounts for the root. Each allows 

for n branches of type B. And similarly, each allows n branches of type C. 

Thus the structure shown in Figure 7 leads us to equation (9), which immediately 

gives (6).

For labeled rooted trees of type B, any branch of type B  is invalid. It can 

have any number of branches of type A  if the edge is oriented from the root of the 

tree to the root of the branch, and it can have any number of branches of type C 

whose edge can be oriented in either direction. See Figure 8.

Figure 8. The Structure of Lebeled Rooted Tree of Type B. 

So we get

rn n\n=0 n=0
(10)
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which yields (7).

For labeled rooted trees of type C, it must have precisely one branch type 

A, and the rest of it must be a  labeled rooted tree of type B. Also the edge must 

be oriented from the root of the branch to the root of the tree of type B. See 

Figure 9.

Figure 9. The Structure of Labeled Rooted Tree of Type C.

Thus we have

C(x) =  A(x)B(x). (11)

3.3 Analytic Formulas for Labeled Rooted Trees

We have seen from the previous section that the four exponential generating 

functions satisfy the following equations:

A(x) =  x  exp[£(x) +  C(x)] (12)

B(x) =  xexp[A(x) +  2 C(x)] (13)
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C(x) = A(x)B(x) (14)

and

E(x)  =  A{x) +  C{x). (15)

We first find analytic formulas for the coefficients of Ap and Bp\ then using (14) we 

can find the coefficients of Cp. Finally, we are able to find Ep, which, we recall, is 

the number of efficient dominating sets among all labeled rooted trees of order p. 

The technique we use is based on the “Multivariate Lagrange Inversion Formula” . 

Letting u =  A(x)t v =  B(x), from (12), (13) and (14) we have

Some notation is needed prior to  stating the next theorem.

Let i?[(u, u)] =  (X,-j Ciju'vi | c,j e  R ,i  > 0, j  > 0} be the collection of all 

double power series with real coefficients; let i2[(«,n)]i =  { / € i?[(u, v)] | / ( 0, 0) ^  

0} be the subset of iZ[(«, u)] with the property that each member of i?[(«, u)]i has 

nonzero value at the point (0, 0).

Another notation is also very standard. Let f(u , v) =  £,-,j cyuV  be any 

double power series, then [«V ]/(b ,«) extracts the coefficient of a V  so that 

[uV ]/(« , v) =  Cij, for example, [u%v*]e2u~v = The following theorem ap

pears in Goulden and Jackson [8] :

Theorem  9 (Multivariate Lagrange) Let v), (^(u, v) € i?[(u, v)]i, and sup

pose

v = xe

u = xt v+uv

,u+2ut>
(16)

U =  t\<f>i(u,v)

V = t2<h{u, v)
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Then

where

u(ti,t2) =  E<jti<i[tt*v*]{u^(u,v)4£(u,v)A}

v t fu h )  = E i j t [ t 12 [uivi]{v<f)\(u,v)4P2 (u,v)A}  

u d<j> i (u, v) —v d<t>\{u,v)

A =

1 -
<f>i(u,v) du 

—u d<f>2 (u, v)
4>2 {u,v) du 

For our problem we have

1 -

0i (u, v) dv

v dfcju, v) 
(j>2 {u,v) dv

u =  ti<f>i(u,v)

v = t2 M u,v)

where

(18)

(19)

(20)

t\=t2 = X

<j>i(u,v) = ev+uv ‘ • (21)

<h{u,v) =  eu+2uv

So the conditions in Theorem 9 are satisfied, u(ti,t2) = u(x) =  A(x), and 

v(ti, t2) = v(x) = B(x).

Note that
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A =

1 -

- u  dfaju, v) 
<f>2 (u,v) du 1 -

v dfaju, v) 
<k(u,v) dv

1 —uv —v(l +  u)

-u(l +  2 v) 1 — 2  uv

(22)

=  1 — 4 uv — u2v — 2 uv2,

which gives

A(x) =  X iV [« V ']{ « (e ”+,,7 '(e”+27 ' ( l  -  4uv -  u2v -  2m;2)}. (23)

Making the substitution p = i -f j ,  we find that

A(x) =  f > p X [u ,^ - ']{u (eu+u,,),'(eu+2uu)p- '( l  -  4uv -  u2v -  2uv2)}. (24)
p=0 t=0

That is,

A(x) =  f > p £ >  V " ’’]{(et'+uu) '( e u+2ut’)P - ' (u _  A u 2v  -  u3v -  2u2 v2)}. (25)
p= 0 <=0

Similarly, we have

B{x) =  f > p f [ « V - i]{(e,'+"7'(e"+2u7 - i(!) -  4 uv2 -  u2 v2 -  2m;3)}. (26)
p=0 i=0
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Thus we have following formulas for the coefficients Ap and Bp :

Ap/P! = f > V - ,]{(ew+u7'(eu+2uu)p- <(u -  4v?v -  u3v -  2u2v2)} (27)
i=0

Bp/p\ =  ^ 2 [u*wp-i]{(et’+uw)' (e“+2ut’)P- <(v -  W  -  u2v2 -  2m;3)}. (28)
i=0

Because of the factor of u — 4u2v — u3v — 2 v?v2 in (27), we see that

p=o

A 0 =  ^ [ u ,wp- ,']{(eu+ut'), (eu+2u,J)p- >  -  4u2v -  u3v -  2u2 v2)} =  0. (29)
«=o

Similarly, we have 

p=o
B 0 = ^ [ u ^ p-]{ (et,+uu),(eu+2u,')p- ,'(u -  4uv2 -  u2v2 -  2m;3)} =  0. (30)

«'=0

So A q =  0 and Bq =  0. Observe that

p = i
A i / 1 \ =  ~  4u2v -  u3v -  2u V )}  =  1 (31)

i=0

P=1
Bi/1! = £ > V -'K (e”+u7 > u+2u,J)p“>  -  4uv2 -  u2v2 -  2m;3)} = 1, (32)

t= 0

so A\ =  1 and B\ =  1.

Observe that for p >  2, and i =  0 or i =  p,

[u0̂ - 0]{(eu+u*’)0(e“+2ut')p_0(u -  4 u 2v  -  u3v -  2u2v2)} =  0 (33)
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and

[upvp-P]{ (ev+uv)p{eu+2uvy~p(u -  4v?v -  uzv -  2uV)} = 0 . (34)

So for p > 2, we have

p - i

Ap/P! = £ [« ,V - ,']{(ew+u7 V +2“y _<(« “  4«2w -  u3v -  2«V)}. (35)
t=i

Likewise, for p  >  2 we have

p - i

Bv/P! = V +2uy ~ ‘'(<' “  4«v2 -  uV  -  2uv3)}. (36)
i= l

Putting all these observations together we have

A(x) =  x  +  ]T  Apxp/p\ (37)
p = 2

and

B ^ a r d - f ^ / p ! ,  (38)
P=2

where

p - i

VP* = E [u,wP",]{(et’+Ut’)‘(eU+2ui,)P",'(w “ 4u2v -  u3u -  2uV)} (39)
i= l

and

p - i

Bp/P! = E [ u V - ,']{(ew+“7 (eu+2u*’)',- ‘'(v “ 4w>2 -  uV  -  2ui>3)}. (40)
«=i

Note that if F(u, v) = Fmnumvn is any double power series, then we have
m ,n

[umun]{F(«,w)uV'} =  [uTn-,un_,]F(u,i;). (41)
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Form this observation we see that, essentially, we need to find a formula for

[um vn) {(ev+uv)* (eu+ 2u")P_ *}. (42)

To find a formula for (42), we use the tool based on Taylor expansion in

two variables. Suppose that the function F(u, v) can be expanded as a double

power series at the origin (0,0) :

F ( u , v ) = '£ F mnumv \  (43)
m,n

Then we know that the coefficient Fmn can be determined as follows:

Fmn =  [umvn]F(u, v) =  (0,0). (44)

For our problem we have

F{u, V) =  _  eHu,v)̂  (45)

where
/(« , u) =  (v +  uv)i +  (u +  2 uv)(p — i)

= (p — i)u + iv + uv(2 p — i).

We first find F um „ n ( 0 ,0 ) .  Taking the derivative with respect to v we have

(46)

Fvn =  ef ^ { i  +  u(2p -  i)}n. (47)

Then taking the mth  derivative with respect to u and using binomial formula for
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derivatives give us

F um v n =  ^ 2  { e f t U,V) } um - k { ( i  +  1 i ( 2 p  -  * ) ) ” }„ *  
k=0 KK/

m in{m ,n) . .

=  ( u ) {e^u’w)}{(P ~  0  +  u(2P — *)}m-fc X
fc=0 '  '

n{n — l)...(n — k +  !){(* 4- u(2p — i))n~k(2p — i)fc} .

Evaluating Fumvn at the point (0,0) gives

m in{m ,n} /  . .

F“" ”’ (0'0) =  £  ( k ) ^ - i r ~k'< ^ k ) i . in~k(2p - i)k

milf r n} (2P -  i)k(p -  i)m~k in~k
' ” k\(m — k)\(n — k)\

Thus we obtain

j  m in{m ,n} / n  _  ; \ k ( n ___________,'n -fc

w « ‘̂ ) = ^ - . ( o ,o ) =  g  .

Now from (39), (41) and (45) we have

p - i  p - i

-<4p/p! =  53[u,- 1up-‘]F(u,y) — 453[u,-2vp- ,- 1]F(u,u)
i=i i=i

p - i  p - i

— ^ [ u ,-3yp-,_1]F(u, v) — 2  53[u,-2yp-,_2]F(u, v)
» = i i = i

(49)

(50)

(51)
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Discarding the terms with the value of zero we have

p - 1 p - i
Ap/p\ =  ^ [ u ,-1vp-']F(u, v) — 4 ̂ [ u ,-2wp-i_1]F(u, v )

i=1 <=2
(52)

P - I  P - I
— ^ [ u ,-3up-,“1]F(u, v) — 2 5^[u,-2up_i- 2]F(u, v).

i=3 i=2

Finally, using (50) and discarding the terms with the value of zero we have 

.  /o i =  V  (2P ~  i)k(p ~  »)f- X- fe
plP’ h  h  m - i - k ) \ { p - i - k ) \

p -1  m in t .-^ p — i—1} ( 2 p  _  i)k{ j>  _  .) t - 2- fc • p - . - l - f c

^2 h  k \ ( i - 2 - k ) \ { p - i - l - k ) \

p - 1 m in { i- ^ p - i—1} ^  _  i ) f _ 3 - f c  - p - i - l - f c  (5 3 )

h  h  k \ ( i - z - k ) \ { p - i - i - k ) \

p - 2 m in { i--2 jp - i-2 }  _  -)fc (p  _  . y - 2 - f c  j p - , - - 2-fc

^  ^  * ! ( * - 2 - f c ) ! ( p - i - 2 - f c ) ! '
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Similarly, we have

p - l  m in{i,p—i—1} / „  _  .Vfc/ _  -W-jfe . p - i - 1-

5 P/p! =  E  E  } (p }
* T 0 fc !( i  — fc )! (p  — i  — 1 — fc)!

p - 2 ( 2 p  _  -)fc (p  _  ^ p - j -2 - fc

h o  k \ ( i - l - k ) \ ( p - i - 2 - k ) \

p - 2 min{i‘—2^p—»—2} ( 2 y  _  -)fc (p  _  •) , - 2 - f c  j p - i - 2 - k

hi ho fcK* -  2 -  k)\(p - i - 2 - k ) \

(54)

p -3  tn in fi—l^ p -t-3 }  ^  _  f)fc(p  _  - y - l - f c  -p - i-3 - fc

j^o fc!(* — 1 — fc)!(p —i — 3 —fc)!’

Formulas (53) and (54) allow us to compute Ap and Bp, then using (14) we 

can determine Cp. Finally, we can determine the number of efficient dominating 

sets among all labeled rooted trees of order p, which is Ep = Ap + Cp. We use (53) 

and (54) to determine Ep for each p up to 45. Results of the computations for 

Ap, Bp, and Ep for each p up to 30 are reported in Tables 5, 6, and 7.

3.4 Asymptotic Analysis

Although formulas (53) and (54) permit us to determine the number of 

efficient dominating sets among all labeled rooted trees of order p for each p, they 

do not tell us the asymptotic behavior of the number of efficient dominating sets. 

In particular, they cannot tell us whether the pth root of the average number of 

efficient dominating sets per labeled rooted tree has a limit, in other words does 

limp-foo ppp- i exist? And if it exists, what is the limit?

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm issio n .



58

Table 5

The Numerical Values of Ap ( l£ p  < 30)

p A p

1 1
2 2
3 15
4 184
5 3025
6 65016
7 16 90759
8 520 76480
9 18474 67521
10 7 42757 60800

11 333 60397 40671
12 16557 64670 11968
13 8 99897 92688 90065
14 531 54835 71151 92704
15 33905 40418 13137 97175
16 23 22693 14681 67927 13216
17 1700 77818 38345 84011 52641
18 1 32565 44053 30551 73350 73280
19 109 58364 83612 18672 57433 06991
20 9575 83929 85744 36499 24125 44000

21 8 81973 32093 58057 70892 92154 61201
22 853 96499 76565 09336 86558 13349 35552
23 86715 71947 61985 46413 47804 74353 53575
24 92 14879 45372 00863 49618 24968 17601 08544
25 10227 23091 60612 89110 67156 22779 66441 70625
26 11 83360 18654 66379 19441 55786 57636 73821 42976
27 1425 09259 93483 48960 04543 61062 81678 00042 91039
28 1 78348 22932 01662 10710 33624 65147 02973 36517 42720
29 231 61990 30183 02434 85692 58406 88566 44290 29799 45041
30 31173 83324 96609 85192 17163 02189 81667 34014 28992 00000
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Table 6

The Numerical Values of Bp (l<,p <, 30)

p BP

1 1
2 2
3 21
4 232
5 4105
6 87336
7 23 06269
8 712 64768
9 25416 96273
10 10 25246 15200

11 461 86252 08901
12 22978 39234 22208
13 12 51422 42191 48249
14 740 47562 48589 29792
15 47303 46916 11296 45325
16 32 44806 19350 94643 75296
17 2378 75321 55213 89915 93761
18 1 85600 92590 51475 81262 23872
19 153 65534 62054 13972 86733 60373
20 13430 34598 07609 97858 17477 12000

21 12 37916 23615 90349 22212 13608 49321
22 1199 42059 50809 01260 32423 31057 95072
23 1 21870 60548 40403 76459 61498 26520 41661
24 129 57996 25489 71351 30995 71775 33996 72832
25 14389 09221 75559 48257 17727 94368 34066 80625
26 16 65719 35340 58136 88317 37594 89282 07089 90976
27 2006 88218 27298 23109 75165 78436 64177 74824 23589
28 2 51262 43552 27165 33396 86170 97822 26640 76196 57728
29 326 43905 90231 86902 76870 97191 10420 31310 79338 97593
30 43951 39799 04190 54381 09758 19094 95401 27900 80512 00000
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Table 7

The Numerical Values ofEp (\<p £ 30)

p Ep

1 1
2 4
3 27
4 352
5 5825
6 1 26576
7 33 13723
8 1025 78176
9 36536 53473
10 14 73515 92000

11 663 53182 81691
12 33003 32303 55456
13 17 96963 58654 93793
14 1063 06989 80225 06752
15 67900 18964 88223 06875
16 46 56970 92536 07545 89696
17 3413 56938 30917 65759 21217
18 2 66311 88192 89294 09738 35264
19 220 32456 32737 66238 19285 44923
20 19267 04366 72894 29029 01657 60000

21 17 75759 02142 45706 84327 43476 26241
22 1720 41209 17698 20911 79727 43549 29664
23 1 74795 81919 29745 60163 46101 78109 55067
24 185 84184 58175 96037 64102 88083 80273 13152
25 20635 49228 67235 04411 01747 45646 45413 90625
26 23 88696 51407 05492 17156 45527 75427 88544 75776
27 2877 79884 59348 05625 56047 36559 45333 09034 88603
28 3 60285 72290 66541 12755 34425 62717 99104 40206 99136
29 468 06254 69035 67027 68320 17988 67917 85790 61064 82273
30 63017 03575 44228 46319 17768 56061 94786 70985 72800 00000
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In order to find the asymptotic formulas, we first prove several lemmas. 

The first lemma allows us to treat each generating function A(x), B{x), C(x) and 

E(x) as an analytic function. Some of these lemmas are parallel to those in 

Chapter II.

Lem m a 10 The power series A(x), B(x) andC(x) all have radius of convergence 

greater than l / ( 2e).

Proof: Recall that Theorem 2 says that the number of efficient dominat

ing sets for a labeled tree T  of order p is bounded above by 2P_1. As a consequence, 

the number of efficient dominating sets among all labeled rooted trees of order 

p is bounded above by 2P-I(ppp-2), where ppP~ 2 is the number of labeled rooted 

trees of order p. So each of Ap, Bp, and Cp is bounded above by 2p_1(ppp~2).

Now let r„, r*,, rc denote the radius of convergence for each of the series 

A(x),B(x)  and C(x), respectively. Then by Stirling’s Formula we obtain

1 ^  1 1 1ra —___  r ^  i — > —>■ — -  . (55)
Hm (Mp/p! Um^ ( 2p- 1ppp- 2)/p! 2 limtfpp/p] 2e

In the same fashion we get

n  > l/(2e) and n  > l/(2e). (56)

□

Lem m a 11 The power series A(x),B(x) and C(x) have the same radius of con

vergence.

That is r  = ra = rb = rc.
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Proof: Prom

A(x) = xexp[B(x) +  C{x)\, (57)

it follows that ra <  n  and ra < rc, and from

B(x) =  a;exp[A(a;) +  2 C{x)], (58)

we have rb < ra and r& < rc. Further, from

C(x) = A(x)B(x), (59)

it is easy to see that rc < ra and rc < r

All these inequalities together imply

r = ra = n  = rc. (60)

□

Lem m a 12 The limits of A(x),B(x) and C(x) as x  —► r~ exist and are equal to 

A(r),B(r) andC(r), respectively. Consequently, A(x),B(x) andC(x) each has a 

unique singularity a tx  = r on the circle of convergence.

Proof: Since A{x) satisfies the functional equation (57), it follows that

for all x  in (0, r),

log(A(x)/a:) =  B(x) +  C(x) > C(x).

Prom this it follows that
C{x)/x < 1 

log (A(z)/x) — x '

(61)

(62)
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Note that C(x) = A(x)B(x); so we have

fyz-x (MX)/*) < I
log(A(x)/x) ~  x '   ̂ ^

Hence A(x) and B(x) are both bounded above on the interval (0,r). Since A(x) 

and B(x) are both monotone increasing with respect to x, the left limits at r  must 

exist and we have

a =  lim A(x) =  A(r) (64)
x -f r

b =  lim B(x) =  B(r) (65)

c =  lim C(x) =  lim A(x)B(x) =  A(r)B(r) =  ab. (66)
x—>r~ x-Vr-

□

Lem m a 13 For the series A(x) and B(x), the following equality holds:

a2b +  2 ab2 + 4 ab =  1. (67)

Proof: We first define the complex valued functions F(x, y, z) and G(x, y, z), 

where x, y and z are considered as a complex variables:

F(x, y, z) =  x exp {z + y z ) - y  

G(x, y,z) = x  exp (y +  2yz) -  z 

Then by similar arguments in the proof of Lemma 4 we can show that the deter-

(68)
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minant
Fy F2 

Gy G z

at the point (r, a, b) must be zero. Hence we have

Fy Fz z{F +  y) -  1 (1 + y){F + y)

Gy G z
x= r
y=a
2T=6

(l +  2z)(G +  *) to + i I—* x= r
y=a
z—b

ab — 1 a2 + a 

2b2 + b 2 ab — 1

=  — a2b — 2ab2 — 4ab +  1.

Letting — a2b — 2ab2 — 4ab +  1 =  0, we get a2b +  2ab2 + 4ab =  1. □ 

Lem m a 14 Approximation values for r, a and b are:

r = 0.211 786 319 502 999... 

a =  0.405 691 735 408 684... 

b = 0.462 417 002 919 618...

(69)

Proof: Taking the limit as x r~ on both sides of (57), (58), and noting 

that c =  ab give us

a = r exp [6 +  a&] (70)

and
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6 =  r  exp[a +  2a6]. (71)

Solving a26 +  2a62 +  4ab =  1 for a, we get

a =  a(b) =  ■■ ,  , (72)
^ 62(6 + 2)2 + 6 + 6(6 +  2)

where a(6) is the function of 6 defined by (72). 

From(70) and (71) we get

r = a exp[- (6 + ab)] (73)

and

6 =  a(b) exp[a(6) +  a(6)6 — 6]. (74)

Newton’s Method is used to find the root of (74) with 80 digits; this root is 

the value of 6. Substituting 6 back to (72) we get the value for a; and substituting 

a and 6 back to (73) we get the value for r. □

Lem m a 15 The functions A(x), B(x) and C(x) all satisfy the conditions in The

orem 6  of Chapter II.

Proof: We start to show A{x) satisfies the conditions in Theorem 6.

Recall that (68) states that

F{x , y,z) = x exp[2 +  yz] -  y I 

G{x, y ,z) = x  exp[y +  2yz] -  z J
In the equation G (x,y,z) = x exp[y +  2yz] — z, observe that Gz(r,a,b) =  

2o6—1 7̂  0. By the implicit function theorem, there is a unique solution z =  z(x, y)
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in some neighborhood of (r,a) with z(r,a) =  b and zy(r, a) =  — fv •
Gz[r, a, b)

Taking

H(x, y) = F(x, y , z(a:, y)) =  a; exp[2(z, y) +  yz(x, 2/)] -  y , (75)

we can show that A(x) satisfies all conditions in Theorem 6.

By similar reasoning, B(x) and C(x) also satisfy all conditions in Theorem

6. □
To obtain the asymptotic formula for /„ in Theorem 6 we need the value 

of li\ in order to get the value of l\ the derivative f'(x )  is needed. For our problem 

we need A'(x) and B'{x). The next lemma is developed to find A'{x) and B'{x).

Lem m a 16 The derivatives A'(x) and B'(x) give us the following expressions:

^  (77)

where

and

NA(x) = —A(x)[l + B (x )—A(x)B(x)\, (78)

NB(x) = -B (x )[ l + A{x) + A{x)B(x)] (79)

D(x) — a;[A2(a:)B(a;) +  2 A(x)B 2 (x) +  4 A(x)B(x) — 1]. (80)

Proof: Recalling that (57) and (58) give us
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A(x) =  x exp[B(x) +  C(a;)] (81)

and

B(x) =  x  exp[i4(x) +  2 C(x)]. (82)

Taking derivatives on both sides of (81), we get

A \x )  =  ^  +  A{x)[B'{x) +  C'(x)], (83)
00

and recalling C(x) = A(x)B(x) hence C'(x) =  A(x)B'(x) + A'(x)B(x), by substi

tuting in (83) and simplifying, we have

[A(x)B(x) -  l]A!{x) +  [A2 (x) +  A{x))B'{x) +  ^  =  0. (84)
x

In the same fashion taking derivatives on both sides of (82) and then sim

plifying, we get

[2B 2 {x) +  B(x)]A'(x) +  [2A(x)B(x) -  l]5'(:r) +  ^  =  0.
x

Solving this system

[A(x)B(x) -  l]A'(z) +  [A2(x) +  A(x)]B'(x) + ^  =  0
XB(x) (85)[2B2 (x) + B{x)]A'{x) + [2A {x)B {x)-l]B ’{x) + ^ -  =  0

x

for A’(x) and B'(x) gives (76) and (77). □

Note that we can find A"(x), B"(x) and D'(x) by using (76) and (77). Also
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from (80) and Lemma 13 we see that

lim D (x) =  0. (86)
x —>r“

Theorem  10 The numbers Ap, Bp, Cp and Ep, satisfy

r~P r ~ P
Ap/p\ =  0.114 598 043 314 0 9 1 ^  +  O ( ^ )  (87)

Bp/p\ =  0.163 253 135 017 7 9 1 ^  +  ° ( ^ )  (88)

Cp/p\ =  0.119 222 531 386 0 3 0 ^  +  O ( ^ )  (89)

Ep/p\ =  0.233 820 574 700 1 2 1 ^  +  O ( ^ ) .  (90)

Proof: We have seen by Lemma 15 that A(x),B (x) and C(x) all satisfy 

the conditions in Theorem 6.

To apply Theorem 6 to the function A(x) note that (#0, yo) = (r, a), A(r) = 

a, and f(x )  = A(x). Thus A(x) can be expanded as

A(x) =  a -  li(r — x ) l / 2  +  l2{r -  x) + l3(r -  x)3/2 + ... (91)

and if h ^  0, then

So we need the numerical value for l\. Recall that u(0) is a function with

the property that lim = c exists. o_»o+ 0
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On differentiating (91), we have

On the other hand rearranging (91) we have

a — A{x) =  h(r — x)ll2 + u((r - x ) ) .  (94)

From (93) and (94) we have

A’(x)(a -  A(x)) =  +  w((r -  *)1/2). (95)

Therefore we get

lim A'(x) (a -  A(a;)) =  (96)
¥r 2*

Note that limz_>r- (a — A(x)) =  0. At the same time observe from (76) and 

(86) that lim*-*,.- A'{x) — +oo. So by L’Hospital’s Rule we have

lim A!(x){a -  A(x)) =  lim —— d i f l l  =  Hm (97)
x - r r -  x-¥r~ 1 x->r~ A ! [ X )

A'(x)

Using (76) we have

l im  M *)]8 -  Hm [ i V A ^ / D ^ ) ] 3
1_>r" A"{x) ^ r" [D {x)N A '(x)-D '(x)N A (x)\/D 2(x)

(98)
[JVA(a;)]3=  lim ^,.-

[D*(x)NA>{x) -  D (x)D '(x)NA{x)\'

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow ner. Further reproduction  prohibited w ithout p erm issio n .



70

Observe from (78), (76), (77) and (86) that

lim D2 (x)NA'(x) = 0. (99)
-r-4r" '  '

So we have 

Using (78), (80),

.. [yl'(a;)]3 v [JVA(a;)]2 , x
hm ■ =  lim 7 r-> / v n ,/ (100)

* -» r -  A"{x) x - f r -  \—D{x)D'(x)\ '

(76), (77) and by computing, we have

ii?  =  [e ( l+& -«(.)*]/

[6r (8 +  7a +  a2 +  106 +  6a6 -  a26 +  262 +  2a62)].

Thus li is determined. Finally, we have 

h{r) l/2

which gives

J* P P

and

(101)

=  0.114 598 043 314 091..., (102)

Ap/p\ =  0.114 598 043 314 0 9 1 ^  +  O ( ^ ) .  (103)

By similar arguments we have

Bp/p! =  0.163 253 135 017 7 9 1 ^  +  O( )̂ (104)

Cp/p! = 0.119 222 531 386 0 3 0 ^  + 0 ( ~ ) .  (105)
P P
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Consequently we have

Ep/p\ =  Ap/p\ +  Cp/p\ =  0.233 820 574 700 121^  +  O ( ^ ) .  (106)

□
So, the number of efficient dominating sets among all labeled rooted ori

ented trees, which is Ep, satisfies the following equation:

Ep =  p! [0.233 820 574 700 1 2 1 ^  +  O ( ^ ) ] ,  (107)

and the number of efficient dominating sets among all labeled unrooted oriented 

trees, which is Ep/p, satisfies the equation

Ep/p  = ( p -  1)![0.233 820 574 700 1 2 1 ^  -I- 0 ( ^ ) ] .  (108)

Table 8 compares Ep with the values given by (107) without the error terms 

denoted by Ep.

As a consequence of the above theorem we have the next corollary which 

states the percentage of contribution of Ap to Ep in this version.

Corollary 3 For Ap, Cp and Ep we have

and

lim 4^  =  0.490 111 032 620 054... (109)p->°° Ep 7

lim ^  =  0.509 888 967 379 946.... (110)
p-KX> Ep  '  ’
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Table 8

The Numerical Values of Ep and Approximations (!</?< 20)

p Ep Ep

1 1 1
2 4 4
3 27 28
4 352 349
5 5825 5890
6 1 26576 1 26941
7 33 13723 33 29514
8 1025 78176 1029 40208
9 36536 53473 36660 70940
10 14 73515 92000 14 77973 76635

11 663 53182 81691 665 38419 35629
12 33003 32303 55456 33088 18775 60932
13 17 96963 58654 93793 18 01255 29827 06998
14 1063 06989 80225 06752 1065 43848 20339 51208
15 67900 18964 88223 06875 68041 97322 08841 02670
16 46 56970 92536 07545 89696 46 66119 89644 78480 41452
17 3413 56938 30917 65759 21217 4319 90076 25730 46271 86618
18 2 66311 88192 89294 09738 35264 2 66779 66966 46703 86671 63197
19 220 32456 32737 66238 19285 44923 220 69209 86342 56224 57994 93452
20 19267 04366 72894 29029 01657 60000 19297 64376 43587 22098 68331 83774

to
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We notice that these two ratios are very close to the ratios of Corollary 1 

in Chapter II.

From Theorem 10 we have the following corollary which determines the 

average number of efficient dominating sets per labeled tree (rooted or unrooted) 

among all labeled trees (rooted or unrooted) of order p.

Corollary 4 Let Ep be the average number of efficient dominating sets per tree 

among all labeled rooted trees of order p and let ep be the average number of 

efficient dominating sets per tree among all labeled unrooted trees of order p. Then

p![0.233 820 574 700 1 2 1 ^  +  0(C)]
B, = -h------------------- ^ ( H D

in particular we have

lim {[e ~p =  lim t/¥p =  — =  1.737 031 183 292 427.... (112)p->00 V r p—>00 V v er

Proof: Since there are pp? ~ 2 labeled rooted trees of order p and there

are pp ~ 2 labeled unrooted trees of order p, using (107) and (108) we quickly get 

(111). From (111) and using Stirling’s Formula again we have

lim t f K  =  lim fl¥p =  lim (  —  = — = 1.737 031 183 292 427....
p—► oo “ p—>oo V p —>oo y pP fP  gp

Note in Corollary 2 that the pth root of the average number of efficient 

dominating sets per tree among all unlabeled rooted trees of order p is 1.641 704..., 

which is smaller than 1.737 031.... □

We conclude with Table 9 which gives values for ^  and f[E~p (1 <  p <

45).
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Table 9

The Numerical Values of APIEP, Cp/Ep and %[e ^

p AplEp Cp!Ep f a
1 1.0 0 1.
2 0.5 0.5 1.414 213 562
3 0.555 555 555 6 0.444 444 444 4 1.442 249 570
4 0.522 727 272 7 0.477 272 727 3 1.531 407 157
5 0.519 313 304 7 0.480 686 695 3 1.562 727 240
6 0.513 651 877 1 0.486 348 122 9 1,591 961 348
7 0.510 229 430 8 0.489 770 569 2 1.611 031 361
8 0.507 676 018 7 0.492 323 981 3 1.626 215 638
9 0.505 649 354 7 0.494 350 645 3 1.637 984 160
10 0.504 071 654 7 0.495 928 345 3 1.647 538 163

11 0.502 770 115 8 0.497 229 884 2 1.655 400 849
12 0.501 696 349 9 0.498 303 650 1 1.661 997 363
13 0.500 788 070 3 0.499 211 929 7 1.667 607 244
14 0.500 012 612 6 0.499 987 387 4 1.672 437 170
15 0.499 341 818 6 0.500 658 181 4 1.676 638 974
16 0.498 756 205 3 0.501 243 794 7 1.680 327 700
17 0.498 240 402 6 0.501 759 597 4 1.683 591 882
18 0.487 782 673 4 0.502 217 326 6 1.686 500 806
19 0.497 373 723 3 0.502 626 276 7 1.689 109 462
20 0.497 006 155 4 0.502 993 844 6 1.691 462 050

22 0.496 372 352 7 0.503 627 647 3 1.695 536 329
24 0.495 845 239 4 0.504 154 760 6 1.698 941 948
26 0.495 399 972 2 0.504 600 027 8 1.701 831 013
28 0.495 018 864 1 0.504 981 135 9 1.704 312 750
30 0.494 688 981 7 0.505 311 018 3 1.706 467 623

33 0.494 269 684 6 0.505 730 315 4 1.709 215 611
36 0.493 920 744 5 0.506 079 255 5 1.711 510 246
39 0.493 625 824 7 0.506 374 175 3 1.713 455 162
42 0.493 373 282 6 0.506 626 717 4 1.715 124 643
45 0.493 154 597 0 0.506 845 403 0 1.716 573 328
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CHAPTER IV

TREES WITH THE MAXIMUM NUMBER OF EFFICIENT DOMINATING
SETS

4.1 Introduction

In Chapter III we obtained analytic formulas for counting the number of 

efficient dominating sets among all labeled (rooted or unrooted) trees of order p.

The number of efficient dominating sets for a particular labeled tree T  

(rooted or unrooted) is the number efficient dominating sets among all orientations 

of T, denoted by e(T). We know that there are ppp ~ 2 labeled rooted trees of order p 

and that there are j f ~ 2 labeled unrooted trees of order p. One natural question we 

may ask is which labeled tree (rooted or unrooted) has the maximum or minimum 

number of e(T) among all ppP~ 2 labeled rooted trees or among all pp ~ 2 labeled 

unrooted trees of order p.

A maximum tree of order p is a tree having the largest possible value of e(T) 

among all labeled oriented trees of order p. Similarly, we can define a minimum 

tree of order p. We shall see that minimum trees of order p are unique and in fact 

are the star f^i,p_i. So we will focus on the problem of finding maximum trees.

Note that each unlabeled unrooted tree T  of order p gives rise to exactly 

p\/ |Aut(T)| labeled trees of order p and pp\f \Aut(T)\ labeled rooted trees of order 

p, where \Aut(T)\ is the order of the automorphism group of T. Furthermore, 

each such tree has the same value of e(T). In other words, the number e(T) is 

invariant under labeling and rooting. Thus we only need to search the tree which 

has maximum value of e(T) among all unlabeled trees of order p.

75
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4.2 Minimum Trees

The problem of finding minimum trees of order p is quite easy because we 

have the following theorem which asserts that the unique minimum tree of order 

p  is the star Ai,p_i.

T heorem  11 The minimum tree of order p is the star A'i)P_i.

Proof: Let ATiiP_i be rooted at the vertex with degree of p — 1. Label the 

root 1 and all children from left to right 2,3, ...,p — 1.

We claim that e(K\tP-i)  = p.

If the root is in an efficient dominating set, then each child must be dom

inated by the root. So there is only one corresponding orientation. If the root is 

not in an efficient dominating set, then the root must be dominated by exactly 

one of its children and every other child must be in the dominating set. We can 

choose one child from {2,3, ...,p — 1} to dominate the root, so there are precisely 

p  — 1 such orientations. Consequently, there are 1 +  (p — 1) efficient dominating 

sets, so e(KifP-i)  = p.

Now, we show that if a tree T  of order p is not a star then e(T) > p.

We prove this statement by induction.

The statement is true for p <  3 since there is only one tree isomorphic to

of order p for p < 3. When p =  4, there are two trees, namely, P4 and K\$, 

and e(P4) =  6 > 4. So the statement is true for p < 4.

Assume that the statement is true for p, where p >  4.

Let T  be a tree of order p + 1 which is not the star K \lP. Root T  at an 

end vertex v such that T\ =  T  — v is not a star Ai,p_i, and let v\ be the unique 

neighbor of v. By the induction hypothesis, e(Ti) > p.
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For each orientation of T\ with an efficient dominating set S\, orient the 

edge vv\ from v\ to v. We will now show that the resulting orientation of T  gives 

an efficient dominating set.

Consider the efficient dominating set Si for T\. If V\ is in Si then Si is the 

efficient dominating set for T  as well. If Vi is dominated by one of its children, 

then S iU M  is the efficient dominating set for T. We can obtain at least one more 

orientation of T  with an efficient dominating set. Orient every edge downward 

from the root v and then select vertices with even distance from the root (including 

the root). These vertices form an efficient dominating set.

So we have e(T) > e(Ti) +  1 >  p 4-1.

Therefore, the minimum tree of order p is the star K ilP-\.  □

4.3 Finding the Maximum Trees

Unlike minimum trees, the task of finding maximum trees is much more 

complicated. We start with the algorithm given by Barkauskas and Host [1].

We use T  0  u to denote the rooted tree formed by joining the root of T  to 

a  new vertex u which then becomes the new root.

For any vertex v of T  we define the triple (a, b, c) as follows: 

a is the number of efficient dominating sets of T  with v in the dominating 

set (v dominates itself);

b is the number of efficient dominating sets of T  © u, where v is the root 

of T  and u is in the dominating set. (u is dominated from outside);

c is the number of efficient dominating sets of T  with v in the dominated 

by one of its children (v is dominated from inside).

Observe that for every vertex v, e(T) = a(v) +  c(v). That is, a + c is an 

invariant for all vertices of T.
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T heorem  12 (Barkauskas and Host) Let T\ and T2 be two trees with triples 

(a i,6i,ci) and (a2, 62^ 2) at the respective roots v\ and v2. I fT  is formed from T\ 

and T2 by adding the edge v\v2 and rooting T  at v — v\, the triple (a, b, c) for T  

at v is given by:

a = a\(b2 + c2)

b = b\(a2 + 2 c2 )

c =  c\(a2 +  2C2) +  bia2.

To find the number of efficient dominating sets for a tree T, we may re

peatedly use Theorem 12.

The implementation of the algorithm given by Barkauskas and Host is 

described as follows:

1.) Draw the tree as a rooted tree, with the root at the top. Number the

root 1.

2.) Proceed down to the next level and number all vertices at distance 1 

from the root 2,3,... sequentially from left to right.

3.) Go to the next level and continue numbering sequentially from left to 

right at each level as we proceed down the tree.

4.) For each leaf set a =  1, b = 1, and c — 0 initially.

5.) From the leaves use Theorem 12 to update the triple for the parent of 

vertex i for each vertex. When vertex 2 has been processed, the triple for vertex 

1 (the root) (ai,f>i,ci) is obtained, and e(T) =  tq +  c\.

Theoretically, we can use this algorithm to find the maximum trees and 

the corresponding number of efficient dominating sets for each order of p.

In view of the algorithm given by Barkauskas and Host, we see that in 

order to find the maximum trees of order p, we need to list all unlabeled trees
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of order p, find the number of efficient dominating sets for each, and then finally 

select the maximum trees. The larger the value of p, the harder the work will be. 

For example, when p =  13, there are 1301 unlabeled trees have to be listed and 

searched.

We would like to modify the algorithm and use it to find the maximum 

trees of order p for each p up to 23.

In order to find the maximum trees of order p (p >  2), we will search 

among all unlabeled rooted trees. But we do not list all such trees. Instead we 

shall use the following code scheme introduced by Beyer and Hedetniemi [10] and 

developed by Kubicka [12] to generate all rooted trees of order p.

The algorithm (code scheme) uses the “level sequence code” to identify each 

rooted tree. Each vertex is labeled with its level, and the branches are arranged 

in lexicographically decreasing order. The labels are converted to a sequence by 

means of a postorder traversal. For example, the rooted tree shown in Figure 10 

has the level sequence code [0, 1, 2, 3, 2, 3, 2, 1, 2, 2, 1, 2, 1, 2, 1].

Figure 10. A Rooted Tree With Its Level Sequence Code.

We arrange the codes for all the rooted trees in reverse lexicographic order. 

Thus the path rooted at one end gives the first and largest code, [0,1, 2,..., p —1]; 

the center rooted star gives the last and smallest code, [0, 1, 1, ..., 1].

To generate all codes for rooted trees of order p, we do following:
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1.) Make an initial array of dimension p : (The code for the path)

vi =  K (l),vi(2),ui(3),...,ni(p)] =  [0, 1, 2, p - 2 ,  p -  1].

The code ul+i for the tree that follows i>,- can be computed as follows:

2.) Case a) If the last entry of V{ has v{ (p) >  1, then we reduce it by 1.

Thus

«<+1 = bf(l),u ,(2),u ,(3),...,u ,(p- l),u,(p) -  1].

Go to 2.)

Case b) If the last entry of u,- has v,(p) =  1, then from the last entry, 

search backward to find the first entry v, (fc) such that v(k) >  1; if there is no such 

entry, then stop. (We have reached the last code, namely the star.) Prom the k  

entry, search backward to find the first entry, say v,•(&—/) with Vi(k—l) = «, (&) — 1. 

We reduce u,(fc) by 1, and let the entries from u,(fc — /) to the new w,(fc) form a

block that repeat as many times as needed, with the possibility of a partial block

at the end. Then ul+i is made of as follows:

v i+ 1 =  [u,(l),Vi(2),Vi(3), ...,V{(k - 1), ...,Vi(k) -  1,
'    '

block

Vi(k - / ) , . . . , Vi(k) -  1, V{(k — /),...,Uj(&) — 1, ...]. 
block block

Go to 2.)

To see how 2.b) works, we see an example below. Suppose we have following 

code for a rooted tree of order 24 :

[0, 1, 2, 3, 4, 5, 2, 3, 4, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
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Then the code for the next tree shall be

block block block partial block

To see how the algorithm works, we generate all codes for rooted trees of 

order p for p = 5. We obtain the following codes:

[0, 1, 2, 3, 4]

[0, 1, 2, 3, 3]

[0, 1, 2, 3, 2]

[0, 1, 2, 3, 1]

[0, 1, 2, 2, 2]

[0, 1, 2, 2, 1]

[0, 1, 2, 1, 2]

[0, 1, 2, 1, 1]

[0, 1, 1, 1, 1]

The correspondence between codes and rooted trees are illustrated as in 

Figure 11.

With this code scheme, we write a program to search the maximum trees 

and determine the corresponding number of efficient dominating sets of order p 

for each p up to 23, see Figure 17. We include the programs written in C in 

Appendix A.

The algorithm introduced above is basically an exhaustive search algo

rithm, that is, it searches all rooted trees. We shall see that it is not necessary 

to search all rooted trees. Some trees with certain structures cannot possibly be 

maximum trees. In the next section, we discuss the possibilities of improving the
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Figure 11. All Rooted TVees of Order 5 and Corresponding Codes, 

algorithm.

It is clear that any rooted tree T  with root degree at least 2 can be built 

from two smaller rooted trees. So if we know the number of efficient dominating 

sets for each smaller rooted tree, we may find the number of efficient dominating 

sets for tree T.

T heorem  13 Let Ti andTz be two trees with triples (ai,&i,ci) and (02, 62, 02) at 

the respective roots vi and v^. I fT  is formed from T\ and by identifying v\ and 

V2 , say v — v\ =  v<i, then the triple (a, 6, c) for T  at v is given by: 

a — aifl2 

6 =  6^62

C =  b \C 2  +  Ci 62 .

Proof: Recall that Oj (* =  1,2) counts the number of efficient dominating 

sets for which v,- is in an efficient dominating set of T{. Now suppose Si (i =  1,2) 

is an efficient dominating set of Ti for which u,- (i =  1,2) is in Si. Then observe

4.4 Possible Improvements for the Algorithm
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that S =  S\ U S2 — {*>i, *>2} U {i>} is an efficient dominating set of T  for which v 

in S. This gives us a > a\a2.

Conversely, if S is an efficient dominating set for which v is in S, then 

Si =  5  — V{T2) U {ui} is an efficient dominating set of Ti for which v\ is in Si; 

while S2 =  S — V(Ti) U {v2} is an efficient dominating set of T2 for which v2 is in 

S2. This gives us a < a\a2. Thus a = a\a2.

Similarly, we can show b =  b\b2.

To show that c =  b\c2 +  Cib2, we recall that c,- (i =  1,2) counts the number 

of efficient dominating sets of 7f for which v,- is dominated by one of its children. 

Suppose that Si is an efficient dominating set of Ti for which Vi is dominated from 

outside, and that S2 is an efficient dominating set of T2 for which v2 is dominated 

by one of its children. Then observe that S = Si U S2 — {^1,^2} U {«} is an 

efficient dominating set of T  for which v is dominated by one of its children. In 

other words, every such Si and S2 can contribute 1 to c. The number of such sets 

Si and S2 is b\c2. By symmetry we have c >  byc2 + c\b2.

Conversely, suppose that S is an efficient dominating set of T  for which 

v is dominated by one of its children, say v is dominated by its child w. If u; is 

one vertex of Ti, counted by cib2; if w is one vertex of T2, counted by &1C2. So 

c <  b\c2 +  ci62- Thus c =  61C2 +  cib2. □

By induction we get the following theorem:

T heorem  14 Let Ti (1 <  i < n) be n trees with triples (a,-, 6,-, c,) (1 < i < n) 

at the respective roots V{ (1 <  i < n). I f T  is formed from T, (1 < i < n) by 

identifying V{ (1 <  i < n) as a single vertex v, then the triple (a, 6, c) for T  at v 

is given by:

a  =  I I " = i  a i
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We recall that a branch at a vertex u of a tree T  is a maximal subtree 

containing u as an end-vertex. So the number of branches at u is the degree of u. 

We say a rooted tree is a planted tree if it has only one branch at the root.

Note that any rooted tree can be constructed by merging a finite number 

planted trees at the root. In particular, a maximum tree is constructed by merging 

a finite number planted trees.

Let T\ with the triple (a i,6i,ci) and T2 with the triple (02, 62^ 2) be two 

rooted trees of the same size q with roots v\ and v^. If ai <  02,61 <  62, and c\ < C2, 

and among these three inequalities, at least one is strict, then by Theorem 13, it 

is clear that T\ will never appear in a maximum tree as a proper subtree. We say 

that Ti is dominated by T2 and denote this by T2 => T\. The potential planted 

trees are planted trees not dominated by any other planted tree.

The weight at a vertex u of T  is the maximum number of edges in any 

branch at u. So the weight at each end-vertex of T  is the size of T.

A vertex v is a centroid vertex of a tree T  if v has minimum weight, and 

the centroid of T  consists of all centroid vertices. The weights at each vertex of 

the tree in Figure 12 are indicated and the vertices circled are centroid vertices.

Figure 12. The Weights at the Vertices and the Centroid Vertices of a Tree. 

Next, we show the following theorem:
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T heorem  15 Every tree T  of size q can be rooted at a vertex such that T  is built 

from branches, each having the size no larger than .

Proof: It is enough to show that any centroid vertex of T  has weight no 

larger than f|j.

Let T  be tree of size q and let w(v) denote the weight of v.

Assume v is a centroid vertex of T. Then we show the weight w(v) < .

Suppose, to the contrary, that w(v) > |"|j +  1. Then v has a branch B  with more 

than [ " edges. Let u be the unique neighbor of v in B , then we have

w(u) <  max{g — size of B + l,size of B  — 1} < < w(v),

contradicting the assumption that v is a centroid vertex. □

By Theorem 15 we see that to find all maximum trees of size q for each q, 

we can first find all potential planted trees of size at most [§] . Then we use these 

trees to construct all potential trees and search among these trees, and finally 

select the maximum trees.

We determined all potential planted trees of size q for each q up to 22. 

There are only 382 potential planted trees of size q for 0 <  q <  22. This is a 

very small number compared with the total number of planted trees of size q for 

0 < q < 22 which is 55 469 207. So we could write a program and use these 

results to find the maximum trees of size q for each q up to 44.

4.5 Some Properties of Maximum Trees

In this section we intend to discuss some properties regarding the number 

of efficient dominating sets of trees.

Let T* denote a maximum tree of size q. It is clear that e(T*) < e(T*+1),
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so lim^oo e{Tg) =  oo. To measure the rate of increase of e(T*), we consider the 

sequence {el/q(T*)}. By examining the data in Figure 17, we see that el!q(T*) has 

an irregular behavior; in particular, it is not monotone. Nevertheless, we have the 

next theorem which says that this sequence is bounded both below and above.

T heorem  16 The qth root e1/>9(T*) is bounded between 1 and 2.

From Theorem 2 we can easily prove the above theorem. In fact, we will 

show later that the lower bound can be increased to 1.852509; Barkauskas, Bange, 

and Clark showed the upper bound can be reduced to 1.9332. They also showed 

the following theorem:

Theorem  17 (Barkauskas, Bange, and Clark) The limit lim,_*.0Oe1/, (Tg) exists.

Note that the problem of finding maximum trees T* of size q is the same 

problem as that of finding maximum (a +  c)-trees of size q. We can define a 

maximum a-tree T“ of size q, a maximum 6-tree T)j of size q, and a maximum c- 

tree Tg of size q. Similarly, that is the tree with the maximum value of a, maximum 

value of 6, and maximum value of c, respectively, among all trees and all rootings 

of size q. We denote the a value of T“ by a(T“), the 6 value of Tjj by 6(Tj), and 

the c value of Tg by c(Tg). We have following proposition:

P roposition  3 The following inequalities hold:

1.) e(7J) <  o(T“+2) <  e ( 3 »  

e(T*) <  6(T‘+1) <

S.) e(T;) <  c(7J+2) < e(JJ+2).

Proof: Let T* be the maximum tree of size q and rooted at v with the 

triple of (a ,6,c).
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To show that e(T*) < a(T“+2), attach a path «o«i«2 to T* by identifying 

v and uq and denote the new tree by T'. Root T ’ at u2 then by using Theorem 

12 we get the triple of T ' : (2a + 2c, 2a +  6 +  c, b +  c). Note the size of V  is q +  2, 

so we have a(T“+2) >  a(T') =  2a +  2c = 2(a +  c) =  2e(T*) > e(T*).

To show a(T“+2) < e(Tg*+2) just note that e(T*+2) >  a(T“+2) +  c(T“+2) > 

«(T“+2).

To show e(T*) < &(T,+1), attach a  path u0Ui to T* by identifying v and 

Vo and denote the new tree by T". Root T" at then by using Theorem 12 we 

get the triple of T" : (b + c, a + 2c,a). Note the size of T" is q +  1, so we have 

b{Tbq+1) > b(T") = a + 2 c> a  + c = e(T*).

To show b(Tg+i) < e(T*+2), let Tfj+1 be rooted at r with the triple of (x, y, z), 

attach a path VoVi to T£+1 by identifying r  and v0 and denote the new tree by T"'. 

Root T"’ at v\ \ then by using Theorem 12 we get the triple of T "  : (y+z, x + 2 z, x). 

Note the size of T'" is q+ 2, so we have e(T*+2) > e(T'") = x + y + z  > y  =  6(T*+1).

To show that e(T*) < c(T®+2), attach a path uqU\U2 to T* by identifying v 

and «o and denote the new tree by T"". Root T"" at u\ then by using Theorem 

12 we get the triple of T"" : (6 +  c, a +  2c, 2a +  2c). Note the size of T"" is q +  2, 

so we have c(Tgc+2) > c(T"") = 2a + 2c = 2(a + c) =  2e(T*) > e(T*).

To show c (T 9% 2) <  e(T*+2), just note that e(T*+2) >  a(T9c+2) +  c(T?c+2) >  

cCT‘+2).

Since the limit of the qth root of e(T*) exists, as an immediate consequence, 

we have following theorem:

Theorem  18 The limit of the qth roots o /a(T“) ,6(T9),c(T9) and e(T*) all exist
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as q goes to infinity; furthermore, they all have the same limit. That is:

Now we are ready to state the following theorem:

Theorem  19 The number lim^oo el/q(T*) is bounded below by so, where so =  

1.85 250 901....

Proof: Suppose we have a tree T  rooted at v of size q with the triple

(a, b, c) in which b > a. We follow the process described below to get a rooted 

tree T', having size mq + 1.

Merge n copies of T  by identifying all the roots, and let the resulting tree 

be T  rooted at the merged root v. Then we consider the tree T  © u. Note that 

the rooted tree T  ® u has the size nq + 1, and by Theorems 14 and 12, T  © u has 

the triple (6n +  ncbn~l,an +  2ncbn~1 ,an) a t the root u. See Figure 13.

n copies

Figure 13. Merging n Copies of a Planted Trees to Get a New Planted Tree.

Let f(n )  = (an +  2ncbn~1)1̂ nq+1\  Observe that f(n )  > bl!q if n is large 

enough. This is because

(a" +  2nc6n_1)1/("9+1) >  b1/q &  (a" +  2 ncbn~x)q > bnq+l
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*  6”9[(f)n +  ^ £)],  > bnq+1 *  [(£)" +  ^J-)Y >  b.

On the other hand since lim„_+00/(n ) =  ft1/9, we see that f(n )  has the 

maximum value for fixed a, 6, c, and q. Assume f(n )  has the maximum f(m )  as 

n =  m, then we obtain a rooted tree V  of size mq + 1.

Next, we treat the procedure above as a processor, called a PB-processor. 

We obtain:

Input: T  =  7 i = J  , (o,6,c) =  (1, 1, l) ,q  =  1;

(Note Ti is the best 6-tree of height 1.)

Output: m =  l ,  (mq + 1) =  2, (o, 6, c) =  (2,3,1),

^  =  T2 =  I  ,f(m ) = a/ 3  =  1.732.

(Note T2 is the best 6-tree of height 2.)

Input: T  = T2 = |  , (a, 6, c) =  (2,3,1), q =  2;

Output: m  =  7, (mg +  1) =  15, (a, 6, c) =  (7290,10334,128),

(Note T3 is the best 6-tree of height 3.)
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(a, 6, c) =  (7290,10334,128), q =  15. 

Output: m  =  203, (mq +  1) =  3046.

f(m )  =  1.852509....

203 copies of T3 

(The tree T4 is the suspected “best” 6-tree of height 4.)

Input: T  = T4, q = 3046.

Output: m =  73 333 249 055 790 776 849 088 160 446 381,

(mq + 1) =  223 373 076 623 938 706 282 322 536 719 676 527,

J~^s

, / (m)  =  1.852509....

m copies of T4

(The tree T5 is the suspected “best” 6-tree of height 5.)

The tree T5 has the size about 2 x 1035, so it is a huge tree!

By using this PB-processor, we get the bounded (by 2) monotone increasing
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sequence {fr1/*^*) (T*)} and hence it has a limit, say s0. Then we obtain the desired 

result. □

4.6 Further Discussion of Maximum Trees

In the previous section we obtained a lower bound so for s. In this section, 

we discuss the limit of lim^oo eltq(T*) and the structure of maximum trees.

First we state the following conjecture:

C onjecture 1 The limit lim^,*, b1̂ ^ )  is equal to its lower bound Sq.

We have following reasons:

1.) The data we have so far indicates 61/g(Tq6) < 1.852509.

2.) The data we have so far indicates that b(Tg) >  a(T“) and b(T*) > c(T“) 

if q >  1; so b is more important in the structure of maximum b-trees (also in the 

structure of maximum trees).

3.) We note that, by the data, the maximum 6-tree is unique, and all 

maximum 6-trees are planted trees. Furthermore, every branch of height h in a 

maximum 6-tree of height h +  1 is again a maximum 6-tree. That is every branch 

of a maximum 6-tree is again a maximum 6-tree. See Figure 18.

4.) If 3.) is correct, every tree T* obtained by the processor PB  above can 

be thought as the “best” 6-tree of height h since it is built by the “best” 6-tree of 

height (h — 1) and in the “best” combination. By observation of data we see that 

Ti,T2 and T3 are the “best” 6-trees of height 1,2 and 3 respectively in the sense 

that there exists no other tree of height 1, or 2 or 3 has the larger value of qth root 

of 6. It is conceivable to believe that every member of {T/,} is indeed a maximum 

6-tree. (The data we have so far tells us that Ti, T2 and T3 are maximum 6-trees; 

see Figure 18.) So, lim,-**, 61/,9(T*) =  s0-
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If our conjecture is correct, then we get the basic picture of the structure 

of maximum 6-trees from the analysis above.

We now would like to discuss the structure of maximum trees. The basic 

idea is that maximum trees of height h are built from maximum 6-trees of height< 

h.

Suppose we have a maximum 6-tree T  of size q rooted at v with the triple 

(a, 6, c). (So 6 > a if q > 1.) We follow the process described below to get a rooted 

tree T" of size mq.

Merge n copies of T  by identifying all the roots to form a new root. Let the 

resulting tree be T  rooted at v. Then we consider the tree T. Note that the rooted 

tree T  has size nq, and by Theorem 14 we note T  has the triple (an, 6n, nc6"-1) 

at v. See Figure 14.

JN /
n copies

Figure 14. Merging n Copies of a Planted Trees to Get a New Tree.

Let g(n) =  (a" +  ncbn~1)l^ nq̂  = elHnq\T ) .  Observe that g(n) > b1^ 9 if n 

is large enough. This is because

(an +  ncbn~1)1̂  > b1' 9 &  (an + ncbn~1) > 6"

On the other hand since lim^oo g(n) = 61/9, we see that g(n) has a  max

imum value for fixed a, 6, c, and q. Assume g(n) attains its maximum g(m) at
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n = m. Then we obtain a rooted tree T" of size mq.

Next, we treat the process above as a processor, called the PE-processor, 

and observe what we get:

(Note T\ is the best maximum 6-tree of height 1.) 

Output: m =  l, (mq) =  1, (a, 6,c) =  (1,1,1),

T " = i r = I . s M = 2

(Note Tj* is the best tree of height 1.)

Input: T  =  T2 =  J  , (a,6,c) =  (2,3,1),? =  2.

(Note T2 is the best maximum 6-tree of height 2.) 

Output: 771 =  7, (mq) = 14, (a, 6, c) =  (128,2187,5103),

(a, 6, c) =  (7290,10334,128), q =  15.

(Note T3 is the best maximum 6-tree of height 3.)

Input: T  =  Ti =  J  ,(o,6,c) =  (1,1,1),? =  1

,g(m) =  1.84337.

(Note T2 is the best tree of height 2.)
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Output: m  =  219, (mq) =  3285,

, 3(771) = 1.8524642....

v
219 copies of T3 

(The tree TJ is the suspected “best” tree of height 3.)

Input: T  =  T4 , q =  3046.

(Note T4 is the suspected “best ” maximum 6-tree of height 4.) 

Output: m =  79 171 813 495 757 148 510 957 659 415 989,

(mq) =  241 157 343 908 076 274 364 377 030 581 102 494,

g(m) = 1.8525090134....1 7

m copies of T4

(The tree T4* is the suspected “best” tree of height 4.)

The tree T4* has the size about 2 x 1035, so it is a  huge tree.

By using the PI?-processor, we get a sequence {T^} of trees. Since is 

built from the “best” maximum 6-tree of height h and in the “best” combination 

we may think as the “best” tree of height h. By observation of data (see Figure 

17) we see that T f and T2* are the “best” trees of height 1 and 2 respectively in 

the sense that there exists no other tree of height 1 (or height 2) has the larger 

value of (a +  c)l!q. And hence we have the following conjecture:

C onjecture  2 Every member o f {T£} is indeed a maximum tree.
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The data we have tells us that Tf and are maximum trees (see Figure

17).

As a consequence, we have the basic picture of the structure of maximum 

trees. In particular, we have the following:

C onjecture 3 1 .) The diameter ofT* approaches oo as q —> oo.

2.) The maximum degree ofT* approaches oo as q —> oo.

We have conjectured the basic structure of maximum trees for those sizes 

that happen to appear in our processor. But what about the structure maximum 

trees for other sizes? It might be impossible to get the structure for each single 

maximum tree. But we believe that every maximum tree of height h is built from 

the maximum 6-trees of height at most h. There are not many maximum 6-trees of 

height at most 3, and we use only 12 maximum 6-trees (see Figure 15) to generate 

all “conjectured” maximum trees of size q for 17 < q <  3375.

The following gives conjectured maximum trees for 17 <  q <  30. 

q =  17 : “Maximum Tree” =  {4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

q =  18 : “Maximum Tree” =  {9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

q = 19 : “Maximum Tree” =  {4, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}

q =  20 : “Maximum Tree” =  {10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

q =  21 : “Maximum Tree” =  {5, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}

q =  22 : “Maximum Tree” =  {11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

q = 23 : “Maximum Tree" =  {5, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}

q = 2 4  : “Maximum T ee” =  {12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 

q =  2 5  : “Maximum T ee” =  { 6 , 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}

q = 2 6  : “Maximum T ee” =  {8, 0,1, 0, 0, 0, 0, 0, 0, 0, 0, 0}
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Figure 15. Twelve Maximum b-Trees in Conjecture 2. 

q =  27 : “Maximum Tree” =  {6, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0}

g =  28 

9 =  29 

9 =  30

“Maximum Tree” =  {4, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}

“Maximum Tree” =  {7, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0}

“Maximum Tree” =  {5, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0}

The conjectured “Maximum Tree” T  is represented by an array of dimen

sion 12. If the ith entry of the array has value k, then k copies of Bi are merged 

at the root of T. For example, q =  28 : “Maximum Tree” =  {4, 1, 0, 1, 0, 0, 0, 

0, 0, 0, 0, 0} means four copies of B\, one copy of B 2 , and one copy of B 4 are 

merged at the root of T, where T  is the conjectured maximum tree of size 28. See 

Figure 16.

Conjectured maximum trees for 31 <  9 <  300 are reported in Table 10.
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Table 10

Conjectured Maximum Trees (3\<q<, 300)

Maximum Tree Maximum Tree

31 {8, 0, o, 0, o, o, o, 1, 0, 0, 0, 0} 61 {8, 0,0 0 0, 0 0 3,0, o, o, 0
32 {5,0, o, 2, o,o, o, 0, 0, 0, 0, 0} 62 {6, o,o 1 0, 3 0 0, 0, o, o, 0
33 {8, 0, o, 0, 0, 0, o, 0, 0, 1, 0, 0} 63 {8, 0,0 0 0, 0 0 2, 0, 1, o, 0
34 {6, 0, o, 2, 0, 0, o, 0, 0, 0, 0, 0} 64 {6, 0,0 0 0, 4 0 0, 0, o, o, 0
35 {8, 0, o, o, 0, 0, o, 0, 0, 0, 1, 0} 65 {8, 0,0 0 0, 0 0 1, 0, 2, o, 0
36 {6, 0, o, 1, 0, 1, o, 0, 0, 0, 0, 0} 66 {7, 0,0 0 0, 4 0 0, 0, o, o, 0
37 {9,0, o, 0, 0, 0, 0, 0, 0, 0, 1, 0} 67 {8, 0,0 0 0, 0 0 0, 0, 3, o, 0
38 {6, 0, o, 0, 0, 2, 0, 0, 0, 0, 0, 0} 68 {7, 0,0 0 0, 3 0 1, 0, o, o, 0
39 {9,0, o, 0, 0, 0, 0, 0, 0, 0, 0, 1} 69 {9, 0,0 0 0, 0 0 0, 0, 3, o, 0
40 {7,0, o, 0, 0, 2, 0, 0, 0, 0, 0, 0} 70 {7, 0,0 0 0, 2 0,2, 0, o, o, 0

41 {10,0,0 ,0 , 0,0,0 ,0 ,0 ,0 ,0 , 1} 71 {9, 0,0 0 0, 0 0 0, 0, 2, 1, 0
42 {7, 0, 0, 0, o, 1, 0 1, o, o, o, 0} 72 {7, 0,0 0 0, 1 0 3,0, o, o, 0
43 {5,0, o, 3, 0, 0, 0 0, o, 0, o, 0} 73 {6, 0,0 2 0, 3 0 0, 0, o, o, 0
44 {7,0, 0, 0, 0, 0, 0 2, o, 0, o, 0} 74 {7, 0,0 0 0, 0 0 4,0, 0, o, 0
45 {6, 0, o, 3, 0, 0, 0 o, o, 0, o, 0} 75 {6, 0,0 1 0, 4 0 0, 0, 0, o, 0
46 {8, 0, o, o, 0, 0, 0 2, o, 0, o, 0} 76 {8, 0,0 0 0, 0 0 4,0, 0, 0, 0
47 {6, 0, o, 2, o, 1, 0 0, 0, 0, o, 0} 77 {6, 0,0 0 0, 5 0 0, 0, 0, 0, 0
48 {8, 0, o, 0, 0, 0, 0 1, o, 1, o, 0} 78 {8, 0,0 0 0, 0 0 3,0, 1, 0, 0
49 {6, 0, o, 1, 0, 2, 0 0, o, 0, o, 0} 79 {7, 0,0 0 0, 5 0 o,o, 0, 0, 0
50 {8, 0, 0, 0, 0, 0, 0 0, o, 2, o, 0} 80 {8, 0,0 0 0, 0 0 2, 0, 2, 0, 0

51 {6, 0, o, 0, 0,3, 0 0, o, o, o, 0} 81 {7, 0,0 0 0, 4 0 1, 0, o, 0, 0
52 {9,0, 0, 0, 0, 0, 0 0, o, 2, o, 0} 82 {8, 0,0 0 0, 0 0 1, 0, 3, 0, 0
53 {7,0, o, 0, o, 3, 0 0, o, 0, o, 0} 83 {7, 0,0 0 0, 3 0 2, 0, o, 0, 0
54 {9, 0, o, 0, 0, 0, 0 0, o, 1, 1, 0} 84 {8, 0,0 0 0, 0 0 0, 0, 4, 0, 0
55 {7,0, o, 0, 0, 2, 0 1, o, 0, o, 0} 85 {7, 0,0 0 0, 2 0 3,0, o, 0, 0
56 {9, 0, o, 0, 0, 0, 0 0, o, 0, 2, 0} 86 {9, 0,0 0 0, 0 0 o,o, 4, 0, 0
57 {7, 0, o, 0, 0, 1, 0 2, o, 0, o, 0} 87 {7, 0,0 0 0, 1 0 4,0, o, 0, 0
58 {6, 0, o, 3, 0, 1, 0 0, o, 0, o, 0} 88 {6, 0,0 1 0, 5 0 o,o, o, 0, 0
59 {7,0, o, 0, 0, 0, 0 3, o, 0, o, 0} 89 {7, 0,0 0 0, 0 0 5,0, o, 0, 0
60 {6, 0, o, 2, 0, 2, 0 0, o, 0, o, 0} 90 {6, 0,0 0 0, 6 0 0, 0, o, 0, 0
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Table 10 — Continued

q Maximum Tree q Maximum Tree

91 {8 o, o, 0, 0 0, o, 5 o, 0 o, 0} 126 {7 o, 0, 0, 0, 4 o, 4 0 0 o, 0}
92 (7 o, o, 0, 0 6, o, 0 o, 0 o, 0} 127 {8 o, 0, 0, 0, 0 o, 4 0 3 o, 0}
93 (8 0,0, 0, 0 0, 0, 4 0, 1 o, 0} 128 {7 o, 0, 0, 0, 3 o, 5 0 0 o, 0}
94 {7 0,0, 0, 0 5, 0, 1 0, 0 0, 0} 129 {8 o, 0, 0, 0, 0 o, 3 0 4 o, 0}
95 (8 0,0, 0, 0 0, 0, 3 0, 2 0, 0} 130 {7 o, 0, 0, 0, 2 0, 6 0 0 o, 0}
96 {7 o, o, 0, 0 4, 0, 2 0, 0 0, 0} 131 {8 o, 0, 0, 0, 0 0, 2 0 5 o, 0}
97 {8 0,0, 0, 0 0, 0, 2 0, 3 0, 0} 132 {7 o, 0, 0, 0, 1 0, 7 0 0 o, 0}
98 {7 0,0, 0, 0 3, 0, 3 0, 0 0, 0} 133 (8 o, 0, 0, 0, 0 0, 1 0 6 0, 0}
99 (8 0,0, 0, 0 0, 0, 1 0, 4 0, 0} 134 (7 o, 0, 0, 0, 0 0, 8 0 0 0, 0}
100 {7 0, 0, 0, 0 2, 0, 4 0, 0 0, 0} 135 {7 o, 0, 0, 0, 7 0, 2 0 0 0, 0}

101 {8 0,0, 0, 0 0, 0, 0 0, 5 0, 0} 136 (8 o, 0, 0, 0, 0 0, 8 0 0 0, 0}
102 {7 0,0, 0, 0 1, 0, 5 0, 0 0, 0} 137 (7 o, 0, 0, 0, 6 0, 3 0 0 0, 0}
103 {6 0,0, 0, 0 7, 0, 0 0, 0 0, 0} 138 {8 o, 0, 0, 0, 0 0, 7 0 1 0, 0}
104 {7 0, 0, 0, 0 0, 0, 6 0, 0 0, 0} 139 {7 o, 0, 0, 0, 5 0, 4 0 0 0, 0}
105 {7 0, 0, 0, 0 7, 0, 0 0, 0 0, 0} 140 {8 o, 0, 0, 0, 0 0, 6 0 2 0, 0}
106 {8 0, 0, 0, 0 0, 0, 6 0, 0 0, 0} 141 {7 o, 0, 0, 0, 4 0, 5 0 0 0, 0}
107 (7 0,0, 0, 0 6, 0, 1 0, 0 0, 0} 142 {8 o, 0, 0, 0, 0 0, 5 0 3 0, 0}
108 {8 0,0, 0, 0 0, 0, 5 0, 1 0, 0} 143 {7 o, 0, 0, 0, 3 0, 6 0 0 0, 0}
109 {7 0, 0, 0, 0 5, 0, 2 0, n 0, 0} 144 {8 o, 0, 0, 0, 0 0, 4 0 4 0, 0}
110 {8 0,0, 0, 0 0, 0, 4 0, 2 0, 0} 145 {7 o, 0, 0, 0, 2 0, 7 0 0 0, 0}

111 {7 0, 0, 0, 0 4, 0, 3 0, 0 0, 0} 146 {8 o, 0, 0, 0, 0 0, 3 0 5 0, 0}
112 {8 0, 0, 0, 0 0, 0, 3 0, 3 0, 0} 147 {7 o, 0, 0, 0, 1 0, 8 0 0 0, 0}
113 {7 0,0, 0, 0 3, 0, 4 0, 0 0, 0} 148 {6 o, 0, 0, 0, 7 0, 3 0 0 0, 0}
114 {8 0, 0, 0, 0 0, 0, 2 0, 4 0, 0} 149 {7 0, 0, 0, 0, 0 0, 9 0 0 0, 0}
115 {7 0, 0, 0, 0 2, 0, 5 0, 0 0, 0} 150 {7 0, 0, 0, 0, 7 0, 3 0 0 0, 0}
116 {8 0, 0, 0, 0 0, 0, 1 0, 5 0, oj 151 {8 0, 0, 0, 0, 0 0, 9 0 0 0, 0}
117 {7 0, 0, 0, 0 1, 0, 6 0, 0 0, 0} 152 {7 0, 0, 0, 0, 6 0, 4 0 0 0, 0}
118 {8 0, 0, 0, 0 0, 0, 0 0, 6 0, 0} 153 {8 0, 0, 0, 0, 0 0, 8 0 1 0, 0}
119 (7 0,0, 0, 0 0, 0, 7 0, 0 0, 0} 154 {7 0, 0, 0, 0, 5 0, 5 0 0 0, 0}
120 {7 0, 0, 0, 0 7, 0, 1 0, 0 0, 0} 155 {8 0, 0, 0, 0, 0 0, 7 0 2 0, 0}

121 {8 0, 0, 0, 0 0, 0, 7 0, 0 0, 0} 156 {7 0, 0, 0, 0, 4 0, 6 0 0 0, 0}
122 {7 0, 0, 0, 0 6, 0, 2 0, 0 0, 0} 157 {8 0, 0, 0, 0, 0 0, 6 0 3 0, 0}
123 (8 0, 0, 0, 0 0, 0, 6 0, 1 0, 0} 158 {7 0, 0, 0, 0, 3 0, 7 0 0 0, 0}
124 {7 0, 0, 0, 0 5, 0, 3 0, 0 0, 0} 159 {8 0, 0, 0, 0, 0 0, 5 0 4 0, 0}
125 {8 0, 0, 0, 0 o, 0, 5 0, 2 0, 0} 160 {7 0, 0, 0, 0, 2 0, 8 0 0 0, 0}
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q Maximum Tree q Maximum Tree

161 {8, 0, 0, 0, 0, 0, 0, 4, 0, 5, 0, 0} 196 {7, 0, 0, 0, 0, 0, 0, 11, 0, 1, 0, 0}
162 {7, 0, 0, 0, 0, 1, 0, 9, 0, 0, 0, 0} 197 {6, 0, 0, 0, 0, 5, 0, 8, 0, 0, 0, 0}
163 {6, 0, 0, 0, 0, 7, 0, 4, 0, 0, 0, 0} 198 {7, 0, 0, 0, 0, 0, 0, 10, 0, 2, 0, 0}
164 (7, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0} 199 {6, 0,0, 0,0, 4, 0,9, 0 ,0 ,0 , 0}
165 {6, 0, 0, 0, 0, 6, 0, 5, 0, 0, 0, 0} 200 {8, 0, 0, 0, 0, 0, 0, 10, 0, 2, 0, 0}
166 {8, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0} 201 {7, 0, 0, 0, 0, 4, 0, 9, 0, 0, 0, 0}
167 {7, 0, 0, 0, 0, 6, 0, 5, 0, 0, 0, 0} 202 {8, 0, 0, 0, 0, 0, 0, 9, 0, 3, 0, 0}
168 {8, 0, 0, 0, 0, 0, 0, 9, 0, 1, 0, 0} 203 {7, 0, 0, 0, 0, 3, 0, 10, 0, 0, 0, 0}
169 {7, 0, 0, 0, 0, 5, 0, 6, 0, 0, 0, 0} 204 {8, 0, 0, 0, 0, 0, 0, 8, 0, 4, 0, 0}
170 {8, 0, 0, 0, 0, 0, 0, 8, 0, 2, 0, 0} 205 {7, 0,0, 0,0, 2,0, 11,0,0,0,0}

171 {7, 0,0, 0,0, 4,0, 7, 0,0, 0,0} 206 {8, 0, 0, 0, 0, 0, 0, 7, 0, 5, 0, 0}
172 {8, 0, 0, 0, 0, 0, 0, 7, 0, 3, 0, 0} 207 {7, 0,0, 0,0, 1 ,0 ,12 ,0 ,0 ,0 , 0}
173 {7, 0, 0, 0, 0, 3, 0, 8, 0, 0, 0, 0} 208 {6, 0, 0, 0, 0, 7, 0, 7, 0, 0, 0, 0}
174 {8, 0,0, 0,0, 0,0, 6,0, 4, 0, 0} 209 {7, 0, 0, 0, 0, 0, 0, 13, 0, 0, 0, 0}
175 {7, 0, 0, 0, 0, 2, 0, 9, 0, 0, 0, 0} 210 {6, 0, 0, 0, 0, 6, 0, 8, 0, 0, 0, 0}
176 {8, 0, 0, 0, 0, 0, 0, 5, 0, 5, 0, 0} 211 {7, 0, 0, 0, 0, 0, 0, 12, 0, 1, 0, 0}
177 {7, 0, 0, 0, 0, 1, 0, 10, 0, 0, 0, 0} 212 {6, 0, 0,0, 0,5, 0,9, 0,0, 0,0}
178 {6, 0, 0, 0, 0, 7, 0, 5, 0, 0, 0, 0} 213 {7 ,0 ,0 ,0 ,0 ,0 ,0 ,1 1 ,0 ,2 ,0 ,0 }
179 {7, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0} 214 {6, 0, 0, 0, 0, 4, 0, 10, 0, 0, 0, 0}
180 {6, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0} 215 {7, 0, 0, 0, 0, 0, 0, 10, 0, 3, 0, 0}

181 {8, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0} 216 {6, 0, 0, 0, 0, 3, 0, 11, 0, 0, 0, 0}
182 {6, 0, 0, 0, 0, 5, 0, 7, 0, 0, 0, 0} 217 {7, 0, 0, 0, 0, 0, 0, 9, 0, 4, 0, 0}
183 {8, 0, 0, 0, 0, 0, 0, 10, 0, 1, 0, 0} 218 {7, 0, 0, 0, 0, 3, 0, 11, 0, 0, 0, 0}
184 {7,0,0, 0, 0, 5, 0, 7, 0, 0, 0, 0} 219 {8, 0, 0, 0,0, 0 ,0 ,9 , 0,4, 0,0}
185 {8, 0, 0, 0, 0, 0, 0, 9, 0, 2, 0, 0} 220 {7, 0, 0, 0, 0, 2, 0, 12, 0, 0, 0, 0}
186 {7, 0, 0, 0, 0, 4, 0, 8, 0, 0, 0, 0} 221 {8, 0, 0, 0, 0, 0, 0, 8, 0, 5, 0, 0}
187 {8, 0, 0, 0, 0, 0, 0, 8, 0, 3, 0, 0} 222 {7, 0, 0, 0, 0, 1, 0, 13, 0, 0, 0, 0}
188 {7, 0, 0, 0, 0, 3, 0, 9, 0, 0, 0, 0} 223 {6, 0, 0, 0, 0, 7, 0, 8, 0, 0, 0, 0}
189 {8, 0, 0, 0, 0, 0, 0, 7, 0, 4, 0, 0} 224 {7, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0}
190 {7, 0,0, 0,0, 2 ,0 ,10 ,0 ,0 ,0 ,0} 225 {6, 0, 0, 0, 0, 6, 0, 9, 0, 0, 0, 0}

191 {8, 0, 0, 0, 0, 0, 0, 6, 0, 5, 0, 0} 226 {7, 0, 0, 0, 0, 0, 0, 13, 0, 1, 0, 0}
192 {7, 0, 0, 0, 0, 1, 0, 11, 0, 0, 0, 0} 227 {6, 0, 0, 0, 0, 5, 0, 10, 0, 0, 0, 0}
193 {6, 0, 0, 0, 0, 7, 0, 6, 0, 0, 0, 0} 228 {7, 0, 0, 0, 0, 0, 0, 12, 0, 2, 0, 0}
194 {7, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0} 229 {6, 0, 0, 0, 0, 4, 0, 11,0,0,0,0}
195 {6, 0, 0, 0, 0, 6, 0, 7, 0, 0, 0, 0} 230 {7, 0, 0, 0, 0, 0, 0, 11, 0, 3, 0, 0}
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<7 Maximum Tree <1 Maximum Tree

231 (6, o, 0, 0, o, 3, o, 12, 0, 0, 0, 0} 266 {7, o, 0, 0, 0, 0, 0, 10, 0, 6, 0, 0}
232 {7, o, 0, 0, 0, 0, o, 10, 0, 4, 0, 0} 267 {6, o, 0, 0, 0, 0, 0, 17,0,0,0, 0}
233 {6, o, 0, 0, o, 2, o, 13, 0, 0, 0, 0} 268 {6, o, 0, 0, o, 7, 0, 11, 0, 0, 0, 0}
234 {7,0 ,0 ,0 , 0,0 ,0 9, 0, 5, 0, 0} 269 {7, o, 0, 0, 0, 0, 0, 17,0,0,0, 0}
235 {6, o, 0, 0, 0, 1, o, 14, 0, 0, 0, 0} 270 {6, o, 0, 0, o, 6, 0, 12, 0, 0, 0, 0}
236 {7,0 ,0 ,0 o o,0 8, 0, 6, 0, 0} 271 (7, o, 0, 0, 0, 0, 0, 16, 0, 1, 0, 0}
237 {7, o, 0, 0, 0, 1, o,

oo'o'o'
"<Jr 272 (6, o, 0, 0, 0, 5, 0, 13,0,0,0, 0}

238 {6,0 ,0 ,0 ,0 ,7 ,0 9,0, 0,0,0} 273 (7, o, 0, 0, 0, 0, 0, 15,0,2,0, 0}
239 {7, o, 0, 0, 0, 0, o, y> © © © o 274 {6, o, 0, 0, 0 ,4 ,0 , 14,0,0,0, 0}
240 {6, o, 0, 0, 0, 6, 0,

oo'o'o'o' 275 {7, o, 0, 0, 0, 0, 0, 14,0,3,0, 0}

241 (7, o, 0, 0, 0, 0, 0, 14, 0, 1, 0, 0} 276 {6, o, 0, 0, o, 3, 0, 15,0,0,0, 0}
242 {6, o, 0, 0, o, 5, 0, 11, 0, 0, 0, 0} 277 {7, o, 0, 0, 0, 0, 0, 13,0,4,0, 0}
243 (7, o, 0, 0, 0, 0, 0, 13, 0, 2, 0, 0} 278 {6, o, 0, 0, 0, 2, 0, 16,0,0,0, 0}
244 {6, o, 0, 0, 0,4, 0, 12, 0, 0, 0, 0} 279 {7, o, 0, 0, 0 ,0 ,0 , 12, 0, 5, 0, 0}
245 (7, o, 0, 0, 0, 0, 0, 12, 0, 3, 0, 0} 280 {6, o, 0, 0, 0, 1, 0, 17, 0, 0, 0, 0}
246 (6, o, 0, 0, 0,3, 0, 13, 0, 0, 0, 0} 281 {7, o, 0, 0, 0, 0, 0, 11, 0, 6, 0, 0}
247 {7, o, 0, 0, 0, 0, 0, 11,0,4,0,0} 282 {6,0, 0, 0, 0 ,0, 0, 18,0,0,0, 0}
248 {6, o, 0, 0, 0, 2, 0, 14, 0, 0, 0, 0} 283 {6, o, 0, 0, o, 7, 0, 12, 0, 0, 0, 0}
249 {7, o, 0, 0, 0, 0, 0, 10, 0, 5, 0, 0} 284 {7, o, 0, 0, 0, o, 0, 18,0,0,0, 0}
250 (6, o, 0, 0, 0, 1, 0, 15, 0, 0, 0, 0} 285 {6, o, 0, 0, o, 6, 0, 13, 0, 0, 0, 0}

251 (7 o 0 0 0,0 , 0, 9, 0 ,6 ,0 , 0} 286 {7, o, 0, 0, 0, 0, 0, 17, 0, 1, 0, 0}
252 {6, o, 0, 0, © © 0, 16, 0, 0, 0, 0} 287 {6, o, 0, 0, o, 5, 0, 14,0,0, 0, 0}
253 {6, o, 0, 0, o, 7, 0, 10, 0, 0, 0, 0} 288 {7, o, 0, 0, 0, 0, 0, 16, 0, 2, 0, 0}
254 {7, o, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0} 289 {6, o, 0, 0, 0 ,4 ,0 , 15, 0, 0, 0, 0}
255 {6, o, 0, 0, o, 6, 0, 11, 0, 0, 0, 0} 290 {7, o, 0, 0, 0, 0, 0, 15, 0, 3, 0, 0}
256 {7, o, 0, 0, 0, 0, 0, 15, 0, 1, 0, 0} 291 (6, o, 0, 0, o, 3, 0, 16, 0, 0, 0, 0}
257 (6, o, 0, 0, 0,5, 0, 12, 0, 0, 0, 0} 292 {7, o, 0, 0, 0 ,0 ,0 , 14,0,4,0, 0}
258 {7, 0, 0, 0, o, o, 0, 14,0, 2, 0, 0} 293 {6, o, 0, 0, 0, 2, 0, 17, 0, 0, 0, 0}
259 {6, 0, 0, 0, 0,4, 0, 13, 0, 0, 0, 0} 294 {7, 0, 0, 0, 0 ,0 ,0 , 13, 0, 5, 0, 0}
260 (7, 1, 0, 0, 0,0, 0, 13,0,3,0,0} 295 {6, 0, 0, 0, 0, 1, 0, 18,0,0,0, 0}

261 {6, 0, 0, 0, 0,3, 0, 14,0, 0,0,0} 296 (7, 0, 0, 0, 0 ,0 ,0 , 12, 0, 6, 0, 0}
262 {7, 0, 0, 0, o, o, 0, 12,0,4, 0, 0} 297 {6, 0, 0, 0, 0, 0, 0, 19,0,0, 0, 0}
263 {6, 0, 0, 0, 0, 2, 0, 15, 0, 0, 0, 0} 298 {6, 0, 0, 0, o, 7, 0, 13, 0, 0, 0, 0}
264 {7, 0, 0, 0, 0,0, 0, 11,0,5,0,0} 299 {7, 0, 0, 0, 0, 0, 0, 19,0,0,0, 0}
265 {6, 0, 0, 0, 0, 1, 0, 16,0,0,0,0} 300 (6, 0, 0, 0, o, 6, 0,

o'*oo' 0}
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Figure 16. Conjectured Maximum Tree of Size 28.

The data we have so far tells us that the diameter of maximum trees for 

1 <  Q <  22 is at most 5; on the other hand the conjecture implies the diameter 

of maximum trees approaches cx). But since the “best” maximum tree of height 3 

is T3 which has size 3285; the “best” maximum tree of height 4 is T4 which has 

size about 2 x 1035. We believe that the diameter of maximum trees would not 

exceed 6 until the size q is about 3000, and the diameter of maximum trees would 

not exceed 8 until the size q is about 2 x 1035. So the diameter of maximum trees 

seems to be increasing extremely slowly as the size q goes to infinity.

Among all maximum trees, we may think T\ is the basic unit for maximum 

tree of height 1; T2 is the basic unit for maximum tree of height 2 and so on, and 

it appears that nearly all branches in all maximum trees are those T(s.
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Figure 17. Maximum Trees of Size q for Each q up to 22.
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Figure 18. Maximum b-Trees of Size q for Each q up to 22.
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CHAPTER V

SOME OPEN PROBLEMS

In this chapter, we include some open problems for further study.

1. In Chapter IV, we discussed some properties of maximum trees and 

conjectured the qth root of the number of efficient dominating sets of maximum 

tree of size q el/q(T*) has the limit of 1.852509....Can we indeed prove it? Further, 

can we find an asymptotic formula for ex!q{T*)l

2. We can show that there exist ties of the number of efficient dominating 

sets among all trees of size q if q is large enough (q >  13 approximately), that is, 

there will be two nonisomorphic trees of the same size q having the same number of 

efficient dominating sets if q is large enough. On the other hand, by investigating 

the data we notice that there is no ties for maximum trees of size q for 1 < q <  22, 

that is we have not found two nonisomorphic trees of the same size q having the 

largest possible number of efficient dominating sets for 1 <  q <  22. Is this true 

for any q?

3. In Chapter IV, we defined the maximum tree of size q to be a tree with 

the largest possible number of efficient dominating sets among all labeled trees of 

the same size q. And this maximum tree is the same for the rooted or unrooted 

version. We can define the maximum tree of size q for other alternate two versions. 

The maximum tree of size q of unlabeled rooted trees is the rooted tree with the 

largest possible number of efficient dominating sets among all unlabeled rooted 

trees of the same size q\ the maximum tree of size q of unlabeled unrooted trees 

can be defined similarly. In Figure 19, a tree has the different number of efficient
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dominating sets for different versions.

Labeled Unlabeled Rooted Unlabeled Unrooted

X ,  ^  X
eff= 14 eff= 6 eff = 3

Figure 19. Efficient Dominating Sets of the Same Tree for Different Version.

We have obtained the algorithms to search maximum trees for each of 

these two alternate versions. Many questions can be asked for these two alternate 

versions. In particular, we would like to know the structures of maximum trees 

for these two versions. Are there any ties of maximum trees in these two versions? 

Does the qth root of the number of efficient dominating sets of maximum trees 

of each these two versions exist? If it dose, what is the limit? And if both limits 

exist, are they the same? Can we find asymptotic formulas for these two versions?
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Appendix A 

Programs Written in C
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Generating the code of the next rooted tree
I * *************************************************

* These two functions generate the code of next tree from

* the code of previous tree.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * I
#  include <stdio.h> 

next.tree (tree, p) 

int *tree;

int p;

{
if (tree[p-l]>l) - -tree[p-l]; /* Last entry decreased by 1 */ 

else special (tree, p); /* Use the function “special” for this case */

}

#  include <stdio.h> 

special (tree, p)

int *tree; 

int p;

{
int j l= l ;  int jsl; 

int j; int k; 

int search;

while (tree[p-jl-l]==l) + + jl; 

search =  - -tree[p-jl-l];

j= i;
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while (tree[p-jl-j-l]!=search) ++j;

js l= jl;

while (jl>= j)

{
for (k=0; k<j; ++k) tree[p-jl+k] = tree[p-jsl-j+kj;

j i  -=j;

}
for (k=0; k<jl; ++k) tree[p-jl+k] =  tree[p-jsl-j+k];

}
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Finding maximum trees (Main program)

* p: The order of a tree

* q: The size of a tree

* tree[p]: An array of dimension p; indexing from 0 to p-1

* max_tree[p]: An array storing the maximum tree

* a[p], b[p], c[p]: Arrays of dimension p; indexing from 0 to p-1

* count: Count the number of trees computed

* max: Store the maximum number of efficient dominating sets

* height: Store the height of a tree

* compute ( ): The function computing the (a, b, c) of a tree; 

The triple (a, b, c) for the tree is stored in a[0], b[0], c[0]

* eq ( ) : The function replacing one array by another

* print ( ): The function printing a tree

* next.tree: The function generating the code of the next tree
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  *j

*  include <stdio.h>

*  include <math.h>

*  define p 22 /* Give the order of the trees to be searched*/ 

main() /* main program with no arguments*/

{

int q=p-l; 

int tree[p]; 

int max_tree[p]; 

long max, t_max;
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long a[p], b[p], c[p]; 

int h, height; 

int count, j;

I* ************ initializing ************************* *̂  

for (j=0; j<p; ++j) tree[j]=j; /* Initial tree is the path */ 

for (j=0; j<p; ++j) a[j]=l, b[j]=l, c[j]=0; /in itializing the 

triple (a, b, c) */ 

count=0; 

max=0;

y* *********************************************** *^ 

next:

++count;

compute (tree, p, a, b); 

t_max =  a[0] +  c[0]; 

if (t_max>=max)

{
h =  height.tree (tree, p); 

if (t_max>max)

{
max =  t_max;

eq (max_tree, tree, p); /* Replace max-tree by tree */ 

height =  h;

}
else if (h < height) /* Minimizing height */

{
eq (max_tree, tree, p); /* Replace max_tree by tree */
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height =  h;

}
}
if (tree[2]>l) /* If the tree is not the star */

{
next.tree (tree, p);

a[0] =  1; b[0] =  1; c[0] =  0; /* Re-initializing the root */ 

goto next; /*  Go to the next.tree */

}
j* ********** jf thg t ree jg the star then print out ********** *J 

printf ( “\n  #  of rooted trees of size %d computed =  %d 

\n \n ” , q, count);

printf (“maximum #  efficient dominating sets %d =  %d”, 

q, max);

printf (“maximum tree of size %d: ” , q); 

print (max_tree, p); 

printf (“\n \n \n ”);
I *  * * * * * * * * * * * * * * * * * * * * * * * * * 1 $ * * * * * * * * * * * * * * * * * * * * * * *  *  j

}

Computing the triple (a, b, c)
I *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

*This function is computing the triple (a, b, c) of a tree

* and store the triple in (a[0], b[0], c[0]).
*  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * j

*  include <stdio.h>
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compute (tree, p, a, b, c) 

int *tree; int p; 

long *a, *b, *c;

{
int i=p-l; 

long a2c;

while (i>0) /* If not reaches the root */

{
y* ********** c ompUte the triple of the parent ********* *J

a[tree[i]] =  a[tree[i]]*(b[0] +  c[0]);

a2c =  a[0] +  c[0] +c[0];

c[tree[i]] =  c[tree[i]]*a2c +  b[tree[i]]*a[0];

b[tree[i]] =  b[tree[i]]*a2c;
j* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * j

if (tree[i-l] < tree[i]) /* If tree[i-l] is the parent of treefi] */

{
a[0] = a[tree[i]]; 

b[0] =  b[tree[i]]; 

c[0] = c[tree[i]];

a[tree[i]] =  1; 

b[tree[i]] =  1; 

c[tree[i]] =  0;

}
else /*  If tree[i-l] is not the parent of tree[i] */
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{
a[0] =  1; 

b[0] =  1; 

c[0] =  0;

}
--i;

}
}

I* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* This function replaces the vector v l by v2
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  *  I
#  include <stdio.h> 

eq (vl, v2, n)

int *vl, *v2; 

int n;

{
int i=0;

while (i<n) vl[i] =  v2[i], ++i;

}

^ *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* This function prints the code for a tree

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * I
#  include <stdio.h> 

print (tree, p)

int *tree;
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int p;

{
int j;

for (j=0; j<p; ++j) printf (“%d ”, treep]);

}

I* ************************************************

* This function is used to find the height of a tree
************************************************ * j

#  include <stdio.h> 

int height-tree (tree, p) 

int *tree, p;

{
int i=0;

while (i<p && tree[i+l]>tree[i]) ++i; 

return (i);

}
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