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DISTANCES ASSOCIATED WITH SUBGRAPHS AND SUBDIGRAPHS

Steven John Winters, Ph.D.

Western Michigan University, 1993

The defining properties of several important subgraphs and subdigraphs rely on
the concept of distance in graphs and digraphs. In this dissertation, we investigate
many of these subgraphs and subdigraphs.

In Chapter I, we present some preliminary definitions and examples. In
addition, many known results are recalled. We then introduce several new induced
subgraphs and subdigraphs.

In Chapter II, we investigate the general structure of the center and periphery of
a graph. We introduce two new induced subgraphs of the center along with a new
induced subgraph of the periphery of a graph in order to study these structures.

For every digraph D, there is a corresponding digraph whose vertex set
consists of subsets of vertices of D of the same cardinality. In Chapter III, we
introduce this multivertex digraph and indicate the motivation for studying these
digraphs.

The center and periphery are subgraphs or subdigraphs induced by those
vertices of minimum and maximum eccentricity, respectively. In Chapter 1V, we
introduce two new induced subgraphs and subdigraphs that involve the remaining
vertices and investigate their relative location in the graph or digraph.

We continue this investigation in Chapter V by studying the relative location of

the median and periphery of a graph or digraph.
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CHAPTER 1
INTRODUCTION
1.1 Definitions and Examples

Distance is one of the most fundamental concepts in the theory of graphs and
digraphs. In fact, Buckley and Harary [3] wrote an entire book devoted to the study of
distance in graphs. The standard distance d(u,v) between two vertices u and v ina
connected graph G is the length of a shortest u—v pathin G.

The eccentricity e(v) of a vertex v in a connected graph G is the distance

between v and a vertex furthest from v in G, namely, e(v) = uén‘?}z(a) d(v, u). The

radius rad G of G is the minimum eccentricity among the vertices of G; its diameter
diam G is the maximum eccentricity. The center C(G) of G is the subgraph induced
by those vertices of G having minimum eccentricity; the periphery P(G) is the
subgraph induced by those vertices of G having maximum eccentricity. We say that a
vertex v of G is a central vertexif v is a vertex in C(G), and v is called a
peripheral vertex if v isin P(G). We illustrate these concepts by giving an example of
a connected graph G along with its center C(G) and periphery P(G) in Figure 1.1.
The eccentricity of each vertex of G is also indicated. Furthermore, rad G =2 and
diam G =4.

Let v be a central vertex in a connected graph G with rad G # diam G. We
define the central distance c(v) of v as the largest nonnegative integer k¥ such that if
d(v,x) <k, then x is also a central vertex. Let m = max{c(v)} over all central
vertices v of G. Then the ultracenter UC(G) of G is the subgraph induced by those

central vertices v with c¢(v) = m; while the central fringe CF(G) of G is the
1
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subgraph induced by those central vertices v with ¢(v) = 0. Similarly, the peripheral
distance p(v) of a peripheral vertex v is the largest nonnegative integer k£ such that if
d(v, x) <k, then x is also a peripheral vertex. If m = max{p(v)} over all peripheral
vertices v of G, then the ultraperiphery UP(G) of G is the subgraph induced by
those vertices v with p(v) =m. In Figure 1.2, we give an example of a connected
graph G along with its ultracenter UC(G), central fringe CF(G), and ultraperiphery
UP(G). The eccentricity of each vertex of G is also indicated. We investigate the
properties of the ultracenter, central fringe, and ultraperiphery of connected graphs in
Chapter II.

A digraph D is strong if for every two vertices u and v of D, there is both a
u—v (directed) path and a v—u pathin D. For vertices ¥ and v in a strong digraph
D, the directed distance 2(u, v) (or d(u,v) if directed distance is clear from context)
from u to v is the length of a shortest u—v pathin D. We say that a digraph D is

asymmetric if whenever (u,v) is an arc of D, then (v, u) is not an arc of D.
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For a vertex v in a strong digraph D, the eccentricity e(v) of v is the directed
distance from v to a vertex furthest from v in D. The radius rad D of D is the
minimum eccentricity among the vertices of Dj; while its diameter diam D is the
maximum eccentricity. The center C(D) of D is the subdigraph induced by those
vertices of D having minimum eccentricity; while the periphery P(D) is the
subdigraph induced by those veriices having maximum eccentricity. In Figure 1.3, we
give an example of a strong asymmetric digraph D with its center C(D) and periphery
P(D). In addition, rad D = 3, diam D = 4, and the eccentricity of each vertex is
indicated.

Let F and H be subgraphs of a connected graph G. Then the standard
distance d(F, H) between F and H is defined by
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d(F, H) = min{d(u, v) | ue V(F),ve V(H)}.

For example, if we consider the graph G given in Figure 1.1, then d(C(G), P(G)) =
2. Observe that the distance between subgraphs is a generalization of the distance
between two vertices; that is, if V(F) = {4} and V(H) = {v}, then d(F, H) = d(u, v).

Similarly, if F and H are subdigraphs of a strong digraph D, then the
standard directed distance (_i)(F, H) (or d(F, H) if directed distance is clear from

context) from F to H is defined by
- -
d(F,H) =min{du,v)|lue V(F),ve VH)).

If D is the digraph given in Figure 1.3 with subdigraphs F = ({u,v}) and H =
({z)), then d(F, H) =3, while d(H, F)=2. Clearly, this distance is not a metric, but

it is a generalization of the directed distance from one vertex to another.
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We now consider another distance introduced by Johns [5] involving subgraphs
of the same order. Let G be a connected graph of order p and let n be an integer
with 1 <n <p. Furthermore, let F and H be induced subgraphs of G of order n.
We define a pairing n from the vertex set V(F) = {v{,v,,...,v,} to V(H) asa
one-to-one mapping from V(F) to V(H). The subgraph distance sd,(F, H) induced
by © between F and H is

sdn(F, H) = i d(vi, n(vi)).

i=1

The subgraph distance sd(F, H) between F and H is defined by

sd(F, H) = min sdy(F, H).

For example, in Figure 1.4, we give a connected graph G along with two induced
subgraphs F and H of order 3. We also list all pairings between V(F) and V(H)
and compute sd(F, H). In Chapter IIl, we introduce the corresponding directed
distance, and we investigate properties of this directed subdigraph distance that are
analogous to properties involving graphs.

The distance d(v) of a vertex v in a connected graph G is the sum of the

distances from v to the vertices of G; that is, d(v) = z d(v, u). The median
ueV(G)

M(G) of G is the subgraph of G induced by those vertices having minimum
distance. In Figure 1.5, we give an example of a connected graph G along with its
median M(G). Furthermore, the distance of each vertex is also indicated. Similarly,
for a vertex v in a strong digraph D, the distance ;i)(v) (or d(v) if directed distance

is clear from context) of v is the sum of the directed distances from v to the vertices

of D, namely, :1)(v) = z d(v, ). The median M(D) of D is the subdigraph of D
ue V(D) :

induced by those vertices having minimum distance. A strong asymmetric digraph D
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is given in Figure 1.6 along with its median M(D). Again, the distance of each vertex

is indicated.
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Figure 1.6

1.2 Some Previous Results

Hedetniemi (see [4]) showed that every graph is the center of some connected
graph, that is, for every graph G, there exists a connected graph H such that
C(H) = G; while Slater [16] showed that every graph is the median of some connected
graph. Since the center and median are two ways of defining the "middle" of a graph,
one might expect the center and median of a graph to overlap (have vertices in common)

or at least be "close" to each other. Such is not the case, however, as Hendry [11]
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proved that for every two graphs F and G, there exists a connected graph H such
that C(H)=F and M(H) =G, where C(H) and M(H) are disjoint. Holbert [12]
extended this result by showing that for every two graphs F and G and positive
integer k, there exists a connected graph H such that C(H)=F, M(H) = G, and
d(C(H), M(H)) = k. Thus, the standard distance between the center and median of a
graph can be arbitrarily large. On the other hand, these subgraphs can be arbitrarily
close as Novotny and Tian [13] showed when they proved that for any three graphs F,
G, and K, where K is isomorphic to an induced subgraph of both F and G, there
exists a connected graph H such that C(H)=F, M(H)=G, and C(H) " M(H) =K.
Not every graph is the periphery of some graph, however. Bielak and Syslo
[2] proved that a graph G is the periphery of some connected graph if and only if
e(x) #1 foreach xe V(G) or e(x)=1 foreach xe V(G). Chartrand, Johns, and
Tian [6] proved that for every asymmetric digraph D, there exists a strong asymmetric
digraph H; suchthat C(H;)=D and there exists a strong asymmetric digraph H,
such that P(H,) = D. It was shown by Shaikh [14] that for every two digraphs D,
and D,, there exists a strong digraph H such that C(H) =D, and P(H)=D,. We

now extend this result to asymmetric digraphs.

Theorem 1.1 For every two asymmetric digraphs D; and D,, there exists a strong

asymmetric digraph H such that C(H) =D, and P(H)=D,.

Proof We define a strong asymmetric digraph H by

VIH) =VID) L VD) U (5]1<i<6)
and

E(H) = E(D;) U E(Dp) U ((z; 2, ) |1 1 €51 U {(, 2), (25, 1) | x € V(D))

U {(x, zq), (x, 24), (25, X), (26, Nlxe V(D))
(see Figure 1.7).
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Figure 1.7

From the construction of H, we have

@i e(x)=3 for xe V(D)),
i) e(zs) = e(zg) = 4,
(iii) e(z)=S5 for 1<i<4,and

(iv) e(x)=6 for xe V(D,).
Thus, CH)=D; and P(H)=D,. QO

The results of Hendry [11], Holbert [12], and Novotny and Tian [13] involving
graphs were extended to digraphs in [7]. For every two asymmetric digraphs D; and

D,, there exists a strong asymmetric digraph H such that C(H)=D, and M(H) =
D,, and where the directed distances from C(H) o M(H) and from M(H) to C(H)
can be arbitrarily prescribed. Furthermore, if K is a nonempty asymmetric digraph
isomorphic to an induced subdigraph of both D; and D,, then there exists a strong

asymmetric digraph F such that C(F) =D,, M(F)=D,, and C(F) " M(F)=K.
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10

In Chapter IV, we introduce the concepts of interior and annulus of a connected
graph and of a strong digraph. For a connected graph G with rad G < diam G, we
define the interior Int(G) of G by

Int(G) ={{ve V(G) | e(v) <diam G}).

If rad G = diam G, we define Int(G) = G. For a connected graph G with rad G <
diam G - 1, we define the annulus Ann(G) of G by

Ann(G) = {[v e V(G)|rad G < e(v) < diam G}).

If rad G =2 diam G - 1, we say that graph G has no annulus. We illustrate these
concepts in Figure 1.8 by presenting a graph G along with its interior Int(G) and
annulus Ann(G). We also indicate the eccentricity of each vertex of G. Similarly, we

define the interior and annulus of a strong digraph in Chapter IV.

G: Uy

&
w

_&
H
O—C0
o %

%10 kg
) Us Uy u u,
Int(G ): I Ann(G ).
“10 “9 “8 “r0  Ug
Figure 1.8
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Many of the previous results indicate a relationship between the relative location
of the center and median or the center and periphery of a graph or digraph. There are
similar types of questions involving the relationship between the relative location of
other induced subgraphs or subdigraphs. We investigate these results for the interior
and annulus of graphs and digraphs in Chapter IV. We continue this investigation in

Chapter V by studying the relative location of the median and periphery of a graph or
digraph.
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CHAPTER 1

ULTRACENTERS, CENTRAL FRINGES, AND
ULTRAPERIPHERIES OF GRAPHS

2.1 The Ultracenter and Central Fringe of a Graph

The center is among the most studied induced subgraphs of a graph. One
reason for this is that the center of a graph has many applications, for example, in
facility location problems. Another reason is that the center describes the "middle" of a
graph and by examining the center along with other induced subgraphs whose defining
property relies on the distance between two vertices, such as the median and periphery,
we obtain information about the structure of the graph. But even though the vertices of
the center have the same eccentricity, this may not indicate how the center interacts with
the rest of the graph. In addition, some of the vertices of the center could be interpreted
as being more "central" than others. For example, a central vertex that is adjacent only
to central vertices may appear to be more central than one that is adjacent to some
noncentral vertex. In Figure 2.1, we illustrate some of these ideas by presenting two
graphs of the same order that have isomorphic centers and peripheries but have
considerably different structures.

This example motivates us to investigate the structure of the center and
periphery of a graph to obtain a better understanding of the overall structure of the
graph. We start by introducing two induced subgraphs of the center of a graph.

Let v be a central vertex in a connected graph G with rad G <diam G. The
central distance c(v) of v is the largest nonnegative integer & such thatif d(v, x) <

k, then x is also a central vertex. If m =max{c(v)} over all central vertices v of G,

12
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Figure 2.1

then the ultracenter UC(G) of G is the subgraph induced by those central vertices v
with ¢(v) =m; while the central fringe CF(G) of G is the subgraph induced by those

central vertices v with ¢(v) = 0. We now investigate which graphs can be the

ultracenter (or central fringe) of some connected graph.

Theorem 2.1 Let F and G be graphs and let n be a positive integer. If diam F
= 2n — 1, then there exists a connected graph H such that CF(H)=F, UC(H) =G,

and every vertex of UC(H) has central distance n.

Proof Let ve V(F) such that e(v) =diam F. We partition the vertex set of F as

follows:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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@) Ag={vk
-1

@) A;={x|lxye EF),ye Ay xe K{)Aj], 1<i<2n—2; and
l:

2n-2
(iii) A,y =V(F)- ¥ Aj.

We now construct a connected graph H by

VH) = V(F) UVG) L (v, Vi w;] 1<i<2n +2)
U, wl1<sisn-1)u(zli<i<an-2)
and
E(H) = E(F) UEG) L (u; uy, 1t 1 |1 <i<n—-2)
U {V; Vip1s Vi Vielr Wi Wit l1<i<2n+ 1)
U {vu,_1, vvy, YV, YW, vZp ) U {xuy, xug |x e V(G)}
O (Xl _1s X340 Wanig Wonyp Wan a2 € Agyy)
U ow;q lxe A 1gisn-1) U (awyglxe A n<i<2n-2)
U {xz;_y, xz;, |xe A,2<i<2n-3} v [x22|x € A}
U (x2y,_3.X29, 5 |xe Ay, 5} U {z; 23, | 1<i<2n-3}
(see Figure 2.2).
Let B=VF)UV(G) U (up u}l1<i<n-1) L (z]1<i<2n -2). The
graph H is constructed in such a way thatif x € B and y € V(H), then x and y

are on some cycle (of H) of order at most 4n + 3. Thus ey(x) <2n +1 for xe B.

We calculate the eccentricity of each vertex of B by observing the following:

() d@x,v,,1)=2n+1 foreach xe V(G),
() du;,vpp=2n+1for 1si<n-1,
(i) d(}, v,,1_)=2n+1 for 1<i<n-1,

(iv) dw, vy, 1) =2n+1,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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=0

Figure 2.2

(V) d(z;, vy =2n+1 for 1<i<2n-2,and

(Vi) d(x,vy,,1_)=2n+1 for xe A, 1<i<2n-1.

Therefore ey(x) =2n+1 for each x € B. Furthermore, the remaining vertices of H

have eccentricities at least 2n + 2 as illustrated below:

@) dw, vy, )=2n+2 for 1Si<n+2,
() dw, Vg4 )=2n+2 for n+3<i<2n+2,
(iii) d(v;, vyp4p ) =2n+2 for 1<i<2n+1,

(v) d(vy,.9,v3) =2n+2,and

(V) d(vy,, Vp) =2n+2.
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Consequently, e(x) 2 2n + 2 for x € V(H) - B. In addition, from the construction of
H, we conclude that CF(H) =F, UC(H) = G, and each vertex of UC(H) has central

distance n.

We now state two corollaries which follow immediately from Theorem 2.1.

Corollary 2.2 Let F and G be two graphs. Then there exists a connected graph
H suchthat CF(H)=F and UCH) = G.

Corollary 2.3 Let G be a graph and n a positive integer. Then there exists a

connected graph H such that UC(H)=G and every vertex of UC(H) has central

distance n.

Now suppose that we are given two graphs F and G such that G is an
induced subgraph of F. Is it possible to construct a connected graph H such that
C(H)=F and UC(H) = G, where each vertex of UC(H) ‘has central distance n=>1?
This appears to be a difficult problem even for small n, so we will only investigate this

question for n = 1.

Theorem 2.4 Let F and G be graphs such that G is an induced subgraph of F.
Let V(F)-V(G)=AUB with AnB=0. If foreach x € V(G), there is some
y€ A and some z € B such that xy, xz € E(F), then there exists a connected graph
H such that UC(H) =G, C(H) =F, and each vertex of UC(H) has central distance
1.

Proof Letsets A and B be a partition of the vertex set V(F) — V(G). In addition,

assume that for each x € V(G), there is some ye A and some z € B such that xy,

xz € E(F). Furthermore, assume that if x e V(F) - V(G) and xy ¢ E(F) for each
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y e V(G), then x € B. Let C be the set of vertices from B that are not adjacent to

any vertices of G. We construct a connected graph H by

VIH) =VF) U (v, wil1gi<6) U (yl1<i<6, C2D)

and
EH)=EWF) O {v; Vi1, W; Wiy | 1<i<5} U (xvy, xw, |x € B}
v {xv6,xw6|xe AU {xul,xu4|xe C, C+0)
U (uguy, Ugltz, U3Vs, UsVe, Uylis, Uslig, UgWs, “6‘”6' C#Q)
(see Figure 2.3).

Figure 2.3

We compute the eccentricity of each vertex of H as follows:
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(i) e(x)=4 for xe V(F),
(i) e(x)=35 for xe {uy, uy, vy, vg Wy, wgls
(iii) e(x) =6 for x e (u,, us, us, ug, v5, vs, Wy ws}, and

(iv) e(x) =7 for xe {vs,v,, wywy}.

Thus, C(H) = F. It is clear from the construction of H that c(x) =1 foreach xe
V(G) and c(y) =0 foreach y e V(F) - V(G). Therefore, we conclude that
UC(H) = G and each vertex of UC(H) has central distance 1. O

The next theorem places several restrictions on induced subgraphs of the center

that can be the ultracenter of a graph.

Theorem 2.5 If F,G,and H are graphs such that UC(H) =G, C(H) =F, and

each vertex of UC(H) has central distance n 2 1, then

(i) degrx=2 foreach xe€ V(G),
(ii) for each v e V(G), there exists x € V(F) — V(G) such that xv € E(F), and
(i) p(C(H)) 2 p(UC(H)) + 2n.

Proof We will first show that degpx 22 foreach x e V(G). Suppose, to the
contrary, that there is some vertex z of G such that degp z<1. Since c¢(z) 21, we
have degrz=1 and zx¢ E(H) forall xe V(H) - V(F). Therefore, there exists
some y € V(F) suchthat zy € E(H). But this means that ey(z) = ey(y) + 1, which
contradicts C(H) =F. Thus, degrx22 for each x € V(G).

To show that condition (ii) must hold, we assume, to the contrary, that there is
some vertex z in G that is not adjacent to any vertex of F — V(G). Thus, the vertices

adjacent to z are also in G, and they have central distance n. But this implies that
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c(z) = n + 1, which is impossible. Hence, each vertex of G is adjacent to some vertex
of F-V(G).

We prove condition (iii) by showing that p(F — V(G)) 2 2n. Itis clear that for
xe€ V(UC(H)), we have e(x) 2n + 1. Now suppose, to the contrary, that
P(F -V(G)) <2n. Let xe V(UC(H)) and y e V(CF(H)) such that d(x,y) = n.
Furthermore, let P: x =vy, v;,..., v, =Yy be any fixed x-y path of length n. For
each z e V(CF(H)), it follows that any x-z path of minimum length must contain a
vertex of [V,-l 1<i<n). Clearly, d(x,v) >d(v,v) for 1<i<n. Consequently,
for each z € V(CF(H)), we have d(x, z) =d(x,v;) + d(v;, z) forsome i (1<i<n)
and

d(x,z) = dx, vp) +d(v;, 2) > d(vq, v;) + d(v;, 2) = d(vy, 2);

that is, e(x) > e(v,), which is a contradiction. Therefore, p(F — V(G)) 2 2n which

implies that p(C(H)) 2 p(UC(H)) +2n. Q
2.2 The Ultraperiphery of a Graph

In this section, we investigate the structure of the periphery of a graph. As seen
in Figure 2.1, two graphs may have isomorphic peripheries but be quite different in
their overall structure. We begin by introducing an induced subgraph of the periphery
of a graph.

Let v be a peripheral vertex in a connected graph G with rad G < diam G.
Recall that the peripheral distance p(v) of v is the largest nonnegative integer k such
that if d(v, x) <k, then x is also a peripheral vertex. Let m = max{p(v)} over all
peripheral vertices v of G. Then the ultraperiphery UP(G) of G is the subgraph

induced by those vertices v with p(v) =m. Even though some graphs are not the
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periphery of any connected graph, the next result shows that every graph is the

ultraperiphery of some connected graph.

Theorem 2.6 Let F be a graph and n a positive integer. Then there exists a

connected graph H such that UP(H)=F and every vertex of UP(H) has peripheral

distance n.

Proof We construct a connected graph H by

VIH) = VEF) L (u, ul, vi,vi[1gigsny o (vl1<isn+4)

U (wywil1gisn+3)u(z,Z|1<isn-1)

and
E(H) = E(F) L (xuy, xuj |xe V(IF)} u{v;vy, | 1<i<n+3)
’ ’ VAW 4 7 _ 1 )
U (ot g0 U g, Vi Vi VY Vi 1S ESR-1)
U {z;2;,1, z;z;+l|1SiSn—2]
4 ’ .
) {Wi Wi+1, W‘ Wi+l|lSlsn+2}
U {v vi,v'l’vil Isisn}u{w,w, w,’,w}ln+2$i$n+3]
’ ’ ’ ’
U {Vpi2W1s Vis2W1s VisaZ1s Vpad 210 Uy 2y 1> UpWpa3s Up 2y g,
’ ’ ’ {4 ’
UpWpi3r VpWpe1o vnwn+l]
(see Figure 2.4).

From direct calculations, it follows that diam H <2n + 4. In addition, we have

() dx,v)=2n+4 for xe V(F) and 1<i<n,
(i) d;vy)=2n+4 for 1<i<n,and

(i) d(uj, v))=2n+4 for 1<i<n.
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Figure 2.4

Thus, if A = (x, u, u}, v;, v}, v} |x € V(F), 1<i<n), then e(y) =2n+4 for each
y € A. Furthermore, for each x € V(H) — A, we have e(x) <2n + 4. Consequently,

it follows that UP(H) = F and each vertex of UP(H) has peripheral distance n. O
We now investigate the case where n=0.

Theorem 2.7 For any graph F, there exists a connected graph H such that
UP(H)=F and each vertex of UP(H) has peripheral distance 0 if and only if

ep(x) # 1 foreach x e V(F).
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Proof First assume that there exists a connected graph H such that UP(H)=F and
each vertex of UP(H) has peripheral distance 0. Then P(H) = UP(H)=F and, from
Bielak and Syslo [2], we have ep(x) #1 foreach xe V(F) or ep(x) =1 'for each
x e V(F). Butif F is a complete graph, then UP(H) is not defined, which is a

contradiction.

For the converse, we assume that F is a graph with eg(x) # 1 for each
x e V(F). We construct a connected graph H by joining a new vertex y to the
vertices of F. It follows that ey(x) =2 for x€ V(F) and ey(y) = 1. Thus
P(H)=F and C(H)=({y}). Furthermore, each vertex of P(H) is adjacent to a
vertex in C(H). Therefore, UP(H) = P(H) = F and each vertex of UP(H) has

peripheral distance 0. O
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CHAPTER I
SUBDIGRAPH DISTANCE AND MULTIVERTEX DIGRAPHS
3.1 Subdigraph Distance

For a strong digraph D of order p and an integer n such that 1 <n <p, let
F and H be induced subdigraphs of D of order n. Following Johns [5], we define a

pairing © from the set V(F), say {vy, vy, ..., V,], to the set V(H) as a one-to—one

correspondence that associates a vertex of F with one of H. The subdigraph distance

induced by © from F to H is defined as

sdn(F, H) = 2, d(vi, 7(v))

i=1

and the subdigraph distance from F to H is

sd(F, H) = min sd,,(F, H).
T

Notice that if V(F) = {x} and V(H) = {y}, then sd(F, H) =d(x,y). Thus
subdigraph distance is a generalization of directed distance for digraphs. In Figure 3.1,
we give a strong digraph D with two induced subdigraphs F and H of order 3. We
also list all pairings between V(F) and V(H) and compute sd(F, H) and sd(H, F).
For a strong digraph D and an integer n suchthat 1<n<p,let F, H,and J
be subdigraphs of D of order n. Since sd(F, H) =sd(H, F) is not true in general,
subdigraph distance is not a metric. On the other hand, the triangle inequality holds, as

we now verify. Suppose that V(F) = {vy, vp,...,v,}. Let ®; and my be pairings
such that sd(F, H) = sdnl(F ,H) and sd(H,J) = sdnz(H, J). Then

SA(F, J) < st (F, J) = 2, Vi, Ta(ma(v))
i=1

23
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Va V3 X y
D: F: H: Vo
vy O—»—-0—0
y up U3
Vi
4 ul 2 u3
Pairing | u; vi | d(uy, vy | d(vj, up) sdg (F, H) SdnLc(H , F)

u Vi 3 2

T, uy 12) 5 4 10 9
us3 V3 2 3
Uy Vi 3 2

U7) u | V3 1 4 5 10
U3 ) 1 4
uy 1) 6 3

3 up Vi 2 3 10 9
Us V3 2 3
U 12) 6 3

Ty Uy V3 1 4 9 11
U3 V1 2 4
uy V3 2 3

Tts u V] 2 3 5 10
us 17} 1 4
uy V3 2 4

Tg U 12} 5 4 9 12
U3 Vi 2 4

sdF,H)=5 and sd(H{,F)=9

Figure 3.1
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n
< 2, [di, 1) + d(m(v)), ma(m (v)))]
i=1
= sdnl(F, H) + sd,tz(H, J)
=sd(F,H) + sd(H, J),
where the second inequality holds since directed distance satisfies the triangle
inequality.
There are several results involving distance in subgraphs that have natural
analogues in subdigraphs, which we now investigate. The proof of the next theorem
and its corollaries are similar to the proofs in [S] corresponding to graphs and are

therefore omitted.

Theorem 3.1 For a strong digraph D, let F and H be subdigraphs of D with
p(F) =p(H). If {uy, uy, ..., up} < V(F) N V(H), then there exists a pairing © from
V(F) to V(H) such that sd(F, H) = sd(F, H) and n(y;)=u; for i=1,2, ...,k

For a strong digraph D of order p, let F be an induced subdigraph of D of
order n. We define the subdigraph eccentricity e(F) of F as

e(F) = max {sd(F, H) |H is an induced subdigraph of D of order n},
the n—radius rad, D of D as
rad,, D = min{e(F) |F is an induced subdigraph of D of order n},
and the n-diameter diam, D of D as

diam, D = max{e(F) |F is an induced subdigraph of D of order n}).
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The diameter sequence of a strong digraph D is defined as the sequence diam; (D),
diamy (D), ..., diamp__i (D). The first corollary shows that the first "half" of the
diameter sequence is nondecreasing while the second corollary shows that the diameter

sequence is symmetric with respect to its middle term.

Corollary 3.2 Let D be a strong digraph of order p. If n is an integer such that
1<n<lp/2l-1,then diam, (D) < diam,,, (D).

Corollary 3.3 Let D be a strong digraph of order p. If n is an integer such that
1<n<p-1,then diam, (D)= diamp_,, (D).

3.2 Multivertex Digraphs

There are numerous results involving distance in graphs and digraphs. Thus,
we may gain some insight of subgraph or subdigraph distance if this distance can by
represented in terms of distance in graphs or digraphs. This has been done for graphs
with several people studying this distance [1], [5], [10], [14], [17]. The next definition
illustrates how this is accomplished for digraphs.

Let D be a strong digraph of order p with induced subdigraphs F and H of
order n (1 <n< p). Then sd(F,H) =1 if and only if V(F)-V(H) = {x}, V(H) —
V(F) = {y}, and (x,y) € E(D). We define the n—multivertex digraph or n—digraph of
D as the digraph M, (D) with

VM, (D)) = {v,-IS,- isasetof n verticesin D}
and

EM (D)) = {(v;, v) | sd((S), ¢S = 1).
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Throughout the dissertation, we will assume that v; € V(M,(D)) is associated with the
set S;. An example of a digraph and its 2-digraph are given if Figure 3.2 with
Sl = {xl, 12}, 32 = {xl, X3}, S3 = {xl, X4], S4 = {X2, X3], SS = {X2, x4], and

S6 = {x3, X4].

v6 VZ

V4

Figure 3.2

The following result shows that subdigraph distance in digraph D can be
represented as directed distance in the multivertex digraph M, (D). Again, the proof of

this theorem is similar to a result in [S] corresponding to graphs and is therefore

omitted.

Theorem 3.4 Let D be a strong digraph of order p andlet n be an integer such
that 1<n<p. If F and H are induced subdigraphs of D of order n with V(F)=
So and V(H) = Sg, then

sd (F,H) = dM,,(D) (Vo VB)'

We have an immediate consequence of this theorem.
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Corollary 3.5 Let D be a strong digraph of order p. If n is an integer such that
1 <n<p, then diam, D =diam M,(D) and rad, D =rad M,(D).

The next result determines the order and size of M, (D) in terms of the order

and size of D.

Theorem 3.6 Let D be a digraph of order p and size q. Then p(M,(D)) =( z)
and q(M,(D)) = q(ﬁ:‘;‘) for 1<n<p.

Proof It is clear by the definition of M,(D) that p(M,(D)) =(% ). For cach

(u,v) € E(D), we have (v;,v)) € E(M,(D)) when S;={x,x3,..,x,_1, 4} and
Sj={x1, X2, ... , Xp_1, v} where xm#u and xm#v,for 1<m<n—1. Since
there are (i :%, ways to choose an (n — 1)-element subset of V(D) — {u, v}, we

have (ﬁ :%) arcs in M,(D) for each arc in D. Thus, there are i :%) arcs in
Mn(D). Q

An asymmetric digraph is a rournament if its underlying graph is a complete

graph. The observation that a digraph D is asymmetric if and only if M,(D) is

asymmetric results in the following corollary.

Corollary 3.7 Let D be an asymmetric digraph of order p. Then D isa

-2
tournament if and only if g(M,(D)) =(g )(ﬁ_ l) for 1sn<p-1.

We now present a result concerning the indegrees and outdegrees of the vertices

of M,(D).
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Theorem 3.8 Let D be a digraph with v; € V(M,(D)). Then
idvi) = Y, id(x) - g(S
IES:

and
od(v) = Y, od(x) - g((Sy).
X€S;
Proof Suppose that §; < V(D) where |S,-| =n, and let x € §;. Furthermore,
suppose that x is adjacent to the vertices y;,y,, ... ,¥;. Foreach y, ¢ §;
1 <m <k, the vertex v; is adjacent to vy in M,(D), where Sy = (S; - {x}) U {y,,).
Observe that no such arc occurs in M ,(D) when y, € S; which means that
(x, ym) € E({S;)). Thus,
od(v) = Y, od(x) - g((Si).
XGS}
A similar argument shows that
idv) = Y, id() -q(S). Q
XES{ .
For a digraph D, the converse D of D is defined by V(B) = V(D) and
E(B) ={(u,v) | (v, u) € E(D)}. The following result gives a relationship between the
digraphs M (D) and MH(B) for a digraph D of order p.

Theorem 3.9 If D is adigraph of order p and n is aninteger with 1<n<p -1,

then M,(D) =M,,_,(D).

Proof Consider a mapping ¢ from V(M,(D)) onto V(M p_,,(B)) such that for each
v; € V(M,(D)), we have ¢(v;) = v;, where S;=V(D)—S;. Observe that if (v;, V)
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€ E(M,(D)), then S; —-SJ- = {x}, SJ-—S,- = {y}, and (x,y) € E(D). So it follows that
SJ'- -S;={x), S} - S} =(y), and (v}, v)) € E(Mp_,,(B)). Similarly, if (v}, v}) €
E(Mp_,,(B)), we conclude that (v;, vj) € E(M,(D)). Thus, ¢ is an isomorphism from
V(M (D)) onto V(Mp_,,(B)), completing the proof. O

A tournament D is transitive if, whenever (i, v) and (v, w) are arcs of D,
then (u, w) is also an arc of D. We now determine those n—digraphs of D that are

(transitive) tournaments.
Theorem 3.10 Let D be a digraph of order p. Then

(i) M,(D) isnota tournament for 2<n<p -2, and
(i) M,_1(D) is a (transitive) tournament if and only if D is a (transitive)

tournament.

Proof Statement (i) is obvious for p <3, so assume that p >4. Let S; be any set
of n distinct vertices of V(D) for 2<n<p—2. Since | V(D) - S,-| 2 2, there exist
u,ve V(D) suchthat u,v¢ S;. Now choose Sj such that u,v e Sj, which means
there is no arc between v; and vj in M,(D).

The statement (ii) follows directly from Theorem 3.9. O

The next result shows that each induced subdigraph of order n of a digraph D
is isomorphic to some induced subdigraph of M, (D).

Theorem 3.11 Let D be a digraph of order p, and let n be an integer such that
1<n<p—1. Then D —(xy,Xp, .., X5q) = {{v;€ VM, D)): |S; - (x1, %9 ...,

Xp-1) | = 1}) for distinct vertices xy, X5, ... , X,,_y.
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Proof Let ¢ be a mapping from V(D) — {x1, x3, ... ,X,_1)} onto T < V(M,(D)),
for 1<sn<p-1, where T = {v;e V(M,(D)): |S,-— {x1, %2, e s Xp1) I = 1}.
For u;e V(D) - {xy, x2, ... , X1}, define ¢(u;) =v; where S;= {x1,x9, ... , X,_1,
u;). Since (v;, vj) € E(T)) if and only if (u;, uj)e E(D ~ {x1, X9, oo, Xp_q D), it

follows that ¢ is an isomorphism from V(D) - {xy, x5, ...,Xx,_1} onto T. Q

We now present upper and lower bounds for the n—radius and n-diameter of a

digraph.

Theorem 3.12 Let D be a strong digraph of order p, and let n be an integer such
that 1<n<|[p/2]. Then

n <rad, D <diam, D < ndiam D,

and there exists a digraph D such that
n =rad, D = diam, D = n diam D.

Proof Let §; = {xy,xy, ..., x,} be any set of n distinct vertices of digraph D.
Since n<|p/2|, there exists a set S, of n distinct vertices contained in V(D) - S;.
Let Fy=(Sy) and Fy=(S;). Then for a pairing ® with sdy(F, Fy) = sd(Fy, F,),

we have

e(v)) = e(F)) 2 sd(Fy, Fp) = sdp(F1, Fp) = 3, d(xiy R(x)) 2 D, 1 =n.
i i=1

i=1

Thus, n<rad, D. Itisclear that rad, D <diam, D.

Now consider a set S3 of n distinct vertices of digraph D such that e(vy) =
dpM,D)(V1, v3). Let F3=(S3). Then for a pairing n with sdp(Fy, F3) =sd(Fy, F3),

we have
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e(vy) = dy1,p)(V1, v3) = sd(Fy, F3) = sdp(Fy, F3) = Y, d(x;, n(x)) < ndiam D.

i=1
Therefore, diam, D < n diam D.

For a digraph D = K;,,, we have
n=rad, D =diam, D =ndiamD. 0
The next corollary follows from Corollary 3.5 and Theorem 3.12.

Corollary 3.13 Let D be a strong digraph of order p, and let n be an integer
suchthat 1<n<|p/2|. Then

n < rad M, (D) < diam M,(D) < ndiam D,

and there exists a digraph D such that

n=rad M, (D) = diam M_(D) = n diam D.
3.3 Relationships Between Digraphs and Multivertex Digraphs

In general, the multivertex digraphs of a digraph D are more complicated then
D itself. Thus, it would be desirable to determine properties of multivertex digraphs of
a digraph D by properties possessed by D. Another way of saying this is to ask:
What properties of multivertex digraphs of a digraph D are inherited from D? In
addition, if we are given some multivertex digraph M, (D), can we determine any
properties of the digraph D? In this section, we investigate these questions with

respect to distance concepts. We start by showing that each path in the multivertex

digraph M, (D) corresponds to n paths in the digraph D.
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Lemma 3.14 Let D be a digraph of order p. For any vg—v pathin M, (D)
(1 <n<p) with Sg= {xq,x3, ... , X}, there is some pairing © from Sy to S such
that there is an x; — m(x;) pathin D for i=1, 2, .., n. Furthermore, if Sy—-S§ =

{x} and S —Sg = (y}, then there is an x -y pathin D.

Proof Let P:vgy,vy,..,v, =V bea vg—v pathin M,(D). Since (vj,vj,1) €
EM,(D)) for 0<j<m -1 if and only if S;-S;,; = {x}, Sis1-Sj={y}, and
(x, ¥) € E(D), we can construct n directed trails in digraph D by algorithm TRAIL

(see Figure 3.3).

Algorithm TRAIL:
For i=1ton
Let k< 0, 1y x;, and T; & {x;].
For j=0to m-1
If sj"Sj+1 = {1}, then
Let 1, <y where Sj+1—Sj= {y}.
Let T; «T; L {4}

Let ke—k+1.

Figure 3.3

For each i=1,2, ..., n, we construct the trail T; x; =1, ¢y, ..., where
1, € S. If we construct the n trails simultaneously by algorithm TRAIL, then for any
J (0<j<m-1), the last vertex in the trail T; (1 <i<n) constructed thus far by the
algorithm corresponds to a vertex of D in S;,4, and the set of these n vertices of D

is Sj“. Since each set SJ- (0 <j<m) consists of n distinct vertices of D, there

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33



must be some pairing © from S to S such that for i =1, 2, ..., n, there is an
x;—7(x;) pathin D.

Now assume that Sg and S are two sets of n distinct vertices of D with
So—S={x} and S-Sg={y}. We show that there is an x —y path in digraph D.
Suppose that Sy = {x1, x9, ... , X,_1,x) and S = {xq, x5, ..., X,_1,¥}. By the
previous discussion, there is some pairing © from Sy to S such that there is an
x;—7(x;) pathin D foreach i=1,2,..,n—1 and an x —n(x) pathin D. If
T(x) =y, then the proof is complete. So assume that n(x) =x; forsomei (1<i<n
—1). Since a pairing 7 is a one—to—one correspondence between Sy and S, we have
n(x) € § - (x;}. If wn(x;) =y, then we have an x —x; path and an x; -y pathin D.
This means that there is an x —y path in digraph D. So assume that n(x;) =x; for
some j#i (1 <j<n-1). Then we have n(xj) e S—{x; xj]. If n(xj) =y, then we
have an x—x; path, an x;—x; path, and an x;—y pathin D and, thus, an x —y
path in D. Continuing in this fashion, we eventually reach y since S and S have
the same (finite) cardinality. Therefore, it follows that there is an x —y path in digraph
D. O

A digraph D is unilateral if for each pair x,y of vertices of D, there is an
x-y pathora y—x pathin D. One of the consequences of the preceding lemma is

the following result.

Corollary 3.15 If D is a digraph of order p such that for some integer n
(1=n<p-1) thedigraph M,(D) is unilateral, then D is unilateral.

Proof Let x,y e V(D) and suppose that S§; = {xy, x5, ... , X,_1, X} and

8o = {x1,x2, ... , X,,_1, ¥} are two sets of n distinct vertices of D. Since M,(D) is
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unilateral, there is a v; —vy pathora vy —vy pathin M,(D). Now, by Lemma 3.14,

thereis an x—y path ora y—x pathin D. Q

The converse of Corollary 3.15 is not true in general. To see this, consider the
digraphs D and My(D) shown in Figure 3.4. Let §; = (x1, x2}, S5 = {x, x3},
S3 = [xl, 14], S4 = [12, X3], Ss = [12, X4}, and S6 = [X3, X4]. Observe that even

though D is unilateral, there is neithera v3—v, pathnora v4—v3 path in My(D).

Vi

Vg ~ vy

X
3 Va

Figure 3.4

Observe that a digraph D is strong if and only if its converse D is strong.
Thus, by Theorem 3.9, a digraph D of order p is strong if and only if M,_;(D) is

strong. In fact, we can even say more.

Corollary 3.16 Let D be a digraph of order p. If M, (D) is strong for some

integer n (1<n<p-1),then D is strong.

Proof Let x,y € V(D) and suppose that §; = {x}, X2, ... , Xx,_1, X} and
S = {x1, X2, ... ,Xp_1,y} are two sets of n distinct vertices of D. Since M,(D) is
strong, there is a vy —vy pathanda vy —v; pathin M,(D). Then by Lemma 3.14,

we havean x—y pathanda y—x pathin D. O
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The next result shows that if D is a strong digraph, then all n-digraphs of D

are also strong.

Theorem 3.17 If D is a strong digraph of order p, then for each integer n
(1 < n<p), the digraph M, (D) is strong.

Proof Assume that the statement is false. Then there exists an integer n (1 <n<p)

and vertices v; and vj in M, (D) such that there is no Vi—V; pathin M (D). In
addition, assume that A = {Skl thereisa v; —v, pathin M, (D)} andlet S,e A

such that
|S,nsj| =max[|Sanj|: S,€ A} <n.

Thus, M, (D) contains a v;—v, path. Let x e S,—Sj and ye Sj—S,. Since D is
strong, there exists an x —y pathin D. Suppose that P: x, w;, wy, ... ,w,y isa

shortest x —y path in D. Furthermore, assume that
(Wi, wo, oo, w NS, =1{z,2, ..., 2,}.
Without loss of generality, we can rewrite
PrX, Wi, Wy oo s Z WL 1 W s e 222, W s W0 9s e s 2o Wy 1y Wy, eny ).

Observe that the following sequence of sets of vertices in D beginning with §, and
ending with S,, =(S, - {x}) U {y} corresponds to a sequence of vertices in M, (D)

that forms a v,—v,, pathin M (D).
Sp (= (2:)) U {wy1), S, = (2:) U (wy2), .., (S, — (2,)) U (3},

(St"' (Z’., z;--]]) . {ys wr—l,l}, (S‘ - {zn z,--]]) U [y’ wr-l,Z}a see gy
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(St - [zra zr-ll) U {y, zr} = (S; - [zr..l]) v {y}, (St"' [zr-b zr.zl) v {y, wr-2,1],
(s[ - [zr-l’ Zr.zl) v [y: Wr—Z,Z}’ srey (St - {zr-l’ zr-2}) v [)’, zr-l]
= (5,~ (2,3 U O, = (XD U () =5,

Thus, there is a v,—v,, path and, consequently, a v;—v,, pathin M, (D) and

m

Sme A But |, n5;| =|s,A8;| +1, which is a contradiction. O

The next result is a consequence of Corollary 3.16 and Theorem 3.17.

Corollary 3.18 Let D be a digraph of order p. If M,(D) is strong for some
integer n (1 <n <p - 1), then the digraph M,,(D) is strong for each integer m

(1<m<p-1).

A digraph D is said to be weak if its underlying graph is connected; that is, D

is weak if for u, ve V(D), thereisa u—v semipath in D. There is a result similar to

Lemma 3.14 that involves semipaths.

Lemma 3.19 Let D be a digraph of order p. For any vg—v semipath in M,(D)
(1 =n<p) with Sg= {xq,xy, ..., X}, there is some pairing ® from Sy to S such
that there is an x; —n(x;) semipathin D for i=1, 2, ..., n. In addition, if S3—S =

{x} and S-—Sp={y}, then there isan x -y semipath in D.

This lemma can be proved by imitating the proof of Lemma 3.14 with "path"
replaced by "semipath”. From the "proof technique" presented in Theorem 3.17 and

from Lemma 3.19, we have two corollaries, which we state without proof.
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Corollary 3.20 If D is a weak digraph of order p, then for each integer n
(1 £n <p), the digraph M,(D) is weak.

Corollary 3.21 If D is a digraph of order p such that for some integer n
(1 £n<p-1), the digraph M (D) is weak, then D is weak. Furthermore, the
digraph M, (D) is weak foreach m=1,2,...,p.

An eulerian circuit of a strong digraph D is a directed circuit 'containing all the
arcs of D. A digraph possessing an eulerian circuit is called an eulerian digraph. From
[9], a strong digraph D is eulerian if and only if id(v) =od(v) for every vertex v of
D.

Theorem 3.22 et D be a digraph of order p >3 and let n be an intéger with
2<n<p-1. Then the digraph M,(D) is eulerian if and only if D is eulerian.

Proof Assume that D is eulerian. Then D is strong and for each u € V(D), we

have id(¥) = od(x). From Theorem 3.17, it follows that M, (D) is also strong. In

addition, by Theorem 3.8, we have

idvy) = Y, id(x) - q((S))

x€S;

and

od(v) = Y, od(x) — g(S:)).

xeS;

Since id(#) = od(u) for each u € V(D), we conclude that id(v;) = od(v;) for each
v; € V(M (D)), that is, M (D) is eulerian.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38



39

Now suppose that M, (D) is an eulerian digraph. Then M, (D) is strong and
by Corollary 3.16, the digraph D is also strong. Furthermore, for v; € V(M (D)),

we have id(v;) = od(v;). From this and Theorem 3.8, it follows that

id(v) = Y, id(x) - q(SY). = 2, od(x)—q(S)) = od(v) .

x€S; X€ES;

and

2 id@ = 3, od).

X€S; x€S;
Suppose that there exists w € V(D) such that id(w) <od(w). Since

Y ide) = Y, od(),
xe V(D) xe V(D)
there exists y € V(D) such that id(y) > od(y). Let S S V(D) be a setof n distinct
vertices such that w,y € S, and let ze€ V(D) such that z e S. If id(z) 2 od(z), then

for §; =(S - {w}) L {z}, we have

Y, idx) = Y, id(x) —idw) +id(z)

x€ Sy xS

=Y od(x) —id(w) +id(2)

xes

> Y od(x) —odw) +0d(z) = Y, od(x),

x€S x€ S
which is a contradiction. So id(z) <od(z). Let Sy=(S - {y}) U {z}. Then

Y, idx) = Y, id(x) —id(y) + id(z)

x€ 82 xeS

= Y. od(x) —id(y) +id(z)

xes
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<Y od(x)-od(y) +od(z) = 3, od(x).
x€§ x€82
Again, we have a contradiction. Therefore, id(x) = od(x) for all x € V(D). Since the

digraph D is strong, it follows that D iseulerian. Q

A digraph D is called regular of degree r or r-regular if id(v) =od(v)=r
for every vertex v of D. For a connected graph, Wright [17] stated necessary and
sufficient conditions for the n—multivertex graph to be regular. For an asymmetric

digraph D, we present necessary and sufficient conditions for the multivertex graph
M, (D) to be regular.

Theorem 3.23 Let D be an asymmetric digraph of order p and let n be an
integer with 2 <n <p—1. Then the digraph M, (D) is regular if and only if (1) D is

regular of order n + 1, (2) D is an m-regular tournament, m 21 (of order 2m + 1),

(3) D=H UK, where H isan (n - 1)-regular tournament (of order 2n - 1), or

4) qD)=0.

Proof ¥ D isregular of order n + 1, then M, (D)= D by Theorem 3.9. Thus,
M, (D) is regular.
Suppose next that D' is an m-regular tournament. Thus, if S is a set of n

distinct vertices of D with 2<n<p —1, then g((S)) =( ; ) So, for v;, vj €

p ,
VM, (D)) with 1<i,j< ( n ’, it follows from Theorem 3.8 that

idv) = Y, id(0) - q(SN = Y, id(x) — g((S)

xeS; xeS§;

= Y id(x) - q(S;)) = id(v))

X€ Sj
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and

idv) = Y, id(x) —q(SH) = Y, od(x) — g((S)) = od(v)).

x€S; x€S;

Therefore, M, (D) is regular.

Assume now that D =H UK, where H isan (n — 1)-regular tournament.
Let y be the isolated vertex of D and let S be any set of n distinct vertices of D.

Then

idw) =Y, id(x) —q(s)) = Y, od(x) —q(S)) = od(v).

xes xe$

Now let §; and S, be any two sets of n distinct vertices of D such that y € §;

n-1
and y e §,. Observe that g({S,)) =( 9 ) and g({(S,)) =( g ) . Also, for we §,

and T =5, - (w}, we have

Y, ide) = Y, id(x).

xeT x€ S

Thus, for w e S2, it follows that

idvp) = Y, id()-q(S) = Y, id(x)“( ;)

x€S2 x€S2

-y id(x)—[( - 1>] = ¥ idw-[q(si) + (- 1)

X€S2 x€ S,

= Y id(x) +idw) —[g(S1) + (= 1)

xeT

Y, id(x) +idow) ~[g(s1)) + (- 1)]-

x€8
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Y, id@) + (1) -[q(S1) + (0 = 1)

x€ Sy

Y, id() —q((S1) = id(vy).

x€ 8

From this, we conclude that M, (D) is regular.
If D isadigraph of size 0 and order p, itis clear that M, (D) has size 0 for
2<n<p-1,thatis, M (D) is regular.
For the converse, suppose that M, (D) is regular for some integer n, where
2<n _<.|_p /2]). We first show that id(x) = od(x) for each x € V(D). For v;e
V(M (D)), we have id(v;) = od(v,). Thus, from Theorem 3.8,
2 id() - q(SH = 3, odx) - q(SH),

xeS; IGS;

that is,

Y idx) = Y, od(x).

xX€S; XES;
Suppose that there is some u € V(D) such that id(x) < od(u). Since

Y idx) = Y, od(®),

xe V(D) xe V(D)

there exists y € V(D) such that id(y) > od(y). Let S S V(D) be a setof n distinct

vertices such that u,y € §, and let ze V(D) —S. We consider two cases.

Case 1 Assume that id(z) = od(z). Let S’ = (S — {u}) U {z}. Since id(z) = od(z)

and id(u) < od(u), we have
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Y id(x) = Y, id(x) —id@w) +id(z) = Y, od(x) —id(u) + id(2)

xeS’ xeS xeS
> Y od(x) —od(u) + 0d(z) = Y, od(x),
xS xeS§’

which is a contradiction.

Case2 Assume that id(z) < od(z). In this case, we let S’ =(S - {y}) U {z} and by

a calculation similar to Case 1, we have the contradiction

Y, id(x) < Y, od().
xe8’ xe§’
Therefore, id(x) = od(x) for each x € V(D).

We now show that D isregularor D = H UK, where H isregular. If D is

not regular, then

(1) there exist x,y € V(D) such that 1 <id(x) <id(y), or
(ii) there exist x,z e V(D) such that id(x) =0, id(z) 2 1, and for each

ye V(D) - {x, z}, we have id(y) =0 or id(y) =id(z).
We consider both of these cases.

Case 1 Assume that there exist x,y € V(D) such that 1 <id(x) < id(y). Since
id(y) 22 and id(y) = od(y), we only consider p=5. Let N"(x) = {ul (u,x) e
ED)}, N*(x) = (u] (x, u) € E(D)}, and N(x) =N"(x) U N*(x). For A SV(D), let
id4(x) be the number of vertices in A that are adjacent to x, and let od4(x) be the
number of vertices in A that are adjacent from x. For any set A S V(D) — {x,y)} of

n—1 distinct vertices, let S; =AU {x}, S, =AU (y}, and T=V(D)—-A. Then
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id(vy) = 3, idp(z) + idr(x) — oda(x)

zeA

and

id(vy) = Y, idr(z) +idr(y) — oda(y).

zeA
Since M, (D) is regular, it is clear that id(v;) =id(v,). From this, we must have
idp(x) — od4(x) = idp(y) — 0d4(¥). 3.1)

In a similar fashion, if we consider the corresponding equations for od(v;) and

od(v,), it follows that
id4(x) — od{(x) = id4 () — od(¥). 3.2)

Subcase 1.1 Assume that N(x) " N(y) # &. Suppose that ze N(x) N N(y) and
we N(y) suchthat weg N(x)uU {x). Let AS V(D) - {x,y,w} beasetof n—1
distinct vertices such that z e A, and let T = V(D) — A. Without loss of generality,

assume that ze N*(x).

Subcase 1.1.1  Assume that ze N*(y). If B=(A - (z}) U {w} and U =V(D)-

B, then

idg(x) — 0d, (x) = idy;(x) - 0dp(x) — 1 = idy () — 0dg() — 1
= idg() - 0d40) - 1,

where the second equality follows from (3.1) and we consider both cases of w €

N"(») or we N*(y) for the third equality. This is a contradiction.
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Subcase 1.1.2 Assume that z e N~ (y). Using (3.2) and a calculation similar to

Subcase 1.1.1 with B=(A - {z}) U {w} and U = V(D) —- B, we have

id, (%) — 0d7(x) = idg(®) — odyy(x) + 1 = idp() - 0dy(y) + 1
= id4(y) — 0dp(y) + L.

Again, we have another contradiction.

Subcase 1.2  Assume that N(x) "N(y) =. Let A S V(D) - {x,y, w} be a set of
n — 1 distinct vertices such that u € A, where ue N(x) and we N(y). If T =
V(D) -A, B=(A-{u)) v {w},and U = V(D) - B, then a calculation similar to the

above results in

idy(x) — 0d, (x) = idyy(¥) — 0dp(x) — 1 = idyy(y) — 0dp(y) — 1
= id(y) - od, () — 2.

From this contradiction, we conclude that Case 1 is impossible.

Case 2 Assume that there exist x,z € V(D) such that id(x) =0, id(z) 2 1, and for
each y e V(D) - {x, z}, we have id(y) =0 or id(y) =id(z). Suppose that there are
two vertices x,y € V(D) such that id(x) = id(y) = 0. For some (u, w) € E(D), let
S & V(D) — {u,w} beasetof n distinct vertices such thai x,ye S,andlet T =

V(D) —S. We consider three subcases.

Subcase 2.1  Assume that idp(w) # odg(w). If §; =(S— {x}) L {w}, then id(v|) =
id(v) — odg(w) + id(w) # id(v), which contradicts M, (D) being regular.

Subcase 2.2 Assume that idp(u) # odg(u). For S, = (S — {x}) U {u}, we have

id(vy) =id(v) — odg(u) + id{u) # id(v). Again, this is a contradiction.
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Subcase 2.3  Assume that idp(w) = odg(w) and id(u) = odg(u). If §; =(S -
{x,¥}) U (u, w}, then id(v,) = id(v) + idp(u) + (idp(w) — 1) — odg(u) — odg(w) #
id(v), where the —1 occurs from (4, w) € E(D). This is a contradiction.

Thus, if M, (D) is regular, with 2<n< |_p / 2_], then D isregularor D=H
UK, where H is m-regular with m2 1.

Assume that D is m-regular with m 21 and p(D)#2m + 1. Since D is
asymmetric, we have p(D) 2 2m + 2. Also, for each v;, Vi€ V(M (D)), it follows

that

idw) = Y, id0) —q((S) = Y, id(x) - qS) = idw)).

xeS; x€S;

Since D is regular, we conclude that

(S = 4.

46

Let x,ye V(D) suchthat ye N(x) U {x). Let A S V(D) - {x,y} be any set of -

n —1 distinct vertices and let §; =A U {x} and S, =A U {y}. Using q((S;)) =
q({(S5)), we have IN(x) NAl = |N(y) AA/|. Since this is true for each A C V(D) -
(x,y}, we conclude that N(x) = N(y). Furthermore, if B = V(D) - (N(x) U {x}),
then N(x) = N(z) for each z € B. From this, it f;)llows that 2m =N(u) 2 IB | +1
for u € N(x). Thus,

p=1+|No| +|Bl =1+2m+ |B|

<2m+2m=4m
and

n<lpr2l < om=INw|.
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For some u € N(x), suppose that we V(D) such that w ¢ N(u) U {u}. Let
A S N(x)—{u,w) beasetof n—2 distinct vertices where 2 <n < |_p / 2_] < 2m.
If S, =AU {u,x) and S, =AU (u, w), observe that n-1= |N(x)ns,| >
|N(w) NS, |. From this, it follows that g({(S;)) > q((S,)), which is a contradiction.
Thus, we must have p(D) =2m + 1.
Now suppose that D =H U K, where H is m-regular with m 2 1. Let
y € V(D) such that id(y) =od(y) =0. Let §; and S, be any two sets of n distinct
vertices of D suchthat ye §; and y e S§,. Observe that v; is not adjacent to or
from v,. Thus, {{v; |y €S;}) and ({vj |y eSj]) are the two componenis of M (D).
For 3<n< I_p / 2_|, if we consider all sets of » distinct vertices of D that contain
vertex y, we conclude by the previous discussion that p(H) = 2m + 1. Similarly, if
n=2, p(H) 2 4, and we consider all sets of two distinct vertices of D that do not
contain vertex y, then p(H) =2m + 1. The only case that remains is n =2 with

p(H) =3. Since H is m-regular with m 2 1, it follows that m = 1. Therefore,

pH)=2m+1. If T=8§, - {w} forsome we S,, then we have

idon) = 3, 40— = 3, ido-(")

xeS> x€S2

Y idw-[("5 ")+ @-1] = T idw-las) + (2~ 1)

xe$s x€S2

= Y, id(x) +idow) ~[q(S1)) + (2 - )]

x€T

= Y, id(x) +idow) ~[q(s1) + (n — 1))

x€e S}

Y, id@) +m—[q(Si) + (n - 1)

xe&

id(vy).
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From this, we must have m =n — 1. Thus, H is an (n — 1)-regular tournament (of

order 2n—1).

Now suppose that M, (D) is regular for some integer n, where |_p / 2_] <n<

p—1. If n=p -1, then by Theorem 3.9, we have M, (D)= D. From this, it follows

that D is regular of order n + 1. So assume that |_p / 2J <n<p-1. Using the
isomorphism from Theorem 3.9, we have M, (D)=M, p_,,(B). Notice that 2 <p-n <

I_p / 2_], so we can apply our previous discussion with M p_,,(B) to determine D.
Thus B satisfies condition (2), (3), or (4) from the statement of this theorem.

Observing that D also satisfies condition (2), (3), or (4) completes the proof.
3.4 Multivertex Digraphs With Prescribed Center and Periphery

Recall that the center C(D) of a strong digraph D is the subdigraph induced
by those vertices v of D with e(v) =rad D; while the periphery P(D) is the
subdigraph induced by those vertices v of D with e(v) =diam D. We have a similar
definition for the center and periphery of the n-digraph M,(D) of D. We define the
n—center C(M,(D)) of D as

C(M, (D)) = {{v; € V(MD))|e(Sy) =rad, D})
and the n—periphery P(M (D)) of D as
P(M,(D)) ={(v; € V(M(D))| e((S;) = diam,, D}).

Since M{(D) =D, we have C(M(D)) =C(D) and P(M (D)) = P(D). Thus, the
n—center and n—periphery of D are a generalization of the center and periphery of D.
In [6], it is shown that every digraph can be the center (or the periphery) of some

digraph. The next theorem proves the corresponding results with n—digraphs.
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Theorem 3.24 For every two asymmetric digraphs F; and F, and integer n 22,
there exists a strong asymmetric digraph D such that C(M,(D))=F; and

PM (D)) =F,.

Proof Let Hy=H,;=K, | andlet Hy= H,=Kj, Assume that V(F,)) =
{x1, %9, ... , x,,} and V(F,) = (yy,¥9, ..., ¥,}. We define a strong asymmetric

digraph D by

V(D) = V(Hg) U V(H}) U V(H,) U V(H5)
UVF) UVFE) L (w;|1<i<8)

and

ED)=EF) VEWF) U ((1.3), 0, ws) | x e V(H), y € V(Fy))
U {0, ), (2, 20), (5, wy), (6, wa), (3, wg), (x, wg), (wg, 2) | x € V(Hy),
ye V(Hy), ze V(F))
U ((wg, ), (W, ), (x, wg), 0 wg) | x € V(Hy), y € V(H3))

U {(wy, wy), (W3, wy), (Ws, we), (Wg, wq), (Wq, wg)}

(see Figure 3.5).
We compute the eccentricity of each vertex of D. Observe that for x € V(D) -
(w3, wy} and y e V(Hj3) with y #x, we have e(x) =d(x,y). Also, for ye

V(H,), it is clear that e(w3) =d(w3,y) and e(w,) = d(w,, y). From this, it follows

that

(i) e(x)=3 for xe V(Hy);
(i) e(x)=4 for xe V(F)),
(iii) e(x) =6 for xe V(H,) L V(H3);
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w w,
D »-O > H,
w w
3 4
- H 3
H 0 Dwg
0 wq
H, > F, O
Wy 6
Figure 3.5

(iv) e(x)=9 for xe V(Fy),
(v) e(x)=10 for xe V(H,); and
(vi) e(wg) =35, e(wq) = 6, e(wy) = e(wy) = e(wg) =7, e(w)) = e(w3) =

e(ws) = 8.

Assume throughout this proof that §; =V(Hy) U {x;} for 1<i<m. Let §
be any set of n distinct vertices of D. Recall that §; is associated with the vertex v;
of M, (D), the set S with the vertex v, and S’ with the vertex v". Since e(x) =3
for xe V(Hy) and e(x;) =4 for 1<i<m, it follows that e(v;))<3(n-1)+4=
3n+ 1. If S <€ V(H,;), then we calculate d(v;,v) =3n+1. Thus e(v;)=3n+1 for
1<i<m.

We now show that the remaining vertices of M, (D) have eccentricity
exceeding 3n+ 1. Let S S V(D) —{w;, w,} beasetof n distinct vertices such that

§S#§; for 1<i<m. Itisclear that foreach xe S and ye V(H,) - S, we have
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d(x, y) 2 3. Furthermore, there exist two vertices Uy, Uy € S such that d(u,,y) 24
and d(u,,y) 24 or d(u;,y)25 and d(u,,y) 23 foreach y e V(H,) —-S. From
this, it follows that if §’ < V(H,) —S isasetof n distinct vertices, then d(v, v') 2
8 +3(n—2)=13n+2. Similarly, if § V(D) - {w3, wy} isasetof n distinct
vertices with S#S; (1<i<m) and §' S V(H3) -, then d(v,v’) 23n + 2. Thus,
if SSV(D) - {w;,wy} or § S V(D)- (w3, w,}, then e(v) 23n +2.

Suppose that A = {w;, w,;} and B = {w5,w,]}. Let S be any set of n

distinct vertices of D. We consider three cases.

Casel Assumethat |SnAl=1and [SAB|21. Let & cV(H,)-S beaset
of n distinct vertices. For ye V(H,) and x € § - {w{, wy, w3, w,}, we have
dwy,y) > d(w,,¥) = 1,d(ws,y) >d(wy, y) =7, and d(x,y) 23. Thus e(v) 2
dv,v)21+7+3(n~2)=3n+2.

Case 2 Assume that |SnA| =2 and |SnB| =1. Let 'S V(H3)-S beaset
of n distinct vertices. For y e V(H3) and x € § - {wy, wy, w3, w,}, we have
dwy,y)=6,d(wy,y) =7, d(w3,y) >d(wy,y) =1, and d(x,y) 2 3. Again we

compute e(v)2d(v,v)26+7+1+3(n-3)=3n+5.

Case 3 Assume that |SnA| = |Sr\B| =2. Let S'CV(H,)-S beasetof n

distinct vertices. Then using the same technique as the previous two cases, we have

e(W)2dv,v)21+2+6+7+3(n—-4)=3n+4.

From this, we conclude that if S S V(D) is a set of n distinct vertices such
that § #S; for 1 <i<m, then e(v) 23n + 2. Therefore, C(M, (D)) = ({Vil 1€i<
m}) and v vj) € E(M, (D)) if and only if (x;, xj) € E(Fy), thatis, C(M (D))= F,.
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We now show that P(M,(D))=F,. Assume that S;=V(H ) U {y;} for 1<
i<r,and let S be any set of n distinct vertices of D. Since e(x) =10 for x e
V(H,) and e(y) =9 for 1<i<r, wehave e(v})) <10(n —1) +9 = 10n — 1. When
S < V(H5), we compute d(vi, v) =10n - 1. Thus e(v) =10n—1 for 1<i<r.

To complete the proof, we show that if ve V(M, (D)) - [v,f| 1<i<r}, then
e(v)<10n-2. Let S V(D) beasetof n distinct vertices with S#S; for 1<i <
r. Then there exist two vertices x,y € S such that e(x) <9 and e(y) <9 or e(x) <
8 and e(y) < 10. Therefore, if S’ < V(D) is any set of n distinct vertices, then d(v,
V') <18 + 10(n — 2) = 10n 2. Thus, P(M (D)) = ({v,’-l 1<i<r}) and (v}, v;-) €
EM,(D)) if and only if (y;, y;) € E(F), so that P(M,(D))=F,. QO
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CHAPTER IV
DIGRAPHS AND GRAPHS WITH PRESCRIBED INTERIOR AND ANNULUS
4.1 Interiors and Annuli of Digraphs

In this section, we investigate the topological concepts of interior and annulus
for strong digraphs. For a strong digraph D with rad D <diam D, the interior Int(D)
of D isdefined by

Int(D) = ({v € V(D) | e(v) < diam D}).
If rad D = diam D, we define
Int(D) = D.

The annulus Ann(D) of a strong digraph D is defined only when rad D <diam D —1
and is defined by

Ann(D) ={{v & V(D)|rad D < e(v) < diam D}).

Otherwise, we say that D has no annulus. A strong digraph D is shown in Figure
4.1 with its interior Int(D) and annulus Ann(D). The eccentricity of each veriex of D
is also indicated.

In Chapter I, it is shown that if D and F are asymmetric digraphs, then there
exists a strong asymmetric digraph H such that C(H)=D and P(H)=F. Itisa
natural question to ask if there are similar results involving other pairs of induced

subdigraphs of H. In this chapter, we investigate strong asymmetric digraphs with a

53
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D:
z Y Z 00—
Int(D): i Ann(D): )\
w
O
X X

Figure 4.1 The interior and annulus of a strong digraph

pair of prescribed induced subdigraphs, where the pair is chosen from the center,

interior, annulus, and periphery.
4.2 Strong Asymmetric Digraphs With Prescribed Center and Interior

From the definition of interior, it is clear that the center of a strong digraph H
is an induced subdigraph of the interior of /7. In addition, the interior of H is
isomorphic to the center of H if and only if rad H 2 diam H — 1. For any subdigraph
F of an asymmetric digraph D, our first result states precisely when D can be
embedded in some strong asymmetric digraph H such that the interior and center of H

are D and F, respectively.
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Theorem 4.1 Let D be an asymmetric digraph and let F be an induced subdigraph
of D. Then there exists a strong asymmetric digraph H containing D as an induced
subdigraph such that Int(H) =D and C(H)=F if and only if F =D or for each
y € V(F), there exists x € V(D) — V(F) such that thereis an x —y pathin D.

Proof Assume that F # D and assume further that for each y € V(F), there is an

x—7y pathin D for some x e V(D) - V(F). Let S = {xe V(D) - V(F)|

d({{x}),F)=1} andlet m = m‘z,a.(); ) d((S), ({¥})). We define a strong asymmetric
ye

digraph H by
VH) =VD) U (v wil1<i<m+4)
and

E(H) = E(D) v ((x’ vl): (V2, X), (vm+4) x)’ (xa w[)a (wm+4’ x) |x € V(D) - V(F)]
U [(ys V2), (y’ W2) I}’ € V(F)} v {(vm+4s w])s (wm+49 vl)]
U (03 Vi) O Vinad)s W W), W W) [ 1 S0 <m + 2,

1<j<m+3}

(see Figure 4.2).
For each y e V(F), observe that
@@ d(y,x)<2 for xe V(D)-V(F),
() d@,v)=d@y,w)=i-1 for 2<i<m+ 3; and
(iii) d(y,vy) <3, d(y, wy) <3, and d(y, Vpq) = Y, Wipes) = 2.

If y,y; € V(F), then d(y,y;) <d(y,x)+d(x,y;) <2+ m forsome xe S. Since
d(y, Vie3) =m + 2, we have e(y) =m + 2 foreach y e V(F).
For x € V(D) — V(F), if follows that
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Figure 4.2

(i) dx,xp) <3 for x; € V(D) - V(F),
(i) dx,v)=dx,w)=i for 1Si<m+3;and

Qi) (X, Vypeq) = A Wieg) = 2.

For y € V(F), we have d(x,y) <d(x,x;) + d(x1,y) <3 +m for some x; € S.
Thus, e(x) =m + 3 for each x € V(D) — V(F).
We now show that e(v;) =e(w;)=m +4 for 1 <i<m + 4. By the

construction of H, for 1 <i<m+ 3, we have

() d@;,x)<2 and d(w;,x) =2 for x e V(D) - V(F),
(i) dv,y)<d(v;x))+dx,y)<2+m for ye V(F) and some x; € S;
(i) d(w;,y) <d(w;x;)+dx;,y)<2+m for ye V(F) and some xj € S;
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dv wj) =d(w;, vj)=j+1 for 1<j<m+3;
d(Vi, Wiyeq) = d(Wj, Ve4) = 3; and

dvpv)sm+4 and dw, w)<m+4 for 1sj<m+4.

A, We3) =dwp, vipu3) =m + 4 for 1 <i<m + 3, it follows that e(v;) =

e(w;) =m + 4.

m+4,

@
(i)
(iii)

(iv)
v)
(vi)

To complete this part of the proof, we need to show that e(v,,.4) = e(Wp,,4) =

Using Figure 4.2, we observe that

AV, X) = dWpeg, x) = 1 for x € V(D) - V(F);

AV, ¥) <dWVyaa, 1) +dxy, ) <1+ m for ye V(F) and some x; € S;
dWipi4,Y) SdWpyig, x1) +d(x1, Y) S 1+ m for y e V(F) and some x; €
S;

dVpegs W) =dWyyaq, V) =j for 1<j<m +3;

AV i8> Winea) = dWpia5 Vines) = 2; and

dWpmiss V) =dWpyg, w) =j+1 for 1<j<m+3.

Thus, e(v,;44) = e(Wy,,.4) = m + 4, and we conclude that Int(H) =D and C(H) =F.

Now suppose that F = D. We define a strong asymmetric digraph H by

VH) = VD)L (v, w;l1<i<4)

and
E(H) = E(D) U {(xv Vl), (x’ Wl), (V4, X), (W4, x) |-x € V(D)]
| [(vb V4), (wi’ W4) | 1<i< 3} v {(V4, Wl), (W4, Vl)}
U (0 Vig) W wip) | 1 €05 2)
(see Figure 4.3).
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Figure 4.3

For x,x;e€ V(D) and 1<i <4, we have d(x,x;) <3 and d(x,v;) =
d(x, w;) <3. Since d(x, v3) =d(x, w3) = 3, it follows that e(x) =3 for x e V(D).
For ze V(H)-V(D) and 1<i <4, we have from the construction of H that
d(v;,2) <4 and d(w;, z) < 4. Itis clear that d(v;, x) <2 and d(w;, x) <2 for x e

V(D) and 1<i<4. Since
d(v;, w3) = d(v4, v3) = d(wj, v3) = d(wg, w3) = 4

for 1 <i<3, we conclude that e(v;) =e(w;) =4 (1 <i<4). Thus, Int(H) =C(H) =
D=F.
We claim that these are precisely the conditions needed for the existence of a

strong asymmetric digraph H with Int(H) =D and C(H) =F. Thatis, if F# D and
if there exists some y € V(F) such that for each x € V(D) — V(F), thereisno x—y

path in D, then there does not exist a strong asymmetric digraph H with Int(H) =D
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and C(H)=F. Suppose, to the contrary, that there is some strong asymmetric digraph
H with Int(H) =D and C(H) =F. Assume that the vertex y; of F has the property
that for each x € V(D) — V(F), there isno x ~y,; pathin D. Since F # D, we have
P(H) =(V(H) — V(D)). Observe thatif ey(y)=m for y e V(F), then ey(z) =2m +2
for ze V(P(H)). For ye V(F) and xe V(H) with (x,y) € E(H), it follows that
ey(x)<1+ey(y) =1+m. Thus, we must have x € V(D). But this says that for each

x € V(H) — V(F), there isno x—y; pathin H, which contradicts that H is strong.

|

Corollary 4.2 Let D be an asymmetric digraph and let F be a proper induced
subdigraph of D. Then there exists a strong asymmetric digraph H containing D as
an induced subdigraph such that Int(#) =D and Ann(H)=F if and only if for each
y € V(D) — V(F), there exists x € V(F) such that there isan x—y pathin D.

The proof of Corollary 4.2 follows directly from Theorem 4.1, which states
that there exists a strong asymmetric digraph H with Int(H)=D and C(H)=D -
V(F) if and only if D —V(F) =D or for each y € V(D) — V(F), there exists an x €
V(F) such that thereis an x ~y pathin D. Since D#F and V(F)#@ in Corollary
4.2, we have Ann(H) = Int(H) - V(C(H)) =F.

We state the following two corollaries without proof.

Corollary 4.3 Let D and F be asymmetric digraphs. Then there exists a strong
asymmetric digraph H such that Int(H) =D, =D and C(H)=F,=F if and only if
F=D or there is some induced subdigraph of D; =D, say F,=F, with the property
that for each y € V(F), there exists x € V(D;) — V(F;) such that there isan x -y

pathin D;.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59



Corollary 44 Let D and F be asymmetric digraphs. Then there exists a strong
asymmetric digraph H such that Int(H)=D; =D and Ann(H)=F;=F if and only
if there is some induced subdigraph of D; =D, say F; = F, with the property that for
each y € V(D) - V(F), there exists x € V(F;) such that there isan x—y path in
D,.

4.3 Strong Asymmetric Digraphs With Prescribed Annulus and Periphery

The next result shows that for any two asymmetric digraphs D and F, there is
some strong asymmetric digraph H such that the annulus and periphery of H are D
and F, respectively. Furthermore, the distance from the annulus to the periphery of H

can be arbitrarily large.

Theorem 4.5 Let D and F be asymmetric digraphs and let n =2 be an integer.
Then there exists a strong asymmetric digraph H such that P(H)=F and Ann(H)=

D with d(Ann(H), P(H)) = n. In addition, if p(D) 2 2, then there exists a strong
asymmetric digraph H such that P(H)=F and Ann(H)=D with d(Ann(H), P(H))

=1.

Proof Let t=max{3, n}. For n =2, we define a strong asymmetric digraph H by
V(H)= V(D) UVF) U (v;|1<i<3)

and

E(H) = E(D) U E(F) U {(v1, vp), (vg, v3), (v3, 1)}
U (@, %), (x, v1), v, %), v, Y) [ x € V(D),y e V(F), 1<i<3)

(see Figure 4.4(a)).
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For n 2 3, we define a strong asymmetric digraph H by

VH)=VD)UVF) U (v;l1gi<0)

and
E(H) = E(D) U E(F) U (v viu) |1 i<t -1)
U (O, %), (5 v1), vy, X) [ x € VD), y € V(F))
(¥ {(vt—l! y)o (V‘, y)’ (V,, vl) I)’ € V(F)]
(see Figure 4.4(b)).

For x € V(D), it follows from Figure 4.4 that

@@ dx,v)=ifor 1<i<y
(i) d(x,x))<d(x,v. ) +dV,_,x)=@—-1)+1=¢ for x; € V(D);
(iil) d(x,y)<d(x,v;_1)+d@,_1,¥)=(@-1)+1=t=n for ye V(F) and n23;
and

(iv) d(x,y)=2 for ye V(F) and n=2.

Thus, e(x) =t for x € V(D).

Observe that for y € V(F) and x € V(D), we have e(y)<e(x)+1=1+1
since d(y,x) = 1. Because d(y,v,) =t+ 1, it follows that e(y)=¢+1 foreach ye
V(F).

It is clear from the construction of H thatfor 1<i<t¢,

(@ d,x)<t-1 for xe V(D)
(i) d(v;,y)<t-1 for ye V(F); and

(iii) d(v,-,vj)St-—l for 1<j<zq.
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(n =2)

(a)

Ve

(b)
Figure 4.4

Since d(v;, v;_1) =d(v;,x)=t-1 for 2<i<t and x € V(D), it follows that e(v;) =
t—-1 (1<i<¢. Thus, P(H)=F and Ann(H)=D. For xe V(D) and y € V(F),

we have
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d(x, y) =dx, vy_) +dv,_, ) =(n-1) +1=n.

Consequently, d(Ann(H), P(H)) =n.
Now suppose that p(D) =2 2. We will show that there exists a strong
asymmetric digraph H such that P(H)=F and Ann(H) =D with d(Ann(H), P(H))

= 1. For some x; € V(D), let S =V(D)- {x;}. Define a strong asymmetric digraph

H by
V(H) = V(D) U V(F) U (v, vg, v3)
and

E(H) = E(D) U E(F) U (0, %), &, M) | x € S,y € V(F))
U {0, V), (v, %), (v3, %), v, ¥) | x € VD), y € V(F), 1<i<3)

U {(vq, v9), (v2, v3), (v3,v}))

(see Figure 4.5).

"IC,i >—(

)

Figure 4.5
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It follows from the construction of H that for x € V(D),

@i dx,v)=ifor 1<i<3;
(ii) d(x,y)<2 for ye V(F); and
(iii) d(x,x9) <3 for xp € V(D).

Thus, e(x) =3 for x € V(D). Observe that for ye V(F) and x e § CV(D), we
have d(y,x)=1. This means that e(y) <e(x) + 1 =4. Since d(y, v3) =4, it
follows that e(y) =4 for y e V(F). Itis clear that e(v;)=2 for 1<i<3. Thus, we
conclude that P(H) =F and Ann(H)=D with d(Ann(H), P(H))=1. Q

Corollary 4.6 Let D and F be asymmetric digraphs. Then there exists a strong
asymmetric digraph H such that P(H)=F and Ann(H)=D.

From the previous theorem, if the annulus of a strong asymmetric digraph H is
defined, then the distance from the annulus to the periphery of H may be arbitrarily
large. On the other hand, our next result shows that the distance from the periphery to

the annulus and the distance from the annulus to the center of H must be 1.
Theorem 4.7 Let H be a strong asymmetric digraph containing an annulus. Then
d(P(H), Ann(H)) = d(Ann(H), C(H)) = 1.

Proof Assume that rad H =k and diam H =m. Since H has an annulus, we have
m —2 2 k. Observe that if (y,z) e E(H) for ye V(P(H)) and z e V(H), then
e(z2)2m—1>k; thatis, ze V(P(H)) U (Ann(H)). Thus, évery arc that leaves P(H)
must be incident to a vertex of Ann(H). Since H is strong, we have

d(P(H), Ann(H)) = 1.
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Now it follows from H being strong that there exists some xe€ V(H) -
V(C(H)) and y € V(C(H)) such that (x,y) € E(H). But for each such x, we must
have e(x) <k +1<m. Thus, x € V(Ann(H)) and we conclude that d(Ann(H),
CH)=1. Q

4.4 Strong Asymmetric Digraphs With Prescribed Center and Annulus

We now present a result similar to Theorem 4.5 with the periphery of H

replaced with the center of H.

Theorem 4.8 Let D and F be asymmetric digraphs and let n be a positive
integer. Then there exists a strong asymmetric digraph H such that Ann(H)=D and

C(H)=F with d(C(H), Ann(H))=n ifandonlyif n>2, p(D)22 or q(F)21.

Proof We consider four cases.

Casel Assumethat n22. For n=2, we define a strong asymmetric digraph H by
V(H) = V(D) U V(F) U {u;, v;|1<i<3)

and

E(H) = E(D) (% E(F) (% {(ub u2)9 (uZa u3)’ (Vl, V2), (V2, V3)}
U (W), X), 03 X0, (5 9), 0, u1), 05 vp) | x € VD), y e V(F), 1<i<3)

(see Figure 4.6(a)).

For n 2 3, define a strong asymmetric digraph H by
V(H) =VD) UVEF) U {u; vl 1<i<sn+1) U {w;|12i<7)

and
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E(H) = E(D) U E(F) U (4, Ujp1), W i) | 1S i< n)

U (@ ), 0 1), (5, ), 0s 1), 05 vp) | x € VD), y € V(F),
n-1<i<n+1}

U (u;, wg), Wi ws) | 1 i <n —2)

U (Wi wirp) [ 1€ <6} U (0, wp)ly e V)

U {(wy, w3), (Wa, uy), (w3, ws), (Wg, v1), (Ws, wa), (Wg, wy), (wq, ws),

(W7v vl)]

(see Figure 4.6(b)).

@
@ii)
(iii)
(iv)

For y € V(F), observe that

dy,u) =d@y,v)) =i for 1<is<n+1;

dy,wp)) <3 for 1<i<7,n23;

dy,x) =dy, v,_1) +dvp_1, ) =(n—-1) +1 =n for x e V(D); and
diy,y1) <d(y,x) +d(x,y) =n+1 for y; € V(F), xe V(D).

Since d(y, v,41) =n + 1, we conclude that e(y) =n +1 for each y € V(F).

For each x € V(D) and y e V(F), we have d(x,y)=1. Since e(y)=n+1

for y € V(F), it follows that e(x) <n +2 for x€ V(D). But d(x, u,,1)=n+2

implies that e(x) =n +2 foreach x e V(D).

It is clear that d(u;, x) =d(v;,x)=1 for xe V(D) and n—-1<i<n+1.

Thus, in a fashion similar to above, we have e(u)<n+3 and e(vp<n+3 (n-1<

i<n+1). Observing that d(u;, v,.1) =d(vj, upe1) =n+3 for n-1<i<n+1, we

conclude that e(y;)) =e(v) =n+3 (n—-1<i<n+1).
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By the construction of H, it follows that d(u;, v{) =d(v;, u;)=3 for 1 <i<
n —2. With this fact, it can be seen for ze V(H) that d(u; z) <n + 3,
dv,z)Sn+3,and d(uy, vye1) =dW;, Upe) =n+3 (1 <i<n-2). This means
that e(u;) =e(vp)=n+3 for 1 <i<n-2.

To show that e(w;) =n +3 (1 <i<7), we make the observation that for i e
(1,2,5) and je {(3,4,6,7}, we have d(w;, v{) =d(w;, uy) =3, d(w;, u1) <2,
and d(wj, vy £2. Also, d(w;, wj) <4 for 1<i #j<7. From this, it follows that
ew)<n+3(1<i<7). Since dw;, V1) =dwj, u,))=n+3 (ie {1,2,5) and
je (3,4, 6, 7)), we conclude that e(w)) =n+3 (1<i<7). Thus, Ann(H)=D
and C(H)=F. From the construction of H, itis clear that d(C(H), Ann(H)) = n.

Case 2 Assume that n=1,p(D) 22, and p(F)22. For some x; € V(D) and
some y; € V(F),let S=V(D)-{x1} and T =V(F) - {y;}. We define a strong

asymmetric digraph H by

VH) = V(D) U V(F) U {u;, v;|1<i<3)

and
E(H) = E(D) U E(F) U (W, Uj11)» v Vi) | 1 S8 < 2)
v ((ui’x)) (Vi,x), (}’, ul)’ ()’, Vl) Ix € V(D),)’ € V(F)7 I<ic< 3]
VoLV (e lye TV U () lxe S,ye viF))
(see Figure 4.7).

For y € V(F), it is clear from the construction of H that e(y) = 3. Using a
technique similar to the preceding case, we can show that e(x) =4 and e(;) =e(v;)) =
S for xe V(D) and 1<i £3. Thus, Ann(H)=D and C(H)=F with
d(C(H), Ann(H)) = 1.
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Figure 4.7

Case 3 Assume that n=1, p(D)22,and p(F)=1. Let V(F)={y} and S =
V(D) — {x;} for some x; € V(D). We define a strong asymmetric digraph H by

V(H) = V(D) U V(F) U {u;, v;| 1 i< 3)
and

E(H) = E(D) U {()’, X1), (y9 ul), (}’, Vl), ()’, uZ), 0’, v2)9 (XI, ul)’ (xb Vl)}
v [(xv }’), (ul, x)v (vla x) Ix € S} v [(ui’ ui+l), (via v1+l)| 1<i< 2}

U {(y;, x), (v, x) |xe V(D),2<i<3}

(see Figure 4.8).

It is clear from the construction of H that e(y) =2. For x € S, we have
d(x,y) =1 and, thus, e(x) <3. Since d(x, v3) =3, it follows that e(x) =3 for each
x € S. Observe that for x € S, we have d(x},x) £2,d(x},y) <3, and d(xy, 4 =
d(xy,v;)) =i (1<i<3). Thus, e(x)) =3. Clearly, d(y;,x) =d(v;,x)=1 for xe §

and 1<i<3. Consequently, e(u;) <4 and e(v;) <4 (1<i<3). Since d(i;, v3) =
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d(v;, uz) =4 (1 <i <3), it follows that e(u;) = e(v;) = 4. Therefore, Ann(H) =D
and C(H)=F with d(C(H), Ann(H)) = 1.

Case 4 Assume that n=1,p(D)=1,and q(F)2 1. Let y; € V(F) such that the
indegree of y; in F isatleast 1. Suppose that V(D) = {x} and § = V(F) - {y;}.

We define a strong asymmetric digraph H by
V(H) = V(D) U VF) U {u;, v;| 12§ < 4)
and

E(H) = E(F) U {(u;, %), v;, %), 0, u1), 0> vp) |y e V), 1 i< 4)
U ylyesiu {01, %)}

(see Figure 4.9).
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Using the methods described in Cases 1 and 2, we find that e(y) =4, e(x) =
5,and e(y;) =e(v;) =6 for ye V(F) and 1<i<4. Thus, Ann(H)=D and C(H)
=F with d(C(H), Ann(H)) = 1.

Conversely, assume that n=1,p(D)=1 and q(F) = 0. Suppose, to the
contrary, that there is some strong asymmetric digraph H with the property that
Ann(H)=D and C(H)=F with d(C(H), Ann(H)) = 1. Then there is some vertex y
of C(H) such that (y,x) e E(H) for some x € V(Ann(H)). Since H is an
asymmetric digraph with p(Ann(H)) =1 and q(C(H)) =0, we have (z,y) ¢ E(H)
for each z e [V(C(H)) U V(Ann(H))] — {y}. If there is some vertex v of H such
that v is adjacent to a vertex in C(H), theﬁ e(v)<rad H + 1. Thus, v must be a
vertex in C(H) or Ann(H). This means that y has indegree 0, which contradicts the
fact that H is strong. Therefore, it follows, for asymmetric digraphs D and F with

p(D) =1 and ¢q(F) =0, that there does not exist a strong asymmetric digraph H such
that Ann(H)=D and C(H)=F with d(C(H), Ann(H))=1. Q)
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Corollary 4.9 Let D and F be asymmetric digraphs. Then there exists a strong
asymmetric digraph H such that Ann(H)=D and C(H)=F.

4.5 Strong Asymmetric Digraphs With Prescribed Interior and Periphery

We now present a sufficient condition for two asymmetric digraphs D and F

to be isomorphic to the periphery and interior, respectively, of some strong asymmetric

digraph.

Theorem 4.10 Let D and F be asymmetric digraphs. If F is nontrivial and

strong, then there exists a strong asymmetric digraph H such that P(H)=D and

Int(H)=F.

Proof Assume that diam F =m 2 2, and let x,y € V(F) such that d(x,y) =m.

We define a strong asymmetric digraph H by
V(H) = V(D) v V(F)
and

E(H) = E(D) U E(F) U {(z, )|z V(D))
U (v, 2)|ve VF) - (x}, ze V(D))

(see Figure 4.10).
For ze V(D) and v € V(F), it is clear, from the construction of H, that

e(z2)=m+1 and e(v) <m. Thus, PH)=D and Int(H)=F. Q

If D and F are asymmetric digraphs such that F is not strong, then even

when D is strong, we can draw no conclusion about the existence of a strong
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Figure 4.10

asymmetric digraph H such that P(H)=D and Int(H) =F. For example, define D
by V(D) = {xq, %y, x3} and E(D) = {(xy, Xp), (x, X3), (x5, x;)}, and define F by
V(F) = {y;, y,) and E(F)={(y;,y,)}. We claim that no strong asymmetric digraph
H exists with P(H)=D and Int(H) = F. Suppose, to the contrary, that there is some
strong asymmetric digraph H with this property. It is clear that V(H) = V(D) L V(F).
Since H is strong and the indegree of vertex y; in F is 0, there must be some arc
from D to y;. Assume that (x,y;) € E(H). From this, it follows that e(x;) = 2.
Since H is asymmetric, we have (y,,y;) € E(H). Thus, e(y,) 2 2, which contradicts
the fact that Int(H) = F.

On the other hand, if we define D by V(D) = {x;, x,, x3, x4} and E(D) =
{(x15 x5), (X9, X3), (x3, X4), (x4, X1)}, and define F by V(F) = {y,;,y5} and E(F) =
{(1» ¥7)}, then there exists a strong asymmetric digraph H such that P(H)=D and
Int(H) =F. Wedefine H by

V(H) = V(D) v V(F)

and
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E(H) = E(D) U E(F) U ((x1,¥), (13,7}
U (0 ) | x e V(D))

(see Figure 4.11).

xl x4
Xy X3
H:
Y1 Y2
Figure 4.11

It is clear from the construction of H that e(x)=3 and e(y)=2 for xe

V(D) and y € V(F). Thus, P(H)=D and Int(H)=F.

4.6 Connected Graphs With Prescribed Interior and Annulus

For a connected graph G with rad G < diam G, the interior Int(G) of G is
defined as the subgraph induced by those vertices v with e(v) <diam G. Otherwise,
if rad G = diam G, we say Int(G) =G. When rad G < diam G - 1, the annulus
Ann(G) of a connected graph G is defined as the subgraph induced by those vertices
v with rad G <e(v) <diam G. We say that G has no annulus if rad G = diam G —
1. A connected graph G is shown in Figure 4.12 with its interior Int(G) and annulus

Ann(G).
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Figure 4.12

It was proved in [8] that every graph is isomorphic to the interior of some
connected graph. Furthermore, every connected graph G is isomorphic to the interior,
but not the center, of some connected graph if and only if G is not complete. We now
present a sufficient condition for two graphs to be isomorphic to the annulus and center

of some connected graph.

Theorem 4.11 Let F and G be graphs such that F has no vertices of eccentricity

1. Then there exists a connected graph H such that Ann(H)=F and C(H) =G.

Proof First assume that F is a connected graph with diam F 2 3. Then there exist

u,v e V(F) such that d(u, v) =3. We define a connected graph H by

VH) = V(F) U V(G) U (wy, wy)

and

E(H) = E(F) U E(G) U (wyl, wyv)
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U (xylxe VF),y e V(G))

(see Figure 4.13).

¢! W2
H: F
u v
G
Figure 4.13

From the construction of H, we have e(x) =2 foreach x € V(G). Since each
vertex of F is adjacent to a vertex of G, it follows that e(y) <3 for each y € V(F).
Observe that for each y € V(F), we have d(y,u) 22 or d(y, v) 2 2, from which it
follows that d(y,w;)23 or d(y, w,) 2 3. Thus, e(y) =3 for ye V(F). We also
have e(w,) =e(w,) =4 since vertices w; and w, are each adjacent to a vertex of F
and d(w,, w,) =4. Therefore, Ann(H)=F and C(H)=G.

Now assume that F is a graph of order p with e(x) =2 foreach x e V(F).
Also assume that V(F) = {x}, x,, ..., xp]. We define a connected graph H by

VIH) =V(F) U V(G) L (w;| 1<i <p)
and

EH) = EF) UEG) U (xw;|1<i<p)
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U (xy| xe V(F), y e V(G))

(see Figure 4.14).

Figure 4.14

It is clear by the construction of H that e(y) =2 for each y € V(G). Since
each vertex of F is adjacent to a vertex of G, we have e(x) <3 for 1<i<p.
Similarly, e(w) <4 for 1<i<p. Also, for each x; € V(F), there exists xj€ V(F)
such that d(x;, xj) = 2. From this, we have d(x;, wj) =3 and d(w;, wj) =4, Thus,
we conclude that e(x;) =3 and e(w;) =4 for 1<i<p;thatis, Ann({{)=F and
CH)=G.

Assume next that F is not connected. Let u,v e V(F) such that 4 and v

belong to different components of F. We define a connected graph H by

V(H) = V(F) U V(G) U {w}, w,}
and

E(H) = E(F) U E(G) U {wyu, wyv)
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U (xylx e V(F),y e V(G))

(see Figure 4.15).

| |

G

Figure 4.15

By the construction of H, we have e(y) =2 for y € V(G). It follows that
e(x) <3 and e(w;) <4 for xe V(F) and 1<i <2, since each vertex of F is
adjacent to a vertex of G and w; and w, are both adjacent to a vertex of F.
Observing that d(x,u) 22 or d(x,v) 22 for each x € V(F), it follows that d(x, w,)
23 or d(x,w,) 23. Also, d(wq, w,) 2 4, from which we conclude that e(x) =3

and e(w;) =e(wy) =4 for x € V(F). Therefore, Ann(H)=F and C(H)=G. O

In Theorem 4.11, we presented a sufficient condition for a graph to be
isomorphic to the annulus of some connected graph. The next theorem shows that this

condition is also necessary.

Theorem 4.12 Let F and H be graphs such that H is connected and Ann(H) =

F. Then F has no vertices of eccentricity 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

Proof Assume that there exists u € V(F) such that e(x) = 1. Suppose, to the
contrary, that there is some connected graph H such that Ann(H)=F. Assume that
diam H=n and rad H =m. Observe that for each w; € V(H) — V(Ann(H)) with W,
adjacent to a vertex of Ann(H) and e(w;) = n, there exists w, € V(H) - V(Ann(H))

such that d(w;, w,) = n. There must also be some vertex y € V(H) — V(Ann(H))

such that e(y) =m. Since Ann(H) is defined, diam H —~rad H =2 and vertex y is

not adjacent to any vertex of eccentricity n. Therefore, m > 2. Observe that
d(y, wy) =d(y, z) +d(z, wp) <m
for some z e V(Ann(H)). Thus,
d(wy, wp) <d(wy,2) +d(z,wy) <3+ (m—1)=m + 2,
that is, diam H —rad H <2. If wyu e E(H) with e(u) =1 in Ann(H), then
dwy, wy) Sdwy,2) +d(z, wy)) <2+ (m—-1)=m + 1,

which is impossible. Thus, each vertex of Ann(H) has eccentricity m+ 1 and u is
not adjacent to a vertex of eccentricity m + 2. Assume that d(u, w) =m + 1 for some
we V(H). Then e(w)=m +2 and d(u,w) =d(u, z) + d(z, w) for some ze
V(Ann(H)). But, from this, we have d(y, w) =d(y, z) + d(z, w) 2 d(u, w) for some

z € V(Ann(H)). This contradiction completes the proof. (O}

From the proof of Theorems 4.11 and 4.12, we have the following corollary.

Corollary 4.13 For every graph F, there exists a connected graph H such that

Ann(H) = F if and only if F has no vertices of eccentricity 1.
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CHAPTER V
MEDIANS AND PERIPHERIES OF GRAPHS AND DIGRAPHS

5.1 Strong Asymmetric Digraphs With Prescribed Median and Periphery

For a vertex v in a strong digraph D, the distance dp(v) of v in D isthe

sum of the directed distances from v to the vertices of D; thatis, dD(v) =

Z d(v, u). The median M(D) of D is the subdigraph of D induced by those
ue V(D)

vertices having minimum distance. In Figure 5.1, a strong digraph D is shown with

its median M(D). The distance of each vertex is also indicated.

2
3
N

Figure 5.1

In [6] it was shown that for every two asymmetric digraphs D; and D,, there
exists a strong asymmetric digraph H such that C(#) =D, and M(H) = D,, and
where the directed distances from C(H) to M(H) and from M(H) to C(H) can be
arbitrarily prescribed. In addition, if K is a nonempty asymmetric digraph isomorphic
to an induced subdigraph of both D; and D,, then there exists a strong asymmetric
digraph F such that C(F)=D;, M(F)=D,, and C(F) " M(F) =K. In the next two
sections, we present similar results involving the median and periphery of a graph.

We begin by recalling two lemmas from [7].

80
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Lemma 5.1 Let D be a strong asymmetric digraph and let F be an induced
subdigraph of D with dp(u,v) <3 forall u,ve V(F). Then there exists a strong

asymmetric digraph H containing D as an induced subdigraph such that

(i) dy(u) =dy(v) forall u,ve V(F), and
@i) if V(H) = V(D), then max{d(u, v) | ue V(F),ve VH)-V(D)} =2.

Lemma 5.2 Let D be a strong asymmetric digraph and let F be an induced
subdigraph of D such that dp(u,v) <3 and dp(u) =dp(v) forall u,ve V(F).
Then there exists a strong asymmetric digraph H containing D as an induced

subdigraph such that

i) M(H)=F,and
(ii) if V(H) = V(D), then max{d(u, v) lue V(F),ve V(H) -V(D)} =2.

We now illustrate the construction of the digraph H from Lemma 5.2. Suppose

that dp(v) =k forall ve V(F) andlet n= I_k:ﬂz(ﬂ-l + 2. We construct a strong

asymmetric digraph H by adding 2n new vertices #; and v; (1<i<n) to D, the
arcs (u;,v;) for 1<i<n, together with the arcs joining all vertices of F to u; and
the arcs joining all vertices of F from v; for 1<i<n (see Figure 5.2).

Let D and F be asymmetric digraphs. With the aid of Lemmas 5.1 and 5.2, we
can show that there exists a strong asymmetric digraph H such that M(H)=D and
P(H) =F, where M(H) and P(H) are disjoint. Furthermore, since the center and
median are two ways of defining the "middle" of a digraph and the periphery defines
the "exterior" of a digraph, it is not suprising that the distances from the median to the

periphery and from the periphery to the median can be arbitrarily prescribed. What may
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Figure 5.2

be suprising is that the median and periphery can intersect in any common induced

subdigraph.

Theorem 5.3 Let D and F be asymmetric digraphs and let m and n be positive
integers. Then there exists a strong asymmetric digraph H such that M(H) =D and
PH)=F with d(P(H), M(H)) =m and d(M(H), P(H)) =n if and only if (1) m +
n23, 2) p(D)22, or (3) p(F)=2.

Proof We construct a strong asymmetric digraph H, from D by adding two new
vertices uy and vy, the arc (14, V), together with the arcs joining all vertices of D to
uy and the arcs joining all vertices of D from v;. By applying Lemma 5.1 to Hy, we

construct a strong asymmetric digraph H; with
(1) dHl(u)=dHl(v) forall u,ve V(D) and

(2) if V(H,) # V(H), then max{d(u, v) | ue V(D), ve V(H|)-V(Hy)} =2.

We consider three cases.
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Case 1 Assume that m + n > 3. We define a strong asymmetric digraph H, by

V(Hy) = V(H) UV(F) U (vl 1<i<n—1, 1<j<Sm+2)

and
E(H,) =EH) U EF) L ((x,v)), ®,_1,¥) |xe V(H,),y € V(D))
U, %), Guplm-1<ism+2,xe V)
U (W i) )y Vi) Oy V) | 1SS =2,1<jsm + 1)
ULy lm=1,xe VD), ye V(F))
U (00 ]n=1,ye VF),xe V(D))
(see Figure 5.3).

Figure 5.3

We now use Lemma 5.2 to construct a strong asymmetric digraph H; with

(1) M(H;)=D and
(2) if V(Hs) # V(H,), then max{d(u, v)|ue V(D),ve V(H3) - V(H,)) =2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83



The strong asymmetric digraph H is constructed by joining all vertices of H;—H, to
v;. Observe that for each x € V(H,), it follows that st(x) = dy(x). In particular,

we have dH3(“0) = dy(ug) and dH3(v0) =dy(vy). In addition, from the construction
of H, it follows that for each x € V(H3) - V(H,), we have dy(x) =dy(ug) or
dy(x) =dy(vy). Thus M(H)=D. We calculate the eccentricity of each vertex of H

as

(1) e(x)=m+n+2 for xe V(F) and
@) ex)<m+n+1 for xe V(H)-V(F).

Therefore P(H)=F.

Case2 Assumethat m=n=1 and p(F)=2. Let y beavertexof F andlet w be
avertex in D. We define a strong asymmetric digraph H, by

V(Hy) = V(H) W VEF) U {v;|1<i<5)

and
E(H,) = E(H,) U E(F) U {(x, v}), (x,v;) |xe V(H,))
U vplxe VIO U (vl 15i<4)
v {(VSv V3), (W, y)’ (ya uo)} v [(V, x) IV € V(F) - [y]'r X€ V(D)}
U ((vg, %), (05, 0) | x € V()
(see Figure 5.4).

We construct strong asymmetric digraphs Hj, by applying Lemma 5.2, and H
by joining V(H3) — V(H,) to the vertices v, and v,. Using calculations similar to

those in Case 1, we conclude that H has the desired properties.
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Vi Vy V3 Vg Vs
1
w O > y
D F
Vo Y
Figure 5.4

Case3 Assumethat m=n=1, p(F)=1,and p(D)=2. Let y be a vertex of D
and assume that V(F) = (w}. We define a strong asymmetric digraph H, by

V(H,) = V(H) U V(F) U (v;|1<i<4)
and

E(Hz) = E(H]_) v {(x, v[) |x € V(Hl)] v [(ya W), (V4, v2)7 (V3, W), (V4, W)}
U (0, vl 12i<3) U (w0 xe VD) - 9))

(see Figure 5.5).
We construct strong asymmetric digraphs H3 and H as in Case 1. Again, H

has the desired properties.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.5

The only case that remains is when m=n=1 and p(D) =p(F) = 1. Clearly,

there is no digraph H with the desired properties since H is asymmetric. O
5.2 Strong Asymmetric Digraphs With Intersecting Median and Periphery

Recall that the center and median are two ways of describing the middle of a
digraph, while the periphery describes the exterior of a digraph. The next theorem
shows that not only can the periphery and median intersect in any common induced
subdigraph, but, in addition, the distances from the center to the median and from the

median to the center can be arbitrarily large.

Theorem 5.4 Let D,D,,and F be asymmetric digraphs, and let m and n be

positive integers such that m + n 2 3. In addition, let X be a nonempty asymmetric
digraph isomorphic to an induced subdigraph of D; and a proper induced subdigraph

of D,. Then there exists a strong asymmetric digraph H such that P(H) =D,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86



87
M(H)=D,, C(H)=F, and P(H) " M(H)=K with d(M(H), C(H)) =m and
d(C(H), M(H)) = n.

Proof Assume that V(D) = (s¢, §9, ..., spll, V(Dy) = (11, 1y, ..., tp2], and
p(K) = k. Without loss of generality, assume that {(sy, S, ... , 5¢}) = ([t,-l, by ooe s
t,-k]) =K and 5;— ; is an isomorphism between {{sy, 55, ... , 5¢}) and ({0t
cers t,-k}) for 1<j<k. We first construct an asymmetric digraph H|, by identifying
S; and t,-j. and labeling the resulting vertex again by S; for 1 <j<k. We now define

a strong asymmetric digraph H; by

V(H,) = V(Hy) U (g, vo} U (x| 1si<m—1)

uiylisisn-1nu(zgli<isn+2)
and

E(H,) = E(Hy) U ((x, tg), (Vg ), Op_p» D Cpago ©) | x € V(HY))
U (g, Vo)» (tgs X1 (Vg X)) U (x5, xp) [ x € V(D,) - V(D))
U x), (6 Y (6 2, Gy 0) [ x € VIF), 1<i<m - 2)
U, 12i<m=2) U {0y 1 Si<n-2)
U@zl 1<isn+ Uy xe VF),ye VHp, n=1)
U {0 Y), (g ) g ) | x € VDY - VD)), y € VIF), m=1)

(see Figure 5.6).

We calculate the eccentricity of each vertex of Hy; namely,

i) ex)=m+n+3 for xe V(D,),
(ii) n+3< ex)Sm+n+2 for xe V(H)-(V(D,) U V(F)), and
(iii) e(x) =n + 2 for x e V(F).
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Figure 5.6

Since H, is strong and dHl(x, y) £3 forall x,ye V(D,), we can apply Lemma 5.1
to construct a strong asymmetric digraph H, containing H, as an induced subdigraph
such that

() dHZ(x) = de(y) forall x,ye V(D,), and |

@) if V(H,)# V(H,), then max{d(x,y)|xe V(Dy),ye V(H,) - V(H,)} =2.

Now define a strong asymmetric digraph H3 from H, by joining all vertices from
V(H,) —V(H,) to vertex x; (if m = 1, then join these vertices to the vertices of F).

Observe that adding these arcs does not change the distance of the vertices of D,; that
is, dH3(x) = de(x) forall xe V(D,). Assume that dH3(x) =b forall xe V(D,)

b-p(H.
and let ¢ = I_#_I + 2. Using Lemma 5.2, we construct a strong asymmetric

digraph H, such that M(H,) =D, by adding 2c new vertices #; and v; (1<i<c¢)
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to Hj, the arcs (u;, v;) for 1 <i=c, together with the arcs joining all vertices of D,
to u; and the arcs joining all vertices of D, from v; for 1<i<c. Furthermore, if

max{d(x, y) |x € V(Dy), y € V(H,) - V(H3)} = 2.

We define a strong asymmetric digraph H from H, by joining all vertices from
V(H,) —V(H3) to x; (again, if m = 1, then join these vertices to the vertices of F).

We compute the eccentricity of each vertex of H as follows:

@ ex)=m+n+3 for xe V(D)),
() n+3<e)<m+n+2 for xe V(H)-(V(D;) v V(F)), and
(iii) e(x) =n +2 for x € V(F).

Thus, P(H)=D, and C(H)=F.

We now calculate the distance of each vertex of H. Assume that dH3(x) =b for

b-p(H,) .
all xe V(D,) andlet c= — |+ 2. By the construction of H, we have

dy(v, x)=dH3(v, x) for ve V(D,) and x € V(Hj3). Therefore, for ve V(D,),

[

Y (@, u) +dw,v)) + Y, dyv,x)

i=1 xeV(H3)

dy(v)

3¢+ Y, du(v,x) =3¢+ D, dy3(v, x)
xe V(H3) xe V(H3)

= 3c+ dH3(v) = 3c+b.

If ve V(H3) - V(D,), then
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dyv) = Y, (d, u) +d,v)) + 3, duv,x)
i=1

xeV(H3)

>5c+ 3 dyv,x) 2 5c+p(Hs) 1.
xe V(H3)

In addition, by considering the vertices adjacent from u; and v; for 0<i<c,

we see that dy(u;) > dy(ug) and dy(v) >dy(vy) for 1<i<c. Since ¢ =

H.
I_’”’; 3)-| +2 and p(Hj) 2 7, it follows that 5S¢ +p(H3) — 1 > 3¢ +b.

Consequently, we conclude that M(H)=D,. QO

We now consider the case where m=n= 1.

Theorem 5.5 Let D, D,,and F be asymmetric digraphs. Let K be a nonempty
asymmetric digraph isomorphic to an induced subdigraph of D; and a proper induced
subdigraph of D,. Then there exists a strong asymmetric digraph H such that
PH)=D;, M(H)=D,, CH)=F,and P(H)NnM(H)=K with d(M(H), C(H)) =
d(C(H), M(H)) = 1.

Proof We first construct the digraph H|, in the same way that H, was constructed

in Theorem 5.4. Now define a strong asymmetric digraph H; by
V(H) = V(Hg) U V(F) U {ug, vg, 2y, 29, 23}

and

E(Hl) = E(Ho) VEWF)U [(x, uo), (Vo, x), (23, x), (Zl, X) |x € V(Ho)}
v {(u()’ Vo), (Zl’ 22)a (229 23)}
U {(x, 29, (5, ), @ X), (g, X), (g, X) | x € V(F), y e V(K),
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ze V(Dy) - V(K))

(see Figure 5.7).

Figure 5.7

We construct the digraph H from H; with the same construction presented in

Theorem 5.4. All the calculations are the same as those in Theorem 5.4. Thus, we
conclude that P(H)=D,, M(H)=D,, C(H)=F,and P(H) " M(H) =K with

dM(H), C(H)) = d(C(H),MH))=1. U

Observe that if K =D, in Theorem 5.4, then d(M(H), C(H)) =m + 1. Thus,

with this modification and by joining vertex z, , to vertex v, in H; in the proof of

n+2

Theorem 5.4, we have the following corollary.

Corollary 5.6 Let D,,D,,and F be asymmetric digraphs, and let m and n be

positive integers such that m = 2. In addition, let X be a nonempty asymmetric

digraph isomorphic to an induced subdigraph of both D; and D,. Then there exists a
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92
strong asymmetric digraph H such that P(H)=D,, M(H)=D,, C(H)=F, and
PHYNMH) =K with dM(H), C(H)) =m and d(C(H), M(H)) = n.

The only case that remains is when m =1 and K =D,. It turns out that there
may or may not be a strong asymmetric digraph H with the desired properties. For
example, say digraphs D, D, =K, F,and H are given as in Figure 5.8 with p > 4.
Then d(v) =d(x) =p + 10 and since p 24, we have d(t) >p + 10 foreach te
V(H) - {v,x}. In addition, e(u) =2 and e(t) =3 for te V(H) - {u}. Therefore,
P(H)=D; M(H)=D,, CH)=F,and P(H)nM(H)=K with dM(H), C(H)) =
d(C(H), M(H)) = 1. Thus, we have an infinite class of digraphs with this property.

For most choices of the digraphs D, D, =K, and F, there does not exist a strong

asymmetric digraph H with the appropriate properties. An example that illustrates this
pointis Dy =D, =K = K_2 and F =K. Observe that if a strong asymmetric

digraph H exists with the desired properties, then H has order 3. Since H is strong

and asymmetric, it follows that H is a directed triangle, which is a contradiction.

Corollary 5.7 Let D; and D, be asymmetric digraphs, and let K be a nonempty
asymmetric digraph isomorphic to an induced subdigraph of both D, and D,. Then
there exists a strong asymmetric digraph H such that P(H)=D,, M(H)=D,, and
PHYNM(H) =K.

5.3 Connected Graphs With Distant Médian and Periphery

The definition of the median of a connected graph G is analogous to the

definition of the median of a strong digraph. The distance d;(v) of a vertex v in G

is the sum of the distances from v to the vertices of G; thatis, d;(v) = 2 d(v, u).
ue V(G)
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Figure 5.8

The median M(G) of G is the subgraph induced by those vertices having minimum
distance.

In Sections 5.1 and 5.2, we proved that the distances from the median to the
periphery and from the periphery to the median of a strong asymmetric digraph can be
arbitrarily large. In addition, the median and periphery can intersect in any common
induced subdigraph. It is a natural question to ask if there is a similar relationship
between the median and the periphery of a connected graph. Before we answer this
question, we present two lemmas.

For any graph F, Lemma 5.8 says that we can construct some connected graph
H that contains F as an induced subgraph such that each vertex of F has the same
distance in H. Furthermore, H has the property that the distance between each pair of
vertices in H is at most 2, and each vertex of H thatis notin F is adjacent to some

vertex of F. We will use the simplified notation d(u, F) to represent the subgraph
distance d({{u}), F).
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Lemma 5.8 For any graph F, there exists a connected graph H that contains F as

an induced subgraph such that

(1) dy(u) = dy(v) forall u,ve V(F),
(2) dy(u,v)<2 forall u,ve V(H), and
(3) d(u, F) =1 foreach ue V(H) - V(F).

Proof Define a connected graph H, by joining a new vertex w to F. Let
mp(Hy) = max[dHO(x)lx e V(F)), mgHy) = min{dHO(x) Ix e V(F)},and n =
mp(Hy) —mg(Hg). If n=0, then dHO(x) = dHO(y) for all x,y e V(F), and choosing
H = H, gives us the desired result. For n21,let Sy(Hg) ={xe V(F) | dHo(x) =

mp(Hy)}). We define a connected graph H; by
V(H,) = V(Hp) U {x;)
and
E(H,) = E(Hp) U {x;w) U {zx; ] z€ Sy(Hp))

(see Figure 5.9).
|

Figure 5.9
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From the construction of H 1» We have eHl(w) =1 and, thus, dHl(u, v) <2 for

all u,ve V(H,). It also follows that for ze S,(H),

dHl(z) = dHl(z, X))+ Z dHl(z, 1)
te V(Hy)

=1+ Z dHo(Z’ t) =1+ dH()(z) = mA(Ho) +1,
te V(Ho)

Similarly, for z e V(F) —S,(Hy),
dHl(Z) = dHo(z) +22 ma(Ho) + 2,

and there exists some vertex z; € V(F) —S5(H() such that dHl(zl) =mg(H) + 2.
Define m,(H}) = max{dy (x)|x e V(F)) and mg(H)) = min{dy () |xe V().

Then mp(H ) =my(Hp) +1 and mg(H,) = mg(H) + 2, from which it follows that
mp(H ) -mg(H ) =n—1. Let Sy(H,) = {x e V(F) | dHl(x) =mu(H,)}. Observe

that
Sa(H) = Sp(Hp) U (x € V(F) - Sp(H) |l dyy () = mp(Hg) - 1).
Now define a connected graph H, by
V(H,) = V(H}) U {x,)
and
E(Hy) = E(H)) U (xpw} U (zx, | € Sp(H))).

By a similar argument, it follows that m,(H,) —mg(H,) = n —2. By repeating this

process n—2 times and letting H = H,, we conclude that m,(H) = mg(H). Thus,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



dy(u) =dy(v) forall u,ve V(F). Furthermore, from the construction of H, it

follows that dp(u,v) <2 forall u,ve V(H) and d(z, F)=1 foreach ze V(H) -
V(F). Q

The next lemma states that if we are given any graph F and apply Lemma 5.8,
then there exists a connected graph H such that the median of H is F; that is, any
graph is the median of some connected graph. In addition, the distance between any

two vertices of H is at most 2.

Lemma 5.9 Let G be a connected graph and let F be an induced subgraph of G

such that

(1) dg(w) =dg(v) forall u,ve V(F),
(2) dg(u,v) <2 forall u,ve V(G), and
(3) dg(z, F) =1 foreach z e V(G) - V(F).

Then there exists a connected graph H that contains G as an induced subgraph such
that M(H)=F and dy(u,v) <2 forall u,ve V(H).

Proof Suppose that d;(u) =k forall ue V(F),and let m =k +2. We construct a

connected graph H from G by joining m new vertices v; (1<ism) to F (see

Figure 5.10).
Since dg(u,v) <2 forall u,ve V(F), it follows that dg(u, v) = dy(u, v). So,
for u e V(F), we have

m
dy) = D, du,v) + 3, dy,x) =m + Y, dy(u,x)
i=1 xe V(G) xeV(G)
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Figure 5.10

=m+ 3, dgu,v) = m + dg)=m+k=2k+2.
xe V(G)

For 1 <i<m, it follows that

dy(v;)

Y dwiv) + Y, dvex) + Y dWi,x)

1<j#ism xe V(F) xeV(G)-V(F)

2m-1) +p(F) + Y dwvix) 22m—1 = 2k+3.
xe V(G)-V(F)

If ue V(G)—-V(F), then

dy(u) = i du,v) + Y, dw,x) =2m + Y, d(u,x)
i=1

xeV(G) xe V(G)
22m+p(G)—-1 2 2m+1 =2k +5.

Therefore, M(H) = F. To complete the proof, we must show that dp(u, v) <2 for all
u,ve V(H). Since dg(x,y) <2 forall x,y € V(G), it follows that dy(x,y) <2. It

is clear from the construction of H that for x € V(F), we have d(v;,x)=1 (1<i<
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m) and d(v;, vj) =2 (1si<jsm). Since d;(z, F) =1 foreach ze V(G) - V(F),

we compute d(v;,z)=2 for 1<i<m. Thus dy(u,v)<2 forall u,ve V(H). Q

We are now prepared to determine the distance between the median and the
periphery of a connected graph. Recall that the distances from the median to the
periphery and from the periphery to the median in a strong asymmetric digraph can be
arbitrarily prescribed. One might expect a similar result for graphs, but this is not the

case.

Theorem 5.10 Let F and G be any two graphs, and let m be a positive integer.
In addition, let & = min{e(x) Ix € V(G)}. Then there exists a connected graph H
such that M(H)=F and P(H)= G with d(M(H), P(H)) =m if and only if (1) 6 >
3 and m<d8 or (2) 8=2, m=1,and F is acomplete graph.

Proof First assume that 8 23 and m < 8. From Lemma 5.8, there exists a

connected graph H; that contains F as an induced subgraph such that (1) dHl(u) =
dﬂl(") for all u,ve V(F), (2) dHl(u, v)<2 forall u,ve V(Hy), and (3)
d(u, F) =1 for each ue V(H;) — V(F). Now by Lemma 5.9, there exists a connected

graph H, that contains H; as an induced subgraph such that M(H,)=F and
de(u, v)<2 forall u,ve V(H,). Assume that V(G) = {v{, vy, ..., vp}. Let r=

I_%l and t= La—;;_l For 6 > 4, we define a connected graph H; by

V(H3) = V(H) UV(G) U vl 1<j<p, 1sisr)

U {wy, wy} U {vl’,ﬂ-l 1<i<y)
and

E(Hy) = E(Hy) U EG) U (v | 1<) <p, 1<i<r-1)

Vi1
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v {vivi,1|15i$p} ) {vi'rvl’,+l|1SiSp, t21}

U vwil1<isp, 1<j<2, ¢=0)

U vy wl1sis2, e21)

U valr+eisisree-110 (wpl1<i<2, ye VHy)
Uyplism-1, ye V(Hy, 2sm<8-2)

U vpylye VIHy), m=1)u (v, v [1<i<j<p, §0dd)

irVir
(see Figure 5.11 (a) and (b)). For & = 3, we define Hj by

V(H3) = V(Hy) UV(G) U (v; | 1<i<p)

and

E(H3) =EH,) VEG) U vy l1gi<pyu vylye vty m=1)

U v al1si<jsplo v xli<i<p, xe viH,)

(see Figure 5.11 (c)).
Since dHZ(x, y)<£2 forall x,ye V(Hy) and w; (i =1, 2) is joined to all

vertices of H,, it follows that dp.(x, y) = dy,(x,y) and dy,(x, 2) = dH3(y, z) forall

x,y€ V(H,) and z e V(H3)—-V(H,). Thus, for u,ve V(F), we have

dg= 2 dg 0+ X dy ()
xe V(i) xe V(H3)-V(H2)

2 de(u, x) + Z st(u, x)

xe V(H,) xe V(HA)-V(H3)

G+ 2 dg 0= dg M+ X dy )
xe V(H3)-V(H>) xe V(H3)-V(H>)
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Vir+2 Vig+ra

(¢) The graph H; with =3 and m=2.

Figure 5.11
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=dy )+ X dy )
xe V(Ha)-V(H3)

= 2 de(v, X) + 2 st(v, X)
xe V(H,) xe V(Ha)-V(H>)

= z dH3(v, X) + z d”3(v’ x) = st(V).
xe V(H,) xe V(Ha)-V(H>,)
“In addition, for u € V(F) and v € V(H,) — V(F), it follows that

dy@=dy,@+ X g =dg @+ X dy,x)
xe V(H3)-V(H) xe V(H3)-V(Hy)

<dg+ X dy0,x)=dy,).
xe V(H3)-V(H)
Assume that dH3(x) =k forall xe V(F). Let n =2k. Now define a connected
graph H by

V(H) = V(H3) U (] 1<i<2n)

and

E(H) = E(H;) U {ux|1<i<2n, xe V(H,))
U {u2i_1w1, u2‘W2| 1<i< n, 02> 4}

() [u2i_1v1’1, u2iV2'l I 1<i< n, o= 3}.
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From the construction of H, it follows that dp(x,y) = dH3(x, y) forall x,ye
V(H3). For x e V(H,), we have

2n
dyy(x) = dy(x) + Z d(x, up) = dpy(x) + 2n.
i=1

So, for x € V(F) and y € V(H,) — V(F), we conclude that dy(x) =k +2n =5k and
dy(y) > 5k. For z e V(H3) —V(H,), it follows that

2n
dy@) = 9, d(z,x) + ,d(z, ;)2 p(H3) +3n >3n =6k.
xe V(Hs) i=1

For 1<i<2n, we have
dy(u) = Y, dw,u) + D, dwix) =2Q2n-1) + Y du;,x)
1<j#is2n xe V(Hs) xeV(H5)

<22n-1)+2 = 4n = 8k.

Thus, M(H)=F.
We now show that P(H) = G. Observe that for each v; € V(G) there exists

V€ V(G) such that dg(v;, vj) = 6. But,
dy(v;, vj) =d(v;, v‘-,,) + d(vi,,, vj,,) + d(vj,,, vj) = 9.

Thus, for each v; € V(G), we have ey(v;) = 0. Also, it follows from the construction

of H that ey(x) <d for x € V(H) - V(G). Therefore, P(H) =G. Furthermore, it is

clear from the construction of H that d(M(H), P(H)) =m.

Now assume that 8 =2, m =1, and F is a complete graph. We define a

connected graph H by joining all vertices of F to the vertices of G. It is clear from
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the construction of H that for x € V(G) and y € V(F), we have e(x) =2 and
e(y) = 1. From this, we conclude that M(H)=F, P(H)= G, and dM(H), P(H)) = 1.

For the converse, assume that there exists a connected graph H such that
MH)=F,P(H)=G, and dM(H), P(H)) =m 2 1. Observe that for x € V(P(H)),
we have ey(x) <96. Thus, for each xe V(P(H)) and y e V(H) - V(P(H)), it
follows that d(x, y) <6, namely, d(P(H), M(H)) = m < 8. From this, it is clear that
d#1. If d=2, then ey(x) <d for each x € V(H) — V(P(H)). Thus, F isa

complete graph. QO
5.4 Connected Graphs With Intersecting Median and Periphery

Let F,, F,,and K be graphs with K isomorphic to an induced subgraph of
both F; and F,. We define the supergraph set S(F,, F,; K) by

S(Fy, Fy K) = {G | H; and H, are induced subgraphs of G,H,=F, and H, = F,,
(V(H)) " V(H,)) =K, and V(G) =V(H,) L V(H,)}.

In Figure 5.12, we are given graphs F,, F,, and K along with G,, G,, and G5,
which are the three possible ways of overlapping F; and F, with intersection K; that

is, S(Fy, F5; K) = {G4, G,, G;}. We now give necessary and sufficient conditions for
172 1»~2: 3

the median and periphery of a graph to intersect.

Theorem S§.11 Let F,, F,,and K be graphs where K is isomorphic to an
induced subgraph of both F, and F,. Then there exists a connected graph H such
that M(H)=F,, P(H)=F,,and M(H) " P(H)=K if and only if

(1) there is some graph G € S(Fy, F5; K) such that for each x € V(F,), there
exists y € V(F,) with dg(x,y) 23,
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Fl : 2 F2: K: I
G % E 62 : Z ; 03: Z
Figure 5.12

(2) e(x) =2 foreach xe V(F,) and M(Fy)=F, =K, or
(3) e(x)=1 foreach xe V(F,) and F,=F =K.

Proof Assume that condition (1) holds and V(F,) = {uy, uy, ..., u,}). We show -
that there exists a connected graph H such that M(H) = F,, P(H)=F,, and M(H) N
P(H) =K. We start by constructing sets B; and B, by Algorithm Partition Vertices
with the property that By U B, =V(F,), By N B, =@, and for each x e B; N K,
there exists y € V(F,) —B; such that dg(x,y) 23 for 1<i<2 (see Figure 5.13).

We define a connected graph Hy by
V(Hy = V(G) L (4]1<i<4r)

and

E(Hy) = E(G) L {u;uj'-l 1<i<j<4r)
U uix |1<i<arxe V(F)-V(K))
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Algorithm Partition Vertices:
If F; =K, then
Let B = (v{}, and let B, =0.
If F| #K, then
If v, € V(K), then
Let By =, and let B, = {v,}.
If v, € V(F;) - V(K), then
Let By = {v;},and let B, =0.
For i=2 to p, '
If v; e V(F,) - V(K), then
Let By « By u {v;}.
If v;e V(K), then
If there exists some x € V(F,) — V(K) such that dHo(vi, x) 2 3, then
Let By < B, U {v;}.
If dHO(vi, x) £2 forall x € V(F,)—V(K), then
If dHO(vi, x)£2 forall xe By N V(K), then
Let B, < By U {v;}.
If dHO(vi, x) 23 for some x € B, N V(K), then

Let B « B; L {v;}.

Figure 5.13

U lwug l1<isr, 0<j<3)

U (w; ugildgu; , u) 23,i>j,u;  u€ By k=1,2)

(see Figure 5.14).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

Figure 5.14

Observe that p(F,) 22 and, thus, p(Hy) = 8. We consider two cases for the

orderof F 1-

Case 1 Assume that p(F) =p 2 2. In addition, suppose that V(F,) = (v, v,, ...,

vp] and dHo(vi)=”i for 1<i<p. Let n=min[ni| 1<i<p},andlet A; beaset

of n;—n+ 1 new vertices, where AinAj=® for 1<i#j<p. Let t=ﬁ|Ai|.
i=1

We define a connected graph H; by
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14
V(H,) = V(Hg) U (i:;l A ,.)

and

EH)=EHp U (vixl1sisp,xe A))
U xylxe A, ye VIH) -V@G), 1<i<p)

(see Figure 5.15).

j+1

> e. . .e
x

Figure 5.15

For 1<i<k<p, we have
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dHl(vi)= 2 dHl(vi’ X) + 2 d(Vi, X)
xe V(Ho) xe V(Hy)-V(Ho)

= ¥ dyvpx) + Yy, dv;x)
xe V(Hop) xe V(H1)-V(Hg)

=dy (v) + Y dv,x) = n; + Y d(v;, x)

xe V(H1)-V(Ho) xe V(H1)-V(Ho)

=n; + Z d(v;, x) + 2 d(v;, x)
x€A; x€ Aj
J#H

=n+(m—n+1)+ 22 (nj—n + 1)

J#H

=n—1+2(m;—n+1)+ 22 (nj—n+ 1.)
JH

=n-1+ 2& (nj—n + 1)
J=1

=n-1+2(n,—n+1)+ 22 (nj—n+1)
J#k
=m+(my—-n+1)+2Y (nj-n+1)
J*k

=nk+ z d(vk, X) + 2 d(vk, X)
x€Ag X€A;j
J£k
=nk+ z d(vk, X) = dHo(vk) + Z d(vk, x)
xe V(H1)-V(Ho) xe V(H1)-V(Ho)

= Y dy (v, %) + Y d(vg, x)
xe V(Hp) xe V(H)-V(Ho)

2 dy, (Ve x) + 2 d(vp, x) = dy (v).
xe V(Ho) xe V(HD-V(Ho)
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Suppose that dﬂl("i) =m for 1 <i<p. We now define a connected graph H

by

V(H) = V(Hl) O [Wi,xi, Y Zil 1<i<m)
and

v {xwi,xzilxe Bj,1<sism}u [xxi,xyi|xe By, 1<i<m)

| {u‘;i_BWj, uii_zxj, u‘;i_lyj, u‘;‘zjl 1<i< r, 1 Sj Sm]

(see Figure 5.16).

For 1 <i<p, we compute

m
dH(vi) = z dH(vl, .x') + Z [d(vl, Wj) + d(vi, xj') + d(vi, yj) + d(vi, Zj)]

xe V(Hy) 1
= 2 dy(v;, x) + 6m = Z dy, (v, x) + 6m
xe V(H) xe V(H))

= dlll(vi) +6m=m+ 6m="Tm.

For y e V(H,) - V(F), we have
m

dy(y) = Z d@y,x) + Z (d(y, Wj) + d()’,xj) +d(y, }’j) +d(y, Zj)]
xe V(HY) j=1

> z dy,x) +Tm2pH{) -1 +Tm >Im,
xe V(Hy)

where p(H,) >p(Hg) 28. If 1<j<m,then

dwp= Y [dwj, w)) +d(w, x) + dw;, 3) + d(wj, 2)] + d(w}, x))

1<i#j<m
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Figure 5.16

+ d(WJ, y]) + d(WJ, ZJ) + ‘%H )d(wJ’ x)
xe 1

=Tm-1)+1+2+1+ 2 d(w;, x)
xe V(Hy)

2Tm -3 +p(H;) >Tm.

By a similar calculation, it follows that d(xj) >Tm, d(yj) >7Tm, and d(zj) >Tm for

1<j<m. Thus, M(H) = F. The digraph H was constructed in such a way that
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eyx)=3 and ey(y) =2 for x e V(F,) and y € V(H) — V(F,). Therefore, P(H) =
F,.

Case2 Assume that p(F,) = 1. Suppose that dHo("l) =m. We define a connected
graph H by

V(H) =V(Hp) U (¥, 7| 1 <i<m)

and

E(H) = E(Hy) U {vyy; v 1 i< m)

|V [[u&l_3yj, uéi_zzj, u‘ii_lzj-, uélyjl 1<i< r, 1 Sj S'n]

(see Figure 5.17).

By calculations similar to those in Case 1, we find that
dH(vl) =3m

and
dy(x) > 3m for xe V(H) - (v;}.

Thus, M(H) = F{. Again, by the construction of H, we have ey(x) =3 and ey(y) =
2 for xe V(F,) and y e V(H)—V(F,); thatis, P(H) = F,.

If conditions (2) or (3) hold, then it is clear that the graph H = F, has the desired
properties.

We now prove the converse. Suppose that there exists a connected graph H
such that M(H)=F,, P(H)=F,, and M(H) N P(H) =K. If there exists x € V(F,)

with er(x) = 1, then all vertices in P(H) have eccentricity 1; thatis, P(H) = H= F,.
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Figure 5.17

In addition, each vertex of H has the same distance. Thus, M(H)=H=F ; and

statement (3) holds.
In the next case, we assume that F, has no vertices of eccentricity 1.
Furthermore, suppose that for each G € S(Fy, F,; K), there exists x € V(F,) such

that for each y € V(F,), we have dg(x,y) <2. Since
diam H < max{dg(x, ) | x,y € V(F,), G e S(F,, F,; K)),

it follows that e(x) =2 for all x € V(P(H)). In addition, for each y e V(H) -
V(P(H)), we have e(y) =1 and y e V(M(H)). So all vertices of M(H) have
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eccentricity 1 or no vertices of M(H) have eccentricity 1. Since K is an induced
subgraph of F,, it has no vertices of eccentricity 1, which implies that all vertices of
M(H) have eccentricity 2. Thus, H has no vertices of eccentricity 1 and P(H)=
H=G=F,. Consequently, F; =K and M(F,) = M(H) = F{, which completes the

proof. Q
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