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DISTANCES ASSOCIATED WITH SUBGRAPHS AND SUBDIGRAPHS

Steven John Winters, Ph.D.

Western Michigan University, 1993

The defining properties of several important subgraphs and subdigraphs rely on 

the concept of distance in graphs and digraphs. In this dissertation, we investigate 

many of these subgraphs and subdigraphs.

In Chapter I, we present some preliminary definitions and examples. In 

addition, many known results are recalled. We then introduce several new induced 

subgraphs and subdigraphs.

In Chapter n, we investigate the general structure of the center and periphery of 

a graph. We introduce two new induced subgraphs of the center along with a new 

induced subgraph of the periphery of a graph in order to study these structures.

For every digraph D , there is a corresponding digraph whose vertex set 

consists of subsets of vertices of D of the same cardinality. In Chapter III, we 

introduce this multivertex digraph and indicate the motivation for studying these 

digraphs.

The center and periphery are subgraphs or subdigraphs induced by those 

vertices of minimum and maximum eccentricity, respectively. In Chapter IV, we 

introduce two new induced subgraphs and subdigraphs that involve the remaining 

vertices and investigate their relative location in the graph or digraph.

We continue this investigation in Chapter V by studying the relative location of 

the median and periphery of a graph or digraph.
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CHAPTER I 

INTRODUCTION

1.1 Definitions and Examples

Distance is one of the most fundamental concepts in the theory of graphs and 

digraphs. In fact, Buckley and Harary [3] wrote an entire book devoted to the study of 

distance in graphs. The standard distance d(u, v) between two vertices u and v in a 

connected graph G is the length of a shortest u-v path in G.

The eccentricity e(y) of a vertex v in a connected graph G is the distance 

between v and a vertex furthest from v in G, namely, e(v) = d(v, u). The

radius rad G of G is the minimum eccentricity among the vertices of G; its diameter 

diamG is the maximum eccentricity. The center C(G) of G is the subgraph induced 

by those vertices of G having minimum eccentricity; the periphery P(G) is the 

subgraph induced by those vertices of G having maximum eccentricity. We say that a 

vertex v of G is a central vertex if v is a vertex in C(G), and v is called a 

peripheral vertex if v is in P(G). We illustrate these concepts by giving an example of 

a connected graph G along with its center C(G) and periphery P(G) in Figure 1.1. 

The eccentricity of each vertex of G is also indicated. Furthermore, rad G = 2 and 

diam G = 4.

Let v be a central vertex in a connected graph G with rad G * diam G. We 

define the central distance c(v) of v as the largest nonnegative integer k such that if 

d(v,x) < k, then jc is also a central vertex. Let m = max{c(v)} over all central 

vertices v of G. Then the ultracenter UC(G) of G is the subgraph induced by those 

central vertices v with c(v) = m; while the central fringe CF(G) of G is the

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2

G

u

C ( G ): P(G): O
u

o — o — o
« 7  M6  U 5

Figure 1.1

subgraph induced by those central vertices v with c(v) = 0. Similarly, the peripheral 

distance p(v) of a peripheral vertex v is the largest nonnegative integer k such that if 

d(y, x) < k, then x  is also a peripheral vertex. If m = max{p(v)} over all peripheral 

vertices v of G, then the ultraperiphery UP(G) of G is the subgraph induced by 

those vertices v with p(v) = m. In Figure 1.2, we give an example of a connected 

graph G along with its ultracenter UC(G), central fringe CF(G), and ultraperiphery 

UP{G). The eccentricity of each vertex of G is also indicated. We investigate the 

properties of the ultracenter, central fringe, and ultraperiphery of connected graphs in 

Chapter n.

A digraph D is strong if for every two vertices u and v of D, there is both a

u—v (directed) path and a v-u  path in D. For vertices u and v in a strong digraph
—)

D, the directed distance d  (u, v) (or d(u, v) if directed distance is clear from context) 

from u to v is the length of a shortest u-v path in D. We say that a digraph D is 

asymmetric if whenever (u, v) is an arc of D, then (v, u) is not an arc of D.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 1.2

For a vertex v in a strong digraph D, the eccentricity e(y) of v is the directed 

distance from v to a vertex furthest from v in D. The radius rad D of D is the 

minimum eccentricity among the vertices of D; while its diameter diam D is the 

maximum eccentricity. The center C(D) of D is the subdigraph induced by those 

vertices of D having minimum eccentricity; while the periphery P(D) is the 

subdigraph induced by those vertices having maximum eccentricity. In Figure 1.3, we 

give an example of a strong asymmetric digraph D with its center C(D) and periphery 

P(D). In addition, rad D = 3, diam D = 4, and the eccentricity of each vertex is 

indicated.

Let F and H  be subgraphs of a connected graph G. Then the standard 

distance d(F,H) between F and H  is defined by
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d(F, H) = min{d(u, v) | u e  V(F), v e  V(H)).

For example, if we consider the graph G given in Figure 1.1, then d(C(G), P(G)) =

2. Observe that the distance between subgraphs is a generalization of the distance 

between two vertices; that is, if V(F) = (u) and V(H) = {v}, then d(F, H) = d(u, v).

Similarly, if F and H  are subdigraphs of a strong digraph D, then the 

standard directed distance d(F, H) (or d(F, H) if directed distance is clear from 

context) from F to H  is defined by

If D is the digraph given in Figure 1.3 with subdigraphs F = ({u, v}) and H = 

<{z)), then d(F, H) = 3, while d(H,F) = 2. Clearly, this distance is not a metric, but 

it is a generalization of the directed distance from one vertex to another.

d(F,H) = min[d(u, v ) |u e  V(F), v e V(H)}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



We now consider another distance introduced by Johns [5] involving subgraphs 

of the same order. Let G be a connected graph of order p and let n bean integer 

with 1 < n < p. Furthermore, let F and H be induced subgraphs of G of order n. 

We define a pairing n from the vertex set V(F) = {vj, v2, ... , vn) to V(H) as a 

one-to-one mapping from V(F) to V(H). The subgraph distance sdn(F,H) induced 

by it between F and H is

sdn(F, H) = X  diyh Jt(v,)). 
i= 1

The subgraph distance sd(F,H) between F and H is defined by

sd(F, H) = min sdK(F, H).

For example, in Figure 1.4, we give a connected graph G along with two induced 

subgraphs F and H  of order 3. We also list all pairings between V(F) and V(H) 

and compute sd(F, H). In Chapter III, we introduce the corresponding directed 

distance, and we investigate properties of this directed subdigraph distance that are 

analogous to properties involving graphs.

The distance d(v) of a vertex v in a connected graph G is the sum of the

distances from v to the vertices of G; that is, d(v) = X  M). The median
ueV(G)

M(G) of G is the subgraph of G induced by those vertices having minimum 

distance. In Figure 1.5, we give an example of a connected graph G along with its

median Af(G). Furthermore, the distance of each vertex is also indicated. Similarly,
—>

for a vertex v in a strong digraph D, the distance d (v) (or d(v) if directed distance 

is clear from context) of v is the sum of the directed distances from v to the vertices

of D, namely, d(v) = X  ^(v> M). The median M(D) of D is the subdigraph of D
ueV(D)

induced by those vertices having minimum distance. A strong asymmetric digraph D

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 1.4

is given in Figure 1.6 along with its median M(D). Again, the distance of each vertex 

is indicated.
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w

Figure 1.6 

1.2 Some Previous Results

Hedetniemi (see [4]) showed that every graph is the center of some connected 

graph, that is, for every graph G, there exists a connected graph H  such that 

C(H) = G; while Slater [16] showed that every graph is the median of some connected 

graph. Since the center and median are two ways of defining the "middle" of a graph, 

one might expect the center and median of a graph to overlap (have vertices in common) 

or at least be "close" to each other. Such is not the case, however, as Hendry [11]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



proved that for every two graphs F and G, there exists a connected graph H  such 

that C(H) = F and M(H) = G, where C(H) and M(H) are disjoint. Holbert [12] 

extended this result by showing that for every two graphs F and G and positive 

integer k, there exists a connected graph H  such that C(H) = F, M(H) = G, and 

d(C(H), M(H)) = k. Thus, the standard distance between the center and median of a 

graph can be arbitrarily large. On the other hand, these subgraphs can be arbitrarily 

close as Novotny and Tian [13] showed when they proved that for any three graphs F, 

G, and K, where K  is isomorphic to an induced subgraph of both F  and G, there 

exists a connected graph H  such that C(H) = F, M(H) = G, and C(H) n  M(H) = K.

Not every graph is the periphery of some graph, however. Bielak and Syslo 

[2] proved that a graph G is the periphery of some connected graph if and only if 

e(x) *  1 for each x  e  V(G) or e(x) = 1 for each x  e  V(G). Chartrand, Johns, and

Tian [6] proved that for every asymmetric digraph D, there exists a strong asymmetric 

digraph / / 1 such that C(//j) = D and there exists a strong asymmetric digraph H2 

such that F (//2) =D. It was shown by Shaikh [14] that for every two digraphs D j 

and D2, there exists a strong digraph H such that C(H) = D j and P(H) = D2. We 

now extend this result to asymmetric digraphs.

Theorem 1.1 For every two asymmetric digraphs Dl and £>2, there exists a strong 

asymmetric digraph H such that C(H) s D j  and P(H)=D2.

Proof We define a strong asymmetric digraph H by

V(H) = V(Dj) u  V(D2) u  [zt 11 < i < 6}

and

E(H) = E(DX) u  E(D2) u  {(zt-, z/+1) 11 < i < 5} U {(x, Zj), (z5, x ) \ x e  V(D2)} 

u  {(x, Zj), (x, z4), (z5, x), (z6, x) \x  e  VCDj)}

(see Figure 1.7).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 1.7

From the construction of H, we have

(i) e(x) = 3 for x  e

(ii) e(z5) = e(z6) = 4,

(iii) e(z,) = 5 for 1 < i < 4, and

(iv) e(x) = 6 for x  e  V(D2).

Thus, C(//) = D j and P(H) s  D2. □

The results of Hendry [11], Holbert [12], and Novotny and Tian [13] involving 

graphs were extended to digraphs in [7]. For every two asymmetric digraphs Dj and 

D2, there exists a strong asymmetric digraph H such that C(H) = D j and M(H) = 

D2, and where the directed distances from C(H) to M(H) and from M{H) to C(H)

can be arbitrarily prescribed. Furthermore, if K is a nonempty asymmetric digraph 

isomorphic to an induced subdigraph of both Dj and £>2, then there exists a strong 

asymmetric digraph F such that C(F) = Dj, M(F) = D2, and C(F)nM (F) = K.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In Chapter IV, we introduce the concepts of interior and annulus of a connected 

graph and of a strong digraph. For a connected graph G with rad G < diam G, we 

define the interior Int(G) of G by

Int(G) = <{v e V(G) \ e(v) < diam G}).

If rad G = diam G, we define Int(G) = G. For a connected graph G with rad G < 

diam G - 1 ,  we define the annulus Ann(G) of G by

Ann(G) = ( (ve  V(G) | rad G < e(v) < diam G}).

If rad G > diam G -  1, we say that graph G has no annulus. We illustrate these 

concepts in Figure 1.8 by presenting a graph G along with its interior Int(G) and 

annulus Ann(G). We also indicate the eccentricity of each vertex of G. Similarly, we 

define the interior and annulus of a strong digraph in Chapter IV.

G: u 2
jO-------------C ^ u,

Int(G): Ann(G):

u,

O
u 10

O
u 8

Figure 1.8
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Many of the previous results indicate a relationship between the relative location 

of the center and median or the center and periphery of a graph or digraph. There are 

similar types of questions involving the relationship between the relative location of 

other induced subgraphs or subdigraphs. We investigate these results for the interior 

and annulus of graphs and digraphs in Chapter IV. We continue this investigation in 

Chapter V by studying the relative location of the median and periphery of a graph or 

digraph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER II

ULTRACENTERS, CENTRAL FRINGES, AND 
ULTRAPERIPHERIES OF GRAPHS

2.1 The Ultracenter and Central Fringe of a Graph

The center is among the most studied induced subgraphs of a graph. One 

reason for this is that the center of a graph has many applications, for example, in 

facility location problems. Another reason is that the center describes the "middle" of a 

graph and by examining the center along with other induced subgraphs whose defining 

property relies on the distance between two vertices, such as the median and periphery, 

we obtain information about the structure of the graph. But even though the vertices of 

the center have the same eccentricity, this may not indicate how the center interacts with 

the rest of the graph. In addition, some of the vertices of the center could be interpreted 

as being more "central" than others. For example, a central vertex that is adjacent only 

to central vertices may appear to be more central than one that is adjacent to some 

noncentral vertex. In Figure 2.1, we illustrate some of these ideas by presenting two 

graphs of the same order that have isomorphic centers and peripheries but have 

considerably different structures.

This example motivates us to investigate the structure of the center and 

periphery of a graph to obtain a better understanding of the overall structure of the 

graph. We start by introducing two induced subgraphs of the center of a graph.

Let v be a central vertex in a connected graph G with rad G < diam G. The 

central distance c(v) of v is the largest nonnegative integer k such that if d(v, x) < 

k, then x  is also a central vertex. If m = max{c(v)} over all central vertices v of G,

12
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P(F)=P(G):

V1 V2 V3 V4
o -------- o -------- o --------o

o -------- 0 -------- 0 ------- o
V 5 v6 v 7 v 8

Figure 2.1

then the ultracenter UC(G) of G is the subgraph induced by those central vertices v 

with c(v) = m; while the central fringe CF(G) of G is the subgraph induced by those 

central vertices v with c(v) = 0. We now investigate which graphs can be the 

ultracenter (or central fringe) of some connected graph.

Theorem 2.1 Let F and G be graphs and let n be a positive integer. If diam F 

> 2n -  1, then there exists a connected graph H  such that CF(H) = F, UC(H) = G, 

and every vertex of UC(H) has central distance n.

Proof Let v e V(F) such that e(v) = diam F. We partition the vertex set of F as 

follows:

C ( F  ) =C( G) :

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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(i) A0 = {v};

(ii) Ai = [x | xy e  E(F), y  e A ^ ,  x  t j  Aj], l< , i< 2 n -2 ;  and

(iii) A ^ i - V W - J j A j .

We now construct a connected graph H  by

V(H) = V(F) u  V(G) u  (v4-, v,-, w; 11 < t < 2n + 2)

u  [u;, u'i \ l £ i < n - l ) u { z i \ l < i < 2 n - 2 )

and

E(H) = £(F) u  E(G) u  {Mj. j , a J«£+ j 11 < i < n -  2} 

u  {V4- V/+ 1 , v; v;+1, w f Wi + l  1 1 <  /  <  2m +  1} 

u  {vm^j.vvj.vvJ.vwj.vzj} u  {jcw^JWiUe V(G)} 

u  xv2n+2> xv^n+2, xw2n+2, xz2n_2 1x e A2n_x)

u  {xwi+l | x  e  i4f, 1 < i ^  n -  1} u  {jcvv|+3 \x  e Ai, n < i < 2 n -  2} 

u  xz|+11jc e  Ait 2 < i < 2m -  3} u  [xz2 \x e  A l }

u  [x z 2n~3’ x z2n-2 I*  e  A 2n-2^ U  (zi zi+l I 1 £  / £  2m -  3}

(see Figure 2.2).

Let B = V(F) u  V(G) u  Mt' |  1 < / < n -  1} u  {z4- 11 < / < 2m -  2}. The 

graph H  is constructed in such a way that if x  e B and y e V(H), then x  and y 

are on some cycle (of H) of order at most 4m + 3. Thus eH(x) < 2m + 1 for x  e  B.

We calculate the eccentricity of each vertex of B by observing the following:

(i) d(x, vn+1) = 2m + 1 for each x  € V(G),

(ii) d(ut, vn+1+J) = 2n + 1 for 1 < / < n - 1 ,

(iii) d{u\, v/1+1_J) = 2n + 1 for 1 < i < n -  1,

(iv) d(y, v2n+1) = 2m + 1,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 2.2

(v) d(z,-, v2n+l_i) = 2n + 1 for 1 < / < 2n -  2, and

(vi) d(x, v2n+i_,) = 2/i + l for x  e 1 < / < 2n -  1.

Therefore e^ix) = 2n + l for each x  e B. Furthermore, the remaining vertices of H 

have eccentricities at least 2n + 2 as illustrated below:

(i) d(wt, v2n+2_j) = 2/t + 2 for 1 < i < n + 2,

(ii) v2n+4_,) = 2n + 2 for /i + 3 < / < 2n + 2,

(iii) d(Vj-, v2/l+2_,) = 2n + 2 for 1 < / < 2n + 1,

(iv) d(v2n+2, v2) = 2n + 2, and 

(y) d(v2n+2, v2) = 2/i + 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Consequently, e(x) >2n + 2 for x  e  V(H)-B.  In addition, from the construction of

H, we conclude that CF(H) = F, UC(H) = G, and each vertex of UC(H) has central 

distance n. □

We now state two corollaries which follow immediately from Theorem 2.1.

Corollary 2.2 Let F and G be two graphs. Then there exists a connected graph 

H  such that CF{H) = F and UC(H) = G.

Corollary 2.3 Let G be a graph and n a positive integer. Then there exists a 

connected graph H such that UC(H) = G and every vertex of UC(H) has central 

distance n.

Now suppose that we are given two graphs F and G such that G is an 

induced subgraph of F. Is it possible to construct a connected graph H  such that 

C(H) = F and UC(H) = G, where each vertex of UC{H) has central distance n > l?  

This appears to be a difficult problem even for small n, so we will only investigate this 

question for n = l .

Theorem 2.4 Let F and G be graphs such that G is an induced subgraph of F. 

Let V(F) -  V(G) = A u B  with A r \B  = 0 .  If for each x e  V(G), there is some 

y e  A and some z e  B such that xy, xz e  E(F), then there exists a connected graph 

H  such that UC(H) = G, C(H) = F, and each vertex of UC(H) has central distance

I .

Proof Let sets A and B be a partition of the vertex set V(F) -  V(G). In addition, 

assume that for each x  e  V(G), there is some y e  A and some z e  B such that xy, 

xz e E(F). Furthermore, assume that if x e  V(F) -  V(G) and xy e E(F) for each
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y  e  V(G), then x  e  B. Let C be the set of vertices from B that are not adjacent to 

any vertices of G. We construct a connected graph H by

V(H) = V(F) u  {Vj-, wi \ l < i < 6 } u  {ut I 1 < i < 6, C * 0 }

and

E(H) = E(F) u  {v,. v/+1, w{ wi+l 11 < t <5} u  {xvv  xwy U  e B] 

u  {jcv6 , xw6 1x e A) u  (xu^,xu4 \ x ^  C, C * 0 }  

v  [Ulu2, u2u3, m3v 5 , m3v 6 , u 4 u 5 , u 5u 6 , u 6 w 5 , u 6w 6 | C * 0}

(see Figure 2.3).

V 5 v 4  v 3 V2

H

F -G

Figure 2.3

We compute the eccentricity of each vertex of H  as follows:
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(i) e(x) = 4 for x e  V(F),

(ii) e(x) = 5 for x  e  {uv  u4, Vj, v6, w v  w6),

(iii) e(x) = 6 for x  e [u2, m3, u5, u6, v2, v5, w2 vv5), and

(iv) e(x) = 7 for jre  {v3, v4, w3 w4}.

Thus, C(//) = F. It is clear from the construction of H  that c(x) = 1 for each x  e 

V(G) and c(y) = 0 for each y  e V(F) -  V(G). Therefore, we conclude that 

UC(H) = G and each vertex of UC{H) has central distance 1. □

The next theorem places several restrictions on induced subgraphs of the center 

that can be the ultracenter of a graph.

Theorem 2.5 If F, G, and H are graphs such that UC(H) = G, C(H) = F, and 

each vertex of UC(H) has central distance n > l ,  then

(i) degyr x > 2  for each x e V(G),

(ii) for each v e  V(G), there exists x e  V(F) -  V(G) such that xv e  E(F), and

(iii) p(C(H)) > p(UC(H)) + 2n.

Proof We will first show that degf  x > 2  for each x  e  V(G). Suppose, to the 

contrary, that there is some vertex z of G such that degF z < 1. Since c(z) > 1, we 

have dtgF z = 1 and zx £ E(H) for all x  e V(H) -  V(F). Therefore, there exists 

some y e  V(F) such that zye E(H). But this means that eH(z) = e^(y) + 1, which 

contradicts C(H) = F. Thus, deg^:c> 2 for each x  e  V(G).

To show that condition (ii) must hold, we assume, to the contrary, that there is 

some vertex z in G that is not adjacent to any vertex of F -  V(G). Thus, the vertices 

adjacent to z are also in G, and they have central distance n. But this implies that
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c(z) = n + 1, which is impossible. Hence, each vertex of G is adjacent to some vertex 

of F — V(G).

We prove condition (iii) by showing that p(F -  V(G)) > 2n. It is clear that for 

x  e  V(UC(H)), we have e(x) > n + 1. Now suppose, to the contrary, that 

p(F — V(G)) < 2n. Let x  e  V{UC{H)) and y e  V(CF(H)) such that d(x, y) = n. 

Furthermore, let P: x  = v0, V j,... , vn =y be any fixed x-y path of length n. For 

each z e V(jCF(H)), it follows that any x-z path of minimum length must contain a 

vertex of {vt-11 < i < n). Clearly, d(x, vt) > d(ylt vz) for 1 < i < n. Consequently, 

for each z e V(CF(H)), we have d(x, z) = d(x, v,) + d(v{, z) for some i (1 < i< n)  

and

d(x, z) = d(x, v-) + d(vt, z) > d(vv  v,) + d(yt, z) = d(yv  z);

that is, e(x) > e(Vj), which is a contradiction. Therefore, p(F -  V(G)) > 2n which 

implies that p(C(H)) > p(UC(H)) + 2n. □

2.2 The Ultraperiphery of a Graph

In this section, we investigate the structure of the periphery of a graph. As seen 

in Figure 2.1, two graphs may have isomorphic peripheries but be quite different in 

their overall structure. We begin by introducing an induced subgraph of the periphery 

of a graph.

Let v be a peripheral vertex in a connected graph G with rad G < diam G. 

Recall that the peripheral distance p(y) of v is the largest nonnegative integer k such 

that if d(v, x) < k, then x  is also a peripheral vertex. Let m = max{p(v)} overall 

peripheral vertices v of G. Then the ultraperiphery UP(G) of G is the subgraph 

induced by those vertices v with p(y) = m. Even though some graphs are not the
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periphery of any connected graph, the next result shows that every graph is the 

ultraperiphery of some connected graph.

Theorem 2.6 Let F be a graph and n a positive integer. Then there exists a

connected graph H  such that UP(H) = F and every vertex of UP(H) has peripheral

distance n.

Proof We construct a connected graph H  by

V(H) = V(F) u  {uit u\, v\, v'l 11 < i < n} u  {v,. 11 < / < n + 4}

u  {w,-, w'i 11 < / < n + 3} u  {Zj-, z\ 11 < i < n -  1}

and

E(H) = E(F) u  [xup xu[ |jce V(F)} u  {vf v1+111 < i < n + 3}

u  ui+l, u'i u'i+J, vj v}+1, v'( v'{+l 11 < i < n -  1}

u  {zi zi+v z\ z-+111 < / < n -  2)

U {w( wi+1, w\ w-+111 < / < n + 2}

u  {vj v,-, v'{ vf 11 < i < n} u  {wn wi,w'n w'i \n + 2 < i < n  + 3}

u l vn+2w l> Vn+2WV Vn+4Z1> vn+4 z i> un Vl> ^^+3’ un zn-V  

« + 3’ vnwn+V VX+1>

(see Figure 2.4).

From direct calculations, it follows that diam H < 2n + 4. In addition, we have

(i) d(x, Vj) = 2n + 4 for *<= V{F) and 1 <i<n,

(ii) d(Uj, v'[) = 2/i + 4 for 1 < i < n, and

(iii) d(u'j, v'l) = 2n + 4 for 1 < i < n.
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H :

71-1

71+3

*/l-l

71-1

n+1

t j +2
ti-1

71-1

Figure 2.4

Thus, if A = {x, Up u'p Vp v\, v " |jc e  V(F), 1 < i < n}, then e(y) = 2n + 4 for each 

y e  A. Furthermore, for each x e  V(H) - A ,  we have e(x) < 2n + 4. Consequently, 

it follows that UP(H) = F and each vertex of UP(H) has peripheral distance n. □

We now investigate the case where n = 0.

Theorem 2.7 For any graph F, there exists a connected graph H  such that 

UP(H) = F and each vertex of UP(H) has peripheral distance 0 if and only if 

eF(x) *  1 for each x  e  V(F).
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Proof First assume that there exists a connected graph H  such that UP(H) = F and 

each vertex of UP(H) has peripheral distance 0. Then P(H) = UP(H) = F  and, from 

Bielak and Syslo [2], we have eF(x) * 1 for each x  e V(F) or eF(x) = 1 for each 

x  e  V(F). But if F is a complete graph, then UP(H) is not defined, which is a 

contradiction.

For the converse, we assume that F is a graph with eF(x) *  1 for each 

x  e  V(F). We construct a connected graph H  by joining a new vertex y to the 

vertices of F. It follows that eH(x) = 2 for x e V(F) and eH(y) = 1. Thus 

P(H) = F and C(H) = ({y}). Furthermore, each vertex of P(H) is adjacent to a 

vertex in C(H). Therefore, UP(H) = P(H) = F and each vertex of UP(H) has 

peripheral distance 0. □
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CHAPTER ID

SUBDIGRAPH DISTANCE AND MULTIVERTEX DIGRAPHS

3.1 Subdigraph Distance

For a strong digraph D of order p  and an integer n such that 1 < n <p, let 

F  and H be induced subdigraphs of D of order n. Following Johns [5], we define a 

pairing it from the set V(F), say {vj, V2 , ..., v„), to the set V(H) as a one-to-one 

correspondence that associates a vertex of F with one of H. The subdigraph distance 

induced by it from F to H is defined as

n

sdn(F, H) = X  B(vi))
»'=i

and tint subdigraph distance from F to H is

sd(F, H) = min sdn(F, H).
71

Notice.that if V(F) = {jc} and V(H) = {y}, then sd(F, H) = d(x,y) .  Thus 

subdigraph distance is a generalization of directed distance for digraphs. In Figure 3.1, 

we give a strong digraph D with two induced subdigraphs F and H  of order 3. We 

also list all pairings between V(F) and V(H) and compute sd(F, H) and sd{H, F).

For a strong digraph D and an integer n such that 1 < n < p, let F, H, and J  

be subdigraphs of D of order n. Since sd(F, H) = sd(H, F) is not true in general, 

subdigraph distance is not a metric. On the other hand, the triangle inequality holds, as 

we now verify. Suppose that V(F) = {vls v2, ..., vn}. Let 7C\ and % 2 be pairings 

such that sd(F, H) = sdKl(F, H) and sd(H, J) = s d ^ H ,  J). Then

n
sd(F, J) < s d ^ ^ i F ,  7) = Z  d(yh itiiitiiyi)))

23
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v 2 v 3 x y

uz u.u,

F : H: v.

“ l “ 2 “ 3

Pairing Mf Vf d(uh vf) d(v,-, sdnk(F,H) ^ ( / / ,  F)

«1 vi 3 2

*i u2 v 2 5 4 1 0 9
u3 v3 2 3

Ml V1 3 2

7̂ 2 u2 v3 1 4 5 1 0

M3 v 2 1 4

Ml v2 6 3
JC3 u2 Vl 2 3 1 0 9

M3 v3 2 3

Ml v2 6 3
7C4 M2 V3 1 4 9 11

M3 Vl 2 4

Ml V3 2 3

*5 u2 Vl 2 3 5 1 0

M3 V2 1 4

Ml V3 2 4

^ 6 M2 V2 5 4 9 1 2

M3 Vl 2 4

sd(F,H) = 5 and sd(H,F) = 9 

Figure 3.1
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<  2  * l ( v i))  +  d ( m ( V i ) ,  7C2(JC i(V i)))]
»=1

= sdni(F ,H)+sdn2(H,J)

= sd(F, H) + sd(H, J),

where the second inequality holds since directed distance satisfies the triangle 

inequality.

There are several results involving distance in subgraphs that have natural 

analogues in subdigraphs, which we now investigate. The proof of the next theorem 

and its corollaries are similar to the proofs in [5] corresponding to graphs and are 

therefore omitted.

Theorem 3.1 For a strong digraph D, let F and H be subdigraphs of D with 

p(F) = p{H). If {«i, «2 » — »uk) — n  V(H), then there exists a pairing tc from 

V(F) to V(H) such that sd(F, H) = sdn(F, H) and 7t(n,) = «,• for i = 1 ,2 ,..., k.

For a strong digraph D of order p, let F be an induced subdigraph of D of 

order n. We define the subdigraph eccentricity e(F) of F as

e(F) = max {sd(F, H)\h  is an induced subdigraph of D of order n),

the n-radius radnD of D as

radn D = min{e(F) | F is an induced subdigraph of D of order n],

and the n-diameter diamnD of D as

diamn D = max{e(F) IF is an induced subdigraph of D of order n).
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The diameter sequence of a strong digraph D is defined as the sequence diamj (D), 

diani2  (D), ... , d ia rn ^  (D). The first corollary shows that the first "half of the 

diameter sequence is nondecreasing while the second corollary shows that the diameter 

sequence is symmetric with respect to its middle term.

Corollary 3.2 Let D be a strong digraph of order p. If n is an integer such that 

l< n < L p /2 _ |- l ,  then diamR (D) < diamn+j (D).

Corollary 3.3 Let D be a strong digraph of order p. If n is an integer such that 

1 ^  n £ p  -  1, then diam„ (D) = diam^_n (D).

3.2 Multivertex Digraphs

There are numerous results involving distance in graphs and digraphs. Thus, 

we may gain some insight of subgraph or subdigraph distance if this distance can by 

represented in terms of distance in graphs or digraphs. This has been done for graphs 

with several people studying this distance [1], [5], [10], [14], [17]. The next definition 

illustrates how this is accomplished for digraphs.

Let D be a strong digraph of order p  with induced subdigraphs F and H of 

order n (1 <n< p). Then sd(F, H) = 1 if and only if V(F) -  V(H) = {*}, V(H) -  

V(F) = {y}, and (x, y) e E(D). We define the n-multivertex digraph or n-digraph of 

D as the digraph Mn(D) with

V(Mn(D)) = {v/ls1/ is a set of n vertices in D)

and

E(M„(D)) = ((v,-, vfi I (Sj)) = 1).
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Throughout the dissertation, we will assume that v,- e  V(Mn(D)) is associated with the 

set Sj.  An example of a digraph and its 2-digraph are given if Figure 3.2 with 

S l  =  { x ^ X j } ,  S 2  = {xj, x3}, S3 = {x!,x4}, S4 = (x2,x 3), S5 = {x2,x 4 ), and 

s 6 = ix3, x 4).

D: M2(D):
*2

Figure 3.2

The following result shows that subdigraph distance in digraph D can be 

represented as directed distance in the multivertex digraph Mn(D). Again, the proof of

this theorem is similar to a result in [5] corresponding to graphs and is therefore 

omitted.

Theorem 3.4 Let D be a strong digraph of order p and let n be an integer such 

that 1 <n<p.  If F and H  are induced subdigraphs of D of order n with V(F) = 

S a  and V(H) = Sp, then

sd (F, H) = dMn(D) (va , vp).

We have an immediate consequence of this theorem.
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Corollary 3.5 Let D be a strong digraph of order p. If n is an integer such that 

I <n<>p, then diam„D = diamMn(D) and rad„D = radMn(D).

The next result determines the order and size of Mn(D) in terms of the order 

and size of D.

Theorem 3.6 Let D be a digraph of order p  and size q. Then p(Mn(D)) = ( „ )

and q(Mn(D)) = ^  ~ J j for 1 £n<,p.

Proof It is clear by the definition of Mn(D) that p(Mn(D)) = ( ^ )• For each

(m, v )  e E(D), we have (v,-, vy) e  E(Mn(D)) when S/ =  [x\, X2 , ..., xn_\, u } and 

Sj = {jcj, X2 , ... , x n_i, v} where x m * u  and xm ^  v, for 1 < m < n -  1. Since

there are _  j j ways to choose an (jn -  l)-element subset of V(D) -  {«, v), we

have [Pn _ \ ]  arcs in Mn(D) for each arc in D. Thus, there are ^  arcs in

Mn(D).  □

An asymmetric digraph is a tournament if its underlying graph is a complete 

graph. The observation that a digraph D is asymmetric if and only if Mn(D) is 

asymmetric results in the following corollary.

Corollary 3.7 Let D be an asymmetric digraph of order p. Then D is a 

tournament if and only if q(Mn(D)) = |  2  )(^  _  \ ) for 1 < n <p -  1.

We now present a result concerning the indegrees and outdegrees of the vertices 

of Mn(D).
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Theorem 3.8 Let D be a digraph with vz- e  V(Mn(D)). Then

id(Vi) = £  id(x) -  q((S,))
xeSi

and

od(v,) = X  od(x)-q((Si)).
xeSi

Proof Suppose that 5f £  V(Z>) where I Si I = n, and let x  e S,-. Furthermore, 

suppose that x  is adjacent to the vertices y j, y2> ... , y^. For each y m e  S,-, 

1 < m < k, the vertex v,- is adjacent to va in Mn(D), where Sa = (5Z- -  {*}) u  {ym}. 

Observe that no such arc occurs in M n(D) when y m e Sj, which means that 

(x, ym) e E((Si)). Thus,

od(v/) = X  od(*) “  <7«Si»-
xeSt

A similar argument shows that

id(vt) = X  □
xeSi

For a digraph D, the converse ^  of D is defined by V 0 )  = V(D) and 

E 0 )  = {(m, v) | (v, u) e  E(D)}. The following result gives a relationship between the 

digraphs Mn(D) and Mp_n0 )  for a digraph D of order p.

Theorem 3.9 If D is a digraph of order p  and n is an integer with 1 < n < p -  1, 

then Mn(D)=Mp_n0 ).

Proof Consider a mapping <j> from V(Mn(D)) onto V(Mp_n0 ) )  such that for each 

vz e V(Mn(D)), we have ^(v,) = v\, where S\ = V(D) -  S;. Observe that if (v,-, vp
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e E(Mn(D)),  then Sj -  Sj  =  {*}, Sj -  S; = {y}, and (x, y) e E(D).  So it follows that 

S'j -S ' -  = {*}, S' - S j =  {y}, and (vj, v-) e E(Mp_n0 ) ) .  Similarly, if (vj, v •) e 

E(Mp_n0 ) ) ,  we conclude that (v,-, V y) e E(Mn(D)).  Thus, <J) is an isomorphism from 

V(Mn(D))  onto V(Mp_n0 ) ) ,  completing the proof. □

A tournament D  is transitive if, whenever (m, v) and (v, w) are arcs of D, 

then (m, w) is also an arc of D.  We now determine those n-digraphs of D  that are 

(transitive) tournaments.

Theorem 3.10 Let D  be a digraph of order p . Then

(i) Mn{D)  is not a tournament for 2 <  n < p  -  2, and

(ii) Mp_ i (D ) is a (transitive) tournament if and only if D  is a (transitive) 

tournament.

Proof Statement (i) is obvious for p < 3, so assume that p>  4. Let S,- be any set 

of n distinct vertices of V(D)  for 2 < n <p -  2. Since | V(D)  -  S,-1 > 2, there exist 

« ,v e  V(D)  such that u, v 4  Sj. Now choose Sj  such that « ,v e  Sj, which means 

there is no arc between v,- and Vy in Mn(D).

The statement (ii) follows directly from Theorem 3.9. □

The next result shows that each induced subdigraph of order n of a digraph D  

is isomorphic to some induced subdigraph of Mn(D).

Theorem 3.11 Let D  be a digraph of order p, and let n be an integer such that 

1 < n <p -  1. Then D  -  {*j, x2, ..., xn_-j) = <{v,- e  V{Mn{D)): \ Sj -  [xl t x2, ..., 

xn-1 ) l = l ))  for distinct vertices x l tx2, ... i xn-\-
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Proof Let <(> be a mapping from V(D) -  {x\, x2, ..., xn_ \} onto T  £  V(Mn(D)), 

for 1 £ n < p  -  1, where T = {v,- e  V(Mn(D )) : | St -  {*lf x2, ..., xn_x} I = 1}. 

For ut e V(D) -  {xx, x2, ..., xn_x}, define = v,- where S,- = [xh x2, ..., xn_h  

Ui}. Since (v,-, vj) e E«T» if and only if (m;, uy) e  E(D -  {*lf x2, ..., it

follows that <t> is an isomorphism from V(D) -  {*i, x2, ..., xn_ i} onto T. □

We now present upper and lower bounds for the m ndius and n-diameter of a 

digraph.

Theorem 3.12 Let D be a strong digraph of order p, and let n be an integer such 

that l < n < [ p / 2 j .  Then

n < rad„D < diamnD < n diamD,

and there exists a digraph D such that

n = rad„ D = diam,, D = n diam D.

Proof Let Si = {xi ,x2, ... , x n} be any set of n distinct vertices of digraph D. 

Since n <[p /  2 J, there exists a set S2 of n distinct vertices contained in V(D) -S j . 

Let F j = (5j) and F2 = (S2). Then for a pairing tc with sdn(Fi,F2) = sd(Fi,F2), 

we have

e(yx) = e{Fx) > sd(Fh F2) = sdn(Fh F2) = £  dQch ^Ui)) ^ X  1 = n-
j=l i=l

Thus, n < rad„ D. It is clear that rad„ D < diam,, D.

Now consider a set S3 of n distinct vertices of digraph D such that e(vj) = 

dMn(D)(v 1 .V3) .  Let F3 = <S3>. Then for a pairing 7t with sdn(Fh F3) = sd(Fh F3),

we have
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c(vl) = dMn{D p b  V 3 )  = sd(F 1, F3) = sdn(Fh F3) = £  d(Xi, 7t(x,)) < n diam D.
i= l

Therefore, diamn D < n diam D.
♦

For a digraph £> = we have

n = rad„ D = diam„ D = rt diam D. □

The next corollary follows from Corollary 3.5 and Theorem 3.12.

Corollary 3.13 Let D be a strong digraph of order p, and let n be an integer 

such that l < n < [ p / 2 j .  Then

n < rad Mn(D) < diam Mn(D) < n diam D,

and there exists a digraph D such that

n = rad Mn(D) = diam Mn(D) = n diam D.

3.3 Relationships Between Digraphs and Multivertex Digraphs

In general, the multivertex digraphs of a digraph D are more complicated then 

D itself. Thus, it would be desirable to determine properties of multivertex digraphs of 

a digraph D by properties possessed by D. Another way of saying this is to ask: 

What properties of multivertex digraphs of a digraph D are inherited from D? In 

addition, if we are given some multivertex digraph Mn(D), can we determine any

properties of the digraph D? In this section, we investigate these questions with 

respect to distance concepts. We start by showing that each path in the multivertex 

digraph Mn(D) corresponds to n paths in the digraph D.
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Lemma 3.14 Let D be a digraph of order p. For any v0  -  v path in Mn(D) 

( l< ,n £ p )  with Sq = {jtj, *2 , — ,*/,}, there is some pairing 7C from Sq to S such 

that there is an *,• - path in D for i = 1, 2 ,.. . ,  n. Furthermore, if Sq - S  = 

{jc} and S - S q = {y}, then there is an x - y  path in D.

Proof Let P : vq, vj, ..., vm = v be a vq -  v path in Mn(D). Since (vy, vy+1) e 

E(Mn(D)) for 0 <,j < m -  I if and only if Sj -  5y+1 = {j c } ,  Sj+i -  Sj = {y}, and 

(jc, y) e  E(D), we can constmct n directed trails in digraph D by algorithm TRAIL 

(see Figure 3.3).

Algorithm TRAIL:

For i = l to n

Let k <r~ 0, / 0  xi’ and Ti <— {jcf-}.

For j  = 0 to m - 1

If Sj -  Sj+l = [tk), then

Let tk+l <- y where Sj+l - S j =  {y}.

Let Tt Tt u  U*+1}.

Let k <— k + 1.

Figure 3.3

For each i = 1, 2 , . . . ,  n, we construct the trail T f  jc,- = Jq. t \ , ..., where 

tk e S. If we construct the n trails simultaneously by algorithm TRAIL, then for any 

j  ( 0  < j< m  -  1), the last vertex in the trail T) (1  < i < n) constructed thus far by the 

algorithm corresponds to a vertex of D in Sj+i, and the set of these n vertices of D 

is Sj+\. Since each set Sj (0< j  < m) consists of n distinct vertices of D, there
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must be some pairing k  from S q to S  such that for i = 1, 2, ... , n ,  there is an 

Xi -  7t(x,) path in D.

Now assume that S q and S are two sets of n distinct vertices of D with 

S q - S  = {*} and S -  S q = {y}. We show that there is an x - y  path in digraph D. 

Suppose that S0 = {xh x 2, ... , x n_l f x)  and S = {jq, x2, ... , x n_h  y). By the 

previous discussion, there is some pairing n from S q to S such that there is an 

xi -  n(Xj) path in D for each * = 1, 2 , . . . ,  n -  1 and an r -  iz(x) path in D. If 

%(x) = y, then the proof is complete. So assume that n(x) = jc,- for some i (1 < i< n  

-  1). Since a pairing n  is a one-to-one correspondence between S q and S, we have 

n(xi) e  S -  {jc,-}. If 7c(jcf) =y, then we have an jc—jc,- path and an x i ~ y  path in D. 

This means that there is an x - y  path in digraph D. So assume that 7t(x,-) =xj for 

some j  * i (1 < j< n  -  1). Then we have it(Xj) e S -  {jc,-, xj\. If tc(jcy) = y, then we 

have an jc — jc,- path, an jc,- — jĉ- path, and an x j - y  path in D and, thus, an x - y  

path in D. Continuing in this fashion, we eventually reach y  since S and Sq have 

the same (finite) cardinality. Therefore, it follows that there is an x - y  path in digraph 

D. □

A digraph D is unilateral if for each pair x, y  of vertices of D, there is an 

x - y  path or a y - x  path in D. One of the consequences of the preceding lemma is 

the following result.

Corollary 3.15 If D is a digraph of order p  such that for some integer n 

( l < n < p - l )  the digraph Mn(D) is unilateral, then D is unilateral.

P ro o f Let x, y  e V(D ) and suppose that Sj = {x i ,X 2 , ... , x n_ i , x } and 

S2  = {*1, X2 , — , *w_i, y} are two sets of n distinct vertices of D. Since Mn(D) is
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unilateral, there is a Vj-V2  path or a V2 - v j  path in Mn(D). Now, by Lemma 3.14, 

there is an x - y  path or a y - x  path in D. □

The converse of Corollary 3.15 is not true in general. To see this, consider the 

digraphs D and M2(D) shown in Figure 3.4. Let S\  = {jcj, JC2 }, S2 = {*1**3 }, 

S 3  =  {*!, * 4 } ,  S 4  = [x2, JC3 }, S 5  = {jc2, jc4}, and S6  = {*3 , x4 ). Observe that even 

though D is unilateral, there is neither a V3 -V4  path nor a V4 -V 3 path in M2(D).

1 f

Figure 3.4

Observe that a digraph D is strong if and only if its converse H is strong. 

Thus, by Theorem 3.9, a digraph D of order p is strong if and only if Mp_\(D) is 

strong. In fact, we can even say more.

Corollary 3.16 Let D be a digraph of order p. If Mn(D) is strong for some 

integer n (1 < n < p - l ) ,  then D is strong.

P ro o f Let x, y e  V(D ) and suppose that Si = { x i , x 2, ... , x n_ \ , x )  and 

S2 = {jci, x2, ..., *„_i, y) are two sets of n distinct vertices of D. Since Mn(D) is 

strong, there is a vj -  V2  path and a V2 -  vj path in Mn(D). Then by Lemma 3.14, 

we have an x - y  path and a y - x  path in D. □
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The next result shows that if D is a strong digraph, then all n-digraphs of D 

are also strong.

Theorem 3.17 If D is a strong digraph of order p,  then for each integer n 

(1 <n<p),  the digraph Mn(D) is strong.

Proof Assume that the statement is false. Then there exists an integer n (1 <n<,p) 

and vertices v,- and vy in Mn(D) such that there is no v,- -  Vy path in Mn(D). In 

addition, assume that A = {Sk | there is a vi -  vk path in Mn(D)) and let S{e A 

such that

I S( n  Sj | = max{ | n  Sj I : Sk e A } < n.

Thus, Mn(D) contains a vi - v { path. Let x  e  S{ -  Sj and y e  S j -  Sr Since D is 

strong, there exists an x - y  path in D. Suppose that P: x, wl5 vv2, ... , w , y is a 

shortest x - y  path in D. Furthermore, assume that

{wj, w2, ... , w5) n  St = {zp z2, ... , zr}.

Without loss of generality, we can rewrite

P : x , wj, w2, . . . ,  zj, w l v  w12, ... , z2, w2>1, w2f2, . . . ,  zr, wr>1, wr 2, ... , y.

Observe that the following sequence of sets of vertices in D beginning with S( and 

ending with Sm = (St -  {^}) u  {y} corresponds to a sequence of vertices in Mn(D) 

that forms a v( - v m path in Mn(D).

St, (S t - { z r}) u  {wr>1}, (St -  {zr}) u  {vvr2 }»... , (S ,-{ z r} )u  {y},

(St - [ z n zr_x}) u  {y, wr. i ?1}, (St - { z n  zM }) u  {y, wr.1>2}, ... ,
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OS( -{ z r,zM } )u  {y,zr } = (S ,-{zM } )u  {y},(5/ -{ z M ,z r.2})U [y,wr.2fi), 

(St - { z r. i, zr.2}) u  {y, wr_2t2 ) , . . . .  (St ~ {z r-1. V 2 )) u  (y. zr-l)

= (5, -  {zr.2}) u  {y}, . . . ,  (S, -  {*}) u  {y} = Sm.

Thus, there is a v , - v m path and, consequently, a v , - v m path in M n(D) and 

Sm e A. But | Sm n  S -1 = | S, n  | +1, which is a contradiction. □

The next result is a consequence of Corollary 3.16 and Theorem 3.17.

Corollary 3.18 Let D be a digraph of order p .  If Mn(D) is strong for some 

integer n  (1 < n  < p  -  1), then the digraph Mm(D) is strong for each integer m 

(1 <m <p -  1).

A digraph D is said to be weak if its underlying graph is connected; that is, D 

is weak if for «, v e V(D), there is a u - v  semipath in D. There is a result similar to 

Lemma 3.14 that involves semipaths.

Lemma 3.19 Let D be a digraph of order p .  For any vq -  v semipath in Mn(D) 

(1 < n < p )  with S q =  {xj, *2 ,... , x n ) ,  there is some pairing k  from S q  to S  such 

that there is an jc ,-- 7t(jc,) semipath in D for / = 1, 2 ,.. . ,  n. In addition, if S q - S  = 

{ jc }  and S - S q = {y}, then there is an jc -y  semipath in D.

This lemma can be proved by imitating the proof of Lemma 3.14 with "path" 

replaced by "semipath". From the "proof technique" presented in Theorem 3.17 and 

from Lemma 3.19, we have two corollaries, which we state without proof.
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Corollary 3.20 If D is a weak digraph of order p,  then for each integer n 

(1  < h <p), the digraph Mn(D) is weak.

Corollary 3.21 If D is a digraph of order p  such that for some integer n 

(1 <, n <>p -  1), the digraph Mn(D) is weak, then D is weak. Furthermore, the 

digraph Mm(D) is weak for each m = 1 ,2 ,..., p.

An eulerian circuit of a strong digraph D is a directed circuit containing all the 

arcs of D. A digraph possessing an eulerian circuit is called an eulerian digraph. From 

[9], a strong digraph D is eulerian if and only if id(v) = od(v) for every vertex v of 

D.

Theorem 3.22 Let D be a digraph of order p > 3  and let n be an integer with 

2 < n £ p  - 1. Then the digraph Mn{D) is eulerian if and only if D is eulerian.

Proof Assume that D is eulerian. Then D is strong and for each u e V(D), we 

have id(w) = od(u). From Theorem 3.17, it follows that Mn(D) is also strong. In 

addition, by Theorem 3.8, we have

id(Vi) = X  id (x )-?«S i»
XG Si

and

od(v,)= ^  od(x)-<7«S;».
xeSi

Since id(tt) = od(«) for each u e  V(D), we conclude that id(v,) = od(v,) for each 

e V(Mn(D)), that is, Mn(D) is eulerian.
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Now suppose that Mn(D) is an eulerian digraph. Then Mn(D) is strong and 

by Corollary 3.16, the digraph D is also strong. Furthermore, for vf e  V(Mn(D)), 

we have id(v,) = od(v,). From this and Theorem 3.8, it follows that

id(v/) = X  id(*)-<7«S,» = X  od(x)-q((Si)) = od(v()
xeSi xeSi

and

X  id(x) = X  od(*)-
xeSi xeSi

Suppose that there exists tv e V(D) such that id(w) < od(w). Since

X  id(x) = X  odOO>
xeV(D) xeV(D)

there exists y  e  V(D) such that id(y) > od(y). Let S £  V(D) be a set of n distinct 

vertices such that w, y  e S, and let z e V(D) such that z g S. If id(z) > od(z), then 

for Sj = (S -  {tv}) u  {z}, we have

X  id(x) = X  idW  -  id(tv) + id(z) 
x e  S i  xe S

= X  od(x) -  id(tv) + id(z) 
x e S

> X  °dW  -  od(tv) + od(z) = X  od(x),
x e S  xe  Si

which is a contradiction. So id(z)<od(z). Let S2 = ( S -  {y}) u  {z}. Then

X  id(x) = X  idW  -  id(y) + id(z)
xeS2 x e S

= X  °d(x) -  id(y) + id(z)
x e S
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< X  °d(*) ” °d(y) + °d(z) = X  od00-
x e S  xeSz

Again, we have a contradiction. Therefore, id(x) = od(x) for all x  e  V(D). Since the 

digraph D is strong, it follows that D is eulerian. □

A digraph D is called regular of degree r or r-regular if id(v) = od(v) = r 

for every vertex v of D. For a connected graph, Wright [17] stated necessary and 

sufficient conditions for the /t-multivertex graph to be regular. For an asymmetric 

digraph D, we present necessary and sufficient conditions for the multivertex graph 

Mn(D) to be regular.

Theorem 3.23 Let D be an asymmetric digraph of order p  and let n be an 

integer with 2 < , n £ p - l .  Then the digraph Mn(D) is regular if and only if (1) D is

regular of order n + 1, (2) D is an m-regular tournament, m > 1 (of order 2m + 1),

(3) D = H kj ATj, where H  is an (n -  l)-regular tournament (of order 2n -  1), or

(4) q(D) = 0.

Proof If D is regular of order n + 1, then Mn(D) = B  by Theorem 3.9. Thus, 

Mn(D) is regular.

Suppose next that D is an m-regular tournament. Thus, if S is a set of n

distinct vertices of D with 2 < n <p -  1, then q((S)) = ( 2  ) • So, for v,-, Vy e

V(Mn(D)) with 1 < 1, j  < ( ^  ), it follows from Theorem 3.8 that 

id(vi) = X  id(*) ~ <7((Si)) = X  idW  ~ ^(<^«»
xeSi xeSj

= 2  id W - <?«SJ»  = id(vj)
xeSj
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and

id(v/) = X  id(*)-<7«S,-» = X  od(x)-q((Si)) = od(v,).
xeSt xeSi

Therefore, Mn(D) is regular.

Assume now that D =H kjK^, where H  is an (n -  l)-regular tournament. 

Let y  be the isolated vertex of D and let 5 be any set of n distinct vertices of D. 

Then

id(v) = X  id(x)-<7«S» = X  od(x)-<7«S» = od(v). 
xeS  xeS

Now let Sj and S2 be any two sets of n distinct vertices of D such that y e Sj

and y  £ S2. Observe that <?«5j» = | 2  ) and q((S2)) = ( 2  ) • Also, for w e  S2 

and T = S2 -  {w}, we have

X  id(x) = X  idW-
x e T  xeSi

Thus, for w e  S2, it follows that

id(v2) = X  idW -  q(.(S2)) = X  idW ~ ( ” )
xeSz

= X  id W -
xeSz

n- 1

xeSz

+ ( « - ! ) = X  id W -[?« 5 ,»  + ( « - l ) ]
xeSz

= X  idCt) + id(w)-[<?«$!» + (« - ! ) ]
x e T

= X  id(x) + id(w)-[tf((Si» + ( « - l ) ]
xeS i
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= X  idW + (n - l ) - [< 7 « S i»  + ( n - l ) ]
Jte5i

= X  id(x) -  q((Si»  = id(vi).
xeS i

From tWs, we conclude that Mn(D) is regular.

If D is a digraph of size 0 and order p ,  it is clear that Mn(D) has size 0 for 

2 £ n <,p -  1, that is, Mn(D) is regular.

For the converse, suppose that Mn(D) is regular for some integer n, where 

2 < n < Lp /  2j. We first show that id(x) = od(x) for each x  e  V(D). For vi e 

V(Mn(D)), we have id(vt) = od(v,). Thus, from Theorem 3.8,

X  id(jc) -  q((Sj)) = X  od
xeSi xeSi

that is,

X  id(x) = X  od(x)-
xeSi xeSi

Suppose that there is some u e  V(D) such that id(u) < od(u). Since

X  id(x) = X  od(JC)«
xeV(D) xe V(D)

there exists y  e V(D) such that id(y) > od(y). Let S £  V(D) be a set of n distinct 

vertices such that u , y e  S, and let z e V(D) -  S. We consider two cases.

Case 1 Assume that id(z) > od(z). Let S' = (S -  {w}) u  {z}. Since id(z) > od(z) 

and id(«) < od(w), we have
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^  id(jc) = ^  id(x) -  id(u) + id(z) = ^  od(jc) -  id(u) + id(z) 
xeS' xeS xeS

> X  °d(*) -  od(w) + od(z) = X  od(x), 
xeS  xe S'

which is a contradiction.

Case 2 Assume that id(z) < od(z). In this case, we let S' = (S -  {y}) u  {z} and by 

a calculation similar to Case 1, we have the contradiction

X  idM < X  odW-
xeS' xeS '

Therefore, id(x) = od(x) for each x e  V(D).

We now show that D is regular or D = H u  K^, where H  is regular. If D is

not regular, then

(i) there exist x , y e  V(D) such that 1 < id(x) < id(y), or

(ii) there exist x, z e  V(D) such that id(jc) = 0, id(z) > 1, and for each 

y  e V(D) -  {x, z}, we have id(y) = 0 or id(y) = id(z).

We consider both of these cases.

Case 1 Assume that there exist x , y e V(D) such that 1 < id(x) < id(y). Since 

id(y) > 2 and id(y) = od(y), we only consider p > 5. Let N~(x) = {u \ (u,x) e 

E(D)), N*(x) = {u | (x, u ) e  E(D)}, and N(x) =N~(x) u  N+(x). For A £  V(D), let 

id^Ot) be the number of vertices in A that are adjacent to x, and let od^Oc) be the 

number of vertices in A that are adjacent from x. For any set A £  V(D) -  [x, y } of 

n -  1 distinct vertices, let 5 1 = A u  {*}, S2 = A u  (y}, and T  = V(D)-A.  Then
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id(vi) = X  idi<z) + idi<x)-o(U(x)
zeA

and

id(v2) = X  idrOO + id;rOO -  od^Cy).
zeA

Since Mn(D) is regular, it is clear that id(Vj) =  id(v2). From this, we must have

idjix) -  odA(x) = idjCy) -  od^Cy). (3.1)

In a similar fashion, if we consider the corresponding equations for odO^) and 

od(v2), it follows that

idA(jt) -  odj{x) = idA(y) -  odj<y). (3.2)

Subcase 1.1 Assume that N(x) n  N(y) *  0 .  Suppose that z e  N(x) n  N(y) and 

w e N(y) such that w g N(x) u  {*}. Let A C V(JD) -  {x , y, w) be a set of n -  1 

distinct vertices such that z e A ,  and let T = V(D)-A.  Without loss of generality, 

assume that z e AT^x).

Subcase 1.1.1 Assume that z e  N*(y). If B = ( A -  {z}) u  (w) and U = V(D) -  

B, then

xdjix) -  odA(x) = idyW  -  odB(x) -  1 = id^Cv) -  odB(y) -  1 

= idjiy) -  odA(y) -  1,

where the second equality follows from (3.1) and we consider both cases of w e  

N~(y) or w e N*(y) for the third equality. This is a contradiction.
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Subcase 1.1.2 Assume that z e  N~(y). Using (3.2) and a calculation similar to 

Subcase 1.1.1 with B = (A -  {z }) \ j  {w} and U = V(D)-B,  we have

idA(*) -  odj{x) = idfi(x) -  odyix) + 1 = idfi(y) -  od^Cy) + 1 

= idA(y) -  ody<y) + 1 .

Again, we have another contradiction.

Subcase 1.2 Assume that N(x) n  N(y) = 0 .  Let A <= V(D) -  {*, y, w} be a set of 

n -  1 distinct vertices such that Me A, where u e N(x) and w e  N(y). If T  = 

V(D) - A ,  B = ( A -  {m }) u  {tv}, and U = V(D)-B,  then a calculation similar to the 

above results in

idjix) -  o d A (x ) = idfj(x) -  odB(x) -  1 = i d j / y )  -  odB(y) -  1 

=  i d  j ( y )  -  o d A (y )  -  2 .

From this contradiction, we conclude that Case 1 is impossible.

Case 2 Assume that there exist x , z e  V(D) such that id(jc) = 0, id(z) > 1 , and for  

each y  e V(D) -  [x, z}, we have id(y) = 0 or id(y) = id(z). Suppose that there are 

two vertices r , y e  V{D) such that id(x) =  id(y) =  0. For some ( m, w) e E(D), let 

S C V(D) -  {m , tv} be a set of n distinct vertices such that r j e  S, and let T = 

V(D) -  S. We consider three subcases.

Subcase 2.1 Assume that id j^ tv )  ^  o d 5 (w ) . If S-̂  = (S -  (jc)) u  { tv } , th e n  id ( V j)  = 

i d ( v ) - o d s ( t v ) +  id j ( t v )  * i d ( v ) ,  w h ic h  c o n t r a d ic t s  Mn(D) b e in g  r e g u la r .

Subcase 2.2 Assume that id ^u ) *  od5 (u). For Sj = (S -  {*}) u  {m}, we have 

id (V j)  = id(v) -  ods(u) + idj{u) *  id(v). Again, this is a contradiction.
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Subcase 2.3 Assume that idj<vv) = od5 (w) and idj{u) = ods («). If 5 j = (S -  

{ x ,  y}) u  {u,w),  then id(Vj) =  id(v) + idj<u) +  (idjiw) -  1) -  ods(w) -  ods(w) *■ 

id(v), where the -1 occurs from (m, w) e  E(D). This is a contradiction.

Thus, if Mn(D) is regular, with 2<>n<\_p ! l \ ,  then D is regular or D = H 

where H  is m-regular with m > 1.

Assume that D is m-regular with m £ 1 and p(D) * 2m + 1. Since D is 

asymmetric, we have p(D) £ 2m + 2. Also, for each vf-, Vj e  V(Mn(D)), it follows

that

id(V ,) =  X  i d ( * ) - ? « S , »  =  2  i d ( x ) - « ( £ > »  =  id(Vy).
xe Si xeSj

Since D is regular, we conclude that

q((Si)) = q((Sj)).

Let x, y e  V(£>) such that y i  N(x) u  {x}. Let A £  V(D) -  [x, y} be any set of 

n -  1 distinct vertices and let Sj = 4  u  { jc }  and S2 -  A u  {y}. Using <7((Sj)) = 

q((S2)), we have | N(x) n  A \ = \ N(y) n  A \ . Since this is true for each A £  V(D) -  

( j c ,  y } ,  we conclude that N(x) =  N(y). Furthermore, if B = V(D) -  (N(x) u  { j c } ) ,  

then N(x) = N(z) for each z e B. From this, it follows that 2m = N(u) > \ B | +1 

for u e  N(x). Thus,

p = 1+ | iV(jc) | + |f l | = l+ 2 m +  |f l |

< 2m + 2m = 4m

and

n < |_p / 2 J < 2m = I N(x) | .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

For some u e  N(x), suppose that w e V(D) such that w e N(u) u  {«}. Let 

A £  N(x) - { u , w } be a set of n - 2  distinct vertices where 2 <>n <,\_p / 1\ <> 2m. 

If Sj = A u  {m, j c } and S2 = A u  {u , w}, observe that n -  1 = 1N(x) n  | > 

I N(w) n  S2 1 • From this, it follows that <7((5 j»  > q((S2)), which is a contradiction.

Thus, we must have p(D) = 2m + 1.

Now suppose that D = H u  K v  where / /  is m-regular with m £ 1. Let 

y e  V(D) such that id(y) = od(y) = 0. Let Sj and S2 be any two sets of n distinct 

vertices of D such that y e  Sj and y e  S2. Observe that Vj is not adjacent to or 

from v2. Thus, ({v,ly e5,}) and ({vyly eSy}) are the two components of Mn(D). 

For 3 < n £  Vp /  2 _|, if we consider all sets of n distinct vertices of D that contain 

vertex y, we conclude by the previous discussion that p(H) = 2m + 1. Similarly, if 

n = 2, p(H) > 4, and we consider all sets of two distinct vertices of D that do not 

contain vertex y, then p(H) = 2m + 1. The only case that remains is n = 2 with 

p(H) = 3. Since H  is m-regular with m > 1, it follows that m = 1. Therefore, 

p(H) = 2m + 1. If T  = S2 -  {w} for some w e S2, then we have

id(vj) = 2  id (jt)-?«S 2»  = 2  i d « - (  « )
xeSz  xeSz

= 2  « (* ) - [ (* 2  1) + 0 ,- 1)] = £  id» -[< 7«S l»  + (» - ! ) ]
xe  Si xeSz

= X  id(*) + id(vv) -[flf«Si» + (» -  1)]

= X  id(x) + id (w )-k « S i» + (#*-!)]
xeSi

= X  id(x)+m -[fl((Si» + ( / t - l ) ]  = id(vi).
xeSi
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From this, we must have m = n -  1. Thus, H is an (n -  l)-regular tournament (of 

order 2  n -  1).

Now suppose that Mn(D) is regular for some integer n, where \_p /  < n <

p -  1. If n = p -  1, then by Theorem 3.9, we have Mn(D) = Z5. From this, it follows

that D is regular of order n + 1. So assume that Vp /  2 j < n < p  -  1. Using the 

isomorphism from Theorem 3.9, we have Mn(D) = Mp_n0 ) .  Notice that 2 < p - n <

Ip  /  2_], so we can apply our previous discussion with Mp_n(fi)  to determine B .

Thus B  satisfies condition (2), (3), or (4) from the statement of this theorem.

Observing that D also satisfies condition (2), (3), or (4) completes the proof. □

3.4 Multivertex Digraphs With Prescribed Center and Periphery

Recall that the center C(D) of a strong digraph D is the subdigraph induced 

by those vertices v of D with e(v) = rad D; while the periphery P(D) is the 

subdigraph induced by those vertices v of D with e(v) = diam D. We have a similar 

definition for the center and periphery of the n-digraph Mn(D) of D. We define the 

n-center C{Mn{D)) of D as

C(Mn(D)) = ({Vi € V(Mn(D)) | eiiS}) = rad„D}>

and the n-periphery P(Mn(D)) of D as

P(Mn(D)) = ({v; e  V(Mn(D)) | e((Si)) = diamn £>}>.

Since M X(D) = D, we have C(MX(D)) s  C(D) and P(MX(D)) = P(D). Thus, the 

n-center and n-periphery of D are a generalization of the center and periphery of D. 

In [6 ], it is shown that every digraph can be the center (or the periphery) of some 

digraph. The next theorem proves the corresponding results with n-digraphs.
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Theorem 3.24 For every two asymmetric digraphs F l and F2  and integer n>2,

there exists a strong asymmetric digraph D such that C(Af„(D)) = F j and

P(Mnm  = F2.

Proof Let Hq = H i = Kn_\ and let H 2 = H 3 = K2n- Assume that V(Fj) = 

[xv x2, ... , x m) and V(F2) = {y1,y 2* ••• >3V)- We define a strong asymmetric 

digraph D by

V(D) = V(H0) u  V(jHx) u  V(H2) u  V(H3)

u  V(Fj) u  V(F2) u  {wf 11 < / < 8}

and

E(D) = E(F1) u E ( F 2 )u { (x ,y ) , (y,w5) |x e  V(Hi) ,ye  V(F2)}

u  {(jc,y), (z,x), (.x, w^), (x, w3), (x, w6), (x, w8), (w8, z) |x  e  V(H0), 

y e  V tf /^ .z e  V(Fj)J 

u  {(w2 ,x), (w4 ,y), (x, tv8), (y, w8) |x  e V(//2), y e  V(//3)}

u  {(wj, w2), (w3, w4), (w5, w6), (w6, w7), (w7, w8)}

(see Figure 3.5).

We compute the eccentricity of each vertex of D. Observe that for x e  V(D) -  

{w3, w4} and y e V(H3) with y * x ,  we have e(x) = d(x, y). Also, for y e 

V(H2), it is clear that e(w3) = d(w3, y) and e(w4) = d(w4, y). From this, it follows 

that

(i) e(x) = 3 for x e  V(Hq);

(ii) e(x) = 4 for x e  V(Fj);

(iii) e(x) = 6  for x e V(H2) u  V(H3);
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D :

1 t

Figure 3.5

(iv) e(x) = 9 for x e  V(F2);

(v) e(x) = 1 0  for x a and

(vi) e(ws) = 5, e(yvn) = 6, e(w2) = e(w4) = e(w6) = 7, e(wx) = e(w3) = 

e(w5) = 8 .

Assume throughout this proof that Si = V(HQ) u  {jc,} for 1 < i< m .  Let S 

be any set of n distinct vertices of D. Recall that Si is associated with the vertex vi 

of Mn(D), the set S with the vertex v, and S' with the vertex v'. Since e(x) = 3 

for x  a  V(H0) and e{x^ = 4 for 1 < i < m, it follows that e(vt) < 3(n -  1) + 4 = 

3/1 + 1. If S c  V(H3), then we calculate d(v,-, v) = 3n + 1. Thus ety) = 3n + 1 for

We now show that the remaining vertices of M n(D) have eccentricity 

exceeding 3n + 1. Let S £  V(D) -  {wj, w2} be a set of n distinct vertices such that 

S *  Si for 1 < / < m. It is clear that for each x a S and y a V(H2) -  S, we have
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d(x,y)>3.  Furthermore, there exist two vertices Mj,M2 e S  such that d(u^y )>  4 

and d(u2, y ) ^ 4  or d(ul t y )> 5  and d(w2 ,y )2 :3  for each y e  V(H2) - S .  From 

this, it follows that if S' £  V(//2) - S  is a set of n distinct vertices, then d(v, v') > 

8  + 3(n -  2) = 3n + 2. Similarly, if S £  V(D) -  {w3, w4) is a set of n distinct 

vertices with S * Si (1 < i < m) and S' £  V(//3) -  S, then d(v, v') >3n + 2. Thus, 

if S £  V(D) -  {wj, w2) or S £  V(JD) -  {w3, vv4), then e(y) £3n  + 2.

Suppose that A = {wj, w2) and B = {w3, w4). Let S be any set of n 

distinct vertices of D. We consider three cases.

Case 1 Assume that | S n  A I =1 and IS n  B | >1. Let S' £  V(H2) - S  be a set 

of n distinct vertices. For y e V(H2) and x  e S -  {wj, vv2, w3, w4}, we have 

d(wv  y) > d(w2, y) = 1, d(w3, y) > d(w4, y) = 7, and d(x, y) > 3. Thus e(v) > 

d(v, v') > 1 + 7 + 3(/t -  2) = 3n + 2.

Case 2 Assume that \ S n  A | = 2  and \ S n  B \ =1. Let S' £  V(//3) -  S be a set 

of n distinct vertices. For y 6  V(//3) and x e  S -  (wj, w2, w3, w4}, we have 

d(wv  y) = 6 , d(w2, y) = 7, d(w3, y) > d(w4, y) = 1, and d(x, y) > 3. Again we 

compute e(v) > d(v, v ')>6 + 7 + l + 3 ( n - 3 )  = 3n + 5.

Case 3 Assume that | S n  A | = |S n f l |  =2. Let S' £  V(H2) - S  be a set of n

distinct vertices. Then using the same technique as the previous two cases, we have 

e(v) > d(v, v ' ) ^ l + 2  + 6  + 7  + 3(n -  4) = 3n + 4.

From this, we conclude that if S £  V(D) is a set of n distinct vertices such 

that S *  Si for 1 < i < m, then e(v) > 3n + 2. Therefore, C(Mn(D)) = ({v{-11 < i < 

m}) and (vt-, vj) e  E(Mn{D)) if and only if {x-t, xj) e  E{F{), that is, C(Mn(D)) = Fv
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We now show that P(Mn(D)) = F2. Assume that SI = V(Hj) u  {y,} for 1 <, 

i <, r, and let S be any set of n distinct vertices of D. Since e(x) = 10 for x  e 

V(//j) and e(y,) = 9  for 1 < z < r, we have e(v') < 10(n -  1) + 9 = 10n -  1. When 

S £  V(f/3), we compute d(y\, v) = lOn -  1. Thus e(vf) = 10/1 -  1 for 1 ^  i £ r.

To complete the proof, we show that if v e  V(Mn(D)) -  { 11 < i < r}, then 

e(v) < lOn -  2. Let S £  V(D) be a set of n distinct vertices with S for 1 < i < 

r. Then there exist two vertices x , y e S  such that e(x) < 9 and e(y) < 9  or e(x) < 

8  and e(y) <10. Therefore, if S' £  V(D) is any set of n distinct vertices, then d(y, 

V) <, 18 + 10(n -  2) = 10/* -2. Thus, P(Mn(D)) = <{V; 11 < i < r}> and (v ,̂ v') e 

E(Mn(D)) if and only if ty , yj) e  E(F2), so that P(Mn(D)) = F2. □
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CHAPTERIV

DIGRAPHS AND GRAPHS WITH PRESCRIBED INTERIOR AND ANNULUS

4.1 Interiors and Annuli of Digraphs

In this section, we investigate the topological concepts of interior and annulus 

for strong digraphs. For a strong digraph D with rad D < diam D, the interior Int(D) 

of D is defined by

Int(D) = <{v e V(D) | e(v) < diam D}>.

If rad D = diam D, we define

Int(D) = D.

The annulus Ann(D) of a strong digraph D is defined only when rad D < diam D - 1 

and is defined by

Ann(D) = < {v e V(D) | rad D < e(y) < diam D } >.

Otherwise, we say that D has no annulus. A strong digraph D is shown in Figure

4.1 with its interior Int(D) and annulus Ann(D). The eccentricity of each vertex of D 

is also indicated.

In Chapter I, it is shown that if D and F  are asymmetric digraphs, then there 

exists a strong asymmetric digraph H  such that C(H) = D and P(H) = F. It is a 

natural question to ask if there are similar results involving other pairs of induced 

subdigraphs of H. In this chapter, we investigate strong asymmetric digraphs with a

53
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v X

y 2 o ------------ ►— n y
Ann (D):

i i

O
x x

Figure 4.1 The interior and annulus of a strong digraph

pair of prescribed induced subdigraphs, where the pair is chosen from the center, 

interior, annulus, and periphery.

4.2 Strong Asymmetric Digraphs With Prescribed Center and Interior

From the definition of interior, it is clear that the center of a strong digraph H 

is an induced subdigraph of the interior of H. In addition, the interior of H  is 

isomorphic to the center of H if and only if rad H > diam H -  1. For any subdigraph 

F of an asymmetric digraph D, our first result states precisely when D can be 

embedded in some strong asymmetric digraph H such that the interior and center of H 

are D and F, respectively.
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Theorem 4.1 Let D be an asymmetric digraph and let F be an induced subdigraph 

of D. Then there exists a strong asymmetric digraph H containing D as an induced 

subdigraph such that Int(//) = D and C(H) = F if and only if F = D or for each 

y e  V(F), there exists jce V{D) -  V(F) such that there is an x - y  path in D.

Proof Assume that F * D  and assume further that for each y e  V(F), there is an

x - y  path in D for some x e V(D) -  V(F). Let S = [x e  V(D) -  V(F) \ 
^(({*})> F) = 1 } and let m = max d((S), ({y})). We define a strong asymmetric

> e  V(F)

digraph H  by

V(H) = V(D) u  { v h  Wi  1 1 < i < m + 4}

and

E(H) = E(D) u  {(x, V!), (v2, x), (vm+4, x), (x, (wm+4, x) | x e V(D) -  V(F))

{(y, v2), (y, w2) |y  e  V(F)} u  {(vm+4, wj), (wm+4, v^} 

u  {(v,-, vI+1), ( v j ,  v m + 4 ) ,  (Wj, w i + { ) ,  (w j , w m + 4)  1 1 <  i <  m  +  2 ,

1 < j< m  + 3)

(see Figure 4.2).

For each y e V(F), observe that

(i) d(y, x) < 2 for x e V(D) -  F(F);

(ii) d(y, v,) = d(y, w,) = / -  1 for 2 < i < m  + 3; and

(iii) d(y, Vj) < 3, d(y, < 3, and d(y, vm+4) = d(y, wm+4) = 2.

If y, yj e V(F), then d(y, yj) < d(y, x) + d(x, yj) < 2 + m for some x g  5. Since 

d(y, vm+3) = m + 2, we have e(y) = m + 2 for each y e V(F).

For x e V(D) -  V(F), if follows that
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Figure 4.2

(i) d(x, xj) < 3 for x 1 e V(D) -  V(F);

(ii) d(x, v,) = d(x, w,) = /' for 1 ^  i < m + 3; and

(iii) d(x, vm+4) = d(x, wm+4) = 2.

For y e  V(F), we have d(x, y) < d(x, Xj) + d(xi, y) < 3 + m for some X\ e S.

Thus, e(x) = m + 3 for each x  e  V(D) -  V(F).

We now show that e(v,) = e(w,) = m + 4 for 1 < i < m + 4. By the

construction of H, for 1 < i< m  + 3, we have

(i) d(Vj, x) < 2 and d(w,-, j c )  = 2 for x € V(D) -  V(F)\

(ii) d(v,-, y) < d(Vj, xi) + d(xj, y) < 2 + m for y € V(F) and some x\  e  5;

(iii) d(wi, y) < d(Wj, Xj) + d(x\, y) < 2  + m for y e V(F) and some x\  e 5;
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(iv) d(yh wj) = d(wh vfi = j+  1 for l< , j< m  + 3;

(v) d(vh wm+4) = d(wh vm+4) = 3; and

(vi) d(v,-, vp < m + 4 and <f(w,-, wfi<m + 4 for 1 < j< m  + 4.

Since d(v,-, wm+3 ) = d(w,-, vm+3) = m + 4 for 1 < i < m + 3, it follows that e(v,) =

e{w i) = m + 4.

To complete this part of the proof, we need to show that e(vm+4) = e(wm+4) = 

m + 4. Using Figure 4.2, we observe that

(i) d(vm+4, *) = rf(wm+4, x)=  1 for * e V(D) -  V(F);

(ii) d(vm+4 , y) < d(vm+4, Xj) + rf(xj, y) < 1 + m for y  e  V(F) and some X\ e  S;

(iii) d(wm+4 , y) < d(wm+4, X\) + d(x\, y) < 1 + m for y e  V(F) and some X\ e 

5;

(iv) d(vm+4, wj) = d(wm+4, vj) =;' for l < j < m  + 3;

(y) d(vm+4> wm+4) = d(wm+4’ v/n+4) = and
(vi) d(vm+4, Vy) = d(wm+4 , wy) = y  +  1 for 1 < y  <m +  3 .

Thus, e(vm+4) = e(wm+4) = m + 4, and we conclude that Int(//) = D and C{H) = F.

Now suppose that F = D. We define a strong asymmetric digraph H by

V(H) = V(D) u  {Vj, W/11 < / < 4}

and

EiH) = E(D) u  {(x, Vl), (x, wj), (v4, x), (w4, x) I jc  e  V(D))

u  {(Vj, V4), (wh w4) 11 < i < 3) u  {(v4, u ^ ), (w4, v2)} 

u  Kvi» v/+l)> (w,-, wl+1) 1 1 < i < 2 }

(see Figure 4.3).
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Figure 4.3

For x, X\ e  V(D) and 1 < i < 4, we have d(x , x \)  < 3 and d(x, v,) = 

d(x, Wi) < 3. Since d(jc, V3) = d(x, W3) = 3, it follows that e(x) = 3 for x  e  V(D). 

For z e  V(H) — V(D) and 1 < 1 < 4, we have from the construction of H that 

d(v,-, z) < 4 and z) < 4. It is clear that x) <2  and d(wt-, a:) < 2 for x  e 

V(D) and 1 < / < 4. Since

d(Vi, w3) = d(v4, v3) = d(wit v3) = d(w4, w3) = 4

for 1 < / < 3, we conclude that e(v,) = e(w,) = 4 (1 < / < 4). Thus, Int(//) = C(H) = 

D=F.

We claim that these are precisely the conditions needed for the existence of a 

strong asymmetric digraph H  with Int(H)=D and C(H) = F. That is, if F and 

if there exists some y  e V(F) such that for each x  e V(D) -  V(F), there is no x - y  

path in D, then there does not exist a strong asymmetric digraph H  with Int(//) = D
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and C(H) = F. Suppose, to the contrary, that there is some strong asymmetric digraph 

H  with Int(//) = D and C(H) = F. Assume that the vertex yj of F has the property 

that for each x e V(D) -  V(F), there is no x - y t path in D. Since F  * £>, we have 

P(H) = (V(H) -  V(D)). Observe that if e^iy) = m for y  e V(F), then e^(z) >m + 2 

for z e V(P(H)). For y  e  V(F) and x  e V(H) with (x, y) e  E(H), it follows that 

e//(x) < 1 + eH(y) = 1 + m. Thus, we must have x  e V(D). But this says that for each 

r e  V(H) -  V(F), there is no x  - y \  path in H, which contradicts that H  is strong. 

□

Corollary 4.2 Let D be an asymmetric digraph and let F  be a proper induced 

subdigraph of D. Then there exists a strong asymmetric digraph H  containing D as 

an induced subdigraph such that Int(//) = D and Ann(H) = F if and only if for each 

y e  V(D) -  V(F), there exists x e  V(F) such that there is an x - y  path in D.

The proof of Corollary 4.2 follows directly from Theorem 4.1, which states 

that there exists a strong asymmetric digraph H with Int(//) = D and C(H) = D -  

V(F) if and only if D -  V(F) = D or for each y e V(D) — V(F), there exists an x  e 

V(F) such that there is an x - y  path in D. Since D * F  and V(F) * 0  in Corollary 

4.2, we have Ann(//) = lnt(H) -  V(C(H)) = F.

We state the following two corollaries without proof.

Corollary 4.3 Let D and F  be asymmetric digraphs. Then there exists a strong 

asymmetric digraph H  such that Int(//) =Dl =D and C(H) = F j = F if and only if 

F = D or there is some induced subdigraph of D j = D, say F j = F, with the property 

that for each y e  V(Fj), there exists x e  VTDj) -  V(F^) such that there is an x - y  

path in Dj.
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Corollary 4.4 Let D and F  be asymmetric digraphs. Then there exists a strong 

asymmetric digraph H such that Int(//) = £>j =D and Ann(//) = F | = F  if and only 

if there is some induced subdigraph of £>j = D, say Fj = F, with the property that for 

each y e  V(Dy) -  V(Fj), there exists x e  V(Fj) such that there is an x - y  path in 

D v

4.3 Strong Asymmetric Digraphs With Prescribed Annulus and Periphery

The next result shows that for any two asymmetric digraphs D and F, there is 

some strong asymmetric digraph H  such that the annulus and periphery of H  are D 

and F, respectively. Furthermore, the distance from the annulus to the periphery of H 

can be arbitrarily large.

Theorem 4.5 Let D and F be asymmetric digraphs and let n>  2 be an integer. 

Then there exists a strong asymmetric digraph H such that P(H) = F and Ann(//) = 

D with d(Ann(H), P(H)) = n. In addition, if p(D) > 2, then there exists a strong 

asymmetric digraph H such that P{H) = F  and Ann(//) = D with d(Ann(H), P(H)) 

=  1.

Proof Let f = max{3, n). For n = 2, we define a strong asymmetric digraph H by

V(H) = V(D) u  V(F) u  {v,-11 < / < 3}

and

E(H) = E(D) u  F(F) u  {(vlf v2), (v2, v3), (v3, vT)}

^  (O’, x), (x, V!), (v2, x), (v,-, y) \x e V(D), y e V(F), 1 < i < 3}

(see Figure 4.4(a)).
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For « > 3, we define a strong asymmetric digraph H by 

V(H) = V(D) u  V(F) u  {vf 11 < / < r)

and

E(H) = E(D) u  E(F)U{ (vit vi+1) 11 < i < t -  1}

u  {(y,:c), Ct.vj), (vM ,x ) |;c e  V(D),y e  V(F)} 

u  {(vM ,y), (vr y), (v,, v ^ l y  e  F(F)}

(see Figure 4.4(b)).

For x  e V(D), it follows from Figure 4.4 that

(i) d(x, v,) = i for 1 < i < t\

(ii) d(x, xi) < d(x, vt_{) + d(vt_h xrf = (r -  1) + 1 = t for x x e  V(D)\

(iii) d(x, y) < d(x, vt-1) + d(vt_h y) = (r -  1) + 1 = t = n for y € V(F) and n>  3;

and

(iv) d(x, y) = 2 for y e V(F) and n = 2.

Thus, e(x) = t for x  e V(D).

Observe that for y e V(F) and x  e V(D), we have e(y) < e(x) + 1 = t + 1 

since d(y, x) = 1. Because d(y, vt) = t+  1, it follows that e(y) = t + 1 for each y e 

V(F).

It is clear from the construction of H that for 1 < i < t,

(i) d(v/, jc )  < t -  1 for x e  V(D)\

(ii) d(v,-, y) < t -  1 for y e V(F); and

(iii) d(v,-, vj) < t -  1 for 1 <j<t.
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(a)

/ - I

(b)

Figure 4.4

Since d(v,-, v,_i) = d(v\,x) = t -  1 for 2 < i < t  and x e  V(D), it follows that e(v,) = 

f - 1  ( l < / < f ) .  Thus, P{H) = F and Ann {H) = D. For x e  V(D) and y e  V(F), 

we have
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d(x, y) = d(x, v„_!) + d(vn_h y) = (n -  1) + 1 = n.

Consequently, d(Ann(H), P(H)) = n.

Now suppose that p(D)  ^  2. We will show that there exists a strong 

asymmetric digraph H  such that P(H) = F and Ann(//) = D with d(Ann(H), P(H)) 

= 1. For some X\ e  V(D), let 5 = V(D) -  {xj}. Define a strong asymmetric digraph 

H  by

£(//) = E (D )u£(F )u  { (y .^ C x j .^ U e  5,y e  V(F)}

u  {(*, v j ) ,  (v 2 , x), ( v 3 , x), (v /f y) Ix e V(D), y e V(F), 1 < / < 3} 

u  { ( v i , v 2 ) ,  (v 2 , v 3 ) ,  ( v 3 , V j ) }

(see Figure 4.5).

V(H) = V(D) u  V(F) u  {vlf v2, v3}

and

Figure 4.5
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It follows from the construction of H that for x  e V(D),

( i)  d(x, v,) = i for 1 <, i £3 ;

( i i )  d(x, y )< 2  for y  e V(F); and

( i i i )  d(x, X2 ) ^  3 for X2  e  V(D).

Thus, e(x) = 3 for x e V(D). Observe that for y  e V(F) and x  e  S c  V(£>), we 

have d(y, x) = 1. This means that e(y) < e(x) + 1 = 4 .  Since d(y, V3 )  = 4, it 

follows that e(y) = 4 for y e V(F). It is clear that e(v,) = 2 for 1 < /' < 3. Thus, we 

conclude that P(H) = F and Ann(H) = D with d(Ann(H), P(H)) = 1. □

Corollary 4.6 Let D and F be asymmetric digraphs. Then there exists a strong 

asymmetric digraph H  such that P(H) = F and Ann(//) = D.

From the previous theorem, if the annulus of a strong asymmetric digraph H is 

defined, then the distance from the annulus to the periphery of H  may be arbitrarily 

large. On the other hand, our next result shows that the distance from the periphery to 

the annulus and the distance from the annulus to the center of H  must be 1.

Theorem 4.7 Let H be a strong asymmetric digraph containing an annulus. Then

d(P(H), Ann(//)) = d(Ann(H), C{H)) = 1.

Proof Assume that rad H = k and diam H = m. Since H has an annulus, we have 

m -  2 > k. Observe that if (y, z) e E(H) for y  e V(P(H)) and z e V(H), then 

e(z) >m -  1 > k; that is, z e  V(P(H)) u  (Ann(//)). Thus, every arc that leaves P(H) 

must be incident to a vertex of Ann(//). Since H is strong, we have 

d(P(H), Ann(//)) = 1.
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Now it follows from H  being strong that there exists some x  e V(H) -  

V(C(H)) and y e  V(C(H)) such that (x, y) e  £(//). But for each such x, we must 

have e(x) < k + 1 < m. Thus, x  e  V(Ann(//)) and we conclude that d(Ann(H), 

C(H)) = 1. □

4.4 Strong Asymmetric Digraphs With Prescribed Center and Annulus

We now present a result similar to Theorem 4.5 with the periphery of H 

replaced with the center of H.

Theorem 4.8 Let D and F be asymmetric digraphs and let n be a positive 

integer. Then there exists a strong asymmetric digraph H such that Ann(H) = D and 

C(H) = F with d(C(H), Ann(//)) = n if and only if n > 2, p(D) > 2 or q(F) > 1.

Proof We consider four cases.

Case 1 Assume that n> 2. For n = 2, we define a strong asymmetric digraph H  by

V(H) = V(D) u  V(F) u  {uh vf 11 < i < 3}

and

E(H) = E(D) u  E(F) u  {(mj, u2), (m2, m3), (yv  v2), (v2, v3)}
u  [(lip j:), (v ,- ,  x ) ,  (.x, y), (y, ux), (y, \x e V(D), y  e  V(F), 1 < / < 3}

(see Figure 4.6(a)).

For n > 3, define a strong asymmetric digraph H  by

V(H) = V(D) u  V(F) u  {uh v,-11 < / < n + 1} u  {w/11 < i < 7)

and
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E(H) = E(D) u  F(F) u  {(«,-, m/+1), (v/t vM ) | l ^ / < / i }

u  {(m,-, x ) ,  ( v , - , x ) ,  (x, y), (y, mx), (y, vx) |x  e V(D), y  e  V(F), 

n - 1  < i< n  + 1 } 

u  {«/. w6), (Vj, w5) | 1 < /< n  - 2 }

u  ((w/, w/+1) 11 < i <> 6 } u  {(y, w2) I y e V(F)J

u  {(Wj, w3), (w2, Ml), (w3, w5), (w4, V!), (w5, w2), (w6, Wi), (w7, w5),

(w7, Vj)}

(see Figure 4.6(b)).

For y e  V(F), observe that

(i) d(y, m,) = d(y, v,) = i for 1 < i < n + 1 ;

(ii) d(y, w,) <3  for 1 < i < 7, n > 3;

(iii) d(y, x) = d(y, vrt_x) + d(vn_h x) = (n -  1) + 1 = n for x  e  V(D); and

(iv) d(y, j x) < d(y, x) + d(x, ;yx) = n + 1 for y { e V(F), x  e  V(D).

Since d(y, vw+x) = n + 1, we conclude that e(y) = n + 1 for each y e  V(F).

For each x  e V(D) and y  e V(F), we have d(x, y) = 1. Since e(y) = n + 1 

for y  e  V(F), it follows that e(x) <n + 2 for x  e  V(D). But d(x, Mn+X) = /z + 2 

implies that e(x) = n + 2 for each x e V(D).

It is clear that d(M,-, x) = d(v,-, x) = 1 for x e V(D) and w - l < z < n  + l.

Thus, in a fashion similar to above, we have e(M,) < n + 3 and c(v,) < n + 3 (n -1  < 

i< n  + 1). Observing that d(M/, vn+1) = d(yif m„+1) = n + 3 for n -  1 < i < n + 1, we 

conclude that c(m,) = e(v/) = n + 3 (n -  1 < i < n + 1).
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H  :
Cn =2)

(a)

(b) 

Figure 4.6

n-2

(n> 3)

n-1

n+1
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By the construction of H, it follows that d(M,-, Vj) = d(v,-, Mj) = 3 for 1 < / < 

n - 2 .  With this fact, it can be seen for z e V(H)  that d(u,-, z) £ n + 3, 

d(vi, z)<.n + 3, and d(M/, vn+i) = d(v,-, Mn+i) = n + 3 (1 < / < n -  2). This means 

that e(w,) = c(v,) = n + 3 for 1 < i < n - 2 .

To show that e(w,) = n + 3 (1 < / < 7), we make the observation that for i e 

{1, 2, 5} and j  e  {3, 4, 6 , 7}, we have d(w,-, vj) = d(wj, « i) = 3, d(w,-, uj) ^  2, 

and d(wj, v^) < 2. Also, d(w,-, wy) < 4  for 1 < / * j < l .  From this, it follows that 

e(w,) < n + 3 (1 < t < 7). Since d(wit v„+1) = d(wj, wn+1) = n + 3 (i e {1, 2, 5} and 

y e  {3, 4, 6 , 7}), we conclude that e(w,) = n + 3 (1 < / < 7). Thus, Ann(//) = D 

and C(H) = F. From the construction of H, it is clear that d(C(H), Ann(H)) = n.

Case 2 Assume that n = l ,p (D ) > 2, and p(F) > 2. For some e V(D) and 

some yj e  V(F), let S = V(D) -  {xj} and T = V(F) -  {yj}. We define a strong 

asymmetric digraph H by

V(H) = V(D) u  V(F) u  [uh vt 11 < i < 3}

and

EiH) = E(D) u  E(F) u  {(«/, «/+i), (v/f vI+1) 11 < / < 2}

u  {(«/,*), (vf,x), (y, Mi), (y, Vj) u  e V(D), y e  V(F), 1 < / < 3} 

u  {(yi»^l)J u  (fr i.jO ly e  T) u  { ( r ,y ) |r e  S ,y e  F(F)}

(see Figure 4.7).

For y e  V(F), it is clear from the construction of H that e(y) = 3. Using a 

technique similar to the preceding case, we can show that e(x) = 4 and e(Uj) = c(v,) = 

5 for x e  V(D ) and 1 < i < 3. Thus, Ann(H) = D and C(H) = F with 

d(C(H), Ann(//)) = 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

u

Figure 4.7

Case 3 Assume that n=  1, p(D) > 2, and p(F) = 1. Let V(F) = {y} and S 

V(D) -  (jcj } for some X\ e  V(D). We define a strong asymmetric digraph H  by

V(H) = V(D) u  V(F) u  [uh vf 11 < i < 3}

and

E(H) = E(D) u  {(y,Xx), (y, «x), (y, Vx), (y, u2), (y, v2), (xx, Mi), (xh  v^} 

u  {(x, y), (mx, x), (vx, x ) \ x  e 5} u  {(«,-, wi+1), (v,-, vl+1) 11 < / < 2} 

u  {(a/, x), (v,-, x) | x  € V(D), 2  < / < 3}

(see Figure 4.8).

It is clear from the construction of H that e(y) = 2. For x e  5, we have 

d(x, y) = 1 and, thus, e(x) < 3. Since d(x, V3) = 3, it follows that e(x) = 3 for each 

x e S. Observe that for x e  S, we have d(xj, x) < 2, d{x\, y) < 3, and d(x\, «,) = 

d(xi, v,) = / (1 < / < 3). Thus, e(xx) = 3. Clearly, d(iq, x) = x) = 1 for x e S 

and 1 < i < 3. Consequently, e(iq) < 4 and e(v,) <4  (1 < i < 3). Since d(iq, V3 )  =
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y
H:

u

Figure 4.8

d(Vi, 1 / 3 )  = 4 (1 < i < 3 ) ,  it follows that e(n,) = e(v-) = 4. Therefore, Ann(//) = D 

and C(H) = F with d(C(H), Ann(H)) = 1.

Case 4 Assume that n = 1 ,p(D) = 1, and q{F) > 1. Let y\  e V(F) such that the

indegree of in F is at least 1. Suppose that V{D) = {*} and S = V(F) -  {^iJ.

We define a strong asymmetric digraph H  by

V(H) = V(D) u  V(F) u  [uh vt 11< 1 < 4}

and

E(H) = E(F) u  {(m,-, x ) ,  (vh x), (y, u{), (y, vj) | y e V(F), 1 < i < 4} 

u  {(jc,y)|y e 5} u  {(yi,*)}

(see Figure 4.9).
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Figure 4.9

Using the methods described in Cases 1 and 2, we find that e(y) = 4, e(x) = 

5, and e(«,) = e(v,) = 6  for y e  V(F) and 1 < i < 4. Thus, Ann(H) = D and C(H) 

= F with d(C(H), Ann(//)) = 1.

Conversely, assume that n = 1, p(D) = 1 and q(F) = 0. Suppose, to the 

contrary, that there is some strong asymmetric digraph H  with the property that 

Ann(H) = D and C(H) = F with d(C(H), Ann(H)) = 1. Then there is some vertex y 

of C(H) such that (y, x ) e E(H) for some x  e V(Ann(//)). Since H is an 

asymmetric digraph with p(Ann(H)) = 1 and q(C(H)) = 0, we have (z, y) <£. E(H) 

for each z e  [V(C(H)) u  V(Ann(//))] -  {y}. If there is some vertex v of H  such 

that v is adjacent to a vertex in C(//), then e(v) < rad H  + 1. Thus, v must be a 

vertex in C(H) or Ann(H). This means that y has indegree 0, which contradicts the 

fact that H is strong. Therefore, it follows, for asymmetric digraphs D and F with 

p(D) = 1 and q(F) = 0, that there does not exist a strong asymmetric digraph H such 

that Ann(H) = D and C(H) = F with d(C(H), Ann(//)) = 1. □
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Corollary 4.9 Let D and F be asymmetric digraphs. Then there exists a strong 

asymmetric digraph H  such that Ann(f/)=D and C(H) = F.

4.5 Strong Asymmetric Digraphs With Prescribed Interior and Periphery

We now present a sufficient condition for two asymmetric digraphs D and F  

to be isomorphic to the periphery and interior, respectively, of some strong asymmetric 

digraph.

Theorem 4.10 Let D and F be asymmetric digraphs. If F is nontrivial and 

strong, then there exists a strong asymmetric digraph H such that P(H) = D and 

Int (H) = F.

Proof Assume that diam F = m £ 2, and let x, y  e V(F) such that d(x, y) = m. 

We define a strong asymmetric digraph H  by

V(H) = V(D) u  V(F)

and

E{H) = E(D) u  E(F) u  {(z,x) \ z e  V(D))

u { < v ,z ) |v e  V ( F ) - { x ) , z e  V(D))

(see Figure 4.10).

For z e V(D) and v e V(F), it is clear, from the construction of H, that 

e(z) = m + 1 and e(y) < m. Thus, P(H) = D and Int(//) = F. □

If D and F are asymmetric digraphs such that F is not strong, then even 

when D is strong, we can draw no conclusion about the existence of a strong
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Figure 4.10

asymmetric digraph H  such that P(H) = D and Int(//) = F. For example, define D 

by V(D) = {xv x2, x 3} and E(D) = {(xv x2), (x2, x 3), (x3, Xj)}, and define F by 

V(F) = {yj, y2) and E(F) = {(j^, y2)}. We claim that no strong asymmetric digraph 

H  exists with P(H) = D and Int(//) = F. Suppose, to the contrary, that there is some 

strong asymmetric digraph H with this property. It is clear that V(H) = V(D) u  V(F). 

Since H is strong and the indegree of vertex in F is 0, there must be some arc 

from D to yj. Assume that (x j,y j)e  E(H). From this, it follows that e(xl) = 2. 

Since H is asymmetric, we have (y2, y{)« E(H). Thus, e(y2) > 2, which contradicts 

the fact that Int(H) = F.

On the other hand, if we define D by V(D) = {jcj, x2, jc3, x4] and E(D) = 

{(Xj, x2), (x2, x3), (x3, x4), (x4, Jtj)}, and define F by V (F)={yl 5y2} and E(F) = 

{(yi, y2)}, then there exists a strong asymmetric digraph H such that P(H)=D and 

Int(H) = F. We define H  by

V(H) = V(D) u  V(F)

and
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E{H) = E(D)kjE(F)kj ((X j,^), (*3 ,^ )}  

u  [(y2* x ) \x e  V(D)}

(see Figure 4.11).

H :

Figure 4.11

It is clear from the construction of H that e(x) = 3 and e(y) = 2 for x e  

V(D) and y e  V(F). Thus,P(H)=D  and Int(H) = F.

4.6 Connected Graphs With Prescribed Interior and Annulus

For a connected graph G with rad G < diam G, the interior Int(G) of G is 

defined as the subgraph induced by those vertices v with e(v) < diam G. Otherwise, 

if rad G = diam G, we say Int(G) = G. When rad G < diam G -  1, the annulus 

Ann(G) of a connected graph G is defined as the subgraph induced by those vertices 

v with rad G < e(v) < diam G. We say that G has no annulus if rad G > diam G -  

1. A connected graph G is shown in Figure 4.12 with its interior Int(G) and annulus 

Ann(G).
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Int(Gf):

I >

Ann(G):

O
* 8

O O
*8

O

Figure 4.12

It was proved in [8 ] that every graph is isomorphic to the interior of some 

connected graph. Furthermore, every connected graph G is isomorphic to the interior, 

but not the center, of some connected graph if and only if G is not complete. We now 

present a sufficient condition for two graphs to be isomorphic to the annulus and center 

of some connected graph.

Theorem 4.11 Let F and G be graphs such that F has no vertices of eccentricity 

1. Then there exists a connected graph H  such that Ann(H) = F and C(H) = G.

Proof First assume that F is a connected graph with diam F>3.  Then there exist 

u, v e V(F) such that d(u, v) = 3. We define a connected graph H by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

V(H) = V(F) u  V(G) u  {wj, w2}

and

E(H) = E(F) u  E(G) U  { h ^ m ,  w 2v}



u [ x y \ x e  V(F), y  e V(G)}

76

(see Figure 4.13).

H:

Figure 4.13

From the construction of H , we have e(x) = 2 for each x  e  V(G). Since each 

vertex of F is adjacent to a vertex of G, it follows that e(y) < 3 for each y e V(F). 

Observe that for each y  e  V(F), we have d(y, u)> 2 or d(y, v) > 2, from which it 

follows that d(y, Wj) >3 or d(y, w2) ^  3. Thus, e(y) = 3 for y  e  V(F). We also 

have e(wj) = e(w2) = 4 since vertices Wj and w2 are each adjacent to a vertex of F 

and d(wj, w2) = 4. Therefore, Ann(//) = F and C(//) = G.

Now assume that F  is a graph of order p with e(x) = 2 for each x  e  V(F). 

Also assume that V(F) = {xlfx2, ...,xp). We define a connected graph H  by

V(H) = V(F) u  V(G) u  [wt 11 <i<p]

and

E(H) = F(F) u  F(G) u  {x^-11 < / <p)
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u  {xy \ x<= V(F), y  e  V(G)}

(see Figure 4.14).

w l w 2 WP

H:

Figure 4.14

It is clear by the construction of H  that e(y) = 2 for each y  e V(G). Since 

each vertex of F is adjacent to a vertex of G, we have e(x,) < 3  for 1 < i < p.  

Similarly, e(wt) < 4  for \ < i < p .  Also, for each xi e  V(F), there exists x} e V(F) 

such that d{Xi, xj) = 2. From this, we have d(xit Wj) = 3 and d(wt-, wj) = 4. Thus, 

we conclude that = 3 and e(Wj) = 4 for 1 < i < p\ that is, Ann(H) = F and 

C(H) = G.

Assume next that F is not connected. Let u, v e  V(F) such that u and v 

belong to different components of F. We define a connected graph H  by

V(H) = V(F) u  V(G) u  {wj, w2}

and

E(H) = E(F) u  E(G) u  {wjn, w2v}
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u  {xy | x  e  V(F), y  e V(G)}

(see Figure 4.15).

/ / :

Figure 4.15

By the construction of H, we have e(y) = 2 for y e  V(G). It follows that 

e(x) < 3 and e(wz) < 4  for jc e  V(F) and 1 < / < 2, since each vertex of F is 

adjacent to a vertex of G and Wj and w2  are both adjacent to a vertex of F. 

Observing that d(x, u)> 2 or d(x, v) > 2 for each * e V(F), it follows that d(x,

> 3  or d(x, w2) ^  3. Also, d(w^, w2) > 4, from which we conclude that e(x) = 3 

and e(wj) = e(w2) = 4  for x e V(F). Therefore, Ann(//) = F  and C(H) = G. □

In Theorem 4.11, we presented a sufficient condition for a graph to be 

isomorphic to the annulus of some connected graph. The next theorem shows that this 

condition is also necessary.

Theorem 4.12 Let F  and H be graphs such that H is connected and Ann(H) = 

F. Then F  has no vertices of eccentricity 1.
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Proof Assume that there exists u e  V(F) such that e(u) = 1. Suppose, to the 

contrary, that there is some connected graph H such that Ann(//) = F. Assume that 

diam H = n and rad H = m. Observe that for each Wj e  V(H) -  F(Ann(//)) with wj 

adjacent to a vertex of Ann(H) and e{w{) = n, there exists w2 e V(H) -  V(Ann(H)) 

such that d(w^, w2) = n. There must also be some vertex y  e  V(H) -  V(Ann(H)) 

such that e(y) = m. Since Ann(H) is defined, diam H -  rad H > 2 and vertex y  is 

not adjacent to any vertex of eccentricity n. Therefore, m > 2. Observe that

d(y, w2) = d(y, z) + d{z, w2) ^  m

for some z e  V(Ann(//)). Thus,

d(wj, w2) < z) + d(z, w2) < 3 + (m -  1) = m + 2,

that is, diam H -  rad H <2. If w^u e E(H) with e(u) = 1 in Ann(//), then

d(wj, w2) < d(wj, z) + d(z, w2) < 2  + (m -  1) = m + 1 ,

which is impossible. Thus, each vertex of Ann(//) has eccentricity m + 1 and u is 

not adjacent to a vertex of eccentricity m + 2. Assume that d(u, w) = m + 1 for some 

w e  V(H). Then e(w) -  m +  2 and d(u, w) = d(u, z) + d(z, w) for some z e 

V(Ann(//)). But, from this, we have d(y, w) = d(y, z) + d(z, w) > d(u, w) for some 

z e  V(Ann(//)). This contradiction completes the proof. □

From the proof of Theorems 4.11 and 4.12, we have the following corollary.

Corollary 4.13 For every graph F, there exists a connected graph H  such that 

Ann(H) = F  if and only if F  has no vertices of eccentricity 1.
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CHAPTER V

MEDIANS AND PERIPHERIES OF GRAPHS AND DIGRAPHS

5.1 Strong Asymmetric Digraphs With Prescribed Median and Periphery

For a vertex v in a strong digraph D, the distance dD(y) of v in D is the 

sum of the directed distances from v to the vertices of D ; that is, dD(v) = 

X  M)- The median M(D) of D is the subdigraph of D induced by those
ueV(D)

vertices having minimum distance. In Figure 5.1, a strong digraph D is shown with 

its median M(D). The distance of each vertex is also indicated.

u w w

In [6 ] it was shown that for every two asymmetric digraphs £>j and D2, there 

exists a strong asymmetric digraph H  such that C(H) = D 1 and M(H) = D2, and 

where the directed distances from C(H) to M(H) and from M{H) to C(H) can be 

arbitrarily prescribed. In addition, if /sT is a nonempty asymmetric digraph isomorphic 

to an induced subdigraph of both and D2, then there exists a strong asymmetric 

digraph F such that C(F) = D l , M{F) = D2, and C(F) r\M(F)~K.  In the next two 

sections, we present similar results involving the median and periphery of a graph.

We begin by recalling two lemmas from [7].

v x x

Figure 5.1
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Lemma 5.1 Let D be a strong asymmetric digraph and let F be an induced 

subdigraph of D with dpiu, v) < 3 for all u,v  e V(F). Then there exists a strong 

asymmetric digraph H  containing D as an induced subdigraph such that

(i) dfjiu) = dtf(y) for all u , v e  V(F), and

(ii) if V(H) * V(D), then max[d(u, v)\u<= V(F), v e V(H) -  F(D)} = 2.

Lemma 5.2 Let D be a strong asymmetric digraph and let F be an induced 

subdigraph of D such that dj)(u, v) < 3 and d[)(u) = dj)(v) for all « , v e  V(F). 

Then there exists a strong asymmetric digraph H containing D as an induced 

subdigraph such that

(i) M(H) = F, and

(ii) if V(H) *  V(D), then max{d(u, v) | u e V(F), v e  V{H) -  V(D)} = 2.

We now illustrate the construction of the digraph H  from Lemma 5.2. Suppose 

that dD(v) - k  for all v e V(F) and let n -  ¥ \  + 2. We construct a strong

asymmetric digraph H  by adding 2n new vertices ui and vi (1 < / < n) to D, the 

arcs (ttj, vp for 1 < i < n, together with the arcs joining all vertices of F  to ui and 

the arcs joining all vertices of F from vi for 1 < / < n (see Figure 5.2).

Let D and F  be asymmetric digraphs. With the aid of Lemmas 5.1 and 5.2, we 

can show that there exists a strong asymmetric digraph H  such that M(H) = D and 

P(H) = F, where M(H) and P(H) are disjoint. Furthermore, since the center and 

median are two ways of defining the "middle" of a digraph and the periphery defines 

the "exterior" of a digraph, it is not suprising that the distances from the median to the 

periphery and from the periphery to the median can be arbitrarily prescribed. What may
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Figure 5.2

be suprising is that the median and periphery can intersect in any common induced 

subdigraph.

Theorem 5.3 Let D and F be asymmetric digraphs and let m and n be positive 

integers. Then there exists a strong asymmetric digraph H such that M(H) = D and 

P(H) = F with d(P(H), M(H)) = m and d(M(H), P(H)) = n if and only if (1) m + 

n> 3, (2) p(D) > 2, or (3) p(F)> 2.

Proof We construct a strong asymmetric digraph Hq from D by adding two new 

vertices Uq and v0, the arc (mq, v0), together with the arcs joining all vertices of D to 

U q  and the arcs joining all vertices of D from v0. By applying Lemma 5.1 to H q ,  we 

construct a strong asymmetric digraph with

(1) dHl(u) = dHl(v) for all u, v e  V(D) and

(2) if V(HX) * V(Hq), then m ax{d(n,v)U e VXD), v e  V(HY) - V ( H 0)) =2. 

We consider three cases.
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Case 1 Assume that m + n> 3. We define a strong asymmetric digraph H2 by 

V(H2) = V(//j) u  V(F) u [ u itV j \ l ^ i ^ n - l ,  l < j < m  + 2)

and

E(H2) = E(Hx) u  F (F )u  {(X.VJ), (un_v y ) \ x e  V i H ^ y e  V(D)) 

u  {(vi,jc),(x,K1) | » n - l  < i< m  + 2 , x e  V(F)} 

u  v;+l)* (vm+2 » vOT) 1 1 < / < n -  2 , 1  < ;  < m + 1 }

u { O c , y ) U  = l ,Jce V(D),ye V(F)} 

u{(y, jc) |«  = l , y e  V (F),*e F(D)}

(see Figure 5.3).

m-2 7»+1
m+2

U u, u.2 1

Figure 5.3

We now use Lemma 5.2 to construct a strong asymmetric digraph H3 with

(1) M(H3) = D and

(2) if V(H3) * V(//2), then max{d(«, v) | u e V(£>), v e  V(H3) -  V(//2)} = 2.
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The strong asymmetric digraph H is constructed by joining all vertices of H ^ - H 2 to 

V j .  Observe that for each x  e  V(H2), it follows that dH3(x) = dH(x). In particular, 

we have dHj(uQ) = dH(uQ) and < /̂3(v0) = dH(y0). In addition, from the construction

of H, it follows that for each x  e  V (//3) -  V(H2), we have dH(x) = dH{uQ) or

djj(x) = d//(v0). Thus M(H) = £>. We calculate the eccentricity of each vertex of H 

as

(1) e(x) = m + n + 2 for x  e  V(F) and

(2) e(x) < m +  n +  1 for jc e  V(H) -  V(F).

Therefore P(H) s  F.

Case 2 Assume that m = n = 1 and p(F) > 2. Let y  be a vertex of F and let w be 

a vertex in D. We define a strong asymmetric digraph H2 by

V(H2) = Vtf/j) u  V (F)u {vj 1 < / < 5 }

and

E(H2) = E(H\) u E(F) u  {(x, vj), (x, v2) \ x e

u  {{x, Vl) \x e ViF)) u  {(vf., vM ) \ 1 < / < 4} 

u  {(v5, v3), (w , y), (y , m0)} u  {(v, x )  \ v e  V(F) -  {y} , x  e  V(Z>)} 

u  {(v4 ,Jc), (v5, x ) \ x e  V(F)}

(see Figure 5.4).

We construct strong asymmetric digraphs / /3, by applying Lemma 5.2, and H 

by joining V(//3) -  V(H2) to the vertices Vj and v2. Using calculations similar to 

those in Case 1, we conclude that H  has the desired properties.
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Figure 5.4

Case 3 Assume that m = n = 1, p(JF) -  1, and p ( D )  >  2. Let y be a vertex of D 

and assume that V(F) = {w}. We define a strong asymmetric digraph H2 by

V(H2) = V(HX) u  V(F) u  {vf 11 < / < 4}

and

E(H2) = F (//t ) u  {(x, vt ) U  e V(HX)) u  {(y, w), (v4, v2), (v3, w), (v4, w)} 

u  Uvi» vi+l)11 ^ 3} u  {(w,x)Ue V(D) -  {y}}

(see Figure 5.5).

We construct strong asymmetric digraphs / / 3 and H  as in Case 1. Again, H 

has the desired properties.
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Figure 5.5

The only case that remains is when m = n = 1 and p(D) = p(F) = 1. Clearly, 

there is no digraph H  with the desired properties since H is asymmetric. □

5.2 Strong Asymmetric Digraphs With Intersecting Median and Periphery

Recall that the center and median are two ways of describing the middle of a 

digraph, while the periphery describes the exterior of a digraph. The next theorem 

shows that not only can the periphery and median intersect in any common induced 

subdigraph, but, in addition, the distances from the center to the median and from the 

median to the center can be arbitrarily large.

Theorem 5.4 Let D j , D 2, and F be asymmetric digraphs, and let m and n be

positive integers such that m + n>  3. In addition, let K be a nonempty asymmetric 

digraph isomorphic to an induced subdigraph of Dj and a proper induced subdigraph 

of £>2. Then there exists a strong asymmetric digraph H  such that P(H) = D j,
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M(H) s D2, C(H) s  F, and P(H) n  M(H) = K with C(H)) = m and

d(C(H),M(H)) = n.

Proof Assume that = {si,$2 » ••• » y ( ^ 2 ) = (*i> r2 * ••• » anc*

p(K) = k. Without loss of generality, assume that ({sj, s2, ... , s*}) -  ({^y ti1> ••• >

u ) )= iK  and S: - » f,-. is an isomorphism between {{ij, s2» ••• »^)> and (U;., t; ,  
K J  J  1 ^

. . . ,  t i j )  for 1 <j<k.  We first construct an asymmetric digraph H q  by identifying 

S: and and labeling the resulting vertex again by S: for 1 <j<k.  We now define
J  J  J

a strong asymmetric digraph Hx by

V(HX) = V(H0) u  {m0, v0 } u  [xt 11 < / < m -  1}

u  {ŷ  1 1 <x i ^  n -  1 } u  {ẑ 1 1 <, i < n + 2 }

and

E(HX) = E ( H q )  u  { ( x ,  u 0 ) ,  (v0 , x), (yn_v x), (zn+2,x)  |x  e  V ( H q ) }

u  {(“ O’ v0>’ (“ O’ ^ l ) ’ (v0 ’ * l »  u  \* e  v (Di) ~ y (D i »

u  {(x, x,). (x, yj), (x, Zj), (x/M_1,x) | x e V(F), 1 < / < m -  2}

u  {(*i» xi+l> 1 1 -  * -  m “  2) u  <Cyf*. ̂ j+i) 1 1 ^ * & n ~ 2 } 

u  {(Zj-, z/+1) 11 < t < /i + 1} u  {(x,y) |x  e  V(F), y e  V(//0), n = 1}

u  {(*, y), (“ o» y)» (vo* y)  I*  e  y (D 2 ) _  v ( ° i>* y  e  y (F)>m = 1 J

(see Figure 5.6).

We calculate the eccentricity of each vertex of Hx, namely,

(i) e(x) = m + n + 3 for x e  V(Dj),

(ii) n + 3 < e(x) < m + n + 2 for x e  V(H{) -  (V(DX) u  V(F)), and

(iii) e(x) = n + 2 for x e V(F).
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Since / / j  is strong and dH^(x, y) <3 for all x , y e  V(D2), we can apply Lemma 5.1 

to construct a strong asymmetric digraph H2 containing //j  as an induced subdigraph 

such that

(i) dHl(x) = dHl(y) for all x, y  e V(D2), and

(ii) if V(H2) *  then max{d(x, y) \ x  e V(D2), y  e  V(H2) -  VQi^}  = 2.

Now define a strong asymmetric digraph / / 3 from H2 by joining all vertices from

V(H2) -  V(//j) to vertex jCj (if m = 1, then join these vertices to the vertices of F).

Observe that adding these arcs does not change the distance of the vertices of D2, that 

is, dH3(x)

and let c =

digraph / / 4  such that M(H4) = D2 by adding 2c new vertices and vi (1 <i<c)

= dH£ x)  for all x  e V(D2). Assume that «//3 (x) = b for all x  e  V(D2)

r b-p(Hn)~\— j - 2- I + 2. Using Lemma 5.2, we construct a strong asymmetric
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to H3, the arcs («f, v{) for 1 < j < c, together with the arcs joining all vertices of D2 

to ui and the arcs joining all vertices of £>2  from v,- for 1 < / < c. Furthermore, if 

V(H4) * V(H3), then

max{d(x,y) \xe  V(D2), y e  V(H4) -  V(H3)) = 2.

We define a strong asymmetric digraph H from H4 by joining all vertices from 

V(H4) -  V(H3) to x l (again, if m = 1, then join these vertices to the vertices of F).

We compute the eccentricity of each vertex of H as follows:

(i) e(x) =m + n + 3 for .re  VCDj),

(ii) n + 3 < e(x) <m + n + 2 for x e  V(H) -  (V(Dj) u  V(F)), and

(iii) e(x) = n + 2 for x e V(F).

Thus,P(H) = D l and C(H) = F.

We now calculate the distance of each vertex of H. Assume that dH^x)  = b for

r b-p(HJ~1
— I + 2. By the construction of H, we have 

dH(v, x) = d//3 (v, x) for v e V(D2) and x e V(H3). Therefore, for v e  V(D2),

C

dH(.v) = X  (d(v, ud + d(v, v,)) + X  dH(v, x)
‘= 1  xg V(H 3)

= 3c + X  dH(v,x) = 3 c + X  dHJ v ,x )
xe  V ( / /3)  x e  V(Hi)

= 3c + dH^(y) = 3 c + b.

If v e  V(H3) -  V(D2), then
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C

d/j(v) = X  (d(v, ui) + rf(v> v«» + X  du(v,x)
«=1 xe V(//j)

> 5c + 5) dn(v,x) ^ 5c+p(//3 )-l.
xeV(H3)

In addition, by considering the vertices adjacent from u(- and vf- for 0 < z < c, 

we see that dH{u^ > dH(uQ) and dH(vj) > dH(vQ) for 1 < i < c. Since c =

+ 2 and p ( H 3) > 7, it follows that 5c + p ( / / 3) -  1 > 3c + b. 

Consequently, we conclude that M(H) = D2. □

We now consider the case where m = n = 1.

Theorem 5.5 Let and F be asymmetric digraphs. Let K be a nonempty

asymmetric digraph isomorphic to an induced subdigraph of Dj and a proper induced 

subdigraph of D2. Then there exists a strong asymmetric digraph H  such that 

P(H)=DV M(H) = D2, C(H) = F, and P(H) n  M(H) = K  with d(M(H), C(H)) = 

M(H)) = 1.

Proof We first construct the digraph Hq in the same way that Hq was constructed 

in Theorem 5.4. Now define a strong asymmetric digraph / / j by

V(//j) = V(Hq) u  V(F) u  {m0, v0, zj, z2, z3}

and

E(//j) = E(H0) u  E(F) u  {(x, m0), (v0, x), (z3, x), (zj,x) Ix e  V(//0) } 

u  v0>> (zl» z2>> (z2 » z3>)

u  {(x, zj), (x,y), (z,x), (m0, x), (v0, x) |x  e V(F), y  e V(K),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

z e  V(D2)-V{K))

(see Figure 5.7).

Figure 5.7

We construct the digraph H  from //j  with the same construction presented in

Theorem 5.4. All the calculations are the same as those in Theorem 5.4. Thus, we 

conclude that P(H) = D V M{H) s  D2, C(H) = F, and P(H) n  M{H) s  K  with

d(M(H), C(H)) = d(C(//), M(H)) =1. □

Observe that if K = D2 in Theorem 5.4, then d(M(H), C(H)) = m + 1. Thus, 

with this modification and by joining vertex zn+2 to vertex v0  in Hl in the proof of 

Theorem 5.4, we have the following corollary.

Corollary 5.6 Let D j, D2, and F be asymmetric digraphs, and let m and n be

positive integers such that m >  2. In addition, let K be a nonempty asymmetric 

digraph isomorphic to an induced subdigraph of both D j and D2. Then there exists a
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strong asymmetric digraph H such that P(H) = D X, M(H) = D2, C(H) = F, and 

P(H) n  M(H) = K  with d(M(H), C(H)) = m and d(C(H), M(H)) = n.

The only case that remains is when m = 1 and K = D2. It turns out that there

may or may not be a strong asymmetric digraph H with the desired properties. For 

example, say digraphs Dj, D2 = K, F, and H  are given as in Figure 5.8 with p>  4.

Then d(v) = d{x) = p + 10 and since p > 4, we have d(t) > p + 10 for each t e 

V(H) -  {v, jc}. In addition, e(u) = 2 and e(t) = 3 for / e V{H) -  {«}. Therefore, 

P(H) = D X M(H) = D2, C(H) = F, and P(H) n  M(H) = K  with d(M(H), C(H)) =

d(C(H), M(H)) = 1. Thus, we have an infinite class of digraphs with this property. 

For most choices of the digraphs D j, D2 = K, and F, there does not exist a strong

asymmetric digraph H  with the appropriate properties. An example that illustrates this 
point is D l = D 2 = K =  K2 and F = K^. Observe that if a strong asymmetric

digraph H  exists with the desired properties, then H has order 3. Since H  is strong 

and asymmetric, it follows that H is a directed triangle, which is a contradiction.

Corollary 5.7 Let D j  and D2 be asymmetric digraphs, and let K  be a nonempty 

asymmetric digraph isomorphic to an induced subdigraph of both Dj and D2. Then 

there exists a strong asymmetric digraph H such that P(H)=Dp M(H) = D2, and 

P(H) n  M(H) = K.

5.3 Connected Graphs With Distant Median and Periphery

The definition of the median of a connected graph G is analogous to the 

definition of the median of a strong digraph. The distance dG(y) of a vertex v in G

is the sum of the distances from v to the vertices of G; that is, dG{v) = ^  d(v, u).
ueV(G)
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x

F:
O  O O
v x u

Figure 5.8

The median M(G) of G is the subgraph induced by those vertices having minimum 

distance.

In Sections 5.1 and 5.2, we proved that the distances from the median to the 

periphery and from the periphery to the median of a strong asymmetric digraph can be 

arbitrarily large. In addition, the median and periphery can intersect in any common 

induced subdigraph. It is a natural question to ask if there is a similar relationship 

between the median and the periphery of a connected graph. Before we answer this 

question, we present two lemmas.

For any graph F, Lemma 5.8 says that we can construct some connected graph 

H  that contains F  as an induced subgraph such that each vertex of F  has the same 

distance in H. Furthermore,// has the property that the distance between each pair of 

vertices in H  is at most 2, and each vertex of H  that is not in F  is adjacent to some 

vertex of F. We will use the simplified notation d(u, F) to represent the subgraph 

distance d(([u}),F).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



94

Lemma 5.8 For any graph F, there exists a connected graph H that contains F as 

an induced subgraph such that

(1) dH(u) = dH(v) for all « , v e  V(F),

(2) dH(u, v) < 2 for all u, v e V(H), and

(3) d(u, F) = 1 for each u e  V(H) -  V(F).

Proof Define a connected graph H q by joining a new vertex w to F. Let 

mA(//0) = m axfd^O:) \x  e V(F)}, md(HQ) = rmn{dHQ(x) \x  e V(F)}, and n = 

mA(//0) -  w§(//0). If n = 0, then dW()(jt) = d//0(y) for all x, y  e  V(F), and choosing 

H = Hq gives us the desired result. For n > 1, let 5a (//q) = {xe V (F )|dHQ(x) = 

mA(//g)}. We define a connected graph / /  j by

V(//1) = V(//0 ) u U 1}

and

= E(H0) u  {jcjw} u  {zxl | z e 5a (//0)}

(see Figure 5.9).
x \ w

Figure 5.9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

From the construction of / / j ,  we have (w) = 1 and, thus, dHl(u, v) < 2 for 

all « , v e  V(//j). It also follows that for z e  SA(HQ),

dHl(z) = dWl(z, *j) + X  dHl(z, t)
teV(H0)

= 1 + £  dHo(z, 0  = 1 + dHo(z) = mA(//0) + 1 .
teV(Ho)

Similarly, for z e  V(F) -  Sa(Hq),

= dfjQ(z) + 2  > mg(//o) + 2 ,

and there exists some vertex Z| 6  V(F) -  SA(f/0) such that d^Czj) = m§(f/0) + 2. 

Define mA(H{) = max{dHl(x)\x  e  V(F)} and m g ^ )  = m infd^Ot) |jc e V(F) }.

Then mA{H^) = mA(//0) + 1 and mg(//j) = Wg(//0) + 2, from which it follows that 

-  m g ^ )  = n -  1. Let SA{HX) = { x e  V(F) I d^C t) = mA{H{)). Observe

that

Sa(H{) = Sa(Hq) u  ( r e  V(F) -  SA(tf0) | d ^ x )  = mA(//0) -  1}.

Now define a connected graph H2 by

V(H2) = V(Hl ) u { x 2)

and

E(H2) = E(H{) u  {x2w} u  {zx2 1 z e S ^ H ^ } .

By a similar argument, it follows that mA(H2) -  m§(H2) = n -  2. By repeating this 

process n -  2 times and letting H  = Hn, we conclude that mA(H) = m§(H). Thus,
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dH(u) = dH(y) for all u, v e V(F). Furthermore, from the construction of H, it

follows that dH(u, v) < 2 for all u, v e  V(H) and d(z, F) = 1 for each z e V(H) -

V(F). □

The next lemma states that if we are given any graph F and apply Lemma 5.8, 

then there exists a connected graph H  such that the median of H  is F; that is, any 

graph is the median of some connected graph. In addition, the distance between any 

two vertices of H  is at most 2 .

Lemma 5.9 Let G be a connected graph and let F  be an induced subgraph of G 

such that

(1) dG(u)=dG(v) for all « , v e  V(F),

(2) dG(u, v) < 2 for all « , v e  V(G), and

(3) dG(z, F) = 1 for each z e V(G) -  V(F).

Then there exists a connected graph H that contains G as an induced subgraph such 

that M(H) = F and dH{u, v) < 2 for all « , v e  V(H).

Proof Suppose that dG(u) - k  for all u e  V(F), and let m = k + 2. We construct a 

connected graph H  from G by joining m new vertices vi (1 < i< m )  to F  (see 

Figure 5.10).

Since dG{u, v) < 2 for all u , v e  V(F), it follows that dG(u, v) = dH(u, v). So, 

for u e V(F), we have

m
dH(u) = £  d(u, vi) + ^  dH{u,x) = m + X  dH(u,x)

»=1 xe V(G) xe V(G)
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H:

Figure 5.10

m + X  dc(.u, v) = m + dc(u) = m + k = 2k + 2 .
xeV(G)

For 1 < / < m, it follows that

<fef(Vi) = X  d ( y h v j )  +  X  *) + X  d ( V i t x )
xeV(F) xeV(G)-V(,F)

= 2(m -  1) + p(F) + X  *) -  2m -  1 = 2 k + 3.
xeV(Gy-V(F)

If u e  V(G) -  V(F), then

m
d H ( u ) = X  d(M> v/) + X  d ( u ’ x )  =  2m + X  d(u>*)

*'=1 x e V ( G )  * e V ( G )

^  2m + p(G) — 1 ^  2m + 1 = 2& + 5.

Therefore, M(//) = F. To complete the proof, we must show that d^{u, v) < 2 for all 

« , V 6  V(H). Since dG(x,y) < 2 for all x ,y  e  V(G), it follows that dH(x,y) < 2. It 

is clear from the construction of H that for x  e  V(F), we have d(vif x) = 1 ( !< / '<

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



m) and d(v,-, vj) = 2 (I < i< j  < m). Since dG(z, F) = 1 for each z e V(G) -  V(F), 

we compute d(v{, z) = 2 for 1 < j < m. Thus dH(u, v) < 2 for all u, v e  V(//). □

We are now prepared to determine the distance between the median and the 

periphery of a connected graph. Recall that the distances from the median to the 

periphery and from the periphery to the median in a strong asymmetric digraph can be 

arbitrarily prescribed. One might expect a similar result for graphs, but this is not the 

case.

Theorem 5.10 Let F and G be any two graphs, and let m be a positive integer. 

In addition, let 8  = min{e(x) | jc  e  V(G)}. Then there exists a connected graph H 

such that M(H) = F and P(H) = G with d(M(H), P(H)) = m if and only if (1) 8  > 

3 and m < 8  or (2) 8  = 2, m = l,and F is a complete graph.

Proof First assume that 8 ^ 3  and m < 8 . From Lemma 5.8, there exists a 

connected graph that contains F as an induced subgraph such that (1) dH](u) = 

dHl(v) for all m, v e V(F), (2) dHl(u ,v )<  2 for all » , v e  V( / / j ) ,  and (3) 

d(u, F) = 1 for each u e  V(f/j) -  V(F). Now by Lemma 5.9, there exists a connected 

graph H2 that contains as an induced subgraph such that M(H2) = F and 

dH2(u, v) < 2 for all u , v e  V(H2). Assume that V(G) = {Vj, v2, . . . ,  vp). Let r =

L ^ J  and t = | _ ^ J -  For 8  > 4, we define a connected graph / / 3 by

V(H3) = V(H2) u  V(G) u  { V j  . 11 <j<p,  1 < i< r)  

u  {wj, w2] u  {vl r+i 1 1 < i < r}

and

E(H3) = E(H2) u  E(G) u  {VjJVjj+i 11 <y <p, 1 < t < r  -1 }
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u  {VjVj. j | l < i ^ p )  u  {v/rv, r + 1 1 1 < i ^ p ,  t> 1 } 

u  [vitrWj1 1 < i<p,  l £ j < 2 ,  t = 0 } 

u  [vl,r+twi 1 1 — * ^  2 * ^ 1 )

u  tvl,ivl,i+l l r + l ^ / ^ r  + r -  l } u  {ŵ y 11 £ i <, 2, y e  V(H2)) 

u  [vu y \ i  = m - l ,  y e  V(H2), 2 < m < 5 - 2 )  

u  {vjy | y e V(H2), m = 1} u  {v , ^  11 < i <j  < p, 8  odd)

(see Figure 5.11 (a) and (b)). For 8  = 3, we define H3 by

V(H3) = V(H2) u  V(G) u  {v,., 11 </</>}

and

£ ( / / 3)  =  E(H2) u  E(G) u  {v^ . j 11 <  /  < p }  u  { v j y l y e  V(//2), m  =  1} 

u  tvi,lvy,l 1 1 “  * <■/ u  fv/,l* 1 1 -  * -F> * e

(see Figure 5.11 (c)).

Since dH^ x , y )  <2  for all x, y e  V(H2) and w,- ( /=  1, 2) is joined to all

vertices of H2, it follows that dH (x, y) = dH (x, y) and df# (jc, z) = d//3(y, z) for all 

jc , y e  V(H2) and z e  V(//3) -  V(H2). Thus, for « , v e  V(F), we have

dH (u)= X  dH (u,x)+  X  dH {u,x)
xe V(H2) xe  V(H3}-V(H2)

= X  dH (u,x)+  X  dH (u,x)
xe V{H2) xeV{H3)-V(H2)

= dH (u)+ X  dH ( u ,x ) = d H (y)+ X  dHJu ,x )
xeV(H3)-V(H2) xeV(H3)-V(H2)
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1,2 l.r-1
•  •  •

2 ,r - l  2,r2,2
2 0 l , r + li *  •  •

1 ,r  +1
l ,r+ 2  y l s + t - l

•  •  •

(a) The graph / / 3 with 8  ^  6 , 5 even, and m = 8  -  1.

l.r-1
i o  \ —o — o~* • • ~ o

*2 O - 4 - O — O-------- O l . r + l

l ,r+2  ^ l , r + / - l

- o —
Vp, r- 1

(b) The graph with 8  >7, 8  odd, and m = 8  -  1.

i o

2 0

(c) The graph / / 3 with 8  = 3 and m = 2.

Figure 5.11
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dHJy)  + X  dH (v,x)
xeV(H3)-V(H2)

X  dH (v,x)+  X  dH (v,x)
xe V(H2) xeV(H3yV(H 2)

= X  dH (v,x)+  X  dH (v,x) = dHJv).
xe V(H2) xeV(H3)-V{H2)

In addition, for u e  V(F) and v e V(//2) -  V(F)» it follows that

df{o(u) — dHSu) + X  dflAu, x) — djj (u) + X  d ^J y ,  x)
xeV(H3y-V(H2) xeV(H3)-V{H2)

< dH (y) + X  dH (v, x) = dH (v).
xeV{H3}-V(H2)

Assume that dH^(x) = k for all x  e  V(F). Let n = 2k. Now define a connected 

graph H by

V(H) =  V(H3) u  { u t  | l  < / <2 « )

and

E(H) = E(H3) u  {up 11 < i < 2/i, jc e  V(H2)) 

u {“2i-lwl» “2/w211 -  * -  "> 5 -  4i
u  m2iv2,1 I 1 ^  ^  8 = 3}.
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From the construction of H, it follows that dH(x, y) -  dH3(x, y ) for all x, y  e 

V(f/3). For x  e  V(H2), we have

2 n
dH{x) = dH3(x) + £  d(x, ut) = dH3(x) + 2n. 

i= l

So, for x  e  V(F) and y e  V(H2) -  V(F), we conclude that dH(x) = k + 2n = 5k and

dfj(y) > 5k. For z e V(//3) -  V(H2), it follows that

2n
dn(z) -  X  d(z, x) + Y  d(z, ui) > p(Hi) + 3n > 3 n = 6 A;.

x e  V(H3) «'=1

For 1 < i < 2/i, we have

d//(«/) = X  d(Ui' UJ> + X  d(ui, x) = 2 (2 n -  1) + X  *)
l<j*i<2n xe V{Hi) xeV(H3)

< 2(2n -  1) + 2 = 4/i = 8 it.

Thus, M(H) = F.

We now show that P(//) = G. Observe that for each v,- e  V(G) there exists 

Vj e V(G) such that dG(v;, vj) > 8 . But,

d//(vr  vy) = vf>) + rf(v,- r, vy/) + rf(v7>, vy) = 8 .

Thus, for each v,- e V(G), we have C//(v,) = 8 . Also, it follows from the construction 

of H that eH(x) < 8  for x  e V(H) -  V(G). Therefore, P(H) = G. Furthermore, it is 

clear from the construction of H that d(M(H), P(H)) = m.

Now assume that 8 = 2 ,  m = 1, and F is a complete graph. We define a 

connected graph H  by joining all vertices of F to the vertices of G. It is clear from
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the construction of H that for x  e V(G) and y  e  V(F), we have e(x) = 2 and 

e(y) = 1. From this, we conclude that M(H) = F, P(H) = G, and d(M(H), P(H)) = 1.

For the converse, assume that there exists a connected graph H  such that 

MiH) = F, P(H) = G , and P(H)) = m >  1. Observe that for jt 6  V(P(H)),

we have eH(x) < 8 . Thus, for each x  e V(P(H)) and y  e  V(//) -  V(P(H)), it 

follows that d(x, y) < 8 , namely, d(P(H), M(H)) = m < 8 . From this, it is clear that 

8 * 1 .  If 8  = 2, then eH(x) < 8  for each x  e V(H) -  V(P(//)). Thus, F  is a

complete graph. □

5.4 Connected Graphs With Intersecting Median and Periphery

Let F j, F2, and K  be graphs with K isomorphic to an induced subgraph of 

both F j and F2. We define the supergraph set S(Fj, F2; K) by

S(F1,F 2; /0  = {G | / / 1 and H2 are induced subgraphs of G, = F l and H2 = F2,

<V(//!) n  V(H2)) = K, and V(G) = V(H{) u  P(//2)}.

In Figure 5.12, we are given graphs F j, F2, and AT along with Gj, G2, and G3, 

which are the three possible ways of overlapping Fj and F2  with intersection AT; that 

is, S(Fj, F2; /Q = {Gj, G2, G3}. We now give necessary and sufficient conditions for 

the median and peripheiy of a graph to intersect.

Theorem 5.11 Let F j ,  F 2, and K  be graphs where K  is isomorphic to an 

induced subgraph of both F j and F2. Then there exists a connected graph H such 

that M(H) = FV P(H) = F2, and M(H)nP(H) = K if and only if

(1) there is some graph G e  S(Fj, F2; K) such that for each x e  V(F2), there 

exists y e  V(F2) with dG(x, y) > 3,
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PT K:

G1

>

Figure 5.12

(2) e(x) = 2 for each x  e V(F2) and Af(F2) = F j = Bf, or

(3) e(x) = 1 for each x  e  V(F2) and F2  = Fj = /if.

Proof Assume that condition (1) holds and V(F2) = {wj, m2, ... , ur). We show 

that there exists a connected graph H such that Af(//) = F j, F(//) = F2, and M(H)n  

P(H)=:K. We start by constructing sets fij and fi2  by Algorithm Partition Vertices 

with the property that Bj u  B2  = V(Fj), Bj n  B2  = 0 ,  and for each r e  Bi n  /if, 

there exists y e  V(F2) -5,- such that dG(x, y)> 3 for 1 < / < 2 (see Figure 5.13).

We define a connected graph Hq by

V(//0) = V (G )u { « ; | l< i< 4 r }

and

E(H0) = E(G) u  {«; a} 11 < / < 4r}

u  (u\x 11 < i < 4 r ,x e  VfFj) -  V(K)}
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Algorithm Partition Vertices:

If F , = K, then

Let F j = {vj}, and let F 2  = 0 .

If Fl ^ K ,  then

If Vj e  V(K), then

Let F j = 0 ,  and let F 2  = {vj}.

If Vj e  V(Fj) -  V(K), then

Let F j = {vj}, and let F2  = 0 .

For / = 2 to p,

If v,- e  V(Fj) -  V(K), then 

Let F j <- F j u  {Vj}.

If v- e  V(K), then

If there exists some x e V(F2) -  V(K) such that d//0(v,-, x) > 3, then

Let F 2  <- F2  u  {v,}.

If dH0(vi’ ^  2  fo ra 1 1  x e V(F2) -  then 

If d//0(Vj, x) < 2  for all x e F2 n  F(AT), then

Let F2 <- F2 u  {vj}.

If d//0(v,-, x) > 3 for some x e F 2  n  V(/Q, then

Let F j <— Fj U  {Vj }.

Figure 5.13

u  {iij 11 < i < r, 0 < 7  < 3} 

u  {U‘ u '4j-1 dG(ui , up > 3, i >j, ut ,Uje Bk, k =  1,2}

(see Figure 5.14).
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G

Figure 5.14

Observe that p(F2) ^  2 and, thus, p(H0) > 8 . We consider two cases for the 

order of Fv

Case 1 Assume that p(F{) =p> 2.  In addition, suppose that V(F{) = {vj, v2, . . . ,  

Vp) and d//Q(v,) = «,• for 1 <i<p.  Let n = minfn^ 11 < i < p},  and let Ai be a set

of n.- -  n + 1 new vertices, where Ai n  A • = 0  for 1 < i * j  <p. Let t = ^ l \Ai \.
i=l

We define a connected graph Hx by
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and

V(Hj) = V(Hq) u  A

E{Hy) = E(H0) u  {V/jc| 1 i <Lp,x e  At)

U {xy\x e  A,-, y e  V(tf j) -  V(G), 1 £ /<£/>}

(see Figure 5.15).

4 i +2

4 / +4'

Figure 5.15

For 1 < i <&</?, we have
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< V v/)= X  dH ^ vV x ) + X
x g V ( / /0) xeVm-VW o)

= x  + 2  d (v *’ *>
xeV (H 0) xeV (H ih V (H 0)

= dHo(Vi)+ £  rf(vi f jc) = nt + £  <*(vf, x )
x e ^ t f j W o )  x g V (// i ) - V ( / / o)

=  m£ +  £  < /(v ,., X )  +  £  ^ ( v , . ,  X )

M

= ni + (ni - n  + 1 )  + 2]£ ( M y - M  +  1 )

j* i

j=  1

=  m  -  1 +  2 ( n ^  -  / i  +  1 )  +  2 ^  ( M y - M  +  1 )

j*k

= nk + (tik -  n + 1) + 2 ^  (My -  « + 1 )
j*k

= nk + X  + X

= rt* + X  d (vk’ x>> = dHn(vk ) + X  d (v*>*)xe^H^o) xeV(//i)-V(//o)

= X  + X
X G ^ Z /o )  x g  V(H i )-V(Hq)

= X  ^ 1 (V*’X) + X  d ( Vk ’ X ) = d H ‘

=  M -  1 + 2(/lJ- -  n + 1) + 2 X  ( M y  -  M +  1 )

j*

x e  A k xe A :
j*k

XG V(Hq) xeV (H ihVm
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Suppose that ^ ( v , )  = m for 1 £ i <.p. We now define a connected graph H

by

V(H) = j) u  {wt, yt, zt 11 <: / < m)

and

E(H) = £ (//j)  u  y-Zj, Wj-z., x-y,-11 < i j  < m}

u  [xwfr xzi | x  € fij, 1 < i< m )  u  {xc,-, xyt \x  e  fi2> 1 < / < m}

U  {“41-3^/’ m4j-2*/’ U4 i- \yj '  “ 4izj  I 1 -  * -  r ’ 1 ^  ^  m )

(see Figure 5.16).

For 1 < i < p, we compute

m
dH(Vi) = £  /̂/<V/» *) + £  + V  + yP  + d (v i’ zj ^

xeV(Hi) j= 1

-  ^  dH(Vi,x) + 6m = £  dHl(vit x) + 6m
JceV(//i) xeV(Hi)

~ dH\<vd  + 6 m = m + 6m = 7m.

For y  e  V(H{) -  V(Fj), we have

m

dH<y) = 2  + X  [d(:y’ wy ) + d(;y’ ^  + d (y > yP  + zy)]
xe V(H\) j=  1

> d(y, x) + 7m> p(H j) -  1 + 7m >  7m, 
xeV(Hx)

where p(//j) > p(//0) ^ 8 . If 1 <j < m, then

d(wj) = £  W(wy, w,) + d(wj, x t) + d(wj, y () + d(wj, z,)] + d(wj, Xj)
1 <fcj<m
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Figure 5.16

+ d(wj, yj) + d(wp Zj) + £  d(wj, x)
xeV (H i)

= 7 (m -  1)+ 1+ 2 + 1 +  £  d(wj,  x)
xeV (H i)

> 7m -  3 + p(H{) > 7m.

By a similar calculation, it follows that d(xj) > 7m, d(yj) > 7m, and d(zj) > 7m for 

1 < j  < m. Thus, M(H) = F y  The digraph H  was constructed in such a way that
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e^(x) = 3 and eH{y) = 2 for x  e  V(F2) and y e V(H) -  V(F2). Therefore, P(H) = 

Pl-

Case 2 Assume that p(Fl) = l. Suppose that dWQ(Vj) = m. We define a connected 

graph H  by

V(fl) = V(ff0) u < y i, 21- | l S i S m )

and

E(H) = £(//„) u  {v ,y ,- , v,z,. 11 < i < m)

I uii-2 zj ’ u4i-tzj. “4 ,-)’yl 1 S i S r ,  1 sy  <m |

(see Figure 5.17).

By calculations similar to those in Case 1, we find that

d//(Vj) = 3m

and

dH(x) > 3m for x e  V(//) -  {vj}.

Thus, M(H) = F j. Again, by the construction of H, we have eH(x) = 3 and eH(y) = 

2 for x e  V(F2) and y e V(H) -  V(F2); that is, P(H) = F2.

If conditions (2 ) or (3) hold, then it is clear that the graph H = F2 has the desired 

properties.

We now prove the converse. Suppose that there exists a connected graph H 

such that M(H) = F j, P(H) = F2, and M(H) n  P{H) s  K. If there exists x e  V(F2) 

with eF2(x) = 1, then all vertices in P(H) have eccentricity 1; that is, P(H) = H = F2.
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Figure 5.17

In addition, each vertex of H  has the same distance. Thus, M(H) = H = F l and 

statement (3) holds.

In the next case, we assume that F 2  has no vertices of eccentricity 1. 

Furthermore, suppose that for each G e  S(F1, F2; K), there exists x  e  V(F2) such 

that for each y  e  V(F2), we have dG(x, y) < 2. Since

diam H < max{dG(x, y) |x,y e  V(F2), G e  $(FX,F 2,K)},

it follows that e(x) = 2 for all x  e V(P(H)). In addition, for each y e V(H) -  

V(P(H)), we have e(y) = 1 and y e V(M(H)). So all vertices of M(H) have
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eccentricity 1 or no vertices of M(H) have eccentricity 1. Since K  is an induced 

subgraph of F2, it has no vertices of eccentricity 1, which implies that all vertices of 

M(H) have eccentricity 2. Thus, H  has no vertices of eccentricity 1 and P(H) = 

H = G = F2. Consequently, F ^ = K  and M(F2) = M(H) ~ F j, which completes the 

proof. □
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