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MAXIMAL AND MAXIMUM INDEPENDENT SETS IN GRAPHS

Jiugiang Liu, Ph.D.

Western Michigan University, 1992

A maximal independent set of a graph G is an independent set which
is not contained properly in any other independent set of G. An independent
set is called mazimum if it is of largest cardinality. Denote ¢(G) to be the
number of maximal independent sets of G. These special sets and the parameter
i(G) have interested many researchers leading to a number of properties and
results. One of these is the determination of the maximum number of maximal
independent sets among all graphs of order n, and the extremal graphs. In this
investigation,we develop new properties for the number of maximal independent
sets i(G) and the number of maximum independent sets ¢,(G), as well
as determine the largest number of maximal and maximum independent sets
possible in a k-connected graph of order n(with n large) and characterize the
respective extremal graphs. Finally, we determine the corresponding values for

bipartite graphs and connected bipartite graphs, and characterize the extremal

graphs.
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CHAPTER I

INTRODUCTION

1.1 Definitions and Notations

Let G be a graph. A subset V' C V(G) is independent if no two
vertices in V' are adjacent. An independent set V' is mazimalif V' U {v}
is not independent for any v € V(G) —V'. A mazimum independent set
is an independent set of largest cardinality. The graph G is well-covered if
every maximal independent set is also maximum (see [12]). A cligue of G
is a complete subgraph which is not contained properly in any other complete
subgraph.

Now, for a graph G, let I(G) be the set of maximal independent sets

of G and i(G) = |I(G)|. Set

f(n) = max{i(G): G is a graph of order n},
b(n) = max{i(G): G is a bipartite graph of order n},
fi(n) =max{i(G): Gisa k-connected graph of order n}, and

br(n) = max{i(G): G is a k-connected bipartite graph of order n}.

Similarly, let I,(G) be the set of maximum independent sets of G and

1
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im(G) = |Im(G)|. Set

F(n) = max{im(G): G is a graph of order n},
B(n) = max{in(G): G is a bipartite graph of order n},
Fi(n) = max{i;n(G): G is a k-connected graph of order n}, and

Bi(n) = max{im(G): G is a k-connected bipartite graph of order n}.

For convenience, we use MIS to represent maximal independent set and kG to
denote the disjoint union of k copies of a graph G. Define the graph H,

with n vertices as follows:

tI{;; if n =3t
H,={ (t—-1DK;UKjor(t—1)K; U 2K, ifn=3t+1

tKa UK2 1fn=3t+2

1.2 History and Known Results

In 1960, Miller and Muller [10] solved the problem of finding a family
of maximum cardinality which consists of subsets satisfying certain properties.
They showed that their subset problem is equivalent to finding the graphs on
n vertices which have the greatest number of cliques. Notice that C is a
clique of a graph G if and only if V(C) is a MIS of the complement G

of G. Consequently, the authors solved their original problem by finding the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



extremal graphs on n vertices which have the maximum number f(n) of
MIS’s. Independently, in 1965, Moon and Moser [11] obtained the same result
in answering the following questions raised by Erdos and Moser: What is the
maximum number ¢(n) of cliques possible in a graph with n vertices and

which graphs have so many cliques? Hence they obtained the following two

equivalent propositions.
Proposition 1.1. If n > 2, then
3¢ ifn=23t
fr) =4 4-371 ifn=3t+1

2.3 ifn=3t+2,

and the only graphs of order n which attain f(n) maximal independent sets

are the graphs H,.

Proposition 1.2. For n > 2, the maximum number of cliques among all

graphs of order n is

¢(n) = f(n)
and the only graphs of order n with c¢(n) cliques are H,.
Proposition 1.1 has an immediate corollary.

Corollary 1.1. For a graph G of order n, i(G) < 3*/3,

Since these results have appeared, many other problems have been for-

mulated. For example, given a class ¥, one may ask what is the maximum
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number of cliques (or MIS’s) possible in a graph of order n in ¥ and which
graphs in ¥ have so many cliques (or MIS’s).

For cliques, Hedman [4] found the maximum number in dense graphs.
Fan and Liu [1] determined the maximum number of cliques possible in a k-
connected graph of order n for each £ > 1.

For MIS’s, Wilf [14] found the maximum number among all trees on n

vertices (with Sagan [13] later providing a short graph theoretical proof).

Proposition 1.3. The maximum number of MIS’s among all trees on n ver-
tices is
2%5+ if n isodd
T(n) =

22';—2+1 if n iseven

and the only trees of order n which have so many MIS’s are T, shown in

Figure 1.1.

nis odd n is even

Figure 1.1. The Trees T,.

In 1987, Fiiredi [2] derived the following result.
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Proposition 1.4. Suppose G is a graph of order n. If G % H,, then
i(G) < g(n), where

( f(n—=1) ifn<5

8:32 ifn=3t>6

g(n) = <
11.-32 ifn=3t+1>6

( 16-3'""2 ifn=3t+2>6.

In the same paper Fiiredi also determined the maximum number fi;(n) of
MIS’s possible in a connected graph of order n for n > 50. Independently,
Griggs, Grinstead, and Guichard [3] found fi(n) for all n, and characterized

the connected graphs of order n  which have fi(n) MIS’s.
Proposition 1.5. For n <5, fi(n)=n; for n2>6
2.3t71 4 2t-1 ifn=3t
fi(n) = { 8 +2¢1 fn=3t+1
4.37143.272 ifn=3t+2,
and the only connected graph of order n > 6 which has fi(n) maximal
independent sets, denoted by H; n, is shown in Figure 1.2.

Here, we study some properties for the number, i(G), of MIS’s of a
graph G. Then we determine the maximum number fx(n) of MIS’s possible

in a k-connected graphs of order n and the extremal graphs for large n.
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n-1=3t 3t+1 3t+2

Figure 1.2. The Graph Hj ;.

We also derive the maximum number of maximum independent sets
among all k-connected graphs of order n as well as the extremal graphs.
Finally, we develop the corresponding results for bipartite and connected bipar-
tite graphs, respectively.

The maximum number of MIS’s among all graphs in a certain class is
useful in calculating the complexity of algorithms which cycle through all MIS’s.
For example, Lawler [7] gave an algorithm for determining the chromatic number
of a graph which runs through all MIS’s, and it is shown that the running time
of that algorithm is Olng(1 + 33)"] for graphs of n vertices and ¢ edges.

The appearance of 33 derives from Proposition 1.1.
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CHAPTER II
CONSTRAINTS FOR INDEPENDENT SETS

2.1 Constraints for The Number of Maximal Independent Sets of a Graph

Given two functions f(z) and g¢(z), if f(z)/g(z) — 0 as z — oo,
then we say f(z) = o(g(z)), and if there exist positive constants a,b,c¢ such

that a < Ig(%;-l <b for |z| > ¢, then wesay f(z) = O(g(z)).

Given a family ® = {G: G is a graph with property P}, we define

the function Ag: Zt — Z} by
Ag(n) = max{A(G): G€® and |V(G)| =n}.

Similarly, we define
t¢(n) = max{i(G): G € ® and |V(G)| = n},
ip(n) = max{in(G): G € ® and |V(G)| =n}, and
23(n) = min{{(G): G € ® and |V(G)| = n},

where #(G) denotes the length of a longest path of G.

From Proposition 1.5 we see that the maximum number fi(n) of MIS’s

possible in a connected graph G of order n satisfies i(Hy,n) = fi(n) =
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O(3™/3) and the extremal graph H;, shown in Figure 1.2 has maximum

degree A(Hjy,n) = O(n). In fact, this is a necessary condition as the next
result indicates.
Theorem 2.1. For a family ® = {G: G is connected}, if Ag(n) = o(n),
then ig(n) = o(3"/?).

To prove this property, we need the inequality in the proof of Theorem

2.1 in [2], for convenience, we define the number of MIS’s for the empty graph
as i(¢) = 1.

Lemma 2.1. For any graph G and any v € V(G),
#G) <i(G —v)+iG —v— N(v)).

The next lemma generalizes Lemma 3.3 in [2], which states:

Proposition 2.1. Let G be a connected graph with n vertices and A(G) < 6.

Then i(G) < 351.0097"+3,

Lemma 2.2. For a given constant C € Z%, there exists a real number
t > 0 such that if G is a connected graph of order n > 3 with maximum

degree A(G) < C, then i(G)<3"/3 . (1+¢)~"+3,

Proof. Given a constant C € Z%*, let ¢ be a real number such that

0 < t < min{0.009, [3!/3 - 5/7]5¢=% — 1}.
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We now prove #(G) < 3%/% . (1+1¢)~"*+? by inductionon n. For n <3, it
is easy to check the result. Assume the result for any connected graph of order
less than n (with n > 4) which has maximum degree at most C. Let G
be a connected graph of order n with A(G) < C. If A(G) £3, thenit

follows from Proposition 2.1 that
i(G) < 37/3(1.009)~"+3 < 3n/3(1 + ¢)~"+3,

So we assume A =A(G)>4. Let v € V(G) suchthat deg(v) =A. By

Lemma 2.1, we have
#(G) <G - v)+ G —v— N(v)).

Suppose G;,Gz,---,Gy are the components of G —v and p; = |V(G;)|
for 1<i<k, andlet Hy,Hs, -+ ,H, bethe components of G — v — N(v)

with hj =|V(H;)| for each j. Then it follows from the induction hypothesis

that

k r
i(G) < H i(G) + [ i(H;)
i=1 j=1

k r
S H 3pj/3(1 + t)—pj+3 + H 3’1,‘/3(1 + t)—hj +3

j=1 Jj=1
= 3(13—1)/3(1 + t)—(n—1)+3k + 3(n-1—A)/3(1 + t)—(n—l—A)+3r.
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10

Since k<A and r <A(A-1), we have

z(G) s3(n—l)/3(1+t)-—(n—l)+3A+ 3("—1—A)/3(1+t)—(n—l—A)+3A(A—l)

S3n/3(1+t)—n+3 ] [(1+t)3A—2.3-1/3+(1+t)3A’—2A.3—(A+1)/3].

From the choice of ¢ and the assumption 4 < A < C it follows that
(1 + t)3A—2 . 3—1/3 S (1 +t)30-—2 . 3-1/3 < 5/7
Now raise the inequality to the A power and multiply by 3 to get

(1+1)B38-D48. 38303 £ 3.(5/T) < 1.

Thus
i(G) <3P+ 1) 3. (5/7+373) < 3"/3. (1 1) "3

as required. This completes the proof of the lemma. O

Lemma 2.3. There exist a positive integer M and another positive integer
C dependent on M such that if G is a connected graph of order n with

maximum degree A > C, then i(G)< 3*/3.(1+ 5x) .

Proof. We first choose a positive integer M such that a = e¥/M.371/3 < 1,
then choose a positive integer C such that a4 o€ - 3713 < 1, %—% > 1,

and gh < A = min{0.009, (31/3 . 5/7)57177 — 1}. Now we use induction to
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11
prove i(G) < 3"/3.(1+ 3}5)™"*® for any connected graph G of order n
with maximum degree A > C. For n = C +1, any graph G of order
C + 1 with maximum degree C must satisfy (G) < i(G —v) + 1, where
deg(v) = A(G) = C. From Corollary 1.1 we obtain #(G) < 3(®*~1/341. Since

(1+1/z)* < e for any integer = >0 and e!/M < 31/3 it follows that

1 1
1/3 l C _. ql1/3, | CM.(1/M)

> 31/3 . e—l/M > 1,
which implies

1 (c+1)+3

. c c 1 c+1
z(G)S3T+153T(1+m)S3 3 -(1+CM)

as required. Assume the result for any connected graph of order less than n
(with n > C' + 2) which has maximum degree at least C. Now suppose G
is a connected graph of order n such that A = A(G) > C. Note that from
Lemma 2.2, for any ¢ such that ﬁ <t< A, if R is a connected graph

of order r > 3 with maximum degree at most C, then
1 1
; < gr/3., —r+3 < gr/3 -r+3 < gr/3 —r+3
i(R) <3 . (1+1) <3P+ 537) <3 -(1+ 277)

Also note that if a connected graph R has order r <2, then i(R) <372 <

3r/3 . (14 515) 3. Together with the induction hypothesis, similar to the
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proof of Lemma 2.2, we obtain the inequality

1
: < 3gn/3. —n+3
‘z(G)__3 (1+MA)
Ja+ ﬁ)m—z 3718 4 (14 A_JIK)(aA—z)A . 3-(a+1)/3)
1
< 3n/s . —n+3
=300+ 37a)
@+ Mlji)m .371/3 4 (1+ _M}_A_):;A’ _3—(A+1)/3]
1
-<_ 3"/3 . (1 + ‘M‘Z)—"+3 . [63/M . 3—1/3 + (CS/M . 3—1/3)A . 3—1/3]

1 1
< n/3 —n+3 | C  q—-1/3 < n/3 —-n+3
S B (L4 ) (a a3 <3 (L 1)

as required. Therefore the Lemma follows. OJ
Proof of Theorem 2.1. Let G be a connected graph of order n in &
such that i(G) = i¢(n). By Lemma 2.3, there exist two positive integers C
and M suchthatif A =A(G)2>C, then

1

)—n+3
MA

i(G) <33 .(1+
which implies i(G) = o(3"/%) since A(G) < Ag¢(n) = o(n) and (1 +
515) M2 < (1+ 37z)"MC. Butif A(G) < C, then Lemma 2.2 implies

i(G) = o(3™/3). Therefore the theorem holds. O

The following example shows that Theorem 2.1 is best possible.

Example 2.1. For any constant integer k > 0, let n = (3n; + 1)k and

let G be the connected graph of order n shown in Figure 2.1. Then it is
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13

easy to see that G has maximum degree ny +2 = (n — k)/(3k) +2 and

i(G) = 0(373).

Figure 2.1. A Graph G of Order n With i(G) = O(3%).

Notice that the extremal graph H, for f(n) has no path of length
greater than 3 and the extremal graph H,, for fi(n) shown in Figure 1.2

has no path of length greater than 7. This led Erdés to suggest the following
property.
Theorem 2.2. If ® is a family of graphs such that £4(n) — oo as n — oo,
then ig(n) = o(3"/3).

We will prove the following stronger theorem.

Theorem 2.3. There exists a real number t >0 such that if G is a graph

of order n, then

i(G) < 37% - (14)7H%,
where 1 is the length of a longest path of G.

To prove Theorem 2.3, we need the following identity in the proof of

Theorem 1 in [11]. For our purpose, we have complemented the clique version
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to the MIS version.

Proposition 2.2. For a graph G and z,y € V(G), if « and y are

adjacent, then

i(G(z;y)) = i(G) +i(y) — i(z) + B(),

where G(z;y) denotes the graph obtained by removing the edges incident with
z except the edge zy and replacing them by edges joining = to each vertex
of N(y)—{z}, i(z) denotes the number of MIS’s of G containing z, and

B(z) denotes the number of MIS’s in G — xz which are contained entirely in

G -z — N(z).

We also need a basic fact for (G).

Fact 2.1. If H is an induced subgraph of a graph G, then i(H) <i(G).

Proof of Theorem 2.3. Choose t > 0 such that (1 +t)?-g(n) < 3"/3
and (1+41)% [371/3 4 (1+1)-37%/3] < 1. We proceed by induction on n.
For n < 5, the result is easy to check. Assume the result for all graphs of
order less than n (with n > 6). Now let G be a graph of order n and
le¢ P = vyvp---vuie; be alongest path of G of length . For 1<5, it

follows directly from Corollary 1.1 and Proposition 1.4 that

i(G) <33 . (14¢)713

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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since (1+1)%-g(n) <3"/3. Suppose [>6. By Proposition 2.2, we have
i(G(z;y)) = i(G) +i(y) — i(z) + B(z).

Now, for i(v3) < i(vs), welet z=v; and y=uvy; for i(v3) > i(ve), we let
z=v4 and y =v3. then i(G) < i(G(z;y)). Assume i(v3) < i(vs). Then
vs has at least three neighbors v3, v4, and wvg in G(z;y), G1 = G(z;y)—vs
has a path of length [ -5, and G2 = G(z;y) — {vs,vs4,vs,v6} has a path of

length ! —6. By Lemma 2.1 and Fact 2.1, we have
(G(z;y)) < i(G1) +i(G(z;y) — vs — N(v5)) <i(Ghr) +(G2).

Then it follows from the induction hypothesis that
i(G) S i(G(z;y)) < 3N (1 44)7h*8 4 3(n=0/3 (1 4 g)~lats
< FM=D/3 (1 4 )~ HEHS | g(n=)/3 (1 4 g)=IH6+3
=373 (1 4 4) 3 [(1 4 )7 - 3713 4 (1 4+ 1)8 . 374/3]

< 33 (1 4 4)=H3,
where I; is the length of a longest path of G; for j =1 and 2. For
the case i(v3) > i(v4), it follows that wve has at least three neighbors vy, 3,
and v4 in G(a;y), G1 = G(z;y) —ve has a path of length | -2, and
G: = G(z;y) — {v1,v2,v3,v4} has a path of length [ —3. Similar to the

above, we obtain

i(G) <33 . (141)~43,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15



16

Therefore, the theorem follows. O

Given any constant C, let¢ G = K¢y U Hp_c—1. Then G hasa

longest path of length C and i(G) = O(3"/3). This shows that Theorem 2.2

is best possible.

2.2 Constraints for the Number of Maximum Independent Sets

First of all, there is a similar inequality to Lemma 2.1 here, where we

define i,(4) = 1.

Theorem 2.4. For any graph G and any v € V(G),

im(G) € im(G — v) + im(G — v — N(v)).

Proof. For any maximum independent set V' of G, if v € V', then V' is
a maximum independent set of G —v; if v € V’, then V'—v is a maximum
independent set in G —v — N(v) unless G —v — N(v) = ¢. Therefore the

theorem holds. O

Notice that for any graph G, im(G) < ¢(G). From Theorems 2.1 and

2.2 the following two theorems follow directly.

Theorem 2.5. For a family ® = {G : G is connected}, if Ag(n) = o(n),

then il (n) = o(3"/3).
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Theorem 2.6. If ¢ is afamily of graphs such that £g(n) — oo as n — oo,

then i%(n) = o(3"/3).
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CHAPTER III

MAXIMAL INDEPENDENT SETS

3.1 Maximal Independent Sets in k-Connected Graphs

We begin this section by defining the k-connected graphs Hi, on n
vertices and the function m(n) such that ¢(Hrn.) = mg(n) for each

k> 2 and n—k > 16.

Let
342041 if n—-2=3¢
mo(n) = { 4-3"7143.214+2 if n-2=3t+1
2.3t 4 ottl if n-2=3t+2,

and define H;, to be the graph shown in Figure 3.1.

n-2=3t 3t+1 342
Figure 3.1. The Graph Hj .

18
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Let

3 +3.21 4+ 4 if n—-3=3t
ma(n) =< 4-3714+9.207247 if n-3=3t+1

2.3t 4+3.2¢ if n—-3=3t+2,
and define Hj3, to be the graph shown in Figure 3.2.

3t+1 3t+2

Figure 3.2. The Graph Hj,.

Let
34+3.21 415 if n—4=3t
ma(n) = 4-37149.2072441 if n—4=3t+1
2.3 4+3-20+4 if n—4=3t+2,

and define H;, to be the graphs shown in Figure 3.3.
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where <(vl 19, Yy }>
contains at most one edge.

n-4=3t 3t+1 3t+2
Figure 3.3. The Graphs Hj ,.
For ¥k 2 5, n—k > 16, and n—k# 2mod3, let
myn—k+4)+k-4 ifk<9
mi(n) = { f(n—k)+ f(k)+3-2""1+14 ifk>10 andn—k =3t

fn—k)+ f(k)+9-2""2440 ifk>10 andn-—-k=3t+1

and define Hi, to be the graphs obtained from Hy k44 by adding
k — 4 vertices vs,vg, ' ,vx and for k < 9, joining each new vertex to
every other vertex; for % > 10, joining each new vertex to every vertex in
Hin—k+a — {v1,v2,v3,v4}, then adding some edges between v; and v;
such that the induced subgraphon A4 = {vi,---,vx} isisomorphicto Hj

and {v;,v2,vs3,v4} is independent.
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For k>5 n—k2>16, and n—k=3t+4+2, let

mi(n) = f(n — k) + f(k) +3-2° +2

and define Hj , to be the graphs obtained from Hsn_x45 shown in Figure
3.4 by adding k —5 vertices vg,v7,---,vx and joining each new vertex to
every vertex in Hs n—k4+5 — {v1,***,v5}, then adding some edges between v;
and v; so that the induced subgraphon A = {v1,vz,--,vx} isisomorphic

to Hp.

Figure 3.4. The Graph Hjs3p41.

Then it is easy to check that Hy , is k-connected and i(Hgn) = mi(n)

for each k& > 2. Hence the next lemma follows immediately.

Lemma 3.1. Foreach k>2 and n—k > 16, fi(n) > mi(n)> f(n~k) =

0(3%).
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We will prove that fx(n) = mg(n) for 2< k<4 and k > 10. To

do that, we first develop two structure properties for the extremal graphs for
fi(n).
Theorem 3.1. Given an integer k > 1, there exist positive constants ny

and C such that for n > ng, if G is a k-connected graph of order n and

i(G) = fr(n), then G has k vertices of degree at least C -n.

Proof. Suppose, to the contrary, that the theorem is not true. Then there exist
an integer k£ > 1 and a k-connected graph G of order n > np such that
i(G) = fi(n) and for any constant C > 0 there are at most &k — 1 vertices
which have degree at least C -n. Now, choose a constant Cp so that the
number ¢ of vertices with degree at least Cpy - n is maximized. Of course,
we have t < k— 1. Let wvy,vq,---,v, be the vertices of G such that
deg(v;j) 2 Co - n for each j. Then from the choice of Cp we conclude that

A(G - {v1,v3, -+ ,v1}) = o(n~t). By applying Lemma 2.1 ¢ times, we obtain
(@) <i(G—v)+i(G — vy — N(vy))
<G — v —v2) + 4G — {v1,v2} — N(v2)) + (G — v1 — N(v1))
<G — {v1,v2,++ ,ue}) + (G — v1 — N(v1)) + (G — {v1,v2} — N(v2))
+ oo+ 4G~ {v1,v2,+ ,v¢} — N(v¢)).
Notice that each i(G—{v1,v3, - ,v;}—N(v;)) < f([n=Co-n]). Consequently,

we have

i(G) Si(G = {vi,vz,-+ yve}) +E- f([n — Co - ).
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Since t< k-1 and G is k-connected, G' = G — {v1,v2,+-,v¢} s
connected. Recall that A(G') = o(n - t), it follows from Theorem 2.1 that
i(G') = o(3(*=9/3). Thus
i(G)-37"* <i(G') -3 4+t f([n—Cop-n])-37"/3

<HG')-373/m 4 ¢.3Mm=Conl/3.3-n/3 _, 0 as n — oo,

which contradicts Lemma 3.1. Therefore the theorem follows. [

From Theorem 3.1 our second structure property of the extremal graphs

for fr(n) follows.

Theorem 3.2. Given an integer k > 1, there exists a positive integer ng
such that if G is a k-connected graph of order n > ng with (G) = fi(n),

then G — {v1,v2, + , vk} = Hy—g, where {v1,vs2,---,v} C V(G).

Proof. First, by using Theorem 3.1, we obtain a constant C >0 and &k
vertices vy,vg, -+ ,vx in V(G) such that deg(v;) > C:n for each j. Then,

applying Lemma 2.1 k times similar to the proof of Theorem 3.1, we have
{(G) < i(G —{v1,v2, - ,ve}) + k- f([n — C-nl).

If G'=G~-{v1,vo, - ,0r} ¥ Hn—k, then it follows from Proposition 1.4 that

G) < g(n—k)+k- f([n—-C-ni)

< f(n—k) < fr(n) when n >ng for some ng € Z7,
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contradicting i(G) = fr(n). Therefore G — {v1,v2,++ ,vx} = Hp_¢. O

In the following discussions of this section, we assume G is a k-connected
graph of order n with #(G) = fix(n). Then Theorem 3.2 tells us that there

exists n}) € Z* such that for n > nj
G =G—-A2H, 4,

where A = {vy,v2,--- ,vx} C V(G). That is, if we let G1,G2,---,G, be
the components of G' with |V(G1)| < |V(G2)| £ -+ £ |V(G,)|, then for
n—k =3t r=1t and each G; isa triangle; for n—k = 3k+1, either r =¢{,
G, = K4, and the other G,’s are trianglesor r=1©t+1, G = G2 = Ko,
and the other Gj’s are triangles; for n—~k=3t+2, r=t+1, G1 = Ko,
and the other G;’s are triangles.

To determine G, we need to explore the structure in between < A >
and G'. For that purpose, we divide the set I(G) of MIS’'sof G into three
disjoint subsets: I(G) =1, UL, U I3, where ) = {S: S € I(G) and § C
VG)}, L = {S: S € I(G) and S € A}, and I; = I(G)—- (I U D),
so i(G) = [Ii] + ||+ |I5]. By Proposition 1.1, we have [I;| < f(n—k)
and |I;| < f(k). Our goal is to develop an upper bound for |I3]. Then we
prove that for k > 10, #(G) is maximized only if each |I;| attains its
upper bound.

We first list some basic facts and properties. Since G is k-connected,

we have an immediate fact.
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Fact 3.1. Let p, be the number of non-adjacent pairs with one vertex in A

and the other one in V(G'). Then

6t if n—k=3t
Pn<({ 6t4+6 if n—k=3t+1

6t+2 if n—k=3t+2.

Property 3.1. Given S C A, then for each j, either N(S) N V(G;) =
V(Gj) or [N(S) N V(Gj)l = |S].
Proof. Suppose, to the contrary, that there exists j between 1 and r such
that

N(S) n V(G;) # V(Gj) and |N(S) N V(Gj)| < |S].
Then A' = (A-S)U(N(S) N V(G;)) isacutsetof G with |A'| < |A| = &k,
contradicting the assumption that G is k-connected. Therefore the property

holds. O

From this property, it is easy to see that each wv; in A has at least
one neighbor in each component G;. Notice that |V(G;)| < 3 for each j
when n—k % 1mod3 and |V(G;)| <4 foreach j when n—k = 1mod3.

Property 3.1 has the following two immediate consequences.

Property 3.2. For n—k # 1mod3, if S € I(G) and |S N A| = 3,
then S € I;. Furthermore, for each pair v; and wv; in A, thereis at

most one MIS in I3 which contains v; and vj.
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Property 3.3. For n—k=1mod3, if S € I(G) and |S N A| > 4, then

S € I. Furthermore, for each set X C A, if |X|=2, then there are at
most two MIS’s in Iy which contain X; if |X|=3, then there exists at

most one MIS in I3 which contains X.

Denote I3(v;) = {S: S € I; and S N A = {v;}} and
i3(vj) = |I3(vj)|. Then from Properties 3.2 and 3.3 the following property

follows directly.

Property 3.4. For k > 2, we have

k
Z;=1 ia(vj)+( ) if n—k#1mod3
2

k k
E;=li3(vj)+2-( ) + ( ) if n—k=1 mod3.
2 3

Now, for each v; € A, let nj(v;) be the number of components of

|| <

G' of order at least 3 which have exactly j neighbors of v;. The following

fact is easy to see.

Fact 3.2. Foreach v; € A,

(2m)+l if p_k=3t+1, G, = Ky,
and |N(v;) N V(G,)| =2
ia(vj) < 3-2m0-1 if p—k=3t+1,G, = Ky,

and |N(v;)NV(Gy)| =1

| 271 (%) otherwise.
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Property 3.5. For k > 1, we have

n—k if n—k#*2mod3

n—k—-—2 if n—k=2mod 3.

k
an(va) < {

Proof. To prove this property, it suffices to prove that for each component Gj,
there are at most |V(G;)| verticesin A which have exactly one neighbor in
G;. Suppose, to the contrary, that there exists a component &; such that
there are at least |V(G;)|+1 verticesin A which have exactly one neighbor

in Gj. Then there are two vertices in A, say v; and v, such that
IN({v1,02}) N V(Gj)| = 1< [{v1, v2}],

violating Property 3.1. Therefore, the property holds. O

Property 3.6. There exists ng € Z17 suchthatif n > nyp and n—k =

3t+1, then G' = G — A must be (t—1)K; U IK,.

Proof. Let n—k = 3t+1. Suppose G’ is not isomorphicto (¢t—1)IK; U I{y,
then G' = H,_; implies G' must be (t—1)K3; U 2K,;. For k=2, it

follows from Fact 3.2 that i3(v1) + v3(v2) < 271 4 21 which implies

(G) = |hl+ L+ < f(n—2)+2+ (@a(v1) +i3(v2) +1)

< f(n=2)+2"+3 < my(n) < fo(n),
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contradicting the choice of G. For k >3, let Dy = {(z1,-- ,zx) € Z¥:

Z;f:l z; < 3t+1and 0 < z; <t—1}. Then from Fact 3.2 and Properties 3.4

and 3.5 it follows that

k

) is(v))

j=1
< max{2®! 42 + .-+ + 2% : (31, @) € Dy}

<3.271 4 92 + k—4 and

k k k
i(G) < f(n—k)+ f(k)+ (Z is(v;) + 2- (2) + ( ))

=1

W

k k
5f(n—k)+f(k)+3-2"l+k+12+2-( ) + )
2

this implies

i(G) < mi(n) < fr(n) when n > ng for some ng € Z¥,

contradicting the choice of G. Therefore, the property holds. O

From now on, we assume n islargeenoughsothat G' = G—A & H,_;
and G' = (t—1)K3 U K4 for n—k = 3t+1. In order to establish further
propertiesof G, we need the following remark. For convenience, we call a vertex
v;i in A abad-vertexif [N(v;) N V(G,)| < |V(Gj)| foreach 1 < j <
Then, for each bad-vertex v;, S; = {X — {v;}: X € I3(v;)} € I(G') and
|Sj| = ¢3(vj). Furthermore, for any two bad-vertices v; and vj, [SiNS;| <2.

Hence we have the following remark.
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Remark 3.1. The following claims are true:
(i) f A hasa bad-vertex v;, then || < f(n—k) — #3(vi).

(ii) If A has two bad-vertices, say v; and vz, then

|Lh| £ f(n—Fk) — [i3(v1) + é3(v2) — 2]

Next, we first establish the equality fo(n) = mga(n) when n islarge

enough.

Property 3.7. For k = 2, A has no bad-vertex and
2t ifn-2 = 3t
i3(v1) + d3(v2) {3 -21 ifn—-2=3t+1
2t+1 if n—2 = 3t+2.
Furthermore, for n — k = 2 mod3, the equality holds only if G = H,,. For
n—k %2 mod 3, the equality holds only if either G = H; n, or v; is adjacent
to vz, ni(v1) = ni(ve) = t—1, and foreach j =1 or 2 there exists a

triangle component Gy; such that N(v;) 2 V(Gy;).

Proof. To prove this property, it suffices to prove that A has no bad-vertex.

If both v, and v, are bad-vertices, then it follows from Remark 3.1 that
(G) = |h|+ || + |Is]
< f(n—2)—[ia(v1) +43(v2) = 2] + 2 + [ia(v1) +é3(v2) + 1]

= f(n—2) + 5 < ma(n) < fa(n),
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contradicting #(G) = fa(n). Suppose there is exactly one of wv; and v

which is a bad-vertex, say v;. Then, by Fact 3.2 and Remark 3.1, it follows

that || £ f(n—2) — i3(v1) and
2t-1 if n—-2 = 3t

is(v;) <{ 3.2 if n—2 = 3t+1

2t if n—-2 = 3t+2.

Hence
i(G) < f(n—2)—i3(v1) + 2+ [i3(v1) + i3(v2) + 1]

=f(n—2)+3+i3(‘02) < mz(n) < f2(n)’

contradicting the choice of G again. Therefore A has no bad-vertex and the

property holds. (J
From Property 3.7, the next theorem follows easily.

Theorem 3.3. There exists ng € Z1* such thatif n > ng, then

f2(n) = ma(n)

and the only 2-connected graph of order n which has  fa(n) maximal

independent sets is Hj ,.

We now assume % > 3. In order to determine fir(n), we need more

properties of G.
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Property 3.8. For n—k = 3t, there exists no € Z% such that if
n 2 ng, theneach ny(v;) < t—1 for 1 < j < k.
Proof. Without loss of generality, assume ni(vy) > ni(ve) 2 -+ 2 ni(ve).
If ni(v1i) = ni(vz) = ¢, then v; and v, are bad-vertices , so it follows

from Remark 3.1 that
] < f(n—k) — [ia(v1) + da(v2) - 2]

Applying Fact 3.2 and Property 3.5, we obtain
k

> is(v))

=3
k

< max{2® + ... 4 2°:eachz; €2, 0<z; <tand Z rj <t}
=3
< 2 + k-3.
Thus, by Property 3.4,

#(G) = |hL|+ L]+ 1]

k k
< f(n= k)= lis(or) +i3(02) =2) + S(R)+ ) ialvy) + (2)

J=

k
< fln—k) + f(k) + 2" + k-1 + ( )

2
< mi(n) £ fi(n) for n > ny € 27,

contradicting the choice of G. If ni(vy) = ¢t and n3(v2) < ¢, thenit

follows from Remark 3.1 that

II]I S f(n—k) - ia(vl).
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Similarly, we have

k
Y ds(ws) <2270 + 22 4 k-4 and
=2
i(G) < mg(n) < fi(n) for n > no € Z,

contradicting the choice of G again. Therefore the property holds. O
Property 3.9. For n—k = 3t+4 1, thereexists ngo € Z%t such that if

n 2> ne, then ny(v;) < t—1 for each v; with only one neighbor in

G.(= K4) and ni(vi) < t—2 for each v; with exactly two neighbors in

Gr.
Proof. Without loss of gererality, assume that vy, ---, v, are verticesin A
which have exactly one neighbor in G, and wvz41, -+ , vz4, are vertices

which have exactly two neighborsin G,. Then n3(v;) < t for ¢ < z and
ni(vj) < t—1 for z+1 < j < z+y. Let h be the number of vertices
in {v1, +++, vz4y} on which the values of function n; attain their upper
bounds. Similar to the proof of Property 3.8, we obtain h = 0 by obtaining a
contradiction in each of thecases h = 1 and h > 2 for n > ng. Therefore

the property holds. O

Property 3.10. There exists ng € Zt such that if n > ng, then there

are three vertices in A, say v;,v2,v3, satisfying:
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(1) if n—k # 2 mod 3, then there are components Gv¢,, G¢,, G¢, of G
such that foreach 1 < j £ 3, |[N(v;)NV(Gy;)| = 3 = |V(Gy;)| and

v; is adjacent to exactly one vertex in each of the other components;
(2) if n—k = 2mod 3, thenforeach 1 < j < 3, |[N(v;) N V(Gy)| =
2 = |V(G1)| and wv; is adjacent to exactly one vertex in each of the

other components.

Proof. First, we claim that there are three vertices in A, say vy, v, vs,

such that

(i) if n—k = 3¢, then ny(v;) = t—-1 for 1 < 5 < 3;
(i1) if n—% = 3t+1, thenforeach 1 < j < 3, ni(v;) = t—1 and
vj is adjacent to exactly one vertex in G, = Kjg;
iii) if n—k = 3t+2, thenforeach 1 < j < 3, ni(vj) = ¢, namely,
j

vj is adjacent to exactly one vertex in each triangle component of G'.

Suppose, to the contrary, that the claim is not true. Then it follows from Fact

3.2 and Properiies 3.4, 3.5, 3.8, and 3.9 that
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k
Z_’;-_-l i3(vj) + ( ) if n—k# 1 mod3
2
] < " .
Ef:l i3(v;) + 2- + ifn—%k = 1 mod 3
2 3
k
(S 2%+ if n—k # 1 mod 3
2

< { 3. (27171 2maml ozl 4 97aY)

k k
{ +2xu+...+2zh+2.( )+( ) ifn—k=1mod 3,
2 3

where z; =n;(v;) for1 <j <k suchthatif n—k =3¢, then 0 <z; <t-1

for j=1or 2, 0<z; <t-2 for j >3, and Z;f:l zj < 3t if n—k =3t+1,
then 0<z;<t-1 for j#3 and 4, 0<z; <t—2 for 7=3 or 4,
and E;f:l z; <3+1; if n—k=3t+2, then 0<z; <t for y=1 or 2,

0<z;<t—1 for >3, and ¥}, z; <3t Thus
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i(G) = |h|+ ||+ |Is] £ f(n - k) + f(k) + | I3

( f(n — k) + f(k) + 2! + 2172 4 24

k
+k—4+( ) fn—-k=3t
2

f(n—k)+ f(k)+2-(3-2"2) +3.22

k k
+3+2‘-1+k—5+2-( )+( ) if n—k=3t+1
2 3

f(n — k) + f(k) + 21 + 271 42

k
{ +k—4+( ) ifn—-k=3t+2

IA

2

< mg(n) < fi(n) when n > ny € 2,

contradicting the choice of G. Now, by Remark 3.1 and similar to the proof

of Property 3.8, we conclude that wv;,vz,v3 are not bad-vertices. Therefore

Property 3.10 follows. O

Notice from Property 3.1 that if vj,,vj,,v;;, € A and G is a triangle
component of G’ such that |N(v;;) N V(Ge)] = 1 for 1 < ¢ < 3,
then v;,,v;,, and vj, are adjacent to distinct vertices of G;. We call such a
component a good-component. Since G is k-connected, we have an immediate

consequence.
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Property 3.11. For each good component G, of G', suppose wvy,vs,v3
are three vertices in A which have exactly one neighbor in G¢, than each

v; in A — {v1,v2,v3} is adjacent to all vertices of Gj.

Theorem 3.4. For k > 3 and n—k =2mod3, thereexists ny € Z*

such that if n 2> no, then

fi(n) = my(n)

and the only k-connected graphs of order n which have  fix(n) maximal

independent sets are the graphs Hg,y,.

Proof. Let k¥ > 3 and n—%k = 3t+2 > 16. From Lemma 3.1 it follows
that fk(n) = mg(n). On the other hand, let G be a k-connected graph of
order n such that {(G) = fi(n). From the above discussions it follows that
there exists no € Z% such thatif n > ng, then G' = G — 4 = Hp_i
for some subset A = {vy,::-,vx} € V(G) and G has the above properties.
By Property 3.10, we obtain three vertices in A, say wv;,v2, and w3, such

that foreach 1 < ¢ < 3,

N@i)NV(G1) = V(G1) and |N(v;) NV(Ge)] = 1for2<e<t+1.

Then Property 3.11 implies that for each v; € 4 — {v1,v2,v3},

N(v;) N V(Ge) = V(Ge) for £ > 2.
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Since G is k-connected, we have &§(G) 2> k&, which implies that each
vertex in G; is adjacent to at least k —1 verticesin A. Without loss of
generality, assume that one vertex in G; may be not adjacent to v; and the
other vertex in G; may be not adjacent to vs. Then it is easy to see that
i(G) < i(Hkn) and the equality holds only if G = Hj,. This concludes

the proof. O

Theorem 3.5. For n—k=3t or 3t+1 with 3 < k < 4 or k£ > 10,

there exists ng € Z1 such that if n > ng, then

fi(n) = mu(n)

and the only k-connected graphs of order n which have fi(n) maximal

independent sets are the graphs Hg n.

Proof. Assume n—k = 3t or 3t+1 with 3 < k <4 or k¥ > 10 and
n —k > 16. From Lemma 3.1 it follows that fx(n) = mg(n). On the other
hand, let G be a k-connected graph of order n such that i(G) = fi(n).
Then there exists ng € Z1t suchthatif n > ng, then G'= G—A = H,_;
for some A = {v1,---,vx} € V(G) and G has the above properties.
Suppose wv;,v2,v3 are three vertices in A satisfying 1) of Property 3.10 and
Ge,, Ge,, Ge, are the corresponding triangle components of G'. By Property

3.11, we know that each vertexin A — {v;,vz,v3} is adjacent to all vertices

in each triangle of G' differing from G for 1 < j < 3. Since G is
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k-connected, there are at most 6 non-adjacent pairs of vertices with one vertex
in A - {vi,v2,v3} and the otheronein Gy for 1 < j < 3, and for
n—k = 3t+1, there are at most 3 additional non-adjacent pairs of vertices with
one vertex in A — {v1,v2,v3} and the other onein G, = K,. Since each
vertex in a triangle component of G’ is not adjacent to at most two vertices
in A, we have an immediate claim:

Claim 1. Foreach v; € A, if |[N(v;)NV(G')| = |V(G')] — ¢ and the
vertices of G’ which are not adjacent to v; arein triangle components, then
vj is contained in at most (i) maximal independent sets in I3, where
z(1) = 1if i =1, and 3 if ¢ = 2.

Furthermore, we have the following claim (for the proof, see Appendix A).

Claim 2. Gg¢,,Ge¢,,Ge, are all distinct.
Now, for k =3 or 4, it is easy to see the result. For k > 10, from

Claims 1 and 2 it is easy to check that

4
3.2t-1 4 93 4 ifn—Fk=3t
2
L] < 4 4
9.2t-24+3.284+2. + fn—k=3t+1
2 3

and the equality holds only if there is a vertex in A — {v;,v2,v3}, say vs,
such that G — {vs,---,vx} is isomorphic to the graph Hy4 n—k+4 where

{v1,v2,v3,v4} isindependent. Recall that [|I;| < f(n—k) and |I2] < f(k).
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It follows that
i(G) = |L|+ ||+ 1] £ mi(n) = i(Hk,n)

with the equality only if each |I;| attains its upper bound, which implies
G = Hgyn. Therefore the theorem follows. O

Theorem 3.5 gave the asymptotic value of fx(n) for n—k # 2 mod 3
with 3<k <4 or k£ >10. Similarly, one can also determine the asymptotic

values of fx(n) for n—k £2mod 3 with 5 <k <9. Here we omit the

detail discussions.

3.2. Maximal Independent Sets in Bipartite Graphs

For n 2 2 and 0 < r < |n/2], define

th if n=2t
B, =

TK2 U T2(¢_,.)+1 if n= 2t + 1.

Theorem 3.6. The maximum number of MIS’s among all bipartite graphs of

order n is

b(n) = 2l»/2
and the only bipartite graphs of order n which have so many MIS’s are B, ,.

Proof. We proceed by induction on n. For 1 < n £ 3, it is easy to see

the result. Assume the result for n < k. Nowlet n =k+1 > 4. Since
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i(B, ) = 2ln/2l, it follows that b(n) > 2l"/2!. On the other hand, let G
be a bipartite graph of order n such that #(G) = b(r), then i(G) > 2l7/2,
We claim that G = B, , for some r between 0 and [n/2|. Suppose,
to the contrary, that G 2 B; . forany r. If G is disconnected, then it
is easy to see i(G) < 2!"/2] from the induction hypothesis since the number
of MIS’s of G is the product of the corresponding numbers of its components,
contradicting the choice of G. Hence we assume G is connected, which
implies A(G) 2 2. Let v € V(G) such that deg(v) = A(G) = A. We

consider three cases.

Case 1. n is even. By Lemma 2.1 and the induction hypothesis, it follows that

#(G) <i(G —v)+4G -v~N(@v)) < ol(n=1)/2) 4 ol(n=-a-1)/2] o gln/2]

contradicting the choice of G.

Case 2. n isoddand A(G)>3. If A(G-v)=1, then G must bea

graph with the structure shown in Figure 3.5.

Figure 3.5. Graphs G With A(G —-v)=1.
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Since G ¥ B, , for any r, G—v % [(n —1)/2]K2, and so i(G) < 2l*/2],
contradicting the choice of G. For A(G—-v)>2, let G;y =G —v and let
u € V(G1) such that u has maximum degree in G;. Applying Lemma 2.1
twice and using the induction hypothesis, we obtain
(G)<i(G-v—-u) + (G—v—u—N(u)) + {(G—v—-N(v))

< oltn=2)/2 | ol(n-4)/2) 4 gl(n=4)/2] — gln/2],

Furthermore, i(G) = 2\*/2) impliesthat G ~v—-u=B, , , G—-v—u~—
N(u) = B,_,, or B, 5., and G—v—N(v)=B,_, or B, ;. but
there is no such bipartite graph of order n. Hence i(G) < 2L%J, contradicting
the choice of G.

Case 3. n isoddand A(G) = 2. Then G must be a path of order n > 7
since G is a connected bipartite graph not isomorphic to B, .. Let u € V(G)
such that deg(u) = 2 and u is adjacent to an end vertex w. It follows
from Lemma 2.1 and the induction hypothesis that

i(G) Si(G—v) + i(G—u—N(u) = i(G-u—w) + i(G—u—N(u)

< oltn=2)/21 | oltn=3)/2) _ gln/2l

contradicting the choice of G.Hence G = By . for some r and the result

is true for n = k+1, and so the theorem follows. OJ
3.3. Maximal Independent Sets in Connected Bipartite Graphs

In this section, we will develop two properties for the number of MIS’s
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of a bipartite graph. As a consequence, the maximum number b;(r) of MIS’s

among all connected bipartite graphs of order n is obtained.

For n>2 and 0<r £ |n/2], define

Bnr=

?

{ 2P, U[(n—8)/2)K; or T2, UrK; if n iseven

Tn—2rUrK, if n is odd.

Then i(Bn,) = 2'T(n—2r) or 9-2("=8/2 where T(0) = 1. Note that

Bn,, = B}, if n isodd.

n,r

Theorem 3.7. If G isaforestoforder n and G ¥ By, then i(G) < T(n).

Proof. If G is connected, then G 1is a tree and Proposition 1.3 implies
i(G) < T(n). Hence we assume G is disconnected. Let G1,Gz,-:-,Gi(and

k > 2) be the components of G. Then

k
i(G) = [T «Gy)

j=1

For n odd, it follows directly from Theorem 3.6 and Proposition 1.3 that
#(G) < T(n). For n even, without loss of generality, let |V(G;)| = n; such

that n; > ng > --- > nx. We consider two cases.

Case 1. One of ny,--+,n; is odd. Suppose n; is odd, then n —n, is also

odd. Let H = G — G;. It follows from Theorem 3.6 that

i(G) = i(Gy)-i(H) < 2m—D/2. gn=m=1)/2 - o(n=1/2 o T(p),
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Case 2. ny, - ,n; are all even. Let h be the integer between 0 and &
suchthat 7; >2 for 1<j<h and n; = 2 for h+1<j <k Since
G#%Bpny, wehave h>1 and h = 1 implies G; ZTh_gk-1). If b = 1,

‘hen from Proposition 1.3 it follows that
i(G) = i(G1) (G —Gy) < 2m=D/2.9(n=n)/2 < T(n),

If h = 2, theneither ny 26 or ny = ny = 4 but not both &; and

G, are P,. It follows that

i(G) = #(G1)-i(Gz2) - {(G —G1 —G,)
{ 6 - 2(n—8)/2 if nj=ny =4

<
(2(m=2/2 4 1)(2(r2=2)/2 4 1).2(n=m=n2)/2 if n, > 6,

and so i(G) < T(n). For h > 3, similarly, we have ¢(G) < T'(n). Therefore
the theorem holds. O
Corollary 3.1. If G is a forest of even order n such that G % (n/2)Ks,

then

i(G) S2(n-—2)/2 + 2(n—4)/2.

Proof. If G % B,,, then the result follows directly from Theorem 3.7. If
G = B,,, theneither G = 2P, U|[(n—8)/2]K; or r < (n—4)/2, so

either (G) = 9.2(*=8)/2 ¢ 2(n=2)/2 4. 9(n=4)/2 o

i(G) < max{2m(2""D/2 £ 1): 0< r < (n—4)/2} < 20D/2 4202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43



For n evenand 3 <r <n/2, define D,, = By U(n/2-r)K;,

where B, has the structure shown in Figure 3.6.

Figure 3.6. The Graphs B;,, Where r>3 and ¢2>2.

Then i(Dy,r) = 2%27T.i(By,) = 27/2-7(27"1 4+1) < 2(n=2/2 1 2(n=6)/2,

Theorem 3.8. If G is a bipartite graph of order n > 4 which contains

cycles, then

3.2(n=5)/2 if n isodd
i(G) L 2(n) =

2(n=2)/2 if n iseven

with the only exception that n isevenand G 2 D, ;.

Remark: The graphs with the structures shown in Figure 3.7 attain the upper

bounds in Theorem 3.8.
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nisodd nis even

Figure 3.7. Graphs of Order n With 2(n) MIS’s.

To prove this theorem, we first develop several lemmas. In the following
discussion, we denote S to be the set of all bipartite graphs with cycles which
are not isomorphic to Dy, and we say property P(m) holdsif ¢(H) < z(p)
for any graph H € S of order p < m.

Lemma 3.2. Suppose n > 7 is odd and property P(n) holds. If G is a
connected graphin S of order n such that 6(G) > 2 and each vertex of
degree >4 isin all cyclesof G, then i(G)<3-2(r=%/2

Proof. We first assume G has a vertex v of degree 3 such that G —v has
cycles. For G —v % D,_;, it follows from Lemma 2.1, property P(n) and

Theorem 3.6 that
{(G) < (G —v) +#G — v — N(v)) < 2(n~1=2/2  gl(n=4)/2] _ 3. 9(n=5)/2,

For G—v 2 D,_, , since §(G) 2 2, G—v must be connected, so G—v = B,_,

and (G —v) = 2("~1-2)/2 41, Furthermore, G; =G —v—N(v) is either an
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acyclic graph not isomorphic to  Bp-4, or a graph having cycles. It follows

from Theorem 3.7 or property P(n) that

z(Gl) < max{z(n—4—1)/2 _ 1’ 3. 2(71—4—5)/2} - 2(71—5)/2 - 1.

Hence
i(G) <G —v)+i(G—v—N(v)) <20r=1-2/2 1 4 o(n=5)/2 1 = 3.9(n=5)/2,

Now, we consider the case that each vertex of degree > 3 is in all cycles

of G. Then G must be a graph with the structures shown in Figure 3.8.

(a) (b

Figure 3.8. The Graphs With Each Vertex of Degree > 3 in All Cycles.

Let u € V(G) which is in all cycles of @ G. Then deg(u) > 3 and
G—u ¥ Bn_1, since n isodd, §(G) =22, and G is bipartite. By Theorem

3.7, we have i(G —u) < 2("~1-2)/2 which gives

i(G) S i(G —=u)+i(G —u— N(u)) <2r=3/2 4 olin=0)/2] = 3. 9(n~5)/2,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Therefore the lemma holds. O

Lemma 3.3. Suppose n > 6 is even and Property P(n) holds. If G is
a graphin S oforder n and G has a path Ps = ujugugugqus such that
deg(us) = 2, G — {u1,u2,us,us,us} has cycles, and G —~ {uz,u3,us,us} ¥

Dy_4,, then i(G)< 2(n—2/2,

Proof. From the assumption it follows that Gy = G — {u1,uz,u3} € S, Gy =
G — {uz,u3,uq} € S, and Gz = G — {uz,u3,uq4,us} € S. By applying Lemma

2.1 twice, and using Fact 2.1 and property P(n), we obtain

Z(G) S Z(G - Ug — ‘U4) + Z(G - Uy — Ug4 — N(U4)) + Z(G - Ug — N(U2))

< i(G2) +i(G3) + #(Gh)

<3. 2(n—3—5)/2 + 2(11—4—2)/2 +3. 2(n—3—5)/2 — 2(n—2)/2. 0

Lemma 3.4. Suppose n > 6 is even and property P(n) holds. If G is a
connected graph in S of order n such that §(G) > 2 and each vertex of

degree >4 is in all cycles of G, then i(G) < 2(*=2/2,

Proof. We say a vertex v is good if deg(v) =3 and G — v has cycles.
Since 6(G) 2 2 and G is bipartite, G —v — N(v) ¥ Bn_4,r for any good
vertex wv.

We first consider the case that G has good vertices. If G has a good
vertex v such that either G; =G —v — N(v) isacyclicor G; has cycles

but G % Dp—4,r, then it follows from Theorem 3.7 or property P(n) that
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i(G1) < 2(*=4-2)/2 and by Lemma 2.1,
i(G) < i(CG - v) +i(Gy) < 3.2(n=1-8)/2 1 9(n=6)/2 _ o(n=2)/2

For the case that G & Dp_4,, for every good vertex v, since §(G) > 2 and
G is bipartite, G; must be connected, that is G; & B,_4. Furthermore,

G) must be a graph with the structure shown in Figure 3.9.

Figure 3.9. The Graphs Bj,.

Clearly, if ¢ > 1, then N(w)NN(v) = ¢ andif ¢t = 0, then either
N@)NN(w) = ¢ or N(w)NN(v) = ¢. Hence, without loss of generality,
assume N(w) N N(v) = ¢. Now deg(v) = 3 and é(G) > 2 imply
G — w has cycles. Thus, by the assumption that each vertex of degree > 4
is in all cycles of G, it follows that 2 < deg(z) <3 for z = w or

¢ € N(v) andif deg(u) >4, then G has at most one edge between N(v)
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and A4 = {uj: 1<j<k}U{w;: 1<j<k}. Notice that either N, =
NN@)N{uj: 1<j<k}=¢ or N = N(Nw))N{w;: 1<j<k}=4¢.
Consequently, we have deg(w) =2 for otherwise G —x— N(z) % Dp—4,r fora
good vertex z, where z =w if Ny =¢ and z = u otherwise, contradicting
the assumption that G—v—N(v) =& Dy, , for every good vertex v. Similarly,
we conclude that each vertex in N(v) has degree 2. Now, for deg(u) > 4,
by Lemma 3.3, we have i(G) < 2(*~2/2, For deg(u) < 3, since &(G) > 2
and G—v—N(v)& D,_4, for every good vertex v, G must be the graph

@ shown in Figure 3.10 and (@) < 2("-2)/2,

or

Figure 3.10. The Graphs Q.

Hence we assume G has no good vertex, that is each vertex of degree
2 3 must be contained in all cycles of G. This implies G must be a graph
with the structures shown in Figure 3.8. If G is a cycle, then it is easy to see
i(G) < 2("=D/2, Suppose G isnot a cycle. If G is a graph of the structure
in Figure 3.8 (b), then G has only one vertex v of degree > 3. Since G

is a bipartite graph of even order, deg(v) > 6 and G —v consists of &k >3
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disjoint paths of even length, say Py, Pn,,:*: ,Pyn,. It follows that

k k
(G —v) = JJ i(P) < JJ 2™~/ < 2ln-9r2,

=1 Jj=1

and so
i(G) <i(G —v) + i(G —v— N(v)) < 2n=9/2 | ol(n=7)/2]  o(n=2)/2,

Suppose G is a graph of the structure in Figure 3.8 (a), then G has exactly
two vertices of degree > 3, say v; and vp. It follows that deg(v;) =
deg(vz) = d >3 and G — {vi,v2} consists of %k disjoint paths, say
Py, Py, Py, with ny >2ng>.-->ng, where k=d if v; and v, are
not adjacent and k=d—1 otherwise. Since G is bipartite, either all n;’s

are odd or all n;’s are even. For the former case, we have k =d >4 and

k k
i(G_{vl’vz}) = H i(Pn,.) < H 9(n;j—1)/2 < 9(n—6)/2

=1 j=1
which gives

i(G) <G — {v1,v2}) + (G —v1 —va — N(v2)) + (G —v1 — N(v1))

< 9(n=0)/2 | 9l(n=5)/2] | gl(n=5)/2] < o(n=2)/2,

For the latter case, let P,, = ujug:--uy,. By Lemma 3.3, we assume n; < 4.

If ny =4, thenboth L; = G—{uj,uz,u3} and Ly = G—{vz,u3s,us} have
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cycles and Lz = G — {u1,u2,u3,v1} is a tree. Furthermore, Lz % Th—4

unless G is one of the graphs shown in Figure 3.11.

Figure 3.11. Graphs G With L3 = T,,_4.

If L3 % Tn-4, then it follows that

Z(G) _<__ Z(G - {ul,U3}) + Z(G - U3 — Uz — N(ul)) + Z(G - Uz — N(U3))

= i(L1) +i(Ls) +i(L2)

<3. 2(71—3—5)/2 + 2(11—4—2)/2 +3. 2(1‘!—3—5)/2 = 2(n-—2)/2.

If Ly & T,—4, then it is easy to check ¢(G) < 2(n=2)/2 Hence we assume
ny <2 whichimplies n; =ng =-.-=nt =2. Since G ¥ B,, we conclude
that v; must be adjacent to vz, and so i(G) = 2("~2)/2, Therefore, we have

shown that (G) < 2("=2/2 in each case and the lemma holds. O

Proof of Theorem 3.8. We proceed by inductionon n. For 4 < n <35, the

result is easy to check. Assume the result for n < k. Then for any non-acyclic
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bipartite graph H of even order p < k,

2(r—2)/2 4 1 if H 1is connected

i(H) <
2(r=2)/2 4 2(p—6)/2 if H is disconnected.

Now, consider n =k+1 > 6. Let G € S be a graph of order n. If
G is disconnected, then the result follows directly from Theorem 3.6 and the

induction hypothesis. Hence we assume G is connected. We consider two cases.

Case 1. G has a vertex v of degree >4 such that G —» has cycles. In
this case, if n is even, then the result follows easily from Lemma 2.1, Theorem
3.6, and the induction hypothesis. If n is odd, then one of the followings must
be true.
(i) G—v % Dyn_y,r. Then, similarly, it follows easily that i(G) <
3.92(n=5)/2
(ii) G —v = Dy_1,r. In this case, if deg(v) =4, then G' =G —v— N(v)
is either an acyclic graph not isomorphic to B,_s5, or an non-acyclic
graph not isomorphicto D,—5 . Hence it follows from Theorem 3.6 or

Theorem 3.7 or the induction hypothesis that 3(G') < 2(*=5-2)/2 which

gives

(@) < i(G —v) +i(G")

< (2(r=1-9)/2 | 9(n=1-6)/2y | o(n=T)/2 _ 3. o(n=5)/2,

Case 2. Every vertex of degree > 4 is in all cycles of G. We first assume
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8(G) =1. Let v be an end vertex of G and wu be the neighbor of wv. Let

G1 =G ~ {u,v} and G2 =G —u~ N(u). Then one of the following holds.

(1) n is odd. In this case, if deg(u) > 3, then it follows from Lemma

2.1 and Theorem 3.6 that
i(G) < i(Gy) +4(G2) < 2l(n=2/2] 4 ol(n=0)/2] _ 3. 9(n=5)/2

If deg(u) =2, then G; hascyclesand G2 =G - {u,v,w} % [(n —3)/2]K;
since G is a bipartite graph with cycles, where w is the second neighbor of

u. By Corollary 3.1 or the induction hypothesis, we have

Z(Gg) < max{Z(n—S—-Z)/2 + 2(11—3—-4)/2, 2(n—3—2)/2 + 2(n—3—6)/2}

= 9(n=3-2)/2 + 9(n—3-4)/2

which gives
i(G) < i(G1) +i(G3) < 3. 2(n=2-5)/2 4 9(n=5)/2 4 o(n=T)/2 _ 3. o(n=5)/2,

(2) n is even. For deg(u) > 4, similarly, we conclude that G; %

[(n —2)/2] K,

i(Gy) < max{2("'2"2)/2 + 2(n—2—4)/2, o(n=2-2)/2 2(n—2—6)/2}

= o(n=2-2)/2 4 o(n-2-9)/2
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54
and i(G) < i(G1)+i(G2) < 2("~2/2, I deg(u) =2, then G: is a connected
bipartite graph with cycles, and so i(G;) < 2(*~2-2)/211, Since G % Dy, G2
is either an acyclic bipartite graph not isomorphic to Bp_3,, or non-acyclic. It
follows from Theorem 3.7 or induction hypothesis that i(Gz) < max{2("—/2
1, 3.2(n—3-5)/2} = 2(n-4)/2__1 which gives i(GQ) < i(G1)+i(G2) < 2(r=2/2,
Hence we assume deg(u) = 3. Now, if G is disconnected, then G; must
have cycles since G has cycles, and so G; # [(n — 4)/2]K,. It follows that

i(Gy) < 2(n—2-2)/2 4 2(n—2-6)/2 pd

i(G2) < max{2("~1-D/2 | o(n=4-0)/2 (n—4-2)/2 | o(n=4~6)/2}

= 2(n—4—2)/2+2(n—4—4)/2'

Hence

(@) < i(Gh) +i(Ga)
S2(n—2—2)/2+2(n—2—6)/2+2(n-—4—2)/2+2(n—4—4)/2 — 2(n—2)/2.

If G, is connected, then #(G;) <2("=2-2/241 and G; % [(n —4)/2)K>
unless G is a graph with the structure shown in Figure 3.12 where G is a
tree not isomorphic to Tj,_;. It follows from Theorem 3.6 or Proposition 1.3
that either i(Gq) < 2("~9/2 _1 or i(Gy) = 2("~H/2 and (G,) < 2(n~1/2

which gives

{(G) S i(G1) +i(Gp) S 209/2 foln=d/2 11 _ 1 = 2(n=2/2,
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Figure 3.12. Graphs G With G —u — N(u) = 231 K,.

Now, assume 6(G) > 2. Then the inequality follows directly from
Lemmas 3.2 and 3.4. Therefore we have shown i(G) < 2(n) for n=k+1

and the theorem holds. O

From Theorems 3.7 and 3.8, the following two results follow immediately.
Corollary 3.2. If G is a bipartite graph of order n such that G % By .
and Dyg,, then i(G) < T(n).
Theorem 3.9. The maximum number of MIS’s among all connected bipartite
graphs of order n is

bi(n) = T(n)

and the only connected bipartite graphs of order n with  bj(n) MIS’s are

T. and B, shown in Figures 1.1 and 3.6.
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CHAPTER IV

MAXIMUM INDEPENDENT SETS AND OPEN PROBLEMS

4.1. Maximum Independent Sets in k-Connected Graphs

Note that the graphs H,, H; ., and H;, are well-covered, it follows
that F(n) = f(n) and Fi(n) = fi(n) for k < 2. In this section, we
derive Fi(n) for k>3 in a similar way as in Section 3.1.

Given two positive integers k and n such that &k < n, define

Ky + tK3 if n = 3t+k
D, = Kk+[(t—1)K3UK4] ifn=3+k+1

Kr + (tKs U K3) if n = 3t+k+2.

Since the graph D, is k-connected and in(D,) > f(n — k), the

next lemma. follows immediately.

n

Lemma 4.1. Foreach k€ Z%*, Fi(n) > f(n—k) = 0O(3%).

By applying Lemma 4.1 and Theorems 2.4 and 2.5, we obtain two struc-
ture properties of the extremal graphs for Fi(n) in a way similar to Theorems

3.1 and 3.2.

Theorem 4.1. Given an integer k > 1, there exist positive constants ng
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57
and C such that for n 2> ng, if G is a k-connected graph of order n and

im(G) = Fi(n), then G has k vertices of degree > C - n.

Theorem 4.2. Given an integer k > 1, there exists a positive integer ng

such that if G is a k-connected graph of order n > ng with in(G) = Fi(n),

then

G- {v1, - ,vk} & Hy_g, where {v1,--+,m} C V(G).

Now, let G be a k-connected graph of order n > ng such that
im(G) = Fi(n) andlet A = {vy,vs,---v} C V(G) such that G' =
G—A = H,_i. Similar to Section 3.1, we divide the set I,,(G) of maximum

independent sets of G into three disjoint subsets:

In(G) = If U I} UIy, where
I = {S: Sel,(G) and S CV(G")},
I = {S: S€ln(G) and SC A}, and

I; = In(G) - (If U L),

so im(G) = |If] + |I7] + |13
From now on, we assume n > 4k +8. Then |I3| = 0 since each
maximum independent set contains at least k& + 3 vertices. Clearly, we have

[If] £ f(n—k). Also, parallel to the discussions for fi(n) in Section 3.1,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



we can derive that for &k > 3,

3
'3-2“1+( ) if n—k = 3t
2

3
| < =
|I3l = r(n,k) 4 g.zt—2+2' if n—k
2
| 3.2 if n—k = 3t+2

3t+1

and both |I}| = f(n—k) and |IJ| = r(n,k) hold only if G is one of the
graphs H} , which are k-connected and have an induced subgraph isomorphic

to Hjn—k+3-

Therefore, by setting

Mi(n) = f(n—k) + r(n,k)

3 4+ 3.2¢14+3 if n—k = 3t
= 4-37149.207246 if n—k = 3t+1

2.8t 4+3.2 if n—k = 3t+2
then we have the following theorem.

Theorem 4.3. For any k > 3, there is a positive integer ng such that if
n > ng, then

Fiy(n) = Mi(n)
and the only k-connected graphs of order n which have  Fi(n) maximum

independent sets are Hj ..
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4.2. Open Problems

In Section 3.1, we determined fi(n) for n large enough. We have the
following open problem.
PROBLEM 1. Determine fi(n) and the extremal graphs for small n.

I conjecture that for small n the extremal graphs for fix(n) will have
similar structure to Hg 5.

Similarly, there is a problem for maximum independent sets.
PROBLEM 2. Determine Fi(n) and the extremal graphs for small n.

In Sections 3.2 and 3.3, we determined b(n) and b;(n). It will be nice
to solve the following questions.
PROBLEM 3. What is bi(n) for k > 2 and which k-connected bipartite
graphs of order n have so many MIS’s?
PROBLEM 4. What is Bg(n) for k > 1 and which k-connected bipartite

graphs of order n have so many maximum independent sets?
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Appendix A

The Proof of Claim 2
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Suppose, to the contrary, that Gy, ,Ge,,Ge, are not distinct, say G, =
G, = Gi. For k=3 or 4, itis easy to check i(G) < mi(n), contradicting
the choice of G. So we assume k > 10. First we consider n—k = 3¢. Since
(@) = |h+ |B|+|I3] = mi(n) = f(n—k) + f(k) + 3 -2t + 14, it

follows that

|[Is] > 3. 27! 4+ 14.

From Property 3.2 it follows that

I{X X € I3 and XNA g {vl,vg,va}}l S 3 '2t_1 + 2.

Without loss of generality, let wv4, -+ , v34¢,+t, be vertices such that each
v; is not adjacent to z; > 2 verticesin G' for 4 < 7 < 3 + t; with
T4 25 > -+ > 234, and each wv; is not adjacent to one vertex in G' for
44+t £ j < 3+t1+t2. Recall that each v; in A—{v1,v2,v3} isadjacent to
all vertices of each component in G’ differing from Gy; for 1 <5 < 3 and
there are at most 6 non-adjacent pairs with one vertex in A — {v;,v2,v3} and
the other vertex in Gy for 1 < j < 3. It follows that Z;;l zj+t; <6,
so ¢t < 3 and ¢; = 3 implies ¢, = 0 and z4 = z5 = z¢ = 2.
Furthermore, foreach 4 < 7 < ¢ + 3, #3(vj) < z; £ 4, and i3(v;) < 2
if z;j =3 Let I = {X: X € I3 and X N {vg, -+, Va4t 41} # 6}
Then || < 3 - 21 + 2 + |I}|. Now, by applying Claim 1 it follows that

1 = {X: Xel and X N {Tg4ey,° yV34+1,4t,3 F ¢} < t2 and for
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each vertex v; with 4< j < 341, if z; = 2, then there are at most 3

MIS’sin I} which contain v;. Hence, by Property 3.2, we have

y2 = {X: XeI} and XNA C {v1,-*" ,0344 }}

(4-}-3 if ¢4 =1

2(2+3)+1 if ¢y = 2 and =12, =3
< 9

(4+3) + 3 if tl = 2 and T ;é T2

3 - 3 if ¢4 = 3.

It follows that |I}| = y1 +y2 <11 which gives

) < 3-271 4+ 13 <3 -2 + 14 < L4,

a contradiction. Therefore the claim is true in this case.

Next, we consider n—k = 3¢+ 1. Since

i(G) = L] + |L| + L] 2 mi(n) = fln—k) + f(k) + 9 - 272 + 40,

it follows that

L] > 9 - 2% + 40.
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On the other hand, it is easy to see from Property 3.3 that

7= {X: XeLandXNA C {v1,v2,02}}]
3
= Y i3(v;) + {X : X € I and |X N {vy, 02,03} = 2}
=1
+{X: X €L and XNA = {vy,v2,03}}|

3 3
3-(3.2‘—2)+2-< ) + ( )-2 = 9.2t"2 45,
2 3

From the discussionfor n — &k = 3t it follows that

INA

zz = {X: Xel3 XN{va, -, 0} # ¢, and X NV(Gr) = ¢} < 1L

Now let

I;; = {X XGIsa Xﬂ{v4,---,vk}¢¢, andXﬂV(GT)?é¢}

and z3 = |[§]. Then |I3] = z1 + z2 + 2z3. Without loss of generality, let

t1 be the integer such that

yi = |[V(Gy)| = IN(v;) N V(G,)|>0ford <j<3+1t

and N(v;) 2 V(G,) for j > 4+1¢t;. Then,foreach X e€l3, X N

{va+t,, -+ vk} = ¢. Since each vertex in G, is not adjacent to at most 3

vertices in A, each X in I} contains exactly one vertex in {vg, -+, V344, }.
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For 4<j<3+t%, le¢ =z; be the number of vertices in U‘;-’=l Gy,
which are not adjacent to v;. Recall that each vertex in A — {v1,v2,v3} is
adjacent to all vertices of each triangle component in G’ differing from Gy,
for 1 < j < 3, there are at most 6 non-adjacent pairs of vertices with one
vertex in A — {vy,v2,v3} and the otheronein G¢ for 1 < j < 3 and
3 non-adjacent pairs of vertices with one vertex in A — {vy,v2,v3} and the
other one in G,. It follows that Zj:;‘ y; <3, E?:;‘ zj £ 6, each z; < 4

and 3(v;) £ zjyj. Hence, for ¢; = 1, it follows from Property 3.3 that

3 3
z3 <ig(ve) + 2 - ( )+< )Sx4'y4+6+3s4-3+9=21.
1 2

For t; = 2, since y4 + ys <3, wemay assume y4 <2 and y5 = 1. It

follows that

3 3 2
z3 < [53(04)4'2' ( ) + ( ):l + |is(vs) + ( ) + 1]
1 2 1
= [i3(v4) -+ z'3(v5)] + 12 < [11743/4 + 11?5] + 12 < 22.
For t;, = 3, wehave y4 = ys = y¢ = 1, andso
2 2 2
z3 < [i3(va) + (1> +1] + [ia(vs) + <1> +1] + [ia(vs) + <1> +1]

S (zg+zs5+z6) +9 <6+ 9 = 15

Hence we have shown that

il = s+z+2 < (9-207% +5) + 11 4+ 22 = 9 . 2872 4 38,
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contradicting |I3| = 9-:2'"2 4+ 40. Therefore the claim is also true for

n—k = 3t+1. This concludes the proof. O
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