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A PROGRESSIVE DISEASE MODEL FOR DOUBLY-CENSRED 
BIVARIATE SURVIVAL DATA THAT ACCOMMODATES 

COVARIATE INFORMATION

Hilmi F. Yahya, Ph.D.
Western Michigan University, 1992

A model for the natural history of a progressive di­
sease is developed. The model has three disease states and 
can be expressed as the joint distribution of two survival 
random variables.

Covariate information is incorporated into the model 
using the proportional hazards model for the marginal dis­
tributions. The model will also accommodate data with ob­
servations which are censored on one or both of the 
survival random variables.

The likelihood function for censored data is exhibited 
for finding the maximum likelihood estimates of the parame­
ters and their standard errors for testing the effects of 
the covariates. The method used to obtain these estimates 
is the maximum likelihood method. Typical epidemiological 
measures are written in terms of the parameters of this mo­
del. Potential application of this model to cancer and 
heart disease research is discussed.
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CHAPTER I

INTRODUCTION

The fundamental increase of research and activity in 
the statistical analysis of survival data over the past few 
decades was largely stimulated by the many problems arising 
in the analysis of clinical trials. The interest in this 
area has resulted in a large volume of writing on this 
topic.

Particular attention and advancement have been devoted 
to developing parametric and nonparametric methods for the 
univariate case for the analysis of failure times, which 
permit the comparison of survival curves in the presence of 
censoring. Kaplan and Meier (1958) considered non­
parametric estimation methods for estimating a one-dimen­
sional survival function in the presence of censored data. 
These estimates are the reduced-sample estimator (all 
censoring variables are observable) and the product-limit 
estimator. Breslow and Crowley (1974) supplied details for 
the asymptotic behavior of both estimates of Kaplan and 
Meier. Miller (1976) utilized the product-limit estimator 
to discuss linear regression with censored data. Cox 
(1972) was concerned with regression models and life

1
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2
tables; he presented a life table regression model con­
sidered by Kaplan and Meier (1958) to incorporate covariate 
information into the product-limit life table. Cox (1972) 
modelled the hazard function as a function of covariates 
and unknown regression coefficients multiplied by an 
arbitrary unknown function of time. Chiang, Hardy, 
Hawkins, and Kapadia (1989) and Holford (1976) also 
considered a parametric approach for a life table regres­
sion model for the analysis of univariate survival data 
with covariates. Pettersen (1986) considered the es­
timation of a fully parametric failure time model for the 
analysis of univariate survival data with time dependent 
covariates by means of the maximum likelihood method.

Particular attention and advancement have been given 
to developing nonparametric methods for estimating bivar­
iate survival functions. For example, Campbell (1981) con­
sidered the estimation of a bivariate survival function in 
the presence of censored data using a nonparametric 
approach. He developed two estimators: a reduced-sample
estimator and a self-consistent estimator, focusing on the 
nonparametric approach of Kaplan and Meier (1958) and the 
related self-consistency technique of Efron (1967).

Albert, Gertman, and Louis (1978) presented a basic 
probabilistic formulation for the natural history of a 
progressive disease in a population through the use of a. 
"disease state" model with the following states: disease-
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3
free state, preclinical state, and clinical state. They 
presented statistical methods for estimating components of 
the disease natural history described by this model. The 
model and methodology of Albert, Gertman, and Louis (1978) 
are contained in a series of three papers; the other two 
are: Albert, Gertman, Louis, and Liu (1978) and Louis,
Albert, and Heghinian (1978). Since Louis is an author in 
all three papers, we will refer to this model as the Louis 
et al. model.

Louis et al. (1978) characterized the natural history 
of a progressive disease in terms of the joint distribution 
of a person's age when he enters the preclinical state, the 
sojourn time in that disease state, and the person's 
present age. Information to be used in estimation is 
generated by an ongoing screening program. These data are 
used to provide the maximum likelihood estimates of the 
joint distribution of holding times in the various states.

Classical descriptors of the natural history of the 
disease state model can be computed from this joint 
distribution, such as incidence, prevalence, lifetime 
attack rate, and expected preclinical duration of the 
disease.

Louis et al. (1978) proposed the use of maximum 
likelihood estimation to estimate the bivariate survival 
function of two failure times by partitioning the positive 
quadrant of the plane into rectangles. The probabilities
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of the two failure times falling into each of these 
rectangles are estimated using likelihood methods. They 
derived the likelihood function for both approaches 
(parametric and nonparametric), and adopted the non­
parametric approach for a numerical example. They stopped 
short of specifying the form of the joint distribution for 
the parametric approach.

Little attention has been given to developing paramet­
ric methods which permit the estimation of the joint 
(multivariate) survival distribution function. Bemis, 
Bain, and Higgins (1972), Fruend (1961), Gumbel (1960), 
Marshall and Olkin (1967), Hawkes (1972), and O'Neill 
(1985) considered a bivariate extension of the exponential 
distribution for the bivariate survival function. Hougaard 
(1986, 1987) suggested a bivariate Weibull distribution for 
the bivariate survival function. Clayton (1978, 1982),
Clayton and Cuzick (1985b), and Oakes (1982) considered a 
bivariate survival distribution which is characterized by 
two marginal distributions and an association parameter. 
Clayton and Cuzick (1985b) considered methods for es­
timating and testing only the association parameter for 
right censored data. Oakes (1982) described a special case 
of the distribution of Clayton and Cuzick in which the 
marginals are exponential. Oakes discussed in detail 
maximum likelihood estimation for the uncensored case. He 
also considered estimation and testing of the association
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5
parameter. Farlie (1960) considered another bivariate 
distribution function which is characterized by two 
marginal distributions and an association parameter. All 
of these models model the dependence between the two 
variables. However, the Clayton and Cuzick formula 
describes the positive dependence, while the Farlie 
distribution describes both positive and negative depen­
dence .

A fundamental tool for the parametric approach is the 
proportional hazards model which was first applied in the 
two sample problem by Mantel (1966) and later was clearly 
formulated by Cox (1972). The proportional hazards model 
is of central importance in epidemiology (for more details, 
see Chapters II and VI).

In this paper we extend the Louis et al. (1978) work 
to include the estimation of covariate effects, and then 
test the effects of the various covariates on the time to 
entry to the preclinical state and the sojourn time in the 
preclinical state.

Here we will extend the Louis et al. (1978) model by 
specifying the joint distribution for the time to entry to 
the disease state and the sojourn time in the disease 
state. We will use the joint distribution introduced by 
Clayton and Cuzick (1985b). This joint distribution was 
introduced to model association in bivariate survival 
distributions and is characterized by an association
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6
parameter and the two marginal hazard functions. We model 
each of the marginal hazard functions by Cox's (1972) 
proportional hazards model in order to include covariate 
information. The bivariate survival function of Clayton
and Cuzick will help us in writing and estimating some
standard epidemiologic descriptors of the natural history 
of the disease model in terms of covariate effects.

We will use maximum likelihood methods to estimate the 
parameters of this joint distribution. To make the 
estimation process easier, we use a method developed by 
Holford (1976) and Chiang et al. (1989) which divides the 
natural history time line "follow-up period" into intervals 
and then assumes constant baseline hazards over each
interval for both marginal distributions. This assumption 
also implies that survival times within intervals are
exponentially distributed. This assumption was first used 
by Holford (1976), who allowed the hazard functions to be 
functions of covariates and subdivided the period of follow 
up into fixed intervals. This assumption was motivated by 
life tables, where observations are taken at fixed points 
(beginnings of intervals) in order to analyze the data. 
Chiang et al. (1989) believe that this is a reasonable as­
sumption and take this as an approach to the problem.

In Chapter II, we define some basic terms needed for 
this work. We introduce the Louis et al. model and define 
some basic epidemiological measures in terms of the Louis
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7
et al. model. The bivariate survival function of Clayton 
and Cuzick (1985b) is also introduced along with the 
proportional hazards model.

In Chapter III, we make the necessary assumptions for 
our model in order to develop the likelihood function for 
the uncensored case.

In Chapter IV, we develop the likelihood function for 
the censored case.

In Chapter V, we write the Louis et al. epidemiologic 
measures in terms of our model. We also give the formulas 
for the asymptotic distribution of the preclinical in­
cidence and the overall preclinical incidence.

In Chapter VI, we consider an example. The data used 
are from the Framingham Heart Study Data taken from Kahn 
and Sempos (1989). Our model is used to analyze a portion 
of the data. We employ an iterative method to obtain the 
maximum likelihood estimates of the parameters with their 
standard errors (covariance matrix) which are needed for 
making inferences about some of the parameters. We also 
calculate estimates of some of the classical descriptors of 
the natural history of the progressive disease obtained in 
Chapter V.
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CHAPTER II

DEFINITIONS 

Louis el al. Model

In this chapter we will introduce some definitions 
needed in this study. The following definitions were given 
by Louis et al. (1978):

1. The Natural History of a Disease Process: Louis 
et al. (1978) defined the natural history of a disease 
process as a specification of the states that a subject can 
be expected to pass through during the course of that 
disease.

2. Progressive Disease: The adjective "progressive11
is intended to connote that once a state is visited and 
abandoned, it cannot be visited again (presumably because 
the disease has progressed to a more advanced stage). 
Figure 1 illustrates the disease state for a progressive 
disease model for one person.

3. Louis et al. Model: The Louis et al. (1978) model 
consists of three disease states defined (see Figure 1) as:

(1). The Disease Free State CDFSI is the state in 
which the subject is free of the disease; this state has 
duration from birth to age X.

8
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9
Disease Free State Preclinical State Clinical State

Birth at age = X age = X+Y
age = 0 I > y <------1

Figure 1. Progressive Disease State Model.

In the Louis et al. (1978) model X  = oo means that the 
subject is not susceptible to the disease, or the subject 
will never get the disease.

(2). The Preclinical State fPCSt is the state in 
which the disease is present, but is asymptomatic; this 
state has duration Y. Y is also called the sojourn time in 
the preclinical state. X is the age when the subject 
enters the PCS. For example, in cancer studies, X could be 
the time of the tumor onset. In heart disease studies, X 
could be the time of getting the coronary heart disease 
(CHD), or the time of getting the first heart attack. In 
the Louis et al. (1978) model, X < <», Y = °° means that the 
subject contracted the disease at age X, but will never 
leave the PCS.

(3). The Clinical State fCS^ is the state in which 
symptoms are present. It is entered at age X + Y = T. 
For example, in cancer studies, T could be the time when 
the symptoms surface. In heart disease studies, T could be 
the time of death of the coronary heart disease, or could
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10
be the time of getting the second heart attack. In the 
Louis et al. model, X < <» and Y = <» is a person who 
contracts the disease but never progresses to the clinical 
state.

A third variable in the model is the subject's age at 
time t, A(t). Thus at an instant time t, each person has 
ascribed three quantities: (1) A = current age, (2) X =
age at time of entry to PCS, and (3) Y = sojourn time in 
the PCS.

For 2 examples: (1) an individual has A = 35, X = 25, 
Y = 5, this person is now 35 years old, entered PCS at age 
25, and entered CS 5 years later (at age 30); (2) A = 30, 
X = 45, Y = 10, this person is now 30 years old, will enter 
PCS at age 45, and will enter CS at age 55. Since data 
will be analyzed at a specific time t, we will suppress the 
argument t, so that A will refer to the age of the subject 
at the time of interest.

In this model, X and Y are considered fixed points in 
a person's life, and do not change over time, although they 
may be determined by random events. This is a crucial 
consequence of Louis et al. formulation. For example, if 
an individual (now) has age A = 30, X = 35, Y = 10, then 10 
years from now, A = 40, X = 35, Y = 10. Age will change 
with time, but the temporal history of the disease state 
model (represented by X and Y) will not, see Figure 2 
below.
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Consider a population of subjects at a specific time. 

Associated with this population is a set of triples, 
(X,Y,A) values. This set of triples has a probability
density function denoted by f(x,y,a).

----------------  L---------------  >

Born present age enter PCS leaves PCS
A = 30 X = 35 X + Y = 45

NOW

j  --------------------------------------------------------------------- >

Born enter PCS present age leaves PCS
X = 35 A = 40 X + Y = 45
TEN YEARS LATER 

Figure 2. Age Changes With Time But X and Y Do Not.

Notice that allowing X = °° and Y = oo in the Louis et
al. model means that f(x,y,a) is a mixed density with a 
lump of probability at infinity points and the marginal 
densities for X and Y are generally defective (total 
integral is less than unity). In our model we will assume 
that f(x,y,a) is continuous (so the lumps at infinity will 
have zero probability). To avoid getting those cases in 
our model, we make the assumption that if the patient lives 
long enough with no other competing risks intervening in 
the natural history of the disease state model, then he 
will enter the PCS and then will progress to the CS 
eventually. The joint density f(x,y,a) represents a
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probabilistic description of the natural history of the 
disease in the population of interest at time t.

The factors that determine the values for X and Y (age 
of entry into and sojourn time in PCS) for an individual 
are partly hereditary and partly due to environmental 
factors which operate on the individual. If strata of 
different ages experience different environmental factors 
which are relevant to the determination of (X,Y), the end 
effect will be that the distribution of (X,Y) will vary 
from age stratum (or cohort) to age stratum. Therefore a 
cohort effect is said to exist in a population of interest, 
say H, if the distribution of (X,Y) varies over age strata. 
Under the assumption of "no cohort effect," i.e., (X,Y) is 
independent of A, we have that

fxvK (x,y,a) = fxy(x,y) . fA(a), 
where f*Y(x,y) is the joint density of (X,Y) and fA(a) is 
the density of A (the age distribution of the subject 
population).

Standard Epidemiologic Measures of a Disease State

Louis et al. (1978) defined some classical descriptors 
of the natural history of the disease state model and 
derived also some formulas from those definitions. Some of 
those definitions are:

1. Nonsusceptible: A subject is nonsusceptible to
the disease state if, for that subject, X = Such
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subjects never enter PCS. But in our model, every subject 
is susceptible to the disease (if the subject lives long 
enough then he will get the disease eventually).

2. Chronic Habitue: In the Louis et al. model, a
subject is a chronic habitue of the PCS if, for that 
subject, X < oo and Y = <». such subjects never leave the 
PCS. According to our assumption, there will be no chronic 
habitues of the PCS (since if every person lives long 
enough then he will progress to the next state eventually).

3. Incidence: Ipc(a) is the age specific preclinical
incidence of PCS among those aged a. It is the instan­
taneous rate at which members of II whose present age is a, 
enter PCS.

where fx!A(a|a) is the conditional density of X, given that 
A = a, evaluated at X = a.

The overall preclinical incidence, Ipc is the instan­
taneous rate at which subjects of all ages in II enter PCS. 
Louis et al. showed

If there is no cohort effect then Louis et al. showed 
that Ipc(a) = fx(a),

IPC(a) = lim-~ P [ A < ^ A + 8 \A=a] = fY|A(a|a),

0
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Ipc = jlPC(a) fA(A) da = j fx(&) fA(a)da,
o o

and

J Ipc(a)da = Jfx(a)da = P[ X < «>] ,
0 0

in terms of our model, this quantity will be 1. The 
quantity P[ X < a>] is called the preclinical lifetime 
attack rate (proportion of patients who enter the PCS) of 
the PCS among those in II, provided that there is no cohort 
effect.

Similarly, IC3(a) is the age specific clinical in­
cidence of CS among those aged a. It is the instantaneous 
rate at which members of n whose present age is a, enter 
CS.

where fTjA(a|a) is the conditional density of T, given that 
A = a, evaluated at T = a, where T = X + Y.

Similarly, the overall clinical incidence, lc3 is the 
instantaneous rate at which subjects of all ages in II enter 
CS. Louis et al. showed

If there is no cohort effect then Louis et al. showed 
that IC3(a) = fT(a),

Ics(a) = lim-i P[A<T^A+8 |A=a] =fnA(a\a) ,

o
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Jcs = / Ics(a) da = /  fA(a)da,
0 0

and

in terms of our model, this quantity will be l. The 
quantity P[ T  < oo] is called the clinical lifetime attack 
rate (proportion of patients who enter the CS) of the CS 
among those in II, provided that there is no cohort effect.

Incidence is interpreted as a measure of the rate at 
which new cases of the disease occur in a population 
previously without the disease (Armitage & Berry, 1987).

4. Prevalence: $pc(a) is the age specific preclinical
prevalence of the PCS among those aged a. It is the 
proportion of subjects among those aged a, who are then in 
the PCS. Equivalently, $pc(a) is the probability that a 
subject chosen at random from those in II who are aged a, 
will be in the PCS. Louis et al. wrote $pc(a) in terms of 
the joint density of (X,Y,A) as

provided that there is no chronic habitues of the PCS. As 
we mentioned earlier, our assumption guarantees that there 
will be no chronic habitues of the PCS.

<Dpc(a) = P[ X  z A < X+Y | A =a ]
oo

0 a-x
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ipc, the overall preclinical prevalence of PCS, is the 

proportion of those in II (all ages) who are in the PCS. 
Equivalently, $pc is the probability that a randomly 
selected subject from II will be in the PCS. Therefore, 
Louis et al. showed that if there is no cohort effect and 
if there are no chronic habitues of the PCS (our assumption 
guarantees that there will be no chronic habitues of the 
PCS) then,

Prevalence is interpreted as a measure of the frequen­
cy of existing disease at a given time. The prevalence 
rate and incidence rate are related since an incident case 
is immediately on occurrence a prevalent case and remains 
as such until recovery or death. Rate of change of 
preclinical prevalence equals the rate of change of the 
overall preclinical incidence minus the rate of change of 
the overall clinical incidence (Louis et al., 1978; 
Armitage & Berry, 1987).

5. Mean Duration of PCS fSoiourn Timet: Louis et al.
(1978) showed that the mean sojourn time in the PCS is 
related to incidence and prevalence both in the case of no

0 a-x

and therefore

a

0 \ o a-x
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cohort effect and when the mean age entry to the preclini­
cal state is finite, by

In our model, the left hand side of this equation will be 
E(Y), since P[ X < ® ] = 1.

1. Follow up Period: The follow up period is the
period which starts when a patient enters into observation 
and ends when one of three possible events occur: (1)
failure times of interest occur, (2) patient leaves the 
study and cannot be seen any more (loss to follow up), or
(3) termination of the study.

2. Survival Function: Let T be a nonnegative random 
variable representing a survival time. The survival 
function of T evaluated at time t is defined as (see 
Kalbfleisch & Prentice, 1980)

oo

Sit) - Pi T > t) = l-F(t) = ffix) dx,

where F(t) is the distribution function of T, defined as

E(Y I X  < oo) =1 M

0

Further Definitions

t

t
Fit) = f fix) dx,

o
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3. Hazard Function; A hazard function of T, A(t), is 
defined as the instantaneous rate of failure at time t, 
conditional upon survival to time t (see Kalbfleisch & 
Prentice, 1980), or

XU) =Lim =1111A-0 A Sit)

I dsit\
\ t e } _ dlog0[g(t)3 
Sit) dt •

Therefore

t
-J'X(u) du

Si t) = e 0 , t > 0,

and

~fX(u) du
fit) = Xit) Sit) = kit) e 0 , t > 0.

The quantity

t
A( t) = j Xix) dx, t > 0.

0

is called the integrated hazard or the cumulative hazard 
function.

4. Cox/s Proportional Hazards Model: Let A(t|z)
represent the hazard function at time t associated with the 
failure time T for a subject with the covariate vector z;
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the proportional hazards model which was suggested by Cox
(1972) specifies that

X(t\z) = X0(t) e ^ z,

or

log. A (t\z)
Kit) = JL' z,

where B is a vector of regression coefficients associated 
with z, and A0(t) is the hazard function when all the 
covariates are equal to zero (Kalbfleisch & Prentice, 
1980). The hazard function A0(t) is an unknown quantity and 
is called the baseline hazard function. A proportional 
hazards model holds when the ratio of the hazard functions 
for two covariate vectors za and z2 does not vary with time 
t. Cox's proportional hazards model is formulated in terms 
of the effects of the covariates upon hazard rates rather 
than upon time to failure.

5. Clayton and Cuzick Bivariate Survival Function: 
Clayton and Cuzick (1985b) described a class of bivariate 
distributions characterized by an association parameter and 
two arbitrary marginal distribution functions.

Let Tx and T2 be two nonnegative random variables 
(failure times). Let

F(tw  ta) = P[ T, > tlf Ta > t2 ], tw  t2 > 0, 
be the joint survival function of Tx and T2. Then the 
bivariate survival function given by Clayton and Cuzick is
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defined as

where y > 0, ^ > 0 ,  t2 > 0  and A,., and A2 are the cumulative 
hazard functions of TV and T2 respectively, and y is a 
parameter that reflects the association between Ta and T2. 
The joint density function of Tx and T2 is

f(tlt C2) = (y+l)^1(t1) k2(t2) e1rA1(t1)eYA2(t2)j-eYA1(t1)+evA2(t2)_1j(-7-2)<

where y > 0 ,  ^ > 0 ,  t2 > 0 ,  and Ai(tx) and A2(t2) are the 
hazard functions for T1 and T2 respectively.
It can easily be shown that the marginal densities of Tx and 
T2 are

fTi(t i) = A1(fc1) e"Al(tl), ^>0,

fTi(t2) = A 2(t2) e_A2<Cj), t2>0.

It should be noted also that neither T2 nor T2 can be 
infinity with positive probability.
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CHAPTER III

LIKELIHOOD FUNCTION FOR THE UNCENSORED CASE

Assumptions

To ease the notation, we begin by looking at the 
uncensored case. The modifications needed to accommodate 
the censored case will be studied in the next chapter. The 
likelihood function for the uncensored case helps in 
writing and understanding the likelihood function for the 
censored case.

Recall that the joint survival function for two 
nonnegative random variables (X,Y), given by Clayton and 
Cuzick (1985b) is

_JL
F(x,y) = [eYAl<Jf>+eYAa<y)-1] Y , y > 0, x > 0, y  > 0,

where y is an association parameter between X and Y, and Ai 

and A2 are the cumulative hazard functions for X and Y 
respectively. The joint density function of (X,Y) is

f(x,y) = (y+l)Ai (x )X2 (y) eyAl<x)evA2 w D(x,y) ' Y 2>,

where y > 0 / X > 0 ,  y > 0 ,  and Az are the hazard func­
tions associated with X and Y respectively and

21
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D(x,y) = eYAl(x) + eYA*(y) - 1,
Consider a sample of n observations (n independent 

pairs), (X^Yi), (X2,Y2),..., (Xk, Yk), of the two random
variables (X,Y) whose joint density function is given by 
Clayton and Cuzick. We partition the X-axis into intervals 
Ij., I2,...., I„ and partition the Y-axis into intervals Jlt 
J2, .... , JH.

As we mentioned earlier in Chapter I, we will use the 
Chiang et al. (1989) assumption of constant baseline 
hazards (i.e, Axl(x) = /i1JL/ x e I( and A2j(y) = jU2J, y e J.,) in 
the ith and j"1 intervals respectively. We model the hazard 
functions for the kth individual whose (X,Y) values fall in 
rectangle IA x Jit by assuming Cox's (1972) proportional 
hazards model holds for each of X and Y in each interval Ii 
and J.) respectively, where i = 1,..., M and j = 1,..., N.

The proportional hazards model will allow us to 
include covariates in the model in order to study the 
effects of the covariates on X and Y. We assume that the 
vector of covariates z is p-dimensional and the same for 
both X and Y.

Thus the hazard functions Aj and k2 in the ith and jth 
intervals for the k"1 individual whose observed (X,Y) value 
is (xk, yk) are defined as

ku (xk) * , xkel± =

and
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Kj(Yk> = = (bj.bj.j.

where lM — (aM, aH+l ], ar — o , 3h+i = 00 > = C 3 / =  0 #
*Vi. = 00* Mu is the baseline hazard for X in Iu  i = 1, 2,... 
, M and /x2J is the baseline hazard for Y in J„ j = l, 2,... 
, N. Note that the Mu's and Mai's are unknown parameters to 
be estimated. zK is the value of z for the kth individual. 
a' = ( alt a2,..,Op ) are the coefficients associated with 
z for the failure time X, and &' = (Bt, B2, ...., Bp) are 
the coefficients associated with z for the failure time Y. 
We will assume that the regression parameters a and B for 
the covariates z are constant (the same) for all intervals.

Y

• ------------------ > (x,y)

I a2 a3 at 3i+i

Figure 3. Dividing the Positive XY Plane Into Rectangles.

After we divide the first quadrant of XY-plane into
rectangles as shown in Figure 3, then each individual
observed values (x,y) will fall in one and only one
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rectangle.

We need to compute the cumulative hazard functions 
associated with X and Y. First, we calculate the cumula­
tive hazard function for the kth individual whose X value 
falls in the i**1 interval (assuming constant hazard over 
each interval) as follows

Similarly, the cumulative hazard function for the kth 
individual whose Y value falls in the jth interval (assuming 
constant hazard over each interval) is

where (br+1 - br) is the length of the rth interval.

Likelihood Function

In this section we will build the likelihood function 
for the uncensored case, but with the failure times of

o
*k

=fx 1JL( u) du+j*A12 (u) du+. . . + J (u) du+JXu  (u) du

=f \L11e*'*kdu+f \i12ea/“kdu+. . . + j [x11_1eal**du+j\i11ea'tkdu

= [l*ii (a2-*i) + ■ • ■ +J*ii (xk-3i) ] e*'Mk
i_1 /

= E  J*ir<ar+l‘ar ) - ai)3
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interest (X,T), instead of (X,Y). The progressive disease 
model (P.D.M) we are considering here has two nonnegative 
failure time random variables (X,T), with X < T (see Figure 
1 of Chapter II). The distribution of (X,T) is the 
distribution which contributes directly to the likelihood 
func-tion for the censored case (to be discussed in the 
next chapter). To write the likelihood function for the 
uncensored case, where (X,T) are the observed variables, we 
cannot apply the Clayton and Cuzick (1985b) joint density 
function in this case, since X < T.

To apply the Clayton and Cuzick formula we model it 
for (X,Y) first, where X > 0 and Y > 0, as we have done 
earlier, then we make the transformation X = X and T = X + 
Y. To get the joint density function g(x,t) of (X,T) (the 
Jacobian is 1) as

g(x, t) =f(x, t-x)=(y+l)k1(x) \2{t-x) t

where

D = eYAlU> + eYAj(t-Jf) - 1,

A2j (tk-xk) =
i-1

y > 0 ,  0 < x < t ,  Aj. and A2 the hazard functions for X and 
(T - X) and Aj.(x) and A2(t-x) are the cumulative hazard 
functions for X and (T - X) respectively.

To write the likelihood function for the uncensored
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case, we assume that we have n observations (n independent 
pairs) (Xx,Tx), (X3,Ta (Xk,Tk) of the two random 
variables (X,T) whose joint density function g(x,t) given 
above. The contribution to the likelihood function for the 
kth individual whose (X,T) values falls in the lx x J„ 
rectangle (then T - X will fall in some interval, say j, j 
< m) as

M N
£{xk, tk-xx) =J2 E frjxk' tk-Xk) II (Xk- tk-*k) * It * Iqi

r=1 q=1

= E  Er*l g»l

■ ̂ rqk(Xkr tk~Xk) I tk~Xk) 6 Ir X Ig J, (l)

where
l if x e lr, y e J„

I[(x,y) 6 Ir x JJ  = '
0 otherwise.

f1;j(xk, tk-xk) =(y+l) \L11\izje ltt>+fi']Zke'flAu(Xk)+A3:l(t:k~Xk)]D i * 2>,

D = etAu (-xk'> + Qi^tk-Xk) _ if

and

i-i
E  ~ *>z) + »2j(tk-Xk ~ *>])r-i

Let nXJ = the number of individuals whose (xk,tk-xk) e 
Ix x then
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M If
E E " i r  »•i»l 3-1

Then the overall likelihood for the n individuals is

n

1  (it/ H ,  Y ' 1̂ 1 / M? 12Zt Jt) a J J  f  (xjji Ck~Xk)
k-i

n  f M  if

=n [  ̂  £*"**> J[ (x*, fcjt-x*) e

The log-likelihood becomes

logL=]n log
Jc-l

M NE E fi^xk^k-xk) H ( x k, tk-xk)e ItXJj]1=1 y-i

If for example, the kth individual observed values (xk,tk) 
fall in rectangle Ip x Jq (then (xk/tk-xk) fall in Ip x Jr, 
for some r < q), then the likelihood contribution for the 
kth individual given in Equation (1), simplifies to 
p̂r (x,t, tk-xk), i.e.,

H  N

£{xk, tk-xx) = J  J  fpr(xk, tk-xk) I[{xk, tk-xk) e lp x  Jr]
p»1 x»l

=  fpz (xk, tk-xk) =  (Y  + 1 )  |ilp \i2r e (a-/+iL/)2* e YAlp(xk) 

. e ^ {t̂ D pIkU k, tk-xk) ('r"2),

where

Dpak(xk> tk~xk'> = eYAlp(JC*) + evA#"<t*'**> - 1.

Therefore
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logL = £  log Ai (xk' tk-x*) + T\ log f12 (xk, tk-xk) + . . .JC8J?11 teRia
+ 53 logfur(xfcf tk-xk) + . . . + 53 logf^U*, t*-^)

H  N

= E  E  E  1 °sfij ( xi" *k-x*),
W  J"1

where R1;J is the set of indices for those (X,T-X)s' in 
rectangle It x J .̂ Substituting for f1:J(xk, tk-xk) in the 
above equation, we get

logL = 53 53/niilog[(Y+l)nlifi2i] + 53 \(ai+0zk + y [A^ (xk)
2=1 J=l \ keRJ:f

+& 2j (tk-Xjt) ] + (- ̂  -2) lognljk (Xk, tk-xk) ),

where

Dijk(xk, tk-xk) = eyAu(x*) + eyAâ (tk~Xk) - l.

This likelihood function can be maximized with respect 
to the parameter vector

Q =  ( y »  1*11/ • ■ ■ / l*lAf/ 1*21' ■ ■ * ' 1*2W '  ®  1' • • • • / ® p z  P i /  ■ ■ ■ / P p )  /

where p is the number of covariates.
The likelihood function for the uncensored case helps 

in understanding and writing the likelihood function for 
the censored case. The likelihood function for the uncen­
sored case has little practical applications, since we may 
not be able to observe all (X,T) values for our model and 
for progressive diseases in general. For example, in
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cancer studies, X could be the time for tumor onset (can be 
detected by a screening test, that gives us information 
about X) which is seldom observed; of course, if you can 
not observe X then you cannot determine Y, but T which 
could be the time when symptoms surface, can be observed 
often. Therefore we will deal with the case when (X,T) may 
or may not be completely observed in Chapter IV.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER IV

LIKELIHOOD FUNCTION FOR THE CENSORED CASE 

Observable Data for the Model

The approach of Louis et al. (1978) is to use non- 
parametric likelihood methods to estimate the joint 
distribution of (X,T). In this approach the joint distri­
bution is described by a finite collection of probabilities 
associated with regions (rectangles) in the plane.

In our study the joint distribution of (X,T) is 
specified by using the joint distribution given by Clayton 
and Cuzick (1985b), henceforth parametric likelihood 
methods will be employed to estimate the parameters of 
interest.

In the progressive disease model we have introduced 
earlier, (X,T) may or may not be completely observed. For 
example in cancer studies X (tumor onset time which can be 
detected by a screening test, that gives us information 
about X) is not observable, while T (time when symptoms 
surface) may or may not be observed. In the case of heart 
diseases, X (time to coronary heart disease, for example) 
may or may not be observed, while T (time to death from the 
disease) may or may not be observed also. Using the model

30
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for the bivariate survivor function for the progressive 
disease model described in Chapter II and used for uncen­
sored (X,T) in Chapter III, we investigate the likelihood 
function when X or T or both may be censored.

We will treat the situation in which X or T or both
may be censored on the right. The observed data for each
individual can be represented by the following data vector

e
U
V

w = Z ,
R
C

where
e = age of the subject when he enters the study.
U = min { X, age at loss to follow up or time of

analysis}.
If the patient is lost to follow up, then X > U, otherwise 
X = U. We assume X > e, i.e., the subjects are disease 
free when they enter the study.

V = min { T, age at loss to follow up or time of
analysis}.

If the patient is lost to follow up, then T > V, otherwise 
T = V.

z = is the vector of covariates measured on each 
subject at age e.

1 , X is censored; X > U.
0 , X is uncensored; X = U.
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1 , T is censored; T > V.

C 1 0  , T is uncensored; T = V.

Likelihood Function for the Censored Case

In developing the likelihood function for the censored 
case, it is helpful to divide the data into four categories 
(cases) according to the pair of indicators (R,C); their 
contribution to the overall likelihood will be discussed in 
detail below. The keh individual generates data vector wk 

and L(w k) represents the likelihood contribution for the k01 
individual.

To build the likelihood function for the censored 
case, the likelihood of observing a vector (e,U,V,R,C) for 
the k"1 individual satisfying (ek e Ih,uk e Ix,vk e J„,R = r, 
C = c) must be expressed in terms of the joint density 
function of (X,T), h < i < m.
Case 1: When R = 0, C = 0.

R = 0 implies that X = U; that is, the observed U is 
actually the age at which the subject enters the preclini­
cal state before the end of the study. Also C = 0 implies
that T = V; that is, the observed V is actually the age at
which the subject enters the clinical state before the end 
of the study. So the contribution to the likelihood 
function for the kth subject whose (U,V) values fall in Ix 
x J„ rectangle (with (U,V-U) fall in IA x J3, j < m) is 
obtained by evaluating f(x,t-x) at the observed point (uk,
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vk) for the k"1 individual. Therefore the likelihood 
contribution for the k"1 individual in this case is

L (»■*) = ify (uk, vk-uk) = (y +1) \ild ed *k \i2j e ^ k
(1)

. eYAu(Uk> e ^ {Vk~Uk) [Dljk(uk, vk-uk) ] *'v'2>.

Case 2: When R = 0, C = l.
R = 0 implies that X = U; that, is the observed U is 

actually the age at which the subject enters the preclini­
cal state before the end of the study, while C = 1 implies 
that T > V; that is, V is a censoring time on T, and T is 
not observed before the end of study, but we assume that it 
will occur at sometime after V. So the contribution to the 
likelihood function for the kth subject whose (U,V) values 
fall in IA x Jn rectangle (with (U,V-U) fall in l± x J)( j < 
m) can be obtained by integrating f(x,t-x) with respect to 
t from t = vk to t = oo, evaluated at x = uk. Therefore the 
likelihood contribution for the kth individual in this case 
is
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£(«&> = / f (uk, tk - Uk )
V*

dt>

N b*+l
f ̂ lm^uk! tk-Uk) dtk+ J] f fiz(uk, tk~Uk) dtk

z-m+1 %t

= j  (Y+l) ̂ ii|A2raettf/+p/U*eYEAli(U*>+A2"<CjC"U,:]-Dimfclr Z) dt

+ E  7 (Y +1) M-ii Ii2r e^* evA“ ( eYA“ ( 2 dtk
r-m+l ^

= lilieasr*eYA“(u*) (-4-1) ( - i - l )D(uk, vk-uk) y -D(uktbm+1-uk) V 

52 Hii eozeTAli(u*>
IT

r=m-H
< - i - DZXu^-U*) Y -D(uk,br+1~llk) Y< - i - l )

= |ilie“z*eYÂ (u*)[z?(Ujc,vJt-uJt) ' y - -D{uk,bm̂ -uk)' y< - i - l >

+ Hlie-/*eŶ (u*)[z?(Ujtfi,1IItl-Ujt) ("5'1>-D(Ujc,iW U j t ) ('v1'1) +

(-i -i) ( - i - l ). D(uk, bm+2 Uk) Y D(uk, b ^  uk) Y +
( - i - l )+ . . . . + D(uk,btr_1-uk) Y - D(uk,bN-uk) Y( - i - l )

( - i - l ) ( - i - l )
+ D (uk'bN~uk> V - (̂Ujt̂ iir+1-U*) Y

=  H 1 1 e “/2e YAl-‘(u*)
( - i - l )  ( - i - l )D(uk,vk-uk) Y -rKu^jb^-u*) Y

= nxi e“'* eYAli(u*> y _1> (2)

Since = ® ; then

^2AT^W+l) = 00 » B(Uk,bN4.i-Ufc) - 00.

and therefore
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Case 3: When R = 1, C = 0.
C = 0 implies that T = V; that is, the observed V is 

actually the age at which the subject enters the clinical 
state before the end of the study. However, R = 1 implies 
that X > U; that is, U is a censoring time on X; X is not 
observed, but we know that X occurred before the subject 
entered the CS, that is, X occurred between the observed uk 
and vk, (uk < X < vk). So the likelihood contribution for 
the k^ subject whose (U,V) values fall in IA x J„ rectangle 
(with (U ,V-U) fall in IA x Jv  j < m) is obtained by 
integrating f(x,t-x) with respect to x from uk to vk, 
evaluated at t = vk. Therefore the likelihood contribution 
for the kth individual in this case is

i(Vfc) = ff(xk, vk-x

c-l
xk' vk~xk) dXk + f fcj (xk, vk~xk) dxk, (3)

where vk falls in interval c on the x-axis

Jfii K ,  v*-u*) = (Y +D  ed |i2j. e^2jceYAli<u*) 

•Diik{uk,vk-uk) { 1 2),’ijk'uk>vk uk

and
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Dijk(Uk,Vk-Uk) = e tA1J(Ufc) + e YA2,<vk-ut) _ li

The above integrals in equation (9) cannot be obtained in 
a closed form; therefore, they must be evaluated numerical­
ly.
Case 4; When R = 1, C = 1.

R = 1 implies that X > U; that is, U is a censoring 
time on X, and X is not observed. C = 1 implies that T > 
V; that is, V is a censoring time on T, and T is not 
observed. For this case, we say that this subject has 
survived without entering the PCS or CS, which means that 
by the time vk neither X nor T is observed, that is, vk < X 
< T. So the likelihood contribution for the k"1 subject 
whose (U,V) values fall in Ii x J„ rectangle (with (U,V-U) 
fall in Ii x Jj, j < m) is obtained by integrating f(x,t-x) 
with respect to x and t over the region ( X > vk, T > xk). 
Therefore the likelihood contribution for the kth individual 
in this case is
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tk ~ x k ) d t i

vk xk
m  oo ^

=/J (Y+l) +̂ (c*“x*n l/~ *~2>dfc*dx*
vkxk

= / < * * < * * - * * >  (_r"1) dx*
Vk
8*

=/ (iioe^e"^0̂  dx*
vk

= e -A10(v*)> (4)

where vk falls in interval c on the x-axis.
Now the kth individual generates data vector wk, 

therefore the overall likelihood for the n individuals is

L ( . . . .jtfn) = JI L(&k) .
k=1

This likelihood is to be maximized with respect to the 
unknown parameters. In Table 1 below, we summarize the 
likelihood contributions for the observed data.
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Table 1

Likelihood Contributions for Observed Data

R c likelihood contribution for data

0 0 (T+l) l̂2ie a*eT 1AlJ*A«>D(uk, vk-uk) * ' S1

0 1 e*'« Dakiut,vk-ut)

1 0
vk

f f ( x k ' V k - x k ) d x k  

u*

1 1 e -Klc(vk)
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CHAPTER V

LOUIS ET AL. EPIDEMIOLOGICAL MEASURES 
IN TERMS OP OUR MODEL

The Epidemiological Measures in Terms of Our Model

We have introduced the Louis et al. (1978) model in 
Chapter II. We also introduced some standard epidemiolog­
ical measures defined by Louis et al. in terms of their 
model. In this chapter we will define those measures in 
terms of our model. In Table 2 below, we summarize some of 
the relationships between incidence, prevalence and mean 
sojourn times.

Table 2 
Key Relationships

relationship Sufficient conditions for validity
I pc ( 3 ) no cohort effect
I PC no cohort effect, f* (•) is uniform
Ics ( 3 ) no cohort effect
Ics no cohort effect, f* (.) is uniform
$pc(a) no cohort effect
$pc no

f*
cohort 
( .) is

effect
uniform

E( Y | X<°°) no cohort effect

39
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1. Incidence:

If there is no cohort effect then we can write the 
preclinical incidence among those aged a, defined in terms 
of our model as

Louis et al. showed in Chapter II that the overall 
preclinical incidence is

In order to define Ipc in terms of our model we need to 
define the distribution of A. We assume that A is uni­
formly distributed as

where M is the number of intervals on the X-axis and d± is 
the length of interval i. Notice that

Since we have (a possible) different scale of intervals on 
the Y-axis in general, then fA(a) can be defined in this 
case as

where N is the number of intervals on the Y-axis and s., is

0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41
the length of interval j.

The overall preclinical incidence in terms of our 
model becomes

i p c  =  1^ / ^  e * ^ e ~ ^ i(x)d x

= 5  ~m T. fe_Ali(ai) " e‘Ali(ai+1> ], (4)

Similarly, if there is no cohort effect, then the 
clinical incidence among those aged a becomes

a
Ics(3 ) =fT(a') = f f(x, a-x) dx 

0
a x

=f(y+l)\iliiL2je < * W * e yl̂ {x)̂ ia-x)D ~ ^ ~ 2)dx (5)

where

£) = gfAtjU) + e ?A2J(a-x) _

Since the above integral cannot be obtained in a closed 
form, it must be evaluated numerically.

The overall clinical incidence in terms of our model 
becomes

ICL =J* fT( t) fA (t) dfc = J jf (x, t-x) dx
0

tf

( e u ‘ e~x) *J J 0 j
dt,

fA t) dt

(6)
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where

f1:j(x, t-x) =(y+l) nli\i2je ia'^)ze't[illl{x)+Al:lia~x)1D i * 50

and

D  = evAlJ<x) + eyA2j(a_Jf) - l.
This integral must be evaluated numerically.

1. Prevalence:
If there is no cohort effect, then the preclinical 

prevalence among those aged a, given by Louis et al. in 
Chapter II is

then the preclinical prevalence among those aged a, defined 
in terms of our model becomes

This integral cannot be obtained in a closed form and must 
be evaluated numerically.

The overall preclinical prevalence becomes

® P<7(a) =J J  f(x,y) dy dx,
0 \  a -x

®pc(a) =f\i11eâ e'f/iu{x)D(x,a-x)i * x) dx. (7)
0

/ _ _1
'a'setAuMD(x,a-x) Y dx da, (8)
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where

D(x,a-x) = eYA“ u> + eYA*j(a-JC) - 1.
This integral cannot be obtained in a closed form and must 
be evaluated numerically.
3. Mean Duration of Preclinical State ('So-iourn Time):

Recall that the mean duration time of the preclinical 
state defined' by Louis et al. in Chapter II is

oo

J $ pc(a) da
B(YjX<oo) = -2---------- , (9)

f IPc(a) da
o

according to our model, the quantity E[ Y | X < <» ] will be 
E(Y), since P[ X < <» ] = i.

Substituting for §PC(a) and Ipc(a) which are given in 
equations (1) and (7) in equation (9), the mean duration 
time in terms of our model becomes

if J a (-.I-i) Nji1:i ea/*eYAli(JC) D{x, a-x) y dx da

E(Y) = ---------- ------------------------- 1— . (10)M
_ g ~ AU  ( a l+l> j  

1=1

The denominator of this equation is 1, since

00 oo

j Ipc (a) da = j fx(x) dx = P[ X < °»] =1,
0 0

according to our assumption, if every patient lives long 
enough then he will get the disease eventually .
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The Asymptotic Distributions of the' Standard 

Epidemiologic Measures

In order to make inferences about the epidemiological 
measures obtained in the last section, we need to find 
their distributions. To find the mean and variance of each 
of those measures we will apply the delta method (Bishop
[1973]). Define the parameter vector to be estimated as

fi “ ( Y  / 1*11/ • " • / Miff/ 1*21/ ■ • ■ / l*2W/ ® i /  ■ • • / ® p /  P i /  ■ ■ * / P p )  ■

Since is the MLE of 8 , and from the properties of the

maximum likelihood estimates, jQ. is approximately normal 

with mean 0. and covariance matrix I(0 )_1.

Let g r ( f i )  be a function of 0 ; we want to approximate

the distribution of g(fi) . By using the delta method, we 

get

where

dim(Q.) =v = 2 p + M + N + l ,

The estimated variance of g ( 0) is
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this quantity is evaluated at Q=ft.

As an example, we will derive the formulas for the 
derivatives of the preclinical incidence and the overall 
preclinical incidence. The estimate of the preclinical 
incidence of those who are aged a

H
g&(a) = Jpc(a) =

is

M
. JfaeJj ,Sfl(a) = V  {L

where

A ^ U )  = f*ii<ai*i“ai> +Aii(a-ai) ea*.

If we differentiate g with respect to we get

dg _ _dg_ = dg _ Q 
cfy cfp̂  d\i2z (11)

(l-A^fa)). JtaeJj] , (12)

M
£e*'* e_Al*(a) [ 1 (a-as) e-/*] .lEaelJ , s = i

dg(ft)/d /x1B = I M (13)
- E ^ i a2a/*(as*i-aa) e ' ^ ^.ltaerj , s<i.i-1

dg(0.)/d/ils = 0 , for s > i.
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is

an an

where I (ft)-1 is the inverted covariance matrix of ft obtained 
from maximizing the log-likelihood for the censored case, 
and dg/dft is given by

 # ) '

which is obtained from Equations (11), (12) and (13).
The estimate of the overall preclinical incidence

flr(fl) = l

IS

where

i-1 i
Ai ii&j) ~ |Air (3r+i _ a r) & , (^i+i) “ l̂ ix (^r+l — ®

r=l r-l

If we differentiate g with respect to ft, we get 

dg(fl) _ dgr(ft) _ dgr(ft)
dy dpm dn 0, (15)

2r

M

da, §  Mdi- & ■ - £  W Z* K u <a,) (16)
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dg(Q.)/djUao = 0 , for s > i.
The covariance matrix for Ip*, is

dg{ 0 )
da (18)

where 1 (a)"1 is the inverted covariance matrix of a obtained 
from maximizing the log-likelihood for the censored case, 
and dg/da is given by

which is obtained from the above derived formulas.
In this chapter we were able to write Louis et al. 

epidemiological measures in terms of covariates and that is 
one of our objectives in this study.

The derivation of the means and variances of the above 
measures is one of our objectives in this study too. We 
can make inferences about those measures. For example, one 
can compare the incidence rates of two groups (males versus 
females or treatment versus controlled), or even can 
calculate confidence intervals about those measures (see 
Table 5).

dim(Q) =v =2p+M+N+l
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The mean sojourn time in the PCS plays a fundamental 

role in the evaluation of the screening program for early 
detection of the disease. Zelen (1974) has suggested that 
the survival time for certain types of cancer patients may 
be positively correlated with preclinical sojourn duration 
time Y. Individuals with large Y values tend to have more 
slowly developing disease and therefore can be expected to 
live longer than those with small Y values (and rapidly 
developing diseases). Zelen argued that positive screenees 
tend to have longer than the average preclinical sojourn 
times. If this is so, he concludes, then the prognosis of 
patients who are discovered via screening is, on the 
average, better than those patients who present with 
clinically "manifest" symptoms.
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CHAPTER VI

EXAMPLE 

Description of the Data

The data which we are using are extracted from the 
Framingham Heart Study Data Set (FHSD) extracted from Kahn 
and Sempos (1989) which contains 13 variables including an 
18-year follow-up. We used a subset of these data and we 
chose a subset of the available covariates for our example. 
The covariates in this set are sex, cholesterol, diastolic 
blood pressure, systolic blood pressure, and cigarette 
smoking.

The listing and summary included in Table 3 below 
contain 10 variables for Coronary Heart Disease (CHD) 
incidence and total mortality with an 18-year follow up 
period. A brief description of the definition and range of 
values for each variable are presented in Table 3 below.

A complete data set without missing values for the 
covariates of any of the patients is required for the 
application of the model. Cases were excluded from the 
analysis if there were missing values for any of the 
variables or if there is a preexisting CHD at the first 
examination, (since we assume that X > e). A definite CHD

49
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Table 3

Variables Used in the Model for the 
Application of the FHSD

Variable Name Variable description
SEX 0 Men

1 Women
AGE Age at first examination 

45-62, Age in years.
SBP Systolic blood pressure at 

first examination 90-300 mm 
Hg

DBP Diastolic blood pressure at 
first examination 50-160 mm 
Hg

CHOL Serum cholesterol at first 
examination. 96-430 Mg/100 
ml.

CIG Number of cigarettes smoked 
per day at first examination. 
0-60.

CHD Age at withdrawal or first 
CHD event.

DEATH Age at withdrawal or death.
R Censoring indicator for CHD

0 means exact CHD time is 
observed (uncensored)

1 means withdrawn before CHD 
is observed (censored)

C Censoring indicator for 
death

0 means exact death time is 
observed (uncensored)

1 means withdrawn alive.
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is first diagnosed as an incidence case at any examination 
if, after a review of all available information, a panel of 
investigators agreed upon a definite diagnosis of myocar­
dial infarction, coronary insufficiency, angina pectoris, 
or CHD death. There are causes of death in the study other 
than CHD death, such as cancer, other cardiovascular 
diseases, stroke and others. These other causes of death 
are considered as censoring times and we assume that CHD 
death would have occurred some time after that.

The Appendix found in Khan and Sempos (1989) is also 
a subset of the original study. This Appendix is not a 
random sample of the Framingham data.

For more a complete description and discussion of the 
FHSD, see Gordon and Shurtleff (1973) and Shurtleff (1974).

Estimation of the Parameters

The method used to estimate the parameters is the 
maximum likelihood method. A first glance at the log- 
likelihood function for the censored case seems very 
difficult to maximize. In estimating the parameters using 
the MLE method, we ran into many problems, and in fact they 
are problems to be faced in many parametric estimation 
problems (see Bard, 1974; Nash & Walker-Smith, 1987).

First, the first and second derivatives of the log- 
likelihood function for the censored case with respect to 
the parameters are long and not easy to write in a closed
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form. In fact, if we have a large number of parameters to 
be estimated, then writing the first and second derivatives 
will not be a convenient way and this will make the 
estimation process longer and even inefficient.

Second, the log-likelihood function for the censored 
case is nonlinear in the parameters. Nonlinear parametric 
estimation is a difficult task (see Nash & Walker-Smith, 
1987) .

Third. the choice of intervals is another problem. 
Using finer and finer intervals makes it possible for the 
model to provide closer approximation to the parameters, 
but because the number of observations (number of those 
exposed to risk) in each interval becomes smaller and 
smaller, the accuracy of the estimates is more likely to 
decrease (Elandt-Johnson & Johnson, 1980; Holford 1976). 
Also, choosing more intervals will add more parameters to 
be estimated. This will make convergence slower, and since 
we are using an iterative method (which requires initial 
values) to maximize the log-likelihood function, this will 
make it harder to find good reasonable initial points.

Fourth. the choice of initial values is another 
problem. The method used to maximize the log-likelihood 
function is a quasi-Newton method, which is an iterative 
method that is sensitive to initial values. The more 
parameters we have, the harder it is to get reasonable 
initial values. If we do not choose good initial points,
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then this will either slow convergence or will cause 
divergence (overflow, underflow, divide by zero or loga­
rithm of a negative number). We chose zeroes for the 
regression coefficients (alphas and betas). One way of 
finding good initial values for the baseline hazards 
associated with CHD morbidity and CHD mortality is by 
calculating the percentages of CHD morbidity and mortality 
in each interval.

Fifth, the algorithm used for the maximization of the 
log-likelihood function requires bounds on the parameters. 
For example, the baseline hazards are constrained to be 
positive (since a hazard function is a rate). Alphas and 
betas are not constrained. Gamma was constrained to be 
positive (since it is constrained to be positive in Clayton 
and Cuzick formula).

Sixth, since some of the integrals in the likelihood 
function for the censored case are not obtained in a closed 
form, we have to evaluate those integrals numerically in 
order to estimate the parameters. Numerical integration 
requires an enormous number of evaluations and computations 
during the maximization process. This, of course, will 
accumulate rounding errors, which may slow convergence 
significantly (especially if we have a high censoring 
percentage) and may affect the accuracy of the estimates. 
In order to minimize the approximation errors and to cut 
short on the computations and make them faster, easier, and
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more efficient, we will consider one covariate (SEX) and 
will take 5 intervals. In this case we will have 13 
parameters to estimate. We take a subset of the data in 
the Appendix of Khan and Sempos (1989) of 614 men and 687 
women.

As we noticed from the above problems, the number of 
parameters to be estimated has an impact on the rate of 
convergence. A large number of parameters can slow 
convergence rapidly. For example, when printing the 
parameters for every evaluation of the log-likelihood 
function within each iteration, we observe that the IMSL 
subroutine used to maximize the log-likelihood (B20NF) 
works on improving one or few parameters at a time, leaving 
the others unchanged during that iteration. So the more 
parameters we have, the slower the convergence will be.

We need to look for an iterative method that maximizes 
a nonlinear function, derivative-free, with constraints 
(bounds), is less sensitive to initial points, and handles 
many parameters.

We tried first to use BMDP, since it has programs for 
handling maximum likelihood estimation and survival 
analysis. It turned out that BMPD is inefficient for this 
problem, essentially because the program we used (LE) is 
for maximizing univariate functions. We tried also to 
implement the EM algorithm (Estimation-Maximization 
algorithm) to obtain the MLE estimates. There were
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setbacks to applying the EM algorithm:

1. Each iteration for the EM algorithm involves two 
steps (an estimation step and a maximization step) which 
involves many evaluations which will slow convergence.

2. In general, it is very hard to get convergence 
with a high censoring percentage.

3. For the maximization step, we need an iterative 
method to maximize the log-likelihood function for the 
censored case (IMSL subroutines). This means that, for 
every maximization step, we need to call or use a maximiza­
tion subroutine.

4. Most of the formulas involved in the application 
of the EM algorithm have to be evaluated numerically. As 
we mentioned earlier, this will add more computations and 
numerical errors; in addition to this, more computer time 
is needed which could be very expensive.

5. We need a separate EM algorithm to get the 
standard errors of the estimated parameters which means 
that we have to face the same problems as above. Louis et 
al. (1978) did not get the standard errors of the MLE 
estimates, but in a later work, Louis (1982) used the EM 
algorithm to get the standard errors of the MLE estimates.

For more information about the EM algorithm, see 
Clayton and Cuzick (1985b), Cox and Oakes (1984), Dempster, 
Laird, and Rubin (1977), Louis (1982), Louis, Albert and 
Heghinian (1978) and Wu (1983).
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IMSL Inc. (1987) has subroutines that maximize 

(minimize) functions with descriptions given above. The 
subroutine used to maximize the negative log-likelihood 
function is B20NF (FUNCTION, NP, GUESS, ITYPE, LOWER, 
UPPER, SCALE, FSCALE, IPARM, RPARM, THETA, FVALUE, COVAR, 
ICOVAR).

The output is contained in THETA, FVALUE and COVAR, 
where THETA is the vector containing the estimates of the 
parameters. FVALUE is the maximum of the function to be 
maximized. COVAR contains the approximation to the Hessian 
matrix (which is the matrix of the second derivatives of 
the function to be maximized with respect to the parame­
ters, Bard [1974]). This subroutine (B20NF) uses a quasi 
Newton method and an active set strategy to solve minimiza­
tion (maximization) problems subject to simple bounds on 
the parameters.

According to the IMSL documentation, for a given 
starting point, an active set, which contains the indices 
of the parameters at their bounds, is built. The routine 
then computes the search direction according to the formula 
d = - B-1 g°, where B is a positive definite approximation 
of the Hessian matrix, and gc is the gradient evaluated at 
the starting point. The search direction for the variables 
(parameters) in the active set is set to zero. A line 
search is used to find a new point. Finally, the routine 
checks the optimality conditions (internal). The gradient
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is estimated- by using a finite difference method. Other 
IMSL subroutines are used, e.g., (LINRG) to invert the 
Hessian matrix and (SCOPY) to print the inverse of the 
Hessian matrix. (QDAG) and (QDAGI) are used for numerical 
integration. For more information on the above method (see 
Dennis & Schnabel, 1983; Gill & Murray, 1976; IMSL Inc., 
1987).

Hypothesis Testing

The parameter vector we are estimating is £ = (y, a, 

S/Mi/ Ma)/ where y is a scalar parameter that measures the 
association between X and Y. y.x, y.2 are unknown baseline 
hazards associated with X and Y respectively, with d i m ^ )  
= M, d i m ^ )  = N. a and S are regression coefficients 
associated with X and Y respectively, with dira(a) = dim(J3) 
= p = number of covariates.

One of our objectives in this study is to test the 
hypothesis concerning the effect of the covariate (SEX) on 
CHD morbidity and CHD mortality, i.e., we want to test the 
following hypotheses

H0a : a = 0 vs Hla i a * 0,
tfop : p = 0 vs : p * 0 .

This means that we want to test if the covariate (SEX) has
an effect on developing CHD or not; also we want to test if
the covariate (SEX) has an effect on dying of CHD or not.

The standard errors of the estimates are obtained from
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the inverse of information matrix, J-1 (fi.) , (fi. is the MLE of

fi.) which is the inverted Hessian matrix obtained from using 
the IMSL subroutine (B20NF), as mentioned in the previous 
section. From the properties of the MLE estimates, the 

test statistic for each estimate with standard error

SEiQj is

Z& = — ■
1 SE(6d)

This test statistic can be used to test the effect of the 
covariate (SEX) on CHD morbidity and CHD mortality, and can 

be used also to obtain interval estimation of 0i based on

the asymptotic normality of 0i, i.e., under the null

hypothesis that 0 x = 0 , Sj, will be normally distributed with 

mean zero and standard deviation SE(0i).

Analysis and Discussion

As mentioned earlier, we consider one covariate (SEX), 
and we will fit two models and compare the preclinical 
incidence rates for those two models.

In Model 1, we fit our model with one covariate (SEX); 
in this case we will have 13 parameters to estimate. After 
estimating those parameters, we will calculate the es­
timated preclinical incidence rates and their standard
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errors in terms of our model which are obtained for men and 
women in Chapter V. Also, we will test if (SEX) has an 
effect on developing coronary heart disease (CHD), and test 
also if (SEX) has an effect on dying of CHD.

In Model 2, we fit our model with no covariates for
men and women separately; in this case we will have 11 

parameters to estimate. We will compare the incidencerates 
for Model 1 and Model 2, and will compare the incidence 
rates for men and women within each model. After es­
timating those parameters, we will compute the estimated 
preclinical incidence rates for men and women separately 
(see Tables 9 and 10 below). The numbers in brackets are
the estimated incidence in each interval calculated by
multiplying the sample size with the probability of 
incidence in that interval.

Recall that our objective is to test if the covariate 
(SEX) has an effect on developing CHD or not, and if the 
covariate (SEX) has an effect on dying of CHD or not, i.e.,

H0a : a = 0 vs Hla * 0,
•Hop : P = 0 V3 Hip * 0.

The MLE estimate of the regression coefficient associated 
with CHD morbidity (alpha) is -0.8048 with an estimated
standard error of 0.14221, and the MLE estimate of the
regression coefficient associated with death of CHD (beta) 
is -0.69196 with an estimated standard error of 0.1531. 
From the asymptotic normality of the MLE, we get
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a * N(a, al ) , P* tf(p, a\ ) .
Therefore, the test statistic is the z-test, and the p- 
value for testing if alpha is zero or not is 0.0 and the p- 
value for testing if beta is zero or not is 0.0 also. This 
means that alpha and beta are statistically significant at 
5% level of significance, i.e., the covariate (SEX) has a 
significant effect on developing CHD, and (SEX) has a 
significant effect on dying of CHD. This means that there 
is a significant difference between men and women CHD mor­
bidity and CHD mortality, and women have a smaller risk 
than men (see Table 4).

Based on the asymptotic normality of the maximum 
likelihood estimates, a 95% confidence interval for alpha 
is (-1.0835, -0.526088) and a 95% confidence interval for 
beta is (-0.9921, -0.391884).

Comparing the estimated incidence values in Table 8 

(page 6 6 ) for men and women in each interval, we see a dif­
ference between the incidence in men and the incidence in 
women which supports the above conclusion.

Table 4 (page 61) summarizes the overall clinical in­
cidence and its standard error for men and women obtained 
from the formulas in Chapter V.

Comparing the estimated incidence values for men in 
Table 9 (page 67) and the estimated incidence values for 
women in Table 10 (page 67) when we fit our model (no 
covariates) for men and women separately, we see a dif­
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ference between them. To see if this difference is 
statistically significant or not, we can test if the mens' 
incidence is different than the womens' incidence or not 
(since we have large sample sizes). The overall incidence 
for men obtained from the analysis is 0.010553 with a 
standard error 0.00536656, and the overall incidence for 
women is 0.005988 with a standard error 0.003 271. From the 
asymptotic normality of the overall incidence obtained in 
Chapter V, the test statistic for comparing mens' and 
womens' incidence has a p-value of 0.0. This indicates 
that there is a significant difference between men's and 
women's incidence at 5% level of significance. This result 
supports the previous conclusions also.

Table 4
Overall Preclinical Incidence and Its Standard Error 

for Men and Women for the Two Models

Sex Our Model(w. cov.) Our Model(no cov.

Men .0111142 (.02449) .010553 ( .00536)
Women .00557 (.01732) .005988 ( .00327)

We can obtain an estimate for the preclinical in­
cidence of men (women) among those who aged a, by substitu­
ting the MLE estimates in the formula

= filie«*e“A“ (a>, aelif
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where

1-1
^ ( a )  = £  Axrdr + frijfa-aJ 

Vr-l
a8z

If z = 0, then the preclinical incidence of men among those 
who are aged a, is

IPC(a) = (L, exp-
i-i

Vr-l
, aelf.

If z = 1, then the preclinical incidence of women among 
those who are aged a, is

Ipc(a) = (l^e^exp
fi-iE Airdr + Piita-aJ e<
Vr-l

ae 1 4

For example, the preclinical incidence of men among those 
who are aged 48 is approximately 0.0057096 with standard 
error of 0.01 and the preclinical incidence of women among 
those who are aged 48 is approximately 0.0025779 with a 
standard error of 0.0131. The standard errors of the 
preclinical incidence are obtained from Equations (11)-(13) 
of Chapter V. From the asymptotic normality of the
preclinical incidence obtained in Chapter V, the test 
statistic for comparing men's and women's incidence among 
those who are aged 48 has a p-value of 0.0. This indicates 
that there is a significant difference between men's and 
women's incidence among those who are aged 48 at 5% level 
of significance and women have smaller incidence than men.

As we mentioned earlier, we can obtain confidence
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intervals for the overall preclinical incidence, by 
obtaining the mean and variance of the overall preclinical 
incidence from the formulas in Chapter V based on the 
asymptotic normality of the overall preclinical incidence 
(see Tables 4 and 5). To see how we obtained the overall 
incidence for women and men when we fit our model, first, 
the MLE estimates are

ft =-0.8048 , $ = -0.69196, (1^=0 . 00581, (i12=0 . 01764,
$13=0 .2236 , (i14=0. 02342, $15=0 . 02441.

Since we are using 5 intervals, with ax = 45, a2 = 52, a3 = 
59, a4 = 6 6 , a5 = 73 and as = <», the length of those inter­
vals are d3 = d2 = d3 = d„ = 7 and d5 = °o. We substitute 
those estimates in Equation (14) of Chapter V to get the 
overall preclinical estimate which simplifies to

? _ [l-e"All(as>]
lpe Mdz ’

But note that we substitute z = 1 for women and z = 0 for 
men. For example,

e-A11(45) _1' (52) = 0 > 9 8 1 9 8 / eAi3(59) =0.926176,

eAi«<66) =0.8664, e^5<73) =0.805166, eAl6<“> =0 .0 ; 
those values are for women, and the similar values for men 
are

e-Atl(45) =1' ̂ (52) = 0 .9 5 9 , =0.846,

eAn(«fi> =0 .7 2 2 , e^5*73’ =0.611, eA“ <“) =0.0.
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Therefore Ipc(men) = 0.0111142 and Ipc(women) = 0.00557.

To obtain the standard errors for the overall preclin­
ical incidence for men and women, we use equations (15)- 
(18) of Chapter V. We need the derivatives of the overall 
preclinical incidence with respect to the parameters for 
women evaluated at the MLE estimates of those parameters, 
i.e.,

— # | e.A=(°, -00498,0, .072, .072, .072, .072, .072,0,0,0,0,0). au
Similarly, the derivatives of the overall preclinical 
incidence with respect to the parameters for men are 
evaluated at the MLE estimates of those parameters, i.e.,

- ^ S r l e - d  = ( 0 / 0 , 0 ,  . 1 2 2 2 ,  . 1 2 2 2 ,  . 1 2 2 2 ,  . 1 2 2 2 ,  . 1 2 2 2 , 0 , 0 , 0 , 0 , 0 ) .cro
Using equation (18) of Chapter V and the computer, we get 
the standard error for women's incidence to be 0.01732 and 
the standard error for men's incidence to be 0.02449.

Tables 6 (page 65) and 7 (page 6 6 ) summarize the MLE 
estimates for the baseline hazards associated with X and T 
for men and women for the two models.

Table 8 (page 6 6 ) summarizes the estimated preclinical 
incidence for men and women when we fit our model with 
covariate (SEX). The numbers in brackets in Tables 8 , 9 
and 10 are the estimated counts of the preclinical in­
cidence in each interval for men and women when we fit the 
two models. These numbers are obtained by multiplying the
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preclincal incidence in each interval with the sample size. 
Tables 9 and 10 (page 67) summarize the estimated preclini­
cal incidence for men and women respectively, when we fit 
our model with no covariates.

Table 5
95% C.I. for the Overall Preclinical Incidence 

for Men and Women for the Two Models

Sex Our Model(w . cov.) Our Model(no cov.)

Men
Women

(-.036896, .05912) 
(-.021750, .03952)

( -.00004, .02107) 
(.000423, .012399)

Table 6

MLE Estimates of Baseline Hazards Associated 
With CHD Morbidity for the Two Models

B.L.H. Our Model 
w . Cov.

Our Model (Men) 
no Covariates

0. Model Women 
no Covariates

Mull 0.00581 0.00691 0.00236
Mul2 0.01764 0.02131 0.00513
Mul3 0.02236 0.01876 0.01262
Mul4 0.02342 0.01960 0.01350
MU15 0.02441 0.01912 0.01439

From the above results and according to the data 
obtained, we can conclude that CHD incidence among men is 
higher than CHD incidence among women.
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Table 7

MLE Estimates of Baseline Hazards Associated 
With CHD Mortality for the Two Models

B.L.H. Our Model 
w . Cov.

Our Model (Men) 
no Covariates

O. Model Women 
no Covariates

MU21 0.13391 0.12832 0.04979
Mu22 0.02585 0.02771 0.00654
Mu23 0.02881 0.03098 0.00680
Mu24 0.01566 0.02035 0.00000
Mu25 0.00000 0.00000 0.00000

Table 8

Estimated Preclinical Incidence When Fitting 
Our Model With Covariate (SEX)

age groups preclinical 
incidence(men)

preclinical 
incidence(women)

[45 - 52) 
[52 - 59) 
[59 - 6 6 ) 
[66 - 73) 
73 or more

0.041 (25.174) 
0.133 (69.382) 
0.124 (76.136) 
0.111 (68.154) 
0.611 (375.15)

.01802 (12.397) 

.00558 (38.337) 

.05976 (41-055) 

.06124 (42.075) 

.80517 (553.14)

Total (614) (687)

Our model can accommodate time-dependent covariates, 
where the hazard functions in the ith and jth intervals for 
the kth individual will be of the form

, VL2je iaiZk* ^ k)
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Table 9

Estimated Preclinical Incidence When Fitting 
Our Model (no cov.) for Men Only

age groups preclinical 
incidence (men)

[45 - 52) 0.04241 (26.04)
[52 - 59) 0.13300 (81.166)
[59 - 6 6 ) 0.10152 (62.333)
[66 - 73) 0.09274 (56.940)
73 or more 0.63064 (387.21)

Total (614)

Table 10
Estimated Preclinical Incidence When Fitting 

Our Model ( no cov.) for Women Only

age groups preclinical 
incidence (women)

[45 - 52) 0.0164 (11.267)
[52 - 59) 0.0347 (23.834)
[59 - 6 6 ) 0.0802 (55.097)
[66 - 73) 0.0783 (53.792)
73 or more 0.7904 (543.01)

Total (687)

where Ylk and Y.)k are the vectors of time-dependent covari­
ates associated with X and Y respectively, and m  and n 2 are 
the coefficients associated with Ylk and Ylk for X and Y. In 
this case, if we can add time-dependent covariates to the 
model, then we will be able to eliminate the Louis et al.
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assumption of no cohort effect.

A possible future work will be applying this work to 
AIDS research by modifying the assumptions of the model.

Another possible future work is to include a fourth 
disease state, i.e., a disease free state, preclinical 
state, clinical state and a death state, using a parametric 
approach. For example, in cancer studies, X is the time 
for tumor onset (patient enters the PCS) , T is the time 
when symptoms surface (patient enters the CS), and D is the 
time when the patient dies of cancer (patient enters the 
death state).
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