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GREATEST COMMON SUBGRAPHS

Grzegorz Kubicki, Ph.D.

Western Michigan University, 1989

A greatest common subgraph of a family Q o f graphs, all of the same size, is a 

graph o f maximum size that is a common subgraph o f every graph in Q. In this 

dissertation several topics concerning this concept as well as some generalizations, 

variations and greatest common subgraph parameters are investigated.

Chapter I is an overview of the history of greatest common subgraphs and related 

topics. It provides also a background for the next chapters.

In Chapter II a greatest common subgraph index is introduced. It divides the set of 

all graphs into two classes (those o f finite index and of infinite index) and the problem 

of determining which graphs belong to which category is examined. The relationships 

between the greatest com mon subgraph index and other graphical parameters are 

established.

Chapter III is devoted to the study of existence. It is proved that if, for a given 

graph G, there exist two graphs G i and G2  o f  equal size such that G is their 

unique greatest common subgraph, then there exist graphs G i and G 2  of size only 

one greater than size o f G, perhaps even when G, G i and G2  are required to have 

some graphical property. The characterization o f such graphs G is presented when the 

property is that of being connected outerplanar, connected planar, or unicyclic.

In Chapter IV two variations of common substructures are investigated, namely 

maximal common subgraphs and absorbing common subgraphs. The generalization of 

greatest common subgraphs for graphs o f arbitrary size (not necessarily equal size) is 

considered. A metric on the set o f all graphs is defined in terms of edge deletions and
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edge rotations. Bounds on the distance between graphs are given in terms o f the size of 

graphs and size o f a greatest common subgraph. Finally, a duality theorem establishes 

relationships between greatest common subgraphs and least common supergraphs.
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CHAPTER I

PRELIMINARIES

In this chapter, we begin with a few preliminary definitions that will be used 

throughout the dissertation. The second section provides an historical background of 

the theory of greatest common subgraphs o f graphs and its related problems.

1.1 Introduction

All graph-theoretical terms not defined in this dissertation have the meaning as in 

Chartrand and Lesniak [4].

As usual, ISl denotes the cardinality o f a set S. For a graph G, we use V(G) 

and E(G) to denote the vertex set and edge set o f G, respectively. The number 

lV(G)l is called the order of a graph G and lE(G)l is called the size of G.

A graph H  is called a subgraph o f a graph G if V(H) c  V(G) and E(H) c  

E(G). If v e  V(G), then G -  v denotes the subgraph with vertex set V(G) -  {v} 

and whose edges are all those of G not incident with v. If  e e  E(G), then G -  e is 

the subgraph having vertex set V(G) and edge set E (G )-{ e } . The graph obtained 

by the deletion of a set S o f vertices or edges, denoted by G -  S is defined 

analogously. If  U is a nonempty subset o f the vertex set V(G) o f a graph G, then 

the subgraph (U) o f G induced by U is the graph having vertex set U and whose 

edge set consists of those edges of G incident with two elements of U. Similarly, if 

F is a nonempty subset o f E(G), then the subgraph (F) induced by F is the graph 

whose edge set is F  and whose vertex set consists of those vertices of G  incident 

with at least one edge of F.

1
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If  G i and G2  are two graphs with disjoint vertex sets, then their union G i u  G2 

is the graph with vertex set V(Gi) u  V(G2 ) and edge set E(G i) u  E(G 2), whereas 

their join G i + G2  is defined as the graph with vertex set V (Gi) u  V(G2) and edge 

set E(G i) u E ( G 2 ) U  {uv I u e  V(Gi) and v e  VXG2)}.

The concept o f greatest common subgraphs of graphs was introduced in Chartrand, 

Saba and Zou [6 ]. A graph G without isolated vertices is called a greatest common 

subgraph of a set Q = {Gi, G2 , . . . ,  Gn}, n > 2, of graphs o f the same size if  G is a 

graph o f maximum size that is isomorphic to a subgraph of each graph Gj, 1 < i < n. 

The set o f all greatest common subgraphs o f Q is denoted by gcs Q. For example, if 

Q = {Gi, G2 } for the graphs of Figure 1.1, then gcs Q= {Hi, H 2 }.

1.2 Historical Background

X o o o

o

Figure 1.1
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It is not unusual that a set Q has more then one greatest common subgraph; in fact, 

the following result was established in [7].

T heorem  1A For every pair m, n of integers with n > 2  and m > l ,  there exist n 

pairwise nonisomoiphic graphs G i, G2 , . . . ,  Gn of equal size such that

lgcs(G i, G2 , . . . ,  Gn)l = m.

However, a more interesting problem  is to find, for a given graph G, two 

nonisomorphic graphs G i and G2  of equal size (or a set Q o f graphs of equal size) 

such that G is the unique greatest common subgraph o f G i and G2  (of a set Q, 

respectively). This result was obtained in [7] and we state it for future reference.

T h eo re m  IB  If  G is a graph without isolated vertices, then there exist non­

isomorphic graphs G i and G2  of equal size such that gcs(Gi, G2) = {G}.

In the proof o f this result, the graphs G i and G2  constructed have size only one 

greater than the size o f G. The problem of finding, for a given graph G, a family Q 

of graphs of the same size (but o f size large compared to the size o f G) such that 

gcs Q = {G} leads to a concept o f greatest common subgraph index. The gcs index 

i(G) o f a graph G without isolated vertices is the least positive integer qo such that 

for any integer q  > qo and every set Q = {Gi, G2 , . . . ,  Gn}, n > 2, of graphs of size 

q for which G e  gcs Q, it follows that Igcs Q I > 1. If  no such qo exists, then we 

write i(G) = 0 0 . This concept was introduced in [7], where the values of i(G) for

complete graphs, paths and cycles were also established. New results about this topic 

will be presented in Chapter II.

The problem related to the gcs index is that of determining which graphs G have 

the property that there are nonisomorphic graphs G i and G2  o f equal size such that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



gcs(G i, G2 ) = {G} and lE(Gi)l - lE(G)l is large, i = 1, 2. It was shown in [5] that 

such graphs exist. This concept motivated the definition o f  the greatest common 

subgraph number [5]. In Chapter n ,  we establish relationships between the gcs index 

and the gcs number o f a graph.

In the proof o f Theorem IB, one o f G i and G2  is connected while the other 

graph is disconnected. However, Chartrand, Johnson and Oellermann [3] proved 

that if  G is connected but not complete, then there are nonisomorphic connected 

graphs G i and G2  of equal size such that gcs(Gi, G2) = {G}. Later a more general 

class of problems was investigated. Let P be a graphical property. For a given graph 

G without isolated vertices having property P, we ask whether there exist non­

isom orphic graphs G i and G2  o f equal size and having property P such that 

gcs(G i, G2 ) = {G}. If P is the property of being 2-connected, then the following 

characterization was given in [5], For a 2-connected graph G, there exist non­

isomorphic 2-connected graphs G i and G2  o f equal size such that gcs(G i, G2) = 

(G ) if  and only if  G ^  Kn ( n > 3 )  and G ^  Kn - e  ( n > 4 ) .  In th e sa m e p a p e r .it

was shown that for every n-chromatic graph (n > 2 ), we are able to construct non­

isomorphic n-chromatic graphs Gi and G2  o f the same size such that gcs(Gi, G2) = 

{G}. Chartrand and Zou [8 ] characterized trees that are unique greatest common 

subgraphs o f two suitably chosen nonisomorphic trees of equal size. Let D(t) denote 

a tree consisting o f two stars K(l , t) whose central vertices are connected by a path of 

length 3. I f  T is a tree, then gcs(Ti, T2 ) = {T} for some nonisomorphic trees T i 

and T2  of equal size if and only if T  ^  Pn, n = 2, 4, 5 ,... and T  ^  D(t), t > 2 .  In

Chapter HI we present a solution of this problem when the property P is that o f being 

connected outerplanar, connected planar, or unicyclic.
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There are several concepts related to greatest common subgraphs that have been 

studied. Greatest common induced subgraphs have been considered in [3], [5] and [8 ] 

and this concept has proved to be considerably easier to study than the greatest common 

subgraph concept. Also the related problems for digraphs have been considered in [3]. 

However, we will not investigate digraphs and induced subgraphs in this dissertation.

Another variation o f greatest common substructures, namely maximal common 

subgraphs of graphs, has been examined by Zou [13]. For a labeled graph G and 

nonisomorphic subgraphs H  and F, we say that H  can be extended to F  if  V (H )c  

V(F) and E (H )c E (F ) .  If G i and G2  are nonempty graphs o f equal size, then H  

is a maximal common subgraph of G i and G2  if H  is isomorphic to some subgraph 

H j o f G i and some subgraph H 2  of G2 , and moreover H i and H2  cannot be 

extended (in G i and G2 , respectively) to any other common subgraph of G i and 

G 2  whose size is one more than that of H. In Chapter IV, we will consider the 

unlabeled version o f maximal common subgraphs.

The concept o f greatest common subgraph was introduced in [6 ] mainly for the 

purpose o f providing an upper bound for a distance between graphs. Chartrand, Saba 

and Zou [6 ] defined the distance between graphs o f equal order and size in terms o f 

edge rotation. A graph G can be transformed into a graph H  by an edge rotation if 

G contains distinct vertices u, v and w such that uv e  E(G), uw ^ E(G) and H  = 

G - u v  + uw. A graph G i can be transformed into a graph G2 , denoted G i —» G2 , 

if either (1) G i = G2 , or (2 ) there exists a sequence

G i =  H 0, H i, ..., H n =  G2  (n > 1) (1.1)

o f graphs such that Hi can be transformed into Hj+i by an edge rotation or an edge 

deletion for i = 0 , 1 , . . . ,  n - 1 .
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The edge rotation distance d(G i, G2) between graphs G i and G2  of the same 

order and same size is defined as 0  if  G i =  G2  and otherwise as the smallest 

positive integer n for which there exists a sequence as described in (1.1). Chartrand, 

Saba and Zou [6 ] established an upper bound for the distance between graphs.

Theorem 1C If Gi and G2  are nonempty graphs o f the same order and o f size q 

and if  s is the size o f a greatest common subgraph o f G i and G2 , then d(G i, G2) ^  

2 (q - s).

The concept o f distance between graphs will be generalized in Chapter IV for 

graphs o f arbitrary order and size. To give bounds for the distance between two 

graphs, it w ill be necessary to define greatest common subgraphs for graphs of 

arbitrary size.

A concept dual to greatest common subgraph is the concept o f a least common 

supergraph. For a set Q of graphs o f equal size, a graph H  without isolated vertices 

is called a least common supergraph of Q if  H is a graph o f minimum size such that 

each graph in Q is isomorphic to a subgraph of H. Basic results about least common 

supergraphs are presented in [2], W e will show in Chapter IV that least common 

supergraphs are basically the same concept as greatest common subgraphs because o f a 

theorem that gives a relationship between them in terms of a complement operation. 

W ith the aid o f this idea, many result about greatest common subgraphs can be 

translated into and expressed for least common supergraphs.
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CHAPTER II

GREATEST COMMON SUBGRAPH INDEX

2.1 Introduction

Consider the following existence question: " Is a given graph a unique greatest 

common subgraph of two suitably chosen nonisomorphic graphs ? This question 

was answered by Chartrand, Saba and Zou [7] where they proved that for every graph 

G without isolated vertices there exist nonisomoiphic graphs G i and G2  o f equal 

size such that gcs(G i, G2 ) = {G}. In the proof, the size o f G i (and G2 ) was one 

greater than the size of G.

A natural question arises: For a given graph G, how large can the sizes of graphs 

Gi and G2  be so that gcs(Gi, G2 ) = {G} ?

W e will explain this idea with an example that was considered in [7]. Let G =  K3 

and let q denote the size of a graph Gj. I f  q = 4, 5 or 6 , then graphs G i and G2 

both o f size q and such that gcs(Gi, G2) = {G} are given in Figure 2.1.

However, if q > 6  and each graph Gj contains K3 as a subgraph, then K2  u  

P 3 is also a subgraph o f every Gj. In fact, let v i, V2  and V3 be vertices o f a 

triangle in Gj. If  deg Vi > 4 for some i (1 < i < 3), then K2  u  P3 c  Gj (see 

Figure 2.2 ( a ) ). On the other hand, if deg vj < 3 for all i, then Gj must contain 

an edge incident with none of the vertices vj (as in Figure 2.2 (b)) so that K2  u  P3 

c  Gj. Hence K3 is not the unique greatest common subgraph of Gj, j = 1, 2.

7
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q = 4

q = 5

q = 6

O

Q  O

O O 

0 0 0

0 0 0

Figure 2.1

( a )  «

AZ.
v-

Figure 2.2

Therefore, for the graph G =  K 3 there exist a "breaking point" equal to 6 . If 

4  < q  < 6 , then we can construct a family Q o f graphs all o f size q such that gcs Q = 

{G}, but when q > 6 , no such construction is possible. This breaking point will be 

called the greatest common subgraph index of a graph G and denoted by i(G). In the 

example presented above we have KK3) = 6 . Before giving a formal definition, we 

will establish the following fact.
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Theorem 2.1 Let G be a graph and let G i, G 2 , ... , Gn, n > 2, be graphs of 

equal size for which gcs(G i, G 2 , . . . ,  Gn) = {G}. Then for all subsets E i c  E (G i) - 

E(G), E 2 c  E(G2) - E (G ),. . . ,  En c  E(G„) - E(G) with lEil = lE2l = ... = lEnl > 1, 

gcs(G + E i, G + E 2 , . . . ,  G + En) = {G}.

P roo f. O f course, G is a common subgraph o f the graphs G + E i, G + E2 , . . . ,  

G + E n. Suppose, to the contrary, that G is not a unique greatest common subgraph 

o f G  + E i, G + E2 , . . . ,  G + En. It means that there exists a common subgraph H  of 

G + E i ,  G + E2 , ... , G + En, H  ^  G, with q(H) > q(G). O f course, H is also a

common subgraph o f G i, G2 / . . . , Gn, which contradicts the fact that G was the 

unique greatest common subgraph of G i, G2 , . . . ,  Gn. □

Let G be a given graph of size q. Assume that there exists a family Q o f graphs 

o f size qo, qo > q, such that gcs Q -  {G}. By Theorem 2.1, for every positive 

integer q' such that q < q' < qo, we are able to construct a family Q ’ of graphs of 

size q1 such that gcs Q' = {G}.

2.2 Definition of GCS Index and Basic Properties

The formal definition of a gcs index is taken from [7]. For a graph G without 

isolated vertices, the greatest common subgraph index or gcs index of G, denoted 

i(G), is the least positive integer qo such that for any integer q > qo and any set

{7 = {Gi, G2 , ... , Gn }, n > 2 , 

o f graphs o f size q for which G e  gcs Q, it follows that Igcs Q\> I, i.e., gcs Q 

contains an element different from G. If no such qo exists, then we write i(G) =

Immediately from the definition of gcs index and from Theorem 2.1, it follows that 

if  i(G) is finite, then for every positive integer q, q(G) < q < i(G), we are able to
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construct a family Q o f graphs of size q such that gcs Q -  {G}, but if  q > i ( G ) ,  

then such construction is impossible. Moreover, if  i(G) = then for every positive 

integer q, q > q (G ) ,  we can find a family Q o f graphs o f size q with gcs ( j -  {G}. 

As the second example we compute the index of the following graph.

E xam ple 2.2 Let G = (K2  u  K i) + K i (see Figure 2.3). W e will show that 

i(G) = 10.

G:

Figure 2.3

To prove that i(G) > 10, it is enough to find a family Q = {Gi, G2 ,...,Gn), n > 2, 

of graphs of size 10 such that gcs Q = {G}. Let Q = {Gi, G2 , G3 }, where G i = 

G u  6 K2 , G 2  = (K2  u  7Ki) + Ki  and G 3 = K5 (see Figure 2.4). Then each 

Gj, i = 1, 2, 3, is o f size 10, and gcs(G i, G2 , G3 ) = {G}.

G.T

O O

° 3 :

Figure 2.4
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To prove the reverse inequality, consider a family Q = {Gi, G2 , . . . ,  Gn}, n > 2, 

o f graphs o f size q, q > 10, for which G  e  gcs Q. W e will show that K( l ,  3) u  

K2  e  gcs Q, so that Igcs §\ > 1. Take any Gi, 1 < i < n. Because q(Gj) > 10 = 

( 2 ) ,  it follows that Gi has at least six vertices. Let v i, V2 , V3 , V4  be vertices in a

copy o f G in Gi, and let x i, X2 , . . . ,  xr be other vertices of Gi, r > 2 .

Consider the subgraph of Gi induced by the vertices x i, X2 , . ..,  xr. If it contains 

an edge, then taking this edge as K2  and a copy of K (l, 3) from G, we have that 

K ( l ,  3) u  K2  c  Gj. Otherwise, all edges in Gi are in the graph ({vi ,  V2 , V3 , V4 }> 

or join a vertex vj, 1 < 1 < 4 ,  with a vertex xj, l < j < r .  Because q(Gj) - q({vi, V2 , 

V3 , V4 }> > 1 1 - 6  = 5, we have at least five edges o f the second type, so there exists a 

vertex vi, 1 < 1 < 4, that is adjacent with at least two vertices from {xi, X2 , . . . ,  xr}, 

say vi is adjacent to xj and xk. Then ({xjvi, xkvi, V1V2 , V3V4 }> =  K(l ,  3) u  K2  c  

Gi, which completes the proof. □

The graph G in Example 2.2 was chosen for two reasons. First, it shows that 

even for relatively simple graphs, finding the gcs index is not trivial. Second, we will 

return to this example later, when we w ill discuss the role of the number n (the 

cardinality o f Q) in the definition o f a gcs index.

Fortunately, it is easier to establish a lower bound for a gcs index.

Theorem 2.3 If G is a noncomplete graph of order p without isolated vertices, 

then i(G)>  ( j j j ) .

Proof. Let us take G i = Kp and G2  = G U  nK2 , where n = ( ^ )  - q(G) (see 

Figure 2.5). Then q(G i) = q(G2) = © •
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1* G 2

-o

o -o
en

Figure 2.5

W e will show that gcs(G i, G2 ) = {G}. O f course, G e  gcs(Gi, G2 ). Assume 

that there exists a graph H  such that H  ^  G and H e  gcs(G i,G 2). The order of H

is at most p. The graph H  must use some independent edges from G2 , say it uses r  

edges among e i, e2 , . . . ,  en . Then at least 2r vertices from a copy of G in G2  are 

not present in H. Suppose that S = {vi, V2 , ..., V2r} c= V(G) - V(H). But then the 

size o f the graph G - S is at most q(G) - r. Moreover, if  the graph induced by S is 

not isomorphic to rK2 , then this size is strictly less than q(G) - r. Because H ^  G,

we have the last case, and therefore q(H) < q(G - S) + r  < q(G) - r  + r  = q(G). Hence 

H  4 gcs(G i, G 2), and the proof is complete. □

The construction of the graphs G i and G2  in the proof o f Theorem 2.3 gives the 

following result.

Corollary 2.4 For a noncomplete graph G without isolated vertices, there exist 

two nonisomorphic graphs G i and G2  of equal size such that gcs(Gi, G 2) = {G}.

This is (except for the trivial case when G = Kp) the theorem from [7] mentioned 

at the beginning o f this chapter.
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The bound established in Theorem 2.3 is best possible in the sense that there is an 

infinite family o f graphs such that for every graph G of this family, we have i(G) = 

( ^ ) ,  where p = p(G).

Exam ple 2.5 Let the family consist of graphs kP4  , k > l .  Let G = kP4  . Because 

p(G) = 4k, by Theorem 2.3 we have i(G) > (^ O . To prove the reverse inequality 

i(G) < ( 42k) ,  it is enough to find for any family Q = {Gi, G2 , ..., Gn}, n > 2, of 

graphs of size q > ( ‘2 O such that G e  gcs Q, a graph H  belonging to Q, where H  ^  

G. W e claim that H  = (k - 1)P4  u  P3 u  K 2  is such a graph. In fact, take any Gj, 

1 < i < n. Because G c  Gi, the graph Gi contains k copies of P4  . Let us denote 

them by H i, H 2 , ..., Hk. Because q(Gi) > C4̂ ) ,  there is a vertex v e  V(Gi) -

(V (H i) u  V(H2) U  ... u  V(Hk)). If v is adjacent to some vertex of Hj, 1 < j < k, 

then P3 u  K2  c  (V (H j)u  {v}>. Taking k  - 1 remaining copies of P4 , we have 

(k - 1)P4  u  P3 u  K2  cz Gj. On the other hand, if v is not adjacent to a vertex of 

H i u  H 2  u ... u  Hk, then (because v is not an isolated vertex) K2  c  Gi - (V(Hi) u  

V(H2) u  ... u  V(Hk)), so also (k - 1)P4  u P 3 u K 2 c  Gi. □

If a graph has neither isolated vertices nor end-vertices, then we can improve the 

lower bound for its gcs index.

T heorem  2.6 Let G be a graph of order p. If 5(G) > 2 , then i(G) > (^ 2 *)-

P roof. Let us consider the two graphs G i s  Kp+i and G2  =  G u  nK2 , where n = 

C 2 1)  - q(G) (see Figure 2.6).
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Figure 2.6

O f course, G is a common subgraph of G i and G2 . Suppose that there is a 

common subgraph H  of G i and G2  such that H ^ G  and q(H) > q(G). Then H,

as a subgraph of G2 , must use some edges among e i, e2 , e n. If H  uses only 

one edge, then it can use at most p - 1 vertices from a copy o f G. Therefore, at least 

one vertex from this copy is left, and at least two edges are left. Hence, q(H) < 1 + 

q(G) - 2 = q(G) - 1 which gives a contradiction. If  H uses k edges among e i, e2 , 

..., en, k > 2, then at least 2k - 1 vertices o f the copy of G are left, and

q(H) < k + q(G) - (2 k ~21)5(G) = q(G) - k + 1 < q(G) for k > 2.

This contradiction gives gcs(Gi, G2) = {G}, and because q(Gi) = q(G2 ) = ( P2^)» ^  

follows that i(G) > ( P2 ^)- ^

In general, the lower bound in Theorem 2.6 cannot be improved. That is, there is

an infinite family of graphs such that for every graph G from this family we have 

5(G) > 2  and i(G) = ( PJ 1) .

Example 2.7 Let the family consist o f  graphs kK 3 , k > 1 and let G =  kK 3 . 

Because p(G) = 3k and 5(G) = 2, by Theorem 2.6 we have i(G) > (^*2 ^ ) .  We 

will prove the reverse inequality. Let Q be a family of graphs o f size q, q > ,
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such that kK 3 e  gcs Q. W e will show that (k - 1 )K3 u  P 3 u  K2  <= gcs Q. Let Gi 

be any graph from the family Q. W e denote k  copies o f K3 in Gi by H i, H2 , 

Hk. Because q(Gi) > ( ^ 2 ^ ) ,  the order o f Gi is at least 3 k + 2. Let W  = V(Gj) -

(V (Hi) u  V(H2) u  ... u  V(Hk)). If  there is a vertex v e  V(Hi) u  V(H2) u . . . u  Y(Hk) 

that is adjacent to at least two vertices o f W, then (k - 1)K3 u  P 3 u  K2  c  Gi. In fact, 

without loss o f generality, assume that v e  V (H i) and v is adjacent to x and y, 

where x , y e  W. Then (Hi - v) u  ({vx, vy}) u  H2  u  ... u  Hk = K2  u  P 3 u  

(k -l)K 3 c: Gi (see Figure 2.7).

Hk

V
Figure 2.7

Otherwise, if  every vertex from V (H i) u  V(H2) u  ... u  V(Hk) is adjacent to at 

m ost one vertex o f W, then Gj m ust contain an edge incident with none of the 

vertices from V (H i) u  V(H2) u  ... U  V(Hk). In fact, if  Gi contains no such edge, 

then q(Gi) < (3 ^ )  + 3k = ( ^ 2 ^ ) ,  which produces a contradiction. Therefore, also

in this case we have (k - 1 )K3 u  P3 u  K2  c  Gi, which completes the proof. □

Using the concept of gcs index, we can divide the set of all graphs into two classes, 

nam ely graphs o f a finite gcs index and graphs o f an infinite gcs index. In the next 

section we will want to determine which graphs belong to which category.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

2.3 Graphs o f Infinite Greatest Common Subgraph Index

If a graph G has an infinite gcs index, then we are able to construct, for any 

positive integer qg, a family Q o f graphs of the same size q, q > qg, such that 

gcs Q= {G}.

The next theorem gives a sufficient condition for a graph to have an infinite gcs 

index.

T heorem  2.8 If  G contains a vertex v o f maximum degree such that no component 

o f G - v is isomorphic to K2 , then i(G) =

P roo f. Assume, to the contrary, that the gcs index of G is finite, say i(G) = qg.

Let us take q > qg and define two graphs G i =  G u  rK 2  and G2  = G + vxi + vx2  +

... + vxr , where r = q - q(G), as in Figure 2.8. Let the edges in G incident to v be 

e i , e2 , ..., eA, and let us denote fi = vxi, i = 1 , 2 ,..., r.

Gf

o o Q

rx x1

Figure 2.8
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O f course, G is a common subgraph o f G i and G2 . Assume that H  e  gcs(Gi, 

G 2) and H  ^  G. Then at least one component o f H  is isomorphic to K2 . The graph

H, as a subgraph o f G2 , must use some o f  the edges f i, f2 , f r, say k o f them. 

Then k  edges among e i, e2 , e A are not in H. Otherwise, the vertex v in H

would have degree larger than A(G), but there is no such vertex in G i. Therefore, G 

without these k  edges has K2  as a com ponent, as does G - v. This contradiction 

proves that gcs(Gi, G2 ) = {G}, so i(G) > q(G i) > q0, which is impossible. □

U sing Theorem 2.8, we show that there are some well-known graphs having 

infinite gcs index.

Coroilary 2.9 The following graphs have infinite gcs index:

(a) complete graphs Kn, where n 5* 3 ;

(b) complete bipartite graphs K(r, s), r, s > 1 ;

(c) cycles Cn, n > 4 ;

(d) paths Pn, n # 4 .

In the exceptional cases, we have KK3 ) = i(P4  ) = 6 . These values were 

established in [7]. They can also be obtained as special cases o f the graphs examined 

in Examples 2.5 and 2.7, namely for the graphs kK3 and kP4  with k = l .

If  a graph G is 2 - connected, then G - v is connected for every vertex v e  

V(G). Therefore, we have the next corollary.

Corollary 2.10 If G is a 2 - connected graph and G ^  K3 , then i(G) = 0 0 .

It is well-known (see for example [1], p. 131) that for a fixed integer k, almost 

every graph is k - connected. Using this fact and the previous corollary we have the 

following result.
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C orollary  2.11 Almost every graph has an infinite gcs index.

The condition for a graph to have infinite gcs index given in Theorem 2.8 is 

sufficient but not necessary.

E xam ple 2.12 There are graphs o f an infinite gcs index having the property that 

removal o f a vertex of maximum degree produces a component isomorphic to K2 .

Let G be a graph as in Figure 2.9 obtained by identifying the end-vertex o f P 3 

and a vertex o f Kn, n > 4. Then G has the unique vertex v o f maximum degree, 

and G - v =  Kn-i U  K2 .

G:

Figure 2.9

To prove that i(G) = we will use a slightly different construction o f G i and 

G 2  than that in the proof of Theorem 2.8. Assume, to the contrary, that i(G) = qg. 

Let us take q > qo and define two graphs Gi = G u  rK2  and G2  = G + wxi + wx2  + 

... + wxr, where r  = q - q(G), w is the central vertex o f P3 and x i, X2 , . . . ,  xr 4 

V(G) (see Figure 2.10). Let the two edges in G2  incident to w be g and h, let fi = 

wxi, i = 1, 2 ,.. .  , r, and let F  = {fi, f2 , . . . ,  fr, g, h}.
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QO O

1 2  r

Figure 2.10

W e will prove that gcs(Gi, G2 ) = {G}, which gives i(G) > q > qo and produces

a contradiction. O f course, G is a common subgraph o f G i and G2 . Assume that 

H  g gcs(G i, G2 ) and H  ^  G. Then at least one component of H  is isomorphic to

K 2 . If  such a component in G2  uses an edge belonging to F, then the remaining 

edges belong to Kn and q(H) < 1 + ( 2 )  < q(G), which is impossible. Therefore,

the component isomorphic to K2  must be contained in Kn, and only n - 2  vertices 

from Kn are available for H  - K2 . Because H c G j  and A(Gi) = n + 1, the graph 

H  can use at m ost n + 1 edges from F  (otherwise A(H) > n + 2, which is 

impossible). Therefore,

q(H) < ( n2 2)  + (n + 1) + 1 = + 4 < (g )  + 2 = q(G) for n > 4.

Consequently, i(G) = 0 0 . □

Because o f the last example which shows that in general the converse o f Theorem 

2 .8  is not true, a characterization o f graphs o f infinite gcs index remains an open 

problem.
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In Examples 2.5 and 2.7 we found that i(kp4  ) = ( <2 C)  and i(kK3) = ( ^ 2 "^)- 

Therefore, the gcs index of a graph can be arbitrarily large (and finite). However, for 

k > 2, the graphs in these examples are disconnected. W e will prove that there are 

connected graphs with this property.

T heorem  2.13 The gcs index of connected graphs can be arbitrarily large.

P ro o f. Let a graph G consist of k triangles with one vertex in common; more 

formally, G = K i + k K 2  (see Figure 2.11).

v.
1

2k-1
v4

Figure 2.11

Because 8 (G) = 2 and p(G) = 2k + 1, it follows by Theorem 2.6 that i(G) > 

( ^ 2 ^ ) -  1° fact, we can find a much better lower bound for i(G). Consider the three

graphs G i = K4 k-2 , G2 s G u r K 2  and G3 = G + v ix i  + v jx 2  + ... + v ix r , where 

r  = (^*2 ^ ) - 3 k (see Figure 2.12). Then gcs(G i, G2 , G 3) = {G}. (The proof of

this fact is quite lengthy and we omit it.) Therefore,

i(G) > (4ki 2)  = 8 k2  - 10k + 3.
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4k-2

G 0:

° 2 :

2k-1

Q O

1 2

Figure 2.12

2k

To prove that i(G) is finite, we will show that there exists qg such that for every 

integer q > q o  and every set Q = {Gi, G2 , G n}, n > 2 ,  o f graphs of size q for

which G e  gcs Q, we have Igcs (j\ > 1. Let us set

q0 = 2k4  + 4 k 3 + 7 k 2  -1 , 

and let Q = {Gi, G2 , . . . ,  Gn}, n > 2 , be any set of graphs o f size q > qo with G e

gcs Q. W e will show that

K(l ,  2k) u  kK 2  e  gcs Q.

Let F  be a copy of G in Gj. We distinguish two cases.
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Case 1: There are more than (2k + If (2k - I -) vertices of G; - V(Ff such that each of 

them  is adjacent to some vertex o f F. Then, because p(F) = 2 k + l ,  at least one 

vertex o f F  is adjacent to at least 2k vertices o f Gi - V(F). Let x be such a vertex.

By the symmetry of F  it suffices to consider two possibilities, namely

(a) x = vo, or

(b) x = Vi, for some i, 1 < i < 2 k.

These two cases are presented in Figure 2.13. The bold edges indicate the subgraph 

K (l, 2k) u  kK 2  o f Gi.

(a) (b)

2k-1

G. - V(F)

Gj - V(F)

x =v,

2k-l

Figure 2.13

Case 2 : A t most ( 2 k + l ) ( 2 k - l )  vertices o f G i -V (F )  are adjacent to some vertex 

o f F. Then we have at most (2k + l)(2k + l)(2k - 1) edges between F and Gi - 

V(F), and, of course, at most ( ^ 2 ^ )  edges belong to (V(F)), which implies that

q(Gi - V(F)) > q(Gi) - (2k + l ) 2  (2k -1 )  - ( 2k2+1)  = 

q(Gj) - (2k + l)(4k2  + k -1 )  > q0  - (2k + l)(4k2  + k - 1) =

(2k4  + 4k3 + 7k2 -1 )  - (2k + l)(4k2  + k - 1) = 2k4  - 4k3 + k 2 + k =
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Therefore, the order o f G; - V(F) is p(Gj - V(F)) > 2k(k -1) .  If A(Gi - V(F)) > 

2k, then Gj - V(F) contains K (l, 2k) as a subgraph, and taking k independent 

edges from F, we have that K(l ,  2k) u  kK 2  c  Gj. On the other hand, if A(Gj - 

V(F)) < 2k, then because

Pl(Gj - V(F)) > P - v (p ))
1 + A(Gj - V(F))

(Pl(G ) is an edge independence number o f a graph G) and 1 + A(Gj - V(F)) < 2k, 

it follows that

P l (G j -V (F ) )  > 2k(2kk~ 1} = k  -1 .

Therefore, G j -V (F )  contains k independent edges, and taking the star K ( l ,2k )  as 

a subgraph o f F, we conclude that Gj contains kK2  u  K( l ,  2k) as a subgraph. □

Although we do not know the exact value of the gcs index for the graph G from

Theorem 2.13, this graph can also serve as an example to illustrate that the difference

between i(G) and the low er bound for the gcs index given by Theorem 2.3 (or 

Theorem 2.6) can be arbitrarily large.

Next, we will discuss relationships between the gcs index o f components o f a 

graph and that of the graph itself.

Theorem 2.14 If  i(G) = and A(G) > A(H), then i(G u  H) = °o.

Proof. Since i(G) = °°, for every positive integer qo there exist q > qo and a 

family Q = {Gi, G 2 , — , Gn), n > 2, o f graphs o f size q such that gcs Q = {G}.
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Let v be a vertex of G o f maximum degree and let r  = q - q(G). Define a family 9{= 

{Gi U  H, G2  u  H , ... , G n u H ,  Hn+i, H n+2 }» where 

Hn+i =  G u H u r K 2  and 

H n + 2  = (G + vxi + VX2 + ... + vxr) U H, 

x i ,  X2 , ... , xr 4 V ( G u H ) .

W e will show that gcs J / = { G u H ) ,  so i(G u H )  = «>. O f course, G u H  is a 

common subgraph of Of. Suppose, to the contrary, that there exists a graph F, F  ^  

G u H ,  q(F) > q(G u  H), such that F  e  gcs Because F cz Hn+i and A(Hn+i) = 

A(G), it follows that A(F) < A(G). The graph F as a subgraph o f Hn+ 2  can use at 

m ost A(G) edges incident with the vertex v, and F must use all edges of a copy of 

H  from  H n+2 . Therefore, F  =  G' u  H, where q(G') = q(G) and G' ^  G 

(otherwise, F  =  G u  H). But then G' would be a common subgraph of every graph 

from <j, which is impossible because gcs Q= {G}. □

Corollary 2.15 If  i(G) = i(H) = ©°, then i(G u  H) = <»,

W ithout the assumption A(G) > A(H), Theorem 2.14 is not true in general. As 

an example consider graphs G =  K2  and H = (K2  u  K i) + K i (H is the graph 

from Example 2.2). Then i(G) = °°, i(H) = 10 but i(G u  H) is finite. In fact, it is 

not difficult to show that i(G u  H) = 21.

Theorem 2.14 and Corollary 2.15 can be generalized for graphs with at least three 

components.

The next example shows that there exist graphs o f infinite gcs index such that all 

components have finite gcs index.
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E xam ple 2.16 Let G = K3 u  P4  . To prove that i(G) = <*>, we construct for any 

positive integer qg, three graphs G i, G2 , G3 of size q ( > qg) such that gcs(Gi, 

G2 >G3) = {G}. Let q>m ax{qg ,  6 }. Define

G i s  P4  u [ ( K 2 u ( q - 6 ) K i ) + K i ] ,

G2  £  K 3 u  [K (l, q - 4) + xy], 

where x is an end-vertex o f K(l ,  q - 4), and y 4 V(K3) u  V(K(1, q - 4)) and 

G3 = K3 u  P4  u  (q - 6 )K2

(see Figure 2.14).

° i :
G

1 2 q - 6 1 q - 62

G„

O  O

0  o
1 2

o

O
q - 6

Figure 2.14

W e claim that gcs(Gi, G2, G3) = {G}. O f course, G is a common subgraph o f 

G i, G2  and G3 . Assume that H  is a common subgraph of G i, G 2  and G3 and 

q(H) > q(F). Because H  is a subgraph o f G3 , it follows that A(H) < 2. Hence H, 

as a subgraph of G i, can use at most two edges incident with the vertex v e  V(Gi). 

Therefore, H  can use from the component o f G i containing the vertex v either

(a) K3 , and then H £  G; or
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(b) K2  u  P3 , and then H  =  P4  u  P3 u  K2  ^  G2 ; or

(c) P4  , and then H  =  2 P4  <£ G3 .

Therefore, we must have H  = G, which proves that i(G) = 00 .

W e know that i(P4  ) = i(K 3) = 6 , so the gcs index o f every component of G is

finite. □

However, if  all components of a graph are isomorphic, then the fact that the gcs 

index of a component is finite implies the gcs index of the graph is finite.

Theorem 2.15 Let G s 2 F  and i(F) is finite, say i(F) = r <  ( | ) .  Then i(G) <

( I s) ,  so G has finite gcs index.

Proof. W e prove that if  Q = {Gi, G2 , ... , Gn} is a family o f graphs o f size q, 

where q > ( 2s)* with G s  gcs Q, then Igcs Q \> \.

Let us consider any Gi, 1 < i < n. Because G = 2F c  Gi, denote two disjoint

copies o f F in Gi by F i and F2 . Because i(F) < ( 2 ) ,  we have p(F) = p(F i) =

p(F2 ) < s. Assume first that q(Gj - V(Fi)) < ( | )  and q(Gi - V(F2)) < ( f ) .  Then

q(Gi) < q(Gi - V(Fi)) + q(Gi - V(F2)) + p(Fi) p(F2) < ( | )  + ( | )  + s2  = ( 22s) ,

which gives a contradiction. Therefore, for any i, 1 < i < n, we must have q(Gj - 

V(Fk(i))) > ( 2 )  for k(i) = 1 or k(i) = 2. Because i(F) < ( | ) ,  and F c G j -  V(Fk(i)),

so F  is not the unique greatest common subgraph of {Gi - V(Fk(i)) I i  =  1 ,2 ,..., n} = 

fF. There exists F , ( ^  F), such that F' e  gcs jF. Then, F ' u F  is a subgraph of 

G j for every i = 1, 2, ... , n, and q(F  u  F) > q(2F), so 2F is not the unique 

greatest common subgraph of the family Q. □

Using the same technique as in the proof o f Theorem 2.17, we get the following 

generalization of the above result.
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Theorem 2.18 Let G =  kF, where i(F) is finite, say i(F) = r <  ( | ) .  Then G 

has finite gcs index; in particular, i ( G ) < ( 2S)-

There is reason to believe that if  a graph G has finite gcs index, then in a family 

Q o f graphs o f maximum size with gcs Q = {G}, a complete graph is present. Its 

role is to restrict the order o f greatest common subgraphs. Therefore, we believe that 

the following conjecture is true. Certainly all known examples confirm this hypothesis.

Conjecture. If  i(G) is finite, then i(G) = ( 2 )  for some integer k > 4.

In the definition o f gcs index, we considered a family Q = {Gi, G2 , . . . ,  Gn}, n >

2, o f graphs o f the same size. Now we want to discuss the role of n (the cardinality 

o f £7) in this definition. Assuming that n = 2 we define an index i2 (G). For a graph 

G without isolated vertices, i2 (G) is the least positive integer qg such that for every 

integer q > q0  and every set Q = {Gi, G2 } of two nonisomorphic graphs o f size q 

for which G e  gcs Q, it follows that Igcs Q\ > 1. If  no such qg exists, then we 

write i2 (G) = 0 0 .

It is immediate from the definition of i2 (G) that i2 (G) < i(G) for every graph G 

(where we allow i(G) and i2 (G) to be infinite).

W e show next that i(G) and i2 (G) need not be equal.

Example 2.19 Let G = (K2  u  Ki) + Ki be the graph considered in Example 2.2.

W e proved that i(G) = 10. W e will show that i2(G) = 7.

If  we take G i =  K2  + 3Ki and G2  = G u 3 K2  (see Figure 2.15), then q(G i) = 

q(G 2 ) = 7 and gcs(G i, G2 ) = {G}, so i2 ( G ) > 7 .
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¥ v \
Q 0 0

6 0 0
Figure 2.15

Let G i and G2  be graphs o f size q (> 7) such that G e  gcs(Gi, G2). W e need 

to show that lgcs(Gi, G2)l > 1. W e consider three cases.

Case 1. Both G i and G 2  have at least two com ponents. Then, it is obvious that 

K ( l ,  3 ) u K 2 c  Gi, i = 1, 2.

Case 2. Only one o f  G i and G2  is connected, say G i is connected. Then we 

distinguish two subcases according to the order of G i.

(a) If p ( G i ) > 6 , then K (l, 3) U K 2  c G i  (the proof is the same as in Example 

2.2); also K ( l , 3 ) u K 2 c  G2.

(b) If p(G i) = 5, then K 3 u K 2 c G i ;  also K3 u K 2 c G 2.

Case 3. Both G i and G2  are connected. Assuming that p(G i) < p(G 2), we have 

the following three possibilities:

(a) p(G i) = p(G2) = 5.

Then K 3 U K 2 C  Gi, i = 1, 2.

(b) p (G i) = 5 and p(G2) ^  6 .

Denoting by u the unique end-vertex o f G, we distinguish three subcases 

represented in Figure 2.16 (i), (ii) and (iii).

(i) If  some vertex x e  V(G2 ) - V(G) is adjacent to u, then K3 u  K2  c  Gi,

i =  1 , 2 .
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(ii) If  no x e  V(G2) -V (G )  is adjacent to u but there is an edge e in the 

graph G2 -V(G),  then also K3 u  K2  c= Gi, i = l , 2 .

(iii) If no x e  V(G2) -V (G )  is adjacent to u and no edge is in the graph G2 - 

V(G), then there are two vertices x, y e  V(G2) - {vi, V2 , V3 } adjacent to 

some vertex among v i, V2 , V3 (vi, V 2 and V3 are vertices o f a triangle in 

G2 ). Then H  = (K2  u  2K i) + Ki is a subgraph of both G i and G2 . This 

gives a contradiction, because q(H) = 5 > q(G).

(c) p (G i) > 6  and p(G2) ^  6 .

Then K(l ,  3) u  K2  is a subgraph of Gi, i = 1 ,2  (the proof is the same as in 

Example 2.2). □

If  we replace i(G) by i2 (G) in Theorems 2.3, 2.6, 2.8 and 2.13 the results

(i)

u O

Figure 2.16

remain true. However, the last example shows that the conjecture i2 (G) = ( 2 )  for
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some k > 4 (if i2 (G) is finite) is false. It remains an open problem whether there 

exists a graph G with i2 (G) finite and i(G) infinite.

In an analogous way, we can define i3 (G), i4 (G), ... by placing the obvious 

restriction on the cardinality of a family Q (\Q\ = 3, 4, . . . ) .  Then, of course we have

i2 (G) < i3 (G) < i4 (G) < ... < i(G).

W e do not know whether these inequalities (except the first one) can be strict. In fact, 

no example of a graph G is known for which

i3 (G) < i(G).

2.4 Greatest Common Subgraph Number

The greatest common subgraph number is another graphical parameter which

measures how large the sizes of G i and G2  can be (in comparison with the size of

G), where G i and G2  are nonisomorphic graphs o f equal size that satisfy gcs(Gi,

G 2 ) = {G}. This parameter was defined in [5]. For a graph G without isolated

vertices, let (7(G) be the set of all graphs G i for which there exists a graph G2  of

equal size such that gcs(Gi, G2) = {G}. The set (7(G) is nonempty, because G e

(7(G). We define the gcs number gn(G) o f G as

gn(G) = max { q(H) - q(G) }
He g(G)

if  it exists; otherwise gn(G) =

It is not difficult to establish a relationship between the gcs number and the gcs 

index of a graph.

Theorem 2.20 Let G be a graph without isolated vertices that has finite index 

i2 (G). Then gn(G) = i2 (G) - q(G).
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P roof. Let i2 (G) = qg. This implies that there are two graphs G i and G2  of size

q0  such that gcs(Gi, G 2) = {G}. Hence G i e  Q{G) and

gn(G) = max { q(H) - q(G) } > q(Gi) - q(G), or 
H e#G )

gn(G) > i2 (G) - q(G) (2.1)

On the other hand, for any integer q > qo and any pair G i, G2  o f graphs o f size 

q  for which G e  gcs(G i,G 2 ), we have lgcs(Gi, G2 )l > 1. This means that if  G i 

has size q > qo, then G i 4 (7(G) and therefore

gn(G) < q - q(G) for any q > q o ,  or

gn(G) < q0  - q(G) = i2 (G) - q(G). (2.2)

The inequalities (2.1) and (2.2) give the desired formula. □

T heorem  2.21 If  i2 (G) = °o, then gn(G) =

Proof. If  i2 (G) = 0 0 , then for every positive integer qo there exist two graphs Gi 

and G2  such that q(G i) = q(G2 ) > qo and gcs(G i, G 2 ) = {G}. Hence Q(G) 

contains graphs of arbitrarily large size, and therefore gn(G) = 0 0 . □

Using Theorems 2.20 and 2.21 and results about i2 (G) mentioned after Example 

2.19, we can list the following facts concerning gn(G).

Corollary 2.22

(i) For any graph G without isolated vertices gn(G) > ( ^ 2 ^ )  - q(G).

(ii) For any graph G with 8 (G) > 2, gn(G) > ( ^ ^ 2 + *) - q(G).

(iii) If G contains a vertex v of maximum degree such that no component o f G - v 

is isomorphic to K2 , then gn(G) = 0 0 .
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(iv) For every positive integer k, there is a connected graph G for which gn(G) is 

finite and gn(G)>k .

By Theorem 2.20 and the inequality i2 (G) < i(G), we have the following result.

C oro llary  2.23 If  i(G) is finite, then gn(G) is finite, and

gn(G) < i(G) - q(G).

The last inequality may be strict as the graph G from Example 2.2 shows. 

Namely, if  G =  (K2  u  K i) + K i, then gn(G) = i2 (G) - q(G) = 7 - 4 = 3, but i ( G ) - 

q(G) = 10 - 4 = 6 .

Finally, by Theorems 2.20 and 2.21 and Corollary 2.23, we have the following 

result.

C oro llary  2.24 Let G be a graph without isolated vertices.

(i) The gcs number gn(G) is infinite if  and only if the index i2 (G) is infinite.

(ii) If the gcs number gn(G) is infinite, then the gcs index i(G) is infinite.

W hether the converse o f (ii) is true is unknown.
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CHAPTER HI

GREATEST COMMON SUBGRAPHS OF GRAPHS WITH SPECIFIED
PROPERTIES

3.1 Greatest Common Subgraphs and Hereditary Properties.

Assume that {G} = g cs(G i,G 2) for some graphs G, G i and G2 , where G i 

and G2  are nonisomorphic graphs o f the same size. In this section we want to show 

that we can choose G i and G2  such that their sizes are only one greater than the size 

o f the graph G. Such a choice may even be possible if the graphs G, G i and G2 

are required to have some specified property.

As a special case o f Theorem 2.1, we have the following result.

T heorem  3.1 Let G be a graph. If  G i and G 2  are nonisomorphic graphs o f equal 

size for which gcs(Gi, G2) = {G}, then for e e  E(G i) - E(G) and f  6  E(G2 ) - E(G),

gcs( G + e, G  + f) = {G}.

Let P be a graphical property. W e are interested in the problem of determining, for 

a given graph G with property P, the existence of two nonisomorphic graphs G i and 

G 2  with property P and o f equal size, such that G is the unique greatest common 

subgraph of G i and G2 .

A  graphical property P is hereditary if, whenever a graph G has the property P, 

then every subgraph of G also has property P. For example, planarity, outerplanarity, 

being acyclic, and being n-colorable are hereditary properties, whereas connectedness 

is not.

Theorem 3.1 has an immediate counterpart if  we consider hereditary properties.

33
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Theorem 3.2 Let G j and G2  be nonisomorphic graphs o f equal size for which 

g c s (G i, G 2 ) = {G}, where all three graphs G, G i and G2  have a hereditary 

property P. Then for every e e  E (G i)  - E(G) and f  e  E(G 2 ) - E(G), it follows 

gcs(G + e, G + f )  = {G}, where both G + e and G + f  are graphs with property P.

I f  P  is not a hereditary property, it may happen that G + e does not have the 

property P even when both G and G i do. However, if  a property P is any of the 

following:

(1 ) being connected,

(2 ) being outerplanar and connected,

(3) being planar and connected,

(4) being unicyclic,

then we have the next result and its corollary.

Theorem 3.3 Let G i and G2  be nonisomorphic graphs o f equal size such that 

gcs(G i, G2 ) = {G}, where all three graphs G, G i and G2  have property P. Then 

there exist edges e e  E (G i) -E (G )  and f e  E(G2) - E ( G )  such that gcs(G +e, G +f)

= {G} and both G + e and G + f  are graphs with property P.

Corollary 3.4 Assume that for a given graph G there exist nonisomorphic graphs 

G i and G2  o f equal size such that gcs(G i, G 2) = {G}, where all three graphs G,

G i and G2  have property P. Then we can choose G i and G2  so that q(G i) = 

q(G 2) = q(G) + 1 .

3.2 Outerplanar Graphs

Recall that a graph G is outerplanar if  G can be embedded in the plane in such a 

way that every vertex of G lies in the boundary o f the exterior region. In this section
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we want to determine all connected outerplanar graphs G for which there exist two 

nonisomorphic connected outerplanar graphs G i and G2  of the same size with 

gcs(G i, G2 ) = {G}. If we remove the assumption about the connectedness of G, 

G i and G 2 , then the answer is easy. Namely, all outerplanar graphs G have the 

above property and a construction of graphs G i and G2  can be the same as in the 

proof o f Proposition 2 [7].

Therefore, we assume that graphs G, G i and G2  are outerplanar and connected. 

Let us first define a special family o f outerplanar graphs: Fn = K i + Pn, where n > 

1. The first four graphs o f this family, namely the graphs F i = K2 , F2  s  K3 , F 3 

and F4  are represented in Figure 3.1.

F : F  : _  F  : F  :

O f course, if  G = K2  or G = K3 , then there are no connected nonisomorphic 

graphs G i and G2  o f the same size with gcs(Gi, G2 ) = {G}. For example, if  

G i d  K 2  , G 2  3  K2  and G i, G 2  are nonisomorphic connected graphs of the same 

size, then P3 is a common subgraph of both G i and G2 .

Let G = F 3 and assume that G i and G2  are nonisomorphic connected 

outerplanar graphs with gcs(G i,G 2) = {G}. By Corollary 3.4 we can assume that 

q(Gi)  = q(G2) = q(F3) + 1 = 6 .  Using the symmetry o f the graph F 3 we can 

assume without loss of generality that G i = F 3 + e and G2  = F 3 + f  (see 

Figure 3.2). But then not only F3 t but also the graph H  indicated by bold lines in

1 9 AO

Figure 3.1
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Figure 3.2 is a common subgraph of both G i and G2 , hence gcs(G i, G2 ) = {F3 , 

H}, which gives a contradiction.

Figure 3.2

Finally, assume that G = F4 . By the symmetry o f the graph F4 , there are only 

three connected outerplanar graphs G i, G2  and G 3 such that G iio F4  and q(Gj) = 

q(F4 ) + 1 = 8 ,  i = 1, 2, 3. But then not only F4  but also the graph H  (marked by 

bold lines in Figure 3.3) is a subgraph o f Gi, i = 1,2, 3. Therefore, it is impossible 

to find two connected outerplanar graphs G i and G2  with gcs(Gi, G2 ) = {F4 }.

O

Figure 3.3

Therefore, we proved that if  G = Fn, n = 1,2,  3 or 4, then we are not able to 

construct two nonisomorphic connected outerplanar graphs G i and G2  of the same 

size such that G is the unique greatest subgraph of G i and G2 . In the main theorem 

o f this section we will show that these four graphs Fn, n = 1, 2, 3 or 4, are the
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only exceptions. In the proof o f the theorem it will be convenient to use the following 

concept. A branch o f a graph G at a vertex v is a maximal connected subgraph o f G 

containing v as a non-cut-vertex.

T heorem  3.5 Let G be a connected outerplanar graph such that G ^ F n, n = 1, 

2, 3, 4. Then there exist two nonisomorphic connected outerplanar graphs G i and 

G2  o f the same size for which gcs(Gi, G2 ) = {G}.

P roof. W e consider the following cases.

Case 1. The graph G has an end-vertex.

Subcase 1.1. There are two vertices x, y e  V(G) such that d eg x < A (G ) ,  deg y < 

A(G), xy £  E(G) and G + xy is outerplanar. Construct two graphs G i = G + xy 

and G2  s  G + vw, where v is a vertex o f maximum degree and w £ V(G) (see 

Figure 3.4).

O f course, G i f  G 2 , so G e  gcs(G i, G 2 ). Let H  6 gcs(G i, G2 ). To obtain H 

we must remove one edge from G i and one edge from G2 . But the graph G i has 

more regions than G 2  does, so we have to remove a cycle edge, say e, from G i (Gi 

- e  will be connected ), and a bridge, say f, from G2 . But degG2 V > A (Gi), so

G
l

w
o

Figure 3.4
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the edge f  must be incident with v. If f  is a terminal bridge, then H  = G2  - f  = G. 

Otherwise, the graph G 2  - f  is disconnected (has two nontrivial components ), but 

G i - e is connected, which produces a contradiction. Therefore, H  = G and 

g c s (G i,G 2) = {G}.

Subcase 1.2. For any two vertices x, y with deg x < A(G), deg y < A(G), xy £ 

E(G) the graph G + xy is not outerplanar. We can assume that A(G) > 3. If 

A(G) < 2, then G = Pn, n > 3, so G + xy = Cn and G + xy is outerplanar. 

Therefore, the conditions o f Subcase 1.1 hold.

Observe that:

(1) there is no vertex in G with two (or more) branches that are trees (otherwise, we 

could jo in  two end-vertices from two trees and the resulting graph would still be 

outerplanar);

(2) if  a branch at a vertex v is a tree T, then T  = K2  or T  = P3 (otherwise, we 

could join two end-vertices, or if  T  = Pn, n > 3, say Pn: v = u i, U2 , ... ,un we 

could jo in  un and un - 2  (deg u„ = 1 ,  deg un _2 = 2 < A(G) ), in both cases 

producing an outerplanar graph, so the conditions o f Subcase 1.1 would hold).

Therefore, at any vertex v o f G if  a branch at v is a tree, then the branch is 

either K2  or P3 (and only one such branch at v is p resen t). W e consider two 

subcases.

Subcase 1.2.1. Each terminal edge is incident with a vertex o f degree 2. Let v be a 

vertex with a branch isomorphic to P3 , say v, u, w (see Figure 3.5). In some fixed 

embedding o f G in the plane, let x be a neighbor of v such that vx is an edge 

following vu as we proceed in counterclockwise direction about v. Then deg x = 

A(G); otherwise G + wx would be outerplanar and the conditions of Subcase 1.1 

would hold.
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w O

Figure 3.5

Define G i = G + wx and G2  = G + uz, where z £ V(G) (see Figure 3.6). 

Because degGi x > A(G2) and G i has more regions than G2  does, to obtain 

H e  gcs(Gi, G2) we must remove a cycle edge from Gi and this cycle edge must be 

incident with x. In this way we can produce at most one additional end-vertex. 

Therefore, we must reduce the number o f end-vertices in G2 . But we have to remove 

a bridge, say f, from G2 , so either f  = uw or f  = uz and H = G2  - f  = G.

Figure 3.6

Subcase 1.2.2. There is a terminal edge that is incident with a vertex of degree at least 

3. Let v be a vertex o f maximum degree among vertices that are adjacent to end- 

vertices. Define G i = G + wx and G2  = G + vz, where w is an end-vertex
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adjacent to v, vertex x is adjacent to v and vx is the next edge after vw, as we 

proceed in counterclockwise direction about v, and z £ V(G) (see Figure 3.7).

G 1 w

Figure 3.7

O f course, G e  gcs(Gi, G 2 ). To obtain H e  gcs(Gi, G2) we must remove a 

cycle edge from G i and a bridge f  from G 2 . If this bridge is vw or vz, then G 2 - 

f  = G. Otherwise, in G 2  the vertex v is adjacent to two end-vertices w and z. 

To produce two such end-vertices in G i a cycle edge e must be removed from a 

block, say v', w', z' isomorphic to K3 (we cannot use v', if  it is adjacent to an 

end-vertex, because d e g d  v' < degG2  v ). But then the graph G i - e (see Figure

3.8) is not isomorphic to G 2  - f, since they have a different number o f blocks 

isomorphic to K3 , which is impossible.

Figure 3.8
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Case 2. The graph G has no end-vertices. but G is not maximal outerplanar.

There are two vertices x and y o f G such that xy £ E(G) and G + xy is 

outerplanar. Define two graphs G i = G + xy and G2  = G + xu, where u £ V(G) 

(see Figure 3.9).

Then G e  gcs(G i, G2). To produce H  e  gcs(G i, G2 ) we must remove a cycle 

edge e from G i (G i - e will be connected) and a bridge f  from G 2 . If  f  is not a 

terminal bridge, then G 2  - f  is disconnected which is impossible. If  f  is a terminal 

bridge, then f  = xu and H  = G 2  - f  = G.

Case 3. The graph G is maximal outerplanar.

Since G £ Fn, n = 1, 2, 3, 4, it follows that A(G) > 4.

Subcase 3.1. There is a vertex v o f maximum degree that is not adjacent to a vertex 

o f degree 2. Let x be a vertex of degree 2. Define G i = G + vw and G2  = G + 

xy, where w, y £ V(G) (see Figure 3.10).

O f course, G e  gcs(G i, G2 ). Let H  e  gcs(G i, G 2 ). To obtain H  as a 

subgraph o f  G i, we must remove an edge incident with v from G i. If vw is 

removed, then H  = G. If any other edge, say e, is removed from G i, then in G i - 

e we have only one end-vertex (namely w) that is adjacent to a vertex o f degree at

G : 
1

Figure 3.9
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least 4. But in G2 , the end-vertex y is adjacent to a vertex o f degree at most 3, so 

we have to remove the edge xy from G2  to produce H. Therefore, H = G.

w

Figure 3.10

Oy

v

Subcase 3.2. There is a vertex v  of maximum degree that is adjacent to exactly one 

vertex, sav x, o f degree 2. Define G i = G + v iw  and G2  = G + X2y, where 

w, y £ V(G) and where vj and xj (i = 1, 2) correspond to v and x in G (see 

Figure 3.11).

G

y
X

Figure 3.11
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O f course, G € gcs(Gi, G 2). To obtain H e  gcs(G i,G 2 ) we must remove an 

edge f  from G2 . If  f  = X2y, then H  = G2  - f  = G. Otherwise, G2  - f  has an 

end-vertex, namely y, adjacent to the vertex X2  o f degree 2 or 3. To produce such 

an end-vertex in G i, it is necessary to remove an edge e incident with v i. The only 

possibility is e = v ix i. Then in G i - e  the end-vertex x i is adjacent to the vertex 

z i. Therefore, degGj-e z l = degG2 -fZ2  = 3- In G i - e the neighbors z i and 

v i o f  two end-vertices are adjacent, and degcj-e  v i > 4. The same must occur in

G 2  - f. Thus, the second end-vertex (one is y) must be adjacent to V2  (because 

degG 2 -f z 2  ^  3). But V2  in G2  is not adjacent to any vertex o f degree 2, so

removing f  from G2  (f incident with V2 ) does not produce an additional end-vertex. 

Subcase 3.3. Every vertex o f maximum degree is adjacent to two vertices o f degree 2. 

Consider a plane embedding o f  G where all the vertices o f G lie on the exterior 

region. Let v be a vertex o f maximum degree n and suppose that u i, U2 , . .. ,  un be 

the vertices adjacent to v as they appear in clockwise order about v in this embedding 

(see Figure 3.12). Then deg u i = 2 and deg un = 2.

u

n - 1

n

Figure 3.12

Consider the graph G - v.
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Subcase 3.3.1. Suppose that G - v = Pn. Then G = K j + Pn and n > 5, 

because for n < 4, we would have G = Fn. Define G i = G + vw and G 2  s  G + 

U3y, where w, y £ V(G) (see Figure 3.13).

Figure 3.13

O f course, G e  gcs(G i, G2 ). If H e  gcs(Gi, G2), then we must remove from

G i an edge e incident with v. If e = vw, then H = G. Otherwise, in G i - e

there is an end-vertex, namely w, adjacent to the vertex v o f degree n, n £  5. To 

produce such an end-vertex in G 2 , we must remove either the edge u iu 2  or the edge 

un-iun. In both cases, G2  - f  has an end-vertex, namely y, adjacent to the vertex of 

degree 4. But we cannot produce such an end-vertex by removing e from G i.

Subcase 3.3.2. Suppose that G - v  ^ P n.

Let us define

m = min{ i l  2 < i < n - 1, degG-vUi ^  3}
and

M = max{ i I 2 < i < n - 1, dego-v Ui ^  3}.

If  m - 1  > n - M ,  define x to be u i. Otherwise, define x to be un. Without 

loss o f  generality, assume that x = u i. Define G i = G + vw and G 2  = G + uiy , 

where w, y £ V(G) (see Figure 3.14).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



X = uX =  u

Figure 3.14

O f course, G e  gcs(Gi, G2 ). If  H  e  gcs(Gi, G2 ), then we must remove an 

edge f  from G 2 . If  f  = u iy , then H  = G. Otherwise, in G 2  - f  there is an end- 

vertex, namely y, adjacent to the vertex u i o f degree 2 or 3. To produce such an 

end-vertex, we must remove from G i either the edge vui (and necessarily d eg o u 2  = 

3) o r the edge vun (dego un-i = 3). In both cases, the neighbors o f end-vertices in 

G i - e are adjacent. Therefore, the neighbors of end-vertices in G 2 - f  must be 

adjacent. Because u i is the neighbor o f the end-vertex y, the second neighbor is 

either U2  or v. But degG2  u 2  = 3, so the second neighbor must be v. This is only 

possible if  f  = un-iun, but then G i - e ^  G 2  - f. To prove this fact, consider the 

longest paths that use only the vertex v and vertices o f degree 3 in G i - e and in G2  

- f  between end-vertices. In G j - e the path is either

x, u2, . . . ,  um . j, v, w or 

X, Ujj .  j ,  . . .  , Ujj _ j^j, V, w 

and in both cases is shorter than the path y, x, u2, . . . ,  um . j, v, un in G2  - f. □
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In this section we determine all connected planar graphs G for which there exist 

two nonisomorphic connected planar graphs G i and G2  o f the same size with 

gcs(G i, G2 ) = {G}. If  we remove the requirement that G, G i and G2  be connected, 

then the answer is immediate. Namely, all planar graphs G have the above property 

and a construction o f graphs G i and G 2  can be the same as in the p roof o f 

Proposition 2 [7].

Let us consider first regular maximal planar graphs. Because every planar graph 

contains a vertex o f degree at most 5, the degree of regularity is at most 5. Therefore, 

if  we denote by T(r) an r-regular maximal planar graph, then 1 < r  < 5 and T (l)  = 

K 2 , T(2) = K3 , T(3) = K4 , T(4) = K 2 ,2,2  is the graph o f the octahedron, and 

T(5) is the graph o f the icosahedron (see Figure 3.15).

T (l): T(2):

O

o

Figure 3.15. Five regular maximal planar graphs.
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L et us note that if G = T(r) for some r, 1 < r  < 5, then there are no connected 

nonisomorphic graphs G i and G 2  o f the same size with gcs(G i, G2 ) = {G}. In 

fact, by Corollary 3.4 we can assume that G i = G + e and G2  = G + f, where 

both graphs G + e  and G + f  are planar and connected. Therefore, the edge e (as 

well as the edge f) must be incident with one vertex o f G. But if  G is a regular 

maximal planar graph then G + e = G + f, so G i = G2 , which is impossible.

W e state the following two lemmas without proof.

Lemma 3.6 I f  G is a maximal planar graph with degree set © (G) = {3, 4}, then 

G is isomorphic to the graph T (3 ,4) given in Figure 3.16.

4

Figure 3.16

Lemma 3.7 There are exactly four nonisomorphic maximal planar graphs G with 

degree set © (G) = {4, 5}, namely the four graphs given in Figure 3.17.

The fact that there is no a maximal planar graph G of order 11 and © (G) ={4,5} 

(or equivalently, with ten vertices o f degree 5 and one vertex o f degree 4) follows 

from a theorem of Griinbaum ([10], pp. 272-275).
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55

T, (4,5):

4 4

5 555

Figure 3.17

T h eo re m  3A Let G(k, t) denote a maximal planar graph in which the vertex 

degrees are multiples o f k with t exceptions. Then:

(i) There does not exist a G(k, 1) for k = 2 ,3 ,4 ,  5.

(ii) There does not exist a G(k, 2) in which the two exceptional vertices are adjacent 

for k  = 2, 3, 4, 5.

I f  G is a maximal planar graph with degree set 2?(G) = {5, 6 }, then G has 

exactly twelve vertices o f degree 5. By Griinbaum's theorem, there is no maximal
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planar graph with © (G ) = {5, 6 ) and with only one vertex of degree 6 . However, 

Griinbaum and Motzkin [11] constructed a maximal planar graph with twelve vertices 

o f degree 5 and n vertices o f degree 6  for every n > 2 .  A different construction of 

such graphs was given by Etoum eau [9], together with a proof that all such graphs 

(maximal planar with degree set {5, 6 }) are 5-connected. In the proof o f the main 

theorem we will use the following well-known fact observed first by Whitney [12]. 

T heorem  3B If  a planar graph G is 3-connected, then G is uniquely embeddable 

on the sphere.

Let us consider first "exceptional" connected planar graphs.

T heo rem  3.8 If  G = T(3, 4) from Figure 3.16 or G = Ti (4, 5), where i = 2 

or 3, from Figure 3.17, then there do not exist nonisomorphic connected planar 

graphs G i and G2  o f equal size with gcs(G i, G 2) = {G}.

P roof. By Corollary 3.4, if  there exist two nonisomorphic connected planar graphs 

G i and G2  of the same size such that gcs(Gi, G2) = [G ], then we can assume that 

G i = G + e and G2  = G + f  for some edges e and f.

I f  G = T(3, 4), then G i and G2  are as shown in Figure 3.18, and gcs(Gi, 

G2 ) = {G, G - g + e ] , so gcs(G i, G2 ) is not unique.

G

Figure 3.18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



W e have the same situation for the graph T2 (4 , 5) or the graph T 3 (4 , 5). For 

example, if  G = T2 (4 , 5), then G i and G2  are as shown in Figure 3.19, where 

G i - g = G2  - h. Therefore, {G, G - g + e} Q gcs(G i, G2 ) and gcs(G i, G2 ) is not 

unique.□

Figure 3.19

Therefore, we have proved that if G 2  T(r), 1 < r  < 5, or G is isomorphic to 

T(3, 4), T 2 (4 , 5) or T 3 (4 , 5), then we are not able to construct two nonisomorphic 

connected planar graphs G i and G2  o f the same size such that G is the unique 

greatest common subgraph of G i and G2 . In the main theorem o f this section we will 

show that these eight graphs are the only exceptions. In the proof o f the theorem it will 

be convenient to use the following notation. If a graph G is embedded in the plane 

and a boundary of a region is an r  - cycle ( r  > 3 ), then we will call this region an 

r  - region. A vertex o f degree n is called an n - vertex.

Theorem 3.9 Let G be a connected planar graph such that G is not isomorphic 

to any of the graphs: T  (r) (1 < r  < 5), T(3, 4), T2 (4 , 5) and T 3 (4 , 5). Then there 

exist two nonisomorphic connected planar graphs G i and G2  o f the same size for 

which gcs(G i, G2 ) = {G}.
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Proof. W e consider the following cases.

Case 1. The graph G has an end-vertex.

Subcase 1.1. There are two vertices x, y e  V(G) such that deg x < A(G), deg y < 

A(G), xy £  E(G) and G + xy is p lanar. Construct two graphs G i = G + xy 

and G2  s  G + vw, where v is a vertex o f maximum degree and w £ V(G). 

Then, in the same manner as in the proof o f Theorem 3.5, we can show that gcs(Gi, 

G 2 ) = {G}.

Subcase 1.2. For any two vertices x* y with deg x < A(G), deg y < A(G), xy £ 

E(G) the graph G + xy is not planar. We can assume that A(G) i> 3. If A(G) <; 2, 

then G  = Pn, n > 3, so G + xy = Cn and G + xy is planar. Therefore, the 

conditions o f Subcase 1.1 hold. Using the similar arguments as in the proof o f 

Theorem 3.5, we can construct graphs G i and G2  with gcs(Gi, G 2 ) = {G}.

Case 2. The graph G has no end-vertices. but G is not maximal planar.

There are two vertices x and y o f G such that xy £ E(G) and G + xy is 

planar. Define two graphs G i = G -t- xy and G2  = G + xu, where u £ V(G). 

Then gcs(G i, G2 ) = {G} and the proof o f this fact is the same as in Theorem 3.5.

Case 3. The graph G is maximal planar.

Subcase 3.1. Assume G contains two vertices u and v such that deg u - deg v > 2 

(or A(G) - 8 (G) > 2). Let u be a vertex of maximum degree and v a vertex of 

minimum degree. Consider two graphs G i = G + ux and G2  = G + vy, where x, 

y £ V(G). O f course, G e  gcs(G i, G2). To obtain H e  gcs(G i, G 2) we must 

remove one edge, say e, from G i and one edge from G 2 . If  e = ux, then H = G i 

- e = G. Otherwise, in G i - e there is the end-vertex x adjacent to the vertex o f 

degree A(G). W e cannot produce such an end-vertex by removing one edge from G 2 . 

Therefore, H  = G and gcs(Gi, G2 ) = {G}.
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Subcase 3.2. Assume A(G) - 8 (G) < 1. Because G is not regular, A(G) - 8 (G) = 1, 

or © (G) = {d, d + 1}, where 3 < d < 5 (d > 6  is impossible because every planar 

graph has a vertex o f degree at most 5). By Lemma 3.6, if  d = 3 then G = T (3 ,4), 

but we assumed that G is not isomorphic to T(3, 4). Therefore, the only two 

possibilities are © (G ) = { 4 , 5 }  or © (G ) = { 5 , 6 } ,  and we consider them in two 

subcases.

Subcase 3.2.1. Assume that ©(G ) = { 4 ,5 } .  By Lemma 3.7, there are exactly four 

such graphs, namely the graphs Tj (4, 5), 1 < i < 4, but the graphs T2 (4 , 5) and 

T3 (4 , 5) were excluded in the assumption o f the theorem.

If  G = T j (4 ,  5), then we define two graphs G i = G + ux and G2  = G + vy 

as in Figure 3.20, where x, y $ V(G). The numbers in Figure 3.20 denote degrees 

o f vertices.

G, = G + ux

4

G = G + vy

44

Figure 3.20

O f course, G e  gcs(Gi, G2 ). To obtain H e  g cs(G i,G 2), we have to remove 

from G i an edge e that is incident with the vertex u. If  e = ux, then H = G.
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Otherwise, in G i - e the unique end-vertex x is adjacent to the vertex u that lies on 

the boundary o f  the 4-region o f the form A represented in Figure 3.21 (numbers 

denote degrees o f vertices). Because the graph G - e is 3-connected (and planar), it 

follows from Theorem 3B that there is a unique (up to the orientation) embedding of 

the graph G - e in the plane. Therefore, if  we neglect the orientation and different 

possibilities o f placing the end-vertex x in the plane, there is only one embedding of 

the graph G i - e in the plane. The same is true for the graph G2  - f. If  G i - e = 

G2  - f, then a 4-region with a vertex on its boundary that is adjacent to the end-vertex 

y must be present in G2 - f .  Therefore, the removed edge f  must be one among fj, 

f2> f3 > f4 - But then the 4-region in G2  - f  is o f the form B represented in Figure 3.21 

and G i - e ^ G2  - f.

Figure 3.21

If  G = T4 (4 , 5), then we construct two graphs G i = G + ux and G2  = G + 

vy, where u is a vertex o f degree 5, v is a vertex of degree 6 , and x, y £ V(G). 

The neighborhoods N(u) and N(v) o f vertices u and v in  G i and G 2 , 

respectively, are as in Figure 3.22.
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N(u) in Gj N(v) in Gj

5  ____________ 5

5

5
4

Figure 3.22

By the same reason as mentioned above, for every e e  E (G i) and every f  € 

E (G 2 ) the graphs G i - e and G2 - f  are uniquely embeddable in the plane. If we 

remove the edge e that is incident with the vertex u (except e = ux), then the 4- 

region in G i - e is o f the form A represented in Figure 3.23. But the only possible 

4-region in G 2  - f  is o f the form B (see Figure 3.23), so G i - e G2  - f.

Figure 3.23

Subcase 3.2.2. Assume that <D (G) = { 5 ,6 } .  In the proof o f the theorem in this case 

it will occasionally be more convenient to work with the dual graph. Let us note that if 

G is a maximal planar graph with 2 > (G )= { 5 , 6 }, then its dual graph G* is a planar

A B

4
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cubic graph every region o f which is a pentagon (5 - cycle) or a hexagon ( 6  - cycle). 

W e will also use the following notation. If  a vertex v has degree n, we will denote it 

by v(n). Let G be a plane graph. If  the vertices adjacent to a vertex v(n) are v i, V2 , 

... ,vn, and deg vj = dj, i = 1, 2 , . . . ,  n, then the (ordered) neighborhood of the 

vertex v(n) will be denoted by N(v) = ( v i(d i) , V2 (d2 ) , . . . ,  vn(dn) ) or, more 

simply, by N(v) = ( d i d2 ... dn ) if  the names o f vertices are not important.

Let u(6 ) and v(5) be vertices o f G (of degree 6  and 5, respectively). W e 

define two graphs G i = G + ux and G2  = G + vy, where x, y £  V(G). O f 

course, G i and G 2  are nonisomorphic connected planar graphs o f equal size, and 

G g g cs(G i,G 2 ). Suppose that H  e  gcs(G i, G2) and H  ^ G. To obtain H  we 

m ust remove one edge, say e, from G i. The edge e must be incident to the vertex 

u, but e *  ux. Therefore, in the graph G i - e, the unique terminal bridge ux is 

incident to the vertex u that lies on the boundary o f a 4 - region (see Figure 3.24). 

The same configuration must occur in the graph G2  - f. Therefore, the removed edge 

f  must joint two consecutive vertices from the neighborhood of v (see Figure 3.24).

Figure 3.24
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Consider the unique 4 -region u, ui,  U2 , U3 in G i - e  and the unique 4 -region 

v, v i ,  V2 , V3 in G2  - f  (see Figure 3.25). Because the graphs G - e and G  - f 

are 3 - connected (and planar), using Theorem 3B, we conclude that they are 

uniquely (up to the orientation) embeddable in the plane. But x and y are the only 

end-vertices in G i - e and G2  - f, respectively. Therefore, we m ust have the 

following correspondence between vertices in G i - e and G2  - f: 

x ++ y, u <-► v, U2  <-> V2 , 

u i <-> v i (and then U3 <-► V3) or 

u i <-> V3 (and then U3 <-* vi).

G1

u
3

u
2

in Q j - f

Figure 3.25

Now we can make the following observations.

O b serv a tio n  1 . In the neighborhood o f the vertex v(5) in G, there are two 

consecutive vertices of degree 6 .

Otherwise, in the graph G2  - f  at least one of the vertices v i and V3 (see Figure 

3.25) has degree 4, but both vertices ui and U3 have degree at least 5.
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O bservation 2. The edge f  removed from G2  joins two vertices o f degree 6 . 

Moreover, the second vertex (one is v) that is adjacent to both o f these vertices, 

namely V2 , must have degree 5.

In fact, the degree of V2  is 5 or 6 . On the other hand, the vertex V2  in G2  - f  

corresponds to the vertex U2  in G i - e whose degree is 4 or 5. Hence, its degree 

must be 5.

Observation 3. In the neighborhood of the vertex u(6 ) in G the configuration (565) 

must be present.

In fact, consider the vertices u i, U2 , U3 adjacent to u. The vertices m  and U3 

correspond to the vertices v i and V3 in G 2  - f, so their degrees are 5. The vertex 

U2  in G has degree 6  because it has degree 5 in G i - e.

Observation 4. If the vertex u(6 ) in G is adjacent to s vertices o f degree 6 , then 

the vertex v(5) in G is adjacent to s + 1 vertices o f degree 6 .

In fact, the vertices u in G i - e and v in G2  - f  must correspond to each other, 

so the neighborhood o f u must correspond to the neighborhood of v. By removing 

the edge e from G i we reduced the number of 6  - vertices adjacent to u by 1. But 

removing the edge f  from G2  reduces the number of 6  - vertices adjacent to v by 2 .

In the construction o f graphs G i and G 2 , vertices u(6 ) and v(5) can be chosen 

arbitrarily. Therefore, by Observation 4, we have the following.

O bservation 5. Every vertex u o f degree 6  in G must be adjacent to the same 

number, say s, o f 6  - vertices. Then every vertex v o f degree 5 in G must be 

adjacent to s + 1 vertices o f degree 6 .

By Observation 3, it follows that s > 1. O f course, s + 1 does not exceed the 

degree o f v(5), so s + 1 < 5. Finally, 1 < s < 4. We will distinguish four cases
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according to the value o f s, the number o f 6  - vertices adjacent to a vertex u o f 

degree 6  in G.

Assume that s = 1. In the dual graph G* we must have the configuration o f 

Figure 3.26, where the numbers denote the degrees o f vertices in G. But by 

Observation 1, the vertex v must be adjacent to two consecutive vertices o f degree 6 , 

or in G*, two adjacent 6  - regions. This implies that v is adjacent to three 6  - 

vertices, which gives a contradiction.

v(5)

Figure 3.26

Assume that s = 2. Suppose first that there is a vertex o f degree 5 in G, say the 

vertex v, with a neighborhood N(v) = (62565). Then in the dual graph G* we have 

the configuration o f Figure 3.27. W e use the labeled vertices u(6 ) and v(5) for the 

construction o f the graphs G i and G z

u(6) v(5)

Figure 3.27
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The neighborhood o f the vertex v in G2 - f  is o f the form (52652), where we list

vertices starting and ending on the boundary of 4 - region and we do not consider the

end-vertex x (see Figure 3.28). But in the neighborhood o f the vertex u(6 ) in G i - e

we have three consecutive vertices of degree 5, which gives a contradiction.
6

5

Figure 3.28

In the other case, the neighborhood of every vertex v is N(v) = (6352). Then in 

G* the configuration shown in Figure 3.29 is forced. Therefore, there exists a vertex 

o f degree 5, namely the vertex v', with the neighborhood N(v') = (62565) and in 

fact this case cannot happen.

v’(5)

v(5)

Figure 3.29
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Assume that s = 3. Then every neighborhood o f v(5) is N(v) = (645) and in the 

graph G* the configuration o f Figure 3.30 is forced.

v(5)

Figure 3.30

Because not both a and b (see Figure 3.30) can be 5 - regions ( 6  - regions), 

we can assume by symmetry that a is 5 - region and b is 6  - region. With this 

assumption the graph G* must have the subgraph shown in Figure 3.31.

u(6)

a(5) b(6)

Figure 3.31
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If  we use the two labeled vertices u(6 ) and v(5) for the construction of G i and 

G 2 , then the neighborhood o f u in G i - e is N(u) = (52625), as shown in Figure 

3.32, and the vertex z (adjacent to two vertices o f degree 6  from this neighborhood) 

has degree 5.
2(5)

5

5

5

Figure 3.32

But by removing an edge f  from G2 , we can obtain the neighborhood of v of 

one o f the two types shown in Figure 3.33.

z’(6 )

6

5

5

6

5

5

Figure 3.33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

Either N(v) = (56565), so <N(v)> f  <N(u)>, or N(v) = (56252). But the vertex 

z' (adjacent to two vertices o f degree 6  from the neighborhood) has degree 6 . This 

contradiction completes the proof in the case when s = 3.

A ssume finally that s = 4. Then in G* we have the situation shown in Figure 

3.34 and the neighborhood of the labeled vertex u is N(u) = (625625). But by 

Observation 3 the configuration (565) m ust be present in N(u), which produces a 

contradiction. □

v(5)

u(6)

Figure 3.34

3.4 Unicyclic Graphs

Let us recall that a graph G is unicyclic if  G is connected and contains exactly one 

cycle. In this section we will determine all unicyclic graphs for which there exist two 

nonisomorphic unicyclic graphs G i and G 2  o f the same size with gcs(G i, G 2 ) = 

{G}.
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Let us first define two special families o f unicyclic graphs {C(3k, n) I k > 1, n > 1} 

and {D(4k, n) I k > 1, n > 1}. The graph C(3k, n) consists o f the cycle o f length 

3k, every third vertex o f which is the central vertex o f  a star K( l ,  n) none o f whose 

edges lie on the cycle. The graphs C (3 ,4) and C (9 ,1) are shown in Figure 3.35.

C(3, 4): C (9 ,1):

Figure 3.35

The graph D(4k, n) consists of a cycle v l5 v2  , . . . ,  V4 k, vj o f  length 4k such 

that every vertex vj with i = 1 or 2 (mod 4) is a central vertex of a star K( l ,  n) 

none o f whose edges lie on the cycie. The graphs D(4, 3) and D (8 , 2) are given in 

Figure 3.36.

D(4, 3):

v 8

D (8,2):

Figure 3.36
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First we will show that graphs from these two families as well as cycles are 

"exceptional" unicyclic graphs.

Theorem 3.10 If G = Ck, k > 3, G = C(3k, n) or G = D(4k, n), where k > 1 

and n > 1 , then there do not exist nonisomorphic unicyclic graphs G i and G 2  of 

equal size with gcs(G i, G2) = {G}.

Proof. Assume, to the contrary, that we are able to construct such graphs Gi and 

G 2 . By Corollary 3.4, we may assume that q(G i) = q(G2 ) = q(G) + 1. Because 

graphs G i and G2  are unicyclic, G i (and G2 ) is obtained by adding exactly one 

terminal edge to the graph G.

I f  G s  Ck, k > 3, then G i = G2  s  G + vx, where v e  V(Ck) and x £ V(Ck), 

which gives a contradiction.

If  G = C(3k, n), k > 1, n > 1, then by the symmetry o f the graph C(3k, n) there 

are only three unicyclic graphs G i, G2  and G3 such that q(Gi) = q ( G ) + l  and G c  

Gj (i = 1, 2, 3). But then not only C(3k, n) but also the caterpillar T o f diameter 

3k whose 3k + 1 vertices on the longest path have degrees 1, 2, n + 2, 2, 2, n + 2, 

. . . ,  2, 2, n + 2, 1 is a subgraph o f Gi, i = 1, 2, 3. Therefore, for every pair i, j  e  

{1 ,2 ,3} ,  i 5* j, we have that {G, T} c  gcs(Gi, Gj) which contradicts the fact that a 

greatest common subgraph is unique.

To illustrate this fact consider G = C (3 ,4). Then G i , G 2  and G3 are represented 

in Figure 3.37 where the caterpillar T  is marked by bold edges.
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Figure 3.37

Finally, if  G = D(4k, n), k > l ,  n > l ,  then by the symmetry o f D(4k, n) there 

are three possibilities to construct unicyclic graphs Gj such that G c  Gi and q(Gj) = 

q(G) + 1. But then the caterpillar T  o f diameter 4k whose 4 k + 1  vertices on the 

longest path have degrees 1 , 2 , n + 2 , n + 2 , 2 , 2 , n + 2 , n + 2 , . . . ,  2 , 2 , n + 2 , n +

2, 1 is a subgraph o f Gi, i — 1,2, 3. Therefore, {G, T} c  gcs(Gi, Gj) for every

i. j e  {1 ,2 ,3} ,  is*j,  which produces a contradiction.

A s an illustration consider G = D (8 , 2). Then G i, G2  and G 3 are given in

Figure 3.38 where T  is marked by bold edges. □

Figure 3.38
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The characterization o f unicyclic graphs will be completed if  we show that the 

graphs from the three families described in Theorem 3.10 are the only exceptions. In 

the proof o f the main theorem of this section we will use the following notation. If  G 

is an unicyclic graph and C is its subgraph that is the cycle, then for every vertex v e  

V(G) the distance d(v, C) from v to the cycle is the length o f the shortest v-upath , 

where u e  V(C). If  e = xy e  E(G), d(x, C) = d -1  and d(y, C) = d, then a level of 

the edge e is defined to be d.

T heorem  3.11 Let G be a unicyclic graph such that G is not a cycle and G is not 

isomorphic to any o f the graphs C(3k, n) or D(4k, n), k > 1, n > 1. Then there 

exist two nonisomorphic unicyclic graphs G i and G2  of the same size for which 

gcs(G i, G 2) = {G}.

Proof. By Corollary 3.4, if  a construction o f G i and G2  is possible, then we can 

assume that q(G i) = q(G2) = q(G) + 1. Therefore, a graph G i (as well as a graph 

G 2 ) is obtained from the graph G by adding a terminal edge (together with its end- 

vertex). W e will denote vertices o f a copy o f G in G i by u, v, w , . . . ,  whereas the 

corresponding vertices o f a copy o f G in G 2  will be denoted by u \ v', w', . . . .

W e distinguish several cases.

Case 1. There is a vertex of maximum degree that does not lie on the cvcle.

Among the vertices o f maximum degree, let v be a vertex such that:

(a) the distance from v to the cycle is a maximum;

(b) if there is more than one vertex satisfying (a), choose v such that a tree branch 

of G - vw has maximum order (w is the vertex adjacent to v that lies on the 

path to the cycle);
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(c) if  there are at least two vertices o f maximum degree that satisfy (a) and (b), 

choose among them a vertex adjacent to a maximum number of end-vertices.

If  we choose such a vertex v, let d be its distance from the cycle, let T  be a tree 

branch o f v o f maximum order, and u e  V(T) be a vertex in that branch adjacent to 

v. N ote that deg u < deg v. Let t be the number of end-vertices adjacent to v. 

Subcase 1.1. Assume deg u < deg v - 2. W e define two graphs G i = G + vx and 

G 2  = G + u'y, where x, y £ V(G), as in Figure 3.39.

- O  y

w

X

Figure 3.39

O f course, G e  gcs(G i, G 2 ). To produce H e  gcs(G i, G2 ), we must remove 

one edge, say e, from G i and the edge e must be incident to the vertex v. If  e = 

wv, then the tree component of G i - e has a vertex (namely v) of degree A(G). 

But then the edge f  we must remove from G2  to produce H is necessarily f  = w V  

and the tree component o f G2  - f  has no vertex of degree A(G), which gives a 

contradiction. Therefore, the edge e must be on the level d + 1. Then from G2  we 

have to remove an edge on the level d + 2 , and this edge f  must be incident to the 

vertex u' (otherwise, the vertex v1 in G2  - f  would have a tree branch o f order 

greater than the order o f any tree branch in G i- e ) .  If e is a terminal edge, then G i -
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e = H  = G; otherwise, the vertex v is adjacent to t + 1 end-vertices in G i - e. But by 

removing f  from G2  we cannot get such a vertex, which again gives a contradiction. 

Subcase 1.2. Assume that d eg u  = deg v -1  but the tree component o f G - wv is not 

a bicentral symmetrical tree with the center {v, u}. Define G i and G2  as in Subcase

1.1. The proof is exactly the same as above where the additional assumption about the 

tree component is needed to exclude the possibility o f removing e = wv from G i and 

f  = w 'v1 from G2 .

Subcase 1.3. If  deg u = deg v - 1 and the tree component o f G - wv is a  bicentral 

symmetrical tree with the center {v, u}. Let S be a tree branch of the vertex v o f the 

second greatest order and let z be a vertex o f S that is adjacent to v. Define two 

graphs G i = G + vx and G 2  = G + z'y, where x, y £ V(G) (see Figure 3.40).

Figure 3.40

Then, o f  course, G e  gcs(G i, G2 ). To produce H e  g cs(G i, G2 ), we must 

rem ove from  G i one edge e that is incident to v. W e cannot remove e = wv, 

because then f  = w'v' must be removed from G2  but the tree components o f G i - e 

and G 2  - f  are different. If  e is a terminal bridge, then G i - e = G. Otherwise, the 

graph G i - e has an additional terminal bridge incident to the vertex v. W e must 

produce such a terminal bridge in G 2  - f  and at the same time remove an edge incident
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to the vertex z'. Because this is impossible, the contradiction shows that gcs(Gi, G 2)

Case 2. A ll vertices o f  m axim um  degree are on the cvcle. but there i$ g vertex 2 f  

maximum degree that has a tree branch nonisomorphic to K2 .

W e will distinguish several subcases.

Subcase 2.1. There is the unique vertex o f  maximum degree, sav the vertex v, and 

deg v  = 3. Let u be the vertex adjacent to v that lies outside the cycle. If  we define 

G i = G + vx and G2  = G + u'y, where x, y £ V(G), then it is easy to  check that

Subcase 2.2. There is the unique vertex o f maximum degree, sav the vertex v, with 

deg v > 4.

Subcase 2.2.1. Assume first that two vertices adjacent to the vertex v that lie on the 

cvcle have degree 2. Let T be a tree branch of v of maximum order, and let u be a 

vertex o f the tree T that satisfies deg u < deg v -1  and the distance between u and 

v is minimum. Then we define two graphs G i = G + vx and G 2  s  G + u'y» where 

x, y £ V(G) (see Figure 3.41).

= {G}.

gcs(G i, G2 ) = {G}.

yp

■ ■ ■

Figure 3.41
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O f course, G e  gcs(G i, G2 ). To get H  e  gcs(G i, G2 ), we must remove from

G i an edge e that is incident to the vertex v. If e is a terminal bridge, then H = G.

If  e is a non-terminal bridge, then we have an additional end-vertex adjacent to v in

G i - e. To get such vertex in G 2  - f, the removed edge f  must be from level 2 and

from the branch T. This is impossible, because in G2  the degree o f the vertex from T

adjacent to v1 is at least 3. Therefore, the edge e must be a cycle edge (incident to

v), and also f  must be a cycle edge (either fi or f2  to produce one extra end-vertex

adjacent to v1). Then one o f the branches o f v in G i - e is T. There is no such 

branch o f v' in G2  - f, because degG2_ f z \ < 2 and degG2_ f Z2  < 2. This gives a

contradiction and proves that gcs(Gi, G2 ) = {G}.

Subcase 2.2.2. Only one vertex, sav u, on the cvcle that is adjacent to v has degree 

2. Define G i = G + vx and G 2 s G  + u'y, where x, y £  V(G). Then gcs(Gi,G 2 ) = 

{G}. In fact, we cannot remove a bridge from G i. Removing a cycle edge e 

produces an additional end-vertex adjacent to v in G i - e. We cannot produce such an 

end-vertex in G2  - f.

Subcase 2.2.3. Both vertices on the cvcle that are adjacent to v have degree at least 3. 

We define G i and G2  as in Subcase 2.2.1 and use the same arguments in the proof. 

Subcase 2.3. There are at least two vertices of maximum degree. Among the vertices 

of maximum degree let v be a vertex with the following properties:

(a) v is adjacent to a maximum number o f end-vertices (say, to t end-vertices);

(b) if there are at least two vertices that satisfy (a), choose among them a vertex that 

has a tree branch of maximum size (let T  be this tree branch and let u e  V(T) be 

adjacent to v);

(c) if there are at least two vertices that satisfy (a) and (b), choose a vertex v such 

that deg u is maximum (of course, deg u < A(G) -1 ).
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W e consider two possibilities.

Subcase 2.3.1. Assume T £ K2 . Define two graphs G i = G + vx and G2  = G + 

u'y, where x, y £ V(G), as in Figure 3.42.

2 *

Figure 3.42

O f course, G e  gcs(G i, G2 ). Assume that H e  gcs(G i, G2 ) and H = G i - e  = 

G 2  - f  $ G. The edge e removed from G i must be a cycle edge incident with the 

vertex v. Therefore, f  is also a cycle edge. Assume first that f  is incident with v'. 

The removal o f the edge f  produces in G2  - f  a vertex corresponding to v; let w) be 

this vertex. The edge f  must be incident with a neighbor z \ o f w j (see Figure

3.43). Let d be the number of A(G) - vertices in G. If  degG 2  u' < A(G), then in

G2  - f  there are d  -1  vertices o f maximum degree. Therefore, the edge e must join 

the vertex v with the vertex w o f degree A(G).
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2 :

w'=w.W=Wj

Figure 3.43

Then we must have the following correspondence between vertices in G i - e and 

G2  - f: v w'i

zi «-* Z2

wi <-> W2

zj-i <-> z-

Wj-l <-> w- = w'

Zi V*

which produces a contradiction because degGl_e zi = 2 < degG2_f v '= A(G) - 1. On 

the other hand, if degG 2  u' = A(G), then in G2  - f  there are two vertices o f maximum

degree, namely w'j and u', such that d(w \, u') = q(C) - 1. In G i - e, this is only 

possible if  e = wv and degG l_ e w = A(G). But then degGl w = A(G) + 1, which

gives a contradiction.

Therefore, the edge f  is not incident with v1. Then degG2_ f v' = A(G), v' is

adjacent to t end-vertices and v1 has a tree branch T' = T + u'y o f order greater than 

the order of T. Therefore, v' must correspond to some vertex w in G i - e whose
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tree branch T  is obtained by the removal o f the cycle edge e. Moreover, w has a 

tree branch, say B, such that B is produced by removing f  from G2  (see Figure

3.44). A lso by rem oving f, we must produce in G 2  - f  a vertex w j that 

corresponds to  v. The edge f  m ust be incident w ith a neighbor o f 

w'i.

W =W ;

W.

Figure 3.44

Therefore, we have the following coirespondence between vertices o f G i - e and 

G2  - f:

v <-»• Wj 

w i <-> W2

Wi-l ++ Wj
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and the segment S between vertices v' and w \ (containing the edge f) must be 

repeated between w'j and wjj, ... , w'j.^ and w{. Finally, we must have wj = w1, 

so the branch B must be isomorphic to T.

Only in this special case, we can have G i - e = G2  - f. But then the graph G is 

"cyclically" symmetrical, i.e., it is o f the form as in Figure 3.45. It contains the cycle 

ao, a i , ... a3i+2 , ao o f length 3(i+ l). The tree branch T  is present at ao, a3 , a g , . .. ,  

a3 i, and the remaining tree branches o f these vertices are denoted by F. The tree 

branch R that is present at the vertices a i, 8 4 , . . . ,  831+1 satisfies R + aoai = T.

v=a

3i+2

3i+l

Figure 3.45

Then in fact G i - e = G2  - f, where e = a3i+2ao and f  = a ia2 . But in this special 

case we can construct G i and G2  in a different way. Let G i = G + vx and G 2  =
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G + a2 y, where x, y $ V(G) (note that deg a2  = 2). Then it is easy to check that 

g c s (G i,G 2 ) = {G}.

Subcase 2.3.2. Assum e that T  s  K2 . Let v be a vertex o f maximum degree all o f 

whose t tree branches are isomorphic to K2 . Let w be a vertex o f maximum degree 

that has a tree branch o f  maximum order. I f  there is more than one such pair (v, w), 

let us choose v an d  w whose distance d(v, w) is minimum. Let B be a tree branch 

o f w  o f maximum order (by assumption, B f  K2 ) and le t u e  V(B) be an end- 

vertex from this branch. Define two graphs G i = G + vx and G2  s  G + u'y, where 

x, y £  V(G) (see Figure 3.46).

G
1

w.

Figure 3.46

O f course, G e  gcs(G i, G2 ). Assume that H e  gcs(G i, G2 ) and H = G i - e = 

G2  - f  f  G. The edge e must be a cycle edge incident with the vertex v, so f  is 

also a  cycle edge. Suppose first that f  is incident with the vertex w1. By the removal 

of f, we must produce in G2 - f  a vertex corresponding to v, so f  is incident with a 

neighbor o f a A(G)-vertex. Therefore, d(v, w) < 2. If  d(v, w) = 1, we have the 

situation shown in Figure 3.47, where the vertices of the cycle are denoted by vq = v,
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vj = w, V2 , V3 , . . . ,  vn„i, vn = vq. The edge e is incident with the vertex vq, so either 

e = v0 v 1 or e = v n-iv0.

v = v,
w=vn-1

n-2

n-3

v'=

=v:n-1

n-2

n-3

Figure 3.47

If  e = vqVi, then we have the following correspondence between vertices in G i - 

e and G2  - f:
Vq <->• V3

vn-l ++ V4

v4  v',,.!

v3 VJ)

v 2  ^  w'l>

which gives a contradiction, because deg V2  = 2 and deg v'j = A(G) - 1 > 3.

If e = vn.iVQ, then we have the following correspondence between vertices in G i - 

e and G2  - f:
v0  <-> v^

V1 ^  v 4

Vi ^  v 'i+ 3
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vn-3 ^  v^ = v|) 

vn -2 ^  v'j,

which gives a contradiction because deg vn _2 =A(G) > deg v \ = A(G) - 1.

I f  d(v, w) = 2, then, without loss o f generality, we can assume that v = vq and 

w = V2  . The edge e is either vn_ivo or vqVj, whereas f  = v'jv^ or f  = V2 V3 . 

Consider the case when e = vn-ivo and f  = v'jv^ (see Figure 3.48). The other three 

cases can be treated in a similar way.

=vf

n-1

w '= v
n-2

v =

n-1

w = v.'n-2

Figure 3.48

W e have the following correspondence between the vertices of G i - e and G2  - f:

v0  <-► Vq

v i  ++  v 'n-l

v 2 ** v 'n-2 (degv2  = A(G) => deg v 'n .2  = A (G )- l)

Vn-2 ^  V2 ,

which gives a contradiction because deg vn -2  = A(G) > deg V2  = A(G) - 1.

Therefore, the edge f  is not incident with w1. Since degG2 . f w '= A(G) and w'

has a  tree branch B1 = B + u'y, it follows that a vertex z in G i - e corresponding to
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w' must have a tree branch B 'tha t is produced by removing the edge e. Moreover, z 

has a tree branch, say T, such that T is produced by the removal o f f  from G 2 . 

A lso by removing f, we must produce in G2  - f  a vertex corresponding to v. 

Assuming that v = vq and w = v^ we have two possibilities. The first is f  = vjv^. 

Then we have the situation as in Figure 3.49 and the following correspondence 

between the vertices o f G i - e and G2  - f  must hold:

vo +* vq

v i v 'n-l (so deg v'n.j = deg v„-i = 2 ) 

v 2  ^  v n-2

Vi <-*■ v'n_i (which implies that T  = B)

vk ** v'n.k .

V =  V.

n-1

n-i
w =v.

V =V/
n-1

n-i
w '= vj

Figure 3.49
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Therefore, the graph G is symmetrical, i.e. the vertex is similar to the vertex 

vn.k, where n is the length o f the cycle o f G and k  = 0, 1 ,2 , . . . ,  n. But then we 

can use a  different construction for G i and G2 . If we define G i = G + vx and G2  a  

G + u'y, where u is an end-vertex adjacent to v and x,y $ V(G), then it is easy to 

check that gcs(Gi, G 2 ) = {G}.

It remains to consider the case when f  *  v'^v^. T h en , because z corresponds to 

w' = vj' and v corresponds to a vertex different than v', say v ' ^  we must have f  = 

vi+d-2  vi+d-l (see Figure 3.50).

v =v„

= v.

i+d
i+d+1

Figure 3.50

Then the following correspondence between the vertices o f G i - e and G2  - f  is 

forced: vq v '^

v i ^  vj+d+1

Vi *+ v2i+d
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Since i < d  (the vertices v a n d w  were chosen in such a way that the distance d(v,w) 

was a minimum), it follows that there exists a positive integer k such that

v(k-l)(i+d)+i ** v 'k(i+d)+i = z -

Then also
vk(i+d) ** v 0  

Vk(i+d)+i = z ^  v’i-

This implies that the graph G is "cyclically" symmetrical, i.e. the segments 

v0  - V! - . . .  -Vi - vi+d, 

v i+d - vi+d+l " -  - v2 i+d _ -  " v2 (i+d>

vk(i+d)'  vk(i+d)+l '  -  " v (k+l)(i+d) 

are isomorphic (it may happen that there is only one segment). But in this special case 

we can construct G i and G2  in a different way. Let us note that degv„_i = degvj+d_i 

= 2. It is easy to check that if  G i = G + vqx and G2  = G + v'n-iy , where x, y £ 

V(G), then g cs(G i,G 2) = {G}.

Case 3. All vertices o f maximum degree lie on the cycle and all their tree branches are 

isomorphic to K2 .

Subcase 3.1. There is exactly one vertex o f maximum degree with all tree branches 

isom orphic &  K2 . Let v be such a vertex, deg v = A(G), and let u be an end- 

vertex adjacent to v. Define two graphs G i = G + vx and G2  = G + u'y, where x, y 

g V(G). O f course, G e  gcs(G i, G 2 ). To produce H  e  gcs(G i, G2 ), we must 

remove from G a cycle edge e that is incident with v. But then in G i - e the vertex 

v is adjacent to A(G) - 1 end-vertices. To produce such a vertex in G2  - f, it is 

necessary that the cycle is a triangle and both vertices on the cycle that are adjacent to
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v' have degree 2. Therefore, we have G = C(3, n) but we assumed that it is not the 

case.

Subcase 3.2. There are at least two vertices o f maximum degree on the cvcle and all of 

their tree branches are isomorphic to K2 . Let us denote by T(n) a tree consisting of 

two stars K (l, n) whose central vertices are connected by a path o f length 3. We will 

distinguish several subcases.

Subcase 3.2.1. There is a vertex v of maximum degree such that v is not a vertex o f a 

segm ent isomorphic to T(A(G) - 2) = T. Define two graphs G i = G + vx and G2  s  

G + u'y, where u is an end-vertex adjacent to v and x, y $ V(G) (see Figure 

3.51).

w

Figure 3.51

O f course, G e  gcs(G i, G 2 ). Assume that H  s  gcs(G i, G2 ) and H = G i - e =

G 2  - f  $ G. The edge e removed from G i must be a cycle edge incident with the 

vertex v, so either e = wv or e = vz. If  f ^ w 'v ’ and f ^ v ’z', then degG2 _f v' =

A(G). To produce in G i - e a vertex corresponding to v1, it is necessary that v is a 

vertex from a segment isomorphic to T, which gives a contradiction. Therefore, the 

edge f  is either w'v' or v'z'. Assume without loss o f generality that f  = v'z'. Since

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

we must produce an additional end-vertex in G2  - f, it follows that the other vertex 

adjacent to z' has degree A(G); let v \ be this vertex (see Figure 3.52).

1

Figure 3.52

Then there exists an integer k > 1 such that the following correspondence between 

vertices o f G i - e and G2  - f  holds:

V <-> v ’l

Vl <-> v 2

v 2 <-> v 3

Vk <->• v'

which gives a contradiction because v' has a tree branch isomorphic to P3 whereas 

vk does not.

Subcase 3.2.2. Every vertex v o f maximum degree occurs in a segment isomorphic 

1 2  T(A(G) - 2) = T. The segment isomorphic to T will be called a T  - segment. Let 

v be a vertex that is present in exactly one T  - segment. If G £ C(3k, n), then such a
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vertex v exists. W e define two graphs G i = G + vx and G2  s  G + u'y, where u is 

an end-vertex adjacent to v and x, y £  V(G) (see Figure 3.53).

G i : G2 :

k-l

k-2

k-l

k-2

Figure 3.53

O f course, G e  gcs(G i, G2 ). Assume that H  e  gcs(G i, G2 ) and H = G i - e = 

G 2  - f  §£ G. By the observations made in the proof o f Subcase 3.2.1, we must have 

e = zv and f  = w'z'. Then, if  v j, v2, . . . ,  vk are the remaining vertices on the cycle, 

we must have the following correspondence between vertices o f G i - e and G2  - f:

v <-> vk

v i  +* V'k.j

Vk-1 v\

Vk ++ v'.

Therefore, the graph G must be symmetrical, i.e. the vertices v, and Vk-i are 

similar, where 0  < i < k and vq = v; also the vertex w is similar to the vertex z. 

O therwise, for the two graphs G i and G2  constructed above we would have 

gcs(G i, G2 ) = {G}. Because of this symmetry and the fact that v occurs in exactly 

one T  - segment, every vertex o f maximum degree is present in exactly one such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



segment. In other words, vertices o f maximum degree occur in pairs, two in a T  - 

segment. Since G C(4k, n), it follows that there is a vertex on the cycle that does 

not belong to a T  - segment. Among all such vertices, let u be a  vertex adjacent to a 

vertex from a T  - segment, say v, and u is o f highest degree. Then 2 < deg u < 

A(G). W e define two graphs G i = G + vx and G2  = G + u'y', where x, y £ V(G), 

as in Figure 3.54.

Figure 3.54

O f course, G e  gcs(G i, G2 ). Assume that H e  gcs(G i, G2 ) and H = G i - e = 

G 2  - f  $ G. The edge e is either e = zv or e = vu. If e = zv, then in G i - e we 

reduced the number o f T - segments. Therefore, we have to reduce that number in G2 

- f, and at the same time produce an additional end-vertex. This is only possible if  f  

is the middle edge of the segment T, but then we produce two vertices each incident to 

n + 1 terminal bridges. This gives a contradiction, because there is no such pair of 

vertices in G2  - f. Therefore, we must have e = vu. Then the graph G i - e has one 

extra end-vertex (compared to G), namely the vertex x, but the graph G2  - f  has at 

least two extra end-vertices (y1 and a vertex corresponding to x which had to be 

produced). This contradiction shows that gcs(G i, G 2) = {G}. □
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CHAPTER IV

VARIATIONS OF GREATEST COMMON SUBGRAPHS

4.1 Maximal Common Subgraphs

Let G i and G2  be nonisomorphic graphs o f equal size. The set o f all common

subgraph" relation. M aximal common subgraphs are the maximal elements in this 

partially ordered set. Therefore, the following definition is well justified. A graph H 

without isolated vertices is a maximal common subgraph of G j and G2  if H e  Gj, 

i = 1, 2, and there is no F  such that H ^ F c G , ,  i = 1, 2. The set o f all maximal 

common subgraphs o f G^ and G2  is denoted by mcs(Gi, G2).

F or instance, if  G j = K(3, 3) and G2  = K (l, 3) u  K4 , then m cs(G i, G2 ) = 

{ H ^  H2, H 3), where H x = K (l,3), H 2  = 2K(1, 2 ) and H 3 = C4  U  K2  (see Figure 

4 .1 ).

subgraphs o f G j and G2  can be considered as a set partially ordered by a "being a

0 O  6

O

Figure 4.1

85
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This example shows that this concept is different than greatest common subgraphs. 

Clearly, a greatest common subgraph o f two graphs G i and G2  is also a maximal 

common subgraph o f G j and G2 , so gcs(G j, G2) c  m cs(Gi, G2 ). For the above 

example, we have gcs(G l5 G2) = {C4  u  K 2 }, so the reverse inclusion does not hold 

in general.

Let us note in the above example that the graphs H j, H2  and H 3 , belonging to 

m cs(G j, G2 ), have different sizes (3 ,4  and 5, respectively). O f course, if  H is a 

m axim al common subgraph o f G j and G2  having maximum size, then H  is a 

greatest common subgraph o f G j and G2 , and vice versa.

The first result shows that the difference between the sizes o f a greatest common 

subgraph and a maximal common subgraph can be arbitrarily large.

T h eo rem  4.1 For every positive integer M, there exist graphs G j and G2  o f 

equal size and graphs G e  gcs(Gj,G 2 ) and H  e  mcs(G l5 Gq)  with q(G) - q(H) > M. 

P ro o f. Let G j = Kn_! u  Cn and G2  = (Kn.j  u  K j) + K j be graphs indicated in 

Figure 4.2.

o
< >

n

o

Figure 4.2
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Then q(G j) = q(G2) = j ( n 2 - n  + 2),

gcs(G!, G2) = {Kn.! u  K2}, and 

m cs(G l 5 G2) 3  {Cn, Kn.j u  K2}.

If  we let G = Kn.! u  K2  and H  = Cn, then q(G) - q(H) = + l - n =

j ( n 2 -5 n  + 4) > M for sufficiently large n. □

The set o f maximal common subgraphs can have arbitrarily large cardinality. 

Moreover, we can have a wide range o f sizes o f maximal common subgraphs.

T h eo rem  4.2 For every positive integer N, there exist graphs G j and G2  o f 

equal size and N graphs H j, H2, ... , H n  with q(Hi) *  q(Hj) for 1 < i < j  < N 

such that

{H i, H2, . . . ,  Hn ) £  m cs(Gi, G2).

P ro o f . Let N be given. First we define a family o f graphs Hi, 1 < i < N, as

follows: H i = Cn i. For 2 < i < N  let Hi be the graph obtained from i cycles CniA

and a path Pi by identifying an end-vertex o f Pi and one vertex from each o f the i

cycles. Let us define two graphs G i = Kni and G2  = H j u  H2  u  ... u H ; u  ... u

H n  u  K (l, r), where r ^ f j - N x N ! -  (  j  )  (see Figure 4.3). Then qCGj) =
/  N ' \
(  2 /  = <l(<̂ 2 )- Since p(Hj) = N! = p(G i) for every i, 1 < i < N, and Hj contains 

a cycle CniA that is not contained in a component different from Hi, it follows that 

H i e  m cs(G i, G2), i = 1, 2 , . . . ,  N. W e have also q(Hj) = N! + (i - 1), so q(Hj) * 

q(Hj) for 1 < i < j < N .  □

In the next result, we will characterize those graphs G that are maximal common 

subgraphs for some suitably chosen graphs G i and G2  o f equal size but are not 

greatest common subgraphs of G i and G2.
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G i ; G,

H ,

H :
N

. . .  —o

K (l,r):

Figure 4.3

T heorem  4.3 Let G be a graph without isolated vertices such that G ^  K (l, r), r  =

1 ,2 . Then there exist two nonisomorphic graphs G^ and G2  o f equal size such that 

G e  m cs(G i, G2 ) but G £ gcs(G j, G2).

P ro o f .  Assume that the size o f G is q. First, suppose that G contains a 

component other than a star. Let H  be such a component of maximum size and let v 

e  V(H). Consider two graphs G^ and G 2 as in Figure 4.4. The graph G j is 

obtained from G and K (l,q + 1 ) by identifying v and the vertex o f maximum degree 

in K (l, q+1). The graph G2  = G u  K (l, q+1).
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G 1

K (l, q+1)

Figure 4.4

Then G £ gcs(G j, G 2 ), because K (l, q+1) is a common subgraph o f G t and 

G 2  o f size q + 1. W e will show that G e  m c s ^ ,  G 2 ). Suppose that G 1 is a 

common subgraph o f G j and G2  with q(G') > q(G) and such that G' 3  G. Then 

G' must contain some o f the edges e i, e2 , ... ,eq+i (the edges from the star K (l,q+1) 

o f G i). If H' is the component of G1 with these edges, then there is no component 

in G 2  corresponding to H'. This contradiction shows that G e  mcsCGj, G2 ).

Suppose next that all components o f G are stars and that there is a component with 

at least four edges. Let H  be such a component o f maximum size, say s. Consider 

two graphs G j and G2  as in Figure 4.5.

G

Figure 4.5
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Then G e  m cs(G i, G2 ), but G g gcs(G i, G2 ) because F = (G - H) u  sK (l, 2) 

is a subgraph o f  both G j and G2 , and the size of F  is q(F) = q(G) - k + 2k = 

q(G) + k > q(G).

Next, assume that all components o f G  are stars, each with at most three edges, 

but there is a component, say H, isomorphic to K (l, 3). W e define two graphs G j = 

G - V(H) u  [(K3 u  K j) + K j] and G2  = G u  K3 u  K2  (see Figure 4.6).

Then G e  m cs(G l5 G2 ), but G g gcs(G 1,G 2) because G '= ( G -V ( H ) ) u K 3 u  

K2  is a common subgraph of both G j and G 2  with q(G') = q(G) + 1.

The remaining case is if  G consists o f components isomorphic to K2  or K (l,2). 

If G  has at least two components isomorphic to K (l,2), then we denote two of them 

by H i and H2 . Define

Then G e  m cs(G i, G2 ), but G «£ gcs(G i, G2 ) because G' = (G - V(H! u  H2 )) u  

K ( l ,5 )  is a common subgraph of both G i and G2  with q(G') = q(G) + 1.

Figure 4.6

G!= (G-V(H!UH2))UK6, 

G2 = (G - V(H!)) u  K (l, 13).
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I f  G has at least two components isomorphic to K2 , denote two of them by 

and H2 . Define

G !=  (G-V(H1 u H 2))u K 4 ,

G2 = (G - VCHi)) u  K (l, 5).

Then G g  m cs(G j, G2 ), but G <£. gcsfG^, G2 ) because G' = (G - V(Hj u  H2)) u  

K (l, 3) is a common subgraph of both G j and G2  with q(G') = q(G) + 1.

If  G contains a component, say H 1# isomorphic to K2 , and a component, say 

H2 , isomorphic to K (l, 2), then define

G i=  (G -V (H 1 u H 2) ) u K 5,

G2 = (G - V(Hi)) u  K (l, 9).

Then G g  m cs(G i, G2 ), but G g gcsfG j, G2 ) because G' = (G - V(Hi u  H2 )) u  

K (l, 4) is a common subgraph o f both G j and G 2  with q(G’) = q(G) + 1. □

Let us note that if  G = K2  or G = K (l, 2), then for any graphs G j and G2  we 

have: G g  mcs(G l5 G2 ) implies that G g  gcs(Gi, G2 ). In fact, suppose that there 

are two graphs G j and G 2  such that K 2  e  mcsfG j, G2 ) and K2  i  gcs(G j, G2 ). 

Taking H  g  gcs(Gj, G2), we have that q(H) >  2, so H  2  K2 , which contradicts the 

fact that K2  e  m csfG j, G2 ). Next, let G = K (l, 2) and suppose that there are two 

graphs G i and G2  such that G g  m csfG i, G2 ) and G e  gcs(G i, G2 ). If  H g  

gcs(G j, G 2 ), then q(H) > 3. If  H □  K (l, 2), we have a contradiction. Therefore, 

H 2  3 K2 - W e conclude that Gj 2  3 K2  and Gj 2  K (l, 2), i = 1, 2. Therefore, 

Gj 2  K (l, 2) u  K2  for i = 1, 2, and G = K (l, 2) is not a maximal common 

subgraph o f G j and G2 .
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4.2 Absorbing Common Subgraphs

An absorbing common subgraph of G j and G2  is a common subgraph o f both 

G i and G2  that "absorbs" every other common subgraph o f G j and G2 . More 

formally, let G j and G2  be graphs of the same size. A graph G without isolated 

vertices is an absorbing common subgraph of G j and G2 if  G c G j ,  GC1 G2  and 

for a  graph H  (without isolated vertices) such that H c G j  and H  <= G2 , it follows 

that H  c  G. I f  an absorbing common subgraph o f G! and G 2  exists, then it is 

unique and we denote it by acs(Gi, G2).

Unlike greatest common subgraphs and maximal common subgraphs, it may 

happen (and in fact it is quite typical) that an absorbing common subgraph does not 

exist. Clearly, a necessary condition for two nonisomorphic graphs G j and G2  of 

equal size to have an absorbing common subgraph is that lgcs(G l5 G2)l = 1. As we 

shall see next, this is not a sufficient condition. Before presenting a theorem that gives 

a necessary and sufficient condition for two graphs to have an absorbing common 

subgraph, we need the following lemma.

L em m a 4.4 Every common subgraph of two nonisomorphic graphs G j and G2  of 

equal size is contained in some maximal common subgraph of G j and G2 .

The proof is straightforward and will be omitted. It is also a consequence o f a 

general theory o f partially ordered sets. Let us note that for a common subgraph H, a 

m axim al common subgraph o f G^ and G2  containing H, whose existence is 

guaranteed by Lemma 4.4, need not be unique.

T heorem  4.5 For every pair of nonisomorphic graphs G j and G2  of equal size, 

acs(G j, G 2 ) exists if  and only if  lmcs(G^, G2 )l = 1 .
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Proof. Suppose that G = acs(G i, G2 ) exists and that lm cs(G i, G2 )l ^  2. Then 

there exists H  6  mcsCGj, G2 ) such that H  f  G. Since H  is a maximal common 

subgraph o f G j and G2 , and G is a common subgraph of G j and G2 , it follows 

that H  £  G. This contradicts the fact that G = acs(G l5 G2 ).

For the converse, suppose that m cs(G j, G2 ) = {G}. W e will show that G  = 

acs(G j, G2). In fact, let H  be a common subgraph of G j and G2 . By Lemma 4.4, 

H  is contained in some maximal common subgraph of G j and G2 , but since G is 

the unique maximal common subgraph of G j and G2 , it follows that H  c  G. □

E xam ple 4.6 Consider two graphs G i = Kn u  K2  and G 2  = (Kn_i u  K j) + Kj as 

in Figure 4.7.

2

Figure 4.7

° i :

It is easy to check that m cs(G i, G2 ) = {Kn, Kn. j  u  K 2 }, so by Theorem 4.5 

acs(G i, G2 ) does not exist. Note that in this example acs(Gi, G2 ) does not exist even 

if  G i and G 2  have a unique greatest common subgraph (in fact, gcs(G j, G2 ) = 

{ K n }).

In the remainder o f this section we will discuss the following existence problem. 

Let a graph G (without isolated vertices) be given. Do there exist nonisomorphic 

graphs G i and G2  of equal size such that G = acs(G1, G2) ?
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Let us first make the following observation. If  for a given graph G, there are 

nonisomorphic graphs and G 2  o f equal size such that G = acs(G l5 G 2), one can 

find such G j and G2  o f size qCGj) = q(G2) =  q(G) + 1. In fact, if  G j and G2  are 

graphs such that G = acs(Gj, G2 ) and q ^ )  = q(G2) > q(G) + 1 , then take any e  e  

E (G i)-E (G ) and any f e  E(G2 >-E(G)  and define G^  s G j  + t  and G2  = G2  +  f. 

Then G is a common subgraph o f G j1 and G2 ' and any common subgraph H of 

G j' and G2 ' is a subgraph o f G (because H  is also a common subgraph of G j and 

G 2 , and G = acs(G j, G2)).

Unlike the cases for greatest common subgraphs and maximal common subgraphs, 

not every graph G is an absorbing common subgraph of two suitably chosen graphs 

G j and G2 . Consider, for example, a complete graph Kn, where n > 2. Suppose 

that K n = acs(G i, G2). By the above observation, we can assume that qCGj) = q(G2 ) 

= q(K n) + 1 and, because the graphs G j and G2  are nonisomorphic, G j and G2  

m ust be the graphs of Example 4.6. But then acsCG^ G2 ) does not exist, so the 

contradiction is produced. As we will see next, the complete graphs are not the only 

exceptions.

The characterization of complete bipartite graphs that are the absorbing common 

subgraphs is given in the following theorem.

Theorem 4.7 Let G be a complete bipartite graph, G = K(m, n) where m <  n. 

There exist nonisomorphic graphs G j and G2  o f equal size such that G = acs(Gi, 

G2 ) i f  and only if  m = 1 , m  = 2  or n = m + 1 .

Proof. If  G = K( l ,  n), then G = acs(G i, G2 ) for G j = K (l, n + 1) and G2  = 

K (l, n) u  K2.

Assume that G = K(2, n). Consider the two graphs G j and G2  given in Figure

4 .8 .
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Figure 4.8

Then G = acs(G i, G2 ). In fact, take any H  such that H c G j  and H c  G2 . 

Because H  c  G j, it follows that H  c  K(2, n + 1). But p(H) < p(G2 ) = n + 2, so 

H  <z K(2,n) = G, in which case the result follows, or H c K ( l , n  +  l). In the latter 

case, H c K ( l , n )  because A(G2> ^ n ,  so here too H c G .

Assume next that G = K(m, m + 1), where m > 1. Define two graphs G i and 

G 2  as in Figure 4.9.

m  m + 1

Figure 4.9

W e claim that G = acs(Gj, G2 ). In fact, take any H such that H  <= G^ and 

H  c  G2 . Because H  c  G j, we have H <= K(m + 1, m + 1), but p(H) < 2m + 1, so 

H  c  K(m, m + 1).

For the converse we consider two cases.
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Case 1. Suppose G = K(n, n), w here n > 3. Then K (l, n) u  K2  c  G + e for 

every e £ E(G) but K (l, n) u  K2  £  G. Therefore, there are no graphs G j and G 2 

such that G = acs(G l5 G2 ).

Case 2 . Suppose G = K(m, m + r), w here m > 3 and r  > 2. W e can construct a 

graph Gj with q(Gj) = q(G) + 1 and G c G j  in five ways. These possibilities are 

shown in Figure 4.10.

G r
O

O

G 3 : G4: Gs

Q n j )

O ( 0 0 0
 mu? v__________________m±c/

Figure 4.10

There are ten possibilities to select a pair (Gj, Gj), i * j ,  and in Table 4.11 we 

give a graph H  such that H c G j  and H  <z G j , but H £  G. □
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i j H

1 2 K(m, m + r - 1) U K2

1 3 K(m - 1 ,  m + r ) U K2

1 4 K(m, m + r - 2) U K2

1 5 K(m - 2, m + r) U K2

2 3 K(1, r + 1) U P2m. !

2 4 K(m, m + r - 2) U K2

2 5

3 4

: <
r + l U

3 5 K(m - 2, m + r) U K2

4 5 k3

Table 4.11

Not even all trees are absorbing common subgraphs o f two nonisomorphic graphs 

G j and G2  o f equal size. We will present two infinite families o f such trees. Let the 

tree T i(k), k > 3, be obtained from the star K (l, k) by joining each end-vertex to 

k - 2 new vertices so that these new vertices each have degree 1. For example, the 

tree Tj(5) is given in Figure 4.12.
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Figure 4.12

Then, K (l, k) u  K2  £ T i (k ) ,  but K (l, k) u  K2  cz T j(k) + e for every edge e 

£ E(Ti(k)). This proves that T j(k) acs(Gj, G2) for any nonisomorphic graphs Gj 

and G2  o f equal size.

For the second example, consider a family T2 (k), k > l .  For a given k > l ,  the 

tree T2 (k) is obtained by identifying one end-vertex from each of three paths P2 k+1 

(see Figure 4.13).

o -

o -

o -
321

-o— o 
- o — o  

- o — o
2 k - 1 2 k

Figure 4.13

Then, H  = K (l, 3) u  [3(k - 1) + 1]K2  £  T2 (K), but H c  T2 (k) + e for every 

e g  E(T2 (k)).

W ith the aid o f the next theorem, we will be able to construct infinite families of 

graphs that are absorbing common subgraphs.
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Theorem 4.8 Assume that G = Hni u  Hn2 u  — u  Hnk, where k > 2 and the 

graphs Hn satisfy the following conditions:

( 1) P(Hn) = n > 3;

(2) H n - u - v  + e c H n for every u, v e  V(Hn) and e e  E(Hn - u - v);

(3) H n+i - u c  Hn for every u e  V(Hn+i).

I f  there exist nj and nj such that nj = nj + 1 , then G is an absorbing common 

subgraph for some nonisomorphic graphs G j and G2 o f equal size.

Proof. First, let us note that using condition (3) twice, we have Hn+i - u - v c  Hn.i 

for every u, v e  V(Hn-i), which implies that Hn- i + e  c H n+i.

W e can assume without loss o f generality that n2  = n i + 1. Define two graphs Gj 

= G u K 2  and G2  = G + uv, where u e  V(Hni) and v e  V(Hn2) as in Figure 4.14.

Then G = acs(G i, G2). To prove this fact, consider any graph H that is a 

common subgraph of G j and G2. I f  H  does not have K2  as a component, then H 

c  G. If  H  has K2  as a component, then at least two vertices from V(Hn i) u  

V(Hn2) u  — U  V(Hnk) are not in H. Assume that x, y g V(H) but x , y e  V(G). 

If  x, y e  V(Hnj) for some i, 1< i < k, then, by condition (2), H c G .  If x e  

V(Hnj) and y e  V(Hnj), where n j ^ n i  or nj ^  n2, then H  c  G2  implies H c G

O'  — o

Figure 4.14
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(we can place H  inside G2  in such a way that the edge uv is not used). Finally, if 

x e  V(Hn.) and y e  V(Hni), where nj = n i and m = n2  (or vice versa), then
1 J J

H e  K2 U  Hn i - i U H n 2 - i  U  H„3 u  ... U  H„k =

K 2  U  Hn i . 1 U  Hni U  H n3  U  ... u  Hnk c  G, 

because from condition (3), K2  u  Hni - 1  c= Hn2- □

Before presenting families o f graphs that satisfy conditions (1) - (3) of Theorem

4.8, let us recall the concept o f the r1*1 power o f a graph. For a graph G, the rth 

power o f a graph G, denoted Gr, is a graph whose vertex set is V(Gr) = V(G) and 

whose edge set E(Gr) = {uv I u, v e  V(G) and do(u, v) < r  }.

C oro llary  4.9 A graph whose components Hn are of the form:

(a) ins Kn>

(b) IIIc Cn>

(c) 111c
X

Pn,

(d) X 3 II! PnF,

satisfies the conditions o f Theorem 4.8, and therefore, if  it contains two components 

o f consecutive orders, then it is an absorbing common subgraph for some graphs G j 

and G2 .

If  G = Knj u  Kn2 u  ... u  Knk and there are no nj, nj such that nj = n; + 1 ,

then there are no G j and G2  for which G = acs(Gi, G2 ). In fact, taking H = K2  u  

K n i - i u K n 2 . i  u ... u  Knk - i ,  we have H c G j  for every Gj such that q(Gj) >

q(G) and G c  Gj, but H  <fi G.

Using this observation and Corollary 4.9, we have the following result.
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Corollary 4.10 Let G = Kni u  K„ 2  u  — u  Knk. Then there exist non­

isomorphic graphs G i and G2  o f equal size such that G = a c s ^ ,  G2) if  and only 

if  there are integers nj and nj such that n, = nj + 1 .

Theorem 4.11 I f  G = Kn + (Kni u  Kn 2  u  ... u  Knk), where k > 2, then there

exist nonisomorpnic graphs G j and G2 o f  the same size with G = acs(Gi, G2).

Proof. Define G j = G + xy, where x e  V(Kn][), y e  V(Kn2), and G 2  = G + uv,

where u e  V(Kn) and v <£ V(G) (see Figure 4.15).

y
Figure 4.15

Then G = acs(G i, G2 ). In fact, if H  c: G j, then p(H) < n + ni + n2  + ... + nk. 

So at least one vertex, say z, from V(G2 ) is not in H. Since G2  - z c  G for every 

z, it follows that H c : G .  □

Corollary 4.12 Let H be a complete k  - partite graph of order p, where k > 2. 

Then for every n with n > p, the graph G = Kn - E(H) is an absorbing common 

subgraph for some graphs G^ and G2 . In particular, G = Kn - e is an absorbing 

common subgraph.

This result follows from the fact that such a graph G is o f the form described in 

Theorem 4.11.
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4.3 Greatest Common Subgraphs for Graphs o f Arbitrary Size 

and Distance Between Graphs

The concept o f greatest common subgraphs can be generalized for graphs o f 

arbitrary size (not necessary equal). A graph G without isolated vertices is called a 

greatest common subgraph o f  a set Q= {Gj, G2 , . . . ,  Gn}, n > 2, o f graphs if  G is 

a graph o f maximum size that is isomorphic to a subgraph of each graph Gj, 1 < i < n. 

The set o f  all greatest common subgraphs o f G is denoted by gcs Q and the size of 

every graph belonging to gcs Q by qgcs Q. For example if  Q = {G j, G2 } for the 

graphs o f Figure 4.16, then gcs Q = {H1? H2, H3 } and qgcs Q=5.

H  *

Figure 4.16

W e did not need this concept in the previous chapters, because there is no 

reasonable definition o f the index o f a graph that would be expressed in terms o f graphs 

o f different sizes. Also in Chapter 3, we could restrict our attention to the graphs of
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equal size, because by Corollary 3.4, for a given graph G the constructed graphs G j 

and G 2  satisfied q(G j) = q(G2 ) = q(G) + 1.

Consider the following problem:

For a given graph G without isolated vertices do there exist nonisomorphic graphs Gi 

and G 2  such that gcs(G i, G2) = {G}?

W ithout any restriction on the size o f G j and G2 , this question has an affirmative 

answer since we can take G j = G and G 2  can be any supergraph of G. If  G j and 

G 2  are assumed to have the same size, then the positive answer follows from 

Proposition 2 in [7], where q(G i) = q(G2 > = q(G) + 1.

Suppose that we require graphs G, G j and G2  to have different sizes. To show 

that such G t and G2  exist for a given graph G, we introduce the following lemma.

Lemma 4.13 Let gcs(G l5 G2 ) = {G}. Then for every E i c  E (G j) - E(G) and 

E2  c  E(G2) - E(G), we have

gcs(Gj - E i, G 2  - E2 ) = {G}.

The proof is similar to the proof o f Theorem 2.1 and is thus omitted.

Theorem 4.14 For every graph G without isolated vertices, there exist graphs Gi

and G 2 such that G i , G 2  and G have distinct sizes and gcs(Gi, G2) = {G}.

Proof. Assume first that G is a graph o f order p such that G £ Kp and G ^ Kp - e. 

By Theorem 2.3, i(G) > (  ^  ) ,  and, moreover, from the proof of Theorem 2.3, it

follows that there exist nonisomorphic graphs H i and H2  o f size (  2  )  suc^ that

gcs(H i, H2) = {G}. Since G is non-complete and G £ Kp - e, it follows that 

q (H i) = q(H2 ) = (  ^  )  > q(G) + 2. Taking any f  e  E(H2 ) - E(G) and defining G i =

H i and G2  = H 2  - f, from Lemma 4.13, we have that gcs(G i, G2 ) = {G}. Also, 

q (G i)> q (G 2) = q ( G i ) - l > q ( G ) .
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I f  G = Kp, p 5* 3, or G = Kp - e, p £  3, then by Theorem 2.8, i(G) = 00 and, 

moreover, for every positive integer qo, there exist graphs H j and H 2  of size qo 

such that gcsCHj, H2 ) = {G}. If  qo ^  q(G) + 2 and G*, G2  are as above, then we 

have qCGi) > q(G2) > q(G) and gcsCGj, G2) = {G}.

Finally if  G = K3 , then gcs(G j, G2 ) = {G}, where = K3 u  2 K2  and G 2  s  

(K! U  K2) + K j. So q(G i) = 5 > q(G2) = 4 > q(G) = 3. □

From Lemma 4.13 and the proof o f Theorem 4.14, we have the following. 

Corollary 4.15 For every graph G without isolated vertices, there exist graphs G j 

and G 2  such that q(G j) = q(G) + 2, q(G2) = q(G) + 1 and gcs(Gi, G 2) = {G}.

Now we turn our attention to the concept o f distance between graphs o f arbitrary 

size. In this section we consider graphs to be equivalent if  they differ only by isolated 

vertices. For example the three graphs of Figure 4.17 are equivalent.

More formally, a graph is an equivalence class of the relation ©:

G © H if  and only if  there exists an integer k > 0 such that G = H <J kK j or H  = 

G u k K j .

The concept of distance between graphs o f the same size was introduced in [6 ] and 

the definition o f edge rotation is adopted from this paper. A graph G can be 

transformed into a graph H  by an edge rotation if  G contains distinct vertices u, v

o 0 0 0

Figure 4.17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and w such that uv e  E(G), uw g E(G) and H  = G - uv + uw. A graph G can 

be transformed into a graph H  by an edge deletion if  G contains an edge e such that 

H  = G - e.

A  graph G j can be transformed into a graph G2 , written G j —^ G2 , if either

(1 ) G j = G2, or

(2) there exists a sequence G j = Ho, H j , . . . , Hn = G2  (n > 1) o f graphs such that 

Hi can be transformed into Hj+i by an edge rotation or an edge deletion for i = 0 ,1 , 

... , n - 1 .

W e note that G j —> G2  for every pair o f graphs G i and G2  with q(G i) >

q(G 2 ). To see this note that there is a subgraph H j o f G j such that q(Hj) = q(G2 ) 

and G j —> H j by edge deletions. Then, by Proposition 1 [6 ], H^ —> G2  by edge

rotations.

Let G j and G2  be arbitrary graphs. W e define the distance d(G j, G2) between 

G j and G2 as 0  if  G j = G2  and, otherwise, as the smallest positive integer n for 

which there exists a sequence Ho, H j , . . . ,  Hn of graphs such that G j = Ho, G 2 = 

H n (or G2  = Ho, G i = Hn) and Hi can be transformed into Hi+i by an edge 

rotation or an edge deletion for i = 0 , 1 , . . . ,  n - 1 .

To show that the function d is a metric on the set of all graphs, we need a 

preliminary lemma.

Lemma 4.16 If  d(G i, G2 ) = n and q(G i) - q(G2 ) > 0, then we can choose the 

sequence Ho, H j , . . . ,  H n in such a way that the first q(Gj) - q(G2) transformations 

o f Hi into Hi+i are edge deletions.

P roof. Assume that there are graphs Hj, Hi+i, Hi+ 2  such that Hi —> Hi+i by an 

edge rotation (say Hj+i = Hi - uv + uw) and Hj+i —> Hj+ 2  by an edge deletion 

(say Hj+ 2  = Hi+i - e). Then if  e *  uw, we can take Hj, H  j+i = Hi - e, Hi+ 2  and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



perform the following transformations: H i —> H 'j+i by an edge deletion, H j+ j —>

Hi+ 2  by an edge rotation (Hi+ 2  = H 'i+i - uv + uw), so we can have an edge deletion

first and an edge rotation second. It is not possible that e = uw; for otherwise the

sequence Hi, Hi+i, Hi+ 2  could be replaced with Hj, Hi+ 2  thus performing a single 

edge deletion (Hj —> Hj+2  because Hj+ 2  = Hi - uv) and saving one transformation.

Repeating the argument above we can have all edge deletions come first. □

C o ro lla ry  4.17 If  q(G j) - q(G2 ) = s > 0, then there exists a subgraph F i o f G t 

such that q(F i) = q(G2) and d(G j, G2 ) = s + d(Fi, G2 ).

In fact, if  d(G j, G2 ) = n, then by Lemma 4.16, we can choose the sequence G j = 

Ho, H j , . . . ,  Hn = G2  in such a way that first s transformations of Hj into Hj+i are 

edge deletions. Therefore, F i = Hs satisfies the conditions: q (F i) = q(G2 ) and 

d (G ls G2) = s + d(Fi, G2).

T heorem  4.18 The function d is a metric on the set o f all graphs.

P ro o f. Certainly, d(G i, G2 ) ^  0 for every two graphs and d(G j, G2 ) = 0 if  and 

only if G j © G2 . Moreover, d is symmetric. Thus, we need only verify the triangle 

inequality, that is, d(G j, G2) + d(G2 , G 3) > d(G j, G3) for any graphs G j, G2  and 

G 3.

Assume first that q(G j) > q(G2 ) ^  q(G3). If  d(G j, G2 ) = n and d(G2 , G 3) = m, 

then there exist sequences Ho, H j , ... , H n and F^, Hj ,  ... , Hjjj such that Ho = 

G j ,  Hn = G2 , = G 2 , H ^  = G3 and Hj (H-) can be transformed into Hi+i

( I ^+ l )  by an edge deletion or edge rotation. Taking the sequence G j = Ho, H j , .. . ,  

H n = G 2  = H3, H j, ... , H^, = G3 , we transform G j into G 3 using n + m deletions 

and rotations. Therefore, d(G j, G 3) < n + m. A  similar argument can be employed if 

q (G i) < q(G2) < q(G3).
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Assume next that q(G2 ) > m ax(q(Gj), q(G3 )). By Lemma 4.16, d(G i, G2) = 1 + 

d(G j, G 2  - e) for some edge e e  E(G2) and d(G2 , G 3) = 1 + d(G2  - f, G3) for some 

f  e  E(G 2). But

'  0  i f  e = f

d(G 2  - e, G2  - f) = 1 - 1  ^  e is  a d j a c e n t  to f

- < 2  o t h e r w i s e

To see the last inequality, assume that e = x ^ 2  and f  = y iy 2 , where the four vertices 

x l, X2 , y i and y2  are distinct. If  the four edges xjyj ,  x ^ ,  X2yj and x2y2  belong

to E(G 2), then we can use two edge rotations to transform G2  - e into G2  - f. For

example, rotate x jyj  into e first and f  into x jyj  next. Otherwise, if  at least one 

edge among these four is missing, say x^yj <£ E(G2), we transform G 2 - e into G 2  - 

f  by rotating f  into x ^  and then x^yj into e. Therefore, d(G2  - e, G2  - f) ^  2. 

W e have

d(Gx, G2) + d(G2, G3) = 1 + d(G ls G2  - e) + 1 + d(G2  - f, G3) = 

d(G j, G 2  - e) + 2 + d(G2  ■ f, G3) ^  

d(G i, G2  - e) + d(G2  - e, G2  - f) + d(G2 - f, G3) > 

d (G 1,G 2 - f )  + d(G2 - f , G 3).

The last inequality follows from the triangle inequality for the graphs G j, G 2 - e and 

G2  - f  since they satisfy the monotonity condition on the number of edges in the first 

part o f  the proof.

Consequently, we have proved that

d(G lf G2) + d(G2, G3) > d(G l5 G2  - f) + d(G2  - f, G3) 

and the graph G2 = G2 - f  has size one less than that o f G2 . Repeating the above 

argument (if necessary), perhaps several times we eventually find Gj such that 

q (G j) < m a x ^ G i) ,  q(G3)) and d(G lf G2) + d(G2, G3) > dCG^ G^) + dCG ,̂ G 3).
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A gain from the first part o f the proof d(G j, Gj) + d(Gj, G3 ) > d(G j, G 3 ), so the 

triangle inequality holds for G j, G 2  and G3 .

The proof in the case when q(G2 ) < min(q(Gj), q(G3 )) is similar and therefore 

omitted. □

To illustrate this concept, we will find the distance between two graphs G j and 

G 2 considered at the beginning o f this section. In Figure 4.18 the graph G j is 

transformed into G2  by three transformations, namely:

G j = Ho —> H j by deleting the edge e,

H j —> H 2  by deleting the edge f, and

H 2  —^ H 3 = G2  by rotation the edge uv into the edge uw.

Therefore, d(G j, G2) ^  3.

del del

u
rot,

Figure 4.18
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Since q(G j) = 8  and q(G2) = 6 , it follows that at least two transformations (edge 

deletions) are necessary to transform G j into G2 . Suppose, that we can transform 

G i into G2  using exactly two edge deletions. Then G2  is a subgraph o f G j but this 

is not the case since G 2  contains a 4-cycle, whereas G j does not. Therefore, 

d (G l5 G2) = 3.

In order to present upper and lower bounds for the distance between graphs, we 

give the following two lemmas.

L em m a 4.19 Let G i and G2  be two graphs. If  G^ is transformed into Gj by an 

edge rotation, then I qgcs(G l5 G2) - qgcs(Gj, G2 ) 1 ^ 1 .

The proof o f the lemma is straightforward and is just omitted.

L em m a 4.20 If  G j and G 2  are graphs such that q(G j) > q(G2 ) and qgcs(G j, 

G 2 ) = c, then there exists a subgraph Gj o f G j such that q(Gj) = q(G 2 ) and 

qgcs(G j, G2) = c.

P ro o f. Let H e  gcs(G j, G2 ), where q(H) = c. Therefore, H c  G j. Let E  = 

E (G j) - E(H). Taking arbitrary edges e i, e2 , . . . ,  ek e  E, we have H e  gcs(Gj - e i - 

e2  - . . .  - ek, G2 ). If k = q(G i) - q(G2 ), then we set Gj = G^ - ei - e2  -. . .  - ek. □

T heorem  4.21 Let G j and G2  be graphs o f size q j and q2 , respectively, and let 

qgcs(G j, G2 ) = c. Then

m ax{q1, q 2 } - c  < d (G !,G 2) < q! + q2 - 2 c.

P ro o f. W e can assume, without loss o f generality, that q j > q2 , say q j - q2  = s. 

For the proof o f the lower bound, consider a sequence G j = Ho, H j , . . . ,  H n = G2 

o f graphs, where n = d(G j, G2 ), Hi is transformed into Hj+i by an edge deletion 

for i = 0, 1 , . . . ,  s - 1, and Hj is transformed into Hj+i by an edge rotation for i =
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s, s + 1, , n - 1. Therefore, w e have q(Hs) = q(G2 ) and qgcs(Hs, G 2 ) ^

qgcs(G i, G2) = c. Consider the following n - s + 1 positive integers:

qgcs(H s, G2), qgcs(Hs+i, G2) , ... , qgcs(Hn.i ,  G2), qgcs(Hn, G2).

The difference between any two consecutive terms in this sequence is at most 1 (by 

Lem m a 4.19), the first integer does not exceed c, and the last integer is equal to q2 - 

Thus we have

n - s > q2  - c, 

or since s = q^ - q2  and n = d(G j, G2), it follows that

d(G !, G2) ^  q i - c.

To verify the upper bound, let G| be a subgraph o f G i such that q(Gj) = q(G2 > = 

q2  and qgcs(Gj, G 2 ) = qgcs(Gi, G2 ) = c (such a subgraph exists by Lemma 4.20). 

We have

d(Gj ,  G2 ) ^  q i - q2  + d(Gi, G2) ^  q i - q2  + 2 (q2  - c) = q j + q2  - 2c, 

where the second inequality follows by Proposition 4 [6 ]. □

W e now show that the bounds given in Theorem 4.21 are sharp. For the low er 

bound, let G j = K (l, q j)  and G 2  = q2^ 2 , where qj > q2 - Then we have q j - q2 

edge deletions and q2  - 1  edge rotations to transform G j into G2 , so

d(G!, G2) = (qi - q2 ) + q2 ' 1 = 9 l ' 1

which is the same as the value of the lower bound because qgcs(Gi, G2 ) = q(K2 ) = 1. 

For the upper bound, let G j = q iK 2  and G2  = K2 n, where q j > (  ^  )  =

n(2n -1 )  = q2 - Then qgcs(Gj, G 2) = q(nK2) = n. W e have also

d(Gj, G2) = (q2 - q i) + d(q2K2, G2).

Let us note that by single edge rotation we can increase the degree o f one vertex by 1. 

Since the graph q2 ^  has all vertices o f degree 1 and the graph G 2  = K2 n has 2n
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I l l

vertices o f degree 2 n - 1 we need 2 n(2 n - 2 ) edge rotations to transform (&K2  into 

K 2 n- Therefore,

dCGj, G 2) = q2  - Qi + 2n(2n - 2) = q2  - n(2n - 1) + 4n2  - 4n = q2  + (2n2  - n) - 2n =

= 92 +qi ’ 2c- a

If  G2  <= G x and q(Gx) - q i > q2  = q(G2), then qgcs(Gx, G2) = q(G2) = q2. 

The lower bound given in Theorem 4.21 is q^ - q2 , while the upper bound is q i + q2  - 

2 Q2  = Qi ■ Q2 > so d (G i, G2 ) = q i - q2 - This is true o f course because we can 

transform G j into G2  by deleting q^ - q2  edges.

If  in the definition of graph transformations the following operations are permitted:

( 1 ) edge rotation and edge addition, or

(2 ) edge rotation, edge deletion and edge addition,

then a distance between graphs defined in terms of these transformations is the same as 

the distance introduced before.

4.4 Least Common Supergraphs

Let Q be a set o f graphs all having the same size. A graph G without isolated 

vertices is a least common supergraph of Q (see [2]) if  G is a graph of minimum 

size that is isomorphic to some supergraph o f each graph in Q. The set o f all least 

common supergraphs o f Q is denoted by lcs Q or lcs (G 1; G2 , . . . ,  Gn) i f  Q = 

{Gi ,  G2, ... , Gn}.

F or the graphs G j and G2  o f Figure 4.19(a), lcs (G l5 G2) = {H l5 H2, H 3), 

where these graphs are shown in Figure 4.19(b).
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(a)

G
1

(b)

H.3

Figure 4.19

W e will describe a relationship between least common supergraphs and greatest 

common subgraphs in terms o f a complement operation.

Let Q be a set o f graphs, all of the same size, where IQ I > 2. W e describe 

how to determine lcs Q by finding gcs Q'  for a related set Q ' of graphs.

L et G be a graph and p an integer with p > p (G ) . The graph G(p) is defined

by

G(p) =  G u  [ p - p(G) ] K i, 

that is, G(p) is obtained by adding p - p ( G )  isolated vertices to G.

In what follows, least common supergraphs and greatest common subgraphs are 

permitted to have isolated vertices.
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T heorem  4.22 Let Q = {Gi,  G2 , G n} be a family o f graphs o f the same size 

and let p = max {p(H) I H  € lcs Q and H  has no isolated vertices}. Then H  e  

lcs(G i, G 2 , G n) if  and only if  H(p) e  gcs ( G i ( p ) , G2 ( p ) , Gn( p ) ).

P roof: First, let us note that the integer

p = max (p(H) I H  e  lcs Q and H  has no isolated vertices} 

is well-defined. In fact, for any family Q, lcs Q consists o f graphs o f the same size. 

There are only finitely many such graphs without isolated vertices.

Suppose that H e  lcs (G j, G2 , ..., Gn). Hence Gi c  H  for every i = l , 2 , ...,

n and H  is a graph of smallest size with this property. Because p(H) < p, it follows 

that H(p) c: Gi(p) for i = 1,2, . . . ,  n. Therefore H(p) is a common subgraph

o f Gj(p) , i = 1, 2, ..., n. Suppose that H(p) g gcs{ Gi(p) I i = 1, 2, ..., n}.

Then there is a greatest common subgraph F o f G i ( p ) , G2 ( p ) , ... , Gn(p) such

that q(F) > q( H ( p ) ). Because F c  Gi(p) for i = 1, 2 ,.. .,  n, if  we consider G =

F(p) , then Gi(p) c  G, i = 1, 2, ..., n, and q (G) < q (H). Therefore, G is a

common supergraph of Q of smaller size than that o f H, which contradicts the fact

that H  e  lcs £ .

For the converse, assume that H(p) e  gcs ( G j ( p ) , G2 ( p ) , ..., Gn( p ) ). Thus 

H(p) <= Gi(p) , i = 1, 2, ..., n, and H(p) is o f the largest size among all such 

graphs with this property. Since G;(p) c  H(p), it follows that Gi c  H for i = 1, 2,

..., n. Suppose that there exists a least common supergraph G of G i, G2 , . . . ,  Gn 

such that q (G )< q(H ). Then G j c G ,  so G(p) c  Gi(p) for i = 1,2, . . . ,  n. Also 

q( G ( p ) ) > q( H ( p ) ), which contradicts the fact that H(p) e  gcs ( G i ( p ) , G2 (p) ,

..., Gn( p ) ). □

An illustration o f Theorem 4.22 is presented in Figure 4.20.
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H H

0 ^ 5 ) : o

o

o

G2(5):

o

o

o

o

^ ( 5 ) :

Figure 4.20

If  we put Q ={G i, G 2 }, then lcs Q = {Hi, H2 } and, moreover,

max (p(H) I H e  lcs Q and H  has no isolated vertices} = 5 . 

Therefore, by Theorem 4.22 we have:

O

O

Hj e  lcs Q if and only if  H,(5) e  gcs( 0 ^ 5 ) ,  G2 (5 ) ), f o r i  = 1,2.

The second part of this equivalence is much easier to verified because the graphs G i(5)

and G2 (5 ) are sparse.
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W e note that Theorem 4.22 is true for any p > max {p(H) I H e  lcs £7}. Further, 

if  G i and G2  are graphs of size q, then 4q - 2 > max{ p(H) I H  e  lcs(G l5 G2 )}. 

To see this let G e  gcs(G j, G2) and H  e  lcs(G i, G2). Then it follows from the fact 

that q(G) > 1 and since q(G) + q(H) = 2q, that q(H) < 2q -1 . So, since H  has no 

isolated vertices p(H) < 2q(H) < 2(2q - 1) = 4q - 2.

The difference between the orders o f a graph H  e  lcs (G j, G2 ) and max{p(Gi), 

p(G 2 )} can be arbitrarily large. For example, let G j = k P 3 and G 2  =  2k K 2 , so 

p (G !) = 3k, p(G2) = 4k and qCGi) = q(G2) = 2k. Then H  =  k P 3 u  k K2  e  

lcs(G l5 G2). Thus p(H) = 5k and p(H) -  max {p(Gj), p(G2 >} = 5k -  4k = k.

Let Q = {Gj, G2 , G n) be a family o f graphs of the same size q, and suppose 

we know how to determine gcs Q ' of a set Q ' o f graphs o f the same size. We 

describe how to find lcs Q. We proceed as follows:

(1) Find an integer p such that p > m a x  (p(H) I H e  lcs Q). For example, we can
n

take p = 2 ̂  q(G 0 = 2nq; or if  Q = {Gj, G2 } we can choose p = 4q -  2. 
i = l

(2) Construct the family Q(p) = { G  i(p) , G2 (p) Gn( p ) }.

(3) Find gcs Q(p)  .

(4) Determine the complement of each graph in gcs Q (p ) .

Then lcs Q = { G(p) I G e  gcs Q(p)}.

(5) If we want to have graphs without isolated vertices, delete all isolated vertices 

from graphs H s  lcs Q .

Because o f Theorem 4.22, we can consider least common supergraphs as a "dual 

variation" o f  greatest common subgraphs. Therefore, many result about greatest

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

common subgraphs can be translated into and expressed for least common supergraphs. 

However, this topic will not be explored in this dissertation.
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