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CHAPTER I

I n t r o d u c t i o n

In this work we consider two problems, each of which may be approached 

using methods from the analysis of linear models.

In the first problem, we observe random variables V’i . Vo. where

we assume th a t each Vj is generated by a model of the form

( 1 .1 ) Yi = a + ^  + ei

where

1 ) x i ,X 2 , - - -. x„ are fixed p dimensional vectors.

2  ) c i, eo ,. . . ,  en are iid random variables

3 ) 0  is a  fixed, unkown p dimensional vector.

By denoting by 1 the p vector which has all components equal to one, 

by X  the n by p m atrix whose i'th  row is x t, and by e the vector of errors, we 

may write (1.1) as follows.

Y  — la  + X 0  -r e

Two common problems in the analysis of linear models are estimating

0  and testing various hypotheses about 0. We will be concerned only with the

problem of testing

H0 : 0 = 0 

1
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The methods commonly used for handling these problems are based on least 

squares.

If the joint distribution of the errors is multivariate normal, then least 

squares techniques have many optimal properties. However, real data are of­

ten far from normally distributed. For instance, most real data  have outlying 

observations. The use of least squares on such data often results in a poor anal­

ysis. Because of this, much has been done in the area of developing techniques 

which perform well in comparison to least squares when the errors are normally 

distributed and have more power than least squares when the errors are not 

normal and when outliers are present. Such techniques have been called robust 

procedures.

In the context of M -estimation, Huber (1973,1977) generalized his work 

on location estimates to the estimation of the parameters in a linear model. 

Subsequently, Schrader and Hettmansperger (19S0) proposed a procedure for 

performing tests on these parameters, using M -estimates. Their motivation 

was the m ethod of likelihood ratio testing. Chapters VI and VII of the book by 

Hampel, Rousseeuw, Ronchetti, and Stahel (19S5) discuss these ideas as well as 

more recent methods in this area.

An alternate approach to these problems was initiated by Jaeckel in 1972. 

This method extends the use of rank estimates and testing from the one and two 

sample problems to analysis of linear models. In least squares, ]3 is estimated 

by minimizing the sums of squares of the residuals. Jaeckel (1972) proposed
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minimizing a convex function of the residuals (called a dispersion function) 

whose definition involves the ranks of the residuals. Under some regularity 

conditions on the design m atrix X ,  Jaeckel (1972) obtained the asymptotic 

distribution of his estimate of 3- At approximately the same time, Jureckova

(1971) proposed an alternate method of estimating 3. It was shown by Jaeckel

(1972) th a t his estimate was asymptotically equivalent to that of Jureckova, in 

the sense th a t the two estimates had the same asymptotic distribution and had 

a difference which converged to zero in probability as the sample size increased. 

McKean and Hettmansperger (1976) used the estimate of Jaeckel (1972) and 

his dispersion function in obtaining a testing procedure for the above hypothesis 

Hq. The asymptotic distribution for their statistic turned out to  be chi-square, 

so th a t not only it’s use but it’s performance could be compared to  that of least 

squares.

Both of these procedures just mentioned, the M -estim ate based method 

and tha t based on R(ank)-estimates, utilize test statistics which are constructed 

in a  way similar to the least squares test statistic. A goal of this work is to use 

rank m ethods to propose a quanitity which may be used the way R 2 is used 

in least squares. We will pattern the search on the relationship between the 

least squares test statistic and R ~, and see tha t this leads to two rank based 

measures. Using empirical and theoretical evidence, we will show that one of 

these is robust while the other is not.

So far we have considered the x’s to be fixed. In the case where they
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are random  vectors, independently distributed from the e!s, we will see that 

the rank based quantities we proposed extend naturally to measures of mul­

tiple correlation between V and X , just as R~ does in the least squares case. 

Specifically, we assume th a t, given

(1.3) x i,x< > ,...,xn 

we have the linear model

(1.4) Yi = a  + 0 'x i + ei

W ith /  denoting the error density and m the density of x, the joint 

density of Y  and X  is

h (x ,y )  =  f ( y  - a -  $ x)m (x)

This model will be called the correlation model. Notice tha t the variables Y  

and X  are independent in this model if and only if 0  =  0. We will see tha t 

the testing and estimation procedures based on ranks may be extended to the 

present situation from the fixed A' case and may be used in exactly the same 

manner. In addition we will obtain influence functions of the estimate of d and 

the test statistic used in the rank analysis. Finally, a comparison will be made 

between the rank methods presented here, and some competing methods. For 

instance, Ghosh and Sen (1971) considered a model similar to our regression 

model. They worked only on the testing problem and not on estim a tio n . McK- 

ean and Sievers (19SS) looked at this problem from the i \  viewpoint. Finally,
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we will consider the performance of our rank methods against some methods 

based on M -estim ates.
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CHAPTER II

C l a s s i c a l  L i n e a r  M o d e l

2.1 Introduction

In this chapter we consider the classical linear model. We consider the 

xj- s to be nonstochastic. First, we give a brief review of the ideas used in least 

squares to estim ate 3 , construct test statistics for testing Ho : 3 = 0 . and discuss 

the relationship between the test statistic and the coefficient of determination 

Rr. Once this is done, the method of analysis of linear models using ranks is 

discussed. We will outline the results of rank analysis in the same order tha t the 

results for least squares were introduced. After we have discussed the rationale 

for the test statistic for rank analysis, we will introduce two measures of multiple 

determination which are related to the test statistic. The motivation for these 

rank based measures will be the link between the least squares test statistic and 

the classical measure of multiple determination. The test statistic we will use 

will be the one proposed by Hettmansperger and McKean (1975).

2.2 Notations and Assumptions

In this section we review the notations and assumptions used in the re­

gression model. These will come in two parts, those which will be used through-

6
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out the  chapter, and those which will be required for the least squares analysis.

We observe random variables Y\. Yo* • - -, Yn. which are independent and 

which follow the model given by :

( 2 .1 )  Y{ = a  +  $Xi  +  e ,  1 <  i < n

We make the following assumptions, which we will use throughout, unless stated 

otherwise. The errors e\ , e2, • • •, e„ are independent, identically distributed ran­

dom variables with absolutely continuous distribution function F  . which has 

density / .  We assume tha t /  is absolutely continuous with derivative / ' .  The 

vector @ 6 R p is unknown and must be estimated. The intercept param eter 

a  € R  is unknown. If we set

y  = (y u y 2....... Yny

r = ( i . i . . . . . i ) '

e =  (ei , e2 ........ e„)'

and let X denote the m atrix whose i'th  row is i ( ,  then (2.1) may be written as

(2.2) Y  = a l  + X 3  + Z

For this model, the inference results based on the methods of least squares 

require the following assumptions. Let X  denote the matrix of column means 

of X .

A l: E[ej =  0 

A2: Var[e] =  a~
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s
A3: As n —»• oo, ^ (A  — A )(X  — A') —► S where we assume tha t S  is positive 

definite

A4: (Hubers Condition) Let V  =  range[ 1 X  — A''], and denote by Py  the 

projection m atrix onto V. We assume that {Pv)ii —*■ 0  as n —* oc

2.3 Least Squares Analysis

Let us now discuss the least squares analysis of the regression model 2.1.

We assume tha t assumptions A1 through A4 hold. Since the estimation of 3 

and the testing problem are closely related, these two topics will be discussed 

together.

To estim ate 3, we must minimize the function S, which is given by

n

S ( b )  =  ^ [ y i  -  y -  b ' {x ,  -  i )]2 
i= 1

Denote the  minimizing value by 3 l s • Notice that this value may be obtained 

by solving the system of equations (2.4),

(2 .4 ) V S ($ Ls)  =  0

where V  denotes the gradient operator. Let the true value of 3  be denoted fo ­

under our assumptions A l, A2, A5, Arnold (19S0) shows that

(2.5) y/n{3Ls  ~  3o) -

where —» denotes convergence in distribution. In practice, S  must be estimated 

and i[ (A  — X ) ’(X  — A')] is used in its place. To construct the least squares
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test statistic , set

(2 -6 ) 4 s  ---------L - r S ( f e )
Tl — p  —  1

The test statistic will be denoted by F is ,  and is defined as

S(0) — S{Pis)(2-7) p Fl s  = - n CL S

The hypothesis th a t Ho is true is rejected for values of p F is  which are suffi­

ciently large.

The statistic p F is  has a pleasing geometric interpretation. It can be 

shown tha t 5(6) is a semi norm on R p. Let A be given by

A =  { ( X - X ) b : b e  Rp}

Then 5(0) measures the distance, according to S, between Y  and the origin 

of RP. Similarly, S (P is )  measures the distance between Y  and the subspace 

A. The difference is scaled by 0^ 5 , an estimate of variance. If the (scaled) 

difference is large, it indicates tha t P is  is close to A, and offers evidence that 

PlS  is not the zero vector.

If the errors are normally distributed, then the exact distribution of P is  

may be obtained. Even without this requirment, the asymptotic distribution 

may be obtained. We will state this result for the null hypothesis and under 

a sequence of contiguous alternatives. To define the latter, let d denote an 

arbitrary non-zero vector in p dimensional space, and consider a sequence of
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alternative hypotheses which depend on n and converge to  the null hypothesis. 

Such a  sequence of hypthoses is given by

Hn - J  = ^ = d
y/n

These hypotheses are said to  be contiguous to the null hypothesis. For a discus­

sion of contiguity, see Hajek and Sidack(1967). With these ideas and definitions 

in mind, we state the following theorem:

THEOREM 2 .1 . In the regresion model if  assumptions A l ,  A ‘2, and A4 are true. 

then the following results hold: (a) Under the null hypothesis, the asymptotic 

distribution o fp F is  is central chi-square with p  degrees o f freedom, (b) Under 

the sequence o f contiguous cdternatives, the asymptotic distribution o f p F is  is 

the noncentral chi-square distribution with p degrees o f freedom and having the 

non-centrality parameter

d 'td  
6 l s  =  —

For a proof of this theorem, see Hettmansperger and McKean (1975).

2.4 Rank Analysis

While least squares procedures cure optimum when the errors are normal, 

they are sensitive to departures from normality, and to the presence of outliers 

in the data. In fact, one point, sufficiently far removed from the bulk of the 

data  can completely determine the fit. To make an attem pt to get around 

this problem, we turn to  rank based estimates and procedures. The path we
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follow was blazed by Jaeckel in 1972, and further extended by McKean and 

Hettmansperger (1976). Slightly different approaches to the problem have been 

proposed by Ghosh and Sen (1971), Tableman (19SS), and Sievers (1979).

We first discuss the assumptions needed for the rank analysis, introduce 

the required notations, and procede as we did in section four in the discussion 

of least squares procedures. We no longer need assumption A2, and replace it 

with

A2’ The density f of the errors is absolutely continuous, and has finite Fisher 

information, which is given by

Recall tha t in least squares, the estimation of & was carried out by mini­

mizing the sum of the squares of the residuals. This function was a nonnegative 

convex function of the residuals. In the rank analysis of the linear model, the es­

timation of is performed by minimizing a convex, piecewise linear.nonnegative 

function of the residuals. This approach was proposed by Jaeckel (1972), and 

the function is called a dispersion function. The dispersion function depends of 

the ranks of the residuals. We will need the following definitions.

DEFINITION 2 .1 . Let z \, zo, . . . ,  zn be n real numbers. Denote the rank o f an 

arbitrary z  by R(z). The rank o f any number is simply the position o f that 

number among the ordered numbers. For instance, the m inimum z would have 

a rank o f 1 and the maximum z  would have a rank o f n.
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DEFINITION 2.2. Let a ( l )  <  a(2) <  • • • <  a(n) be a sequence of real numbers, 

not all equed.such that 5 Z"= 1  a(i) =  0 . We call the a ’s scores.

The scores are generally obtained by means of a score function, which 

we now define.

DEFINITION 2.3. Let ip be a nonconstant, nondecreasing, bounded function on 

(0,1), and satisfying the conditions

In the least squares analysis, the quantity o, a scale param eter, had to be

scale param eter which we denote by r. In order for this param eter to exist, we 

need to assume the existence of an integral which involves the error distribution 

and the score function. This is given in assumption 5 below'.

A5 Assume tha t 0 <  7  <  oc, where 7  is given by

[ '  p ‘ (u) du = 1
Jo

Then <p is called a score function.

We use <p to generate scores by means of the relation

estim ated. In the rank analysis it is not o th a t must be estimated but another
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The param eter r  is defined to be the reciprocal of 7 . An estim ate of r  

is given in Koul, Sievers, and McKean (19S7). Some comments are in order.

(1 ) For the rank analysis the assumptions used are A1,A2,A3,A4,A5

(2) If ip is sufficiently differentiable, we have tha t

7  =  P  p ' [ F ( t ) \ f ( t ) d t
J - 0 0

We will typically assume tha t our score functions have this degree of 

smoothness.

(3) If we take the score function to be tp =  y /\2 (u — ^) then the scores 

generated are typically called Wilcoxon scores. In this case if the error 

distribution is normal, then the scale param eter r  reduces to

T  =  (7

We are now in a position to define the dispersion function. We follow 

the ideas in Jaeckel (1972).

DEFINITION 2.4. For an arbitrary a £ R .b  G Rp set
n

D 0>) =  -  a -f>Xi)]{yi  -  a -  fix,)
i =  1 

n

=  H  alR (yi -  ^»)](y»- -  *«)
i = l

We will refer to D as (Jaeckel's) dispersion function.

In the rank analysis of linear models D plays the same role as the S func­

tion does in least squares. Jaeckel (1972) proposed estimating by minimizing 

D as a function of b. Some im portant properties of D are summarized below, 

proofs can be found in Jaeckel (1972) or McKean and Hettmansperger (1976).
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T h e o r e m  2 . 2 .

a ) D is nonnegative, con vex,piecewise linear as a function o f b. 

b ) D is a differentiable function o f b almost everywhere. 

c ) The  minimum value o f D is unique, but the minimizing value o f b is 

not.

d ) I f  A  = { b * : D(b*) = MIN!}, then

y/n diam(A) —► 0  in probability as n —► oc

Numerical methods must be used to minimize D. We notice that by part 

b of Theorem 2.2. the gradient of D exists almost everywhere, and so we may 

obtain the rank estimate of 0  by solving the system of equations

n

y  o\R{yi -  ?  )]xj' =  o 
:=1

This is equivalent to solving V£)(6 ) =  0. We will denote the estimate of 0  by 

,8ft . In the next section we outline the asymptotic behavior of the estimate and 

introduce the test statistic. We also note tha t we cannot estimate the parameter 

a  with our rank procedure. For the problems we will be considering, this will 

not be a problem. For a discussion on the estimation of a , see Hettmansperger 

and McKean (1976).

2.5 Asymptotic Distributions

In his paper, Jaeckel (1972) obtained the asymptotic distribution of 0 r . 

We state  it below as Theorem 2.3.

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w ith o u t  p e rm is s io n .



15

THEOREM 2.3. Under assumptions A 2 ’,A3,A4. and Ao,

M f o  -  A )  -> M V N P(0, (7 S ) - 1)

Here —► represents convergence in distribution, and 3o denotes the true value 

o f fi.

The proof of this theorem depends on an approximation to the gradient 

of D. It can be shown tha t the gradient is, in a  neighborhood of 3q, appoxi- 

mately linear. From this a quadratic approximation to the disperson function 

itself is formed. The minimizing value of this quadratic, and i t ’s asymptotic dis­

tribution are easy to obtain. It can then be shown th a t the difference between 

the rank estim ate and the value which minimizes the quadratic tends to zero in 

probability, and so the distribution of the minimizing value of the quadratic is 

the same as the distribution of the rank estimate. The book by Hettmansperger 

(19S4) gives a simplified version of the proof for the special case of Wilcoxon 

scores.

We now move to the case of testing tha t Ho : @ =  0 is true. The 

motivation for the test statistic comes from least squares. The testing problem 

was first examined by McKean and Hettmansperger (1976). They show tha t the 

dispersion function D is a  semi-norm on R p, and tha t D has the same class of 

representatives as the least squares function S. Recalling the geometric rationale 

behind the least squares statistic, we define the rank test statistic as

(2 .1 0 ) p f r  =  1 5 M M
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Here f  is a consistent estim ate of r .  Koul, Sievers, and McKean (19S7) propose 

a  consistent estim ate of 7 , and from this we may obtain an estim ate of r. 

An advantage of the estim ate of Koul,Sievers, and McKean (19S7) is th a t the 

assumption of symmetry need not be made for the error distribution. If we are 

willing to assume tha t the errors are symmetric, then another estim ate of 7  

is given by Scnweder (1975), who also gives the asym ptotic distribution of his 

estim ator. His result holds for a wide choice of score functions.

Just as we did for the least squares test statistic, we reject the null 

hypothesis when the test statistic is too large. Specifically, McKean and 

Hettmansperger (1976) give the following result:

THEOREM 2 .4 . Under assumptions A 2 ’,A3 ,A4 , and  .45, we have the follow­

ing'. (a) When the null hypothesis is true, the asym ptotic distribution o f pFn 

is chi-square with p  degrees o f freedom, (b) Under a sequence o f contiguous 

alternatives H„ : ft =  ~ ^d , where d E Rp, the asym ptotic  distribution of pFr  

is noncentral chi-square with p degrees o f freedom, where the noncentrality 

param eter is

The proof of this theorem depends on the quadratic approximation to 

the dispersion mentioned earlier.

It is im portant to note the similarity between the asymptotic distribu­

tion of the rank test statistic and the least squares test statistic. The least 

squares statistic is a scaled reduction in variation and the rank test statistic is a
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scaled reduction in dispersion. Because both of these statistics have asymptotic 

distributions which are chi square in nature, both under the null hypothesis and 

under a sequence of contiguous alternatives, we may determine the asymptotic 

relative efficiency of the rank procedure to  the least squares procedure. This is 

given in the following theorem.

THEOREM 2.5. Under the assumptions o f the previous theorem , the asymptotic  

relative efficiency o f pFp to p F is  is

o o 
7 “<T“

In the case where the error distribution is normal and we use Wiicoxon 

scores, this value reduces to .955. If we assume th a t the error distribution is 

symmetric and we use Wiicoxon scores, the efficiency is always at least .864. 

This generalizes a  result of Hodges and Lehmann (1956) in the location case.

These results indicate that rank procedures should be fairly robust. We 

will address this aspect in Chapter IV where we look at the influence functions 

of some of our quantities. From various simulation studies these asymptotic 

efficiency results appear to hold for moderate sized samples.

2.6 Coefficients of Multiple Determination

We now consider the problem of constructing measures of multiple de­

term ination from our rank estimates. These measures will be rank versions of
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the measure R 2 discussed earlier. Recall that R 2 was defined as

(2 .1 1 ) j f  =
5(0)

W hen R 2 was introduced, we made the observation tha t i?2 x l0 0  could be in­

terpreted as the percent of variation in the data which was explained by fitting 

the regression. If we substitute the term dispersion for variation in this last 

comment, and think of our rank quantities, we see that one possible measure of 

multiple determination based on ranks is

(2.12) f t ,  =  M
DfO)

The notation is meant to indicate the fact tha t R i^  depends upon the choice of 

score function p.

We have mentioned th a t the least squares procedures are susceptible to 

outliers. In Chapter IV we will have theoretical evidence to indicate tha t our 

rank estimates do not have this problem to as large a degree as the least squares 

estimates. The same may be said for the rank test statistic as compared to the 

least squares test statistic. We would hope tha t this would carry over to 

but it does not. In hopes of obtaining a rank measure of multiple determination 

th a t is fairly robust, we recall the relationship that exists between R 2 and the 

least squares test statistic, namely

(2-13) p F i s  =  ("
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This sort of relationship does not hold for R \v . However, we may define a new 

measure Rzv by

(2.14) PFr  = ( n -  p — l)i? 2y
1 -  R 2v

After some simplifications we find tha t we may express Rzv in terms of the 

dispersion function as

(2.15) =  . . . .  ______
"  B ( 0 ) - f l ( ^ )  +  ( n - p - l ) f

Thus we have two competitors for propose to R~. each of which is based on 

ranks. We have already hinted a t the fact that R \ . is not as robust as we would 

like it to  be. We shall see in Chapter IV tha t Ro^ is fairly robust and has 

the same distributional properties as p Fr . In the following example, we shall 

see th a t Ro^ performs fairly well in practice, and hence should be considered a 

viable com petitor to the classical least squares value.

2.7 Examples

In this section we present two examples illustrating the uses of the co­

efficients R\,f and Rz#, and comparing them to R?. The first of the examples 

illustrates the use of these coefficients in model selection, and the second the 

effect tha t outliers can have on the value of the coefficient of multiple determi­

nation.

The data  for the first example are from Hald (1952). This example 

actually is in two parts. We will use the data  to select the best one variable
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model, and then repeat the procedure for the two variable case. For each task, 

the procedure will be carried out first for the original data and then with an 

outlier introduced. Best here is taken to mean the model with the highest 

coefficient of multiple determination. In all cases we use the Wiicoxon score 

function

<f(u) =  y/l2 (u  -  

For the results of the first fit we examine Table I below.

Table 1

R? R iv r 2.

X i .53 .32 .39

X 2 .67 .46 .60

X z .29 .18 .34

X A .6 8 .45 .65

From this we see th a t all 3 coefficients are in essential agreement, al­

though the values of R \^  are smaller tha t those of Rz?- Each one indicates that 

the best one variable model should have either variable X z  or X \  in it, and the 

values are so nearly equal in these cases th a t a choice in favor of one model 

or the other is not obvious. This is encouraging, because we would like our 

new methods to be in reasonable agreement with least squares when the data 

is nicely behaved. In the next part, we introduce a bad data  value. We replace 

the value Y \\ — 83.S with Y u  =  S.S and again try to select the best model. The 

results are summarized in Table II.
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Table 2

Rr R\<- R 2!f

X i .40 .24 .41

x2 .30 .23 .56

X z .45 .19 .32

X i .24 .19 .26

Notice th a t the introduction of the outlier has totally confused the co­

efficient R\p- The values are so close that the selection of any one model as 

best is very difficult. Also, the classical coefficient Rr has changed its choice 

about which variable should be in the best model. Instead of selecting either 

X 2 or X i  it now flags A"i or A 3 to  be in the model. However, R 2i} makes the 

same selection now as it did with the original data.

We now consider the second part of this example. We proceed just as 

above, but now we are trying to select the best double variable model. The 

results for the fits using the original data  are given below, in Table III.
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Table 3

R 2 Rhp f?2iS

x u x 2 .98 .8 6 .92

X i , X 2 .55 .33 .50

X i , X 4 .97 .84 .90

X 2,X z .85 .63 .74

x 2, x 4 .6 8 .46 .61

X s ,X 4 .94 .76 .89

Again we see that the three coefficients are in agreement as to which 

model to pick. If we now fit the model with the outlier in we obtain the values 

given in Table IV.

Table 4

R 2 R i? R 2tp

X U X 2 .57 .55 .92

x l t x 3 .47 .24 .41

X u x 4 .52 .51 .8 8

x 2, x 3 .6 6 .46 .71

x 2, x 4 .34 .27 .56

Xz-! X 4 .67 .52 .S3

We observe here tha t the two rank coefficients behave the same as they 

did on the original data  and the least squares coefficient has switched choices 

for best model, just as it did in the one variable case. This is evidence for our
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claim tha t more robust th a t is Hr.
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CHAPTER III

C O R E L A T IO X  M O D EL

3.1 Introduction

In this chapter we extend the regression model studied in Chapter II. 

The extension is to the case where the predictor variables are random vectors. 

Under some conditions on the distribution of the A 's. we shall see tha t the 

classical multiple correlation model becomes a special case of this model. For 

this reason, we call this model the correlation model. For a further discussion 

of this model, see Sievers (19S7).

The goal of this Chapter is to show that the rank based estimates and 

test introduced in Chapter II may be used in the correlation model in ways 

exactly analagous to the regression model. This is just as may be done with 

least squares when going from regression to correlation. As Sievers noted, the 

classical correlation model is a special case of this model. Further, in the clas­

sical multiple correlation model, we shall see that our statistics are consistent
 O

estimators of functions of R ~, the classical multiple correlation coefficent.

3.2 Assumptions

We now give the assumptions we need for our correlation model. We
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In the regression model, the null hypothesis Ho : 0  = 0 corresponded 

to  no regression. In the correlation model, this hypothesis corresponds to Y  

and X  being stochastically independent, hence we will be concerned with H q 

in this model also. This model has been used by Sievers (19S7) who proposed 

a  measure of multiple correlation different from ours, but which was also based 

on ranks. Also, Hampel et al. (19S5) in their chapters on robust M estimation 

used this model, although they did not consider problems of correlation.

3.3 Classical Multiple Correlation Model

We have mentioned that the classical multiple correlation model is a 

special case of our model. This may be seen as follows. The classical multiple 

correlation model assumes tha t X  and Y  are jointly distributed according to 

the m ultivariate normal distribution having dimension p  +  1. We write the 

covariance m atrix as

(3.7) A  =  ( I "  “ *
021 A 12)22 J

and we assume th a t this m atrix is positive definite. Using a  result on the inverse 

of positive definite matrices (cf Anderson,19S4) we have that

<T“ =  Qj] — 0 1 2 ^ 2 2 ^ 2 1  >  0

Let us denote by j3 the solution to the equation

A 22P ~~ O12
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Then we may write the covariance matrix as

(3.8) A = ( a2 A ^ \
\  $ A.22 ^22 J

Using this, and results on conditional distributions of multivariate normal vec­

tors, we see tha t 3.4 holds.

3.4 Rank Procedures in the 

Correlation Model

We now discuss properties of rank procedures in the correlation model. 

Assume tha t we have a  random sample of size n from (3.4). Our first goal is to 

use the sample to  estim ate /?. As in Chapter II we have scores a( l )  <  a(2) <  . . .

<  a(n) which are generated by a score function 9 . We estimate 3 by choosing 

any b in R p which minimizes D{b) as a function of 6 , where, just as in Chapter

II,

n

(3-9) £>(&) =  £ a [ J ? ( W -  Vxi)]{yi ~  fe.O
1=1

Equivalently we may obtain 0  by solving

n

(3.10) ^ 2  a[R{yi -  $Xi)]xi = 0
i=i

In the regression model, to ensure the asymptotic behavior of 3r and pFr , we 

had to  require th a t Huber’s condition hold for the design matrix. In the present 

situation, Arnold (19S0) has shown that this condition holds for the design
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m atrix we have in the correlation model. W ith this in mind, we may state  the 

first theorem of this Chapter. Its proof is not given; it follows exactly as in the 

regression case by conditioning on the X ’s.

THEOREM 3.1 . In the correlation model, i f  the true vedue o f 3 is 3o. then

M h  -  &>) -  m v n p(6, ( r ^ r 1)

where the  —» indicates convergence in distribution.

In a similar manner, we may show tha t, when the null hypothesis is true, 

pFjt has, asymptotically a central chi-square distribution with p degrees of free­

dom. Under a  sequence of contiguous alternatives, given bv Hn : 3  = ~ W .
v n

it can be shown tha t pFjt has an asymptotic distribution which is non-central 

chi-square with p degrees of freedom, with the same noncentrality param eter as 

in the regression case. Thus, whether we have a regression problem or a  multi­

ple correlation problem, we may use rank estimates and testing procedures the 

same way and use the same critical values as well. This is as it is with least 

squares procedures. Since our rank based procedures are more robust than the 

least squares are, this is welcome news. However, since in the classical multi­

ple correlation model, R~ is a consistent estimator of the population multiple 

correlation coefficient, one asks whether and Rz# estimate any meaning­

ful param eters in our correlation model. The answer is yes, and in a special

 o
case, we shall see that these quantities estimate functions of R~, the classi­

cal multiple multiple correlation coefficient. In general, R \ 9  and Rz^  estimate
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param eters which depend on the joint distribution of Y  and X ,  the marginal 

distribution of Y , the distribution F  of the errors, and the score function <p. To 

obtain these param eters, we must first discuss certain functional forms of the 

dispersion function. This is done in the following string of lemmas.

LEMMA 3 .2 . A s n —+ oo, ^--0(0) converges in probability to D l, where

(3 .11) D 1 = r  <p[G(y)]ydG(y)
J — OQ

where G is the distribution function o f the random variable Y .

PROOF: This is a direct consequence of a  result given in David (1970). That 

result states

v ^ ( —z>(0 ) -  £»i)n

is asymptotically normal. The result follows.

This lemma states tha t D (0) may be represented as a functional of 

the population distribution of Y . We shall see tha t a  similar result holds for 

~ D 0 r ) .  We will use these results again when we discuss influence functions.

L e m m a  3 .3 . Let denote the true value o f the parameter Then as n —►

oo,LD (0 o) tends in probability to Do, where

(3.12) D2 = t  v[F{e)]e dF(e)
J —OO

where F  denotes the distribution function o f e.
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PROOF: Notice tha t

—D(0o) —► /  ip[ F (t — a)]tdF(t — a) 
n J —oo

= So[F{e)}e dF(e)
J — OO

Theorem 3-1 shows that 0 r  converges in probabihty to 0q. This fact and 

lemma 3.3 make it reasonable to expect that ^ D (0 r ) should also converge to 

D2- T hat this is true is shown in the next lemma.

LEMMA 3 .4 . Let 0 r  denote the rank estimate of 0o obtained by minimizing 

3.1. Then

± { D 0 r ) - D { M  

converges to 0 in probability as n goes to infinity.

PROOF: We may show this by arguing conditionally, given .V i, X 2 . . . . .  X n The 

proof goes then exactly as in Hettmansperger and McKean (1976) for the re­

gression model. Thus, the result holds unconditionally as well.

Combining lemmas 3.3 and 3.4, and using one form of Slutsky’s Theorem 

( Bickel and Doksum,1977) we immediately obtain the following result.

- D 0 r ) -  D2n

where the  indicated convergence is in probability.

The previous lemmas have concerned the behavior of the dispersion func­

tion evaluated a t 0 , @0 and the rank estimate of beta. The following lemma 

is concerned with a  certain integral involving and a distribution function F.
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Notice tha t here F  refers to an arbitrary continuous distribution function on 

the real line.

LEMMA 3.5. Let <p be a nonconstant, increasing score function on (0,1). I f  F  

denotes an absolutely continuous function on the real line. Then

(  ip[F(t)]tdF(t)dt >  0 
J —00

PRO O F: Since J ^  ip[F(t)]dF(t) =  0 and <p is nonconstant, the set

{t : * [F (0 ] =  0 }

is not empty. Then let to denote the g.l.b of this set. Then we have the following 

f  *p[f'(t)]tdF{t)=  f  <?{F{t)}{t -  tQ) dF{t)
J  — OO J —OO

+ r<p[Fmt- to)dF( t )
Jto

+  <0 f  <p[F(t)\dF{t)
J —OO

Since the last integral is 0, and each of the first two integrals is nonneg­

ative, we are done.

We are now in a position to  examine the behavior of R \^  and and 

we do this in the next section.

3.5 Behavior of Rank Coefficients

In this section we consider the behavior of the statistics R \v and Ro^ in 

the correlation model. We shall see tha t these two statistics converge in prob­

ability to parameters tha t are zero if and only if Y  and X  are independent. In
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this sense they generalize the behavior of Rr in the classical multiple correlation 

model. We shall obtain expressions for these parameters which will show th a t in 

certain cases these parameters reduce to one-to-one functions of the population 

value of the multiple correlation coefficient. Using the the notation,

R D  = D{0) -  D 0 )

we can write R \^  and R 2<- as

(3.14) R lv = RD

(3.15) =

D( 0) 

RD
R D  +  (n — p — 1 )tj

where f  is a consistent estimator of r .  Lemmas 3.2 to  3.4 combine to yield the 

following theorem.

THEOREM 3.5. In the correlation model the statistics R \^  and R 2ifi are con­

sistent estimators o f R \^  and R 2̂ ,. respectively, where

(3.16)

PROOF: Notice tha t

-  [Di -  D2)
Di

-  [D1 -  P 2)
R2* ID1 - D 2} + £

R  -  R D  ti l?  —
D( 0)

If we divide both numerator and denominator of the above expression by n, we 

may use the results of lemmas 3.2 to 3.4 to obtain the desired result. Similarly, 

we may prove the stated result for R 2v
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We interpret and i?2^ as measures of multiple correlation between

Y  and X .  This will be seen in general in the next section, but for the moment

we shall show, for a  special subcase tha t these param eters reduce to functions 

 2
of R~, the classical multiple correlation coefficient, which is defined as

(3 .16) FT =
<t2 +  ^S /3o

THEOREM 3 .6 . A ssum e that in the correlation model, there is a distribution 

function Fo such that

F{e) = F o (-)
<7

and

G(y) =  Fo{-— —) 
<yy

where

=  y ja 2 + 1

Then

Rhp =  l  — y j  l — R“

-  \ J \  - i f

where

I  =  f  <p[FQ{t)]tdFQ{t)
J -OO

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e rm is s io n .
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PR O O F: Notice th a t

D\  = f  v[G{y)]y dG{y)
J —OO

=  r  ) ] ^ « ( — )J —oo a  Gy

= cry /  P tW )]*  djfro( 0  
J —oo-oo

=  Icr„

Similarly Do =  7 <7 . Thus

i<7«

and

o K  “  °r)tiop — -----------------
( a ,  - a ) I  + %

1 -  V I  -  +  t £ y

A very im portant instance of the situation in Theorem 3.6 is the classical 

correlation model in which Y  and X  have a  joint normal distribution.In this 

case we have th a t the integral I  in the above theorem reduces to  a convenient 

form. We sta te  this in the following

COROLLARY. Under the conditions o f Theorem 3.6, i f  the error distribution is 

normal with mean zero and variance cr then the value o f thie integral I  is

I  = o~i

R e p r o d u c e d  w ith  p e r m is s io n  o f  t h e  c o p y r ig h t  o w n e r .  F u r t h e r  r e p r o d u c t io n  p ro h ib i ted  w i th o u t  p e r m is s io n .
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PROOF: In  th is  c a se  th e  d is tr ib u tio n  o f  th e  errors ta k e s  th e  form  a n d  w e  

h a v e

1 =  r  ^ o ( t) ] td F o ( t)
J—OO

=  r
J - 00 a  G

fOO= cr I <p[$(s)]sd$(s)
J — OO

= <7 f  ^[$(s)](-o'(s))ds 
J  — OO

= cr j  yj'[$(s)]p2(s)ds 
J  — OO-OO

= <77

In the next section we investigate the general case and obtain some of the 

characteristics of and and see th a t these param eters axe meaningful 

even when F and G do not belong to a  location scale family.

3.6 Properties of New Parameters

In this section we dem onstrate tha t the parameters

R\tpi R ip

are zero if and only if fio =  0. Since this is true if and only if Y  and X  are 

independent, our parameters are zero if and only if we have independence. In 

this sense they generalize the behavior of the population multiple correlation 

coefficient in the classical correlation model. We do this by showing th a t the 

quantity which appears in the numerator of each of the parameters is equal to
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zero if and only if 0  is 0. This is accomplished by showing th a t the  numerator 

is a convex function of 0. Let G(y) denote the distribution function of Y. Then

(3.20) G(y) = J ■■■ J F ( y -  0 ’x)dM (x)

Thus when the null hypothesis is true, G = F  for all y. Notice th a t we have 

assumed tha t the param eter a  is equal to zero. We may do this without loss of 

generality, since a  does not contribute to correlation between V’ and X .

THEOREM 3 .7 . The difference D\ — Do is a convex funtion o f 3.

PROOF: L et u s d e n o te  th e  d ifferen ce  b y  R D , for re d u ctio n  in  d isp e rs io n . T h en  

w e h a v e  th a t

RD  ~  j  v[G (y)]ydG {y) -  J  ?[F{c)]edF(e)

where G(y)  was given in (3.20). When 0  = 0, we have, by the comment in

(3.20), tha t R D  =  0. To show tha t R D  is a convex function, it will be shown 

tha t the m atrix of second partials with respect to 0  is positive definite for all 

0 , and tha t the difference has an extreme value for 0  equal to 0. To do this, 

notice tha t Do does not depend on 0,  so th a t we need not consider it when we 

calculate our derivatives. If we differentiate R D  with respect to 0,  we obtain

=  -  J  s* [ G ( y ) ] y f ( y  - ! ? x ) x  d y  d M

(3.21) =  J  v'[G{y)]yf(y -  0>u)f{y - $ x ) u  dy dM{u)  dM{x)

Since the random vector X  has zero expectation zero, we have th a t the above 

expression is zero when 0 = 0. Thus R D  may have an extrem a a t this point.
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We may use the definition of G to  simplify expression (3.21) as follows: Write 

the  last integral as

J  V>'[G(y)]yf(y -  f i x )  J  f { y  -  f iu)  dy d.M(u) dM(x)

The integral taken with respect to y may be written as

J  <p'[G(y)]yf[y -  f i u ) g { y )  dy

Now integrate by parts with respect to y. We obtain the following form:

(3.22) -  J  <r{G(y))f{y -  f iu)  dy -  J  f i [G(y)) f (y -  f iu)  dy 

Substituting (3.22) into (3.21) yields

(3.23) =  J  v[G(y)]f{y -  f i u )u  dy dM

If we differentiate (3.23) with respect to  f i  we obtain for the matrix of second 

partials

-  J  tf i [ G { y ) ] f \ y  -  f i u)uu dy  d.M(U)

-  J  f i[G{y)}f{y -  &u)f{y -  f i x ) u x  dy d.U(u)dM{x)

This may be simplified also. Again we integrate with respect to y, this time 

using

J  <ts[G(y)]f(y -  f iu) dy

We obtain

J  ' fi[G{y)]g{y)f{y - f i u ) d y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3S

as the result. Substituting into into the previous expression the following form 

for the  m atrix of second partial derivatives is obtained.

+  J  v' \G{y)]f{y — $ u ) f { y  — j3'x)uv! dy dM(u)  dM(x)

— j  lr,,[C?(y)]/(y — /31x ) f ( y  — $ u )u x  dy dM(x)  dM(u)

(3.24)

=  J <r[G{y)]}{y -  $ x ) f ( y  -  p ' u ) u ( u - x )  dy dM(x)  dM(u)

Now we may rewrite (3.24), using the following.(Remember tha t (3.24) is the 

m atrix of second partial derivatives of RD):

J  v[G(y ) ] f ( y  -  & 2 ) f ( y  -  P'x)(u -  x ^ u x 1) dy dM(u)  dM(x)  dM(u)

=  J  ip'[G{y)\f{y -  P' x) f {y  -  ^ u ) u ( u  -  x ) ' dydM{x)dM(u)

~  J ^ ' [ G i y ^ f i y  -  p1x ) f ( y  -  $ u ) x { u -  x) 'dyd.M(x)dM(u)

=  j  <r,,[G:( y ) ] / ( y  -  P'x) f {y  -  p ,u)u(u -  x) ' dydM(x)d \ l (u )

+  I v [G(y) ] f ( y  — p1 x ) f ( y  -  p!x)x{x  -  u)' dyd.M ( x )dM (x)

(3.25)
^ & R D  

~  ~838/3'

Notice tha t (3.25) gives th a t the m atrix of second partials is positive definite 

no m atter what the value of P. To see this, notice that we may write the last 

integral as a sum of two by splitting the region of integration as follows.

f  <p'{G(y)]f(y -  P?xi)f{y -  pfx){u -  x){u -  x ) ' dydM(x)dM(u)
J a

+  f  <r>[G(y)\f(y -  P'u) f (y  -  $ x)(u -  x)(u -  x) ' dydM(x)dM{u)
J B

=  /  <p'[G(y)]f(y - p ? u ) f ( y  ~ P ' x ) u - x ) ( u  -  x) ’dydM(x)dydM{u)
JB
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where A denotes the set where u — x  and B denotes the complement of this set. 

Now,the last equality follows since the distribution function M is continuous. 

Now <p> is positive since p  is increasing, the densities are positive, and, if a is a 

vector in p-space, we have

a ( u  — x)(u — x)'a  

=  ((if — x)'a )2 > 0

Since the matrix of second partials is positive definite, the function RD is convex 

as a function of and we are done.

We also comment th a t the above proof shows th a t RD takes on its min­

imum value when the null hypothesis is true. We have then the following result 

about R iv and R 2^.

COROLLARY 3 .7 . R \v and Rz? — 0 i f  and only i f  3 = 0, which is true i f  and  

only i f Y  and X  are independent.

The proof of the corollary follows directly from the previous theorem. It 

is well known tha t the corresponding theorem for the classical multiple correla­

tion coefficent holds in this model as well. Thus we see tha t R \^  and Rzv simply 

 2
generalize R~. Since rank procedures and estimates are more robust than their 

least squares counterparts are, the fact tha t we now have robust estimates of 

correlation should be pleasing.
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3.7 Asymptotic Distributions of Statistics

4 0

In this section we briefly discuss the asymptotic distributions of R \^  and 

i?2v»- To do this we use the results stated concerning the asymptotic distribution 

of the  pFji and the convergence in probality of f  to r . Concerning p Fr . we recall 

th a t when the null hypothesis is true, the asymptotic distribution is central chi 

square with p degrees of freedom. Now, we may write R\ - as

r  R D

(3.26)

We may write this as

R iv  = T — ~  i D (  0)

r  R D  ?

§ ^ ( 0 )

n R w  = (PFR)'

Thus, when the null hypothesis is true, R converges in distribution to a con­

stan t times the central chi square distribution with p degrees of freedom. The 

constant is given by We obtain the value of the constant from the behavior 

of the multiplier of the test statistic above. For the case of i?2^  we note tha t 

we may write this in the following manner.

(3.27) =  pFr ----------------- =—=-------------------—
A [ f l ( 0 ) - f l ( f e )  +  ( n - p - l ) f l

Under the null hypothesis we may conclude th a t the drop in dispersion converges 

in probability to zero, and so the asymptotic distribution of i?2y> is the same as 

th a t of pFr . For the case of contiguous alternatives, we may conclude tha t the
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above discussions may be repeated almost word for word, the only difference 

being th a t the central chi square distribution is now replaced by the noncentral 

chi square distribution, with p degrees of freedom, and noncentrality parameter

(3.28) S2r

which we have discussed previously. This follows from properties of contiguity.

Thus, we see th a t, just as the least squares test statistic and R~ are 

linked in the sense tha t they share the same asymptotic distribution, so are 

p F i S  and R 2^- This fact should appeal to those who are used to using least 

squares techniques, as they may use rank procedures in much the same manner, 

while having the ex tra feature of protection against outliers.

3.S A Preliminary Result

In this section we state some results which will be used in the next Chap­

ter when we discuss influence functions. Let b denote an arbitrary fixed vector 

in p dimensional space. Denote by G * the cumulative distribution function of 

the random variable Y  — b'X,  and let H denote the joint distribution of Y  and 

X .  Further, denote by G* and H n the empirical versions of these quantities. 

Then we may write

•^D(6 ) =  J i p [ - ^ G * n( y - $ x ) ] { y - l ? x ) d H n(x,y)

As n tends to infinity, this tends in probability to

(3.29) j  sp[G*(y -  ?x)](y -  Vx) d H ( x , y)
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Lemmas 3.1 and 3.2 are special cases of 3.2S corresponding to values of b which 

are 0 and #o, respectively. We may write 3.28 in the following manner.

J  ^[G*(y -  £z)](y — $ x ) f ( y  -  f i x )  dy d.M(x)

=  J  <p[G*{v — S' ir)](u — S' x ) f ( v )d v d M  (x)

The last equality comes from the substition v — y — fl'x. This means tha t, 

without loss of generality, when we are considering the functional forms of the 

quantities involved, we may assume th a t the true value of 0  is zero. Thus, 

without loss of generality, we may find influence functions of our quantities at 

the null hypothesis.
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CHAPTER IV

IN F L U E N C E  FU N C T O N S

4.1 Introduction

In this chapter we obtain the influence functions of

i our estim ate ,3#

ii The test statistic p Fr

iii both of R and R 2^

We assume that the correlation model holds, and as in the last section, 

we will also assume tha t the true value of 0  is zero. The influence functions will 

allow us to examine robustness properties of the quantities we have proposed, 

and indicate how improvements may be made. We shall show tha t the influence 

functions we obtain lead to  the correct asymptotic distributions, and they will 

be compared to the influence functions of the analagous M estimates of Hampel 

et al. (19S5). We will also obtain the influence function of the param eter 7 , and 

use this to make an assertion about the asymptotic distribution of our estim ate 

of 7 . We will see that if we assume additionally tha t the distribution of the 

errors is symmetric about zero, and if we use Wilcoxon scores, the predicted 

asymptotic distribution obtained from the influence function agrees with the 

result given in Schweder (1975).

43
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4.2 Definition of Influence Function

44

We now define the influence function, discuss some im portant implica­

tions and uses of it, and mention an alternate method of obtaining it. We will 

rely on the functional representations of D l and D2 and RD which we obtained 

in Chapter III. We state the following definition for the vector case.

DEFINITION 4 .1 . Let T  denote a functional defined on the space o f  distribution 

functions. Let H denote a fixed distribution function in the domain o f  T. and 

let denote the point mass at x and y. The influence function o f  T  at H

is defined by

s

provided the limit on the right exists.

The influence function is a  useful heuristic tool. Intuitively, it measures 

how a  statistic reacts to a  point (xq, j/o)- Because of this, we hope th a t our sta tis­

tics have influence functions which are reasonably continuous and bounded in 

their arguments. We may also use the influence function to obtain the asymp­

totic distribution of a statistic. Of course, we must be able to  express the 

statistic we are interested in as a functional of distribution functions in order to 

apply the defintion, and we have done tha t for the quantities we are interested 

in the rank analysis case in Chapter III.

The influence function was introduced by Hampel (1974), who called it 

the influence curve. It is closely related to the idea of a differentiable statistical
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functional, which was first discussed by vonMises (1937), and also to the concept 

of Gateux differentiability of a functioned. These ideas are discussed further in 

Huber (19S1) and also in Fernholtz (19S3).

We now define the Gateux derivative and discuss the relation it has to 

the influence function of a statistical functional.

DEFINITION 4 .2 . Let T  be a statistical functional defined in the space of  dis­

tribution functions, and let H denote a fixed distributin function in the domain 

of  T. We say that T  is Gateux differentiable at H i f  there exists a function $/ / .  

symmetric in its arguments, such that for any distribution function G such that 

(1  — s)H  + sG is in the domain of  T,  we have that

l im r [ ( i - a) / /  +  , G ] - r [ / / ]  /
3— 0 s J

If we examine this definition, we see th a t we may interpret the limit 

on the  left as the partial derivitive of T[(l-s)H +sG ] with respect to s at s =

0. Notice tha t we may think of this as the directional derivative of T  in the 

direction of G. Also, if we set G =  H in the definition we obtain the following.

(4.1) j  d G  — 0

This allows us to  write the right hand side in the previous definition as

(4.2) J  $ H d(G — H)

From (4.2) we see tha t $ y  may be considered as the first kernel in the vonMises 

expansion of T -Hampel et al. (1985), or Fernholtz (1983). We have introduced
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the  Gateux derivative for the following reason; if we set G = A ^ 0,yo) *n the 

definition, we find tha t

asym ptotic distribution of a statistic. Assume for simplicity tha t we are in the 

one dimensional case. Let T„ =  T (H n) denote the value of the statistic when 

applied to the empirical distribution function. The idea of vonMises (1937) was 

th a t, if G is in some sense close to  the true  distribution function H, then by 

expanding T [(l — s )H  +  sG] in a Taylor series in s yields

Here Ri  denotes a  remainder term . If we set G = H„, and use the fact th a t 'J u  

is the influence function, we have, upon rearranging (4.5),

zero in probability as n increases, then we may use the Central Limit Theorem

(4.3) $ h  =  I F ( x 0 , y o )

Huber (1977) also makes this observation. W ith this in mind, we see tha t (4.1) 

yields the following.

(4.4) E [ IF (x 0, y 0)] =  0

We will now outline how the influence function mav be used to  obtain the

(4.5)

(4.6) y f t (T { H n) -  T{H))  =  4 =  E I F (*•') +  ^
v n  t - f

If it may be verified tha t the last term  on the right hand side of (4.6) goes to
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and Slutsky’s Theorem to conclude that

(4.7) y/n(T(Hn) -  T(H))  -  n(0 ,*2(T ,H ))

where

<r{T,H) = Var ( IF )  =  J  I F 2{x) dH(x)

Typically, the verification tha t the remainder term goes to  zero a t a  sufficently 

feist rate is a formidable task. The book by Fernholtz (19S3) and the paper by 

Fillipova (1961) both discuss the regularity conditions which need to hold in 

order for these results to be rigorous. In addition, further discussion may be 

found in Hampel (1974), Hampel et al. (19S5), and Huber (19S1). Typically we 

use the influence function to conjecture the distributional result, and use other 

methods to verify tha t the assertion is correct.

4.3 Influence Function of Rank Estimate

We are now in a  position to find the influence functions of the quantities 

we have proposed. The method we will follow will be to find an expression for 

the Gateux derivative of the appropriate functional, and obtain the influence 

function from that. As we commented a t the end of Chapter III, we may, 

without loss of generality, assume tha t the true value of $  is zero, so tha t Y  

and X  axe independent. This is equivalent to obtaining the results a t the null 

hypothesis. If we denote the joint distribution function of Y  and X  in this 

situation by Hq, then we have tha t the parent distribution factors into the
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product of its marginal distributions, which we will denote by Fo and M q. We 

now state  the assumptions we need for the work which will come, as well as 

some notation.

Let T  denote the value of the functional estimate of 3 

G* will denote the distribution function function of Y  — b'x where 6 £ R p 

We make the following assumptions

11 ip is twice differentiable on (0 ,1 )

12 f(b) =  J<p[G*(y — b'x)](y — b'x) dH(x ,y )  is finite for b E R p

13 %  and l  both exist for b £ R? 
db dbdb'

14 We will denote the joint distribution of Y  and X  when the null distribu­

tion holds by Ho{x,y)

We also let G denote an abitrary distribution function on p + 1  dimen­

sional space. In the next theorem, we use the fact tha t T (H )  may be defined 

as the solution to

(4.8) J  vp[G*(y -  S"f(H))]xdH(x,  y) = 0

This is the functional form of the equation

n

Y ^ a [ R { yi -  8 'rXx) =  0 
:=1

THEOREM 4 . 1 .  Under and II cLnd 12, the influence function o f T ( H )  is 

I~F{xQ,yo : f , H )  =  ^ [ /^ (y o ) ] ! ! -1 ^

PROOF: Set Hs into (4.8) to obtain

(1 - s )  J <p[G*s {y - f ,£)]x dH0(x,y)  +  s J <p[G*{y -  ? '£ )]£  dG(x,y)  = 0
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We will need the derivative of G* with respect to s at s=0. This is

-Fo iv )  ~  f o { y ) x T ' +  Gy(y)

where T • represents the Gateux derivative of T  and G y  denotes the marginal 

distribution of Y  obtained from G. Using this we obtain for the Gateux deriva­

tive of T

(4.9) ^ S - 1 f  <p[F0(y)]x dG(x,y)

From (4.9) we may read the influence function of T.

Notice th a t the result of this theorem is a  multivariate generalization 

of a result in Hettmansperger (19S4), which he obtains in a slightly different 

manner, and for the case of W’ilcoxon scores.

As long as the score function is bounded, the influence function of T  is 

a  bounded function of Y.  This supports the idea th a t scores should always be 

generated by bounded score functions. This implies tha t the effects of outlying 

values of Y  have a limited effect of the rank estimate of d. Unfortunately, we 

see tha t the influence function of T  is an unbounded function of X ,  and so 

the estim ate may still be adversely effected by outliers in X  space. This is an 

improvement over the case of least squares, where the influence function of the 

estim ate of tha t estim ate is

(4.10) 7 F ( f 0 ,yo) =  yoS-1 £o

and is clearly an unbounded function of both Y  and X .  For estimates 

which have influence functions which are bounded in both variables, see Ham­
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pel et al. (19S5), who discuss M -estim ates, and Tableman (19S8) who has 

introduced rank estimates of 3  with bounded influence. In both  of these cases, 

however, it was assumed th a t Fq is symmetric, which is not needed in our result. 

Even though we have obtained our influence function of $  in a purely mechani­

cal manner, we will now show tha t, using previous results, we may show tha t it 

gives a rigorous result, in the sense tha t if we were to expand 3 r  in a vonMises 

expansion of length one, with the influence function as kernel, the remainder 

term  would be of order -4-. Before we do tha t, however we indicate how the 

influence function may be used to obtain the asymptotic distribution of the 

estim ate. The next theorem is a direct result of the multivariate central limit 

theorem.

THEOREM 4 .2 . When the true value o f  3  is zero, we have

has an asymptotic distribution which is multivariate normal with zero mean 

vector and covariance matrix -VE- 1"i*

In the next theorems, we put the influence function on the solid ground 

hinted a t earlier.

THEOREM 4 .3 . Under the conditions listed in Theorem 4.2,

—  j r  9 [ f o ( V i ) ] i i
1 = 1  V n

goes to zero in probability as n tends to infinity.
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PROOF: It is sufficient to  prove this result in the case where the vectors 

X \ , X o ,  ■ ■ ■, X n are nonstochastic. Further, since the result is stated  for a se­

quence of vectors, it is sufficient to prove it for an arbitrary component, which 

we may take to be the first. Thus, we must show tha t as n goes to  infinity

f 4 ' 1 ^  E  “ I W ' K  -  4 ;  E

converges to 0 in probability. If we condition on A'i =  X1. X 2 =  1 2 , . . . ,  X n =  i„ ,  

we may apply theorem 1.6(a) of Hajek and Sidak (1967).

L e m m a  4 . 4 .  Let

s ( ? ) =  
V"7 ST

Then under the conditions o f  Theorem 4.3,

( 4 . 1 2 )  S( Y)  -  ^ = ^ 2 l F ( x i , y t : T (H o ) ,H 0)

goes to zero in probability as n goes to infinity.

PROOF: If we multiply (4.9) by the positive definite m atrix (7 E ) - 1  , the result 

is immediate.

The next theorem uses the results just obtained to show th a t the error 

term  in the vonMises expansion of 0 r is of the correct order of magnitude.

THEOREM 4 . 5 .  Under the assumptions of the previous theorem,

( 4 . 1 3 )  y/npR -  ~  £  IF (x ,  y : f ( H 0), H 0)
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goes to zero probability as n goes to infinity.

PROOF: Again, let us condition on X \ , X o , . . .  , X n . Then the regularity condi­

tions needed by McKean and Hettmansperger (1976) are met, so that

(4.14) y/Zpr - S ( Y )

goes to zero in probability. Using (4.13) along with (4.11) and Slutsky’s Theo­

rem yields (4.12). Thus we are done.

These last two theorems and the corollary imply that

( 4 . 1 5 )  W A p i o . b 2 : : ) - 1]

We have seen this result in Chapter II stated for an arbitrary value of ,3.

We may think of the result as obtained here as applying to the null hypothesis.

If we consider a  sequence of contiguous alternatives, say H„ =  -^-d, 

where d is a  fixed nonzero p-dimensional vector, we may obtain the asymptotic 

distribution of y/n(dR in this case as well. Since (4.14) and (4.15) hold under 

the  null hypothesis, they continue to hold under the sequence H n as well. We 

know th a t in this case

(4.16) yfcpR  -» M V N p[ i Z l  ( r Z ) - 1]

in distribution, and so once again using Slutsky’s Theoremn, (4.16) holds with 

yfn]dR replaced by £ " = 1  I F ( x i , y » T ( H o ) ,H 0)
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4.4 Influence Function of Rank test statistic

In this section we obtain the influence function of the test statistic for 

testing the hypothesis tha t the true value of 0  is zero. We will proceed as we 

did in the previous section, where the influence function of the estim ate of 0  

was obtained. In doing so, we shall see the reason tha t Ro# is more robust than 

R i v . We recall th a t the test statistic is given by

(4.17) p F r =
2

Now in Chapter III, we saw th a t in a certain sense, the num erator of the 

test statistic may be represented as a functional which involves the marginal 

distribution of Y, the score function ip, and the distribution function of Y  — b'X.

If we wish to  examine the behavior of this functional by means of an influence 

function, we need to  consider this expression as a function of the distributions 

H,F and G*. W ith this in mind, we define, for an arbitrary distribution H

Di  =  r  ¥>[F{y)]y dF(y)
J — OG

D 2 =  ^  p [ G * ( y - x ' f ( H ) ) } ( y - x ,f ( H ) )  dH (x ,y )
J — 00

R D  =  D\ — Do

where T{H)  denotes the value the estim ate of 0. In the case tha t H is the model 

distribution Ho, we have that T  =  0, G* = F, and so RD is equal to zero. The 

functional whose influence function we want is

(4.18) £ £
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To do this we proceed as follows:

1 . Consider the first and second derivatives of RD to obtain the influence 

function of RD.

2. Divide th e  influence function of RD by $ to obtain the influence function 

of the test statistic

3. Justify treating the denominator of the test statistic as a constant rather 

than a  functional in it's  own right in parts 1 and 2 .

Let G denote an arbitrary distribution function, and as we did in the 

previous section, form the contaminating distribution by H3 =  (1  — s )Hq +  sG. 

When we insert this into the functional RD,we see tha t RD becomes a function 

of s, as do F and G*. By considering derivatives of this functional with respect 

to s at s =  0 , we obtain the following theorem.

THEOREM 4 .4 . In the correlation model, under the assumptions of  the previous 

theorems, we have

a R D {0) =  0

dRD(s)  
ds  |(s=o)

=  0

c " -/ I -os-  |(a=0 )

where A(<?,G) is equal to J  f  <^[Fo(y)]x dG(x,y)

PROOF: P art a  follows from the discussion in Chapter III. To obtain b. we write

D i(s) =  ( l - s )  J  v[Fs{y)]ydF0{y) +  s J  <p[Fs{y)]ydG(y)
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and

D 2(s ) = ( l  - S) J  v [G*s(y -  x f 3)){y -  ? f s)dHo(5,y)

+  s  J  <p[G*s{y -  x ' f 3)](y -  x ' f 3)dG(x ,y )

When s = 0, T  =  0 so G* = Fo hence RD {0) =  0. If we take the derivative 

with respect to  s at s= 0 , we find that

^ r l ( * = 0) =  -  J  v[Fo{y)}ydF0(y) -  J <p'[F0(y)]F0(y)ydFo(y)

+  J  Y'lFo{y)}F(y)ydF0{y) +  J  r l Fo{y)]ydF(y)

_ dDo 
-  -07t(*=o)

Thus we have part b of the theorem. We proceed with taking second derivatives 

and obtain, after some tedious algebra

~ £ 2 l(*=o) =  h  J  f'f"[Fo(y)]yfo(y)dFo{y) -  27 
- 2  J  <p[F0(y)}yf0(y )d F o (y ) ] f - ' z f '

+  2  J  ip'[F0{y)]yf{y)(x -  Z)’dM{u)dH0{ x , y ) T  

+  2  J  <?'[F0(y ) }yxd G {x ,y )T  

(4-19) +  J  v[F0(y )]?dG (x ,y )T '

Now, integrating by parts with respect to Y, we have that

-  j  (p"[Fo{y)]yfo(y)dF0(y) =

J  ^'[Fo(y)]/o(y)dF0 (y) + s J  <p'[F0 (y)]y/o(y)dF0 (y)

=  7 +  2 J  ip,[Fo(y)]yfo(y)dFo(s).
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Furthermore, we obtain

2  J  <p'[Fo(y)]yf{y)(x-u)dM(u)dHo

+ 2 J  <p'[F0{y)]yfo{y)xdG{z,y)

= 2 J  <p'[Fo(y)]yf(y)xdM(u)dMo{x)dF0{y)

- 2  J  <p'[Fo(y)}y f  (y)ud\f(u)d.Wo(x)dFo(y)

+ 2 j  v'[Fo(y)}yf0{y)xdG{x,y)

=  0 - 2  j  ^[Fo(y)]yMy)udG(n .y )

+ 2 J  p'[Fo{y)]yfo{y)xdG{x,y) = 0

so th a t (4.18) reduces to

- 7  f ' s f

Here, F - denotes the Gateux derivative of T,  which we obtained in the previous 

section. When we insert it we obtain

~[ J  t?[Fo(y)]xdG(x,y)]'?:-1[ J  <p[F0{y))xdG{x,y)}

which yields part c of the theorem, and so we are done.

The result of the previous theorem will allow us to obtain the influence 

function of the test statistic. To do this we follow the procedure outlined in 

Hampel et al. (1985). We denote the functional representing the test statistic 

as W 2, and consider 7  as a constant, so tha tW 2 =  2 7 RD.  Then the previous 

theorem says tha t the following is true : 

r)-W2
(4-20) =  2 ^ 2 [Fo(V'o)]xoS-1fo
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To obtain the influence function of W, we proceed as follows. The Gateux 

derivative of W is

( [ W [ ( l - s ) t f 0 +  s G ] - W [ i / 0]) / im ._ o -------------------------------------------

(H *[(l -  s )H 0 +  sGl -  » -2 [(ffo)]),J
=  [i:r/i5_ o ----------------------------------  J2

. ^ [ ( 1 - s)J/0 + 5 G] j
=  [itm}_ o --------------   p

S “

1 rd2W 2-  ir£22_i 4
~  ric~ l(*=0)J2 l ds 2

so tha t the influence function of W is

(4.21) I F ( x 0, y 0 : f , H 0) =  M[i=b(w>)]l

Basically, the trick here amounts to defining y/ppR as the test statistic. The 

point to observe from the influence function is tha t, just as the influence function 

of Pr , (4.21) is bounded in Y  and unbounded in X .  The influence function 

of the least squares test statistic is |y |\/:F E -1 x which is unbounded in both 

Y  and X ,  similar to  the influence function for the least squares estim ate of 

13. Thus, the value of the test statistic can be completely determined by one 

outlying data  point, and this clearly is not desirable. There are test statistics 

for the hypothesis we axe considering which have influence functions which are 

bounded functions of both Y  and X , but these test statistics have asymptotic 

distributions which are not chi square in form, except in certain special cases. 

These are based on M -estimation and are discussed in Hampel et al. (19S5)

We now show tha t w’hen we found the influence function of the test 

statistic, we were justified in treating 7  as a  constant instead of a functional.
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We proceed as follows.

W 2(s) =  2 ~f(s)RD{s) 

d W 2 
—  = 21'RD(s)  + 21 RD'(s)  

r PW 2 
- z - T -  =  2~i" R D  +  47  'RD '  +  2 7  RD"  

os~

Since, when s =  0, both R D  and the first derivative of R D  are 0. we see that 

the second derivative of R D  involves only the param eter 7 .

We now indicate how the influence function of IV' 2 may be used to obtain 

the correct asymptotic distribution of the test statistic. Recall tha t the first 

nonvanishing derivative of VV' 2 was the second. This means tha t when we expand 

W' 2 in a vonMises expansion, we need to go to  two terms, as follows

W \ G )  =  w H H a) +  $ £ l k - ) +

. ‘
2  ds2 | ( * = ° ) ' r i ? 2

=  { J  *[Fo(y)}ZdG(x,y))'

Z - ' i J v m y ^ d G & y V  + Rz

W hen we set G = H n, the empirical distribution function, we obtain 

n \V l =

+  nf?2

We may easily show tha t the first term on the right hand side converges in 

distribution to a central chi square distribution with p degrees of freedom, and
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we know tha t this is the correct result for the test statistic. In a  m anner similar

similar techniques give the correct for a sequence of contiguous alternatives.

In this section we briefly indicate why the statistic R?;- is more robust 

than R \^ .  Recall tha t the denominator of Rz^  is £Z?(0). From the last section, 

we see tha t the influence function of this is

which is an unbounded function of VkThus, the numerator of R \ 9 is easily 

influencd by values of x,  and the denominator by values of Y .  This makes the 

fraction unstable, and is the reason R \v  is not robust. On the other hand, Rz? 

has an influence function which is bounded in Y, and so is more robust than 

R\p.  In the next section we will obtain the influence function of r .

to  th a t used for the estim ate of we may show tha t the error term  converges 

to  zero in probability as n tends to infinity, and so the diffence between the test 

statistic and the leading term  on the right hand side goes to zero as n tends 

to  infinity. This gives the asymptotic distribution at the null hypothesis and

4.5 Comparison of Coefficients

f  v'[Fo{y)}ydF0{y) 
Jv

•00

V>[Fo(y)]yd.Fo(y) -  /  <p '[F o(y )]yF o(y )d fb (y ) +
y

4.6 Influence Function of Gamma

In this section we obtain the influence function of 7 , and use it to make

a conjecture about the asymptotic distribution of the estim ate of 7 . This con-
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jecture is correct for the case where the error distribution is symmetric, and 

Wilcoxon scores are employed. This comes from a result of Schweder(1975).

THEOREM 4 .5 . The influence function of~fis

I F ( y 0 : i ,H q) = - 2 7 +  2<p'{F0(n)}fo(Yo)

-  f  v"[FQ{x)]Fo{x)f2(x)dx + H  if"[Fo{x)}f$(x)dx 
J —OC J  yg

PROOF: T he parameter 7  is given by

7 =  J  v'[Fo(y)]My)dF0(y)

We think of F here not as the distribution of the errors, but as the distribution 

of the residuals Y  — T 'X .  When T  is equal to the true value of /?, then F  is the 

error distribution. If we set

H s = (1 - s ) H 0{x,y)  + sG(x ,y )  

then instead of of Fq we must use

G ;(y -  f sX )  =  (1  -  s)G$(y -  f sx ) +  j  FY\x(y  +  (S ~  x T 3)dM(u)

where GJ denotes the distribution of Y  — T 'x  obtained from Fq, and Fy\x  

denotes the conditional distribution of Y  given X  computed from G. Notice 

th a t the density of G*a is given by an expression which looks like the one above 

with <7g and f y \X  replacing Gq and Fy\x,  respectively. Further when s =  0, we
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-,(*) = (1 - s ) j ?'[<% -  7\x)gl (y  -  f y x d Ho  

+ S j  f'[G',{.y -  j ^ K ( y  -  f 3x)dG

y s = ~ J  v 'K (y  -  2^x)s;(y -  f 3x)dHo

/
BC1*

'/[G*s {y -  T3x)g’0(y -  T ' , x ) - j ^ d H 0 

+  J<p'[G's(y-T'sZ ) ? £ d H o

+  J  ' A G X y - T & g X y - T f t d G
+  s unneeded terms.

If we set s equal to 0 we obtain

-  J  v[Fo{y)]fo(y)dHo -  J  ^"[F0{y)]fo{y)F0{y)dHo

-  J ^"[F0( y ) ) M y ) x d H 0f ^

+ j  tp"[Fo(y)]f(y)dH0 +  J  ̂ >[Fo(y)}fo{y)dG 

= - f  <p'[Ft>(y)]My)dF0(y) -  J  v"[Fo(y)\F0(y ) M y ) d F (y)

-  J ^'[Fo(y)]My)dFo{y) + J  vJ'[ - fo (y ) ] /o (y )d F (y )

+  J  v"lFo(y)}F(y)fo(y)dF0(y) +  j  v' \F0(y)}f0(y)dF(y)

If we set G =  A, and interpret /  above as dG, we obtain the influence function 

as stated in the theorem.

We are now in a position to state the conjecture concerning the asymp­

totic distribution of our estim ate of 7 .
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CLAIM. The asym ptotic distribution of y/n(7  — 7 ) is n(0, cr{7 , F0)) where

<T2(7,Fo) = V a r ( I F ( Y n * F 0))

=  4 [ J &[Fo(t)})2m t ) d t  -  r ]

+  (J  ip"[Fo(x)]f^{x)dx)( j  '~p"[F0{x)}Fo{x)f^{x)dx)  

- ( j t p " { F o ( x ) ] F 0( x ) f 2(x)dx)2 

+  4 7 /  ?"[F0(x)] f2(x)dx

- 4  / / ^ [ W [ f t ( , ) ] / ? ( x ) ^ ) / [ . V  > V'ldxdt,

- 4 7 / ^"[^o(x)]iro(x)/o(x)<fx.

This reduces to the expression given by Schweder (1975) when ^  is the 

Wilcoxon score function \/ l2 (u  — The general form of the asymptotic vari­

ance given by Schweder (1975) is

<7;  =  2 ( J  lp"[F0(x)]f2(x)dx)( J  *"[F0(y)}F0( y ) f 2(y)dy)

~  (J  •p"[Fo{z)}Fo{x)ffi(x)dx)2

- 2  J J  ‘p"[Fo(x)]f$(x)ip"[Fo(y)]Fo(y)fQ{y)I[y > x}dydx 

- 4 7  J  ̂ [Fo{x)]fo(x)dx  

+ 4 [ j s 2[F0(x)} fz ( x ) d x - - , 2}

For the case of Wilcxon scores, both of these expressions reduce to

4[12 r  f zQ{ x ) d x - r )
J —oo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER V

A L T E R N A T IV E  P R O C E D U R E S  

5.1 Introduction

In this chapter we turn attention to  some procedures which could be used 

to obtain competitors to R \^  and When possible, we consider estimation 

and testing procedures based on other methods, and compare them with ours. 

The following books will be referenced ; the book by Hampel et al. (19S5),and 

the book by Puri and Sen (1985). The methods discussed will be ones which 

axe generally considered to  be robust, and will consist of M -estim ate based 

procedures and rank-based procedures.

5.2 Notations and Assumptions for M -setim ates

The first procedures we consider are those discussed in Hampel et al. 

(1985) and are based on M - estimates. These authors use the correlation mod- 

elof Chapter III and study the problem of estimation of $o, and the problem of 

testing H0. They make the additional assumption tha t the error distribution is 

symmetric about 0.

In the estimation problem, they propose to estim ate 0  by choosing the

63
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vector in RP which minimizes the function

(5-1) Jf„)

or, equivalently, the  vector tha t solves the system

(5.2) i/(xi, yi -  x-Tn)x; =  0

where

. dr  
^ , r )  =  ¥

We have the following conditions on the function u.

Hl(i) u(x,  •) is continuous on R \ C ( x , v )  for all x £ RP, where C(x, v) is a 

finite set. In each point of C(x.i/) , i/(x, •) has finite left and right hand 

limits.

Hl(ii) i/(x, ®) is odd,and y(x ,r )  > 0 for all x  € R p, r  £ R +

H2 For all x the set D (x ,y )  of points in which y(x,  •) is continuous but in 

which y' (x , r)  is not defined or continuous is finite. Here y'{x,r) =

In addition, we assume that each of the matrices

M  =  J  y'(x, r )xx  d$(r)dM(x)  

Q = J  y~(x,r)xx d$(r)dM(x)

exists and is nonsingular.

The functional form of (5.1) is

(5.3) j  r ( x , y  — x T ( H ) ) d H ( x , y )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

and the functioned form of (5.2) is

(5.4) J v ( x , y  - x T ) x  dH {x ,y )  — 0

Here H represents an arbitrary distribution function on RP+1. The influence 

function of the estimator of /? is found to  be

(5-5) l ’F(xo,yo; f2\f,HQ) =  i / (xo,yo)M~lxo

when the null hypothesis is true. This suggests th a t the covariance m atrix of 

the asymptotic distribution is

(5.6)

For the special case that r (x ,y )  =  p(y) we have tha t the influence function of

is

( ' ) 0 

and the asymptotic covariance m atrix is 

(5  81 J [ p ( y ) ] 2 d F ( y )

[ J V ' f o W W

These are very similar to the corresponding quantities in the rank estimate case. 

This causes us to wonder if rank and M estimates may be equivalent. It was 

shown by Jureckova (1977) that if <p and p are related by

<?(*) =  ap(/o-1 (0 )  +  6
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almost everywhere t, for some real b, a, then and are indeed asymp­

totically equivalent. We also note th a t least squares estimates are special cases 

of M -estim ates, obtained when we take p(y) = y2. The M -estim ates obtained 

here are consistent and asymptotically normal with asymptotic variance given 

by (5.6) when the  null hypothesis is true.

5.3 Tests Based on M -Estim ates

In this section we turn to the problem of hypothesis testing in the cor­

relation model, using methods other tha t our rank estimates. The first method 

discusssed will be based on M -estimates. We will concentrate on test statistics 

which have the same type of asymptotic distribution as our rank statistic p F r . 

The test statistic we will discuss was proposed by Schrader and Hettmanspeger 

(1980), and is given as a special case of a class of test statistics obtained in 

Hampel et al. (19S5).

Denote by T(6) the quantity

n

(5.9) V{b) =  ^ p(y, -  Uxt)
1 = 1

Then the test statistic we are considering is

(5.io) Sn =  [ ^ [ r ( 0 ) - r ( ^ , ) ] *

Large values of the test statistic are significant. Schrader and Hettmansperger 

(1980) show tha t, under both the null hupothesis and a sequence of contiguous
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alternatives, has, asymptotically, a distribution which is chi-square in form, 

w ith p degrees of freedom. Thus, the test statistic has the same limiting behavior 

as our pFji, and we are able to determine the asymptotic relative efficiency of 

the rank procedure relative to the M estim ate procedure. The noncentrality 

param eter for the  statistic given here is

6\{ =

where A and B are defined as follows

A =  j ( p ' ( y f ) d F ( y )  

B  = f  p "(y)dF {y)

The asymptotic relative efficiency of the M procedure to the R procedure is 

seen to be just as in the regression case. The influence fucntion of the test 

statistic is very similar to the one for pFji and is given in Hampel as

(5-11) \p(y)U x '£ _1x
Jp '(y )  dFo(y)

Notice tha t the function given here is bounded in Y  but not in X ,  just as 

was true for the influence function for our test statistic. Hampel discusses 

test statistics which have bounded influence, but these do not have asymptotic 

distributions which are chi square in form. For a further discussion see Chapter 

VII of Hampel et al. (1985).
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63

In this section we consider the use of the M estimate based procedures 

discussed in the previous section in constructing quantities analagous to 

and Roif,- We will construct the new quantities in the same manner as we did 

and R o ~ .  Will denote the quantities by M \  and M o .  Treating the function 

T(b) as a  dispersion function, we obtain the following expressions.

r ( 0 ) - T ( £ v )
Mi =

r(o)
= ______?[r@  -  r ( * , ) ]

2[r(0) - r (A w ) l  +  ( n - p - i )

Under the regularity conditions needed by the M estimates, each of Mi and Mo 

converge in probability to the following functionals. For notation, we set

RD T  =  j [r ( x , y ) -  r (x , y — Bfx))dH

77 RDVM i
J  r (x ,y )d H (x ,y )

—  2RDT
Mo =

2 R D T + 1

where H is the distribution function of X  and Y ,  and T ( H ) is the functioned 

form of the  estim ate of /?. In the case th a t H  is the model distribution, we have 

by results in Hampel (19S5) that T ( H ) =  0 and so both of the new measures 

are zero when the null hypothesis holds. Conversely, both of these axe zero 

only when the null hypothethis holds. In this sense, they are similar to our 

quantities R\p  and Ro^. However, they do not seem to be estimates of any
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easily interpretable parameters, even when the parent distribution is normal, as 

we shall see. We will concentrate on the case where p is Hubers’ rho function, 

because of its simple form and wide use. The function is given by

1 ->
pc{y) =  ^ s f  |y| <  c

=  ^ \ y \  \ y \ > c

If we use this choice of p and evaluate the integrals for M \  and M 2 , we obtain 

the following expressions.

  R~ 4 . oL
M i =  t z A

1 + 2 ^

T7 R2 + ^ i  M  -> = ------- 7-' \

where

A  = a 2 +

1 = + 1®”*!-  Is'l -  (y -  + »2}/( yWyJM

B  ={(?,!,) | y | > c }

Note tha t although as c —* 00 M\ tends to R2, it does not seem that these 

represent any simple function of R2. We would expect, however tha t these two 

quantities would inherit some of the robust properties of M estimates in general.

5.5 Alternate Rank-Based Procedures

In this section we consider the problem of testing the null hypothesis 

H q : 0  =  0. We consider procedures which use rank methods but which are
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than  the procedures we proposed in earlier Chapters. The first procedures we 

will discuss are ones which have been proposed by Ghosh and Sen (1971) and 

also by Puri and Sen (19S5). They consider only the testing problem and do 

not consider, in this setting the problem of estimating the param eter 3. Two 

test procedures are proposed, one a pure rank statistic in which both Y's  and 

X 's  are ranked and scored, and a mixed rank statistic, in which only the Y's  are 

ranked and scored. It should also be mentioned that the procedures discussed 

here are actually suitable for a null hypothesis which is more general than the 

one of interest in the correlation model. Specifically, it may be used when the 

null hypothesis is H q : F (y |z) =  Fo(y). which clearly contains the situation 

in the correlation as a special case. Let us first consider the mixed rank test 

statistic, as it has a limiting distribution which agrees with tha t of pFr . both 

under the null and a sequence of contguous alternatives. As we did in Chapter 

II, we generate a sequence of scores a( l )  <  a(2) < • - - <  a(n) not all of which 

are equal and which have a sum of 0. Next, we make the following definitions.
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following definitions. Here / goes from 1 to n.
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£ i > ( o = o
i=i

n
n

J2a[i?(y ;)][x ii - x ln]
i=i

X^[q(0 ]2 
1 = 1

1 ” -  -

~  T ^  — x n ) ( x i ~  x n)U — 1 1'
1 = 1

We will also need the matrix

V* =  v*S„ and the p vector M„ =  (m*j).

The test statistic is a quadratic form in A/„and V*~, which is a generalized 

inverse of V*~. Specificcdly, the test statistic is

(512) K  =

To obtain the asymptotic distribution of i*  Ghosh and Sen (1971) employ a 

conditioned argument, given x \ . . .  x n, and apply a  previous theorem on permu- 

tational convergence. The result is tha t L*n converges in probability to a random 

variable which has, under the null hypothesis, a  distribution which is chi square 

with p degrees of freedom. If we consider a sequence of alternative hypotheses 

which are contiguous to the null, Ghosh and Sen (1971) obtain the result tha t 

L* has a limiting distribution which is non central chi square with p degrees of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



72

freedom and non centrality param eter given by

(5.13) Sps  = r d ! t d

which we recognize as the noncentrality parameter of the asymptotic distribu­

tion of pFp  under the same sequence of alternatives. Thus our statistic and the 

one of Ghosh and Sen (1971) are asymptotically equivalent. Now we consider 

the  pure rank statistic proposed by Ghosh and Sen (1971) for this problem. In 

this procedure, both variables are ranked and scored. We denote the new score 

generating functions by tpj, and use them to generate scores by the following 

relation.

(5.14) bnj{i) =  '■?){-" -) 1 <  i < n 1 <  j  < p
n +  1

These are the scores which will be applied to the ranks of the X ’ s. We will 

need the following definitions.

bni{i)  1 <  /  <  p
«=i

n i=i

Kij/ =  ~  — 6/]
i=l

n 

m ni =  ^ 2 a ( R i ) [ K l { S n )  - b i ]  
i=i

In the  formulas above, Hi denotes the rank of Yt among Y\, Yo, ■ - . ,  Yn ajid 5/, 

denotes the rank of X u  among X n ,X { 2 , . . . , X i n for 1 <  / <  p. If define the 

quantities

V»<!) =  (Vj-,), V„ =  v l v l  S i .  =  W
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and if we denote a  generalized inverse of Vn by V~,  the test statistic is

(5-15) L n =  ^ M ' n V - M n
n

Under the null hypothesis, Ghosh and Sen (1971) show tha t L n converges in 

probability to a  random variable which has a  central chi square distribution 

with p degrees of freedom. In this case the behavior is identical to the behavior 

of the mixed rank statistic. However, in the case of a sequence of contiguous al­

ternatives, while L n still has a chi square limiting distribution, the noncentrality 

param eter is much more complex. Let us denote the noncentrality parameter 

in this case by 6 p s• In order to define this, we need the following definitions.

T =  (r (3j'))« ,s '= i p

f=i l'=\

Bu> =  J J  (*//')] ^ 3 [ / / ' ] (z / .  X;/)

B*u = J x/^[Fi(/)(x,)] dFi(i){xt) 

vll[F\] =  f  ip~{u)d.u =  1 1 <  i < p
Jo

1/11 f^ i] =  J  J  xr)
ul * =  f  tp2(u) du =  1

Jo

The notation above is from Puri and Sen (19S5). From the above, we obtain 

the non centrality param eter as Sps = i/^d 'r 'd .  For a discussion of this non 

centrality param eter and efficiency of L„, see Puri and Sen (1985).
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5.6 Likelihood Ratio Test Procedure

74

In this section we discuss one last testing procedure, the one based on 

the m ethod of likelihood ratio. We assume tha t the forms of the distributions 

of Y  and X  are known. We also assume that the usual conditions needed for 

the validity of the likelihood ratio procedure met. Denote the MLE of 3 by 3 l - 

The likelihood ratio statistic is A„ and is defined as

a — n "  - f^y* )n — 11,= i
M y i  -  3 'Si)

Standard theory shows that —2log.\n converges in distribution, when the null 

hypothesis is true, to a central chi squae distribution with p degrees of freedom. 

W hen we consider a sequence of contiguous alternatives, this statistic has an 

asymptotic distribution which is non central chi square with noncentrality pa­

ram eter 6 iR ,  which is given by Sd 'Sd, where 5  denotes the Fisher information 

of the distribution function Fq of the errors. There is a simple relationship be­

tween the noncentrality parameter of the likelihood procedure and the one for 

our statistic. If w’e know the form of the error distribution, define ip(u; fo) as 

follows

9 ( , / o ) "  fo{F0- ' \

Let y?(u) denote the score function we plan to use to generate the scores. Then
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we have the following

T = f  v{u)v{u; f Q)du 
Jo

< [ f  V2{u)du]{ [  v 2(u;fo)du]
Jo Jo

=  3

Thus we have the following relation between the noncentrality parameters of 

our statistic and the likelihood ratio statistic.

(5.16) SR =  r d ! t d  < S d 'S d  =  6lr

If we choose our score function to be the function <^(u;/0) the inequality above 

may be replaced by an equality, and we see tha t in tha t case our rank procedure 

is just as powerful as the likelihood ratio procedure and is more robust them 

the likelihood ratio test. This would seem to indicate tha t, if we are willing 

to  assume tha t we know the form of the error distribution and the form of 

the  distribution of the .Y’s, then we should use the rank procedure we propose 

instead of the likelihood ratio test. We sacrifice little or no power, and gain 

some robustness.

5.7 Asymptotic Efficiencies

We now list the ARE's of the various testing procedures we have dis­

cussed. We use the following notation.

A L m  will denote the likelihood ratio statistic.
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B L m  will denote the M-estimate based test statistic.

C L r  will denote the statistic we propose.

D L p S will denote the mixed rank statistic of Ghosh and Sen(1971).

Then the ARE’s of the various procedures are

2
e(L*PS, L LR) =  ^  

e{LLR, L M) = ^  

e(L*ps, L r ) =  1

2
g{Lr , L l r ) = 

e{LpSi Lr ) =  

e(LR, L M) = 2 £ -

This information shows tha t our statistic and the mixed rank statistic of Ghosh 

and Sen (1971) perform equally well. However, there does not seem to be any 

way to use their procedure to obtain a measure of multiple association as we 

may with our procedure. This could be viewed as a drawback of the Ghosh and 

Sen (1971) methods. If we consider the M-estimate methods we have discussed, 

in order to obtain test statistics which have a limiting distribution which is chi 

square in form, we must restrict attention to  the case in which the robustness 

properties for the test statistic are essentially similar to  those of our statistic.

It is true tha t there axe testing procedures based on M-estimates which have 

bounded influence functions, but the asymptotic distributions of these statis­

tics are not simple in form. Also, the M-estimate based proocedures require
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th a t the  error distribution be symmetric about zero, which is not needed for 

our procedures. As we have already mentioned, if we know the form of the 

error distribution, we may use a rank procedure which just as powerful as the 

likelihood ratio procedure and which is more robust than the likelihood ratio 

procedure. It seems, based on the material presented, tha t rank based proce­

dures in the analysis of linear models posses characteristics which are similar 

enough to least squares to  make them easy to use. and familiar in interpreta­

tion. The motivation for pFji is the same as that for F/,5 , and R 2 has the same 

relation to F l s  as R 2 has to pFr.  Further, Ro is easily interpreted in either 

the  regression model or the correlation model, ju st as R~ is. while being more 

robust than Rr. While we may formally construct analogues of R 2 using M- 

estimates, these do not seem to represent any easily interpretable parameters in 

the correlation model, and so there use seems limited. Since the test procedures 

of Ghosh and Sen (1971) do not lend themselves to any estimation methods,it 

seems th a t only our proceedure is flexible enough to be used for estimating 3. 

testing hypotheses, and constructing measures of multiple determination.
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CHAPTER VI

A P P L IC A T IO N  T O  E L L IP T IC A L  D IS T R IB U T IO N S

6 .1  Discussion of Elliptical Distributions

In this chapter we introduce a family of elliptical distributions discussed 

by Muirhead (1982), and consider the behavior of 3r  and 3m  when the parent 

distribution is one these elliptical distributions. We will see that these distri­

butions do not meet the conditions of the correlation model, and so the results 

stated for the rank estim ate of 3  will only be conjectures. However, when the 

elliptical distribution is question is multivariate normal, the conjectured asymp­

totic distribution of 3r  reduces to  the form it should have in tha t situation, so 

th a t the conjecture seems reasonable. The results for 3 m  are valid, however, 

and we shall see th a t this result too reduces to the usual value when the parent 

distribution is normal.

We now give the definitions of the quantities we need to introduce the 

elliptical distributions we will consider. We follow the notation of Muirhead for 

the most part. T hat author calls these distributions normal mixture distribu­

tions.

D E F IN IT IO N S .

1 ) T  has a  M V N p+i [0, S] distribution.

7S
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2 ) E  is a (p +  1 ) x (p +  1 ) positive definite matrix. Denote by the 

squcLre root o f  E .

3 ) Let Z  denote a positive random variable, stochastically independent of  

T , which has distribution function K.

4 ) Let q denote a positive function defined on R +

Now define the random vector (Y ,X ') '  as

(6.1) ( y ^ ) '  = q H Z ) E f

The joint distribution of Y  and X  given Z  = z is seen to  be multivariate 

normal with mean vector 0 and covarance m atrix g (-)E . Just as we did in 

Chapter III, we may write the matrix S  as

(6.2, +  f )

Notice tha t the conditional distribution of Y  and X  given Z  — z  is multivariate 

normal, and it is this conditional case which falls in the correlation model. The 

joint density of Y  and X  is seen to be tha t of of multivariate normal vector with 

dimension p +  1 and having for i t ’s mean vector and covariance matrix

(0,0’)' s

respectively.

We now consider some special cases of these normal m ixture distribu­

tions. It is seen th a t these distributions depend on the choice of the function q 

and the type of distribution that the random variable Z posesses.
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1) If we choose q(z) = z £ and choose the distribution of Z to be given 

by P[Z  =  1] =  1 — e, P[Z = r 2] =  e for some 0 <  e <  1, then the 

distribution generated by Z is a  contaminated normal distribution.

2) If we choose q(z) =  and take Z as a random variable with a chi 

square distribution having n degrees freedom, then Y  and X  have a 

joint multivariate t  distribution.

3) If we take g(r) =  z ? , and P[Z  =  1] =  1, then Y  and X  have a joint mul­

tivariate normal distribution. Case 3 is a special case of the correlation 

model.

6.2 Influence Function of Rank Estimator 

of Beta for Elliptical Distributions

In this section we will obtain the influence function of the rank estimate 

of and use it to formally obtain the asymptotic distribution of the We 

assume tha t the true value of 0  is 0. Using the ideas of previous sections we 

choose as our estimate of /3 any value of b which solves the system

n

(6-4) ^ a ^ V i - f f x O l x ^ O
i=i

A functional form of 6.4 is

(6-5) /  <p[G*(y -  f (H ) 'z )]x d H {x ,  y) = 0
J

Here G*(t) denotes the distribution function of Y  — T (H ) 'X .  When T ( H ) =  0, 

G*(t) = G(t) which is the marginal distribution of Y .  To obtain the influence
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function of the  estimate of /?, we replace the distribution function H by the 

contaminated distribution function Hs =  (1 — s )H  +  sH \,  where Hi is an 

arbitrary distribution function. By differentiating with respect to  s we obtain 

the Gateux derivative. Specifically we have the following theorem.

THEOREM 6.1. I f  we define 7 z  to be

7 Z =  { [ v'[G{y)}g{y)q{z) =.= ==exp[-  V j }dydK{=)
Jo J  y/2q(z)o--y Jq{z)v‘

Then the influence function o f T  is

(6 -8 ) / F ( f 0, y0 : f , H )  = — ^ \G (y ) } ^ - lx 0
~tZ

PROOF: The Gateux derivative of the estim ate is equal to

(6-9) -  S " 1 f  v[G (y)]xdHi(x,y)
i z  J

and 6 .S follows readily from 6.9.

Notice that if =  1 for all z, and P[Z  =  1 ] =  1 , then 7 . reduces to 

the param eter 7  discussed previously.

We now use the influence function just obtained to conjecture the asymp­

totic distribution of the estimate under the null hypothesis that the true value 

of ft is zero. The conjecture is th a t y/n^R  is asymptotically normally distributed 

with covariance matrix equal to

V a r ( l F ( x , y ; f ,H )

=  J _ v - i  f  <p*[G(y )}23 'dH {x ,y )Z -1 
7 Z J
A%

(6 .1 0 ) = - ^ S " 1
TZ
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where is defined to  be

(6-U ) /  { f  V2[G{y)\ r -  1 exp[— j - ]dy}q{z)dK{z)
Jo J-OO y/(2xq{z)(T2) 2 q{z)a~

Notice tha t if q(z) is equal to one and P[Z  =  1] =  1 . then 6.11 gives 

the correct asymptotic covariance matrix for y/nfin when Y  and X  have a joint 

multivariate normal distribution.

6.3 Properties of M-estimates of Beta a t Elliptical distributions

In this section we discuss the M -estimate of (3 when the joint distribution 

of Y  and X  is a  normal mixture distribution. YVe mention tha t Hampel et al. 

(1985) state that the estim ate of they present are consistent and asym ptoti­

cally normal for arbitrary distribution functions which satisfy their conditions.

We let H  denote the joint distribution of Y  and ,V. and define

two matrices M z  and Q z  as follows

M z { v ,H )  = j  u '(x ,y )xx  d l l ( x .y )  

Q z{v ,H )  = J  u2{ x ,y )x x d H { x ,y )

In the case of least squares, where z/(x, y) =  y , these matrices reduce to the 

following

M Z =  E[q(z)]Z 

Q z = v-E {q2{z)]Z
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The asymptotic distribution of i /n fim  is multivariate normal with covariance 

m atrix M%l Q z M ~l . In the least squares case this reduces to 

If we take the function q(z) =  1 and choose Z so th a t P[Z  =  I] =  1, then 

this reduces to the value given for the asymptotic distribution of /  given in 

Chapter III.

6.4 Comparison of M and R-Estim ates

Finally we examine, in one case, the ARE of our rank estim ate to the 

M-estimate. We concentrate on the situation where the normal m ixture distri­

bution of Y  and X  is contaminated normal, and we use Wilcoxon scores. Also, 

we compare the rank estimate to the least squares estimate. We choose this 

case because the expressions we obtain are tractable.

Recall that to generate the contaminated normal distribution, we need to 

have the function q to be the square root of Z, and assume Z has the distribution 

which gives probability 1 — e to the value 1 and puts probability e on the value 

t ~. In this case the distribution function of Y  is also contaminated normal with 

density g(y) given as

(1 - e ) - < ? ( - )  +  £— d(— )
a a r e  <7T

where 4> denotes the standard normal density function. Now, we may write the
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param eter 7 % in the following manner.

1Z -  (1 -  «) [ <?'[G{y)]g(y)-d>{-)dy 
j  o  <7

+  r 2e I  ,p'[G(y)]g(y)— e ( ^ - ) d y
J  <TT C T

-  [  v'[G(y)]g2(y)dy + e(r2 -  1 ) f  ̂ '[G(y)]g{y)— o{— )dy
J  J  (TT T<7

Notice th a t the integral

J  s[G (y)]g2{y)dy

is simply the param eter 7  we have seen before, calculated at the distribution 

G. From this, we see tha t 7 z  is a minimum when r  is equal to 1 . We notice 

tha t if this is the case, then Y  and X  have a joint normal distribution. We may 

rewrite A 2Z in a similar manner. We have

4  = (1 - 1) f
J  <7 a

+ c t2 /  ? 2 [G(y)]— q(yar)dy  
J ~cr

=  J 'P2[G{y)\g{y)dy + e { r 2 -  l ) x  

/  V2{G{y)]— <?(— )dy
J  T U TO

=  1 +  e(r2 -  1) /  <p2[G(y)]— o(— )dy
J  T(7 7  (J

and we see th a t Arz  takes on its minimum value when the joint distribution of 

Y  and X  is normal.

Now, if we take the M-estimate to be least squares, we obtain for the 

ARE the following expression

E j Z h l  

E 2[ ' /Z \A \
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If we evaluate the expectations in the previous expression we obtain

E[Z] =  1 +  (r2 — l)e 

E[Z$] = 1 +  (r -  l)e
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CHAPTER VII

SUM M A RY  AND C O N C L U SIO N S

The purpose of this work was to examine the rank analysis of linear 

models proposed by Hettmansperger and McKean (1975) and construct a mea­

sure of multiple determination to be used with it. The hope was that such a 

coefficient could be constructed in such a way tha t its use would be similar to 

that of Rr, but th a t it would inherit some of the robustness properties of the 

rank statistic and estimate used. In looking for such a  coefficient we found that 

there were two candidates for consideration, and each was easily interpreted.

To examine which of these two new coeffiecents to propose, the influence

functions of the test statistic, estimate, and each of R \ v and Ry^ were obtained

and examined. On the basis of these influence functions and several examples.

we determined tha t Rz^  is the statistic which posseses the qualities we axe

interested in. It is robust and, in the case of the multiple correlation model,

estimates a 1-1 increasing function of the classical multiple correlation coefficient 

 2
R  . In addition, we saw th a t the rank testing and estimating procedures extend 

to th e  correlation model, and so we have a set of procedures to use in correlation 

model which are robust, and which relate to each other just as the corresponding 

quantities in least squares do.

We also noted that the procedures described here are only a first step in

86
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addressing the problem. The next step is to obtain rank procedures which have 

influence functions which are bounded in both x  and Y .
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