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CHROMATIC PARTITIONS
Paresh J. Malde, Ph. D.
Western Michigan University, 1988

A proper coloring of a graph G is an assignment of colors, usually positive
integers, to the vertiées of the graph such that no two adjacent vertices have the same
color. The chromatic polynomial of a graph G, denoted %(G; A), enumerates the
number of distinct colorings of G using A colors. For each positive integer n, a
partition of n is a finite non—increasing sequence of positive integers A1, A2, ..., Ap
such that 2 Ai=n. The A; are called parts of n. We define a Chromatic Partition
of n on G tobe acoloring of G using the parts A; of n ascolors. The chromatic
partition function, denoted A(G; X1, X2, ..., Xp), associated with a given graph G
with vertex set V(G)={xi, X2, ..., Xp}, expresses the numﬁer of ways of coloring G
as a function of the vertex set xj, X2, ..., Xp.

Chapter I is devoted to the study of the chromatic partition function of a labeled
graph G. The chromatic partition function for complete graphs are also investigated. ‘
In Chapter II the chromatic partition function for an unlabeled graph is introduced. We
also devote the last half of this chapter to the study of determining the ordinary
chromatic polynomial from the chromatic partition function.

In Chapter III we investigate various partition generating functions that we can
derive from the chromatic partition function. We begin with a study of partitions of an
integer into two disjoint sets of specified cardinality such that no repeats occur between
the sets. Next, we study labeled chromatic sequences and labeled chromatic cycles and
several variations of these types of partitions. Finaliy, several open problems related to

the chromatic partition function are presented in Chapter IV.
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CHAPTER I
AN INTRODUCTION TO CHROMATIC PARTITIONS
Section 1.1 Partitions and Coloring

Let G be a graph with vertex set V(G) = {x1, X2, ..., Xp} and edge set
E(G) = {e1, €2, ..., €q}. In general we will follow the terminology of Chartrand
and Lesniak [4]. A proper coloring, or to be economical, simply a coloring of G is an
assignment of colors to the vertices of G so that no two adjacent vertices have the
same color. For each positive integer n, a partition of n is a finite non-increasing
sequence of positive integers A1, A2, ..., Ap such that Z Ai=n. The A; are called
parts of n. An ordered partitidn is called a composition. For example, n=4 has 5
partitions, 4;31;22;211;1111, buthas 8 compositions, 4;31;13;22;21 1;
121;112;111 1. The number of compositions is easily seen to be 27-1, but no
convenient formula for the number of partitions p(n) is known. Instead, generating
function identities are usually deemed the best results that one can hope for to determine
p(n). Sometimes we wish to limit the number of terms, so we define p(n.,k) to be the
number of partitions of n using at most k parts. One might also consider partitions
with exactly k parts, but this is given by p(n,k) — p(n,k — 1), so we do not develop a

separate notation to handle this variation. In contrast, the number of compositions with
exactly k parts is (ﬂ - i)

Section 1.2 Chromatic Partition Function

We wish to consider a new concept that combines the features from these two

areas. We define a Chromatic Partition of n on G to be a coloring of G using the
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parts A; of n as colors. In this context it is not appropriate to require the A; to be
non-increasing, but in the spirit of proper colorings, we require adjacent parts to have
distinct values. Perhaps we should call these chromatic compositions, but we like the
sound of chromatic partitions better. The following example illustrates the various

partitions of n=6 on Kj ;.
4 2 2 3 1 1 3
Figure 1.1

It is unreasonable to expect to find a closed formula for the number of chromatic
partitions for a given value of n. However, we can develop a generating function
whose coefficients are the desired number of possibilities. The chromatic partition
function, denoted A(G; x1, X2, ..., Xp) , associated with a given graph G with
vertex set V(G)=({xi, x2, ..., Xp}, expresses the number of ways of coloring G asa
function of the vertex set xi, X2, ..., Xp. Therefore x; is a vertex as well as a
variable. When convenient and obvious from context we will suppress the name of the
graph and just write A(x1, X2, ..., Xp). Let [xal‘x;’...x‘;’] denote the coefficient of
the x‘;lxgz...x? term in A(G ; X1, X2, ..., Xp). Then [xal‘x;z...x;?] is 1 if G
can be colored with the color assignment aj to Xj; a2 to X2;..; ap to xpand is

0 otherwise. For example

AKX x)) = (x1+x%+x?1’+ ..... ) = Tf;xl

. _ X1 X2\ _(_XIX2
AK2; x1,x2) = (T._—,(T 1 —xz) (I—XIXZ).
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We introduce the notation Xi:T_iﬁTG = ( x +Xx{ +X; +...)to ease the
burden of writing sums and products of infinite series. Similarly, it is useful to define
Xij= T__.’_{.‘_;.‘(Jm = (¥ X, + x%sz + ... ). The notation is used analogously with
additional subscripts, so that Xjjx = ‘ftx‘%:;—x; . For example A(K2) = X1X>3 -

X12.

Let G be a graph and let e = xx; be an edge of G. We denote by G*e
the graph formed from G by contracting the edge e and identifying the vertices
labeled x; and x; to form a new vertex x;j and replacing multiple edges by a single
edge. We also denote by G — e the graph formed by deleting the edge e from G.
We begin with a fundamental result that allows A(G) to be determined recursively
from the generating functions of graphs of smaller size. This result is analogous to the

resuit of Birkhoff and Lewis [2] for determining the chromatic polynomial of a graph.

Theorem 1.1 For any graph G and any arbitrary edge e in G, the partition function
A(G) is given by A( G) = A(G -e) - A(G*e)

Proof. Let e= xixj' be an edge of G. Then A(G-e) is nearly the same as the

counting series for G except it allows the extra possibility of colorings of G where x;
and x;j have been assigned the same color. But A(G*e) is precisely the counting
series for G in which x; and x; have been assigned the same color. Hence, AG)=

A(G-e) - A(G*e) follows immediately. O

We illustrate the use of this theorem with the following example:
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Then ,
X 3 x)0 /"3 /“3

x2 X2 X]z

X,0 oX3 X0 OX3
= . - +
X20 X0 X190 X123 ©
So that A(G) = X1XoX3 - Xi1X23 - X12X3 + X123
Figure 1.2

The following theorem relates the partition function of a graph G to the

partition functions of the connected components of G.

Theorem 1.2 If G has connected components Gj, G2, ..., Gi then
A(G) = A(G1)A(G2)...A(Gy)

Proof. Since the components of G are disjoint, the coloring of each is independent
of the coloring of the others. Hence, the number of ways of coloring G is simply the

product of the number of ways of coloring the separate components.
Section 1.3 The Main Result

For any subgraph H of G we introduce the contraction G*H to be the graph
obtained from G by contracting all the edges of H. Observe that G*G has no edges
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and its order is simply the number of components in G, denoted k(G). Each new
vertex has multiple subscripts, as many as the order of the component from which it
came. We next present a theorem that evaluates the partition function of a graph G in
terms of its spanning subgraphs. We denote by H(G) the collection of all spanning
subgraphs of G ie. HG)={ HIG>H,V(G) = V) and E(G) 2 E(H) }. The
next theorem is effectively an inclusion—exclusion result that evaluates the chromatic
partition function of G in terms of improper partitions which use constant values on

connected components of H contrary to the rules for chromatic partitions. O

Theorem 1.3 Let G be a graph and;let H(G) be the collection of all spanning

subgraphs of G. Then '
AG)= Y (~1)EH) A(H*H). (1)
HeH(G)

Proof. We proceed by induction on the size of G. If [E(G)I =0, the only subgraph
of G isH=G and H*H =G so that the identity is trivial. Now suppose that the
result is true for all graphs of size less than a fixed positive integer m. We must show
that the result holds for any graph of size m.

Let G be a graph of s1ze m, i.e. [E(G)I=m and suppose that e =xix; is an
edge of G. Then by Theorem 1.1, A(G) = A(G-e) - A(G*e). Since IE(G-e)l =
[E(G)1 =m-1 <m, we conclude that

AG-e)= D (-1)EE A@E*H).
HeH(G-e)

Similarly, since [E(G*e)l <m we observe that

AG*e)= Y (-1)E@ AH*H),

HeH(GYe)
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Observe that H(G-e) is the collection of all spanning subgraphs of G in which the
edge ¢ is notincluded. We claim that

- DDEMIAGHE) = 3 (D)EE AGEH)
HeH(G*) HeH(G)-H(G-¢)

i.e. the second term is the correct count for all spanning subgraphs of G in which the
edge e is present. Suppose that on contracting the edge e and identifying the vertices
xj and x;j no multiple edges are formed, then the result is clear since xj and x; will
be in same component of every spanning subgraph of G containing the edge e.
Suppose now that there exists at least one vertex xx such that xjxx and xjxx are
edges of G. Then xjxjxx forms a triangle and on contracting edge e we obtain a pair
of edges joining xjj and xx. We shall replace the pair by a single edge and show that
this does not alter the net count. Notice that the sign of each term in equation (1)
depends on the number of edges. Now for each term corresponding to a particular H
< G*e in which the edge e is present, there corresponds three subgraplis Hj, Hp, H3
of G such that Hy*e = H. These three subgraphs are

(1) Hj, which contains edges xix;j and xjxx but not xjxx

(2) Hp, having edges xjxj and xjxx present but not xjxy
and  (3) H3 in which edges xixj, xjxx and xixk are all present.
Notice then that [E(H))! = [E(H2)l = [E(H3)l-1 so that the term corresponding to Hp
and Hj are of opposite sign in (1). Thus both terms may be deleted with no net effect
on the sum. The remaining term (—1)EM! A(H1*H;) in A(G) is identical to the (-
1)'E(_H)'A(H*H) term in A(G*e). The extra factor of (1) accounts for the edge e,
and is just what we need to produce the minus sign preceding the summation on the left
hand side of (1). Hence we have verified the identity. O

We illustrate the usefulness of this result in the example below.
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X1 X9

Then the subgraphs of G are listed below with the sign indicating odd or even

LetG:
Xq X,
number of edges:
X o °x2 x o—-—-ox2
+ -

30 o4 X3, ox4
X °x2
- X3 [ o4
X oxz
X10 o*2
_x3 X4

So that
AG) =X1XoX3Xy - X12X3X4
- X13X0X4
- X14X2X3
- X1X2X34

X2

X4

X2
I o4
X1 °_°x2

+
Xs X4

o*2
1\"4

"'x3 l X4

Xl Xz xl
x4 X4 "3
X X2
Xy SH
X X2

X

Xa
X3 [ :"4

- X134X2
- X1234
- X1234
-~ X1234

+ X1234
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Section 1.4 Complete Graphs

We now apply this theorem to compute the chromatic partition function of a
complete graph. Let K be the complete graph on p vertices with V(Kp) = {x1, x2,
w Xp}. We denote by Tp the collection of all partitions of the integer p. Let o bea
partition of the set {1, 2,...,p} into disjoint subsets. For each natural number k,
jk(a) is the number of cells of size k in o. Since X kjx must equal p, each set
partition o, having for each k from 1 to p, exactly jix(o) subsets of cardinality k,
can be associated with the unique partition denoted in the vector form
i=G01(a), j2(x), ...) in Tp. Let (§) be the collection of all such o associated with
J. For example if p=9, then o={{124},{3567},(8},{9}} has ji(ov)=2, jo(cx)=0,
j3(o)=1 and js(x)=1, and o is an element of (j) where j=(2,0,1,1) associated with
the partition 12 31 41, We define Xg =I[XA and then the above example
Xo=X124X3567XgX9 serves as an illusn'ationﬁo:his concept.

We are now ready to present the next theorem.

Theorem 1.4 The chromatic partition function for complete graphs of order p is

given by

AKp) = z[(—l)"' z’*ﬁl(k ] IXa -
o)

We approach the proof of this theorem via a lemma, interesting in its own right,
that compares the number of even versus odd sized connected labeled graphs. Let
G(x,y) = z—ﬁp,qxpyq be the counting series for labeled graphs with p vertices and q
edges i. e there are Gp qlabeled p,q—graphs. This generating function is exponential
in the first variable but ordinary in the second. Let C(x,y)—Z—Cp qxPyd be the

corresponding counting series for connected labeled p,q—-graphs Let Chn,e-o denote
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Z(—l)an,q , in other words, the difference between the number of graphs of order n
q
with even size and the number with odd size. We find a remarkably simple formula for

Cn’e_Oo

Lemma 1.5 The difference between the numbers of connected labeled graphs of

cven size.and odd size for order n is just

Cne-o= (-1 y=l(n-1)!.

Proof of Lemma 1.5 The C(x,y) and G(x,y) series are related by
C(x,y) = In(1+ G(x,y)) as derived by Riddel [13]. We now replace y by -1 and
have C(x,-1) = In(1+G(x,~1)).

But G(x,y) = Z ’-:-:-;-(1+y)(;)
n=1

as given by Harary and Palmer {10]. For y=-1 this reduces to

C(x,~1) = In(1+x)

e 2.8 x
i A R

M
2%
£
g

= _1 (ﬂ—l) x_n'
5( e hE

so that Cn’e_o=(—1)n_l (n—l)!. Q

We are now ready to present the...
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Proof of Theorem 1.4 By Theorem 1.3 there is a term in A(Kp) corresponding to

each spanning subgraph of K. The sign of this term is determined by the number of
edges in the subgréph. Let o be a partition of the set {1,2,...,p}. Then to each o

there is a class of subgraphs of Ky, in which the set of labels of the vertices of each

connected component corresponds to the cells of o. If o is an element of (§), we

apply Lemma 1.5 to each cell of o to get ﬁ[(k—l)!]j“ as the coefficient of X since
k=1

there are exactly (k-1)! terms for each cell of size k in o and there are exactly ji(o)

such parts. Also the sign of each term Xy is
12[(_1)(“-1)5k = (1) Z-Diie = (-1) Zkje —Je = (~1) P-Zie
k=1

Hence the result follows immediately. O

We now use the above theorem to evaluate the chromatic function for complete
.graphs. In the table below the complete graph Kp has vertex set
V(Kp) = {x1, X2, ..., Xp}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Table 1.1

Chromatic Partition Functions Evaluated for the Complete Graphs Kp

AKy) =
AK) = X1X2-Xj2
AK3) = X)XoX3 —X12X3+2X123
- X23X1
-X13X2
AKy = - X12X3X4 + X12X34  + 2X123X4 - 6X1234
- X13X2X4 + X14X23  + 2X3124X3
- X14X2X3 + X13Xg4 + 2Xj34X3
- X23X1Xy + 2X934X
- X4X31X3
- X34X1X2
AKs) =X1X2X3X4Xs - X12X3X4X5  + X12X34X5 - 2X123X4Xs
- X13X2XyXs5 + X14X23X5 - 2X124X3X5
- X14X2X3X5  + X13X24X5 - 2X134X2X5
- X23X1X4Xs5 + X25X34X1 -~ 2X234X1X5
- XaX1X3Xs5  + X45X23X1 - 2X145X3X4
- X34X1XoXs5  + X35X24X1 - 2X)35X2X4
- X15X2X3Xq  + X15X34X2 - 2X235X1X4
- X25X1X3X4  + X14X35X2 - 2X145X2X3
- X35X1XoX4  + X)13Xg5X2 - 2X45X1X3
- X45X1X0X3  + X12X35X4 - 2X345X1X2
+ X15X23X4
+ X13X25X4
+ X12X45X3
+ X14X25X3
+ X15X24X3
+ 2X123X45 - 6X1234X5 + 24X12345
+ 2X124X35 ~ 6X2345X1
+ 2X134X25 - 6X1345X2
+ 2X234X15 - 6X1245X3
+ 2X125X34 - 6X1235X4
+ 2X135X24
+ 2X235X14
+ 2X145X23
+ 2X245X13
+ 2X345X21

11



Section 1.5 Expressing The Partition Function in Terms of Subgraphs

Keeping in mind the complexity involved in bdmputing the chromatic partition
function, A(G), of a graph G, we present a‘ result thét allows us to compute A(G) in
terms of the partition function of its subgraphs.' We first define a special product of the
partition functions of graphs. Let « beb a partition of the set Z=({1,2,..,p}.
Define K¢ to be the graph vertex sef VKe) = ZJ and the cbmponents of Ky are the
complete graphs on the cells of or. We say that x,y € Z are relatéd under o if they
are in the same cell of o or equivalently if they are COnheéted in Kq. Now suppose
that B is another partition of Z. Then we define Gduﬂ to be the graph Kq L Kg,
where the vertices with the same labels are identified and multiple edges are replaced by
a single edge. We say that x,y € Z are related under o L B if they are connected by a
pathin Goug . Therefore y=a:UP is the partition of Z obtained from o and B.
We illustrate this concept below:

Leta= {{135},{78},(26},{4}}
and B= {(142},{63},{8},(7),(5}}
thenauP = {{123456},{78}}
We are now ready to define the special product of the partition functions:
Xo U Xp = Xaup
so that in the above example
X135X78X26X4 U X142X63X8X7X'5 = X123456X78 -
This product is defined to be distributive over addition and subtraction and the
associative property holds i.e.
XotXp) U Xy =Xq U Xy +XpU Xy
and : XoWXp) U Xy =XqU XU Xy) .
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We need some more definitions. Let G be a graph with vertex set
V(G) = {x1, X2, ..., Xp} and let e =x;x; be an edge of G. We definp Ge to be
the subgraph of G with vertex set V(Ge) = V(G)={x1,X2,...,Xp}, but the edge set
E(Ge)={e}, i.e. G is the spanning subgraph of G containing oniy the edge e. Now
observe that A(Ge)=X1X2...X;..Xj..Xp - X1X2..Xi-1XijXi+1..-Xj-1Xj+1...Xp by

theorem 1. We are now ready to present the next theorem.

Theorem 1.6 Let G be a graph with vertex set V(G) = {x], x2, ..., Xp} and
edge set E(G) = {ej, €2, ..., eq}. Then A(G)=A(Gel)uA(Ge2)u...uA(Geq).

Before presenting the proof of this theorem we shall illustrate its use.

Xl X2
Let G:
X X4
(o) OO0 O (o) ®)
Then G: = ] ) v
(@) (o) (o] (@) o0

So that
A(G) = X1X2X3X4-X13X2X)U(X1X2X3X4-X 12X3X4)V

(X1X2X3X4-X23X1X4) U(X1X2X3X4-X34X1X2)
Figure 1.4

Proof. By Theorem 1.3, every term of A(G) corresponds to some spanning

subgraph of G. But each such spanning subgraph also corresponds to exactly one
term above i.e. the first term of A(Gei) corresponds to the case when the edge e; is

not present in the subgraph and the second term corresponds to the case when it is

present. The result follows immediately. O
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This yields the next result.

Corollary. Let G be a graph with vertex set V(G) = {x1, X2, ..., Xp} and let
G; and Gz be two spanning subgraphs of G such that E(G1) N E(G2) = ©@.
Then A(G) = A(G1) v A(G)).

Proof. The operation just defined is commutative so that we can group the respective

edges to form Gj and G so that the result follows immediately. O

We will illustrate the usefulness of this corollary next.

x X9 x,0 Ox,
Let Gy: and Go:
x Ox, X30—0Ox,

Then A(G) = AG1)UA(Gy).

= ( X1X2X3X4 — X12X3 X4 +2X123X4 )U( X1X2X3X4 — X34X1X2 )
- X23X1X4
- X13X2X4
= ( X1X2X3X4 - X12X3 X4 +2X123X4 — 2X1234)
-X23X1Xs + X12X34
- X13X2X4 + X234X1
-X1X2X34 + X134X2

Figure 1.5

In the next chapter we will consider the unlabeled chromatic partition function.
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CHAPTER II
THE UNLABELED CHROMATIC PARTIZION FUNCTION
Section 2.1 Group Theoretic Preliminaries

We proceed to address the problem of determining the chromatic partition
function of an unlabeled graph. Let G be a graph with vertex set
V(G) = {x1, X2, ..., Xp} and let I'(G) denote the automorphism group of G. We
denote by I'1(G) the subset of I'(G) in which every orbit consists solely of
independent vertices. We denote by A(G; I'(G)) the chromatic partition function for
the unlabeled graph underlying the labeled graph G. Then the following is an
immediate consequence of the restricted form of Burnside's Lemma, which we state
below. We shall adopt the notation of Harary and Palmer [10]. Let A be a
permutation group with object set X ={1,2,3,..,n}. Then x,y € X are called
A-equivalent , or simil?.r, if there is a permutation & € A such that ax =y. This is
easily seen to be an equivalence relation on the set X and the equivalence classes are
called the orbits of A. Let N(A) denote the number of orbits of A. We often restrict
A toasubset Y of X where Y is a union of orbits of A, and we denote by AlY the
set of permutations on Y obtained by restricting those of A to Y. We denote by
ji(a), o € A, the number of elements of X fixed by o. Similarly for B e AlY,
we denote by ji(BIY) the number of elements of Y fixed by B. We now state

15
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Burnside's lemma. If A is a permutation g}'oup acting on some object set X, then
the number of orbits, N(A) of A is givenby N(A) = 71{7 ‘Ekj](a) . Similarly, if Y
is a subset of X consisting of the union of certain orbits of A, then
N(AIY) = 37 3 ju(alY)

acA

Section 2.2 The Unlabeled Chromatic Partition Function

We are now ready to state the next result which allows us to compute the

unlabeled chromatic partition function from the labeled case.

Theorem 2.1 Let G be graph with vertex set V(G) = {(x], X2, ..., Xp}. Then

AGTIG) =—1— D, AG)xq.
/ aeryG)

Before presenting the proof of the above result we shall illustrate it with an

example.

X3 o—ox2
Let G:
X3 o_ox4
Then T(G) = {(DR)B)@), (12)BHA(1)2)(34),(23)(14),(13)(24),
(12)(34),(1324), (1423)}
and T1G) = {(1DQ)(3)(4),(23)(14),(13)(24)}
A(G) = X1X5X3X4 — X1X7X34 — X12X3X4 + X12X34
AGT(G) =1 ( AG) + A(G)UX23X14 + AGYUX13X24 )
=g ( X1X2X3X4 - X12X3X4 + X12X34 - 2X1234)

- X1X2X134 + X23X14
+ X13X24

Figure 2.1
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We now present the proof of the theorem.

Proof. Let T be a proper assignment of colors to the vertices of G, where the
colors are natural numbers. We denote the resulting colored graph by Gr. Let G be
the collection of all such colored graphs. We let I'(G) acton G as follows: if
o € I'(G) then a(Gz) = Gy where 7 is the coloring of G obtained by letting o
permute the vertices of G but fixing the colors. We nbw apply Burnside's Lemma to
count the number of equivalent classes of G under I'(G). If o € I'(G) - T'K(G),
however, then improper colorings of G may result under the action of o, so we
restrict I'(G) to I'1(G) and apply the restricted form of Burnside's Lemma. If
o € I'1(G), then we count the fixed elenients of G by observing that a(Gz) = Ge
if and only if T assigns colors which are constant on the vertex orbits of o. Therefore
we see that ji(or) can be replaced by A(G) U X¢. Hence applying Burnside's
Lemma we have

AGTG)=—— D, AG)UXy. O

) eryG)

Section 2.3 The Ordinary Chromatic Polynomial Derived From
the Chromatic Partition Function
We will now see how this new concept relates to the two areas from which it
was derived, namely the chromatic theory of graphs and the theory of partitions in
number theory. Let G be a graph with vertex set V(G) = {x1, X2, ..., Xp} . We
denote by -%(G;A), the chromatic polynomial of a graph G, where %(G,A) is the
number of of distinct proper colorings of the labeled graph G from a palette of A
colors. The chromatic polynomial is related to the chromatic partition function in the

following manner: if A(G;x1,X2,...xp) = 3, Xo then %(G;A) = Y Al where
o o
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lol is the number of cells in o.. For example A(K2) = X3X5—X17 and so we have
%(K2;A) =A2 -~ A. We can easily verify this transformation since each o
corresponds to some spanning subgraph H of G and lal corresponds to the number
of connécted components of H and we assign the A colors freely to these connected
components and apply the inclusion-exclusion principle. We will denote by X? = X
+ xi2 + x:;' ¥ X = x‘——l-_xx—‘:l: and X'i'j = )ng+...+x'i'x;' and so on. If we
substitute each Xj by X:" , Xij by X?} and so on, in A(G), then we obtain the

%(G;\) proper colorings of G with A colors. We illustrate these concepts in the

following example
X
Let G: 1 3
X9
then AG:M) =X1X9X3 — X12X3 + X123
- X23X)
and %(G;A) = A3 = 2A2 + A = A(A-1)2

so that for A=3, %(G;3) = 12 and we obtain the 12 proper colorings of G in
XP XX X5 + Kipg—X0: X} = xj5x3 + x5 +x1x
X + XK + X1,
X%+ Kxys + X355
R + XK+ Ry,

Figure 2.2
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Let %(G;I'(G);A) denote the chromatic polynomial for the unlabeled graph
underlying the labeled graph G. Then we obtain 2(G;T(G)A) from A(G;I'(G)) by
replacing each Xq, by M a5 in the labeled case. For example

X
Let G: lvx3 :
| w2 then AG:T(G) =§X1XoX3 - X1oX3 + X13X2)

- X23X1
so that X(G;T'(G:M) = X( 2323

Figure 2.3

The theory of partitions has been an extensively studied field of number theory.
The chromatic partition function allows us to compute the generating function for
partitions with specified properties. We will now investigate the chromatic partition
functionfs for various families of graphs and interpret the resultant partition generating
function obtained by simply replacing each x; with an x. For example if
A(I_(p;l"(l—(p);x,x,...,x) = a(x) = Z apx" then a, is the number of partitions of n
into exactly p parts. On the other hand, if AKpI'(Kp)ix.x,....x) = b(x) = z bpx™
then by is the number of partitions of n into exactly p distinct parts. These two
families of graphs are the extremes and in each case it would be easier to obtain the

partition generating function directly. Specifically,

xp
TTa-m
n=1

However, if we now consider the intermediate families of graphs we get partition

<PEHD2

a(x) = .
(1-=xm)
n=1

and bRx)=

functions with some interesting properties. For example if A(Ppy; X, X, ..., X) = ¢(X)

= Z cpxM, then c; is the number of sequences of length m and weight n with no
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levels. If A(Km,n; I'm,n); X, X, ..., X) = e(X) = Z eqxd , then e(x) is the
generating function for the number of partitions into two sets of siz¢ m and n with no

repeats between the sets. We will derive general partition identities in the next chapter.
Section 2.4 Specified Minimum Color Difference

We will conclude this chapter with a discussion of chromatic partitions where
the color difference between adjacent vertices is at least some positive integer k. The
next example illustrates the various partitions of n=7 on K31 with k=2, i.e. color

difference at least 2.
5 1 v 4 4
Figure 2.4

We define Xk(G) to be the minimum number of colors required to properly

color the graph G with color difference k between adjacent vertices. We now present

a theorem that relates ¥X(G) to %(G), the ordinary chromatic number of a graph.
This result has been shown in Cozzens and Roberts [S].

Theorem 2.2 Yk(G)=1 + k(X(G) - 1).

Proof. It is clear that any graph G can be k-~colored with at most 1 + k()}(G) -

1) colors since for any coloring of G one can obtain a proper k-coloring by
replacing color i with color 1+k(i-1). Therefore suppose G is a graph with
Yk(G) S k(}(G)-1). Let T be a proper k—coloring of G with ¥k(G) colors.
Now any color t;, where 1<t) <k+1 can be replaced by the color 1 since any

vertex colored t; in G is not adjacent to any vertex colored 1. Proceeding to the next
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21
interval, any color t; where k+1 <tz <2k+1 can be altered to the color X+1.
Continuing in this manner we obtain a k—coloring of G with at most ¥(G) — 1 colors
1,k+1,....k(%(G) —2) + 1. We now obtain a proper coloring of G with at most
% (G) - 1 colors by replacing the color tk+1 with t+1, which is obviously a

contradiction. O
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CHAPTER IIT
PARTITION IDENTITIES
Section 3.1 Introduction

In this chapter we will investigate the partition identities obtained from the
chromatic partition function. We do this by replacing each x; withan x in
A(G; x1, x2, ..., Xp) or A(G; I'(G); x1, X2, ..., Xp) to obtain a generating
function for partitions whose properties depend upon the structure of the graph. For
example A(Kp; I"(Kp); X, X, ..., X) is the generating function for partitions with

exactly p distinct parts. We will investigate various families of graphs.
Section 3.2 Bipartitions

We begin with the partitions obtained from the family of complete bipartite graphs. Let
Pmn(x) = A(Kmn; F(Km,n); X, X, ..., X) denote the generating function for
partitions of an integer into m+n parts with the parts separated into two sets Smy Sn
such that ISyl=m and ISyl=n and further more SyuNSy =9, i.e. repeats are
allowed within each set Sy, Sp, but no part is repeated between the sets. We shall
call these bipartite partitions or, to be brief, bipartitions. For example, in the analysis
of P4s5(x), 1344:22558 is alegal bipartition but 1244:2355 8 is not

legal because of the repeated 2. The generating function for Py n(x) reduces to a

remarkably simple formula.

22
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Theorem 3.1 Let m and n be positive integers. Then

m+n-1
(xm+2n4.xn+2m) H(1+xi )
for m#n, Pmn(x) = — - =l
H( I-x2i )II( 1-x2i)
i=l

i=l

2m-1
x3m ] (1+x)
and Pum(x) = —tl—o

m
L1277
i=l

Proof. We will prove this result by demonstrating a one-to-one correspondence
between bipartitions and the terms in the above formula. We shall consider two cases.
CASE 1. m#n.

Let Smpn be the set of all bipartitions with m,n parts. We now prescribe an
algorithm for obtaining the unique term in the expansion of the formula that
corresponds to an arbitrary element of
o=1[a; a2 ...am : by bz..bpl € Sm,n wherel€ aj € az...<apand
1< by £bz...<bp and no a; = bj. Each step of the algorithm contributes a term
T; within the formula.

Algorithm :

Step 1 :
If aj <by and a;= 0 mod2, then set Tg=x2m+n
If aj <b; and a;= 1 mod2, then set Tp=xm+2n
If a; >b; and by =0 mod2, then set Tg = xm+2n
If a; >b; and by =1 mod2, then set Tgp=x2m+n
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We modify sequence o as follows:

o =[a1-2, az-2, ...,am-2: bi1-1, bz-1, ..., bp-1] if To = x2m+n |
or o = [a1-1, az-1, ..., am-1:b3-2, bz-2, ..., bp-2] if To = xm+2n |

Of course 0. may now have some equal terms on opposite sides.

Step 2 :

For i=1 to m+n-1, examine the i+1St smallest part in o (ignoring the a:b
distinction). If it is an even integer leave o unchanged and set Tm4ni=1. Butif it
is odd, decrease it and every larger part by 1 and set Tpyn-i= xm+n-i | That is

Tmsni counts the effect of reducing the m+n-i largest parts by one each.

Step 3 :

Now 0. has only even paris that correspond to a pair of even partitions Fr, and Fy.

Let us illustrate this algorithm with a sequence in Sgg9. We only list Tj's that are not

equal to 1.
m= 8§ : n=29
For a=[229910 1112 14:7 7 8 8 13 15 16 17 17]
Tp = x2m+n 0077 8 91012:667 7 12 14 15 16 16
Ti3=x13 66 7 8 911 661113 14 15 15
Tog =x9 6 7 910: 10 12 13 14 14
Tg =x8 6 7 9: 9 11 12 13 13
T7 =x7 6 8: 810 11 12 12
T3 =x3 : 10 11 11
Ty =x2 : 10 10
00666 6 6 8:6666 810 101010

Fm:Fq x6)5 (x8)1 : (x6)4 (x8)1 (x10)4

We reverse the procedure to obtain the original sequence. The algorithm for the

reversal process is as follows :
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25
Algorithm:
Step 1:
Start with an even sequence (0's permitted) in non-decreasing order in each cell. If

To = x2m+n, add 2 tothe m-celland 1 to the n-cell, or vice-versa if Tq=xm+2n,

Step 2:
For i=n+m-1 to 1,if T;=xi add 1 tothe i largest parts to obtain a new sequence.
If Tj =1 there is no change, proceed to the next smaller value of i.

We illustrate this idea below with an example.

m H n
"Start with 0066 6 6 6 8:6666 810101010
Ty = x2m+n 2288 8 8 810:7777 911111111
T3 = x13 99 9 9 911: 881012121212
Tg =x9 A 10 10 10 12: 11 13 13 13 13
Tg =x8 11 11 13: 12 14 14 14 14
Ty =x7 12 14: 131515 15 15
T3 =x3 : 16 16 16
Ty =x2 : 17 17
To give a=[229910111214:77 8 8 13 15 16 17 17]

Observe that, for each bipartition we start with, we obtain a set of temis unique
to that sequence. Conversely, starting with a set of terms from the formula we
construct a unique Sp:Sp bipartition. This establishes a one-to-one correspondence.
It remains to produce the formula in the theorem.

The factor (x'ln"'zn + x2m+0) in the formula allows for the possible choices of
m-+n-

To. The factor H1+xi accounts for the sequence of terms Tji, T2, ..., Tp4+m-i.
i=1 )
Each T; represents the selection of either xi or 1 from the ith factor in the product.

m
Finally, Fp refers to the set of m even parts and is counted by [ ] (1-x2i)-L.
n . i=1
Similarly Fy is counted by H(l-x21)‘1. This completes the proof of the case 1 in
i=1
which m=n.
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CASE 2. m=n
We obtain the claimed formula by observing that every sequence of Sgym is
counted twice in Case 1 if m=n. Therefore We simply set n=m and divide the result

by 2 to obtain the correct formula. O

Section 3.3 Labeled Paths

Let Py denote the path with m vertices , having A(Pm; X1, X2, ..., Xm) as its
chromatic partition function. Let Ppy(x) denote the polynomial obtained from the
chromatic partition function by replacing each x; with an x, i.e. Pn(x) = A(Py; x, X,
v, X). Suppose Pm(x) = 2, agxk, then ay enumerates the number of ways to
partition the integer k into sequences of length m of positive integers with no repeats
allowed between adjacent elements. Fc;r example if m=3 then a7=9 since there are
exactly nine sequences 151; 124; 142; 214; 241; 412; 421; 232; 313. In this section
we obtain a surprising formula for Pp(x). We need a few definitions first...

Let m be a positive integer, then define A, to be the set of ordered partitions
of m in which there is at most one part of size 1, and furthermore if 1 does appear,
then it must be placed at the beginning of the ordered partition. For example if m=6
then Ag= {6, 15, 24, 42, 33,123, 132, 222). Observe that 51,213, 312, 231, 321
are all forbidden by the leading 1 condition and 141, 114 (and many others) &e
forbidden because they repeat the part 1. If k is a positive integer then we denot;a by
Tk the polynorhial (1-x)(1-x2)(1-x3)...(1-xK) i.e.

I; = (1-x)
ITp = (1-x)(1-x?)
IT3 = (1-x)(1-x2)(1-x3)

.
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For each e A, we define

o= [Ja.

te o
For example for o€ Ag given by o =132 we find
Mg = IIT3II; = (1-x)(1-x)(1-x2)(1-x3)(1-x)(1-x2) .
For each o€ A, let o denote the first element of o and let ¢ denote the rest of

o. In the example above, of=1 and o =32,

orf ifar=g

of * [I(k-1) otherwise
ke 0y

We denote by (o) =

Forexample t(132) =121 =2

and t(3622) = 3-5-1-1 = 15.

Define d(or) to be the degree of the polynomial Ily. Therefore
d@ = Xddlw

ke o

= Y(1+2+...4+k)
ke o

- 36

ke o

Thus d(132) = 1+6+3 =10 and d(3622) = 6+21+3+3 = 33,

We are now ready to present the next result which provides a surprisingly

compact form for Ppy(x).

Theorem 3.2 Let m be a positive integer, then

d(a)
Pufr)= D, "(ELXZT @

acAnm He
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Before presenting the proof we will illusfrate with an example. This will be
instructive since the proof is a construction of a 1:1 correspondence between each
"chromatic sequence” and each term in the above expression.

As we saw earlier, Ag= {6, 15, 24, 42, 33,123, 132, 222}.

Then according to the above expression we obtain...

6x21  4x16 6x13 4x13 6x12 2x10 2x10
Pe(x) = + + + + +
g Inns Iih I 113113 ILIII2 IIIRIT3
2x9
J5)06)80]

6x21 + 4x16 + 10x13 + 6x12 . 4x10 + 2x9
Ile INIls 1IIll4 I3 INMRII3  TIRIIDINR

In the second line we have collected terms with common denominator, as one would

surely do before actually computing the series.

Proof. We establish a one-to-one correspondence between each term in the formula
and each sequence, in the manner described below.

Let o A, then corresponding to o there is a "basic partition" composed of
cells of decreasing sequences, one cell kk-1k-2,..,2,1 for each ke o, and these
cells preserve the order given by o. For example if =323, the basic sequence is 321
21 321. Observe that the 'weight' of the basic sequence is just the degree d(c) of Tlg,
i.e. d(ox) is the sum of the elements in the basic sequence of a. Also corresponding
to each @, is a product of infinite series disguised in the denominator as Ilq. For

example
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1 1
LI  A0I-xD)Ax)1-X)A-xD)A-x)(1-xD)(1-x3)

= (14x+.)(1+x24. ) (T340 (L+x+. ) (14X2+..)
(L) (L2 (14%3+.)

Now in the expansion of this product, corresponding to each term we will
obtain an "augmented basic partition" by piling onto each cell of basic partition the
amount specified by that term in a manner that maintains the decreasing pattern on each
cell. 'For example if we select the term (x1)2(x2)3(x3)1; (x1)4(x2)1; (x1)3(x2)0(x3)1,

from the expansion above, then to the basic partition

32 1 2 1 321
we add &Hl1 11 : &l 11
x233 3 &)1 1 x200 0
(x1)2 2 x4 4 13 3
to obtain 9 6 2 7 2 7 3 2

as the augmented basic partition.

To each augmented partition obtained from o, there corresponds exactly t(c)
chromatic sequences. We obtain these t(at) sequences by rotating each cell of the
augmented basic partition allowing the first cell complete freedom to be rotated to any
position, but all subsequent cells have one forbidden position. For the kth cell (k>1)
we shall associate a sequence of half open intervals. For example the cell 8753 has
four intervals : [3,5); [5,7); [7,8); and [8,3). Here the unique improper interval is
viewed as the complement N —[3,8) so that the full set of four, partitions the natural
numbers into intervals. In this example, the four intervals are just {3,4}, {5,6}, {7},
and everything else. As we assemble all possible partitions that can be obtained from a
single augmented sequence, we rotate each cell subject to the constraint that the kth cell

can be rotated to any position except one, namely the one in which the last entry of the
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k-1st cell is at least as large as the 15t entry in the rotated kth cell, but also smaller
than the last entry. For example, if the k-15t cell ends witha 5 ora 6, and the kth
cell is obtained from 8753, we permit rotations giving 8753, 7538, 3875 but we
forbid 5387. In effect, the forbidden pattern would either create a repeated value on
neighbors or else produce ambiguity in the cell size. After all 55387 is forbidden, and
65387 could be a cell of size 5. Similarly if 2 or 9 both lie in the interval [8,3) of
the sequence 8753, we avoid that interval to obtain 2,7538; 2,5387; and 2,3875 or

30

9,7538; 9,5387; and 9,3875. Therefore, for each augmented basic pattern, we can

multiply the number of permitted rotations on each cell to obtain t(e) as the number of
sequences that can be generated from that particular augmented sequence.

In our previous example with 962 72 732 as the augmented basic partition
obtained from o = 323, we compute t(0t)=3-1-2=6 sequences, namely:

962 72732
962 72 327
296 72732
296 72 327
629 27 327
629 27 273.

To show that this construction is one-to-one and onto we consider an arbitrary
sequence of length m and determine its unique augmented basic partition and hence the
o. from which it must be derived. Let Yy = aj, a2,...,am Wwith aj# aj41 (for all i).
Partition the sequence 7y into decreasing segments as we move from left to right. An
example will serve to illustrate here. Let vy =
4 12 10 3 12 10 4 2 8 5 4 3. Decomposing Yy into decreasing
segments we obtain the four cells 4 12 10 3 12 10 4 2 8 5 4 3.
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The right-most cell will include all of the last segment in y and perhaps a
portion of the penultimate segment. How much?. Identify the right-most element a;
in the penultimate segment that satisfies aj2 ay ( the last element in y). Then the
right-most cell contains aj,; through am. If it happens that aj2apy forall aj in the
penultimate segment then the rightmost cell is comprised of the final two segments.
Remove the final cell and repeat the procedure to find the next rightmost cell, and so
on, until vy is exhausted. We illustrate this procedure with an example below.

Let y=2 109721 432 54 1076 be a chromatic
sequence of length fourteen. Then the rightmost cell of Yis 54107 6 to obtaina
reduced seqﬁence vY=2 1097 21 432. The.rightmost cell of y' is
1432, Toobtain y'=2 109 7 2 . Then the rightmost cell of y" is
1097 2. Therefore the cells of vy are (2)(109 7 2)(1 4 3 2)(5 4 10 7

6) and the augmented basic partition corresponding to y is (2)(10 9 7 2)(4 3
21)(10 7 6 5 4) obtained from o = 1445.

To demonstrate that the procedure is one-to-one, we must establish that ¢ can
be obtained from a unique o€ Ap. Suppose to the contrary that Y can be obtained
from some other Be Ap. Then the cell structure of f must differ from that of o in at
least one position. Then at that position the sequence Yy must violate the forbidden
rotation rule. For example for ¥ above one can ask why couldn't the cell structure of
Y be (2)(109 7 2 1)(4 3 2)(5 4 10 7 6) ?. On closer inspection, we notice that
the 2nd cellends in a 1, and the only allowed rotations are 243 and 324, thus 432 is
a forbidden rotation of the 3rd cell if the second ends ina 1. Therefore we have a one-
to-one correspondence between each term in (2) and each "chromatic sequence”. This

completes the proof. 0
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We present in the following page a table of these partition generating functions

and in Appendix A a table of values computed to x45 for paths.
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Table 3.1

Partition Functions for Labeled Paths

P2

P3:

P4:

Ps:

Pg:

23

Iz

3x6 + x4
II3 I11I12

4x10 + 2x7 + 2x6
4 I3 Il

5x15 + 3x11 + 7x9 + x7
5 My I3 INLIIDR

6x21 . 4x16 N 10x13 . 6x12 N 4x10 N 2x9
g Ills IRIY IBN3  INIRII3  IIRIIII2

7x28 +5x22 . 13x18 N 17x16 N 6x14 . 11x12
17 INIille II2II5 II3I14 ITiII2T14 T12I12113

4x13 . x10
I II3I13 IT 121101

8x36 . 6x29 . 16x24 N 22x21 N 12x20 . 8x19
g INTly 1Idlg II3lls T4l TIiIIoMs

12x17 N 16x16 N 20x15 N 6x13 . 2x12
IIII3Il4  II2M0pM14°  IIII3II3  IT1IT2IIIIS IT2II2I121T,
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Remarks.

We now make some interesting observations of Pp(x) given by the formula in

Theorem 3.2.

Observation 3.1 The sum of the coefficients,

Proof. We first note that there are exactly 2m-1 ways to choose an odd number of
cells from a row of length m. (Choose an arbitrary number from the first m-1 cells.
If that is even then we include that last cell to make the total odd. Otherwise exclude the
last cell.) We must show how the individual terms t(c) relate to these odd subsets.
For each subset, let the even selection mark the beginning of a new cell while each odd

choice provides a pointer within that cell. We illustrate this correspondence below,

Yta) = 2m1

acAp

with m=5. The D t(c)=24=16 terms obtained are

o€ An
(o _ _ =
(- o . _
(- - o _
(- - - o
(- - - -
(2)e _
(o _)Xe _
(o - _XNe
(_oaXe _
(-2 _XNse
(- - o2)Xe
{o)(se o _
(oXe - 2
(o _XNeo
(_2)Xe o

(aXeo)Xeo)
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Q)
Q)
Q)
)
Q)
Q)
Q)
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Is
Is
Is
15
Ils
iy
TIl3

110

I3
Hally
IT3Ia
1301111
Il
ITLI13
ToIT3
136135136
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We note that this procedure allows complete freedom for the pointer in the first cell, but

each subsequent cell loses one position, and that is exactly how t(c) was derived!.

0

A second approach to analyzing these 2m-1 terms is to make use of generating
functions. We observe that the first cell has complete freedom and if it is a cell of size
k then there are exactly k rotations allowed for the first cell. Therefore

q®) =x +2x2 + 3x3 + ..,
counts the number of ways to specify the first cell. For subsequent cells we have k-1

choices for each cell of size k. Therefore

p(x) =x2 + 2x3 + 3x4 +..
x2

(1-x)2

enumerates the ways to specify a single cell. Since there may be 0,1,2,... subsequent

cells, we find that all possibilities are counted by

o A%
Q@[ 1 +p() +p2() +...] = 7565
1-2x

= X +2x2 + 4x3 + ...

Z om-lxm

m

Thus Dt(a) = 2m-1, O
aeAm
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We make a second observation about the number of terms that appear in the
formula. Let Fp denote the mth Fibonacci number i.e. Fi=1; Fp=1; F3=2; F4=3;
etc. The number of terms in Theorem 3.2 is given by this sequence. We state this

as...
Observation 3.2 The number of terms, |[Am/ = Fp.

Proof. We show that |Ap4+2! = |Ap+1! + 1Am| and that 1Agl=1, |Ajl=1. Since
A1={1} and Ajp={2}, it follows that IAjl=1, |Agl=1. To obtain Ap42 from Aps1
and Ay, we add to each element ozevAm, one to the first member and attach a one to
the beginning and to each Pe Ap4+1 We just add one to the first element and take the
union of the two new sets. In general,
o€ An, | =00,y becomes 1,(0ip+1),0

and PeAms1,  P=PiBr becomes (Be+1),Br.

In this manner we obtain the elements of A2, with the terms beginning witha 1
derived from A, and the rest derived from Ap41. This is exactly how the Fibonacci
numbers are defined. O |

Let A:n denote the set of unordered partitions of n in which the part 1
appears at most once. Thus IA;nI is the number of terms optained after collecting terms

with common denominators of the formula in Theorem 3.2. The size of A:n can be

expressed in terms of the classical partition numbers p(n) already introduced in

Chapter 1.

Observation 3.3 /A, /= p(m) - p(m-2).

Proof. Recall that IA:nI is the number of partitions of m with the 1 appearing at

most once. Then
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m
Yiarmm = (140] [ Qxiexiv.)
m=] i=2
= (1+x)(1-x)
Im
1 x2

Y p(m)x™ - Y p(m)xm+2
m=1 m=1

= 3, (p(m)-p(m-2))x™m.

m=1
So it follows immediately that IA7 | = p(m) - p(m-2). O

Section 3.4 Unlabeled Paths

Let Py, denote a path with m vertices, as in the last section. Then
APm ; T'(Pm); X) denotes the unlabeled chromatic partition function for the path. For
brevity, let P (x) = A(Pm ; ['(Pm); ) =Xa,xk. Then a, enumerates the number
of ways to partition the integer k into unlabeled sequences of length m, unlabeled in
the sense that two sequences are equivalent if one can be written in the reverse order of
the other. For example 37143 is equivalent to 34173 and is therefore included only
once in the count for unlabeled sequences of length 5 and weight 18. Thus, for
m=5, it contributes only 1 to ats but 2 to G We will now present a result that
provides us with a formula for P:l(x) in terms of Pi(x) for k<m. We shall denote
the empty graph [10] as P, and take Po(x) to be identically equal to 1. This result is

a direct application of Theorem 1.1 and Theorem 1.6.
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Theorem 3.3 The unlabeled path partition function is given by,

. p* - 1
for m even: Pm(x) = EPm(x)
* ] iy P
form odd: P _(x) = 5{ P (x) + Z[(-I) P [(x )W]}
k=0

Proof. From Theorem 1.6, we obtain

1
IT(Pm)l

*
P_(x) = A(Pm; T(Pm); x) = 2 A(Pm)UXq,

. oel(Pm)
Whem we recall that I'(Pp,) is the symmetry group of Py and I'y(Pp) is the subset
of I'(Py) in which every orbit consists of independent vertices. Therefore we

consider two cases:

CASE 1. miseven.
Then IU(Py)l=2 and I',(Pp) is just the set containing the identity element, e.

Therefore we immediately obtain

p;(x) = LAPnUXe = LA®Pm) = LB ).

CASE 2. mis odd.

Then TPyl =Pl = 2.

Therefore P-.(x) = YA

erefore P_(x) = 5 (Pm)UX¢q
oeT'y(Pm)
= 2 (APm)UXe + A(Pm)UXp)

where B consists of 1 fixed element and m—zl transpositions. We will now obtain a
simple expression for A(Pn)UXp. Let Py denote the path of length r where the

first vertex has weight k and the remaining r vertices have weight 2. Itis easy to see
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that if a vertex X; has weight s then in the chromatic partition function one replaces xj
by xis. Now observe that A(Pp)UXp = A(P1,(m-1)2). Also it is an easy application
of Theorem 1.1 to see that

xk 2
APi) = 7% Pr(x%) — APra2r-1)- €))
For example APLa) = T Pa(x?) ~ A(P3,3)

3
= T PaCx?) - T Ps(x?) + APs2).

After several applications of (3) we observe that

4 k xzk'l'l ",
A®14) =k§0<-1) TeT Pax(xd) .

In the general case we see that

APy = Z( 1>k1 ml Pri(x?). Q

This result is effectively an inclusion-exclusion result and is therefore not very
computationally efficient. We now present a second expression for P;l(x) when m is
odd. This result is obtained by manipulating the generating function for Pz'm +1) /2(x).
We need to define two new polynomials. Let k be a positive integer, then we define
I, = i1l"[1(1-;¢2i) and for k=0, Iy is identically equal to 1. Also for k a positive

integer we define

¢ 0y
-3 G,

xk'P"'ll'lp

For example T, = (1-x2)(1-x4)(1-x6)(1-x8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39



and wgq =

1 1 _
RN T AR IR

1 1
AL I)AxD | xR A-BAOAXD
'We are now ready to present the next theorem.

Theorem 3.4 For m a positive odd integer,

B =4l Pam v ¥ L ihiiiayy

*
orIT
O€ Ame1)2 F oy

where we recall that Ay is the set of ordered partitions of r defined in Section 3.2,
*
d(a) is the degree of Ily, t(w) is the special product of o, and II oF is defined

 similar to Hoq in Section 3.2.

Sketch of Proof. We will illustrate the proof with an example. Let us compute

Py(x). By Theorem 1.6, Py(x) = £(Pg(x) + A(P14)). As in the last theorem,

we obtain an expression for A(P14) by manipulating the result for P5(x). As we saw
in the previous section:

5x15+ 3x!1 N 4x9 + 3x9 + x/
Ils III1y ILIT; l'Igl'Ig I 11,115

Ps(x) =

We recall that the coefficient of each term was obtained by rotating the
decreasing cycles in a prescribed manner, with the first cell having complete freedom of
rotation. We note that Py 4 is just Ps with the first vertex having weight 1 and the
remaining having weight 2. To account for the first element of the initial cell having

single weight, we replace x by x2 everywhere except for the first rotated position of
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41

the initial cell. We obtain o terms for each o€ Am41)2 Since each initial cell can be

rotated to of positions. For example the term

3x9 . . .
- in P5(x) gives rise to three
2

terms in Pj 4(x) namely :
x18 . x18 . x18
BUOAB AL, 2D, x(1-xD)(A-x)(AxO)L,

Observe that the leading factor of xK in the denominator corresponds to the rotation of
the initial cell which places the element of size k in the first position. Of course this
means that any piling that involves this element need not not be doubled since the first

element of the sequence has weight 1. O

The last result provides us with an expression that allows us to compute the
result in an efficient manner, even though the terms get complicated. We illustrate the

generating function for unlabeled chromatic sequences of length 9.

Pi(x) = & {Pox) + S
o=z M9 BRI AR AX)AX0)
30 ) 30
t RO T B 1) (1-x (10
. %30 %30

AR AROAxN1R) T XX (1P (1-x8)(1-x0)

22
+ #
x(1-0IL
13 2x18
+ 2x - 4 2x -
x2(1-x)(1-x)IL, x(1-x2)(1-x3)I1,
. X18 X18 X18

+
x3(1-x)(1-x3)(1xHL,  *x2(1-x2)(1-x3)(1-x5)L; * x(1-x)(1-x4)(1-x5)IL;
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42
14
—— }

x(l-x)II;H;

+

Section 3.5 Weighted Paths

" We now wish to enumerate sequences in which the first two elements are equal
and the remaining sequence is chromatic. Let P:‘n denote the path on m vertices with
the first vertex having weight k. Then A(P‘zn) =Pm+1(X) - T%—;Pm(x) follows
immediately from Theorem 1.1. We now present a result that is again a modification of

the generating function of Theorem 3.2. We need to define a new polynomial. For k

N N (1-x)ixk-i+1
a positve integer, let v = Z .

i=1 Hk+l
For example v4 = xt + x3
P 4 (l-xf)(l-x3)(1-x4)(%-x5) (1-x)(1-x3)(1-x%)(1-x7)

X

X
Y R0 T T

We close this section with a theorem which we present without proof. The idea is very
similar to the previous result in that instead of avoiding the first position of the rotated

initial cell we need to add an extra piling. .

Theorem 3.5 For a path P,, with a single endpoint of weight 2 and the remaining

vertices of weight 1,

Ve t(o) xd(e)
AR -

acAp of M,
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Section 3.6 Labeled Cycles

We will now consider the chromatic partition function for cycles. In this

section we will obtain an expression for A(Cp) in terms of Py(x) for m<n. Let
Cn(x) = A(Cp;x) andlet Cxpn denote the cycle of length n in which one of the
vertices has weight k and the rest have weight 1. Let Ckn(x) =A(Cgpn;x) and

note that Cp(x) = Cp,n(x). We first obtain an expression for Ckn(x) in terms of

Pnm(x) for m<n.

Theo al 7 Xk xk+n-1

Ck.n(x)=2('1)’ ‘—xE;J'JJPn-j(x) + (Il ey

xIC n-i

Ck n(x)—Z(z)f-I-"—in—,:ijn.,-(x) O e

Proof. The proof proceeds by induction on n and an application of Theorem 1.1.
We recall the definition of Pﬁ to be the path of length n where the first vertex has

weight k and the rest have weight 1. Then an easy application of Theorem 1.1 gives
us a formula for th(x) ,

PE(x) = Z(-l)J (o k,,‘,_)Pn.,oo

It can also easily be shown that for all positive integers k,

2 k+2
Ck3(x) = 3, (-1)i i k+]-1) P3.j(x) + 2_1xxk+2
= )

Now suppose that the result holds for Cg n(x), we show that the result holds for
Cgn+1(x). By Theorem 1.1, Cgp41(x) = Pl; +1&X) - Ck+1,n(x). Therefore by the

induction hypothesis
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n+l x +_]l
Ciant®) = 2D (S Paoje1(x)
Fl

n-1 . k+j . o
zpll(-l)J-l (l,fx—k"'f) JPn.j(x) ~ ('1)“'1(3'1)1)ka+n

We combine the j=n+1 term in the first summation with the final term and shift the

indices in the second summation to get,
Z (’1)" (1 k+]-l) P I‘l-_]+1(x)

* 2‘,(1>J (EErD G- DPajs100 + (Dn (g
The two summations can now be combined to form
Z(-l» (1 k+, 1)11>n.,+1<x> + (-1)n <ny==ﬁ :

which is exactly what we want. Therefore the result is true. [

Setting k=1 in the theorem produces the main result of this section.

Corollary. The partition function for a labeled cycle Cp with n2 3 is

n-l1

Cn(x) = Z(I)I-I (= )JPn.,(x) + (~1)"'1(n-1)%

n-1
Cn(x) = 2(1)1-1( 2 Pajx)  + (DIl

wanao sad T suas 10 GEams Qi GppLVGLIE VL SviuII-UAvARSIUIS and is therefore not
very computationally desirable. For example, suppose Cp(x) = YcxxK, then to
compute the coefficients cx one would need to evaluate at least p(n-1) + p(n-2)
termé, where we recall that p(n) is the number of partitions of n and we saw in

Section 3.2 thateach Pp(x) had p(m)—p(m-2) terms. Of course we would like an
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expression for Cp(x) similar to Ppy(x) which is easier to evaluate and which has a
combinatorial explanation. After simplifying the expression for Cy(x) for various

values of n, we noticed a similar pattern for which we have no combinatorial

explanation. We believe there is an explanation similar to the proof of P (x) and will-

present this as a conjecture. We need a few definitions to present the conjecture. Let
B denote the set of all ordered partitions of m in which each part is of size at least 2.
For example Bg={ 6, 42, 24, 33, 222 }. For PBeBp, let Pr denote the first
element, and P be the remaining elements. Let s(B) denote the special product of the
elements of P described below.

s(B) = Bt Mk-1)
ke By

For example s(42) =4-3-1 =12. We are now ready to present the conjecture.

Conjecture. For m a positive integer 23,

Cm(x) = Z s(ﬁ)—xﬁl
BeBp 11p

The table below shows these partition functions verified up to the case m =7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45



Table 3.1

Partition Functions for Labeled Cycles

6
C3: EX;_
I3
10 6
Cu 12x10 2
Iy 119116
15 9 9
Cs: 20x15  _4x9 _6x
IIs I3 113112
21 13 13 12 9
Ce: 30x + 6x + 12x + 12x + 2x
Ils Iy Tyl IIRII3  IIoIIoINR
. 2 18 18 16 16 12
oy 42x8+ 8x18 . 20x18  18x16  24x16 = 4x

7 IMs TIisTlz  TI3Ml4  TII3  TIRIIoII3

412 _6x12
TIRIT3II3  II3IIRIID
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CHAPTER IV
OPEN PROBLEMS
Section 4.1 Introduction

In this final chapter we discuss various topics (related to chromatic partitions)
that we studied during the course of this dissertation. We also mention a few open
problems at the end of each section. We believe that this new concept has many areas

open for further study and we hope to motivate those ideas here.
Section 4.2 Graphs with Identical Partition Functions

It is well known that there are non-isomorphic graphs which share the same
chromatic polynomial. A very natural question to ask is the following:

Can two non-isomorphic graphs have the same chromatic partition function?

In other words do there exist two graphs G,H with G # H, such that
A(G;x) = A(H;x)? The graphs in Figure 4.1 provide an affirmative answer. This pair
first appears in Chalcraft [3] where they provided examples for other graph
polynomials. Their critical property is their similarity under the deletion and contraction

of certain edges.
e @
G 0 Ho .
Figure 4.1
47
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Theorem 4.1 The graphs Go and Hp in Figure 4.1 have the same partition
function, thatis Go £Hp and A(Gg;x) = A(Hp.x).

Proof. It is easy to see that Go é Hp since Hg has an edge that lies in two
triangles but Gp has no such edge. To prove that A(Go;x) = A(Ho;x) we simply
observe that Gp-e =Hp-f and that Gg* e=Hg* f so that by Theorem 1.1,

AGex) = A(Go-e;x)—A(Go * e ;x)
AHg-£:x) - AH]g * £ ;x)
AHpx). O

In fact we can construct graphs with identical partition functions for any order

greater than 7 by using the join operation.

Corollary For every graph G, G+ Go & G + Hyp, but
A(G + Gg ;x) = A(G + Hp ;x).

We can now ask the same question for trees. Are there trees Ty, T2 such that

T1# T but A(Tyx) = A(T2;x)? It is well known that any two trees of the same

order share the same chromatic polynomial. However here we believe that the answer

to the above question is in the negative. We propose the following

Conjecture 4.1 Given any two trees T; and T: such that T; £ Tz then
A(T1;x) # A(T2;x).

In fact we also believe that the following stronger assertion is true!
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Conjecture 4.2 Given any two forests F; and F such that Fj £Fy then
A(F1;x) # A(F2;x).

In the next section we will consider the sum of a coloring of a graph G.
Section 4.3 The Chromatic Sum of a Graph

For a given graph G, the chromatic sum 3G, is defined in Kubicka's
dissertation [11] as the minimal posSible total that can occur among all proper colorings

of G using natural numbers for the colors. From the perspective of chromatic

partitions, it is the smallest power of x that appears in A(G ;x). We show in [14]
that the chromatic sum for a connected graph G with e edges is tightly bound by
r@_l <3G < L i(-%"—l-)-_' It is also known that the chromatic sum is not always

achieved by using only the chromatic number of distinct colors. That is, there are

graphs for which extra colors must be used to attain the chromatic sum [11]. It appears

that the upper bound of Lx%"-l)-_l applies not only to the coloring attaining the

minimum sum, but also to any Grundy coloring [7] achieving the chromatic number.

Specifically,

Conjecture 4.3 Let G be a graph and let T be a color assignment with color
classes (D],...,(Dx(a) such that @y 2|Dj for all i <j and that given ue D; there

exists ve @; such that uveE(G) for all i=1.2,...j-1. Then

XG)
AL [ 22 |
i=.

We finally end this dissertation with some...
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Section 4.4 Some Other Open Problems
1. Complete n-partite graphs (unlabeled).

In Section 3.1 we obtained an expression for the unlabeled chromatic pastition
function for the completé bipartite graphs. The very 'nice' combinatorial explanation
for that result leads us to suspect that ﬁe complete k—partite case may have a similar
general expression. Therefore we pose the following question; Is there a 'nice’
expression for A(Knl,nz,...,nk); I'(Kny,ny,...,ng) X) The jump from the case k=2

to k=3 seems to be significant in solving this problem.

2. Cycles.

The labeled cycles problem has already been mentioned as a conjecture in
Section 3.5. If the proof of this conjecture has a nice combinatorial explanation then

the unlabeled cycle case may be approachable.
3. Trees.

In Section 3.2 we obtained a nice expression for A(Pp, ; x). The partition
function for a tree in general with maximum degree 2 3 seems to be difficult . Tt will

certainly be easier to search for identities for various families of trees for example

caterpillars.
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APPENDIX A

Partition Functions Evaluated for Paths.
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Partition Fusiction Evaluated for Paths.

xn Py P3 P4 Ps Pg Py
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 2 0 0 0 0 0
4 2 1 0 0 0 0
5 4 2 0 0 0 0
6 4 7 2 0 0 0
7 6 9 6 1 0 0
8 6 15 14 3 0 0
9 8 21 24 15 2 0
10 8 28 46 30 10 1
1 10 35 66 68 30 4
12 10 46 100 119 76 24
13 12 54 138 204 168 69
14 12 66 192 316 320 188
15 14 78 246 489 580 410
16 14 91 324 696 968 858
17 16 104 402 987 1558 1586
18 16 121 506 1340 2380 2837
19 18 135 612 1801 3540 4739
20 18 153 746 2348 5078 7672
21 20 171 882 3035 7160 11868
2 20 190 1054 3833 9804 17951
23 22 209 1224 4812 13238 26270
24 22 232 1432 5935 17510 37718
25 24 252 1644 7273 22884 52878
26 24 276 1896 8792 29418 72962
27 26 300 2148 10576 37462 98813
28 26 325 2448 12576 47054 132115
29 28 350 2748 14887 58638 173973
30 28 379 3098 17465 72272 226606
31 30 405 3450 20401 88454 291575
32 30 435 3854 23651 107262 371649
33 32 465 4260 27319 129312 468880
34 32 496 4726 31349 154644 586814
35 34 527 5190 35861 183994 728017
36 34 562 5716 40791 217442 896860
37 36 594 6246 46260 | 255782 | 1096660
38 36 630 6840 52212 | 299114 1332675
39 38 666 7434 58776 | 348386| 1608997
40 38 703 8100 65881 403652 1932042
41 40| 740| 8766| 73667 466012] 2306716
42 40| 781| 9506| 82068 | 535550| 2740661
43 42| 819 10248 91225 613442 3239897
44 42| 861| 11066| 101067 | 699812] 3813319
45 44 903 1 11886] 111748 796012 | 4468113
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APPENDIX B

The Graphs of Order up to 4.
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The Labeled Chromatic Partition Function and Ordinary Chromatic Polynomial,

G

A@)

X(G)

XIO

Xjo—0X,y

X X3
\4
xl V x3
)
X3 X4
’%1——1x3
xl X4
’%:>>1x3
xl o X4
X2 > X3
N
X3
N
) X3
xl (= X4

X an

»

4

Ny

>

X
X)Xz -Xy2

X, XoX3 ~ X12X3 + Xj23
- XXy

X1 X0X3 - X;12X3 + 2X123
- X3Xy
~Xy13X2

X1 X2X3X4 - X12X3Xy + Xy23X4 - X1234
=X1X23X4 + X1 X034
=X1X2Xa4 + X12X34

X1 XpX3X4 —- X1 X23X4 + X123X4 ~ X1234
- X13X2X4 + XX 24
=X X2X34 + X1 X034

X1 X2X3X4 - X12X3X s + X123X4 - 3X1234
- X1 X23X4 + X1 X024
o~ X1X2X34 + X12X34
= X14XX3 + X14X23
+ x, 24X3
+X134X2

xix2x3x4 =« X12X3X4 + 2X123X4 - 2X1294
=X X23X4 + X1 X334
- X1X2Xa4 + X12X34
~X13X2X, + X;34X2

Xy XoXaX4 - X12X3X4 +2X 23K - 4X1234
= X1X23X4 + 2X 34X
=~ X1 X5X34 + X124X3
= X13XoXy + X234X)
~ X14X2X3 +X12X34
+X14X 23

X XoX3Xq ~X12X3Xy + Xp2Xay +2Xy23Xy —6X1234
= X13X2Xy + XiaX23 + 2X24Xs
- X1aX2Xs + Xj3Xps + 2X24Xo
- X23X X4 + 2X334X;
~X24X1X 3
- X34X1X 2

A2 - A
MA - 1)2

A3 - 322 + 22

At -3 4302

A 303 +3A2- A

A — 403 + 622~ 32

At - 403 +5A2- 20

A% = 523 4 8A2 - 4A

A - 6A3 + 1122 - 6
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The Unlabeled Chromatic Partition Function and the Unlabeled Chromatic Polynomial.

G A(G; T(@G)) X(G; T(G); A)
X0 Xy A
X o—o0X, 3KiXz - X2 3% - ¥
%(xlxzxi X 3:;%3 ;fxlaxz %(k’ -A2)

xlv X3
X2
?i;?xs
X2
X X4
’%1——1x3
xl X4
";I X3

X
1

1

§X1X2X3 - X2X3 + 2Xy23
- XXy
-X13X3)

1

FX1X2X3X4 ~ X12X3X4 + X123Xg - X234
= X1X23X4 + X1X234
-X1X2X34 + X12X34 )

%(xlxzxax.t - X XX 4 + X14XoX3 + X134
=X12XoX, + X24X1 X3
- X1 X2X3s + X12X3Xy
-X12X 34
-X12X 24
- X14X23)

%(X1X2X3X4 = X12X3X4 + X12X34 - 2X1234
~XX23X4 + X14X23
= X1 X2X 134 + X12X24
= X14X2X3 + X1X3X24
+X1aX2X4 )

1

X1 X2X3X4 - X19X3X4 +2X123X4 - 2X1234
= X1 X23X4 + X1 X234
=X XX + X12X34
-X13X2X4 + X134X2 )

;l{(xxxzxsxa =X12X3X4 + 2X23X4 - 2X 1234
= X1 X23X4 + 2X134X2
- xlexM + X1X3X24
- X13X2X 4 + X234Xy
~X14X2X3 + X12X34
- X13X % )

KX 5KXs -Ki3KsKa + XiiKoa + KizKe - 6Kiozs 550 = 6A3 + 1122 - 61)

~X13X2X4 + X14X23 + 2X124X3

=X14X2X3 + X13X04 + 2X134X>

-X23X1X4 + 2X234X
-X24X1X3

- X34X X, )

%(13 - 322 + 22)

N

(A% -3A3 +322- )

%(14 - 12)

=

§(k‘ -2A3 + 322 - 23

204 - 403 + 532 - 2)

%o:* — 433 + 532 - 20)
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