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Indoor positioning systems (IPS) have been the subject of intense academic and 

industrial research due to the significance of such systems in a wide range of 

applications. Applications of IPS include indoor navigation and its associated user 

services, especially by users in large complex buildings, by emergency healthcare 

services to locate a patient, and people with vision impairments. IPS can also play an 

important role in other applications that require tracking and observation, such as those 

used in care for the elderly or security purposes. Therefore, much research has been 

focused on IPS methods that fingerprint the Received Signal Strength (RSS) of the 

wireless local area network (WLAN) in indoor environments, the outcome of which has 

resulted in a positioning accuracy of close to a 1 meter. 

This dissertation presents a framework based on fingerprinting maps for indoor 

positioning systems along with the implementation and testing results. for each 

technique that was investigated under this framework. This work focuses on Bregman 

divergences, which are a generalized form of the well-known Kullback-Leibler 

divergence, suited for convex functions. Since the square root of averaging KL 

divergence (Jensen-Shannon divergence) is a metric parameter, a framework that 
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incorporates the probabilistic neural network (PNN) with Jensen-Shannon Divergence 

(JSD) is proposed. Based on this framework, I also investigated the Jensen-Bregman 

Divergence (JBD). JBD is induced by a strictly convex function generator that unifies 

the celebrated information-theoretic Jensen-Shannon divergence with the squared 

Euclidean and Mahalanobis distances. JBD is used to calculate distance by focusing on 

dissimilarity between classes for a reliable and accurate IPS. The proposed system was 

implemented and simulated in the College of Engineering and Applied Sciences at 

Western Michigan University. To compare and allow for validation of the proposed 

framework, implementation and simulations of the multivariate Kullback-Leibler 

divergence (KLMVG) under the Probability Neural Network (PNN) scheme and under the 

k-Nearest Neighbors (k-NN) technique were performed.  
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CHAPTER I 

 

INTRODUCTION 

 

1.1 Background and General Overview 

 The positioning system has undeniably become an interesting topic of market 

research, especially since global positioning system (GPS) chips have been integrated 

into smartphones. Currently, location-based services (LBS) are not limited to just 

location-tracking services but also offer other services, such as shopping advice, 

tracking of family and friends and tourist services. Many markets in Asia and the United 

States have integrated the positioning service into smartphones with new types of LBS 

coming to the forefront of smartphone technology. Indoor positioning systems (IPS) 

have emerged as a hot topic of research for many different applications. Figure 1 shows 

the diverse categories of LBS [1].  

The digital map is considered to be one of the most fundamental and essential 

smartphone applications. It provides many services such as tracking and routing, 

weather information and traffic flow in the user’s area, and can also be used to recruit 

emergency health care providers, police officers and firemen. A lot of time and 

resources have been preserved by using LBS to save lives. In [2], it was stated that each 

year, an estimated 240 million people call “911” in the United States. The Federal 

Communication Commission stated that approximately 70% of these emergency calls 

were made from wireless phones [1, 3], whereas in Europe, about 
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Figure 1: Categories of location-based services [1] 

65% of the approximately 320 million emergency calls were wireless calls [4]. In most 

cases, users were unable to determine their location and guide emergency services 

accordingly. An additional complication arose if users had to report their location from 

inside a building, where phone service tends to more problematic and is less effective 

than phones with an outdoor positioning system. As a result, a more efficient 

localization technique that can provide more accurate indoor positioning coordinates is 

needed. LBS also have a number of uses in social networking and have become one of 

the biggest LBS markets with regard to the number of users and revenue, especially 

since the development of smartphone applications like Find My Friends and those that 

allow users to check in to show friends their location; these types of services have grown 

enormously. The main challenge that has hindered the development and application of 

LBS is the limitation of obtaining an accurate IPS. In [6], it was stated that people spend 

80–90% of their time indoors and make about 70% of their calls indoors. Thus, in 
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addition there is a great need to improve the performance of IPS, and, in time and as IPS 

improves, there will be even more applications using it.  

1.2 Motivation   

Estimating the coordinates of a device inside a building is a hot topic in the field 

of ubiquitous computing (UbiComp). Mark Weiser is considered to be the pioneer of 

using location information in many real-life applications, especially the ability to locate 

people inside buildings. While the Olivetti Research Laboratory in Cambridge, England 

[7], showed the possibility of building IPS, Mark Weiser was the person who saw the 

opportunity to use this technology for many applications. Due to the rapid growth of the 

UbiComp field, location computing has become a topic at the frontier of research, and 

estimating coordinates has become one of the most significant applications [8]. Another 

property of mobile devices that originated from UbiComp is context awareness, a style 

of computing that encompasses more than just the user’s location [10], but also takes 

into account user identity, time and activity as the primary context types [11]. Thus, 

location and user activity can play important roles in UbiComp applications such as 

location awareness and activity recognition [1]. Even though Mark Weiser’s vision has 

become a reality, UbiComp applications are still not very popular because of their high 

cost. In [12], the authors investigated this issue and found thousands of papers on Google 

scholar related to indoor positioning describing systems that have been proposed and 

implemented. After evaluating IPS, they concluded that the main challenge in deploying 

these systems is the cost, which is determined by three factors. First, the system has to 

be built in such a way to make it compatible with different devices that have different 

characteristics and different operating systems. Second, collecting the data to create the 
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data map and floor plans is time-consuming, and these data are not always available. 

Third, in order to obtain accurate results, intensive work is required to collect data to 

train the locator algorithm. Even though commercial systems like Ubisense and Ekahau 

can achieve reasonable accuracy, they are very expensive and require customize 

equipment installation and maintenance. In general, there is a broad range of IPS that 

use different technologies, some focusing on existing ubiquitous cellular telephone or 

WiFi infrastructure and others that require hardware installation such as radio-frequency 

identification (RFID) [13], ultrasound [14], ultrawide bandwith (UWB) [5] and infrared 

systems [7]; systems that require costly infrastructure installation and hardware 

maintenance.   

The GPS cannot be reliably used inside buildings for tracking and navigation 

mainly because the satellite signal power levels were defined based on line-of-sight 

receiving with minimal multipath or attenuation. In most buildings, there is no line-of-

sight to the satellites and significant attenuation resulting in intermittent or total loss of 

the GPS signals required for position computation. Thus, an alternate source of signals 

is required to build an IPS, namely, new hardware that will need to be installed to obtain 

a new signal source such as RFID, UWD, WiFi, or cellular telephone that is readily 

available, easily installed and hopefully supports other useful services. The wireless 

local area network (WLAN) has been considered a quasi-standard for the last decade 

since it supports almost all handheld devices such as smartphones, computers, 

notebooks and tablets, all of which access the network by default. For years WiFi signals 

have been the main signal source in most proposed algorithms in IPS, and have been 

used in many algorithms for IPS to estimate the coordinates of an object with sufficient 
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accuracy for most LBS [15]. Although these signals have some inherent complications, 

such as reflection, diffraction and partial absorption, the effects of these complications 

can be utilized by recording location-dependent signals, which are used to create a 

fingerprinting database called reference points (RPs). In general, location fingerprints 

have many advantages, but to obtain accurate results, it is mandatory that the proposed 

algorithm has as many RPs as possible. There are two phases of location-based 

fingerprinting: the offline phase and the online phase.  

1.3 Challenges of Indoor Positioning 

 A lot of issues and challenges arise when IPS are discussed.  In the past few 

years, many survey papers have been published that address the issues and different 

characteristics of these systems. Most of these papers have focused on the taxonomy or 

classification of LBS systems [16-19]. In the following section, the prominent prevailing 

challenges of IPS will be summarized. Specifically, we will focus on the issues related 

to location fingerprinting and will provide a broad overview of the current challenges. 

The related work will be covered in more detail in Chapter 2.  

1.3.1 Performance 

 Different attributes have to be considered when evaluating IPS including the 

type of system and its main purpose. For example, if the system was built to track a fast-

moving object, then first and foremost, it must be responsive (i.e., the time delay of the 

calculating position should be short). In addition, the position of the system should be 

optimized, as it should accurately and consistently report location coordinates [18]. As 

a general concern, precision and accuracy are the two main parameters that determine 
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the performance of a system and are typically used to evaluate an IPS. Accuracy means 

the average error distance and precision means the probability of the cumulative 

distribution function with respect to position estimated. For example, in general, regular 

GPS receivers can determine location with an average error distance of 5 meters, 

indicative of accuracy, whereas precision indicates the quality of the system with 

approximately 90% confidence. In general, there is a trade-off between the cost and 

performance of IPS; the main challenge is to create a system with sufficient accuracy 

and reasonable cost.  Higher performance means higher cost, for example, the accuracy 

of infrared-based positioning can be improved by adding extra filters to reduce the 

effects of fluorescent light [16], which will increase the price of the system.  

Although fingerprinting-based location has good accuracy for most human 

applications such as “How do I get to Ali’s office?” the big issue remains how to use it 

to determine a precise locations that can be associated with a collection of fingerprinting 

data. The user can be disappointed by the performance of such a system, if the data 

collector does not share the user’s perception of the place desired. 

1.3.2 Cost 

Cost is one of the most important factors with regard to IPS [24], especially 

concerning systems that use fingerprinting location due to the time that is needed to 

build and maintain the radio map, in addition to other factors that require time and 

money such as installation and administration of the system, the maintains of a battery 

that the devices use, the complexity and size of the space necessary for the hardware 

installation infrastructure and personnel costs [17, 18].  



7 
 

The GPS is one of the most well-known positioning systems. Although it relies 

on a very large and expensive infrastructure that is very difficult and expensive to install 

and to maintain it is free to the users. Cost assessments of IPS are crucial and should 

include the factors over the lifetime of the system. Lukas, et al. [12] suggest breaking 

down cost into three phases: cost of installation, cost of maintenance and cost of use. As 

explained, hardware installation represents the primary factors that make up the majority 

of the cost and is determined by the choice of the hardware installation. Nevertheless, 

the cost will be higher if the system requires special hardware such as tags [20], antennas 

[21] or even WLAN access points with special capabilities [22], which makes the 

acquisition of data more expensive.   

 Another parameter that should be taken into account is provision of maps for the 

indoor environment, which, unlike the outdoor system, has been provided for many 

decades. The cost will depend upon the chosen technology. For instance, obtaining one’s 

position using GPS technology usually requires 10 seconds and a lot of energy [12], as 

the user has to wait for the system to obtain the coordinates, which reduces the lifetime 

of the battery. On other hand, IPS use fingerprinting-based techniques and Wi-Fi radio 

signals. Obtaining measurements that will be used to create radio maps is a time- and 

energy-intensive process. Furthermore, even if the data have been scanned, the network 

interface may not be taken into account when the data are transferred (i.e., the user could 

face additional costly problems and may have to choose between having an accurate 

system or transferring data without considering the environment). In fact, the 

synchronous use of network systems is one of the biggest issues of using location 

fingerprinting. In addition, the total maintenance cost is difficult to assess for many 
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systems that have been used for IPS because they have not been in service for a very 

long time.  

In general, for systems that use the fingerprinting-based technique, the major 

cost is the time and the hardware needed to keep the radio map database up to date. As 

will be explained later, the signal can suffer from variation that affects the system’s 

results; thus, a system update is inevitable. The cost will be high if updates of the training 

data are performed by special personnel or must be done manually. Another factor that 

increases the cost of the fingerprint-based technique is the cost of the installation and 

maintenance of APs. Furthermore, the received signal strength (RSS), expressed in 

dBm, perceived can differ from device to device, which are backed up by hardware 

network adapters. For example, the signal strength of a mobile phone can be 47 dBm, 

while that of a laptop is 65 dBm at the same location. This will be elaborated upon more 

in the next section.  

1.3.3 Signal Variation  

The IPS was designed and built to serve specific applications, for instance, 

tracking objects that are moving, as well as the usual user demands for high accuracy. 

Some systems require installation of specific, expensive hardware (e.g., UWB) for 

accurate indoor positioning to within 10 centimeters. On the other hand, WLAN signals 

do not need installation because almost every building currently has Wi-Fi, but these 

radio signals are subject to multipath, refraction, humidity, temperature, reflection and 

many other factors. As a result, the RSS varies and fluctuates over time and has a low 

correlation with distance, which leads to inaccurate coordinate measurements [18]. 
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Furthermore, if the device that records the signal is moving, it can sense spatial 

variations on both a small and large scale. In general, the strength of a signal depends 

on how it propagates; for example, the farther one moves from the source, the weaker 

the signal becomes, resulting in the inaccurate estimation of coordinates. Systems that 

use fingerprinting-based location tend to have better results, because it will reduce the 

effect signal variations, including those related to wall absorption and reflection. People 

can cause temporal variation in signals, albeit small-scale fluctuations, because the 

human body is a good antenna that can act like a sink for signals. Another factor that 

can cause signal variation is the weather, which depends on the climate zone, as well as 

the change of seasons. All of these factors are challenges that require management of 

the associated cause and effects. In summary, fingerprinting-based localization can 

make use of any signal, but in order to guarantee a certain level of accuracy over time, 

it is mandatory that the training data remain updated, which raises the question of how 

this can be accomplished without significantly increasing the cost.  

1.4 Goals and Contributions 

 There are two main problems with IPS: 1) RSS fluctuations vary with time for 

many reasons including reflection, absorption, multipath, temperature, and the motion 

or presence of people; and 2) It is difficult to generate a radio map with rich 

characterization in the offline phase. The more measurements that are taken, the better 

the accuracy and the easier it is to obtain data with high precision, but this work is labor-

intensive and time consuming [1]. A primary goal of this work is to enhance the 

accuracy of fingerprinting-based localization systems by first and foremost 

understanding the main problems that have persisted with IPS.  To this end, the first 
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objective will be to analyze and understand the cause and effects of signal variation. 

This will allow training data to be generated with high accuracy location that are cost 

effective, easy to access, and can be maintained and used for a long time. For this reason, 

different collection methods have been used and tested in different algorithms. The main 

purpose of this work was to use collaborative fingerprinting that could be easily updated 

and would not require specialized personnel, and to use an algorithm that could deal 

with the multimodal distribution of signals to measure the similarity between test and 

training data. A procedure with high characterization of size distribution was proposed 

to solve the first problem. Specifically, RSS values were taken in four different 

orientations (45°, 135°, 225° and 315°) to prevent body-blocking effects, with 10 scans 

and a delay of 10 seconds to reduce the effects of signal variation. 

 The chapters of this Dissertation are organized as follows. After presenting our 

introdcution in Chapter 1, the main concepts of IPS have been explained in addition to 

the common terminology that will be used as the basis to evaluate and present the 

positioning system. Throughout Chapter 2, related, and an overview of the technology 

used in the IPS system will be provided. In work will be analyzed in detail chapter two, 

the concept and different methodologies used in location fingerprinting will be 

explained in depth. In Chapter 3, Bregman divergence will be analyzed in detail. I 

developed a powerful and flexible method for constructing metrics from convex 

functions in indoor positioning system. In chpater 4, we propose a Probabilistic Neural 

Network (PNN)-based method as a tool for matching fingerprinting in the active phase 

with Jensen-Shannon Divergence (JSD) as the measure of similarity. By constructing 

the probability kernels that we used in a weighted regression scheme, we will be able to 
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match user location to a fingerprint. In Chapter 5, we propose a Probabilistic Neural 

Network (PNN)-based method as a tool for matching fingerprinting in the active phase 

with Jensen-Bregman Divergence (JBD) as the measure of similarity. In Chapter 6 we 

propose a meta-algorithm that combines k-mean clustering with JSD to find the 

similarity and estimate the object’s location. In Chapter 7, Jensen-Bregman Divergence 

(JBD) is proposed for a WLAN-based method. We perform the matching stage using 

probability kernels as a regression scheme and compare the results with JSD and 

Kullback-Leibler multivariate Gaussian distribution to measure the similarity between 

the RSS measurement of test points and RPs to investigate RSS behaviours. Finally, 

chapter 8 summarizes this work and future work.  
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CHAPTER II 

 

EXISTING SYSTEM AND ALGORITHM IMPLMENTATION: LITERATURE 

REVIEW 

 

2.1 Background and General Overview 

Prior to development of positioning technology, different signals were used to 

obtain one’s physical location. However, the development of positioning systems has 

led to different technologies that have been a great success for estimating outdoor 

location such as the global positioning system (GPS), which uses radio frequency (RF) 

tracking technology. Other technologies such as gyroscopes and accelerometers, which 

are considered precise inertial measurement devices, have been used in airplanes and 

missiles for accurate navigation and localization. Currently, wireless signals including 

light and sound waves and RF signals can be used to estimate location in indoor 

environments. Microelectromechanical sensors (MEMS), including inertial and 

pressure sensors, have been integrated into smartphones. The driving force behind 

developing these technologies has been to make constant advancements in wireless 

communication technologies. Due to the different types of technologies and 

measurements, different kinds of techniques have been used to estimate the location of 

an object; the major location estimation algorithms are proximity, fingerprinting, 

triangulation, and dead reckoning. Other possible measurement quantities, such as 

angle-of-arrival (AOA), involve time-of-flight (TOF), link quality, and sensor readings, 

although many challenges in positioning systems still need to be solved in relation to 

these technologies. In different situations, these algorithms have unique advantages and 
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disadvantages, which led us to propose a framework that incorporates them and also 

provides better performance. The main goal for all researchers is to obtain better 

performance with high accuracy and low cost, although other parameters such as 

coverage, robustness, and complexity also need to be taken into account. In this chapter, 

the literature on IPS will be reviewed to provide an overview of the positioning systems 

used in this proposal. First, components of IPS will be described. Then different 

techniques and technologies will be briefly described, and finally, location-based IPS 

will be discussed.  

2.2 Common Localization Systems  

The technologies used for indoor localization can be divided into four categories: 

RF, acoustic waves, light waves, and MEMS sensors. 

2.2.1 RF technologies 

Various RF technologies are widely used in indoor positioning systems such as 

augmented GPS, RFID tag, Wireless Personal Area Networks (WPANs), Bluetooth, 

WSNs, FM radio signals, UWB, and Wi-Fi.  

2.2.1.1 Augmented GPS 

GPS is considered to be one of the most globalized localization systems. 

However, although it provides an accurate and reliable positioning service for outdoor 

applications [51], it does not work in indoor environments. As a result, multiple 

approaches have been proposed, such as providing a new hardware design, to address 

this shortcoming and improve GPS performance to make it feasible for indoor 

positioning [52–55]. Although these experiments have improved GPS accuracy to 

within 6 to 16 m [56], it is still inefficient in indoor environments, and in some 
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environments, the GPS signal is completely blocked. In [57], the authors proposed a 

local station and antenna that can repeat the GPS signal, known as GPS pseudolites. 

Transmitting using ground based pseudo-satellite transmitters within the GPS system 

can be achieved using carrier-phase or code-phase signals with high accuracy as small 

as 1cm. The indoor GPS receiver can acquire the same levels of pseudo-range and code-

phase signals as the outdoor receiver, and localization to within a few centimeters can 

be achieved with little error. In [40], the authors proposed to use GPS repeaters and 

modified delay lock loop GPS receivers for sequential switching, such that the error in 

distance localization is reduced to a few centimeters. Even though GPS pseudolites and 

repeaters are considered to be accurate indoor localization systems, they require a 

precise time synchronization, and are susceptible to multipath interference. 

2.2.1.2 Cellular Networks 

In general, cellular networks are distributed over land areas called cells, each 

served by at least one fixed-location transceiver, known as a cell site or base station. 

Cellular technology is classified into different mobile telecommunication technologies 

such as 2G, 3G, 4G, and long-term evolution (LTE). The cellular network has good 

signal penetration that can be used for indoor localization. Furthermore, it has wide 

coverage, long-term operational stability, and an existing infrastructure. The RSS is a 

measurable quantity for Global System for Mobile Communications (GSM) signals, 

which be used for both outdoor and indoor localization systems. In [58], a correlation 

database was used in an urban outdoor environment to compare the RSS measurements 

of the serving cell with six neighboring cells. The authors reported a localization 

distance error of 80 m for the 67th percentile and of 192 m for the 95th percentile. In 
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[60], the kNN was used to estimate the localization of an object by matching the online 

GSM fingerprints with the offline fingerprints; each fingerprint consisted of 35 channels 

with accuracy ranging from 1.94 to 4.07 m. In code division multiple access (CDMA), 

networks such as Universal Mobile Telecommunications System (UMTS) and 3G 

control the transmitted power to accommodate the network load, which can increase 

signal variation and lead to increases in localization distance errors. In [59], a CDMA 

indoor localization system was proposed that applied a fingerprinting technique named 

CILoS based on signal delay instead of RSS. CILoS captures the relative time difference 

at which signals emanate from different base stations at specific locations because the 

CDMA system needs precise synchronization to provide distance localization accuracy 

within 5 m. Furthermore, the UMTS network has a poor indoor penetration signal that 

can be affected by multipath propagation and signal attenuation, resulting in IPS that 

can only provide accuracies within hundreds of meters [61–63]. The major problem with 

using 3G and 4G technologies for indoor localization systems is that the network uses 

high-frequency bands that can cause multipath propagation signals.  

2.2.1.3 UWB 

UWB technology has a very low transmitted radio signal. The large bandwidth 

of the UWB allows it to support wireless data rate from 480 Mbps up to 1.6 Gbps, over 

distances of several meters. The advantage of UWB technology over other technologies 

used for indoor positioning is that it requires very little power. Because UWB has a 

narrow band, UWB pulses have the ability to effectively penetrate walls, which makes 

them less susceptible to multipath propagation [65]. The location technology that UWB 

is based upon is very efficient with low localization distance error because it allows 
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precise time and propagation measurements using UWB pulses. In [64], the authors 

proposed enhanced TDOA (E-TDOA) by considering a differential impulse response 

(DIR) in the TDOA domain for indoor localization, with a localization distance error of 

less than 1 m. It was reported in [66] that the accuracy of RSS-based lateration ranges 

from 0.1 to 0.2 m, but the disadvantage is that it is expensive compared with other 

technologies. 

2.2.1.4 RFID and NFC  

RFID systems are generally composed of RFID tags that store user information 

and a reader that consists of a transceiver that records the data from the tags, each of 

which is modulated by adding a unique identification code. There are two kinds of tags: 

passive and active. The passive tags take energy from the receiving signal, and the active 

tags are battery-operated. There are four different RFID frequency bands: low frequency 

(LF) (125 kHz), high frequency (HF) (13.56 MHz), ultra-high frequency (UHF) (433, 

868–915 MHz), and microwave frequency (2.45 GHz, 5.8 GHz). In general, RFID tags 

are used for indoor localization and play an important role in the “the deployment of an 

indoor positioning scheme. In [67], the authors used RFID technology and adopted a 

weighted proximity algorithm to localize the moving RFID reader. In [68], an AOA 

algorithm was proposed with a passive RFID and robust phase characterization to 

estimate the angle. Near field communication (NFC) is a special branch of RFID 

technology that has recently drawn attention because it is used in smartphones. NFC is 

a more secure way to exchange data over short distances (5 cm or less), and has been 

used in indoor localization systems when tags are placed in areas of interest [69]. 
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Furthermore, NFC supports peer-to-peer communication, and is currently used in places 

such as museums and stores. 

2.2.1.5 Bluetooth  

Bluetooth is a WPAN technology that is used in indoor localization systems, and 

works at 2.4 GHz. It has a wide range of applications especially with portable devices 

since it performs multiple functions by interacting with other devices. Bluetooth devices 

transmit signals that occupy 1 MHz of spectrum and use a frequency-hopping, spread-

spectrum mechanism to spread signals. Because Bluetooth communication hops among 

channels, narrowband interference that only blocks a few channels does not have 

significant overall impact on communications [70]. Nevertheless, this technology is 

susceptible to frequency interference from other devices that work on the same 

frequency band. Most Wi-Fi indoor localization algorithms have been applied to 

Bluetooth technology for indoor positioning purposes [34, 35, 47]. In [34], multiple 

neural networks were used with Bluetooth technology by connecting the smartphone to 

multiple Bluetooth systems. A hybrid framework was proposed by Subhan et al. [47], 

who combined RSS-based lateration with RSS fingerprinting-based localization that 

depended on Bluetooth technology. The log-distance path loss (LDPL) parameters were 

estimated depending upon the fingerprinting results, whereas lateration methods were 

used to estimate the coordinates of the object. In general, Bluetooth has low transmitter 

power so many Bluetooth tags are needed to cover a small area. The accuracy of this 

technology rivals that of Wi-Fi technologies [35], although the biggest challenge with 

Bluetooth technology is its latency, as it needs at least 10 seconds to process inquiries 

[36]. In addition, its use causes a noticeable decrease in battery life. Recently, another 
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version of Bluetooth, called Bluetooth low energy (BTLE), was developed for indoor 

localization purposes and has a battery life that exceeds one year. Furthermore, it needs 

less time to process inquiries (milliseconds) and can transmit signals over a longer 

distance, which makes it a good choice for multiple applications, such as indoor 

localization. iBeacon was produced by Apple for indoor positioning purposes, and is 

used in iPhone with BTLE technology. This technology is based on the proximity 

technique, which estimates the location coordinates using the range of the device and 

proximity algorithm, instead of using longitude and latitude. The iBeacon is not 

restricted to IPhones, and can also be used with android systems. For example, the TI 

sensor tag can support both android smartphones and Apple iBeacon [37]. In addition, 

the NOKIA Corporation research center produced a new technology for indoor location 

based on Bluetooth technology using an AOA algorithm called High Accuracy Indoor 

Positioning. It is a modified version of BTLE technology with an antenna that can yield 

very precise accuracy with a localization distance error of around 0.5 m.  

2.2.1.6 Wi-Fi 

Wi-Fi is a technology that represents the WPAN protocol based on the 802.11 

IEEE network standard. It operates with two frequency bands, namely, 2.4 and 5 GHz 

Industrial, Scientific, and Medical (ISM) radio bands, and is considered to be one of the 

most popular systems used for wireless data communication. It can be used at work, at 

home, in the airport, and in fact in almost any building, and has a data rate of up to 1300 

Mbit/s with a range of up to 70 m or more. IPS that use Wi-Fi technology are being 

extensively studied. Due to the fact that Wi-Fi does not need an infrastructure, it does 

not entail any extra costs. Thus, it is an appealing technology, particularly because it 
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provides more coverage than RFID and Bluetooth. However, the AoA, ToA, TDoA are 

less commonly used for indoor localization due to multipath signal interference, and the 

difficulty of obtaining time synchronization and angular measurements [38]. Most IPS 

that use Wi-Fi technology have incorporated the fingerprinting-based technique, as 

detailed in section 2.3.  

2.3 Computational Methods for Localization    

RSS-based IPS techniques have been classified into two major categories: 

lateration and fingerprinting-based techniques. In general, the lateration method often 

leads to inaccurate estimations. It was reported in [71] that the typical office is 200 ft. 

long and 80 ft. wide, with an average localization error of about 24.73 ft. This may be 

because of the mulitpath propagation model (PM) due to the non-line-of-sight challenge 

and sensitivity to errors in even one access point (AP) coordinate estimate. The 

lateration method uses log-distance to describe the relationship between mobile devices 

and multiple APs [72]. The accuracy of lateration-based localization is very sensitive to 

multiparameters, for example, if one AP coordinate is inaccurate, the performance of 

this technique can decrease dramatically.  

Figure 2 shows a functional block diagram of an IPS, consisting of a number of 

location-signal sensing devices, a positioning algorithm requiring spatial signal 

information, and a display system. First, the signal is detected by sensing devices at an 

unknown location using different technologies such as infrared, RF, or ultrasound. 
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Figure 2: A functional block diagram of the IPS [26] 

Then the signal is converted into location metrics depending upon the available 

characteristics of the sensed signal such as angle of arrival (AOA), time of arrival 

(TOA), received signal strength (RSS), or carrier signal phase of arrival (POA) [25]. 

Multiple sensor signal characteristics may also be collected to form unique patterns at 

locations. Next, the location is estimated using different algorithm approaches such as 

the distance-based approach [27], signal processing [28], probabilistic approach [29], or 

neural networks [30]. Finally, the location is displayed on the display system. Hightower 

et al. [31] proposed that the location system could be considered a location stack 

framework, which is a software engineering model that divides the positioning problem 

into smaller research problems.  

2.3.1 Triangulation 

Triangulation is a technique used to estimate the coordinates of an object based 

on the geometric properties of a triangle. It has two implementations: lateration and 

angulation. In general, the lateration technique estimates the coordinates of an object by 
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measuring the distance of the target from multiple reference points (RPs) and using 

different scalar quantities such as time-of-flight and RSS. The number of algorithms 

depends on time, such as time difference of arrival (TDOA), TOA, and round-trip time 

of flight (RTOF). The angulation technique estimates the coordinates of an object by 

measuring the angle of the target with respect to multiple RPs, also known as the AOA.  

2.3.1.1 TOA 

The TOA technique estimates the distance between two points by measuring the 

propagation time between them. There should be at least three TOA measurements from 

three different RPs. The coordinates are estimated using the intersection point of the 

RPs in the circle of radiation as illustrated in Figure 3; however, shadowing and 

multipath will occur, which can lead to inaccurate distance estimation. 

 

 

Figure 3: Localization based on TOA measurements 

 



22 
 

Maximum Likelihood (ML) and least squares (LS) estimation methods are the most 

common statistical procedures used to decrease these estimation errors and estimate the 

target coordinates. If we let (xm,ym) indicate the unknown location of mobile 

coordinates, and (x1,y1), (x2,y2), and (x3,y3) indicate the known reference coordinates, 

the distance between reference i and the target will be calculated by:  

                                           cttr ii )( 0                                                                     (2.1) 

where c represents the speed of light, and t0 and ti  represent the transmission and 

reception time of the signal, respectively. After applying the geometric relationship, 

the following sets of equations will be obtained:  

                                                                                   (2.2) 

                                                                                  (2.3)    

                                                                                   (2.4) 

where R1, R2, and R3 represent the radius of the radiation circle. This algorithm can be 

improved by taking three RPs and considered as 3D [32]. The LS method can be used 

to solve this overdetermined system of nonlinear equations. If we subtract (2.2) from 

(2.3) and (2.4), the formula will become:  
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Equations (2.5) and (2.6) can be rewritten as:  
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Equation (2.7) can thus be written as  
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                                              bHx                                                                             (2.9) 
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Then, the LS method is applied for the final estimation using the following formula: 

                                                   bHHHx TT 1)(ˆ                                                     (2.10) 

Alternatively, the ML method can be applied to TOA measurements by finding the 

probability that distances r1, r2, and r3 find the target location x as follows: 
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Since distances r1, r2, and r3 are independent, the joint probability will become:  
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Estimation of the distance between the RPs and target are considered a Gaussian error 

distribution, and consequently the ML can be rewritten as: 
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Time synchronization in the TOA technique is very important as it can provide high 

accuracy if the time from the transmitter and receiver is synchronized correctly. 

Unfortunately, the multipath signal has a large effect on time synchronization, which 
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can lead to a system with low accuracy. In general, the TOA and related TDOA 

technique are widely used including ultra-wideband (UWB) [27–31], where it has good 

penetration that reduces the effects of the multipath signal. 

2.3.1.2 TDOA 

The TDOA technique estimates the coordinates of the target by measuring the 

difference in TOA from multiple RPs. Specifically, it measures the difference in 

distance between the RPs and the mobile target based on the time difference as shown 

in Figure 4. From a geometric point of view, TDOA measurements are provided for 

mobile targets that lie on a hyperboloid with a constant difference between two RPs. 

TDOA is used to determine the position of a target by sending two different kinds of 

signals and to find the difference in TOA at multiple measuring units in order to assign 

the transmitting node’s position; the equation is: 

                                               
𝑅

𝐶1
−  

𝑅

𝐶2
=  𝑡1 −   𝑡2                                                    (2.13) 

where 𝐶1 represents the speed of the first signal, 𝐶2 represents the speed of the second 

signal, R is the distance from the transmission unit to the target, and 𝑡1 and 𝑡2 are the 

times that it takes for these signals to reach the target [32]. 

 One advantage of TDOA over TOA measurements is that only RPs need to be 

synchronized. As example applications, TDOA is used in GPS systems [39, 40], UWB 

[42, 43], and wireless signal networks (WSNs) [41].  
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Figure 4: Localization based on TDOA measurements 

 

2.3.1.3 RSS-based Lateration 

The RSS-based technique estimates the coordinates of an object by calculating 

the attenuation signal between the RPs and the mobile target. In general, due to the 

multipath signal, it is very difficult to obtain time synchronization between the target 

and the RPs. However, RSS-based lateration is relatively standard and can increase the 

efficiency of IPS. It is also very popular in many indoor positioning technologies such 

as Wi-Fi [44–45], UWB [66], radio frequency identification (RFID) [48], and Bluetooth 
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[47]. The RSS-based technique estimates distance by estimating the signal path loss due 

to propagation. In an indoor environment, shadowing and multipath are very complex 

to solve and can directly affect the performance of the system. Thus, for long-range 

signals, RSS-based lateration is not a suitable approach, although its performance is 

much better for short-range signals. Once the distance is estimated, the coordinates can 

be easily estimated following the same procedure as that used to calculate the TOA.  

2.3.1.4 AOA 

AOA is an angulation technique used to estimate the coordinates of a mobile 

object by interpreting the intersection point of pairs of hypothetical signal paths along 

particular angles, as shown in Figure 5. In general, AOA only needs two RPs to localize 

the mobile object, but for three-dimensional (3D) localization, three RPs are needed. Its 

accuracy can be improved if three or more RPs are used in a technique referred to as 

multi-angulation. With the AOA technique, antenna array or directional antenna are 

used to estimate the lines-of-bearing for the system [40, 41]. The advantage of AOA 

over the above mentioned techniques is that only two RPs are needed and time 

synchronization is not needed between the receiver and transmitter. On the other hand, 

the AOA system needs complex antenna elements and processing hardware to obtain 

the coordinates measurement, and it is difficult to obtain precise angle measurements in 

an indoor environment due to shadowing and multipath signals. 



27 
 

 

Figure 5: Localization based on AOA measurements 

2.4 Fingerprinting-based Localization 

Fingerprinting “discovered” based on applying estimation theory and pattern 

matching concepts and algorithms to RSS lateration data and systems with significantly 

enhanced performance. Advantages of such system included less dependence on 

accurate RSS mean power estimates allowing better performance in non-line-of –sight 

and multipath environments.  

Filter techniques have been used to ensure localization performance, for 

example, in [73] the particle filter was proposed, in [74] the Kalman filter was used, and 

in [75] the Bayesian filter was used to ensure performance by restricting localization 

errors through trace movements. Thus, instead of solving the PM problem to estimate 

the location of the object, a radio map was prebuilt to use in the fingerprinting-based 

localization [76] scheme, which consists of two phases: an offline and an online phase. 

The offline phase collects RSS readings with time sampling and location to generate a 
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prior fingerprint at the fingerprinting database, which contains the RPs. The number of 

RPs directly impacts the performance of fingerprinting-based methods. The online 

phase estimates the actual location by using IPS to compare the RSS value of a mobile 

device with predefined fingerprints. One of the simplest ways to estimate a mobile user’s 

location is the k-nearest neighbor’s algorithm (kNN), which estimates localization by 

computing the k-nearest neighbors that have the smallest Euclidean distance between 

the two phases [77], as shown in Figure 6. Such an algorithm has low accuracy but is 

easy to implement. The fingerprinting-based technique is based on the difference in RSS 

between the mobile device and the RP fingerprints [78]. A modified probability neural 

network was used in [36] with kNN vector mapping to estimate the location of the object 

based on the RSS values of the RPs and the reported results of the object. Recently, a 

probabilistic approach was proposed in [79] and [80] by developing a RSS-based 

probabilistic technique and estimating the location using kernel methods. In [79], the 

probability was estimated using a Bayesian framework, whereas in [80] a histogram 

framework was used. In [81], a Kullback-Leibler (KL) divergence framework was used 

with a composite hypothesis to formulate the localization problem. In [82], KL 

divergence was used to estimate the probability density of the RSS of the unknown 

device. In addition, the RSS from APs was treated as a multivariate Gaussian 

distribution in that study. It was reported in [83] that the probability of KL divergence 

as a kernel regression scheme can achieve error margins of up to 1 m in office 

environments, but the authors used Bluetooth technology for non-Gaussian fingerprints. 

 



29 
 

 

Figure 6: Architecture of the proposed hierarchical IPS 
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CHAPTER III 

 

                   BREGMAN DIVERGENCE FRAMEWORK 

 

3.1 Introduction  

Bregman divergences are based on convex optimization, recently they received 

great attention, they ae well known as the generalization of the Kullback-Leibler 

divergence. Bregman divergence can introduce a class of “squared root metrics”, which 

can be regarded as natural generalization of Euclidean distance. For a variety of machine 

learning applications, the interests have been gone beyond Euclidean distance in the 

recent years. Bregman divergence are a multi-class of distortion functions, such as, 

Kullback-Leibler divergence, Euclidean distance, Mahalanobis distance, Itakura-Saito 

distance, etc. Bregman divergences are not symmetric and that considers as crucial 

property. Thus, the algorithm that exploit scalability properties lay beyond the using of 

Bregman divergence. In the recent year, a lot of attempts have been done to investigate 

the symmetry of Bregman divergence and satisfy the triangle inequality that will lead to 

squared metrics.  

3.2 Bregman Formulation  

Recently, the study of measuring the distortion in classes is increasing instead 

of depending on a single distance. This trend is witnessed in many applications in 

machine learning, computational geometry and IPS. Measuring the 

similarity/dissimilarity using the Bregman divergence became attractive these days 
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because it encapsulates both the information-theoretic relative entropy and the 

geometric Euclidean distance, which is a meta-algorithm [93]. The Bregman distance 

D  between two sets of convex space data p = (p1, . . . , pd) and q = (q1, . . . , qd) that is 

associated with  (which is defined as a strictly convex and differentiable function) can 

be defined as: 

                                                qppqpqpD ),()()(),(                              (3.1) 

where .,.  denotes the dot product and  
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The Bregman divergence unifies the statistical Kullback-Leibler divergence with the 

geometry squared Euclidean distance by defining the distortion measurement in classes: 

 The Euclidean distance was obtained from the Bregman divergence by 

considering the convex function as  


d

i i pppp
1

2
,)( , which is the parabolic 

potential function in figure 7. 

 The Kullback-Leibler divergence is also a Bregman divergence if the convex 

function used is  


d

i ii ppp
1

log)( which is defined as negative Shannon 
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entropy. The Kullback-Leibler divergence is defined for two discrete 

distributions as:  

                                                      )
q(S=s)

p(S=s)
p(S=s)KL(p||q)=

s
log(                               (3.4)   

 

 

Figure 7:  The Bregman divergence represents the vertical distance between the 

potential function   and the hyperplane at q 

In information theory, the Shannon differential entropy measures the amount of 

uncertainty of a random variable: 

                                                            
p

pH(p
1

log)                                                    (3.5) 

The Kullback-Leibler divergence is equal to the cross-entropy of two discrete 

distributions minus the Shannon differential entropy [24]: 
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                                    
s

x sSpHsSqsSpHKL(p||q)= )((()((||)((                         (3.6) 

where xH  is the cross-entropy: 
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where S is the set of vectors of the RSS. In general, the Bregman divergence is not 

symmetric, but it can symmetrize as follows:  
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In the same manner, Jeffreys divergence symmetrizes the oriented Kullback-Liebler 

divergence as follows: 
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Such an information-theoretic divergence has two major drawbacks: first, the output can 

be undefined if q=0 and p≠0, and secondly, the J-divergence is not bounded in terms of 

metric distance, so to avoid these drawbacks, and avoid the log(0) or divide by 0, [115] 

propose a new divergence called the K-divergence : 
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By introducing the K-divergence, [93] produce the Jensen-Shannon divergence (JSD) 

by depending on the K-divergence as: 
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The JSD can be always (1) defined, (2) bounded by an L1-metric, and (3) finite. In the 

same vein the Bregman divergence can be symmetrized as: 
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for d-dimensional multivariate data: 
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where q represents the fingerprint data set, and p, the dataset of the test points, represents 

the APs the mobile received.  Since   is a strictly convex function and the ),( qpSD  

equal to zero if and only if  p=q , this family of distortions is termed Jensen-Shannon 



35 
 

divergence. The geometric interpretation is represented in figure 8, where the 

divergence represents the vertical distance between ))
2

(),
2

((
qpqp 

 and the midpoint 

of the segment ))](,()),(,[( qqpp  .  

 

Figure 8: Interpreting the Jensen-Bregman divergence. 

In general, for a positive definite matrix  0Q , the Jensen-Bregman divergence has all 

the quadratic distance pQpp ,)(  , which is known as Mahalanobis distance. 
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Table 1 contains a list of some convex optimization functions with their corresponding 

Bregman divergences. Bregman divergences have many interesting properties that can 

be useful in many machine learning applications, such as non-negativity, convexity in 

the first argument, etc. 

Table 1: Bregman divergences generated from some convex functions. 
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CHAPTER IV 

 

A PROBABILITY NEURAL NETWORK-JENSEN-SHANNON DIVERGENCE  

FOR A FINGERPRINT BASED LOCALIZATION 

 

4.1 Introduction 

The main usage of indoor positioning systems is to estimate the location of persons 

and objects, which is very useful for many applications such as in logistics, health, and 

construction industries to name a few. Indoor localization based on received signal 

strength (RSS) has been also used for multiple asset management. Researchers have 

proposed different indoor localization technologies and reported different localization 

accuracies. These include systems that employ technologies such as ultrasonic, 

Bluetooth, ultra-wideband, radio-frequency IDs, and RSS [85]. Among these numerous 

technologies, due to its availability, RSS in a wireless local access network (WLAN) 

has become a research focus in the recent years. 

  Reported RSS-based indoor localization techniques can be categorized into two 

classes: fingerprinting and lateration based techniques. However, the lateration method 

is suffering from the inaccurate estimation of the location of the object in indoor 

environments.  

As an example, in [86] it was reported that the average localization error is about 

24.73 ft in a typical office scenario with a width of 80 ft and a length of 200 ft. Such a 

performance is suffering due to two main reasons: 1) the log distance propagation model 

(PM) used, which is a consequence for the non-line of sight (NLOS) problem [74] 

intrinsic in lateration techniques, and 2) lateration methods are sensitive to errors when 
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one or more AP positions are not accurately estimated. As a result, in recent years, 

fingerprinting-based localization has become dominant in IPS research [78]. The profile 

of a given indoor environment and the RSS of some predetermined reference points 

(RPs) with its coordinates are all acquired and used to generate fingerprints in the prior 

or offline phase. Thus, in the fingerprint database, each fingerprint is associated with a 

physical location in the building.  

The number of RP per unit area is obviously considered one of the main 

parameters that impact fingerprinting based methods performance. Fingerprinting based 

techniques are based on collecting RSS measurements that are very labor-intensive and 

time-consuming. Fingerprinting is accomplished in an off-line phase. The online phase 

is when the RSS profile of a mobile device will be compared to predefined fingerprints 

to determine its location using the developed system. Other paramount parameters of 

performance accuracies are selecting an appropriate method to measure the distance, 

such as kNN. 

In this chpater, we propose a Probabilistic Neural Network (PNN) based method as 

the tool to match fingerprinting in the active phase combined with Jensen-Shannon 

divergence (JSD) as the measure of similarity. By constructing the probability kernels 

that we used in a weighted regression scheme, the matching of user location to a 

fingerprint will be achieved. 

4.2 Related Work 

The probabilistic approach to received signal strength indicators (RSSI) has recently 

been proposed for IPS in [98] and [81]. They proposed to model the RSSI distribution 

of each location as a probabilistic framework and to solve for location estimates using 
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Kernel Methods. Also, a Bayesian framework has been used to estimate the probability 

of having a Bayesian Network [98] or a specific histogram of RSSI at a new location 

[81]. In [36] they used the modified probabilistic neural network with k-nearest 

neighborhood vector mapping for indoor location estimation based on received signal 

strength. In [82], the localization problem was formulated as a composite hypothesis 

testing where each hypothesis is associated with a family of probability density 

functions (PDF) based on a Kullback-Leibler (KL) divergence framework. They used 

KL Divergence to estimate the corresponding probability densities of the unknown 

position with the signature of each cell and showed that the accuracy can be improved 

by considering the “impact” of neighboring cells closest to the correct one and 

eliminating the distant or incorrect cells. In their work, they assumed the RSSI from 

multiple APs is simply a multivariate Gaussian distribution [83]. In [84], they used KL 

divergence in the probabilistic kernel regression of the location achieving up to 1 m 

accuracy in office environments for non-Gaussian fingerprints by using a Bluetooth 

localization technique. In [89] they focused on the modeling of RSSI distribution, the 

Gaussian and non-Gaussian distributions, by using probabilistic kernels for comparing 

Gaussian distributions and finding their limitations by using KL-divergence kernel 

regression. However, the KL divergence can easily compute the joint distributions of 

multiple independent multinomials. An automated adjustment method has been 

proposed in [90] for a signal shift from an unknown device when they pass through 

easy-to-estimate locations, such as doorways, but the primary drawback of this method 

is that one may not enter the easy-to-estimate locations. 
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4.3 Bregman Divergence Algorithm Formulation 

The probability distribution measurement was increased because of the importance 

of measuring the distance in the environment that suffers from inference and 

discrimination. The concept of measuring distance by using two probability 

distributions was initially proposed by Mahalanobis [91]. Bregman distance [92] is used 

to measure distance by focusing on dissimilarity between classes and encapsulating the 

information in relative entropy and Mahalanobis distance. Bregman divergence is 

defined using Taylor series expansion as follows:  

 Let φ: ∆ → R be a real-valued strictly convex function defined on a closed convex 

set ∆. The Bregman divergence is defined as  

                                            qppqpqpD ),()()(),(                                  (4.1) 
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denotes the gradient operator, and qpqp T ,  denotes the 

inner product [43], and D  at point p is the first order Taylor expansion of   at point q 

[44]. If we choose  
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d

i ii ppp
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log)(  (which is defined as the negative entropy), 

equation 1 leads to KL divergence. If )( p  has been chosen as 
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will lead to Euclidian distance [93] and the generalized quadratic pseudo distance 

(Mahalanobis distance) will be: 

                                                 )()()||( qpQqpqpD T                                           (4.2) 
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where Q is a positive definite symmetric matrix and represents the variance-covariance 

matrix of the data set.  The Bregman divergence can be interpreted as the vertical 

distance between the tangents at  q that pass through p as shown in figure 9.  

                                                    ),q)-H(p(p||q)=H(pD                                                   (4.3) 

where H(p) is the entropy of p and H(p,q) is the cross-entropy due to using q instead of 

p. In the discrete case where variable S takes a discrete value (e.g. RSSI values from 

access points), we have 

                                                  )
q(S=s)

p(S=s)
p(S=s)KL(p||q)=

s
log(                                   (4.4) 

where KL divergence is a non-symmetric measurement, i.e., in general

),(),( pqDqpD   , and can only be symmetric for a positive definite matrix if and only 

if qp  .  

 

Figure 9:  Geometric interpretation of Bregman divergence as the vertical distance 

between the tangents at  q that pass through p [45]. 
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The symmetrized KL divergence D between two distributions p and q can be defined as 

[13]: 

                                                      )||()||(, pqKLqpKLqpD                                       (4.5) 

which can be undefined because the KL divergence is undefined if q=0 and p≠0, which 

means both values should be continuous. To overcome this issue, [91] proposed a new 

directed divergence method between p and q called the Jensen-Shannon divergence 

(JSD) to overcome these drawbacks: 
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4.4 PNN-JSD IPS Method 

       PNN is a supervised feed-forward network derived from Bayesian Decision 

Networks. The input vector is tested and trained with the dataset data to normalize it 

into the network. The first layer consists of a neuron of the input features while the 

second layer has a neuron (pattern unit) for each feature of the training dataset. The 

pattern unit will be computed using dot products of the training pattern and input pattern. 

PNNs use radial basis function (RBF), activation function in the hidden layer (second 

layer), which is used to make a decision on a sample of the input [50]. In a probability 

distribution, a fingerprint considers the conditional probability distribution of signal 

strengths given the cell position indexed by ℓ is qℓ = q(Sj |{xℓ,yℓ }. Because of the need 

to use multiple access points (APs), S is a multivariate random variable. The Bayes 

conditional probability rule is given by:    
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where  jii SyxP /},{  is the conditional probability density function (PDF) of Sj given a 

set of multivariate RSSI samples acquired at fingerprint cell i and  },{ ii yxP  is the 

probability of drawing data from the class },{ ii yx .The input vector jS  (candidate for 

classification) is assumed to belong to class },{ ii yx  if  

                               mjSyxPSyxP jjjjii ,....3,2,1       /},{/},{                          (4.8) 

The challenge with the prior probability  },/{ jj yxjSP  is that it is unknown.  To address 

this issue, a probability kernel-based approach has been used [38]. 
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where σ is a nonzero number that can be chosen by the user. There is no theoretical basis 

for choosing an optimal σ. The Kernel function will be equal to 1 if p = q and start to 

decay if the dissimilarity between these two inputs becomes larger. The architecture of 

Probabilistic Neural Network Indoor Positioning System is shown in figure 10 with 

layers. 

4.4.1 Input Layer 

 This layer represents the test point for which an estimate of its location is sought. 

The number of neurons in this layer is equal to the number of APs (variables) that is 

needed to describe the form of the input. 
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Figure 10: PNN Architecture adapted in this work and as presented in [10]. 

4.4.2 Pattern (hidden) Layer 

  The learning set has been organized in the pattern layer by representing each 

input vector with a hidden neuron that records the parameters of the current input vector. 

PNNs use the training dataset to estimate PDFs using Reference Points (RPs) and then 

used to estimate the likelihood that the input sample belongs to a given class as shown 

in algorithm 1 [50]. In this case, we can make an assumption of local independence of 

different AP distributions at location {x,y} 

                                                          
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Algorithm 1. The PNN positioning method 
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1- During offline phase, collect the RSSI measurement from APs at specific 

locations to generate the fingerprinting map. 

2- During online phase, collect the RSSI from the APs at the unknown position, set 

the APs in the same way as the database of the offline phase with respect to the 

similar MAC address. 

3- During online phase, perform the following steps for each fingerprint cell: 

 Estimate the smoothing factor σ that maximizes the output. 

 Estimate the similarity/dissimilarity using Eq. 3.9.  

4- Transfer the maximum outputs to the Output Layer.  

 

4.4.2.1 Modified Training Algorithm 

 A probability kernel-based approach using the symmetrized JSD method is 

proposed. The probability kernels can be implemented using either a regression scheme 

or simply a weighted scheme that allows for estimates of these probabilities from the 

training samples and lead to estimates of the location of the object. The JSD divergence 

is used to measure the distance between the estimated probability distribution and the 

true probability distribution [97], then is used to estimate the likelihood of the input 

sample as belonging to a given class. The JSD of a joint distribution of independent 

variables is equal to the sum of the JSD for the signal distribution according to the chain 

rule of relative entropy. In this case, we can make an assumption of the local 

independence of different AP distributions at location {x,y}. The RSSI distribution at 

fingerprints can be defined as   
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To improve the accuracy, we propose the PNN-JSD positioning method as presented in 

Algorithm 2: 

Algorithm 2. The PNN-JSD positioning method 

1- During offline phase, collect the RSSI measurement from APs at specific 

locations to generate the fingerprinting map. 

2- During online phase, collect the RSSI from the APs at the unknown position, 

set the APs in the same way as the database of the offline phase with respect 

to the similar MAC address. 

3- During online phase, perform the following steps for each fingerprint cell: 

 Estimate the smoothing factor σ that maximizes the output. 

 Estimate the similarity/dissimilarity using Eq. 3.11. 

4- Transfer the maximum outputs to the Output Layer.  

 

4.4.3 Output Layer 

 The number of units must equal the number of the existing classes in the output 

layer. This layer is also called the summation layer. Each neuron in this layer is 

connected to all the neurons in the pattern layer. The output probability class for the 

output layer represents the class that the input belongs to. The outputs of summation 

layers are proportional to the density functions, which can be seen as probabilistic 
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output. But to obtain more accurate results and estimate the location with more 

proficiency, we should consider more than one class and perform Weighted Kernel 

Regression [84] to obtain an estimate of the location using p, the sampled distribution 

of RSSI: 
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From this equation, one notices that instead of using the whole set of recorded training 

data points, we use only K nearest neighbors. Kernels provide a way to interpret the 

location estimates between fingerprint locations. 

4.5 Implementation and Experiment Results 

This section provides details on the experimental evaluation of the proposed 

positioning system. The positioning software was developed in Java using Eclipse 

Framework version 4.2, and installed on an HP Pavilion to provide the localization 

service. Furthermore, a Samsung S5 mobile phone with an Android 4.4.2 operating 

system was used for RSS sampling during data collection. The proposed work was 

implemented in an academic building, namely the first floor of the College of 

Engineering and Applied Science building at Western Michigan University (WMU). 

This area includes a large study lounge and three big rooms and a long corridor in the 

area of 23.5 m × 16.5 m. The layout is shown in figure 11.  
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Figure 11:  Tracking results on the 2D layout for the first floor of the College of 

Engineering and Applied Sciences at WMU. 

A 2-D coordinate system is used to describe the eighty-four RPs, which have been 

created in a 1.5m × 1.5m grid. Cisco Linksys E2500 Advanced Simultaneous Dual-Band 

Wireless-N Routers were used as APs. As the phone was held by a person at a height 

around 4.2’, the body blocking effect and data acquisition time couldn’t be ignored. The 

flow of people changed with time, and we did not control the people’s movement in 

each office room. Generally, during the day, more people walked around and in and out 

of the room, which affected the distribution of the signals. We truly needed a procedure 

that could provide a richer characterization of the distribution. Therefore, in our 

experimental simulations, the recording of RSSI was taken with four different 

orientations (45 °, 135 °, 225 °, and 315°). Ten scans were taken in the same place with 

a delay of 10 seconds, and four orientations in the same place to prevent the body-
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blocking effects. The fingerprint map was generated by taking the average reading of 

four orientations and of 10 recordings at each orientation.  

The number of APs that covers an area of interest can play an important role to 

improve the quality of positioning systems. In this section, we will investigate the 

impact of the variation of the number of APs on the RP neighbors that will be used to 

estimate the position of the object and how that can affect the accuracy of the Wi-Fi 

system. 

To validate our proposed work performance and allow for a comparison of results 

obtained, we also implemented PNN and kNN methods as presented in [36] and [78]. 

The numbers of nearest neighbors (NN) that will be used to estimate the location of the 

object are 5, 20, and 80.   

Figure 12 shows the localization error when using the 5 nearest neighbors for kernel 

regression under different AP selections. Obviously the best results were obtained when 

using 22 APs. The performance of the positioning system decreases when more APs are 

used.  The highest median accuracy was 1.12 m for PNN-JSD, 1.34m for PNN and 1.38 

m for kNN. 
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Figure 12: Localization distance error of PNN-JSD versus different algorithms 

with different number of APs with 5 NN 

Figure 13 shows the localization error when using the 20 nearest neighbors for 

kernel regression under different AP selections. Least localization errors have been 

obtained for all the systems. The highest accuracy happened when 22 APs were used. 

The highest median accuracy was 1.01 m for PNN-JSD, 1.097 m for PNN and 1.19 m 

for kNN. A further decrease was noticed in the localization error distance when using 

80 nearest neighbors for kernel regression under different AP selections as shown in 

figure 14. The highest median accuracy was 0.96 m for PNN-JSD, 0.995 m for PNN 

and 1.12 m for kNN. Table 2 shows the comparison of the proposed positioning system 

with the different fingerprinting approach, such as kNN [78], kernel-based method [87], 

and compressive sensing [88]. The proposed method showed the 90% error gave the 

lowest distance error between the other algorithms. 
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Figure 13. Localization distance error of PNN-JSD versus different algorithms 

with different number of APs with 20 NN 
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Figure 14: Localization distance error of PNN-JSD versus different algorithms 

with different number of APs with 80 NN 

Table 2.  Localization distance error of PNN-JSD versus different algorithms  

Technique Median [m] Accuracy 90% [m] 

kNN  1.8 3.7 

Kernel-based 1.6 3.6 

CS-based 1.5 2.7 

PNN-JSD 0.98 1.93 

 

4.6 Conclusion 

Indoor localization can be used as a navigation tool in normal conditions but also in 

abnormal conditions such as in emergency healthcare services or while in unfamiliar 

buildings where people can get disoriented or lost easily. We created a fingerprint map 

for a segment of our college utilizing the spatial relation of RSS readings. We used the 

PNN scheme and integrated it with the JSD method. We also compared the results with 

the results of other approaches such as PNN and kNN distance. The results showed that 

our proposed scheme is a feasible alternative for IP systems. It has the advantage of 

requiring a moderate amount of effort in collecting and training data with an average 

error of less than 1 meter. This result is adequate for an indoor environment under 

normal conditions. The PNN-JSD method results have higher accuracy than PNN and 

both produced slightly better accuracy than the kNN stand-alone method. We also have 

found that taking all 80 neighbors into consideration thus far results in best estimates. 
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We are in the process of investigating position prediction error distributions and in need 

to quantify the localization variation of the Wi-Fi signal distribution in space. 
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CHAPTER V 

 

CONVEX OPTIMIZATION VIA JENSEN-BREGMAN DIVERGENCE FOR  

WLAN INDOOR POSITIONING SYSTEM 

 

5.1 Introduction 

Demands for pervasive and mobile computing systems are increasing 

exponentially, in particular in smartphones. Indeed, such demands have made it practical 

to provide Location-Based Services (LBSs) like IPS and navigation [98]. To provide a 

high level of accuracy is challenging due to the complexity of indoor localization data. 

Different algorithms have been proposed by researchers, and different estimations of 

accuracy have been obtained using RSS, Bluetooth, radio-frequency IDs, ultra-

wideband, or ultrasonic technologies [85]. Due to its availability and lower cost, the 

utilization of WiFi received signal strength (RSS) has become the focus of research in 

recent years.  

RSS-based IPS techniques have been classified into two major techniques: 

Lateration and fingerprinting-based techniques. In general, the lateration method often 

suffers from inaccurate estimation. It was reported in [85] that within the typical office 

of a length of 200 ft. and a width of 80 ft., the average localization error is about 24.73 

ft. This may be due to the mulitpath propagation model (PM) due to the non-line of sight 

challenge and the sensitivity to errors in even one AP coordinates estimate; Thus, instead 

of dealing with the propagation model problem to estimate the location of the object, a 

radio map was prebuilt to use in a fingerprinting-based localization [77] scheme. In 

general, the fingerprinting-based localization consists of two phases: an offline and 
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online phase. The offline phase collects the RSS readings with their time sampling and 

their location to generate a prior fingerprint at the fingerprinting database, which 

contains the reference points (RPs). The number of RPs has a direct impact performance 

of fingerprinting-based methods. The online phase estimates the actual location by 

comparing the RSS value of a mobile device with the predefined fingerprints by using 

an IPS. One of the simplest ways to estimate the mobile user’s location is the k nearest 

neighbor algorithm (kNN), which estimates the localization by computing the k nearest 

neighbors that have the smallest Euclidean distance between the two phases [78]. Such 

an algorithm has low accuracy but is easy to implement. In this work, we propose: 

• A Probabilistic Neural Network-Jensen-Bregman Divergence (PNN-JBD) for a 

WLAN-based method. We perform the matching stage using probability kernels as a 

regression scheme. 

• A procedure with high characterization distribution to be used. RSS value was 

taken in four different orientations (45 °, 135 °, 225 °, and 315°) to prevent body-

blocking effects, with ten scans with a delay of 10 seconds to reduce the effect of signal 

variation. 

• PNN-JBD results outperforms the results of PNN and kNN with respect to 

accuracy and the average error distance, which indicates that the proposed combining 

scheme is more effective in sensitive environments of WLAN-based positioning 

systems. 

5.2 Related Work 

There are two main types of IPS methods: lateration and fingerprinting. The 
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lateration method uses log-distance to describe the relationship between mobile devices 

to multiple access points (APs) [86]. The accuracy of lateration-based localization is 

very sensitive to multi-parameters, such as if one AP coordinate has been taken 

inaccurately this can drop the performance dramatically. The filter techniques have been 

used to ensure the localization performance; for example, in [74] the particle filter was 

proposed, while in [99] the Kalman filter was used and in [76] the Bayesian filter was 

used to ensure the performance by restricting the localization error through trace 

movements. The fingerprinting-based technique is based on the difference in RSS 

between the mobile device and the RP fingerprints [78].  

A modified probability neural network was used in [100] with kNN vector 

mapping to estimate the location of the object based on RSS of the RPs and the reported 

results of the object. Recently, a probabilistic approach was proposed in [80] and [81] 

by developing a RSS based probabilistic technique and estimating the location by using 

kernel methods. In [80 the probability was estimated by using a Bayesian framework 

while in [81] a histogram framework was used. In [82], a Kullback-Leibler (KL) 

divergence framework was used with a composite hypothesis to formulate the 

localization problem. In [83], KL divergence was used to estimate the probability 

density of the RSS of the unknown device. Also in their work, RSS from the APs was 

treated as a multivaritate Gaussian distribution.  

It was reported in [84] that the probability of the KL divergence as a kernel 

regression scheme can achieve up to 1m error distance measurement in office 

environments, but they used Bluetooth technology for non-Gaussian fingerprints. 
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5.3 Bregman Divergence Algorithm Formulation 

 Achieving high accurate location estimates in indoor positioning systems using 

probability distribution models is found to be challenging due to the variation and 

interference of which RSS suffers from. Initially, measuring a distance by using a 

probability distribution was proposed by Mahalanobis and followed by different types 

of distance measures proposed by others such as in [91]. As an example, Bregman 

distance [92] appears attractive because it measures the distance by encapsulating the 

information-theoretic relative entropy and the geometric Euclidean distance. A 

Bregman distance D  measures the distortion between classes that is defined by a Jensen 

convexity gap that is induced by a strictly convex function  as  in equation 1:  

                                     qppqpqpD ),()()(),(                                (5.1) 
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The geometric representation of Bregman divergence is represented in figure 15. The 

Bregman divergence measures the distortion by unifying the parameters of the 

Kullback-Leibler divergence and squared Euclidean distance: 
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Figure 15:  The univariate Bregman divergence interpretation as the vertical distance 

between the potential function   and the hyperplane at Hq where F has been replaced 

by φ [95]. 

 The Euclidean distance is a Bregman divergence which is obtained from the 

generator  


d

i i pppp
1

2
,)( , which is represented by the paraboloid function 

shown in figure 1  

 The Kullback-Leibler divergence also is another Bregman divergence that is 

obtained from the generator  


d

i ii ppp
1

log)( , which represents the negative 

entropy on a probability vector. 

The Kullback-Leibler divergence is defined for simplex discrete distributions as:  

                                                   )
q(S=s)

p(S=s)
p(S=s)KL(p||q)=

s
log(                                  (5.4)  
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 In general, KL(q||p)KL(p||q)   is a non-symmetric divergence measurement. The KL 

divergence can be symmetric only if   p=q. [92] proposed a way to symmetrize the KL

SD  divergence between p and q, as below: 

                                                  )||()||(, pqKLqpKLqpSD                                        (5.5) 

However, the SD  divergence can be undefined if q = 0 and p ≠ 0, which means that 

both values p and q should be continuous. In [93], a new algorithm was proposed to use 

the Jensen-Bregman divergence (JBD) to overcome these drawbacks: 
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for d-dimensional multivariate data: 

                                        







d

i

iiii qpqp
qpJBD

1
)

2
(

2

)()(
),( 


                              (5.7) 

The geometric interpretation of the Jensen-Bregman divergence can be understood from 

the illustration in figure 16. In this figure, the vertical distance between the midpoint of 

the segment between ))
2

(),
2

((
qpqp 

 and the midpoint of ))](,()),(,[( qqpp  . 
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Figure. 16: Interpreting the Jensen-Bregman divergence. 

All the quadratic distances pQpp ,)(  for a positive definite matrix, that are well 

known as squared Mahalanobis distance, can be found in the Jensen-Bregman 

divergence [93]:   
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It is well known that the square root of the Jensen-Shannon divergence is a metric if the 

Shannon entropy generator has been used as ppp log)(  . 
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5.4 PNN-JBD IPS Method 

The PNN is an implementation of a Kernel discriminate analysis algorithm that is 

derived from a Bayesian framework. PNN is organized into a four-layer feed forward 

network: input layer, pattern layer, summation layer and output layer. The first layer 

represents the input features. The input layer does not perform any computation. The 

second layer works as an activation function, the radial basis function (RBF). The prior 

probabilities in PNN are unknown. In order to estimate the prior probabilities, [100] 

proposes a probability kernel-based approach: 
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where σ is the kernel smoothing factor. The probability output will be equal to 1 if p = 

q, but the output will decay when the difference becomes larger between p and q. The 

architecture of PNN is shown in figure 17. 

Input Layer: This layer consists of the multivariate input vector employed to estimate 

the location of the object. The number of neurons is equal to the number of the APs used 

in the area of interest.  

Pattern (hidden) layer: In this layer the learning set will be organized to record the 

parameters of the input vector. The RPs in the training database were used to estimate 

the PDFs in order to estimate the likelihood of the input, so we can predict the class that 

the input vector belongs to, as shown in algorithm 1. 
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Figure 17. PNN Architecture [101]. 

 

Algorithm 1. The PNN positioning method 

1- During offline phase, collect the RSS measurement from APs at specific locations to 

generate the fingerprinting map. 

2- During online phase, collect the RSS from the APs at the unknown position, set the APs in 

the same way as the database of the offline phase with respect to the similar MAC address. 

3- During online phase, perform the following steps for each fingerprint cell: 

 Estimate the smoothing factor σ that maximizes the output. 

 Estimate the similarity/dissimilarity using Eq. 4.8 

4- Transfer the maximum outputs to the Output Layer.  

 



63 
 

Modified Training Algorithm: A new class of information-theoretic divergences 

that encapsulate both the Jensen-Shannon divergence and the squared Euclidean 

distance was used to estimate the probabilities from the training database using a JBD 

kernel-based approach to estimate the coordinate of the object. The RSS distribution will 

be defined as  

                                   
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The PNN-JBD positioning method was proposed in order to improve the accuracy as 

shown in Algorithm 2: 

Algorithm 2. The PNN-JSD positioning method 

1- During offline phase, collect the RSS measurement from APs at specific locations 

to generate the fingerprinting map. 

2- During online phase, collect the RSS from the APs at the unknown position, set the 

APs in the same way as the database of the offline phase with respect to the similar 

MAC address. 

3- During online phase, perform the following steps for each fingerprint cell: 

 Estimate the smoothing factor σ that maximizes the output. 

 Estimate the similarity/dissimilarity using Eq. 4.9 and load the data into single 

column.  

4- Transfer the maximum outputs to the Output Layer.  
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Output Layer:  The number of neurons in this layer is equal to the number of existing 

classes. Each neuron must be connected to all the neurons in the hidden layer. As a 

result, this layer is also called the summation layer. The summation of the output layer 

is proportional to the density function as a Weighted Kernel Regression [84], that will 

be used to estimate the location: 
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A regression model in equation 10 is used with K nearest neighbors as opposed to using 

the whole database in the hidden layer.  

5.5 Implementation and Experimental Results 

We implemented our algorithm inside the College of Engineering and Applied 

Sciences (CEAS) at Western Michigan University (WMU). In the first floor in CEAS, 

we used the layout shown in figure 18.  This area has a long corridor and three rooms 

with a large study lounge in the area 23.5 m × 16.5 m.  We employed an Android-based 

operating system 4.4.2 Samsung S5 smart phone as the test mobile to collect the RSS 

sampling. Furthermore, we implemented Java software by using an Eclipse framework 

version 4.2, which was installed on HP Pavilion for localization services. The APs were 

Cisco Linksys E2500 Advanced Simultaneous Dual-Band Wireless-N Routers in the 

area of interest. 
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Figure 18: The layout used in the experimental work in the College of 

Engineering and Applied Sciences at WMU. 

In the offline phase, the person that holds the phone to collect the data can 

increase the variation of the signal; furthermore, the number of passing individuals 

changes with time which also impacts the variation of the signal. In response, we created 

a realistic scenario that can provide a richer distribution for the WiFi signal.  Therefore, 

the RSS recording was taken at four different orientations (45 °, 135 °, 225 °, and 315°) 

with ten scans and at a delay of 10 seconds taken at the same place to reduce the effects 

of the body and signal variations.  The average value was taken for the four orientations 

and the ten recordings to generate the fingerprinting map.  

The estimation accuracy can greatly be affected by the number of APs in the 

area of interest. In order to increase the accuracy of the positioning estimation, the 

impact of the number of the APs on the RPs were investigated in the estimation of the 
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object position. To investigate the accuracy of our proposed algorithm, different 

algorithms have been implemented such as PNN and kNN as presented in [100] and 

[78] and compared with our proposed algorithm.  

Different numbers of the nearest neighbors (NN) were used to estimate the 

coordination of the object. Figure 19 plots the localization distance with different 

numbers of APs when using 5 nearest neighbors only. The best performance was 

obtained when using 22 APs. The lowest distance error was 0.98m for PNN-JSD, 1.38m 

for kNN and 1.34m for PNN. Furthermore, the system showed higher accuracy when a 

kernel regression for 20 nearest neighbors was used; for example, the median accuracy 

for PNN-JBD was 0.92m, while 1.097m for PNN and 1.19m for kNN as shown in figure 

20. Further decreases in distance error and better accuracy were observed when using 

80 nearest neighbors for different AP selectins as shown in figure 21. The lowest median 

error distance was 0.865m for PNN-JSD, 0.99 m for PNN and 1.12m for kNN. Other 

positioning systems approaches such as compressive sensing [88], the kernel-based 

method [87], and kNN [78] reported results are less accuracy when compared to ours. 

Our proposed algorithm has shown lower distance error of maximum 90% of the other 

algorithms as shown in Table 3.  
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Figure 19: Localization distance error of PNN-JBD versus different algorithms with different 

number of APs with 5 NN 

Table 3: Localization distance error of PNN-JBD versus different algorithms  

Technique Median [m] Accuracy 90% [m] 

kNN  1.8 3.7 

Kernel-based  1.6 3.6 

CS-based  1.5 2.7 

PNN-JBD 0.899 1.85 
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Figure 20: Localization distance error of PNN-JBD versus different algorithms with different 

number of APs with 20 NN
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Figure 21: Localization distance error of PNN-JBD versus different algorithms with different 

number of APs with 80 NN 

5.6 Conclusion 

Indoor positioning systems have become a common tool in our daily life. A 

fingerprint-based scheme has become widely used in IPS. Furthermore, the fact that a 

large number of APs exist in our environment provides an easier way to investigate 

fingerprinting-based approaches. In this paper, we presented an indoor localization 

fingerprint-based scheme using a hybrid method composed of JBD and PNN. 

Experimental results were validated by comparing our proposed framework results with 

those of PNN and KNN methods. The PNN-JBD results are more accurate than the 

results of PNN and kNN. Also, we report that our best estimates occurred when 

incorporating 80 neighboring APS. We are in the process of investigating error 

modeling versus WiFi signal variation in space and time.    

 

 

 

 

 

 

 

 



70 
 

CHAPTER VI 

A K-MEAN- JENSEN-SHANNON DIVERGENCE SYMMETRIZATION FOR 

A WLAN INDOOR POSITIONING SYSTEM 

6.1 Introduction 

Nowadays, smartphones have been rapidly proliferated, which has a lot of 

applications that are based on location-based services in pervasive computing and 

Internet of Things [117]. In general, GPS can’t be used in indoor environments because 

the satellite signal can’t penetrate the building, which makes it untraceable. Many 

technologies have been proposed and used instead of GPS that have different accuracy, 

such as ultra-wideband, Bluetooth, ultrasonic, and RSS. Most of the proposed methods 

consider the cost perspective, so the majority of the researchers depend on the existing 

infrastructure, or the deployment of dedicated infrastructure [unsupervised]. In the 

recent years, the RSS of wireless local access networks (WLAN) has become the 

dominant field of research in indoor positioning systems due to its availability and 

accuracy [119], and also the tremendous spread of chipsets from IEEE 802.11 that you 

can find both in smartphones and the APs in the area of interest [118]. There are two 

main categories in RSS-based indoor localization: fingerprinting and lateration-based 

techniques. In general, the lateration methods have less accuracy and more inaccurate 

estimation compared to fingerprinting methods because if one or more coordinates of 

the APs are not accurately estimated the performance can drop dramatically, and the 

non-line of sight (NLOS) problem that can affect the log distance propagation model 

(PM) [119]. While fingerprinting-based localization doesn’t require LoS, the Wi-Fi 

fingerprinting is a process of collecting the WLAN signal with their indoor location 
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[120]– [123]. In general, each position in an indoor environment is characterized by a 

signal pattern, thus without knowing the AP location nor the angle measurement to 

estimate the object location. The fingerprinting-based technique is based on two phases: 

the offline phases (training) and the online phase as shown in figure 1. In the offline 

phase, a site survey will be performed to collect the RSS of the Wi-Fi from the different 

APs at known locations called reference points (RPs) in the area of interest. After that 

all the recorded signals will be stored at the database with their location for online query. 

While in the online phase, the user will send some samples of the RSS to the server to 

measure the similarity/dissimilarity using metric algorithms such as the Euclidean 

distance. The location of the object will be estimated based on the closest neighbors of 

the RPs set to match the target [119]. In this work, we propose: 

• In order to obtain a richer characterization, the RSS was recorded into four 

different orientations (45 °, 135 °, 225 °, and 315°) to prevent a body blocking effect 

and reduce the signal variations.  

• The Bregman k-means, that is the original k-means algorithm, is extended into 

a meta-algorithm will be used, since the Bregman divergence unifies the statistical 

entropic measures with the quadratic Euclidean distance to measure the similarity 

of the signals. 

• The proposed algorithm results will be compared with the results of k-mean and 

affinity propagation with respect to accuracy and the average error distance. 

 

6.2 Related Work 

Nowadays, most of the research in Wi-Fi fingerprinting-based localization 
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algorithms focuses on improving the collection of the fingerprinting signal database, 

which can lead to improve the accuracy and decrease the distance error estimation. 

Various algorithms have been proposed, some include ray-tracing [124], others use the 

signal propagation model, and some use crowdsourcing by using indoor floor maps and 

inertial sensors [125]. In general, the Wi-Fi signal suffers from time variation due to the 

nature of radio propagation which makes some difference between the offline and the 

online phase.  

To eliminate the impact of the time variation, some researchers use clustering 

techniques by partitioning the fingerprinting database into multiple clusters and then 

choosing the one with the lowest average distance RSS to estimate the positioning of 

the target [117]. [126] proposed the cluster filtered KNN (CFK) method that partitions 

the fingerprint using hierarchical clustering; some improvements have shown in the 

results when clustering methods were used. Altintas and Serif [127] proposed an 

algorithm to replace the hierarchical clustering with k-mean to improve the accuracy of 

the positioning systems. Likewise, Sun et al. [128] proposed a KNN-FCM hybrid 

algorithm, a hybrid algorithm that uses the fuzzy 𝑐-means (FCM) clustering method 

incorporated with kNN of several clusters, and chose one cluster to estimate the object 

position. The results showed a little improvement with a distance error less than 2 

meters. Tian [129] proposed an affinity propagation to cluster the fingerprinting 

database, after that coarse position algorithm that usually working with one cluster or 

more to estimate the location of the object.  

In general affinity propagation clustering takes more time than the other techniques 

to cluster the database. [119] proposed a probabilistic neural network (PNN) scheme in 
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which we incorporate the Jensen-Shannon divergence method.  

6.3 Overall Structure of Proposed Positioning Algorithm 

Designing a high accuracy IPS by depending on fingerprinting-based location is 

tricky because the RSS is heterogeneous. As a result, using the square Euclidean 

distance or Lp norm methods don’t always give the highest accuracy results. For 

example, it has been proved in [119] that using the information theoretic relative entropy 

can obtain a better accuracy than the methods that depend on Euclidian distance such as 

PNN and kNN to measure the similarity between the offline phase and online phase. 

The Shannon differential entropy is defined as:      

                                                            
p

pH(p
1

log)                                                    (6.1) 

The kullback-Leibler divergence is equal to the cross entropy minus the Shannon 

differential entropy [95]:    

                                      ))(())((||))(( 
s

x sSpHsSqsSpHKL(p||q)=                   (6.2)  

where xH  is the cross-entropy:              

                                    



s

x

sSq
sSpsSqsSpH

)((

1
log)(()((||)((                      (6.3) 

where S represents the vector sets of RSS. The Kullback- Leibler divergence of the two 

real-values p and q of the histogram distribution is defined as: 
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Due to the hardware variance problem and the variation of the RSS, we use clustering 

methods to cluster the radio map of the offline phase. The k-mean was one of the first 

algorithms in clustering proposed by Lloyd in 1957 [131]. Briefly a k-mean iterative 

clustering algorithm was proposed to solve vector quantization problems. In general, k-

mean works first by choosing a seed for each cluster considered as the cluster center, 

after that, the cluster center will associate the closest point to the center. This operation 

will be repeated and update the various cluster centers and will be reiterating and 

updated until the difference between any two successive calculations will be below the 

threshold. The cluster Ci’s center ci is defined as follows [95]: 
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where ci represents the center of the cluster Ci, and iC  represents the cardinality of Ci . 

In 2004 Banerjee et al. [130] proposed that the k-mean algorithm can be extended to a 

meta-algorithm by using a family of distortions called Bregman divergence. The 

Bregman divergence D  between two sets of convex data is defined as: 

                                                 qppqpqpD ),()()(),(                              (6.8) 

where )( p  denotes the gradient operator: 
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and .,.  denotes the dot product ,  is a strictly convex and differentiable function. Both 

The Euclidean distance and the Kullback-Leibler divergence can be derived from the 

Bregman divergence, if the convex function is considered as  


d

i i pppp
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2
,)(  that 

will lead to the Euclidean distance, while if the convex function is considered as 

 
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d

i ii ppp
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log)( that will lead to the Kullback-Leibler divergence as illustrated in 

figure 22.  

 

Figure 22:  The univariate Bregman divergence interpretation as the vertical distance 

between the potential function   and the hyperplane at q 

The Bregman divergence can be symmetrized as follows: 

                                                     
2

),(),(
),(

pqDqpD
qpSD





                              (6.10) 

                                                        )()(,
2

1
qpqp                                      (6.11) 



76 
 

The Kullback-Liebler divergence can be symmetrized in the same manner of the 

Bregman divergence as follows: 

                                                         )||()||(, pqKLqpKLqpJ                                   (6.12) 

The J-divergence has a major drawback: the output can be undefind if  p≠0 and q=0. To 

overcome these drawbacks, [133] proposed a Jensen-Shannon divergence (JSD) by 

depending on the KL-divergence as: 
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Thus the original k-mean is modified into a meta-algorithm called Bregman k-mean. 

Barnerjee [132] proved that the mean is the minimizer of the clustering set of the 

expected Bregman divergence. The centroid of the point set can be defined as minimum 

average distance 
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where F
Rc  and F

Lc represent the sided centroid (where L stands for left and R for right) 

and the centroid Fc represents the symmetrized Bregman centroid and n represents the 

number of RPs in the cluster [95]. The Bregman k-means positioning method was 

proposed in order to improve the accuracy. 

Algorithm 1. The k- mean Bregman positioning method 

1- Record The RSS measurement during the offline phase at known locations to create 

a database of fingerprinting maps. 

2- Initialize the c centroid for each clustering group.  

3- Calculate the distance between the RPs and the centroid using Eq. 19-20.  

4- Assign each RP to the nearest centroid of the cluster. 

5- Repeat step 2, 3, and 4 until there are no changes in each cluster centroid. 

6- During online phase, perform the following steps for each fingerprint cell: 

 Estimate the distance between the RSS of unknown location and the centroid 

of each cluster using Euclidean distance.   

 Determine the kNN number of the cluster that RSS of online phase belong to.  

7- Estimate the maximum outputs using eq. 19.  
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6.4 Implementation and Experiment Results 

The proposed algorithm is implemented inside the College of Engineering and 

Applied Sciences (CEAS) at Western Michigan University (WMU). The area has a three 

big rooms and large lounge for studying with a long corridor in the area 23.5 m × 16.5 

m. An android operating system was used to collect the data and test the algorithm using 

a Java software by using an Eclipse framework version 4.2, that has been installed on 

HP Pavilion for localization estimation. The APs were Cisco Linksys E2500 Dual-Band 

in the area of interest. In the training (offline) phase the person that holding the phone 

during collecting the data may increase the variance of the signal; also the people that 

passing during the process of collecting data can play a role in signal variation. In 

response a realistic scenario was created to provide a better distribution of the Wi-Fi 

signal. The RSS signal was recorded at four different orientations (45 °, 135 °, 225 °, 

and 315°) with a delay 10 seconds for ten scan at each direction. After that an average 

value were taken for the different direction and the ten recording to generate the 

fingerprinting map.  

In general, the accuracy can be affected by the number of APs that were used. The 

impact of the number of APs and the number of RPs have been investigated in the 

estimation process of the object. In order to investigate the accuracy of the proposed 

algorithms, different algorithms have been implemented and compared with our 

proposed algorithm such as k-mean and affinity propagation. Figure 23 illustrates the 

localization distance error with different numbers of APs when using 6 cluster with 5 
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nearest neighbors to estimate the location of the object. The highest accuracy obtained 

when a 22 APs was used, which was 1.063m for Bregman k- mean algorithms, 1.2175m 

for k-mean with probability function, and 1.2885m when k-mean with kNN algorithm. 

Furthermore, a better accuracy was obtained when a 15 nearest neighbor was used; for 

instance, the localization distance error was 0.98m for Bregman k-mean algorithm, 

1.05m for k-mean with probability function, and 1.16m when k-mean with kNN 

algorithm as shown in figure 24.  

 

Figure 23: Localization distance error of k-mean Bregman versus different      

algorithms with different number of APs with 5 NN 
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Figure 24: Localization distance error of k-mean Bregman versus different      

algorithms with different number of APs with 15 NN 

 

There is some other positioning approach such affinity propagation [14] reported 

results are higher localization distance error. Furthermore, that our proposed algorithms 

showed higher accuracy of the other algorithms as shown in Table I. 

Table 4: Localization distance error of k-mean Bregman versus different 

algorithms  

Technique Median [m] 

k-mean+kNN  2.6 

K-means + Prob. Dist 3.11 
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Affinity Prop. + Knn  2.66 

Bregman k-mean 1.005 

 

6.5 Conclusion 

Indoor positioning systems are a very useful navigation tool in many applications in 

life. It can bring the power of the GPS indoors. In this paper, a WLAN positioning 

approach was proposed due to the tremendous number of APs in our environment 

provide an easier way to investigate the fingerprinting approach, called the Bregman k-

means, that is the original k-means algorithm is extended into a meta-algorithm. The 

results that were obtained throughout our implementation showed that the Bregman k-

mean outperforms the k-mean with kNN, k-mean with probability distribution, and the 

Affinity propagation algorithms. The best results were when 6 clustering was used with 

15 NN. Nevertheless, now we are in the process to investigate the error modeling versus 

WiFi signal variation in space and time 
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                                             CHAPTER VII 

A JENSEN-BREGMAN DIVERGENCE FOR A  WLAN INDOOR 

POSITIONING SYSTEM USING RECEIVED-SIGNAL-STRENGTH 

 

7.1 Introduction  

Nowadays, the automatic location of a user is a hot topic in research. [102] 

estimated the global indoor localization market around $935.05 million in 2014, and by 

2019 it is expected to be around $4,424.1 million. The Compound Annual Growth Rate 

(CAGR) is expected to be 36.5% from 2014 to 2019. The estimation of mobile locations 

has an important role in many computing applications. In general, the Global Positioning 

System (GPS) is one of the most common location systems, but GPS cannot be used 

inside buildings since it can’t perform a line-of-sight (LOS) with satellites and cannot 

determine the floor. Therefore, a large number of technologies were developed to create 

a high accuracy indoor positioning system (IPS): for example, Bluetooth, radio-

frequency identification (RFID), wireless local area network (WLAN or Wi-Fi), 

magnetic field variations, ultrasound, ZigBee, LED light. Wi-Fi is the most common 

technique used in IPS. Because of the low cost, the existence of WLAN infrastructure 

and most of the smart phones can obtain the RSS from the access points (APs) of 

WLANs [103] [108].  

The IPS algorithm that uses RSS-based indoor localization can be classified into 

two main types: the log-distance propagation model (PM) algorithms based on the 

signal, and fingerprinting indoor localization based on the data collection. The IPS based 

on signal propagation is divided into lateration and angulation. The main idea in 

lateration estimation is to calculate the distance between the smartphone and the access 
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point (AP) by using geometry and signal measurement information, such as the time of 

arrival (TOA) of the signal from the APs, the time difference of arrival (TDOA) of the 

signals from the APs, and the angle of arrival (AOA) of the signals from the APs. In 

general, the propagation signal suffers from the non-line-of-sight (NLOS), multipath 

signal due to the walls, movement of people, and furniture. Also, the accuracy could be 

decreased if one or more coordinates of the APs haven’t been accurately calculated. All 

these drawbacks made the estimation of the object using signal propagation a difficult 

task [104]. Therefore, to reduce the effect of these drawbacks, an implementation of the 

fingerprint-based signal has been proposed to estimate the location of the object [105]. 

Location fingerprinting was deployed because it doesn’t require infrastructure, just the 

existing WLAN in the building and the smartphone, by depending on the 

characterization and spectrum of the RSS from the APs to the location to estimate the 

location coordinates.  

The fingerprint-based technique has been divided into phases: the offline and 

online phases. In the offline phase the entire area of interest is divided into a rectangular 

set of grid points, and at each point, a site survey is taken by recording the RSS from 

the APs and stored in a database called a radio map. In the online phase, the smartphone 

will collect the RSS from APs and then send it to the server to compare the predefined 

fingerprint of the offline phase with the RSS in online phase to estimate the location on 

the grid map as shown in figure 25. 
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(a) 

 

(b) 

Figure 25: (a) The offline and online stages of location Wi-Fi based fingerprinting 

architecture and (b) radio map fingerprint of Wi-Fi IPS 

kNN is one of the simplest ways to estimate the location by depending on the Euclidean 

distance to measure the similarity/dissimilarity between the offline and online phases. 

Even though this algorithm is easy to implement, it has low accuracy. Other methods 

like statistical learning and Bayesian modeling also have been used to estimate the 

Test PointReference Point

54,71,69
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location of the object. The location accuracy is one of the most fundamental metrics in 

IPS to measure the reliability of the system by reporting the error distance between the 

actual location and our estimated location [103]. 

Recently an important issue has been raised about the variation of the signal 

propagation: how can it change over time at the same place due to multiple factors such 

as physical obstructions, RF equipment, and the presence of human bodies? As a result, 

that can lead to attenuation and multipath issues, and this will make gradual changes in 

the signal which can reduce the accuracy of localization systems [106]. Values stored in 

the fingerprint maps represent the mean value of RSSI. Some approaches suppose that 

the RSSI distribution is a Gaussian [107] while other approaches assume a non-

Gaussian, such as in [84]. However, using a Wi-Fi system to estimate the location of the 

object has many advantages, such as the availability and low cost to build a system 

compared to other technologies. But, on the other hand, there are some problems that 

we have to take into account, such as Wi-Fi hardware variance problems. Since the RSSI 

signal uses both off-line and on-line phases, this variance will affect the pattern of the 

signal, which will lead to the degradation of the accuracy of the location systems. Some 

experiments have been done to investigate this variance. It was reported in [106] that by 

using different smartphones to collect the RSSI data at the same time at the same 

location, some phones consistently reported a higher value of RSSI than the others. The 

orientation of the user can be a part of the variance of the RSSI signal because the human 

body can be a signification attenuator, as shown in figure 26, with the difference as 

much as 10 for same location different direction. 
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Figure 26: RSSI values recorded from different APS when facing North and South. 

The variation can be up to 10 dBm [106]. 

This variance hardware problem also has been noticed even in Cisco location 

systems, because some signal was omitted when a different device was used in the 

online phase than was used in the offline phase. In this work, we propose: 

 A Jensen-Bregman Divergence (JBD) for a WLAN-based method and Kullback-

Leibler Multivariate Gaussian MVGLK . We perform the matching stage using 

probability kernels as a regression scheme. 

 A procedure with high characterization distribution to be used. RSS value was 

taken in four different orientations (45 °, 135 °, 225 °, and 315°) to prevent body-

blocking effects, with a scan for 100 seconds at each direction to reduce the 

effect of signal variation. 

 JBD and MVGLK  results outperform the results of PNN and kNN with respect to 

accuracy and the average error distance, which indicates that the proposed 
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combining scheme is more effective in sensitive environments of WLAN-based 

positioning systems. 

7.2 Related Work  

The global navigation satellite systems (GNSS) like GLONASS, GALILEO or GPS 

work in the outdoor environment, but the accuracy may dramatically drop in indoor 

environments due to many parameters such as penetration loss, refraction, multipath 

propagation, and absorptions. Therefore, the necessity of developing a system that can 

work in an indoor environment with high accuracy has become imperative [108]. In the 

last decade, many techniques were proposed for IPS. In the model-based techniques, the 

location is estimated by depending on the geometrical model, such as in log-distance 

path loss (LDPL), where a semi-statistical function will be built by depending on the 

relationship between the RF propagation function and the RSS value. Several 

approaches have been proposed that are a trade-off between the accuracy and the cost, 

such as ToA, TDoA, AoA, and Multidimensional scaling (MDS). The MDS is a set of 

statistical techniques that is used to visualize the information in order to find the 

similarities/dissimilarities in the data. The matrix in MDS begins with item-item 

dissimilarities, the radio propagation attenuation between AP-AP to measure the 

distance [109]. The fingerprinting-based technique depends on matching algorithms, 

such as kNN, that have been used in RADAR [30], which is a pioneer of the fingerprint 

in IPS. After that, many developed kNN algorithms have been proposed to find the 

similarity/dissimilarity in metrics which usually is done by using the Manhattan distance 

or the Euclidean distance, such as in [110-112]. [113] proposed a new version of kNN 

that is more efficient than the probabilistic methods, Neural networks, and the traditional 
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kNN, by depending on the decision tree of the training phases and taking the average of 

measures of RPs instead of having the whole dataset to estimate the location of the 

object. [114] performed a modified deterministic kNN technique with Mahalanobis, 

Manhattan, and Euclidian distances; their results showed that the Manhattan distance 

had higher accuracy than the others. Recently, the use of probabilistic distribution 

measurements in many IPS applications was increased. [98] Pioneered the use of the 

probabilistic distribution measurement in IPS. They propose a probabilistic framework 

by using a Bayesian network to estimate the location. In [36] a modified probability 

neural network (MPNN) was used to estimate the coordinates of the object. The results 

showed that the performance of MPNN is better than the triangulation methods. In [81] 

a kernel method was proposed to estimate the location of the object by using a histogram 

of the RSSI at the unknown location. In [82] the probability density function (PDF) was 

estimated by using the Kullback-Leibler divergence (KLD) framework as a composite 

hypothesis testing between the fingerprinting database and the test point. While in [83] 

they assumed that the RSSI distribution is multivariate Gaussian, and they used the KLD 

to estimate the impact of the RPs on the test point to estimate the probability of the 

closest one and then find the coordinates of the test point.  

In [84] the RSS of the Bluetooth localization technique was used to establish the 

fingerprint and then the KLD was used in the probabilistic kernel regression to estimate 

the location of the object. The results showed around 1 m accuracy in an office 

environment. In general, the KLD kernel regression has better performance in 

multimodal distribution. In [89] the KLD was used to estimate the probabilistic kernel 
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of both Gaussian and non-Gaussian distribution to compare between them and find their 

limitation. 

5.3 Indoor Positioning System 

We begin with a typical WLAN scenario, where a person carries a smartphone 

device that has a WLAN access, taking RSS measurements from the different APs at 

the College of Engineering and Applied Sciences (CEAS) at Western Michigan 

University (WMU). There is a common assumption that the RSSI coming from multiple 

APs is distributed as a multimodal signal as mentioned in [110]. However, the signal 

recorded quite different values for the same device at the same location, varying between 

two values different by as much as 10 dB. The values have been recorded for 35 minutes 

during rush hour for a single AP, for the same location, and then samples were taken 

from them as shown in figure 27. 

 

Figure 27: Signal-to-Noise Ratio (SNR) of the RSSI Variation Distribution over time 
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There are a lot of parameters that can affect the shape of the signal, like reflection 

and diffraction. Furthermore, the number of passing people have an impact on the shape 

of the signal. Nevertheless, we were looking for a scenario that could provide a better 

distribution of the Wi-Fi signal. During the offline phase, a realistic scenario was created 

that takes the variation of the signal into account, also, the effect of the body of person 

that holds the phone, and the passing of the people that can change the variation of the 

signal; however, in order to reduce the variation of the signal and the effect of the body, 

a recording of the RSS was taken in four directions (45 °, 135 °, 225 °, and 315°) . At 

each RP, a raw set of RSS was collected as a time sample from the APs in the area of 

interest that is denoted as  ,100,,.....,1),()(

,  ttq ji   where t represents the number of 

time samples and )(  is the orientation direction. After that, the average and covariance 

matrix of the RSS were taken for the four different directions and the ten scans to create 

the fingerprinting database, known as the radio map; the radio map is represented by 

)(Q [86]: 
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where  
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t

jiji q
q

q
1
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,
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, )(
1


 , where t=10 and have been chosen randomly from the 100 

time samples so we can obtain the average of the RSS sample over the time domain for 

different APs, NjLi ,....2,1,,.....2,1  , where N represents the number of RPs, and L is the 

number of the APs [49]. The variance vector of each RP can be defined as: 
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where )(
,


 ji  is the variance for AP i at RP j with orientation )(  , so the database table of 

the radio map is (
)()( ,,,   jjjj qyx ), and the 
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In the online phase, the RSS measurement will be denoted as: 

                                              rLrrr pppp ,,2,1 ,.......,,                                              (7.5) 

 

7.4 Kullback-Leibler Multivariate Gaussian Model 

Recently another approach has been used in fingerprinting-based methods to estimate 

the position of the objects, the Multivariate Gaussian model (MvG), to exploit the 

interdependencies within the RPs, such as the model of the signal, the geometry that can 

be quantified to find the correlations among the RPs. Milioris [116] proposes a 

Kullback-Leibler multivariate Gaussian to measure the similarity between the RSS 

measurement of test points and the RPs that is defined as:   
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where S represents the matrix of RSS values from the different APs at specific locations, 

j represents the cell of the fingerprint location where: 

                                                 )()()(
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)(

j    the mean of Jth column of the RSS measurement, and  
)(

 j  represents the 

covariance matrix, where  is the determinant of  . Now a probability kernel-based 

approach will be derived from the MVGLK . The Kernel regressions scheme allows us to 

estimate the PDF of the training datasets and the TP from the online phase that will be 

used to estimate the location of the object. The MVGLK  is used to measure the distance 

between the likelihood of the input sample and the RPs in order to find which class it 

belongs to. The RSS distribution can be defined as: 
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where σ is the kernel smoothing factor. The probability will be equal to 1 if p = q, and 

the output will decrease when the difference between p and q becomes larger. 
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Algorithm 1. The Kullback-Leibler multivariate Gaussian positioning method 

1. During the offline phase, the RSS measurement was taken at different places at 

know locations, ten scans with 10 seconds time delay to generate the radio map 

2. During the online phase, the RSS measurement will be taken of the unknown 

location of the smartphone.  

3. During online phase, the following steps will be performed: 

 A database for each RP will be set that have the RSS measurement with their 

location. 

 The RSS measurement from APs of the smartphone that have unknown 

location will be set in the same way as the database of the offline phase with 

respect to the similar MAC address. 

 Estimate the minimum Kullback-Leibler multivariate Gaussian using 

equation 7.8.  

 Repeat the step above for different APs until the minimum distance will be 

obtained.  

4. Transfer the maximum outputs to the Output Layer. 

                

7.5 Bregman Formulation  

 Analysis the data that is suffered from the interference and corrupted data is kind 

of impossible without interpreting the data that have been randomly obtained from 

unknown distribution with unknown parameters the most common assumption that have 

been used in many researches that the signal is Gaussian distribution. However, this 
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assumption is inappropriate with RSS from the WLAN. The Gaussian distribution is 

considered as a member of the family of the exponentials distributions. Furthermore, 

the Bregman divergence and the exponential families have a strong relationship [133]. 

The log-likelihood of an exponential family will be considered as a sum of a Bregman 

divergence, However the Bregman divergence doesn’t depend on the distribution 

parameter. The Bregman divergence can provide a likelihood distance of the exponential 

family, this property has been used to generalize the Principal Component Analysis 

(PCA) to the exponential family. However, the Bregman divergence is not a symmetric 

and doesn’t satisfy the triangle inequality so it’s not a metric. A Bregman divergence 

measures the distortion between classes that is defined by a Jensen convexity gap that 

is induced by a strictly convex function as:    

                              qppqpqpD ),()()(),(                                     (7.9) 

where .,.  denotes the inner product and  
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where )( p  denotes the gradient operator of  at point q: 
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The case of Bregman divergence is not a metric. However, as proved in section 3.2 that 

the Jensen-Bregamn  divergence (JBD) is a symmetric and it can be a metric. JBD is 

induced by a strictly convex function generator that unifies the celebrated information-

theoretic Jensen-Shannon divergence with the squared Euclidean and Mahalanobis 

distance:  



95 
 

                                 







d

i

iiii qpqp
qpJBD

1
)

2
(

2

)()(
),( 


                                   (7.12) 

The kernel function of JBD will be defined as: 
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To improve the accuracy, we presented Algorithm 2: 

Algorithm 2. The symmetric Bregman divergence positioning method 

5. During the offline phase, the RSS measurement was taken at different places at 

known locations, ten scans with 10 seconds time delay to generate the radio map 

6. During the online phase, the RSS measurement will be taken of the unknown 

location of the smart phone.  

7. During online phase, the following steps will be performed: 

 A database for each RP will be set that have the RSS measurement with their 

location. 

 The RSS measurement from APs of the smart phone that has unknown location 

will be set in the same way as the database of the offline phase with respect to 

the similar MAC address. 

 Estimate the minimum symmetric Bregman divergence using 7.13 algorithm.  

 Repeat the step above for different APs until the minimum distance will be 

obtained.  

8. Transfer the maximum outputs to the Output Layer.  
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7.6 Performance Analysis 

The proposed algorithms evaluations will be demonstrated in the following 

subsections; the algorithms have been implemented in the first floor of the College of 

Engineering and Applied Sciences (CEAS) at Western Michigan University (WMU). 

This evaluation took place in an area 23.5 m × 16.5 m, with a large study lounge with 

three rooms and a long corridor as shown in figure 28. To collect the data sample a 

smartphone Samsung S5 with operating system 4.4.2 was employed. The proposed 

algorithms have been implemented on HP Pavilion by using Java software with an 

Eclipse framework. Cisco Linksys E2500 Advanced Simultaneous Dual-Band Wireless-

N Routers were used in the area of interest. Most of the prior work ignored the variation 

of the RSS from the APs.  

  

Figure 28: The layout used in the experimental work in the College of 
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Engineering and Applied  

To evaluate the performance of the different fingerprinting techniques, the 

localization error was computed as the Euclidean distance between the actual reported 

coordinates of the test points and the coordinates of the mobile user during the online 

phase. The number of the RSS of the APs and the number of nearest neighbors have 

been noted that can affect the accuracy of the algorithms. It has been noticed that the 

number of the APs can play an important role in the accuracy of the distance error that 

can distinguish the near RPs from the other further away RPs.  

In order to measure the impact of the APs on the accuracy, we used a specific 

number of nearest neighbors with a variety of APs. To investigate the accuracy of our 

proposed algorithm, different algorithms were used, such as PNN and KNN, and 

compared with our proposed algorithm. Different numbers of nearest neighbors (NN) 

were used to estimate the location of the object and evaluate the performance of our 

system framework. Figure 29 shows the impact of different APs when 5 NN were used. 

The lowest localization error was obtained when 22 APs were used which was 0.98m 

for kJBD, 1.12 m for kJSD, 1.16m for MVGLK  , 1.34m for PNN and 1.38 m for kNN. 

More accuracy was obtained when more NN were used, as illustrated in figure 30, 22 

NN was used. The lowest localization accuracy was obtained also when 22 APs were 

used as 0.92m for kJBD, 1.01m for kJSD, 1.02m for MVGLK  , 1.097 m for PNN and 1.19 

m for kNN. More improvement on system accuracy was noticed when 80 nearest 

neighbors were used: 0.865m for kJBD, 0.96 m for kJSD, 0.99 m for MVGLK , 0.995 m 

for PNN and 1.12 m for kNN as shown in figure 31. To validate our work, a comparison 

was made between the proposed algorithms with other algorithms from prior works such 
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as kNN [10], compressive sensing [76] and the kernel-based method [77], illustrated in 

Table I. 

Table 5:  Localization distance error of different proposed algorithms  

Technique Median [m] Accuracy 90% [m] 

kNN  1.8 3.7 

Kernel-based  1.6 3.6 

CS-based  1.5 2.7 

KLMVG 1.02 2.13 

kJSD 0.98 1.93 

 

 

Figure 29: Localization distance error of different proposed algorithms with different number 

of APs with 5 NN 
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Figure 30: Localization distance error of different proposed algorithms with different number 

of APs with 20 NN 
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Figure 31: Localization distance error of different proposed algorithms with different number 

of APs with 80 NN 

7.7 Conclusion 

Indoor positioning systems bring the power of GPS and maps indoors. It can be 

a very useful navigation tool in many applications in life; for instance, emergency 

healthcare services, or for impaired vision people, or for use in unfamiliar buildings 

where people can get disoriented or lost easily, such as in mall, airport, subways. A 

fingerprint map was created for a segment of the college of engineering to utilize the 

relation of the RSS reading. Different algorithms were used and compared with different 

approaches such as kNN and PNN. The different performances were obtained for a 

number of the APs. The results were quite adequate for the indoor environment with an 

average error less than 1 meter. The kJBD had the highest accuracy when 80 NN with 

22 APs among the other approach. Now we are in the process of investigating position 

prediction error distributions and need to quantify the localization variation of the WiFi 

signal distribution in space. 
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CHAPTER VIII 

CONCLUSION AND FUTURE WORK 

 

8.1 Summary and Conclusion  

Fingerprint-based schemes have become widely proposed for indoor positioning 

systems. Furthermore, the fact that a large number of access points (AP) exist in indoor 

environments provides a convenient and economic context for investigating 

fingerprinting-based approaches.  

The use of a Wi-Fi system to estimate the location of the object has many 

advantages such as its availability and lower cost when compared with other technology-

based systems. On the other hand, it also presents certain problems that need to be taken 

into account such as Wi-Fi signal variation due to hardware differences and the very 

dynamic indoors environment. Since RSSI-based systems use both off-line and on-line 

phases, this variance would impact the accuracy of positioning system results. To 

address the issues of signal variation, the effect of the user’s body and the interference 

caused by the presence of other people in the vicinity, signal acquisition was performed 

by recording the RSS in four directions (45 °, 135 °, 225 °, and 315°). 

In this dissertation, several approaches were investigated by building on convex 

optimization models and the Bregman divergence was a natural tool to be selected. Since 

Bregman divergence family is well suited as distance measure tool, it was instinctive to 

combine these measures with probabilistic neural network (PNN) as a framework to 
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measure the localization distance error. It was also as important to investigate Jensen-

Bregman Divergence (JBD) since JBD is induced by a convex function generator and 

unifies the squared Euclidean and Mahalanobis distances with the information-theoretic 

Jensen-Shannon divergence. Finally, this investigation included a study of the number 

of the access points and location spacing versus localization accuracy. 

The proposed algorithms were implemented using the College of Engineering 

and Applied Sciences (CEAS) at Western Michigan University (WMU) as the indoor 

environment testbed. A simulation of the multivariate Kullback-Leibler divergence 

(KLMVG) under the Probability Neural Network (PNN) scheme and k-Nearest Neighbors 

(k-NN) was implemented to compare and allow for validation of the proposed 

framework using the Bregman divergence family. The JBD algorithm produced the 

smallest localization error and outperformed the other algorithms in terms of complexity 

and execution time.  Therefore, the proposed framework, which is based on 

fingerprinting methods and convex optimization for minimization of the disparity 

measure, is a promising positioning system that is worthy of further exploration.  

8.2 Future Work  

Building on the proposed system, the following is a list of recommended future 

directions: 

1. Pursue an investigation into the possibility of quantifying the variation in WiFi 

signal distribution versus space using clustering methods that allow the system 

to learn the number of clusters and the best number of nearest neighbors. 
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2. Automate data collection via a robot that can collect the data and develop a 

mechanism to keep the fingerprint map updated without any loss of service.  

3. Develop better AP selection and feature extraction mechanisms to reduce 

computing complexity, storage needs, time, and effort.  
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