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CHAPTER 1

PRELIMINARIES IN TOPOLOGICAL GRAPH THEORY

In this chapter we present basic definitions and 
known results in topological graph theory that we will 
need throughout our discussion« Other terminology and 
definitions may be found in Behzad and Chartrand [3], 
Harary [14], or White [33].

A pseudograph G consists of a pair of finite sets 
V(G) and E (G), called the vertex set and edge set, respec­
tively. The edge set is made up of subscripted singletons 
or subscripted doubletons, singleton edges are called 
loops and distinct edges (i.e. having distinct subscripts) 
that are equal as subsets (disregarding subscripts) of 
V(G) are called multiple-edqes. Notationally, we write 
uv (or vu) for the edge (u,v) (usually we suppress edge 
subscripts). A directed edge consists of an ordered pair 
(u,v) of elements from V(G). The vertex u is called 
the initial vertex and v the terminal vertex. We will 
also write uv for the directed edge (u,v) if the con­
text makes the understanding clear. Two vertices in G 
are adjacent if they constitute an edge of G; each edge 
is incident with a vertex, and conversely, if the edge 
contains the vertex. A multi-graph is a pseudograph 
without loops and a graph is a pseudograph without loops 
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2
or multiple edges.

A surface is a connected, closed 2-manifold. A sur­
face is orientable if it admits a 2-cell decomposition 
with coherent orientation (i.e., the boundary of each 
2-cell is given an orientation so that each 1-cell por­
tion of the boundary incident with two adjacent 2-cells 
is oppositely oriented within those two 2-cells); other­
wise, it is nonorientable. It is well known that the 
orientable surfaces are the spheres with n handles Sn 
(n = 0,1,...) and that the nonorientable surfaces are 
spheres with n crosscaps SR (n = 1,2,...). A pseudo- 
surface results when finitely many identifications of 
finitely many points each are made on a given surface ; 
each such identification results in a singular point.
The number of points identified for a given singular 
point is the degree of the singular point. It is immedi­
ate that all surfaces are pseudosurfaces. A generalized 
pseudosurface results when finitely many identifications 
of finitely many points each are made on a topological 
space of finitely many components, each of which is a 
pseudosurface, with a connected topological space result­
ing. Observe that generalized pseudosurfaces include 
pseudosurfaces and that a generalized pseudosurface is 
orientable if and only if each component before identi­
fication is an orientable pseudosurface. (A pseudosur­
face is orientable if and only if its associated surface
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3
is orientable.)

It is well known that any finite 1-complex can be 
3realized in real 3-space R . A pseudograph G is imbed­

ded in a generalized pseudosurface M if the geometric 
realization of G as a finite 1-complex in R3 is homeo- 
morphic to a subspace of M. (The image of the homeo-
morphism is the imbedding.) Each component of M-G is 
called a region of the imbedding of G in M. Regions 
homeomorphic to the open unit disk are called 2-cells, 
and the imbedding is said to be a 2-cell imbedding if all
regions are 2-cells. Thus in a 2-cell imbedding, each
singular point must be the image of a vertex or a point 
on the interior of some edge; we will always insist on 
the former in what follows. A region whose boundary is 
a closed walk of length n is called an n-sided region; 
a 3-sided region is called a triangle, and the imbedding 
is triangular if every region is a triangle. The Euler 
characteristic x (M) of M is a topological invariant
and for any 2-cell imbedding of a graph with p vertices,
q edges, and r regions x(M) = p - q + r.

It is widely known that x(Sn ) = 2 - 2n and x(Sn) =
2 - n. Petroelje [23] gives x(P) for any orientable 
pseudosurface P. We give a formula for the characterist­
ic of a pseudoaurface P regardless of orientation, 
which is equivalent to Petroelje's when P is orient- 
able. A pseudosurface P may be thought of as consisting
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of a surface M of characteristic X(M) and a set of
singular points. For i = l,...,t suppose there are n^
singular points of degree m^. Then x(P) = X ( M )  - 
t
E n.(m.-1), and P is orientable or nonorientable accord- 
i=l 1 1
ing to whether M is or is not orientable. For general­
ized pseudosurfaces we give a similar formula in the form 
of a theorem.

THEOREM 1.1. Let Q be a generalized pseudosurface 
composed of c surface components M^,.o.,Mc and a set 
of singular points; say there are n^ singular points
of degree nu for each i = l,...,t. Then x(Q) =
c t
E x(M.) - E n .(m.-l).

i=l i=l

PROOF. Let Q be as given in the hypothesis. Let I
be a 2-cell imbedding on Q of a graph with p vertices,
q edges, and r regions. Reverse the identification
of the singular points to form 2-cell imbeddings on each
of the c components M^,...,Mc<, The number of edges
and regions are unchanged but the number of vertices is 

t t t
increased by E n.(m.) - E n. = E n.(m.-l). Now let

i=l 1 1  i=l 1 i=l 1 1
p.,q., and r. be the number of vertices, edges, and re- 
1 1  c

gions, respectively, for M^, i = l,...,c0 Thus E X(M^)=
c c c t
E p. - E q. + E r. = p + E n.(m.-l) - q + r. Therefore,

i=l 1 i=l 1 i=l 1 i=l
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5
c t

X(Q) = E x(M.) - E n.(m.-l). 
i=l 1 i=l

The genus y (G) or the nonorientable genus Y(G) of 
a graph G is the minimum n such that G 2-cell im­
beds in Sn or £>n , respectively. For surfaces, mini­
mizing genus is equivalent to maximizing characteristic. 
It is this latter concept that generalizes to pseudosur­
faces and generalized pseudosurfaces, although as we 
will see some extra care must be taken in formulating 
the concept for generalized pseudosurfaces. The pseudo­
characteristic x' or t l̂e nonorientable pseudocharac­
teristic x' (G) is the maximum x(M ) such that G is 
2-cell imbeddable in an orientable or nonorientable 
pseudosurface M, respectively.

In minimizing genus (or maximizing characteristic) 
for surfaces for a given graph G, we maximize r, since 
p and q are fixed. Youngs showed in [36] that an 
orientable imbedding of a connected graph G is of min­
imum genus if and only if it has a maximum number of 2- 
cell regions. For graphs there are no loops or multiple 
edges so there are never any one or two-sided regions in 
a given (2-cell) minimal imbedding. In other words, the 
minimum genus or maximum characteristic can be thought of 
as maximizing r where only regions having 3 or more 
sides are allowed. For 2-cell imbeddings on pseudosur­
faces no problems arise, for as in surfaces no regions of
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length two or less can occur. In generalized pseudosur­
faces, however, both O-sided and 2-sided regions can occur 
in a 2-cell imbedding (1-sided regions cannot occur if G 
is a graph). In formulating a definition for generalized 
pseudocharacteristic, if we allow regions of length two 
or less our definition would not be desirable— problems 
arise in the following two ways:

1. The inclusion of O-sided regions makes the char­
acteristic unbounded since we can attach any arbitrary 
number of spheres, each having one singular point, to a 
given vertex. (See Figure 1.1 below.)

2. Prohibiting O-sided regions but permitting 2- 
sided regions allows an imbedding where p-q+r is ident­
ically p for any connected graph G. This is obtained 
by imbedding each edge of G in a sphere as indicated
in Figure 1.2.
M:

K3 imbedded with 2 triangles and n O-sided regions? x(M)=n+2 
Figure 1.1
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K 3 imbedded with 3 2-sided regions 
Figure 1.2

Keeping the foregoing discussion in mind, we define 
the generalized pseudocharacteristic x" or t*ie non­
orientable generalized pseudocharacteristic X " (G) as the 
maximum x(M) such that G is 2-cell imbeddable in an
orientable or nonorientable generalized pseudosurface M, 
respectively, where each 2-cell region has boundary length 
three or more. Thus X"(G) (X"(G)) is a natural generali­
zation of X'(G) and X(G) (X* (G) and X(G)).

An n-coloring of a multigraph G is an assignment 
of n (distinct) colors to the vertices of G so that 
distinct adjacent vertices are assigned different colors.
A multigraph G is n-colorable if there exist an m-color- 
ing of G for some m < n. The minimum n for which G 
is n-colorable is called the chromatic number of G and 
is denoted by x(G). The context will make it clear
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8
whether x(G) denotes the chromatic number or the char­
acteristic of G.

The dual of a pseudograph G imbedded in a genera­
lized pseudosurface M is a pseudograph G* whose ver­
tices are the regions of the imbedding; two vertices 
are adjacent in G if the regions they represent share
an edge of G in their boundaries. The imbedding of G

*in M has bichromatic dual if x(G ) = 2 » (Note that 
X stands for chromatic number here.)

The regular complete n-partite graph of order nm 
is that graph whose vertex set can be partitioned into 
n partite sets containing m vertices each, such that 
two vertices are adjacent if and only if they are in 
different partite sets. We denote this graph by Kn (m )* 
it is a simple observation that the complement of Kn (m ) 
is n disjoint copies of the complete graph Km , which 
we denote by = nKm * (The complement G of a
graph G is the graph with same vertex set as that of
G and such that two vertices are adjacent in G if and
only if they are not adjacent in G.)

For a given finite group T with a set A of gen­
erators for T, the Cayley color graph c^(r) has vertex 
set T, with (g,g’) a directed edge— labeled with genera­
tor (color) — if and only if g' = gfî . We assume 
that if tJzA, then f i ^ A  unless has order 2.
In this latter case, the two directed edges (g,gfl^) and
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(gfl^*g) are represented as a simple undirected edge
lg#g6.], labeled with ft.. For C , (r) the associated 1 i a
Cayley graph G^(r) is defined by disregarding all the 
colors and directions associated with the edges. An 
example of C^(T) is given in Figure 1.3 with r = Zg 
and A = {2,3}. A solid edge has group element 2 
assigned in the direction of the arrow and a dotted line 
has group element 3 assigned with no direction specified.

2

ca <r>

Figure 1.3

0
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CHAPTER 2

COVERING PSEUDOGRAPHS IMBEDDED IN PSEUDOSURFACES

The study of imbedding graphs in generalized pseudo­
surfaces, perhaps in connection with the determination 
of the genus or pseudocharacteristic parameters or as we 
shall see later in the construction of certain types of 
block designs, is in general an extremely complicated 
problem. The voltage graph theory as introduced by Gross 
gives a powerful method for imbedding certain graphs in 
orientable surfaces. (This theory is the dual of current 
graph theory, which was first introduced by Gustin [12], 
developed by Youngs [37], unified by Jacques [16], and 
extended by Gross and Alpert [8] and [9,10].) The method 
of Gross involves imbedding a much simpler related pseudo­
graph P into usually a much simpler surface, rather 
than trying to imbed the given graph G directly. A 
major result of the theory is that the imbedded G (with 
its surface) is a (possibly branched) covering space over 
the imbedded P (with its surface). Stahl [30] (See 
also Alpert [1] and Ringel [26].) extends the theory of 
voltage graphs to include both orientable and nonorient­
able coverings of nonorientable surface imbeddings0 In 
this section we extend the existing theory first to cov­
erings of pseudosurface imbeddings and then to coverings 

10
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11
of generalized pseudosurface imbeddings. To proceed to 
this end we first review some pertinent ideas in covering 
space theory and the voltage graph theory of surfaces.
It will be convenient to use the current graph theory 
of surfaces in some of our applications so we conclude 
the chapter with necessary definitions and theorems even 
though we will only formulate the extensions for voltage 
graph theory.

A covering space of a topological space X is a 
pair (X,p) consisting of a topological space X and a
continuous map p: X— ► X such that each point x € X
has a neighborhood U for which p maps each component 
of p_ 1 (U) homeomorphically onto U. The map p is 
called a covering projection. In all of our applications 
X and X will be generalized pseudosurfaces. If Y
is a subset of X and Y is a subset of X such that
p maps Y homeomorphically onto Y, we say that Y 
lifts to Y or that Y is a lift of Y. For a given 
topological space, a path f is a continuous map from the 
closed unit interval [0,1] into the given space. Al­
though a path is a map by definition, we will find it 
convenient to identify the path f with its image. The 
initial point of path f is f(0). The following theorem 
essentially states that paths in the space X are lifted 
to unique paths in X.
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THEOREM 2.1. Let (3l,p) be a covering space of X, 
x € X, and x = p (x); let f be a path in X with ini­
tial point x. Then there exists a unique path f  in X
which is a lift of f and such that x is the initial
point of

PROOF. See [22] Chapter 5 Lemma 3.1.

THEOREM 2.2. If (X,p) is a covering space of X, then
the sets p~^(x) for all x € X have the same cardinality.

PROOF. See [22] Chapter 5 Lemma 3.4.

If n is the common cardinality of the sets p- 1 (x), 
we say that the covering is n-fold.

For our purposes here, it is sufficient to say that 
(X,p) is a brainched covering space of a topological 
space X, if there exists a discrete set B of points
of X such that (X - p- 1 (B),p) is a covering space
of X - B. The points of B are the branch points. If 
b is a branch point, then for some sufficiently small 
open neighborhood U of b, the restricted map p :
U-*.U - ( b )  is n-fold, where n is a positive integer 
and U is a component of p 1 (u - {b]) in X. We call 
n the degree of branching at b. An example of each of 
these types of spaces may be helpful. Define a map pn 
from the unit circle S1 onto itself by the equation 
Pn (l,0) = (l,n0), where (r,0) denotes polar coordinates
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2in the plane R . The map pn wraps the circle around 

itself n times. For n a positive integer, it is 
readily seen that the pair (S1 #pn ) is an n-fold cov­
ering space of S1 . The map qn (l,0,9) = (1,0, n0) (n a 
positive integer and here we use spherical coordinates) 
that wraps the sphere around itself n times leaving the 
north and south poles fixed defines a branched covering 
projection. The north and south poles are the only 
branch points, each having degree of branching n. For 
more details the reader may refer to Fox [5] or Massey [22].

We now give the definitions and main construction of
voltage graph theory according to Gross [8]. (See also 
Gross and Alpert [9],[10], and Stahl [30].) A reduced 
voltage pseudograph is a pair (G,0) consisting of a 
graph G and a function 0 from the directed edges of 
G to a group T (usually finite) such that the value of
0 on a directed edge is the inverse in T of its value
on the oppositely directed edge; that is, if k is a 
directed edge and k ^ the oppositely directed edge,
0 (k-1) = [0(k)]_1. The values of 0 are called voltages 
and the function 0 is called a voltage assignment in T

for Go To a given reduced voltage pseudograph (G,0)
Bthere is associated a derived graph G whose vertex

set is the cartesian product V x T of the set V of
vertices of G and the voltage group T. Given two

ivertices (u,g) and (v,h) in G , there is a dxrected
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edge from (u,g) to (v,h) in G if and only if there 
is a directed edge from u to v in G and h = g|3 (uv) 
in T. A voltage pseudoqraph is a triple (G,0,c:G— ►M) 
such that the pair (G,0) is a reduced voltage graph 
and c:G— gives a 2-cell imbedding (c(G)) of G on 
a surface M. For a given region f in an imbedding c, 
the cyclic product of voltages around the boundary of f 
consistent with the directed edges is called an excess 
voltage and such products are unique up to conjugacy.
The order of an excess voltage around a given region f 
is thus unique, and if the order is 1 we say Kirchoff1s 
Voltage Law (KVL) holds around f .

It follows almost immediately from the construction 
of the derived graph G^ that each region boundary in 
G with n edges lifts to a set of region boundaries in 
G^ each with n«e edges, where e is the order of an 
excess voltage about the given region in the imbedding 
of G. The derived surface and the derived imbed­
ding c^:G®— are obtained by first identifying each 
component of a lifted region boundary with the sides of 
a 2-cell (unique to that component) and then performing 
the standard identification of edges from surface topol­
ogy. If we regard pseudographs as topological spaces 
with edges and loops homeomorphic to closed intervals and 
circles, respectively, then G® is an jr|-fold covering 
space of G .
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It is often important to know the number of compo- 

Bnents of G . This information is given in the follow­
ing theorem; but first, we give necessary preliminary 
definitions. Given a reduced voltage pseudograph (G,0) 
and a closed walk w :e1 ,...,en (note that each e^ is a
directed edge in (G,0)) at a vertex v of G, define 

n
0 (w) = tt 0 (e^) . The local group at v, denoted by Tv# 
is defined for all v € V(G) as Tv = { 0 (w) | w is a 
closed walk at vj. It is simple to verify that Tv is 
a subgroup of r and that if u and v are two vertices 
belonging to the same component of G, then Tu and 
are conjugate subgroups of r. Thus the index of Tv in 
T is independent of v if the pseudograph G is con­
nected.

THEOREM 2.3. (Stahl[30]) Given a connected reduced volt­
age pseudograph (G,0) with group r, the number of

acomponents of the covering graph G equals the index 
of Tv in r for any v of G.

It is well known that only orientable surfaces can 
cover orientable surfaces, whereas both nonorientable 
and orientable surfaces may cover nonorientable surfaces. 
A second theorem by Stahl gives a method for determining 
the type of orientability of the covering space when the 
base space is nonorientable. Once again preliminary 
notation and definitions are needed.
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Given a voltage pseudograph (G, T|, c:G— ►M) with 

voltages in I\ we say that the closed walk w of G 
is T]-trivial if T] (w) is the identity element of r.
Let G be a pseudograph 2-cell imbedded and 0 a set
of orientations for the regions of this imbedding. An
edge e bounding regions and F2 (F^ and F2
not necessarily distinct) is coherently oriented if e 
occurs in the oriented boundary of one region and e ^
occurs in the oriented boundary of the other region.
Otherwise, edge e is noncoherently oriented. (See 
Figure 2.1.) It is essentially by definition that an 
imbedding is orientable if and only if there exists a 
set of region orientations for which each edge is coher­
ently oriented.

A Coherently Oriented Edge A Noncoherently
Oriented edge

Figure 2.1
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Stahl's orientability-criterion theorem uses general­

ized imbedding schemes (P,X) to describe imbeddings 
algebraically. Here P is a set of vertex rotations and 
X is a voltage assignment in the group . (A vertex 
rotation at v is a cyclic permutation of the directed 
edges terminating at v.) For our purposes it is not 
necessary to go into a full discussion of such schemes.
We are primarily interested in applying his orientability 
criterion to imbeddings of voltage pseudographs given in 
a particular type of planar polygonal form. To do this 
it suffices to know how the values of X are assigned 
to the edges of the voltage pseudograph. The interested 
reader may see [30] for the precise nature of X and 
complete discussion of generalized imbedding schemes.
First we state Stahl's theorem and then describe how to 
apply this theorem for our special needs.

THEOREM 2.4 (Stahl[30])o Let (G,0) be a reduced volt­
age pseudograph with generalized imbedding scheme (P,X) 
(describing an imbedding of (G,0)). Then the derived 
surface M® is orientable if and only if every S-trivial 
closed walk in G is also X-trivial.

The imbeddings of (G,0) to which we will apply 
Theorem 2.4 will always be given in a planar polygonal 
form in which all the vertices of G are located on the 
periphery. (See Examples 1 and 2 following.) Stahl
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shows (See [30].), in this event, that an edge in G is
assigned \ = 1 if and only if its dual edge (once a
set of region orientations for the dual G* has been
chosen) is noncoherently oriented. For convenience in
application we may circumvent passing to the dual by
assigning orientations to the vertices of G instead of

*the regions of the imbedded G . Those edges uv xn G
for which the local orientations at u and v agree
(both clockwise or both counterclockwise) correspond to

*coherently oriented edges in G and those edges uv
in G for which the local orientations disagree corres-

*pond to noncoherently oriented edges in G . (See Figure 
2.2.) Thus edges in G for which local vertex orienta­
tions disagree are precisely the edges that are assigned 

X = 1-

Agreeing local vertex Disagreeing local vertex
orientations X = 0 orientations X = 1

Figure 2.2
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The following examples will, perhaps, elucidate the 
foregoing discussion.

Example 1 . Let (G,0) be the reduced voltage pseudo- 
graph imbedded in planar polygonal form as described in 

Figure 2.3. The voltages are in r = z^2* Ttie P seu<*°“ 
graph G is actually a bouquet of five loops imbedded 
in the Klein bottle, £>2 * (The two edges labeled "2" 
are to be identified, in the direction given by the 
arrows, as are the two edges labeled "3".)

Figure 2.3

The vertex orientations as assigned in Figure 2.3 
dictate that \ = 1 on precisely those edges whose volt­
ages are 1,2, and 5. The closed walk w consisting 
of following the loop with voltage 6 and passing 3 
times around the loop with voltage 2 is 0-trival but
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not \-trivial; therefore, the derived surface in non- 
orientable. In fact, the derived surface is £>g. Fur­
thermore, it is easily shown that the derived graph is 
K4(3) (after identifying the sides in each digon lying 
over the loop with voltage 6).

Example 2 . This example is very similar to Example 
1 but the planar polygonal form (See Figure 2.4.) is 
slightly altered from that given in Figure 2.3, produc­
ing a voltage pseudograph with 2 vertices, imbedded in 
the projective plane, (Again the two edges labeled
"2" are to be identified, in the direction given by the 
arrows, as are the two edges labeled ”3".) After we 
identify these two vertices, the reduced voltage pseudo­
graph is again a bouquet of five loops but this time im­
bedded in a (nonorientable) pseudosurface with 1 singu­
lar point of degree 2.

y

3

y
Figure 2.4
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Now the vertex orientations as assigned in Figure 

2.4 indicate that \ = 1 on precisely those edges whose 
voltages are 2 and 3. It can be argued quite easily 
that every @-trivial closed walk beginning at either 
vertex x or vertex y is also \-trivial; consequently, 
the derived surface (derived from the imbedding prior 
to identifying x and y) is orientable. Here =
{0,3,6,9) so 1r|/ 1 1  = 3 and in fact each of the 3 
components before identification is a sphere. Once again 
the derived graph (after identification of proper vertices—  

see Theorem 2.6) is K4 (3 )«
We next give the main theorem of voltage graph theory 

due to Gross [8] and then extend this to pseudosurfaces.
Our interest in producing triangular imbeddings and block 
designs lies primarily in the pseudosurface extension but 
for completeness, we further expand the theory to general­
ized pseudosurfaces.

THEOREM 2.5 (Gross). Let the voltage pseudograph (G,0, 
c:G— ^M) with voltages in group T have regions R^,...,Rr # 
having number of sides s1,...,sr , and carrying excess 
voltages of orders e1,...,er , respectively. Then the 
derived imbedding c0 : G ~ M 0 is a (possibly branched) 
covering of the imbedding csG— ►M. For i = l,...,r, 
there are \r\/e^ regions lying over region R ^  each 
with ei»si sides and (for e^l) a branch point of de­
gree e^ in its interior.
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As we have stated before, Stahl has extended this 
theorem in the nonorientable case through what he calls 
a generalized embedding scheme. For our purposes here it 
is not necessary to go into his general development but 
the interested reader may see [30],

THEOREM 2.6. Let (G,0) be a reduced voltage pseudo­
graph with group V 2-cell imbedded in a pseudosurface 
M(G) o Let regions R^,...,Rr have number of sides 
s^,..o,sr and carry excess voltages of orders e^,...,er ,
respectively. Then the 2-cell imbedding (in a generalized

Apseudosurface) of the derived graph G is a (possibly 
branched) covering over the 2-cell imbedding of (G,0).
For i = l,...,pf there are |r|/e^ regions lying over 
region R^, each with e^*si sides and (for e^l) a 
branch point of degree e^ in its interior.

PROOF. Let (G,0) be a reduced voltage pseudograph 
with group T, 2-cell imbedded in a pseudosurface M(G) 
having singular points v^,. v^. Form a new pseudo­
graph (G,0)' from (G,0) by reversing the identifica­
tions comprising the singular points and label the new 

vertices associated with v^ by vii»v^2#* *,#vin- f°r 

each i = l,...,k. Observe that this gives a 2-cell sur­
face imbedding of (G,0)' whose regions are precisely 
the same as the regions of the imbedding of (G,0). Now 
invoke the surface version of this theorem, getting a
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2-cell imbedding of (G®) as a (possibly branched) 
covering over the imbedding of (G,0)'. Let r = 
(g^,...,gt ) and for j = 1,2,...,t identify the set of 
vertices [ (v^ g ̂ ), *.., (v^n / g ̂ ) ) where i = l,...,k;

this gives a 2-cell generalized pseudosurface imbedding
of G that is a (possibly branched) covering space of
the imbedding of (G,0). The singular point v^ with
degree n^ in M(G) lifts to |r| = t singular points
each with degree n^ in the derived imbedding of G
(1 £ i £ k). Since the regions of G^ are the same as 

B 1those of (G ) the statements in the last sentence of 
the theorem are immediate.

The generalized pseudosurface version of the above 
theorem now follows by applying the pseudosurface exten­
sion componentwise (after reversing proper singular point 
identifications).

THEOREM 2.7. Let (G,0) be a reduced voltage pseudo­
graph with group T 2-cell imbedded in a generalized 
pseudosurface M(G) . Let regions R1,»..#Rr have number 
of sides s^,0..,sr and carry excess voltages of orders 
e1#...,er# respectivelyo Then the 2-cell imbedding of 
the derived graph G® is a (possibly branched) covering 
over the 2-cell imbedding of (G,3). For i = l,...,r, 
there are |rj/ei regions lying over region R ^  each 
with ei°si sides and (for e^l) a branch point of
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degree e^ in its interior.

PROOF. Let (G,0) be a reduced voltage pseudograph 
with group T 2-cell imbedded in a generalized pseudo­
surface M(G). Let d^,...,d^ be precisely those singu­
lar vertices which have been formed by identifying at 
least two vertices from different components (that is, 
those singular points which do not consist entirely of ver- 
t i c e s  from the same component). Form a new pseudograph 
(G,3)' from (G,3) by reversing the identifications of 
precisely the singular points d^,...,d^ and label the 
new vertices associated with d^ by for
each i = l,...,k. Observe that this gives a 2-cell 
pseudosurface imbedding in each component of (G,3)' 
whose regions are precisely the same as those in the
imbedding of (G,3). Now for each component, invoke

8 1Theorem 2.6, getting a 2-cell imbedding of (G ) as a
(possibly branched) covering over the imbedding of (G,0)'.
Let T = { ) and for j = l,...,t identify
the set of vertices ( (d..,g.),...,(d. ,g.) ) wherexx j xa^ j
i = l,2,...,k; this gives a 2-cell generalized pseudo­
surface imbedding of G® that is a (possibly branched) 
covering space of the imbedding of (G,S)» The singular 
point d^ with degree ai in M(G) lifts to 1T| sin­
gular points each with degree a^ in the derived imbed­
ding of G® (1 £ i £ k ) . The remaining claims of the 
theorem follow as before.
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The following corollary relates the characteristic 

between base space and covering space when no branching 
occurso

COROLLARY. Let (G,0) be a reduced voltage pseudograph 
with group T 2-cell imbedded in a generalized pseudo­
surface M(G) and suppose the KVL holds around every 
region. Then the characteristic of the derived surface 

is given by x(M^) = I r| x(M ) -

PROOF. By construction of the derived graph, there is a 
|r|-fold lifting of vertices and edges. Since the KVL 
holds on each region in M(G), by the theorem there is an 
|r|-fold covering of each region in M(G). Thus

x <n#> = |r|p - Ir|q + Ir|r 
= |r| (p - q + r)
= |r|x (M).

We now give a brief discussion of current graph 
theory for the orientable surface case. The basic con­
cepts are dual to those of voltage graph theory; however, 
one difference is that we describe the imbeddings of the 
current graphs by rotation systems. It is because of this 
that we choose to give a separate development of current 
graph theory rather than a simultaneous one. The reader 
may see [10] for a more detailed study of current graphs 
than we give below.
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A current pseudograph (G,0,a) is a triple consist­

ing of a pseudograph G, a rotation system 0 that assigns 
to each vertex v of G a cyclic permutation 0v of the 
oriented edges with initial point v, and a function a 
from the directed edges of G to a group T such that 
the value of a on a directed edge is the inverse in T 
of its value on the oppositely directed edge. The values 
of a are called currents and the function a is called 
a current assignment in T for G. The rotation system 
on the graph G describes combinatorially a 2-cell im­
bedding of G in a surface M(G,0). This rotation system 
gives rise to a permutation 0' on the set of oriented 
edges of G, and the elements of the orbit set C of 0' 
are called circuits of (G,0) and correspond to region 
boundaries in M(G,0). To a given current graph (G,0,a) 
there is associated a derived graph Ga and a derived 
rotational system 0tt; the vertex set of Gtt is the 
cartesian product C x T of the set C of circuits of 
(G,0) and the current group T. For every oriented edge 
k = (u,v) in circuit c and every g € T, there is an 
edge [ (c,g), (d,h)]k where h = ga(k) and d is the
circuit containing the edge s = (v,u) oppositely orient­
ed to that of k ( (v,u) is the opposite of (u,v) ).
If the currents on circuit c are cyclically ordered as
a„,...,a , and if the opposites of the oriented edgesu n—l
kQ,...,kn ^ carrying those currents lie in circuits
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c0 ',--»cn_^# respectively, then the rotation at vertex
(c,g) of (Ga ,0a ) is the cyclic permutation that carries
the oriented edge [ (c,g), (c^,ga^) to the oriented

i
edge [ (c,g), (ci+1 #gai+1) for i =  0 ,...,n-l (mod n).

The rotation system 0a on Ga then gives a 2-cell im­
bedding of Ga in a surface M(Ga ,0a ). The product of 
the inflowing currents at v, taken in the cyclic order 
given by 0 v, is called the excess current at v and is 
unique up to conjugacy. If the order of the excess cur­
rent at v is 1, we say Kirchoff's Current Law (KCL) 
holds at vertex v.

THEOREM 2.8 (Gross and Alpert). Let the current graph 
(G,0,a) with currents in group T have vertices 
with degrees k^,...,kp and carrying excess currents of 
orders e^,...,ep, respectively. Then the 2-cell imbed­
ding (Ga ,0a ) in M(Ga ,0a ) is a (possibly branched) cov­
ering of the 2-cell imbedding of G in M(G,0) dual to 
(G,0) in M(G,0). For i = l,...,p there are |rl/ei 
regions lying over region v^* (dual to v^ in G), each 
with k i-ei sides and (for e^l) a branch point of degree 
e^ in its interior.
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CHAPTER 3

BLOCK DESIGNS

Block designs are widely used by statisticians in the 
design of experiments. There are many types of such de­
signs but we will only be interested in two: a so called
balanced incomplete block design (BIBD) and a generali­
zation of this, a partially balanced incomplete block 
design (PBIBD).

It is not our interest in this thesis to design sta­
tistical experiments that would use PBIB designs, but 
rather, it is our purpose to increase the known number of 
PBIB designs by constructing new such designs. Neverthe­
less, we motivate the statistical use of block designs 
by the following two examples.

Example 1. Consider the following wine tasting 
problem. Suppose we have 4 wines to test and 4 wine 
tasters. In designing our experiment, we might like, 
ideally, that each wine taster sample all 4 wines, but 
experience has shown that a person can no longer distin­
guish the qualities of wine after having sampled 3 wines. 
Thus since we cannot have any one person tasting all 4 
wines, we do the next best thing and require that each 
taster test exactly 3 wines. It also seems only natural 

28
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that we would want each wine tasted the same number of 
times in order to help "balance" the experiment; let's 
say 3 times for this experiment. Finally, the fact 
that two wines tasted together may have an influence on 
their respective tastes (for example tasting a sweet and 
dry wine may elicit a different opinion from the taster 
than testing two dry wines together) leads us to insist 
that every two wines be tasted together the same number 
of times, say twice, so as to help reduce extraneous in­
fluences. Table A in Figure 3.1 gives a solution to 
this problem. The integers 1,2,3, and 4 represent the 
4 wines and the rows (blocks), the wine tasters. Each 
row then indicates exactly which three wines will be 
tried by that taster. This then is an example of a bal­
anced incomplete block design0 (see below for the precise 
definition.)

Row 1 1 3  2
Row 2 2 4 3
Row 3 3 1 4
Row 4 4 2 1

Table A

Figure 3.1

Example 2. We are planning a wine tasting party with
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8 couples, i.e., 16 tasters and 8 wines. As before
we know that no one can discriminately judge after tasting 
3 wines so we again require each person to sample exactly 
3 wines. We still want each wine to be tested the same 
number of times, say 6 times. However, there is a new 
stipulation in this experiment: there are four brands of
wine each having two types. (For example one brand maybe 
Gallo with the two types being Burgundy and Hearty Bur­
gundy.) Interest lies in the influence among different 
brands but not between types of the same brand name. 
Therefore, we require that wines having different brand 
names be tasted together the same number of times, say 
twice, but wines of the same brand should not be sampled 
together. Table B, Figure 3.2 gives a solution to the 
wine party problem where the integers 1 to 8 repre­
sent wines, integers equivalent modulo 4, brand names, 
and rows, wine tasters. This is an example of a partially 
balanced incomplete block design. (The exact definition 
of a PBIBD follows below.)

ROW 1 1 3 8 ROW 9 1 4 3
ROW 2 2 4 1 ROW 10 2 5 4
ROW 3 3 5 2 ROW 11 3 6 5
ROW 4 4 6 3 ROW 12 4 7 6
ROW 5 5 7 4 ROW 13 5 8 7
ROW 6 6 8 5 ROW 14 6 1 8
ROW 7 7 1 6 ROW 15 7 2 1
ROW 8 8 2 7 ROW 16 8 3 2

Table B 

Figure 3.2
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In the next chapter we shall see the connection 

between certain imbedded graphs and block designs. First, 
however, we give precise definitions for both BIB and 
PBIB designs.

A (v,b,r,k,X)-balanced incomplete block design (BIBD) 
is an arrangement of v objects into b blocks with: 
i) each object appearing in exactly r blocks; ii) each 
block containing exactly k (k < v) objects; and iii) 
each pair of distinct objects appearing together in exactly 
X blocks. Simple counting arguments establish the follow­
ing well known result.

THEOREM 3.1. If a (v,b,r,k,X)-BIBD exists, then
(i) vr = bk
(ii) x (v—1) = r(k-1).

These conditions have also been shown to be suffici­
ent for k = 3,4,5 (and for some of the cases k = 6,7) 
by Hanani [13] and for fixed k and X with v large 
enough by Wilson [35] .

The condition that X be an integer is quite restric­
tive; this prompted Bose and Nair to introduce a related 
design with multiple lambdas (association classes). We 
concern ourselves with the case of two association classes. 
It will prove useful to give a definition of these designs 
in terms of a strongly regular graph, which we now define.

Let x and y be distinct vertices in a graph G
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and denote their nonadjacency by h = 1 and adjacency 
by h = 2. Let (x,y) be the number of vertices ad­
jacent to both x and y (i = j = 2), adjacent to x 
but not to y ( i = 2 ,  j = 1), adjacent to y but not 
to x (i = 1, j = 2), and adjacent to neither x nor 

y (i = j = 1), respectively. A graph G (G ^ Kn 'Kn^ ‘*'s 
strongly regular if the eight integers (x,y) are
independent of x and y.

Bose and Clatworthy [4] show the eight conditions can 
be reduced to the two conditions that P2 2 (x,y) and 
2P2 2 (x,y) be independent of x and y. A (v,b,r,k,\1#^2)- 

partially balanced incomplete block design (PBIBD) with 
two association classes can be described as a strongly 
regular graph whose v vertices are arranged into b 
blocks with: i) each vertex appearing in exactly r
blocks, ii) each block containing exactly k vertices, 
iii) each nonadjacent pair of vertices (first associates) 
appearing together in exactly X-̂  blocks, and iv) each 
adjacent pair of vertices (second associates) appearing 
together in exactly X2 blocks. We will be concerned 
entirely with designs which are based on the regular com­
plete n-partite graphs Kn (m )• These graphs are readily
seen to be strongly regular since P2 2 (x,y) = m(n-l) and 
2P2 2 (x,y) = m(n-2) are independent of x and y. A BIBD 

or PBIBD is resolvable if the b blocks can be partitioned 
into exactly bk/v sets with each such set containing
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each of the v objects exactly once. Similarly, a BIBD 
or PBIBD is n-partially resolvable if there are n (for 
some n between 1 and bk/v) pairwise disjoint sets of 
blocks with each such set containing each of the v ob­
jects exactly once. Thus a bk/v - partially resolvable 
design is resolvable.

Two block designs D^ and D2 are isomorphic if 
there exists a one-to-one correspondence Y:nj-—  
between their object sets such that {x^,...,^} is a 
block in D^ if and only if {Y(x^),...,Y(x^)] is a 
block in D2 .
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CHAPTER 4

BLOCK DESIGNS AND IMBEDDED GRAPHS

In 1897 L. Heffter [15] first explored imbedded 
graphs as a means of constructing block designs. Not 
many graph imbeddings were known then, so very few new 
block designs evolved. Ringel and Youngs’ solution to 
the Heawood map color problem has recently effected a 
flurry of research on imbedding graphs. This new re­
search has provided an impetus for both Alpert and White 
to reexamine Heffter's idea of creating block designs by 
imbedding graphs. Alpert shows [2] that there is a one- 
to-one correspondence between (v,b,r,3,2)-BIB designs 
and triangular imbeddings of Kv in generalized pseudo­
surfaces, and White [34] shows that each (v,b,r,3,0,2)- 
PBIB design corresponds to a triangular imbedding of a 
strongly regular graph in a generalized pseudosurface, 
and conversely. We will be concerned primarily with tri­
angular imbeddings of regular complete n-partite graphs.

In generating new PBIB designs by graph imbeddings 
a natural question arises: namely, given a strongly regu­
lar graph G triangularly imbedded in nonhomeomorphic 
generalized pseudosurfaces, are the corresponding block 
designs isomorphic? This question is answered in the 
following theorem [34].

34
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THEOREM 4.1, Let G be a strongly regular graph tri­
angularly imbedded in nonhomeomorphic generalized pseudo­
surfaces and T2 . Then the block designs determined
by the two imbeddings are not isomorphic.

In [7] Garman, Ringeisen, and White introduce the 
strong tensor product G^ ® G2 of graphs G^ and G2 .
The vertex set of G^ strong tensor product with G2 is
the cartesian product of V(G^) and V(G2), and the edge
set is ( (u-ĵ, u2 ) (v1#v2 ) | and u2v2 € E(G2 )] or
[ u ^  € E(G^) for i = 1 and 2] ). It will be helpful 
to think of the strong tensor product as a combination of 
two other graphical operations: the sum and the tensor 
product. Given two graphs G 1 and G2 with VCG^) = V(G2 ) 
and EfG^ fl E(G2) = 0, the sum G1 + G2 of G1 and G2
is that graph whose vertex set equals VfG^) and edge
set equals E ^ )  U E(G2). The tensor product of graphs 
Gĵ  and G2 is denoted by G^ ® G2 ; the vertex set of 
Gĵ  tensor product with G2 is the cartesian product of 
V(G1 ) and V(G2 ) and the edge set is { (u^,^) (v1#v2 ) | 
uivi € E(Gi), i = 1 and 2 }. It is an easy exercise 
to see that K2 ® G = 2g + K2 ® G where, as before, 2G 
denotes two disjoint copies of G. The following two 
theorems are special cases of two theorems given (among 
many others) in [7].

THEOREM, 4.2. K2 « Kn(m) = Kn(2m).
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THEOREM 4.3o Let G be a triangularly imbedded graph
in an orientable surface, with bichromatic dual. Then 
K 2 —  G ^as an orientable (surface) triangular imbedding, 
with bichromatic dual.

We next extend Theorem 4.3 to generalized pseudosur­
faces (nonorientable as well as orientable).

THEOREM 4.4. Let G be a triangularly imbedded graph in
a generalized pseudosurface, with bichromatic dual. Then 
Kj ® G has a triangular imbedding in a generalized pseudo­
surface, with bichromatic dual. Furthermore, the imbedding 
of K2 ® G is orientable if and only if the imbedding 
of G is orientable.

PROOF. We first consider the case when G is triangu­
larly imbedded in a nonorientable surface £?n . We regard 
K2 ® G as 2G + K2 ® G. Transform the triangular imbed­
ding of G on £Jn into a planar polygonal form and
form a second copy of this imbedding by taking a "mirror
image" of the planar polygonal form P^ calling this new
form P2 - The planar polygonal form P-ĵ can easily be 
constructed by pasting the triangles of the imbedding 
together in the plane along common edges. Since the im­
bedding is triangular each edge appears in exactly two 
triangles so that the polygon formed will have the property 
that each perimeter edge appears twice along the perimeter.
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Note that many different forms can be constructed; how­
ever, each such form will yield the same surface after 
the perimeter edges are identified according to standard 
topological procedure from surface topology. Because G 
is triangularly imbedded the number of regions r is 
even, say r = 2t. (This follows from the equation 2q = 
3r.) Since G has bichromatic dual, half of the regions 
must be colored with one color whereas the remaining half
must be colored with the other color. Let regions

,...,Rj. be colored black and regions Rt+i'**,'R2t be 
colored white in in accordance with \(G*) = 2.
For i = I,...,2t, let Ri * be the region in P2 cor­
responding to R^ in P^, that is, R^’ is the mirror 
image of R^. Color regions R^',...,R̂ .' white and re­

gions Rt+i''*•*'R2t' black» We roust add the tensor 
product edges to form K2 ® G from 2G. This will be 
accomplished by attaching cylinders between the two im­
beddings represented by P^ and P2 , so as to form Sm 
for some m (after identification of respective perimeter 
edges of the polygons) and then triangulating the cylin­
ders with these edges. We will see that the resulting 
triangular imbedding also has bichromatic dual.

Consider R^ in P^ and its mirror image R ^ ' in 
P2 « Next, run a topological cylinder T^ between R1
and R ^  attaching one base, , of T^ in the interior 
of R1 and the other base, B2, of T± in the interior
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of R^'* TIie ®dges xy', xz', yz', yx', zx', and zy' 
can now be imbedded along as shown in Figure 4.1.
Note that six triangular regions are formed along and
that these can be 2-colored consistently with the 2-col­
orings of and P2 . Now repeat this process, joining
region in P^ with R^' in P2 by cylinder T\,
i = 1,2, ...,t, and adding the six required tensor product 
edges along each cylinder. At this stage we have added 
precisely 6t = 2q (2q = twice the number of edges in G) 
edges of K2 ® G so that K2 ® G is triangularly imbed­
ded on the nonorientable surface represented by the union 
of the two surfaces described by P^ and P2 (after 
identification of respective perimeter edges) and as alter­
ed by the cylinder attachments. Moreover, the imbedding 
of K2 ® G has bichromatic dual.

R /in P.R.1

Figure 4.i
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We now consider the case when G is triangularly 

imbedded with bichromatic dual in a generalized pseudo­
surface. Let G' denote the graph obtained from G by 
reversing each singular point identification. For the 
given imbedded G, we form G' and thereby obtain a tri­
angular imbedding (since the regions are unchanged) of 
G' in a possibly disconnected surface M. We next apply 
either Theorem 4.3 or the first case of the present 
theorem (as appropriate) to each component of M, giving 
a triangular imbedding with bichromatic dual of K2 ® G'. 
Finally# we obtain a triangular imbedding with bichromatic 
dual of K2 ® G from K2 ® G' by reidentifying to obtain 
the singular points in each copy of G'. It is clear 
from the foregoing proof that the imbedding of K2 ® G 
is orientable if and only if the imbedding of G is 
orientableo

As we have seen, each triangular imbedding in a gen­
eralized pseudosurface of a strongly regular graph deter­
mines a PBIBD having k = 3, \^ = 0, and \2 = 2.
By applying Theorem 4.4 to those imbeddings having bichro­
matic dual, we generate a "doubled" PBIBD having k = 3,
X1 = 0, and X2 = 2, that is, v, the number of objects, 
and r, the number of blocks each object appears in, are 
doubled. Furthermore, there is a simple recipe to give 
the objects and blocks (regions) of the doubled PBIBD 
in terms of the objects and blocks stemming from the
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original PBIBD. Thus if U Ua^^/a£2'ai3^  ̂ are the 
1=1 t

blocks (regions) colored white and U ttb ii'b i2'b i3^ ^

are the blocks (regions) colored black in the initial
design (where b = 2t), then the union of the following
4 expressions are the blocks colored white

1.

2.
3.

4.

and the union of the 
colored black in the 
here is 8t = 4b)

1.

2.

3.

4.

In this connection, we see that triangular imbedd­
ings of strongly regular graphs with bichromatic duals 
are particularly valuable. The next theorem gives a 
sufficient condition to impose on an imbedded reduced

next 4 expressions are the blocks 
doubled design (the number of blocks

. (̂Ib.̂ .by)

. V tbil*bi2'bi3] J •1=1
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voltage pseudograph (G,0) so that the derived imbedding 
of G will have bichromatic dual.

THEOREM 4.5. Suppose an imbedding of a reduced voltage
pseudograph (G,0) in a generalized pseudosurface has
bichromatic dual. Then the derived imbedding of the de- 

grived graph G also has bichromatic dual.

gPROOF. We note that in the construction of G each 
region boundary f in G with n edges lifts to a set

gof region boundaries in G ; each region boundary in this 
set has n°e edges where e is the order of the excess 
voltage around f. Since the imbedding of G has bichro­
matic dual its regions can be colored with exactly 2

0colors. This induces a coloring of the regions of G
gby assigning to any region R in the imbedding of Gp 

the same color as the unique region onto which R pro­
jects. It is immediate that this gives a 2-coloring of

gthe regions of G since two regions in G sharing a
common edge k project onto two regions in G sharing 
the unique edge that lifts to k.

We illustrate Theorem 4.5 with the following voltage 
pseudographP (See Figure 4.2) In this example the im­
bedding is in the nonorientable surface Sg. As indi­
cated by Figure 4.2, the imbedding has bichromatic dual. 
Theorem 4.5 implies that the derived imbedding also has
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bichromatic dual. The derived graph is readily seen to 
be K a n d  Theorem 2 04 can be applied to show that 
the derived imbedding is nonorientable (the loop 5 will 
be assigned X = 1, so seven times around this loop gives 
a 0 -trivial closed walk that is not X-trivial).

16

1116

,1217

10J 3

A Voltage Pseudograph having Bichromatic Dual for K 7 (5 ) 

Figure 4.2
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CHAPTER 5

GENERATING NEW BLOCK DESIGNS

In Chapter 4 we saw that every triangular imbedding 
of a strongly regular graph in a generalized pseudo- 
surface yields a partially balanced incomplete block 
design. In this chapter we use the theories of both 
voltage and current graphs to generate triangular imbed­
dings for K4 (n)' the regular complete 4-partite graphs 
of order 4n. We show for n even that each imbedding 
has bichromatic dual and how it splits to give two relat­
ed designs with the parameters b,r,\1# and each
one-half of its original value. Finally for n s 6 (mod 12), 
we show that K4 (n ) n-partially resolvable and how
this can be used to produce triangular imbeddings of 

K5 (n) ^or t*ie same values °f n ° T^e block designs that 
we give in this chapter can be reinterpreted to yield re­
sults for the genus, pseudocharacteristic, and general­
ised pseudocharacteristic parameters. We do this in 
Chapter 6.

We begin by showing that K 4 (n) for n = 2 (moc* 4 ) 
can be triangularly imbedded with bichromatic dual in an 
orientable surface. We do this by employing current graph 
theory but we must first verify several preliminary prop­
erties and results.

43
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For the graph in Figure 5.3, we understand that a 

solid dot has its incident edges ordered clockwise; a 
hollow dot, counterclockwise. Next we define the graph 
Gn in Figure 5.3 and describe the assignment of the labels 
(currents). Let T = Z4n and A = {1,2,3,4,...,8s+4) - 
(4,8,12,.o.,8s+4J, where n = 4s + 2 and s = 0,1,2,.... 
The order of Gr is n = 4s + 2, and the cardinality of 
the edge-set of Gn is 3n/2 = 6s + 3. The vertices of 
Gn may be pictured as equally spaced around the circum­
ference of a circle. Pick any vertex and represent it 
with a hollow dot; represent all other vertices with a 
solid dot. Starting with the hollow dot, order the ver­
tices consecutively, in a clockwise direction, as 1st 
through (4s+2)nd. Every two diametrically opposite 
vertices are adjacent. Note that this gives a schema- 
tical representation of Gn in the plane; the actual 
imbedding of Gn is on a surface of genus 1+s— we shall 
prove this shortly. For the following discussion it will 
be convenient to make two definitions: an edge joining
two diametrically opposite vertices will be called a 
diameter-edge; an edge joining two consecutive vertices 
on the circle will be referred to as a circle-edge. We 
define two functions: D and C, where D(k) gives the
(undirected) label of the diameter-edge incident with the 
kth vertex, and C(k) and C(k+1) give the labels of 

the two circle-edges incident with the kth vertex.
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(Note that the 1st circle-edge is immediately to the 
left of the 1st vertex.) The two functions are describ­
ed by the following recipes:

10

11

.1°

*  &

Case n = 6 A Current Graph for 4 (6)
Figure 5.1

A Current Graph for the Graph G
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8s+2
i8s-2 8s-6

8s-10 '8s-14ts+3

8s-18 8s-5 8s-22

17 8s-308s-ll

8s-26
L8s-13

15
Is-38

;-34

Ss-26

8s-30 13 8s-7

8s-18118s-22 8s-'
i+l

8s-14 8s-10
8s-6 8s-28s+2 k®/ vS.

A Current Graph for K4 (n ) n * 2 (mod 4)

Figure 5.3
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D(k) =

/(8s+2) - 8 (k-1)
V 6 + 8[k - (s+2) ] 
[(Qs+2) - 8[k- (2s+2) 
\6 + 8[k - (3s+3)]

C(k) =

5 + 4 [k

for 1 £ k £ (s+1)
for (s+2) £ k £ (2s+l)
for (2s+2) £ k £ (3s+2)
for (3s+3) * k £ (4s+2)

for 1 s: k £ (2s+l)
for 2 * k £ (2s+2)
for (2s+3) £ k £ (4s+l)
for (2s+4) £ k sS (4s+2)

1 + 4 (k-1)
(8s+3) - 4 (k-2)

[k- (2s+3)
(2s+4) ]

The diameter-edges labeled with integers congruent 
to 2 (mod 8) have their arrows directed away from the 
center of the circle if k is odd, toward the center if 
k is even. Those diameter-edges labeled with integers 
congruent to 6 (mod 8) have the arrow directed toward 
the center if k is odd, away from the center if even. 
The kth circle-edge has its arrow pointing counter­
clockwise for 1 s! k s (2s+2) and clockwise for (2s+3) £ 
k a! (4s+2) . By appealing to the equivalence classes 
(mod 8), it is easy to see that the function C has 
exactly 4s + 2 distinct values— one for each of the 
4s + 2 circle-edges. Similarly, the function D has 
4s + 2 values, but only 2s + 1 are distinct since for 
each k, 1 s k s (2s + 1), the kth and (k + 2s + l)st 
vertices (diametrically opposite vertices) are joined by 
a common diameter-edge. Thus each of the 2s + 1
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diameter-edges has exactly one of the 2s + 1 distinct 
values of D assigned to it. Moreover, (again by appeal­
ing to equivalence classes (mod 8) ) no values of C and 
D are equal so that A is composed precisely of the 
6s + 3 distinct values of C and D.

We have stated that Figure 5.3 represents an imbed­
ding of Gn on a surface of genus 1 + s. This imbed­
ding, in fact, has exactly one region. To prove this, 
our plan of attack will be to give a current graph whose 
derived graph is Gn imbedded with three regions and to 
apply a lemma of Ringeisen [24] that will reduce the
3-region imbedding to a 1-region imbedding of G. The
lemma of Ringeisen is as follows.

LEMMA 5.1. (The Edge-Adding Technique) . Let G be a 
connected graph and v and w denote nonadjacent ver­
tices of G. Let T be a 2-cell imbedding of G which 
has vertex v on the boundary of region Rv and vertex 
w on the boundary of region 1^. Let G' be the graph 
G with edge [v,w] added. Then if Rv ^ R^, G' has a 
2-cell imbedding with one less region than T.

Let rx = Zn = (0,1,2.... n-1) and = (l,n/2),
where n = 4s + 2 and s = 0,1,2,.... It is easily seen
that G»(r,) = G . Moreover, the current graph imbedded 1 n
in the sphere has as its derived graph Gn 2-cell imbed­
ded with three n-sided regions. (See Figure 5.2.) It
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is clear that the order of the excess current at the ver­
tex of degree 1 is n, so this vertex contributes 
|l̂ |/el = n/n = 1 region of length = n to
the imbedding (T^). The sum of the currents directed

away from the vertex of degree two is 1 + n/2; we give 
a number theoretic argument to show that the order of 
this element is n/2 and, hence, the order of the excess 
current at this vertex is n/2. Once this is established, 
the vertex of degree two will account for |r^|/e2 =
n/(n/2) = 2 other regions of length h 2e2 ~ 2 (n/2 ) = n? 
hence there are exactly three regions each having n sides.
Since n = 4s + 2, 1 + n/2 = 2s + 2. From number theory,
[2s + 2,4s + 2] = (2s + 2 ) (4s + 2)/ (2s + 2 ,  4s + 2),
where [2s + 2, 4s + 2] and (2s + 2, 4s + 2) denote
the least common multiple and greatest common divisor of 
2s + 2 and 4s + 2, respectively. The Euclidean alorithm 
shows that (2s + 2 ,  4s + 2 )  = 2 ;  thus [2s + 2, 4s + 2] = 
(2s + 2 ) (2s + 1 ) .  It follows that (n/2) + 1 = 2s + 2 
has order n/2 = 2s + 1. In fact, we can write down the 
three regions immediately by successively adding the out­
flowing currents around the vertices of the current graph 
in Figure 5.2. As noted above, one region (region A 
below) is derived from the vertex of degree 1 and two 
regions (regions B and C below) are derived from the 
other vertex. Furthermore, it is easily argued that each 
of the n-sided regions A,B, and C is, in fact, an
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n-cycle (and thus a Hamiltonian cycle for Gn ). The 
three regions are:

region A: 0, n-1, n-2, ... , 3, 2, 1

region B: 0, 1, |  + 1, |  + 2, 2, 2, |  + 2, §  + 4,

-2 -1 -  -  1 -..., l, 2 i, 2
region C: -1, 0, j, |  + 1, 1, 2, j  + 2, |  + 3

-3, -2, f  - 2, §  - 1 .

Next we verify that the derived graph (from Gn ) is the 
Cayley graph G^(r) and that G^(r) = K4 n̂ j where T = 

Z4n and A = (1,2,3,4,...,2n) - (4,8,0..,2n) for n =  

4s + 2 and s = 0,1,2,.... Once we have established 
that the imbedding of Gn has one region (we will do
this shortly), it will follow immediately that the de­
rived graph is G ^ ( D .  To see the second part, we set 
A- = (4,8,...,2n) and observe that A partitions the

A Q = (0,4,8,...,4n-4) , 

A 1 = (1,5,9,...,4n-3) ,

A2 = (2,6,10,...,4n-2)

and

The generator 2n of A has order 2 in Z4n and 
therefore contributes 1 to the degree of each vertex
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in G (T); each of the other (n/2) - 1 generators of

A
'A has order * 3 and thus contributes 2 to the degree
of each vertex in G_(T). It is thus easy to see that 

A
each vertex in the four disjoint sets A Q, A ^ , A 2, and A 3
has degree 2[ (n/2) - 1 ] +  l * l = n - l .  Since the order
of each of these sets is n and each set gives rise to
a component of G _ ( D , it is clear that each set deter- 

A
mines one copy of K ; and so, G_(T) = 4Kn (four copies

A
of K ) . Now we observe that n

G 4 (D = O T  = 4Kn = K4(n) .

Figure 5.3 actually represents Gn imbedded in a surface 
of genus 1 + s with one 3n/2 = 6s + 3 sided region.
To verify this, let G' = Gn = G^ (T^), where = Zn 
and A^ = (1, n/2), as given before. Let T be the im­
bedding of G' given by the current graph in Figure 5.2
(this imbedding is guaranteed to be a 2-cell imbedding). 
We have seen that this imbedding has exactly 3 regions 
(each region boundary is an n-cycle). Let v and w 
be any two adjacent vertices of G' and form G = G'-[v,w]
(note that one of v and w becomes the hollow vertex in
Figure 5.3). This reduces the number of regions in T
to two. Since each of v and w lies in all three re­
gion boundaries of G' (recall each region boundary is 
an n-cycle), each lies in the remaining two region
boundaries of G = G' - [v,w]. Call the two distinct
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regions Rv and R ^  Now apply Ringeisen's lemma to get 
a 2-cell imbedding of G' = Gn with one region; hence
there is exactly one 3n/2 = (6s+3)-sided region. More­
over, with p = n = 4 s + 2 ,  q = 6 s +  3, and r = 1, the 
Euler formula gives y = ^ + s» Finally we verify that
KCL holds at the kth vertex of Gn (1 £ k ^ 4s + 2)
by exhibiting an equation (for each k) in which both 
sides represent the sum of the currents (directed away) 
at the kth vertex. Since one side of the equation will 
always be zero, it will be immediate that the KCL holds. 
We single out two unusual vertices, the (2s + 2)nd and 
the (4s + 2)nd, and divide the remaining 4s vertices 
into four major cases:

1) l * k *  s + 1
2) s + 2  s: k ^ 2s + 1
3) 2s + 3 £ k * 3s + 2
4) 3s + 3 * k * 4s + 1

That the KCL holds for vertex k, k = 2 s + 2  or 
4s + 2, follows from the equations:

k = 2s + 2 : -[8s + 2] + 3 + [8s - 1] = 0, and
k = 4s + 2 : [8s - 2] - [8s - 3] - 1 = 0,

where the three terms of each equation represent the di­
rected current on the kth diameter-edge, kth circle- 
edge, and (k+l)st circle-edge, respectively.
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Case 1. 1 S k * s + 1

First, we consider k even. By using the functions 
C and D defined before, it is easy to see that the 
three edges incident with the kth vertex v are label­
ed and directed as follows:

a) the kth diameter-edge— labeled D(k) = 8s + 2 - 8 (k-1)
and directed toward v.

b) the kth circle-edge— labeled C(k) = 8s + 3 - 4(k-2)
and directed away from v.

c) the (k+l)st circle-edge— labeled c(k+l) = 1 + 4(k+l-l)
and directed toward v.

The corresponding equation is then

-[8s + 2 - 8 (k-1)] + [8s + 3 - 4(k-2)] - [1 + 4k] = 0.

Therefore the KCL holds at the kth vertex for k 
even and l £ k £ s + l .  Second, we suppose that k is 
odd. Again by using the functions C and D, we write 
the label and direction of each of the three edges inci­
dent with the kth vertex v. Namely,

a) the kth diameter-edge— labeled D(k) = 8s+2-8(k-l)
and directed away from v.

b) the kth circle-edge— labeled C(k) = 1 + 4 (k-1)
and directed away from v.

c) the (k+l)st circle-edge— labeled c(k+l)=8s+3-4(k+1-2)
and directed toward v.
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The sum of the currents at v is then

[8s + 2 - 8 (k-1) ] + [1 + 4 (k-1) ] - [8s + 3 - 4(k-l)] = 0.

Therefore the KCL holds for case 1.

In cases 2 through 4 we only list the equations 
representing the sum of the currents (directed away) at 
the kth vertex v. In each equation the first term 
represents the current directed away from v of the kth 
diameter-edge; the second term, the kth circle-edge; 
and the third term, the (k+l)st circle-edge. The cases 
are:

Case 2. s + 2 £ k ^ 2 s + l  

k even:
[6 + 8 (k - (s + 2 ) ) ]  + [8s + 3 - 4(k-2)] - [1 + 4k] = 0  

k odd:
-[6 + 8(k - ( s + 2 ) ) ]  + [1 + 4 (k-1)] - [8s + 3 -4 (k-1)] = 0

Case 3. 2 s + 3 * k £ 3 s + 2

k even:
-[8s+2-8 (k- (2s+2) ) ] -[ 5+4 (k- (2s+4)) ] + [ (8s-l) -4 (k+1- (2s+3)) ] =0 

k odd:
[8s+2-8 (k- (2s+s)) ] -[8s-l-4 (k- (2s+3)) ] + [5+4 (k+1- (2s+4)) ] = 0
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Case 4. 3 s + 3 ^ k < 4 s + l

k even:
[6+8 (k- (3s+3) ) ] -[5+4 (k- (2s+4)) ] + [ 8s-l-4 (k+1- (2s+3) ) ] = 0 

k odd:
-[6+8 (k- (3s+s) ) ] -[8s-l-4 (k- (2s+3) ) ] + [ 5+4 (k+1- (2s+4) ) ] = 0.

Hence the KCL holds at each vertex of Gfi. Thus 
since is regular of degree 3 every region in the
derived graph G^(r) = K4 (n ) is triangular.

Next we apply Theorem 4.5 to prove that the inibeddings
for ^4 (n )' n = 2 (mod 4), given above have bichromatic
dual and then apply Theorem 4.4 to obtain triangular im- 
beddings having bichromatic dual for K4 (n )' n = 0 (mod 4), 
and thus we will have obtained triangular imbeddings of

K4(n) for a11 even values of n °
The current graph Gn given in Figure 5.3 is bi­

chromatic. (Simply start at any given vertex and then 
proceed cyclically, alternately coloring the vertices 
black and white. Diametrically opposite vertices are 
adjacent but since n = 2 (mod 4) such vertices will be 
assigned different colors.) Temporarily, we translate 
from current theory to voltage theory by dualizing the
imbedded current graph Gfl to obtain the imbedded dual

* *G . It is now obvious that this imbedding of G„ has n n
bichromatic dual, and it is clear that Theorem 4.5 can
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be invoked to prove that the derived imbedding of the 
derived graph K4 (n ) bas bichromatic dual for n = 2
(mod 4). In the other even cases, namely n = 0 (mod 4),
we write n = 2s-2m uniquely, where m is odd and s 1. 
Since 2m h 2 (mod 4), we apply Theorem 4.4 s times 

to our imbedding of G = K4(2m) and thus Produce a tri­
angular imbedding with bichromatic dual for K4 (n )« A l ­
together, then, we have found a triangular imbedding of 
K4(n) w ibh bichromatic dual for each positive even in­
teger n. For each of these imbeddings, as we have seen,

2we get a (4n,4n ,3n,3,0,2)-PBIBD. Theorem 4 01 shows 
these designs are different from those found in [13], and 
direct comparison with those found in [17] shows that the 
above designs are new.

2We determine (4n,4n ,3n,3,0,2)-PBIB designs for n 
odd by triangularly imbedding K4 (n ) again but this time 
by appealing to voltage graph theory. We consider the 
two cases n = 1 (mod 4) and n s 3 (mod 4). In each 
case we exhibit a voltage pseudograph satisfying requisite 
properties sufficient to insure that the derived imbedding 
of K4 (n ) is triangular.

The structure given in Figure 5.5 is a voltage pseudo­
graph for the case n s l (mod 4). (See Figure 5.4 for 
the special case n = 5.) We now precisely describe this 
structure and voltage assignment. Let n = 4s + 1 with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57
s = 1,2,.., and T = Z^n and begin with a (4s + 2)-gon 
imbedded in the plane0 Distinguish a vertex Vq on the 
polygon and label the remaining vertices as v1 ,v2,..., 
v4s+l cyclically with a clockwise rotation. Construct 
exactly one chordal edge between Vq and v^ for each 
i = 2,3,4,...,4s. Finally, add a second edge between v^ 
and v^ that is contained within triangle vqviv2 an^ 
then a loop at v^ inside the region bounded by the two 
edges between Vq and v^. This produces a monogon and 
4s + 1 triangular regions. The voltages around the peri­
meter of the polygon are assigned as follows: Assign 1
to the edge between vQ and v ^  Next assign 8s - 2 
(s 2 (mod 4)) to the edge between v^ and ; then 
proceed cyclically, in a clockwise sense, by assigning 
a voltage that is 4 less than that of the immediately 
preceding assigned voltage until voltage 2 is reached.
At this point we are half-way around the polygon. Con­
tinue by labeling the next edge 2 and each successive 
edge with a voltage 4 more than that assigned to the 
edge immediately before it until 8s - 6 is reached. The 
last two edges are assigned 1 and 8s - 2, respectively. 
Observe that each of the voltages assigned to perimeter
edges appears exactly twice. The chords of the polygon

k-1have the following voltage assignment: (8s+l) - 4(—^— )
(each s 1 (mod 4)) to the edge between vQ and v^ for 
k = 1,3,5, o.,4s - 1 and 3 + 4 ir~) (each s 3 (mod 4))
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to the edge between vQ and for k = 2,4,...,4s.
Assign 8s + 2 to the loop at Vg. Lastly we designate 
a direction to each of the edges. The perimeter edges 
assigned with voltage 1 or a voltage congruent to 6 
modulo 8 are directed clockwise whereas those with volt­
age congruent to 2 modulo 8 are directed counterclock­
wise o All chordal edges are directed toward Vg and the 
loop at vQ is directed clockwise.

The polygonal structure in Figure 5.5 determines a 
unique surface (by identifying, in the standard topologi­
cal manner from surface topology, the pairs of edges on 
the perimeter having the same voltage assigned). It is 
not difficult to show that there are exactly two vertices 
(v^ and v4 s+;l represent one vertex whereas the remain­
ing vertices of the polygon represent the other vertex 
(call these vertices x and y, respectively)) in the 
imbedded pseudograph formed from this process. It is 
relatively simple to verify that after identifying x 
and y we have a bouquet of 6s + 2 loops based at a 
single vertex imbedded in a nonorientable pseudosurface 
of characteristic 1 - 2s having exactly one singular 
point of degree 2. The derived graph is the Cayley 

graph G^(T) = K 4 (n) 7 the coverin<3 sPaca is seen to be 
a pseudosurface: since ry = T (Observe that the two
loops 8s-l and 5 based at y may be combined to show
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that 16s + 3, which is relatively prime to |r|, is in 
Ty)/ Theorem 2.3 implies there is one component in the 
covering space before x and y are identified. Fur­
thermore, Stahl's orientation theorem, Theorem 2„4, shows 
that the covering space is nonorientable: the rotations
around the vertices x and y may be chosen so that the 
perimeter voltage 2 has X = 1 assigned to it, and the 
loop voltage 8s + 2, X = 0 o Then traversing (4s+l) 
loops of 2 followed by 1 loop of 8s + 2 gives a 
0-trivial walk at y, which is not X-trivial. Finally, 
appealing to congruency classes modulo 8, we see that 
the KVL holds on each triangular region, which thus 
lifts to triangular regions in the derived graph. The 
only other region is a monogon, which lifts to (8s+2) di- 
gons. After identifying the opposite edges in each of 
these digons, we are left with a triangular imbedding of 
the derived graph K4 (n ) for n ~ 1 (mod 4 )• That the 
block designs determined by these imbeddings are new fol­
lows from Theorem 4.1, since previously known designs on 
the parameters are imbedded in surfaces or strictly gen­
eralized pseudosurfaces (i.e0, not a pseudosurface).
(See [13] and [17].)

Triangular imbeddings of K4 (n ) for the case n s 3 
(mod 4) can be obtained from the voltage pseudograph 
shown in Figure 5.7. (See Figure 5.6 for the case n = 7.) 
We note that this structure is quite similar to the one
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Figure 5.4
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Figure 5.6
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used in the case n s l (mod 4) so we give a minimum of 
details since the verification of such details is analo­
gous. This time we begin with a (4s + 4)~gon imbedded 
in the plane, adding chordal edges and the loop as before. 
There are n = 4s + 4 vertices and the voltage assignment 
is as given in Figure 5.7 (See Figure 5.6 for special 
case n = 7). Once again there are two distinct vertices 
x and y; v^ and v4 s + 3 represent x and the remain­
ing polygonal vertices represent y. Loops with voltages 
8s + 3 and 5 can be combined to show that (16s + 11) 6

hence, r = As in the case n = 1 (mod 4) rota­
tions can be assigned giving X = 1 on perimeter voltage
2 and X = 0 on loop voltage 8s + 3. Traversing (4s+3)
loops of voltage 2 followed by 1 loop of voltage 8s +
3 gives a 3 -trivial walk at y that is not X-trivial. 
Thus by Theorem 2.4 the covering space in nonorientable. 
The KVL holds on each triangular region and the monogon 
lifts to 8s + 6 digons. Performing the same operation 
on the digons as we did for the case n s l (mod 4), we 
again obtain a triangular imbedding of K4 (n )* Finally, 
since the covering space is a nonorientable pseudosurface, 
we know the associated block designs are new (by Theorem 
4.1). We note in passing that in these two cases (n = 1 
or n s 3 (mod 4)) neither dual is bichromatic (since no 
dual can be bichromatic if even one vertex of the original 
graph has odd degree), so that we are unable to extend
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these imbeddings to other designs by applying Theorem 4.4. 

The foregoing proves the following theorem.

can be constructed) for each integer n * 2.

Designs based on imbeddings with bichromatic dual 
have a particular fruitful feature— they split naturally 
into two "half sized" designs, that is, the split designs 
have half as many blocks. The blocks of one of these de­
signs consist of all the regions of one color class; the 
blocks of the second, all the region^ of the other color 
class. We observe that if the original design is a 
(v,2b,2r,3,0,2)-PBIBD, then each split design is a 
(v,b,r,3,0,1)-PBIBD. We illustrate the split designs in 
Table 5.1 below by using the imbedding of K4(2) employ­
ed in the proof of Theorem 5.1. The design based on K4 (2 ) 
is an (8,16,6,3,0,2)-PBIBD and so each of the split 
designs is an (8,8,3,3,0,1)-PBIBD.

White colored regions Black colored regions

THEOREM 5ol New (4n,4n2 ,3n,3,0,2)-PBIB designs exist (and

1 3  0
2 4 1
3 5 2
4 6 3
5 7 4 
0 0 5 
7 1 6  
0 2 7

1 4  3
2 5 4
3 6 5
4 7 6
5 0 7
6 1 0  
7 2 1 
0 3 2

Table 5.1
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The imbeddings of K4 (n ) f°r n even used in Theorem 
5.1 have bichromatic dual; we give in Theorem 5.2 the 
split designs that are, consequently, produced.

THEOREM 5.2. For each even value of n, two 
2(4n,2n ,3n/2,3,0,l)-PBIB designs exist (and can be 

constructed).

LEMMA 5.2o For each n s 6 (mod 12) there exists a tri­
angular orientable surface imbedding of K4 (n ) f°r which 
the corresponding PBIB design is n-partially resolvable.

PROOF. Referring to the current graph for K4 (n ) in 
Figure 5.3, we distinguish 4t + 2 vertices, where 
n = 12 + 6 for t = 0,1,2,.... We will see that each 
such vertex will generate 3 distinct sets of 16t + 8 
regions (blocks) each in the derived imbedding (which we 
have seen before to be a triangular orientable surface 
imbedding) with the union of the blocks in each such set 
containing precisely the 4n vertices of K4 ̂ . (See 
Figure 5.8 for the case n = 18.) All together there are 
3 (4t + 2) or n sets of the required type (pairwise 
disjoint). For notational convenience let the triple 
(a,b,c) represent the outflowing currents at any given 
fixed vertex of the current graph Gn in Figure 5.3, 
where the first and third coordinates represent circle- 
edge currents and the second coordinate represents the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



67
diameter-edge current. The vinculum designates the nega­
tive (in Z4n ) of the current listed. The 4t + 2 
distinguished vertices can then be conveniently repre­
sented as below where s = 3t + 1:

(12u + 1,8s + 2 - 24u,8s + 3 - 12u) for 0 * u a: t

b : (12u + 5,8s - 6 - 24u,8s - 1 - 12u) for 0 £ u £ t

(12u + 7,8s-10 - 24u,8s - 3 - 12u) for 0 £ u * t-1

du : (12u+11,8s - 18 - 24u,8s - 7 - 12u) for 0 s: u < t-1.

We observe that each such vertex gives rise to an 
initial triangular region of the form 0— a— a+b (for 
convenience in terminology we will call the first symbol 
in this triple an initial vertex) where (0,a,a+b) con- 
stitues a complete set of residues modulo 3 and that 
this initial region in turn generates 4n - 1 other re­
gions, namely, 1— (a+1)— (a+b+1), 2— (a+2)— (a+b+2),
..., (4n-l)— (a+4n-l)— (a+b+4n-l). Appealing to congru­
ency classes modulo 3, we see that by choosing those 
regions whose initial vertices are congruent to either 
0,1, or 2, respectively gives 3 sets of regions with 
each such set consisting of precisely all 4n vertices 
of K4 n̂ j. This produces the required n sets of blocks 
and so the corresponding designs are n-partially resolvable.

(and can be constructed) for n s 6 (mod 12) .
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30 34

29 18
14

.27

21 ►17

15 19

12513
10 11

223118
30r26 34

Regions Generated Corresponding 3 Sets of Regions
by Vertex aQ

0 1 35 0 2 36 1 3 37 2
1 4 38 3 5 39 4 6 40 5
2 7 41 6 8 42 7 9 43 8
3 . . •
4 • • •

70 32 69 71 33 70 0 34 71

71 33 70 
0 34 71

Case n = 18 in Lemma 5.2

Figure 5.8
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PROOF. By lemma 5.2 and its proof we know that orientable 
triangular surface imbeddings of K 4  (n ) for n s 6 (mod 12) 
can be constructed whose corresponding PBIB designs are 
n-partially resolvable. Each of the n sets determined 
by the n-partial resolvability consists of 4n/3 regions 
(blocks) that partition the vertex set of K 4  (n) • For 
each such set, we place a vertex v in the interior of 
each of the 4n/3 triangular regions and then connect v 
with an edge to each of the three distinct vertices in the 
boundary enclosing v. Finally, for each given set, we 
identify the newly placed 4n/3 vertices as one. This 
process creates n new vertices of which each is adjacent 
to the original 4n vertices of K4 (n ) kut none is ad­
jacent to any other new vertex. We further observe that 

2a total of 4n /3 triangular regions were destroyed and
2 2 4n created, for a net gain of 8n /3 triangular regions

or a total of 20n2/3 such regions. This, then, gives
a triangular pseudosurface imbedding of K 5 (n ) as weli
as new (5n,20n2/3,4n,3,0,2)-PBIB designs for n s 6
(mod 12). Known designs (See [13].) on these parameters
are in strictly generalized pseudosurfaces.

By applying Theorem 4.4 repeatedly to the voltage 
pseudograph in Figure 4.2 triangular imbeddings for the 
7-partite graphs K ?(5#2k ) (k = 0,1,2,...) are obtained. 
Theorem 5.4 gives the new PBIB designs thus determined.
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2THEOREM 5.4. New (7n,14n ,6n, 3- , 0 , 2 )  — P B I B  designs exist 
(and can be constructed) w h e r e  n  =  5 - 2  and k = 0,1,.,

The imbeddings used in T h e o r e m  5 . 4  Iiave bichromatic 
dual and thus determine a pair o : f f  s p l i t  designs for each 
value of n. We summarize t h i s  dLn. tlie next theorem.

2THEOREM 5.5. Two (7n,7n ,3n,3^ 0 ^ 3 . )  — P B I B  designs exist
V(and can be constructed) w h e r e  n  =  5 - 2  and k = 0,1,.
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of "cascade" current graphs by Youngs [38] and Jungerman 
[18] have given not only a firm foundation for nonorien- 
table imbeddings but a new dignity to them.

Like nonorientable imbeddings, pseudosurface and 
generalized pseudosurface imbeddings have been avoided 
in the past. Creating block designs via these types of 
imbeddings has gained acceptance among topological graph 
theorists. In this connection, we address ourselves in 
this chapter not only to the genus parameters but also to 
the pseudocharacteristic and generalized pseudocharacter­
istic parameters.

The class of graphs K4 (n ) has been extremely fruit­
ful. Ringel conjectured in 1969 that the genus of K4 (n ) 

2is given by (n - 1) or equivalently the orientable 
characteristic is 2n(2 - n). Gross and Alpert verified 
this for the cases n = 1 or 5 (mod 6) [11] and Garman 
[6] showed this for n h 2 (mod 4). (See also Chapter 5 
of this thesis.) Recently Jungerman [17] showed that 
Ringel’s conjecture is true for every n ^ 1 except n =
3. The exceptional case *4 (3 ) should triangulate the 
quadruple torus (a sphere with 4 handles) or at least 
the Euler formula allows for this, but Jungerman has shown, 
by an exhaustive computer search, that it does not. The 
actual genus is 5 or equivalently the orientable char­
acteristic is -8. The voltage pseudograph in Figure 2.3 
(Chapter 2) shows that the generalized pseudocharacter­
istic is -6.
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Petroelje [23] shows that the pseudocharacteristic of 

K4(n) is 2 n (2 “ for a11 n * In Particular for
n = 3, x'(K4 ) = -6.

In the nonorientable case Jungerman [19] has also
— 2 recently shown that V(K4 n̂ j) = 2 (n - 1) for all

n 2s 3. The voltage graphs in Figures 5.5 and 5.7 were
constructed independently from Jungerman's work; we note 
that interchanging the voltages on the edges v4sv4 s+i 

and v4s+ivo Figure 5.5 and on edges v4 s+2v4s+3 311(1
V4s+3V0 Figure 5.7 produces nonorientable surface 
imbeddings. (They were nonorientable pseudosurface im­
beddings.) These yield nonorientable triangular surface 
covers that give Y(K4 ^ ) for n odd, in agreement with 
Jungerman's result. We note in passing that by appropri­
ately adjusting the triangular regions in Figures 5.5 and 
5 r 7, we can change the covering surfaces to orientable 
generalized pseudosurfaces and thus produce generalized 
pseudosurface imbeddings yielding x " ( K 4  (n)) for n odd. 
Rather than pursuing this we give two theorems that follow 
immediately from Theorem 5.1 and its proof and essentially 
are reinterpretations of those results. A third theorem 
follows in a similar manner from Theorem 5.3 and its proof.

2THEOREM 6.1. Y(K4 (n)) = (n - 1) for n even.

THEOREM 6.2. x' <K 4  (n ) > = 2n(2-n) for n odd.
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THEOREM 6.3. x'(K5 n̂)) = 5n(3-2n)/3 for n = 6 (modl2).

(k = 0,1,...) follows immediately from Example 4.2 and 
Theorem 5.4. We state these results in Theorem 6.4.

and k = 0,1,....

We concluede the chapter by summarizing the known
genus formulas for the complete n-partite graphs
K . W e  note that K , . is a subclass of this
pl'*'n#pn n( '
family and, in particular, the complete graphs belong
to this class since Kr = Kn (2j- Braces are used to
denote the least integer function.

The nonorientable genus of K 7 (n ) for n = 5*2

THEOREM 6 . 4 . Y (K7 (n ) 2 + 7n(n-l) where n = 5°2

1. [28]

2. [25] ( 4nz3_yn=4I , „ „ 3>
o

n 4 ?
3. [27] Y (Kn,m

4. [32] .(.[nn z.l),.(n-ll y m#n & i .

5 o [29]

and q + r £ 6 .
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7. [31] Y(Kn#n#n-2^ = " * n even 3113 n St 2.

8. (311 Y(Kn>n>n.2) = (n-2)2 , „ » 3.

9 - 1311 Y<K2n,2n,n> = 1 -n -2V n~1) » » * 1 -

10. [31] Y(Kn#n#n_4 ) 15 (n-2) (n-3), neven and nin4.

11. [18],[6],(and Theorem 6.1)
f (n-1)2 , n / 3 

Y<Kn,n,n,n> 5 # n =

12.119] Y(Kn#n/n/n) = 2 (n-1)2 , n * 3„

13. [21],[9] Y(Kn(2)) = { te3.Mn-l) h  Xljillm

14. [20] Y(Kn(2)) = 2 [ ^ 3 ? .(n-1 ) n * 5 .

15. [7] = 1+7.2k“1 (2k -l), k ft 0.

16. [7] Y(Kn(m)) = _  mn(m-l)

for n e 3 mod 12 and m = 2k , k * 0.

17. (Theorem 6.4)
Y<K 7 ( 5 . 2 V  = 2 + 35-2k (5-2k - 1) k  ft 0.
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