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I INTRODUCTION
The Problem

In the classical theory of commutative rings, one
important result states that for a O-dimensional ideal
@ in a noetherian ring A with identity, the Hilbert
function H(n,a) = LA(A/an) , that is the A-module
length from A to ¢ , is a polynomial with rational
coefficients for sufficiently large n . The degree of
this polynomial is the altitude s of a . The multi-
plicity u(a) of the ideal & 1is s! times the leading
coefficient of this polynomial and is frequently expressed

by the limit formula of Samuel

(1.1) b(a) = s' lim BCDLO)
N n

It is always true that u(e) 1is an integer which, in
the geometric situation, can be interpreted as the "multi-
plicity" or *count' of the intersections of varieties.
The study of sequences of powers of a fixed ideal
has been generalized to the study of filtrations where

a multiplicative filtration (or Just filtration) on a

ring A 1is a sequence f = {an} of ideals of A which

satisfies the conditions

(1) e = A,

(1.2) (ii) < LN for all n =z 0 , and

n+1l
iii 6aa S 4a £ all 2 .
( ) m n m+n or m,n 0

1
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This is indeed a generalization of the powers of an ideal

for, given any ideal & of A , the sequence

(1.3) £, = {o")

forms a filtration on A using the convention that
a® = A .

In this dissertation, the concept of multiplicity
is extended by the formula analogous to (1.1) to all

filtrations for which the limit exists; that is,
LA(A/an)

(1.4) p(£) = s! lim S

N n

provided this limit exists, where s = alt(f) . See (1.13).
In general LA(A/nn) cannot be described by a polynomial
as before and multiplicity need not be an integer or even
a rational number. This means that the geometric inter-
pretation of multiplicity as counting intersections does
not apply even in the case of geometric rings. Some
connection does exist, however, and in Chapter 3, a minor
strengthening of the theory is developed in order to
demonstrate the connection with another generalization

of multiplicity. For any filtration of the type considered
there, a constant factor of proportionality is obtained
which recovers the integer corresponding to the geometric
multiplicity. Despite this fact, the general theory
developed lies more appropriately in the realm of the
arithmetical theory of filtrations with no particular

distinction being made as to whether or not the multi-
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plicity is related to some integer in a natural manner.
This thesis is to be regarded, then, as one further advance
in the broader study of all multiplicative filtrations on
a commutative ring, restricted of course to those filtra-
tions for which multiplicity is defined.

Within the text, all statements about multiplicity
will be made in terms of submodules of a module instead
of ideals in a ring by defining the multiplicity w(f,M)
of a finitely generated A-module M with respect to a
filtration f = {an} on a noetherian, commutative ring

A with identity as

L, (M/a_M)
(1.5) w(£,M) = s?! lim -2 -0 °

5 , 8 = alt(£f)
n-+c n

'

whenever this limit exists. If f 1is approximatable by

powers in the sense that for each j € N, there exists
kj € N such that

n

(1) L. Gj for all n , and
(1.6) K
(ii)y - — 1 as j— =
J

and if f 1is O-dimensional, u(f,M) exists for every
finitely generated A-module M . The corresponding
multiplicity function w(f,_) defined on the category
of all finitely generated A-modules has properties very
similar to those of the multiplicity function u(a,_ )

of classical ideal theory; e.g., it is additive and obeys

the usual localization and extension formulae. Any
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filtration of the type £ = £, for some o is trivially
approximatable by powers. The class of all filtrations
which are approximatable by.qnwers is much wider, however,
and even includes many filtrations which arise from
nondiscrete rank 1 valuations.

To demonstrate how the theory of Chapter 2 is to be
applied, two classes of filtrations on familiar rings are
discussed in detail. In fact, all of Chapter 4 is devoted
to the description of an unusual but very interesting class
of filtrations on k[X,Y) , the examination of which led
to the key idea of approximatable by powers',

For Chapters 1, 2, and 4 only the general knowledge
of commutative ring theory found in [ 4] or [5] is assumed.
The third chapter quotes without proof and with very little

explanation some of the more sophisticated results of [7]

and [9].
Preliminary Notions

Throughout this work, whether mentioned explicitly
or not, A will denote a commutative ring with identity
and any ring homomorphism will be assumed to preserve the
identity. A number of common terms of commutative ring
theory need to be adapted to simplify statements about
filtrations. First recall that the rank of a prime ideal
p in a ring A 1is the supremum (possibly +®) of all n

for which there exists a chain of prime ideals
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(1.7) P B D F e F R F R TP
The altitude of an ideal 6 # A 1is defined by
(1.8) alt(s) = sup{rank(p) | p is a minimal prime of a}.

The dimension of the ring A 1is

(L.9) Dim(A) = sup{rank(p) | p is a maximal ideal of A}.

The dimension of the ideal a of A 1is then

(L.10) dim(e) = Dim(A/s) .
The radical of an ideal a # A is given by
(L.11) rad(ae) =N {p| ¢ S p and p is a prime ideall .

It is well known that rad(a) = {aGAI a"€a for some n€N }.
Let £ = {an} be a filtration on a ring A . If

n A for some n >0 ,

-]
i

the definition implies that

2
il

A for all n = 0 ; that is, f = £, in the notation
of (1L.3). This trivial filtration will ordinarily be
excluded from consideration without comment. Conditions
(ii) and (iii) of the definition of filtration (1.2) and
properties of prime ideals then imply that all the ideals
of f except LI have the same radical. Define the

radical of f by
(1.12) rad(f) = rad(an) for any n > 0 .

Since rad(f) 1is an ideal of A , the altitude and

dimension of the filtration f can be defined by

(1.13) alt(f) = alt(rad(f)) and
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dim(f) = dim(rad(f)) .

It has been observed [6] that the set of all filtra-

tions F on a ring A , including the trivial ones

f and f forms a lattice under the following partial

(0 A
order, meet, and join. For any two elements £ = {an}

and g = {b } in F,

f<g if e €b  forall n=20,

(L.14) £Ag=£fNg

{an N bn} for all n 2 0 , and

fvg=f4+¢g

1]

{cn} , where ¢, 1is the ideal
c = ZQ.b. -
n i j
i+j=n
The set F 1is also endowed with a Jjoin distributive

multiplication
(1.15) fg = {anbn} for all n 2 0 .

The operations are compatible with the order, associative,
and commutative. The two trivial filtrations f(O) and
fA provide, respectively, additive and multiplicative

identities.

Note 1.1: It is easlly shown that for two ideals

and b of A, f «#4 f =1f and f _f, = fa but

a b a+b a~b b,
for the intersection of f, and £, in general only
funb s £, N £y is true. The question of just '"how close"

funb is to fa N fb is still unanswered.

Note 1.2: The set of all filtrations on a ring with the
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same radical form a sublattice of F with the property
that for any two elements £ < g of the sublattice, the
interval in F determined by £ and g s contained
in the sublattice.

For any filtration £ = {an} and positive integer k,
the subsequence determined by the multiples of k forms

(k)

a filtration £ ; that is,

[=+]

n=0

.

(1.16) £ = (o)

k

By use of (l1.15), £ is defined and can be expressed

£K = {ank} . From (iii) of (1.2), it is immediate that
gk < £

Let £ = {an} be a filtration on a ring A, g = {b_]
a filtration on a ring B , and ¢:A—B a ring homo-
morphism so that by definition, B 1is an extension of
A . The extension of £ to B 1is defined by
(1.17) £2 = (o %} = ({ola_ 1B}
and the contraction of g to A by

-1
(1.18) g = (v} = (¢ (b ]} .

It is easily checked that £ and gc are filtrations

on B and A respectively and that f s £€¢  and

gcesg.

Filtrations which arise as the powers of a fixed ideal
will provide a key tool in the subsequent development and
the relationship between these and the collection of all

filtrations is more than simple containment. The follow-
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ing result demonstrates this fact and provides suspicion
that some properties of filtrations of this special type
are in fact properties of more general filtrations. 1In
particular, it shows that any statement about a filtration
f which is true for every filtration of the type f

for some 6 and which is preserved under all contractions,

is true for f 1itself.

Proposition 1.3: For any filtration £ on a ring A ,

there exists a ring extension B and an ideal b of B
such that f 1is the contraction of the filtration on B

given by the powers of b ; that is, £ C =1 .

b
Proof: For each a_  of f = {an} , choose a set of
generators {an,i}iEIn . For an indeterminate t over

A and the multiplicatively closed set S = [t,tz,...},
let A[t]s be the corresponding ring of quotients. Take
B as the subring of A[t]s generated by t and all

quotients of the form /t" for each n . That is,

“n,i
- n : _
(1.19) B = Alt, an’i/t for i €I and n=1,2,...].

Then for the ideal b = (t) in B

?

(1.20) @ = ¥ NA for n =0

. n .. . .
The containment e S b MNA 1is immediate since

n n - . .
t (an’i/t ) = dn,i implies that every generator of e

. . n . .
isin b N A . To see the reverse inclusion, choose
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9
any o € p" MNMA . Then «o = tna for some B € B . Since
B is in B it is easy to show it has a representation
as B = g(t) + Yl/t + Y2/t2 + Y3/t3 4+ ... where g(t)€Alt],
Y € o, for all 1 21, and all but finitely many
Y; = 0 . Then t"e € A implies g(t) = 0 and Y; =0

for i#£n. Now o =t =y €a_ . Q.E.D.

Remark 1.4: Another, slightly more complicated proof of
this result exists showing that B may even be chosen
integral over A .

There 1s an alternate approach to the study of filtra-
tions on a ring which will be employed to develop one as-
pect of the theory and will be used as a convenient method
of presenting particular filtrations.

Let R denote the set of nonnegative real numbers
together with +® and define addition and order on R

in the usual manner. A pseudo-valuation on a ring A

is a function v on A into R with the properties

(1) v(0) = 4=
(1.21) (1ii) v(ap) 2 v(a) + v(B) for all «,B € A , and
(iii) v(ie + B) =z min{v(a),v(B)} for all a,B € A .

These conditions define a valuation on A in case (ii)

is replaced by

(1.22) (i1)* v(oB) = v(ax) + v(B) for all «,B € A .
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10
For any r € R , the set 8, o = {0 € A| v(a) 2 1}
?

is an ideal of A and the sequence of ideals

(1.23) fv = {°v,n}

forms a filtration on A which is called the filtration

associated with the pseudo-valuation v . Conversely,

given a filtration f = {an} on a ring A , there is a
class of pseudo-valuations v for which fV = f .

Existance of such is obtained by defining v, on A into

f

R via
(L.24) ve(a) = sup{n | @ € un} for each o € A .

This function is a pseudo-valuation on A and is called

the pseudo-valuation associated with £ . Note that

fv = f . The corresponding statement starting with a
bid
pseudo-valuation v ; i.e., Ve = v , 1s in general false
v
since v need not be integrally valued. This situation

can be rectified by defining
(1.25) [v](@) = f[v(a)] , for each o € A ,

where [r] denotes the greatest integer less than or equal
to the real number r and [+®] = +® . Then [v] 1is
a pseudo-valuation and v, = [v].

v
A graded ring R 1is a ring with a subsequence of

abelian subgroups R" such that

(i) R = @® R" as abelian groups, and
(1.26) n=0
(ii) R™"™ < R™™ for all m,n =20 .
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11

The elements of R™ are said to be homogeneous of degree

n and a homogenecus ideal is an ideal of R generated

by homogeneous elements. The elements homogeneous of

degree O form a subring of R . A graded module E

over a graded ring R = @DR™ is an R-module E together

with a sequence of subgroups E" which satisfy
(-]
(1) E = @ E" as abelian groups, and
(1.27) n=0

(ii) RUE" ¢ g™ for all m,n 2 0 .

n

As before, the elements of E are called homogeneous of

degree n , and a homogeneous submcdule is one which is

generated by homogeneous elements,
To every multiplicative filtration f = {an} on a
ring A , there corresponds a graded commutative ring with

identity, the associated graded ring, defined by

bt Q

(1.28) Ge(A) = @& =
n=0 ‘n+l

as an abelian group with multiplication being given by

the formula
!

(1.29) (Z ai*“i+1)(2 Esj’“"jﬂ) = Z
' k

i J

(Zaisj) + 841 -

i+j=k
This multiplication is well defined because f is a

multiplicative filtration. That is, if o' = a+y with

t 7 |
o(,qéui,\{Euidbl and B B+ 6 with B,B' € a. ,

J
6 € aj+l , then o'f' = oB + ab +‘y8 + y6 and by the
filtration conditions, a8 + YB + v6 € a. . The

i+j+1
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12

identity of Gf(A) is 1, +a, . If M 1is an A-module

A 1
and f = {an} is a filtration on A , the abelian group
é unM
(1.30) G.(M) = —_—
£ n=0 °n+lM

has structure as a graded module over the graded ring

Gf(A) by defining scalar multiplication as

(L.3L) (2 ai+ai+l)(z mj+°j+1M) = Z (z aimj) + o0, M.
i j k i+j=k

The Gf(A)—module Gf(M) is called the associated graded

module of M with respect to £ . In case f = f for

a
some ideal o , G (A) and Gg (M) will be denoted
a

a
Gu(A) and GQ(M) .
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1I MULTIPLICITY OF FILTRATIONS
The Noetherian Case

A multiplicative filtration £ = {an} on a commuta-
tive ring A with identity is said to be noetherian in

case the associated graded ring Gf(A) is noetherian.

Note 2.1: By elementary properties of graded rings and
the Hilbert Basis Theorem, f 1is noetherian if and only

if RO = A/al is a noetherian ring and Gg(A) is finitely
generated as an algebra over R® [1, Proposition 10.7,

P. 106].

Proposition 2.2: For any ideal @& in a noetherian ring

A , the filtration £, 1is noetherian and G,(A) 1is gener-
ated as an algebra over R° = A/a by the elements homo-
geneous of degree 1. If in addition M 1is a finitely
generated A-module, Ga(M) is a finitely generated

Ga(A)-module.

Proof: In any ring A , the associated graded ring
Ga(A) for an ideal a 1is generated as an algebra over
R° by Rl , the elements homogeneous of degree 1, because
each R" has the form R" = an/an+l . The added condition

1

that A 1is noetherian implies R is finitely generated

and R® is a noetherian ring. Note 2.1 now shows that

13
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14

Ga(A) is a noetherian ring. The last statement in the
proposition is immediate since RPE® = E® for each
ED = anM/an+lM implying that the image of a set of
generators for M in E_ = M/aM 1is a set of generators
for GQ(M) over GQ(A) . Q.E.D.
Let M be an A-module and & an ideal of A con-
tained in the annihilator of M . Then M has structure
as an A/a-module with the lattice of submodules of M
as an A-module being identically that of M as an
A/a-module. If A 1is noetherian, & is O-dimensional,
and M 1is finitely generated over A , then M 1is finite-
ly generated over the ring A/a . Now A/a 1is both
O-dimensional and noetherian, and therefore Artinian
{1, Theorem 8.5, P.90] which in turn implies that M has
finite A/a-length. Since the lattice structure of M

as an A-module and as an A/ea-module agree,

For any filtration f = {an} y  8n is contained in
AnnA(M/anM) and dim(f) = dim(a_ ) for n >0 . The
next proposition follows directly from these comments

and statement (2.1).

Proposition 2.3: Let A be a noetherian ring, £ = [an}

a filtration on A with dim(f) =0, and M a finitely

generated A-module. Then for each n 2 0 , LA(M/anM) < o,
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15

In the situation of Proposition 2.3, define the

(cummulative) Hilbert function by

(2.2)  H(n,M,f) = L,(M/a M) for all n =0 .

Since no confusion will arise in the following development
the A will be suppressed. The symbol H(n,f) denotes
H(n,A,f) , and H(n,M,a) denotes H(n,M,fa) in the
classical case of f = fu for some ideal a . The

Hilbert function H(n,M,a) 1is especially well behaved.

Theorem 2.4: For a O-dimensional ideal a in a noether-

ian ring A and a finitely generated module M over A ,
the Hilbert function H(n,M,a) 1is described by a polyno-
mial in n for all sufficiently large n .

This is a special case of the following result by
letting R = Ga(A) and E = Ga(M) and applying Proposi-
tion 2.2. 1In fact Theorem 2.5 extends Theorem 2.4 to the
case where f 1is O-dimensional, noetherian, and Gf(A)

is generated by nl/a2 as an algebra over A/a1 .

Theorem 2.5: Let R = & R"™ be a noetherian graded

ring such that RO is o-dimensional and R is generat-

ed as an algebra over R? by R . 1f E = @ EV is

a finitely generated graded R-module, then
n-1

£(n) = ZLRO(Ei)
i=0

is a polynomial in n for sufficiently large n .
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16

The proof will be omitted since it is readily avail-
able from several sources; e.g., [1,Corollary 11.2, P.117)

or [4,(20.5), P.68].

Remark 2.6: Usually H(n,M,a) 1is regarded as a polyno-

mial and called the Hilbert polynomial.

In the ensuing development it is essential to know
the degree of the Hilbert polynomial.

Theorem 2.7: The degree of the polynomial H(n,M,a)
a + AnnA(M)

AnnA(M)

given by Theorem 2.4 is alt( ) taken in the
rin A
g AnnAZMS ’
For proof see [4, Theorem 22.7, P. 747.

Corollary 2.8: The degree of H(n,a) 1is precisely

s = alt(e) and deg(H(n,M,s8)) 1is less than or equal to
s for every M 1in the category of finitely generated
A-modules,

Proof: Since 1 € A , AnnA(A) = (0) so

a 4 AnnA(A) )
alt AnnA(A) / = alt(a) . The second assertion of the

corollary is immediate from the fact that the altitude of

an ideal can not increase under a ring epimorphism. Q.E.D.
Since Nagata's proof of Theorem 2.7 is rather compli-

cated and since only Corollary 2.8 will be needed in the

following work, it should be noted that Corollary 2.8 can
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be derived in a much more accessible manner from results
in [1, Chapter 11] by localization although the explicit

result is not stated.

If Gf(A) is not generated as an algebra by elements
homogeneous of degree 1, H(n,f) need not be given by a

polynomial for large n as the following demonstrates.

Example 2.9: Let A = k[{X] where X 1is an indeterminate

over the field k and the filtration f = {an} be given

by
x™*1)/2y e 4 is odd, and
(2.3) e =

(Xn/z) if n is even .

More explicitly £ = [A,(X),(X),(Xz),(xz),...} . Since
L, ((XM/(x™1)) = L,(a/(X)) =1 we have the following
formula for the Hilbert function of f on A .

(n+1)/2 1if n is odd, and

(2.4) H(n,f) =
n/p2 if n is even.

Clearly H(n,f) can not be represented by a polynomial

for large n .

Definition 2.10: Let A be a noetherian commutative

ring with identity, f = {an} a O-dimensional filtration
on A with alt(f) = s, and M a finitely generated

A-module. The multiplicity of M with respect to f 1is

defined by
L, (M/a_M)
wy(£,M) = s! lim Hn,ME) | gr yjp A" D7
N9 ns Ny nS
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18
whenever this limit exists. As before, %§f,M) will be
denoted w(f,M) , uA(f,A) as p(f) , and uA(fa,M) as

w(a,M) .

Note 2.11: It remains unanswered whether or not this

limit always exists.

Theorem 2.12: If a is a O-dimensional ideal in a

noetherian ring A and M 1is a finitely generated A-
module, then up(a,M) exists. Moreover, it is just s!

times the leading coefficient of the Hilbert polynomial
a + AnnA(M))

if alt( = alt(a) and zero otherwise.

AnnA(M)
Proof: This is an immediate consequence of Theorems

2.4 and 2.7 and Corollary 2.8. Q.E.D.

Remark 2.13: In this context, the inclusion of s! in

Definition 2.10 appears superfluous. Its presence here
is for agreement with other definitions of multiplicity
in the situation of Theorem 2.12 where it assures that
w(a,M) will always be a nonnegative integer [4,(20.8),
P.69].

The classical situation having been reviewed, it
seems natural to ask about existance of and representa-
tions for u(f,M) when £f 1is not f0 for any @ . As
a simple example consider the filtration £ given in
Example 2.9. This filtration is O-dimensional since

(X) 1is a maximal ideal and alt(f) = 1 since k[X] is
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a principal ideal domain. Then (2.4) implies

(2.5 HmE)

{1/2 +1/2n if n is odd, and
n

1/2 if n 1is even,

and thus up(f) = 1/2 . The existence of multiplicity in
this example is no accident but instead comes from the
fact that £f 1s essentially powers of an ideal in the

following sense.

Definition 2.l4: A filtration £ = {an} on a ring is

described as being essentially powers of an ideal in case

there exists N € N such that for all n =2 0
N
) = E: a_ .@.
n n-1i i
i=1
where an = A for all n <0 .

Proposition 2.15: The condition £ = {un} with

N
¢ = E:an_iai for all n =2 0 1is equivalent to saying
i=1
f is the least filtration g = {bn} such that b, = a;
for— 4 =1yseryN—s
Proof: Directly from the definition, any filtration
g = {bn} with b, =a. for i =1,...,N has the pro-
perty that
n.
- i
(2.6) ¢ = Z(ﬁl o ) € b for n>N.

Zin.=n
1

Define h = [Cn} by letting ¢ =a for nsN.
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It is straight forward to show h 1is a filtration so of

course the smallest filtration which agrees with o, for

i=1,...,N . Since f is a filtration, this property

implies h < f . To see that f < h , choose any LN

n >N and show it is contained in c, - Examine each

N
product of @ = zlan_iai . If n-i < N, then 8 .-1i%
i=1

. . . 6. <
is one of the defining products of ch and e ;94 ¢ -

If n-i >N, then @ . = E: ®(n-i)-3%; and
N j=1

;Z a(n-i)-jajai . Repeat the procedure for each
J=1

j such that n-i-j > N . This process eventually termi-

a .. =
n-1 1

nates since the 1i,j,... obtained are all greater than or

equal to 1. It now follows that a S ¢ for each

.a.
n-i i n
i=1,..., N and therefore L ., for each n > N . By

definition, f < h , and hence f = h . Q.E.D.

Note 2.16: 1f = f for some a , f 1is essentially

a

£
powers with N =1

As a first step toward the goal of showing that in
a noetherian ring multiplicity always exists for any
O-dimensional filtration which is essentially powers,
the follcwing is obtained from adapting the argument for
a result of Muhly and Sakuma in [3]. In addition to being

a necessary step in the theory, this result gives much
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insight into the nature of all noetherian filtrations

and characterizes them in the case of noetherian rings.

Theorem 2.17: 1If f = {an} is a noetherian filtration

on a comnutative ring A with identity, there exists

k € N such that for all j = k and all t =2 0 ,

ak+j = akaj + °k+j+t :

{a_} there exists k € N such

Conversely, if for £ n

that for all j 2z k ,

Q . =

k+j ukuj +

ak+j+1 ’

and if A 1is noetherian, then £f 1is noetherian.

Proof: For each j 21 and i with 1 s 1i=s j,

define

(2.7) b + a,0 + ... + Qq.0. . &+

i,] = alaj-l 2" 3-2 i"j-1 °j+l -

It follows from the definition of filtration that

bi,j S oy for each j and 1 . By letting 6. = A
for n < 0 the restriction i < j may be removed and
bi,j is defined for all 1i,j € N . Thus bi,j = 0
if i1 2 j . Fixing i determines an ideal Bi of
Gf(A) via
@ . .
(2.8) B, = & &3 .
j=0 " j+1
The sequence Bl’ B2,... is an ascending chain of ideals

in Gf(A) which must become constant. That is, there
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exists k € IN such that Bk = Bk for all t =20 .

+t
The direct sum nature of Bi then implies

b, . b .
E_k_ul = ___ull;*t for all t,j € IN.
j+1 j+1
Since aj+l < bk,j < bk+t,j , 1t follows that
bk,j = bk+t,j for all t,j € NWN.

Thus all the ideal products used in the definition of

bk*t,j are contained in bk,j ; 1n particular, at

i1 =k + t this means that for all j and t

a,a +

Ot t® o (ket) = Pk, T %1%5-1 oot Y%k * %44l

Specifically for j 2 k and t = j-k , this becomes

6. & b ..
J k,J

The other containment always holds, giving the equation

(2.9) a., = a.a

3 1 + Q,Q.

5-1 20500 Feeet OB P F 05y 0 ] 2 k.
Replacing j by Jj+l translates equation (2.9) into

(2.10) a. =

341 alaj +

uzaj_l A akaj—k+l + °j+2 y J=k-1.
Substituting (2.9) into (2.10) and distributing ¢, leads
to

191%5-1 * °1°2“j-2 ...t alakaj-k + alaj+l)

+ 020j_1 t...F

akaj-k+1 + aj+2 v 32k,
with each ideal product in parentheses contained in one

of those which is not. Thus
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a i 2 k .

=050, 3 B0, o bk BBs gyt 0542 0 3

j+1 273-1

Continuing inductively, assume for 2 £ h < k-1 that

for all j =2 k . As before, replace j by j+l to obtain

(2.12) + ah+2aj-1 Fooot akaj-k+h+l

j 2 k-1.

°j+h+l = ah+1aj

* 8ishe2 0

Using equation (2.9) in (2.12) leads to

+ teo.t

Osrhel) = Cna1®1%5-1 * Cha1%2%5-2 *nt1%%%j-k
+

+ +...+ Q, Q.

2
42951 K% 5-k+htl * Ojana2 0 J T K-

h+laj+l)
Again each term in parentheses is contained in one of
those which is not, completing the induction argument to

give validity of equation (2.11) for h = k-1 . Explicitly,

Oipk-1 T %k%io1 F O 0 J E k.
By replacing j with j+l1 , this implies

(2.13) @, . = akaj + °k+j+1 , J =z k.

Replacing j by Jj+l in (2.13) gives rise to

(2.18) 01 = %% a1 * Ckage2 0 d T KL

Substituting (2.14) into (2.13) and using the fact that

ag. a

akaj+l = k%3 the equation

@, . : = G, 8. + ak+j+2 , J=zk

is obtained. Inductively one proceeds to derive
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@, . = @, 8. + @ j2k and all t 20 .

k+] kJ k+j+t

Conversely, suppose there exists k such that

(2.15) O R = . a

k%5 + ak+j+l for all j =2 k .

For any n , the division algorithm gives n = mk + r
with O s r < k.

If n2k, n=(m-1)k + (k+r) with ks k + r < 2k .

Then
h T Y(m-1)k+(k+r)
= ak+(m-2)k+(k+r)
= %% (m-2)k+(ker) * Onar BV (2.13))
= “k(“k“(m-3)k+(k+r) * °n-k+1> * Onel
. 2
- ak a(m-3)k+(k+r) * akan-k+l * un+l
_ 2
= 0 ek (ki) T Cnel
_ m-1 )
= % %ker * %nel
Now
%n
3 for n < k , and
a n+l
n —
) - m-1 m-1
n+l °%  Pkir oy O tr
- . = o A for n 2 k.
n+l k+1 k+r+l

Thus Gg(A) is generated as an algebra over A = A/al
by an/an+l , n=1,...,2k-1 . Now the assumption that

A 1is noetherian implies that Ao is noetherian and
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Gf(A) is finitely generated as an algebra over Ao . By

Note 2.1, f is noetherian. Q.E.D.

Proposition 2.18: If £ = [an] is a noetherian filtra-

tion on a noetherian commutative ring A and if £ has
the property that for each n there exists ¢(n) such
that uw(n) c (rad(£))" , then there exists k such that
for all j = k

0k+j - akaj .

Note 2.19: In the language of filtration topologies,
the condition aw(n) S (rad(£))" is equivalent to saying
that f (by its ideals) and rad(f) (by its powers)

generate the same ring topology on A .

Proof: Let k be given by Theorem 2.17. Then for
all j =2k and all t =21

’

(2.16) @, . = @, 0. +

k™3 ok+j+t )
Since in a noetherian ring every ideal contains a
power of its radical, there exists n,m € IN such that

(rad(£))™ < e, and (rad(£))™ < oy . It follows that

€ (rad(£))™™ = (rad(£))M(rad(£)™ < 005 -

%0 (n+m)
The desired result now follows by letting t = ¢(n + m)

in equation (2.16). Q.E.D.

Theorem 2.20: A filtration f = {an} on a noetherian
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ring A 1is essentially powers of an ideal if and only if
f 1is noetherian and has the property that for each n

there exists ¢(n) such that °¢(n) < (rad(f))n .

Proof: If f 1is essentially powers of an ideal
N

there is by definition an N such that o = E:an-iai
i=1

for all n and, by (2.6) in the proof of Proposition 2.15,

@ can be represented as

Nn.
(2.17) a_ = TT e, .

n .
Zin -n1=l
i

Then G.(A) is generated by °i/°i+1 , 1i=1,...,N, as
an algebra over A/al . Each of these is finitely gener-
ated and from Note 2,1 f 1is noetherian. For the function
¢ , the linear function ¢(n) = Nn can be used because

n.

i . . _ .

for each power product |Iai with Ellni = Nn in
(2.17),

Zn. Zn.

n. .
The, * < 11}1 Y= oap Y e (rad(£)) ' o= (rad(an™,

with the final containment coming from the fact that each

in
i is no greater than N so that n = z:-ﬁl g z:ni .

Conversely, use the k of Proposition 2.18 to write

_ m-1 c
°n T %k Cker %n- (k+r) Pktr
for each n 2k , where n=mk +r, O0s r <k
2k-1

Then for all n , LN E:an-iai , Wwith the opposite
i=1
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inclusion always being true. Hence f 1is essentially

powers of an ideal. Q.E.D.

Corollary 2.21: If £ = {un} is a filtration on a

noetherian ring A which is essentially powers of an
ideal, there exists k € IN such that

n

akn = ak

for all n =20 .

Proof: By Theorem 2.20, the conditions of Propo-
sition 2.18 are satisfied. Let k be given by Proposition
2.18, Then for all n >0 ,

n-1

- _ . n
a - T8 @, = 8 . Q.E.D.

kn = %k+k(n-1) T %k%k(n-1) T ¢
Extracting the property assured by Corollary 2.21,
a filtration f = {an} will be said to possess a regular

subsequence of powers of an ideal in case there exists

k € N with

(2.18) g(k) - ¢
a
k
for all n 2 0 .

’

. _ .n
that 1s, 8k = 9%
The connection with multiplicity is summarized in the

following theorem.

Theorem 2.22: Let A be a noetherian ring, M a

finitely generated A-module, f = {an} a O-dimensional

filtration of altitude s . If f possesses a regular

subsequence £(K) of powers of an ideal, then u(f,M)
exists and n(E,M) = Jg w(a,M) .
k k
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Proof : For each n , one has by the division al-

gorithm n =qk +r , 0 sr < k . Since

n'
gk s n < (q +L)k, it follows that a(qn+l)k ca € aan'

which in turn implies

L < L,l—= < L, |——————]) .
A(aanM A anM A a(qn+l)kM

qa, q+1

K and a(qn+l)k = ak

But @ a so this may

ak -

be expressed in terms of Hilbert functions as

H(q,M,08,) s H(n,M,f) s H(q +1,M,0.) .

]
Multiplying by the positive constant Eé and adjusting
n
the terms leads to
s
a
st (an) H(qn,M’ k) < g! H(n,M f)

[1)]

<

ol

; ((qn+1)k)s H(q_ +1,M,a,)
k

n s
(q +1)

Passing to the limit and using Theorem 2.12 to give the

same limit for the first and last expressions provides the

desired result

s! 1lim M = ..:.L_. p‘(ak’M) . Q.E.D.
oo nS 1S
Corollary 2.23: If £ is a O-dimensional filtration

on a noetherian ring A , which is essentially powers of
an ideal, then for any finitely generated A-module M ,

w(f£,M) exists and is a rational number.
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Proof: This is immediate from Corollary 2.21,

Theorem 2.22, and the fact that p(a,M) 1is an integer.

The General Case

It has not yet been shown that there exist filtrations
on noetherian rings which are not noetherian. Trivial ones

abound as can be seen by the following.

Example 2.24: Let A ='Z% , the integers, and
2 2 3

£ = (g, 22, 2°%, 2%&, 2°%, 2°%, 2°%,...} . Then £ is
a filtration on A which is not noetherian but its
multiplicity does exist and is zero. 1In fact, multiplicity

exists for any filtration on 2 . See Corollary 2.31.
A far more interesting situation is given below.

Example 2.25: Let A = k[X] = k[xl,...,xn} with the

X. being indeterminates over the field k . Let 5o

i=1,...,n be nonnegative real numbers. For any

i) _ © 1, i .
Ela(i)x = Z ail""’inxl ...Xn € A define
(2.19) VTCZ a(i)x(lv = min{ilTl #oo+ 1T | TES # 0}

It can be verified that v, defines a valuation on A
which by (1.23) gives rise to the filtration f£_ = {am}
where @ = {op € A v (9) = m} for each m . If at

least one T; is irrational, for definiteness say Tj ,
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f,T is not noetherian. This is because the "¢-condition'

of Theorem 2.20 is satisfied by taking ¢(n) to be the
linear function Nn where N 1is any integer greater

than or equal to max{Ti}. If fT was noetherian, Theorem
i
2.20 would imply that it was essentially powers and Corol-

£ (1)

lary 2.21 would give a regular subsequence of powers

of an ideal; that is, a, = ak‘“ for all mw . That this

is false, may be seen as follows. Choose a set of gener-

(k)

which is possible since

(i)

ators for e of the form X

E:a(i)x(l) is in a if and only if X is also, for

k

each a(i)% O . Then one of the generators needed is
- k,

Xj J where kj is the smallest positive integer q for

which qrs 2 k . Since ijj > k there exist positive

integers s and t such that ijj > % Tj >k . From
this inequality both kjt > s and STj > kt are derived.
The first implies st 4 akt because the smallest p for

which ij € akt is kjt , and the second implies

s
Xj € akt

In the case where all T; are rational and greater

. . t
Hence for this choice of t , a,, # 6 -

than zero, the question of existance of multiplicity has
already been settled affirmatively by Corollary 2.23

because f, 1is essentially powers. Since later remarks

will depend on this fact, a proof is included for complete-

ness. Let 1 = (r;) with 1, = ai/bi for each i =1,...,n

n
where ai’bi € N and let a =

4
i=1
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It will be shown that for all m ,
na

(2.20) 6, = zam-kak
k=1

For any generator x(1) o o, use the division algorithm

1. = .Mm. 4+ . S r. < c. where
to express 1J chJ rJ , O i 3
c. =

. (1)
j = al"'aj-lbjaj+l"'an for each Jj . Then X may

be factored
. i i c.m, r.
1 1 n .
x(D =x tx "= Ty 39TTx5 9, 5= 1,000,
C. . '
For each Jj , VT(xj Jy = cjaj/bj = a 1implying that
c.m. Zm.
J ] J r.
[lx. € a . I\ .
h a Since vT(TTXj ) = z:rjaj/bj , it

r.
J
follows that TTXj € a[zrjaj/bj] , where [r] denotes

the greatest integer less than or equal to the real number

r . Thus
. om .
(i) J
(2.21) X € a a T b
a [ rJaJ/ J]
. (i1 _ . (i)
Since wﬁx ) = E:ljaj/bj and X € am ,
m < 1jaj/bj = E:cjmjaj/bj + E;rjaj/bj

= aij+ Zr-jaj/bj .
From the fact that m - a E:mj is an integer,
m-a)mg s [)ray/s]

] .a./b. < c.a./b. = , .a . b.] < ,
Since rJaJ/bJ cJaJ/bJ a , one has [ rJaJ/ j na

so a fortiori k=m - a E.mj < na
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Zm.

Because a[eraj/bj] = o and e, J ¢ g it follows

azm. '
™3
from (2.21) that

(1) -
X € aaijak = am_kak .

The last ideal product is one of those appearing in the

right side of (2.20) and X(l) was arbitrarily chosen

na

implying e < E‘am_kak . The reverse containment always
k=1

holds completing the argument. Q.E.D.

Existance of multiplicity for £ in the irrational

case will be derived from results in this section.

As a first step in the theory of multiplicity for
filtrations which need not be noetherian, the following

approximation formula is derived.

Proposition 2.26: Let f = [an} be a O-dimensional

filtration on a noetherian ring A with alt(f) = s and

let M be a finitely generated A-module. Then
lim L w(a, ,M)
k,

exists and provides an upper bound for

s! lim sup ESEL%Lﬁl
n

Proof: Fix k and choose any n € N . By the

division algorithm express n = an +r 0sr < k .

n ’
Then for all m € N,
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(q_+1)° s! L,| (q +Dm_
n A a n M
k

((q +1)m)°

s

In terms of Hilbert polynomials this becomes

S 1
s! H(m,M,un) . (qn+l) s! H((qn+l)m,M,ak)
m® ((q +D)m)°®

Taking limits with respect to m implies
s
u(an,M) s (qn+l) u(uk,M)
Dividing by ((qn+l)k)S , one obtains

L \® 1
(W) wloa, M) < —5 w(@M

for all n , so that

lim sup 4% w(a ,M)p < l; w(e, , M)

n k
Since k was chosen arbitrarily and all the terms are
bounded below by zero, the desired limit exists.

For the second statement, it is now sufficient to

show
s! 1lim sup Egﬂﬂngl s JE u(ak,M) for each k .
n k

The argument is very similar. Let n be arbitrary and

express n = an + r 0= L, < k as before. Then

n ?
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s! L, |— © “Ala M s s! L q_+1
A a M . k(qn+1) . (qn+1) A @k)n
s s n S -
n n
(q +1)
By use of Hilbert functions, this becomes
S o1
s! Hn,M,f) q*0 s- H(qn+l’M’°k)
nS n (qn+l)s
The limit of the right side is known giving
st lim sup{&‘%—lf—)} s Eoula M) . Q.E.D.
n k

Definition 2.27: The limit given by Proposition 2.26

will be called the natural upper bound for the multiplicity

of M with respect to f (even though the multiplicity

itself may not be defined).

Note 2.28: Trivial examples show that this natural upper
bound need not be attained even when p(f,M) exists. (See
Example 2,33). In fact, the following example shows that
the ring and filtration may be chosen in such a manner

that the two disagree by a preassigned positive integer

multiple.

Example 2.29: Let A = z[x]/(xk) = B(x] and f = {an}

where 0 = 2"A + xA = (2n,x) . Then f 1is a O-dimen-
sional filtration on A with rank(f) =1 and u(f) =1

. 1 _
but %ig =Y u(an) =k .
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Proof: Since (x) & AnqA(A/an) and since

n - n _
A/an ~ B/27% ;A(A/un) = LZ(B/2 %) = n . Thus
%&A an) . 1
w(f£) = 1! lim ——0— = 1 . To compute %im 5 u(an) ,
N-o® @

first compute u(an) for each n . The following is a

.o . m
composition series from A to (a )" :

A2 (2,x) 2 (22,0 2... 2 (2™ %) 2 (2™,2x,x%) 2 ...

2 (znm’zn(m-l)x,XZ) 5 (an,zn(m-l) 2

x, 2X ,xs) 2 ...

o (an,2n(m—l) zn(m"(k"l))xk'l) = (an)m

Xyoooy .

Hence LA(A/(an)m)= nm + n(m-1)+...+n(m-k+1) = n(km - k(k-1)/2)

and thus p.(an)=nk. Therefore %{“‘(an) =k for each n . Q.E.D,

Theorem 2.30: In the situation of Proposition 2.26, if

all but finitely many of the ideals a4 can be generated
by sets of s elements, u(£,M) exists and is the

natural upper bound.

Proof: For any € > 0 choose a sequence {ni}

such that
H(n, ,M,f)
(2.22) st —2—" < s! lim inf {H(n,M,f)} ..
(nl) nS

which exists since O 1s a lower bound. Note that

H(n;,M,f) = H(,M,e_ ) = LA(M/on M) and by hypothesis
i i
e can be generated by a set of s elements. In this
i
situation the multiplicity defined in this work agrees
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with that in Northcott [5] (see Theorem 13, P.329) and in

his development, Theorem 6 (p.308) gives the inequality

wCa_ M) = LA(M/un.M) < s! LA(M/an.M) .

i i i
Substituting back into (2.22) gives the inequality

—lg u(un ,M) < s! lim inf ELEL%LEA + e
n; i n

which together with Proposition 2.26, proves the result.

Corollary 2.31: Multiplicity exists and is the natural

upper bound for any nontrivial filtration and finitely

generated module over a principal ideal domain.

Proof: Except for the two trivial filtrations
f(O) and fA , every filtration is O-dimensional and

has altitude 1. Q.E.D.

In the case of a filtration for which the multiplicity
exists and is the natural upper bound, several important
theorems follow from the corresponding results for ideals
using simply the fact that the limit of a sum is the sum
of the limits. Theorems 2.32, 2.34, 2,35 and 2.36 are of
this type with Theorems 2.35 and 2.36 being proven in more
generality in that only existance of multiplicity is
assumed. It will subsequently be shown that any filtration
which is approximatable by powers, mentioned in Chapter I
(1.6), does satisfy the condition that for itself and for

each of its localizations multiplicity exists and is the
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natural upper bound. By Theorem 2.22 and properties of
localization, it can already be seen that the hypotheses
of these theorems are satisfied if the filtration involved

possesses a regular subsequence of powers.

Theorem 2.32 (Additivity): Let f = {an} be a O0O-dimen-

sional filtration on a noetherian ring A . If £ 1is
such that p(f,M) exists and is the natural upper bound
for every finitely generated A-module M , then the real
valued function w(f, ) 1is additive on the category of

finitely generated A-modules. That is, if
(2.23) 0 —/M'—M—M"' —Q

is a short exact sequence of finitely generated A-modules,

then

L(E,M) = p(E,M') + p(£,M*)

Proof: By hypothesis p(£,M) = lim 1 p(a_,M)
- Ny ns n

Since u(a_, ) is additive [4, Theorem (23.3), P.76]

n’-—
applying it to (2.23) implies

L
s

lim
N4 n

w (€, M) (wCay,M') + w(a, M)

= 1lim -1—S w(a M') + linm L L M0
I n N4 n n

w(E,M") + p(£,M) . Q.E.D.

To see that the multiplicity function for a O-dimen-

sional filtration f need not be additive even in case
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f 1is noetherian, consider the folilowing.

Example 2.33: Let A =3, = 8/48 , £ = {34,224,224,...}

4
and take the short exact sequence

(2.24) 0— 22,— 2,— 2, 0

where i represents the injection of 22»34 into 2’4 and
¢ the canonical epimorphism 2, — 24/224 ~ %, . For
this choice of filtration, alt(f) = dim(f) = 0 and
multiplicity trivially exists for every finitely generated
24-modu1e M ; explicitly,

L, (M/2M)

w(£,M) = 0! lim

= L,M/2M = L,(M/2M) .
Ny n A/) Z/

Then, with respect to the short exact sequence (2.24),
w(f,28,) = L2(234/2(224)) = LZ(224/(0)) = Lg(2,) =1,
w(f,2,) = LZ(Z4/224) = Lg(#,) =1 , and
w(f,2,) = LZ(ZZ/ZZ2) = Lg(3,) =1 .
It is now clear that

W(E,8,) # w(E,22,) + u(f,2) .

Theorem 2.34: Let f = {an} be a O0O-dimensional filtra-

tion on a noetherian ring A with the property that for
any finitely generated A-module M, uA(f,M) exists and

is the natural upper bound. Then

pa(£,M) = }:LApcmp)qu,A/p),
p
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where p runs over all minimal primes of A such that

dim(p) = alt(f) .

Proof: By hypothesis,

= b 1
wa(E,M) = %32 s k(e M) .
This implies
wy(E,M) = Llim 22 ) L, (M) uyCo ,A/p)
At s s A p A 'n?
©® 1N p p

where P runs over all minimal primes of A such that

dim(p) = alt(£f) by [7,P.V-3]. Then

= .1
uA(f,M) = E:LAP(Mp) %i: ;E uA(an,A/p)
p
since there are only finitely many such p . Thus
o (£,M) = ) L, (M) wy(£,8/8) . Q.E.D.

P p

For a filtration £ on a ring A and a prime
ideal p of A, let fp denote the extension of £ in

the local ring Ap

Theorem 2.35 (Localization formula): Let f be a O-

dimensional filtration on a noetherian ring A and let

M be a finitely generated A-module. If Wa (fp’Mp)
p
exists for each prime ideal P which contains rad(f)

and for which alt(p) = alt(f) , then uA(f,M) exists

and
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p

where p runs over all such primes.

Proof: This can be done directly using the locali-
zation formula for lengths [5, Theorem 12, P.166]. How-
ever by taking A = A' in the following theorem, the

direct approach is unnecessary. Q.E.D.

Theorem 2.36 (Extension Formula): Let f be a

O-dimensional filtration on a noetherian ring A which
is a finite integral extension of a subring A' and let

M be a finitely generated A-module. If N (fp’Mp)
p

exists for each prime ideal p which contains rad(f)

and for which alt(p)

alt(f) , then Hg(va) exists

and

(o]
by o (£,M) ZuAp(fp,MP) [A/p:4/p"]
p

where p runs over all such primes.
Note 2.37: The expression uA,(f,M) has not been defined
since f 1is a filtration on A , not A' . The definition

is, however, entirely analogous to Definition 2.10 only

LA(M/anM) is replaced by LA,(M/anM) for each n .

Remark 2,38: The only reason finiteness of A over

A' is assumed is to assure that each [A/p:AYp°] < =« .

If this condition is imposed separately the finiteness
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nay be dropped and the same proof gives the result. 1In
fact, by requiring the properties of Nagatas's (4, Theorem
21.2, P.70] on the rings A and A' and letting rad(f)
be the zero dimensional ideal given there one can even

drop the condition that A be integral over A' .

Proof: From the fact that A (fp’Mp) exists for

p
each such p , M
. ‘ LAp(ian;QMp) v, e
Y uy C£,M ) [A/p:A'/pS] =) ! lim [A/p:4/%°]
A P’y N S
p @ n
p p
M
where s = alt(f) . Since LAq(13;7iﬁ;) = 0 for those
maximal ideals which do not contain rad(f) and since
M
L q
NiSi
lim 3 S 39 = 0 for those which contain rad(f)
N n

but for which alt(q) < s , this equation may be rewritten

as M
L, ((g—y%r)[A/QZquc]

. cq - : q n"qq
2 WA (fp,Mp) (a/p:AaY/p"] Es! %1—3;3
p

s
where q runs over all maximal ideals of A . All but

n

p

M

finitely many L (T——§—-—) = 0 so the sum and the limit
A a M
qQ\" n’qq

may be interchanged to obtain

M
L -<—§—'A :A7/4q°
E:“A (fp,Mp) (A/p:AYp%] = s! lim Z: Aq( % qu)L /4:4/97] .
p

N4 s
p

n
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M
By properties of localization T;;jﬁﬁ; = (Efﬁ)q , and

the extension formula for lengths [5,Theorem 13, P.168]
may be applied. This implies
t, ¢ . L _.M_
Y uy (£,M) [a/p:a/p®] = st lim Pa'(GW
P p p N4 e—-7m———

p s

n
and the last expression is the definition of uA,(f,M) .

Q.E.D.

Corollary 2.39: Multiplicity exists and is the natural

upper bound for any nontrivial filtration and any finitely

generated module over a Dedekind domain.

Proof: Every localization is a discrete valuation
ring and consequently a principal ideal domain [1, Theorem
9.3, P.95]. By Corollary 2.3l and the localization formula

the result is immediate. Q.E.D.

The remainder of this chapter will be devoted to the
study of two equivalent forms of the condition '*approxima-
table by powers” introduced in Chapter I. The first form
considered appears to be the more natural generalization
of the 'essentially powers' situation and lends itself
more easily to the proof of Proposition 2.45. The second
is formulated in such a way that until one final condition
is imposed the results are proved more generally and, if

the filtration is given by a pseudo-valuation, it is
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somewhat easier to apply.

Suppose for the filtration f = {cn} the condition

there exists k € IN such that
(2.25)

8 © (rad(£))" for all n

is satisfied. This is a strengthening of the "“¢-condition'*
used in Theorem 2.20. However, an inspection of the proof
of Theorem 2.20 shows that whenever f 1is essentially
powers, condition (2.25) is satisfied. Thus on a noetherian
ring, a filtration £ = {un} is essentially powers if and
only if f 1is noetherian and condition (2.25) is satisfied.
In the sequel the consequences of condition (2.25) will be
investigated in the absence of the requirement that £
be noetherian.

In the case that A is noetherian, every ideal con-
tains a power of its radical and consequently it is easy
to verify that if for the filtration f = {an} , condition
(2.25) is satisfied, then for each j € N there exists

some kj € IN such that

(2.26) L cj“ for all n € N.
j

Lemma 2.40: Let f = {an} be a filtration with the
property that for each j there exist positive integers
k. which satisfy (2.26) and let t. be the least such

J J
integer. Then the sequence of ratios {tj/j] converges.
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Proof: To show that the sequence is bounded, fix

j and consider any wm . Use the division algorithm to
express m = qu +r. ., 0sr < j , which with (2.26)
implies
(q_+1)n
m n n n
Q S a. S (a. ) < (a. Y = a
tj(qm+l)n J j(q#1) jatr m

for all n . Since tm is the least km for which

n .
akmn S for all n , it follows that t, © tj(qm + 1) .

'3

Then for m 2 j ,

t t.(q. + 1) t.(q_ + 1) t.{ 1 + 1/q 2t
2.2y R dm_ o wl o oon e S
Ay * Tn J r./ 39, J

Thus {tm/m} is bounded by max{tp/p,2t4/j} where
p J
p=1,...,3J-1 . Let L = lim inf{tm/m] . For any e >0

choose 1 such that ti/i < L + ¢ . From statement (2.27),
one has
t t. {1 + 1/q
—“‘s-.l( m)forall mzi.
m 1\l + r _/iq
m " m

. L+ 1/q. ) o
As m ® 5, \T3 rm/lqmr—*l which implies that

tm/m <L + ¢ for all sufficiently large m . Hence L

is actually the limit of the sequence [tm/m} . Q.E.D,

In the ensuing development the actual value of

Lim(tj/j) in Lemma 2.40 does not play the important role
Jd

but rather whether or not this limit is less than or equal

to one.
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Definition 2.4Ll: A filtration f = {an} is approximatable

by powers in case there exists a sequence of positive

integers {kj} with kj 2 j for each j such that

n .
nkjn c aj for all n and (kj/J)——+l .
Note 2.42: Let f = {an} be as in Lemma 2.40. If for
some j , tj is less than or equal to j , then the
containments

imply that £ has a regular subsequence of powers f(J) .

The following remark then implies f is approximatable

by powers.

Remark 2.43: If f = {an} has a regular subsequence of
£(k)

powers , then it is approximatable by powers. 1In
particular, if f 1is essentially powers on a noetherian
ring, by Corollary 2.21 and this remark, f is approxi-
matable by powers. To prove Remark 2.43 use the division

algorithm to express each integer j as j = kq. + r.

J J’
0= rj < k . Then for all n ,
(q.+1l)n
- J - n n
"k(gg#n = %k = (“k(qju)) S 8y -

The sequence obtained by taking kj = k(qj + 1) provides

the conclusion.
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Theorem 2.44: Let £ = {an} be a 0O-dimensional

filtration on a noetherian ring A and let M be a
finitely generated A-module. If £ 1is approximatable
by powers, then up(£,M) exists and is the natural upper

bound.

Proof: Let s = alt(f) . By Proposition 2.26 it

suffices to show

1im 1 p(a_,M) s s! lim inf H(n,M,£)
s n s
n-+e n n

As usual, the argument depends on the division
algorithm. For each n , let kn be given by Definition

2.41 and one has knqm <£m=%kq + roo Osr < kn for

nm
q
each m . From &, Sa ™ it follows that
q n
n"m
M M M
bal7a | © LA(o_l;_—Ti) ) LA(W)-
an Y n%m

1
Multiplying by §é and changing to Hilbert functions

3

implies that

s
(qm) s: H(qm’M’an) ¢ S! H(m,M,f)

™ ) S
(qp) m

By passing to the limit with respect to m , one obtains

'lg M(Gn,M) < 8! lim inf ﬂﬁE;%;El for each n .
kn m
. 1 _n ¥ 1 n .
Since ;_E u(ﬂn,M) = (E_) = u(an,M) and E—-—*l , this
0 n/ n n
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implies
1im L w(a_,M) < s! lim ing |BOIEDE o 5 g
N-x ns n m

The nexi proposition summarizes some of the preservation

properties of the condition '"approximatable by powers',

Proposition 2.45: Let £ = {an} , g = {bn} be two

filtrations on a commutative ring A which are approxi-
matable by powers and B a commutative ring extension

of A . Then

(1) £f+g |,
(ii) fg , and

(iii) £€  are approximatable by powers .

Proof: Let {kg} be given by the fact that f 1is

approximatable by powers and similarly {k}} for g .

(i) For each j , let kj = max{kﬁ,kg} . Then

kj 2 j for every j and (kj/j)-—*l . Letting ¢,
denote the it ideal of £ + g it is claimed that
¢ c .02 By definition of f 4+ g ¢
kjn J : ! kjn

generated by all products of the form asbt where

s+t = kjn so it suffices to show that each of these

ideal products are in cjn'2 . The division algorithm

is

gives the equations s = qus tr,, 0= r, < kj and

t = qut t T 0 =< r, < kj . Then

a_b = a b S a b € a. b,
st qus+rs qut+rt qus qut ] i -
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The ideals aj and bj are in cj so this containment

chain may be extended giving

q_+q
s 't
asbt < cj .

The expressions for s and t above give

kjn = s+ t S kj(qS + 1) + kj(qt + 1) from which it
follows that n - 2 s qq + 44 - Thus

c c ¢."2 for all n

kjn A :

This condition and the fact that (kj/j)-—*l imply
f 4 g 1is approximatable by the following argument. Let
{tj] be the sequence of smallest integers m such that

n
c .
cmn cJ for all n .

This sequence exists because for m = Skj , the statement

is true; explicitly,

3n-2 n
c3kjn < c:j < cj for all n .
From the fact that
mn-2 mn-2n n
c S ¢. c . [~ c.
ke jn j “3 Cim-2))
it 1s seen that tJ(m-2) kjm .
Then —3m=2) o 5" o 0 5 and =
°® Sy * Jaep for el > 2.
k. t.
Since —1 —1 y Llim - = 2. for all m> 2.
J NE T J m-2

Therefore {tj/j} converges to some limit L with
OsLs1. If L =1, the proof is complete. If

L <1 , replace tj by Jj whenever tj < 3j. The
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resulting sequence then has the desired properties.

(ii) Using kj = max{k},k%} for each j , one

obtains the chain

a, _b S a . b ¢ o.M = (a.b)P
Nk . kin kY
kJn kJn Jn Jn J ] JJ

which implies fg 1s approximatable by powers.

(iii) Let ¢:A—B be the ring homomorphism which
makes B an extension of A . The extended filtration
£f® is approximatable by powers with the same sequence
{ki} as for f since

e _ c ola.NlB = Byt = eyn
O w[ak,jnJB o[a"]B = (ola;IB" = (a5 .

j J
Q.E.D.

Remark 2.46: The property that a filtration be approxi-

matable by powers need not be preserved under ring con-
trations and as yet the answer is unknown for the inter-
section of two such filtrations. The first statement is
manifested in the fact that any filtration is the contrac-
tion of a filtration given by the powers of a fixed ideal

in some ring extension. See Proposition 1.3,

Theorem 2.47: If £ 1is a O-dimensional filtration

on a noetherian ring A which is approximatable by
powers, the function u(f,_) 1is an additive function on
the category of finitely generated A-modules and satisfies

the localization formula. If in addition, A 1is a finite
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integral extension of the subring A®‘, uA,(f,_) satisfies

the extension formula as well.

Proof: Since localization is a form of ring
extension, Theorem 2.44 and Proposition 2.45 imply that
the hypotheses of Theorems 2.32 and 2.34-2.36 are

satisfied. Q.E.D.

The second form of the "approximatable by powers'
condition will be stated in terms of the product of a
filtration with a real number. In preparation for this
definition, recall that for a pseudo-valuation v on a
ring A and a real number A 2 O the function Av

defined by
(2.28) Av(e) = A(v(e)) for all o € A

is a pseudo-valuation on A .,

Definition 2.48: For a filtration f = {un} on a

commutative ring A and a positive real number A , define

Af via

Af = f .
lvf

See (1.23) and (1.24). That is, for each n

’

®\fon T {o € A| Ae(a) 2 n} where vela) = sup{m | « Ga“J .

Proposition 2.49: Let f = [an} be a filtration on a

noetherian ring A , let M be an A-module, and let
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A be a positive real number., Then up(f,M) exists if
and only if u(Af,M) exists in which case

w(AE,M) = = u(£,M) where s = alt(f) .
A

Proof: Since the two multiplicities refer to
different filtrations it must be verified that
alt(Af) = alt(f) . Although this is not difficult to
show directly, it follows from Lemma 2.53 that
rad(Af) = rad(f) , thus alt(ixf) = alt(f) .

By considering rational sequences converging to A
from above and below and the continuity of l; w(f,M)
as a function of A , it suffices to show Prgposition 2.49
for A rational, say A =a/b , a,b € N . First note
that for any filtration g = {bn} both the existence
and the value of u(g,M) can be found from any regular

g(k)

subsequence . To prove this fact, use the division

algorithm to express n = kqn + r 0sr < k . Then

n b

n - k< kqn < n< k(qn + 1) and

LA(M/bn_kM) < LA(M/bkan) s LA(M/bnM) s LA(M/b M) .

k(q +1)

s!

By multiplying by - @and changing to Hilbert functions

=

this becomes

' (k)
( _k)S s! H(n-k,M,g) . (E)S s! H(qn,M:g )

n (n-k) S n (qn)s
+1\5 st H(q +1,M,g%))
< S! Hn,M,g) (%1 9n g
nS n (qn+l)8
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and passing to the limit with respect to n , existance

of either limit implies existance of the other in which

case
(2.29) Lue®™m = wemw .
k
Since a%f . = {a %Vf(d) 2 nal} = [« vf(a) 2 nb} = 8 b

it follows that gf(a) = f(b) and therefore

by = WP

From (2.29) one obtains

a%u@m = @@ = W @®w = bRuEm .
Q.E.D,

Theorem 2.50: Let £ = {un} be a O-dimensional

filtration on a noetherian ring A and let M be an
A-module. If there exists a sequence {fn} of filtrations
on A and a sequence {Kn} of positive real numbers

satisfying

(i) fn s f =< ann for each n ,
(ii) u(fn,M) exists for each n ,
(iii) the sequence {u(fn,M)} converges to L , and

(iv) the sequence [An} converges to 1 ,

then uw(f,M) exists and un(f,M) = L .

Proof: Let s = alt(fn) for some n . Condition

(1) implies alt(f) = alt(fm) = alt(Kmfm) = s for all m.
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From the ordering of the filtrations,

M
LA(%#J
u(knfn,M) < 8! lim inf —s
M
LA(aﬁM)
£ s!' lim sup _m—s—— S u(fn,M) .

. . . _ 1
Proposition 2.49 implies u(xnfn,M) = I_E“(fn’M) for each

n

S-—-'1, the result follows by

n . Since by hypothesis 1/>\n
taking liwmits with respect to n . Q.E.D.
It is straight forward to show that condition (i)

of Theorem 2.50 on a filtration £ = {an] is preserved

. . . e e
under all ring extensions, since (Anfn) < An(fn ) , so

criteria may be obtained from this theorem to establish
theorems about additivity, localization and extension

as before. The difficulty in applying Theorem 2.50 is
that one requires considerable knowledge about the
approximating filtrations £ - Conditions (ii) and (iii)
of Theorem 2.50 are automatically satisfied if it is re-
quired that each fn be essentially powers (Corollary
2.23) and that the sequence {fn} be monotone increasing.
However, the following characterization of filtrations
which are approximatable by powers shows that under this

added hypothesis nothing new is being considered.

Theorem 2.5l: Let f = [am} be a filtration on a

noetherian ring A . There exists a sequence of filtrations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

{fn} each of which is essentially powers and a sequence
of positive real numbers {An} which converges to 1 such

that for each n

if and only if £ 1is approximatable by powers.

Remark 2.52: The proof of Theorem 2.51 will imply that

each of the filtrations fn may be chosen to be the
least filtration such that the first N, ideals of fn
agree with those of f for some N € IN . Furthermore
the N = may be taken to be monotone increasing so that
the resulting f_~ are monotone increasing as well.

The following computational lemma is derived in order
to facilitate the proof of Theorem 2.51. As usual, {r}

denotes the least integer greater than or equal to the

real number r .

Lemma 2.53: Let f = [an} be a filtration on a ring
A and let A be a positive real number. Then
. 1
(i) T(kf) s f , and
(ii) gCIARD ¢ (%f¥k) for any k € N .

Proof of (i): For any n , o € oy implies
T(Af) s

%ka(a) 2n = ka(a) 2An = vlf(a) 2 {An} since

Vyg 1S integral valued. Thus o« € °xf,{kn} which in
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turn implies va(a) 2 {An} = vf(a) > iﬁ;l

= ve(a) 2 i%?l} 2 {ABY=n = o€ .

Proof of (ii): For any n, & € a =aq
(kD T *{Ak]n

implies vf(a) 2 {Akln 2 Akn = %vf(a) 2 kn

= o € a = .
1 (k)
xf,kn. T%% , T

Proof of Theorem 2.51: For each n , fn is

essentially powers on a noetherian ring so by Corollary

2.21 there exists k_ € N such that a = (a )
n fn,knm fn’kn

for all m . From Lemma 2.53 and the fact that f s Anfn

it follows that for all m ,

] S a S
{A_k_lm A f L, {A k Im 1
nn nn'"nn kélnfn)J%p

(2.30)

< q = (a ™ s (e )™

£,k m £k k.

Since a, < rad(f) , the condition (2.25) and hence

n

condition (2.26) are satisfied for the filtration £ .

Let tj denote the smallest positive integer for which

0% < ajm for all wm . By Lemma 2.40, the sequence
J

{tj/j} converges to some limit L . If L <1 , Note
2.42 together with Remark 2.43 imply f is approximatable

by powers so it suffices to show L € 1 . By the choice
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of k above a . = (a y‘ so that (2.30) re-
n fn,knjm ( fn,knj

mains valid when kn is replaced by knj for any j .
this implies
ym

a . < (a, - for j,m € N .
{lnknj}m k3 ’

By definition of tknj , tknj < {knknj} . Thus

t L4 L4
t . k_J (A k_jl
. . n . nn
L = im - = lim 3 £ lim —x 3 = A .
]j-no J Je nJ Jo nJ n
Since ln-—*l and L s An for every n, f 1is approxi-

matable by powers.
Conversely, let f = {an} be such that for each j

there exists k; 2 j sueh that akjn = uj“ for all n

and {kj/j} converges to L. For each j , let Nj € IN

be defined inductively by Nl = k12 and

2 , : =
Ny = max{N; ,,k;“} for j>1. Define f; = {°f.,n} by

N. J
“fim T f“n-i“i .
1=1
k.+1
Letting Kj = —%—— for each j , it is claimed that
(2.31) fj s f s kjfj for each j .
By construction fj < £ for each j . To show

f < Ajfj , 1t 1s required to show that L < axjfj’n

for each j and all n . Since each kj > 1, clearly

afj,n = akjfj’n . Hence for n = Nj y 8 = 8g = ak.f.,n.

J’ JJ
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For n > Nj , the division algorithm implies n = k.q 4r

Jmn n’
0= T < kj , and therefore
q
n
a = @ S S a, .
n qun+rn qun J
Since j s kj < ka < Nj , 1t 1s immediate that
°j = ap : SO that njm = af.,jm for all m . Then this

j’ J
chain of containments can extend to imply

(1] < Q

n £5,3a, - -
Thus a € L implies vf.(a) 2 jqn . Now multiply by
k. + 1 J
Kj = —1—3——- to obtain
Ajvfj(a) 2 (kj + l)qn = qun + q. .
. 2
By choice of Nj , kj < Nj < n so that kj < ﬁ% .

J
But q_ is the greatest integer less than or equal to

n/kj and therefore kj $ q . One now has

kjvfj(a) 2 qun + kj > qun +r = n.

Hence o € L, implies o € 8) £ for every n so by
i3
definition £ s kjfj . Statement (2.31) has now been

verified and the fact that Aj-—*l is trivial. Q.E.D.

As an example of the results just considered, return
to Example 2.25, the filtration f£_ on k[X] = k[xr.",xn]

with T = (Tj) , J=1,...,n and each T3 >0 . It was
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shown at that time that if each Tj is rational, £ is

essentially powers. If some Tj are not rational, choose

a sequence of vectors 0 = (1'[3.‘) with 'r[;.\ rational and

such that 0 < T, - 7% s % . Let N be given by the

J J

fact that each £ 0 is essentially powers and Definition
T

2.14. Nothing is lost by requiring N, <N, So that

Nm—’w as m—— , Let fm be the least filtration which

agrees with fT for LF i= l,...,NT . It is claimed
(Nm+
N

The second inequality is the only one for which there is any

that £ < £ < A £ where A =
m T m m

1 | . m
o )}‘m and km—max{'rj/Tj}.

difficulty so it is sufficient to show that [VT] < ALV .

£

: J > .
First note that kmva Ve since

t (L - . . P L
)‘mva (z @ iyX ) = min [z lj)\mTj @iy # o}

2 min [Z ijTj ®iy £ 0 J = v, (Za(i)x(i)) .

Let o€A ., If va(cv) SN, (v 1) > vfm(o') only if

]
N, s vg (o) < vT(or) < Kmv m(a') < Ar;le < A[;‘vf (o) < )‘mvf ().
m T m m
N +1 v (@)

Tm

> ] . . .
v m](‘ﬁ which 1mplies that

m
For v m(cxr) > Nm , N

T
m T

N +1
A v (@) =2 AR )[v J@)z Aty (@) 2z v (@) .
m fm m( Nm - m°.m T

Since Km—’l y f_ 1s approximatable by powers. Q.E.D.

In Chapter III it will be required to know more

about u(f_,M) than can be found just from the fact that
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£, is approximatable by powers. The next proposition

provides this information as well as giving an alternate

proof of the existance of u(fT,M) .

Proposition 2.54: For f£_ {an} on A = k[xl,...,Xn]

with 7 = (Ti) , T >0, 1 l1,...,n and any finitely

1

generated A-module M ,

u(fT,M) = ?——l'—-,r—' p((XO,M)
l... n
where (X) = (xl,.“,xn) , the maximal ideal generated by

Proof: First observe that the restriction T; >0

for all i 1implies some power of each xi is in o

so rad(f.) = (X) and alt(f) =n [5, Theorem 3, P.281].

By continuity of ;——l—?— p((X),M) as a function of
1" 'n
T = (Tl,...,Tn) , it suffices to restrict the proof to

the case where all Ti are rational numbers. Assume

a.
that T T Bl , ai’bi € IN. The method of proof is to
i

approximate the filtration f_ by use of the powers of

the ideal a = (X n) where

cj = al"’aj-lbjaj+l"'an . Note that a € LA where

a = TTéi , and therefore o™ < aam for all m . For any
m, let m = aq  + r. , 0 < T < a ., Then
q +1
m
c
a “a(qm+l) am

which implies
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qm+1 q,+l
n! lim LA(M/amM) = n! lim LA(M/Q M) - LA(amM/a M)
M= — 1 N9 n
m m
(2.32)
q_+1 q_+1
m m
= n! lim LA(M/a M) _ n! lim LA(amM/a M) ,
M-+ n M=pco n

m m
provided both limits exist. These limits will now be

computed.
q,+l q +1
m n 0
nt lim La®/e 5 M lim(qmﬂ) Ly,(M/a ™ M)
M-poo mn M=dco m (qm,'.l)n
1
= — u(a,M)
an
o] c
= £ Xy Yoo X ™M
a

In this situation p 1s the same as Northcott's ep So

by (5, Corollary 1 P.311],

1 cl €n cl“'cn
—n'l-l'((xl ,...,Xn ),M) = ——n——u((Xl,...,Xn),M)
a a
Cq.--Cy
(2.33) p((X),M)
(cyay/by)...(ca /b )
= e (00, M)
l.‘. n
qm+l
LA(amM/a M)
It remains to be shown that n! lim — = 0.
M- m

By equation (2.20) £, was shown to be essentially powers
na

with o = E:am-iai . From the argument given there,
i=1

more information can be derived; namely,
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(2.34) . = zclci :
i=1

where mw, is the least integer such that am; + i2m.

This fact follows from noting that in statement (2.21),

a, may be replaced by & . Since am; + i2m and

. . - a .
1 < na one obtains mi 2 ELETIL' and the fact that mi is

an integer implies

m - na
m; 2 {-—7;——-} for each ms of (2.34),

where {r} denotes the least integer greater than or

equal to r . Hence the right side of equation (2.34)

can be factored as
{m-na na m-na

m, -{
a
6, = 8 a E:a L a. for all m 2z na ,

i=1

leading to the approximation

{m-na}
a
L S a for all m = na .

From m = aq_+ r_, subtraction of an and division by
shows that

m - na m - na Tn

——— 2 — = - — -

{ a } a G ~ B+ 7 2 G- D

a < a
m

Applying this to lengths one has
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q -n
GmM L a m M
LA q +1 Al q +1
s ™ M . a ™ M
n! lim sup £ n! lim =
mn M- m
qm-n+i
L,|— M
n A q -n+Ll+1
= n! lim z L ~ M
m=rc m
b H(qm-n+i+l,M,a) - H(qm-n+i,M,a)
= n! lim E: =
M- i=0 m

o -n+1+1 H(qm-n+i+l,M,o)
z n! lim -
— 115 T} (qm-n+i+1)

llm(qm-n-u) H(qm-n+1,M,a)

- n!
(qm—n+i)n
n
=) (1—n wio, M - L u(a,M))
i=o \?@ 2
= 0 .
q +1
L, (e M/a T M) .
Thus n! lim = exists and is 0 .
M m
From (2.32) and (2.33) the proof is complete. Q.E.D.
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I11 FILTERED MODULES OVER FILTERED RINGS

Let M be a module over A a commutative ring with

identity.

Definition 3.1: A filtration g = {Mn}:=0 on M is

a sequence of A-submodules of M which satisfies

(1) =M

M
o
(ii) Mn+1 < Mn for all n .

If the filtration g {Mn} on M has the property
that each M/Mn has finite A-length, a Hilbert function

for g may be defined as

(3.1) H(n,g) = H,(n,g) = LA(M/Mn) for all n.

Definition 3.2: Let g = [Mn} be a filtration on M, an
A-module, with L,(M/M_ ) < = for each n, and s a

natural number. The multiplicity of g with respect to

s 1is

p(s,g) = s! lim Eﬁﬂé&l

@ n

whenever this limit exists,

Example 3.3: For a simple example showing that this

limit need not always exist even if the sequence of ratios

{Eﬁgégl} is bounded, consider the following filtration
n kn
on 2 over & . Let g = {on} with a_ = (22 ) where

n

63
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k k

n=2 + T with O = r. < 2

" for n =1 . That is,

g = {2,(2),(29,2%,02%, 2%, ,2%,2%,...1 .

Then the sequence of ratios {Hiﬁfgl} is bounded but
n
contains subsequences converging to different limits.

For instance, the subsequence of terms determined by

n, = 2' has value 1 for each i but the subsequence
. i-1
of terms determined by n;, = 2% - 1 nhas value —%————
27 -1
for each i and therefore converges to % .

Definition 3.4: Let £ {an} be a (multiplicative)

filtration on a ring A and g = {Mn} a filtration on

an A-module M . Then g 1is called an £f-filtration

in case

amMn = Mm+n for all m,n € N .

The filtration g 1is a stable f-filtration if it is an

f-filtration and there exists an N such that

N
M = 2 e, ;M for all n ,
i=0
where a. = A 1f j <

Note 3.5: For any filtration £ = {an} on a ring A

and A-module M , the sequence g = {Mn} with

Mn = ch forms a stable f-filtration on M since
amMn = um(anM) = (aman)M < °m+nM = Mm+n and
0
Mn = .EZ n—iMi = anMo = 0nM “
1_:
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This was the situation encountered throughout Chapter II.

Remark 3.6: In case f 1is the powers of a fixed ideal,
say f = {a™} , the conditions for a filtration g = {Mn]

on an A-module to be a stable f-filtration reduce to

(3.2) aMn S M for all n , and

n+l

(3.3) aM_ = Min for all sufficiently large n .

To verify this remark, note that condition (3.2) is
equivalent to g being an f-filtration, since for any

m and n, (3.2) implies

_ m-1 m-1
amMn = a0 °Mn S a Mn+l S ... & M

and the converse is immediate by taking m =1 . If (3.3)

is satisfied, that is,if there exists N € IN such that

aMn = Mn+l for all n =2 N, then for sny k ,
_ _ _ N+k-1
Musk = Myyp-r = --- = °kMN c 2 e ™M S My,
i=0
which implies g 1is f-stable. Conversely, if g 1is
N
f-stable there is N such that M, = 2: an—lMi for all
n . Then for n 2 N , 1=
N
_ n-N N-i n-N
Mn - E:a e lMi < o MN < Mn

i=0
n-N

from which it follows that Mn = a M for all n =2 N .

N
Then for any n 2 N ,

aMn = aa MN =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

and condition (3.3) is satisfied.
Conditions (3.2) and (3.3) on a filtration g = {Mn}
have been studied and have been described by saying g

is a-stable, [See 1, P.105].

Remark 3.7:  Although the fact will not be used it should

be noted that when g = {M } is an f-filtration on an
A-module M, g has an associated graded module via
D oo
& n=0 Mn+]_

which has a module stucture over Gf(A) . If g 1is
f-stable and each Mn is finitely generated, Gg(M) is

a finitely generated Gf(A)-module. These considerations
are not helpful here, however, since Gf(A) is ordinarily

not a noetherian ring.

It was shown by Example 3.3 that even in very simple
cases the multiplicity of a filtration on a module need
not exist, The situation is much better for filtrations
which are stable with respect to a multiplicative filtra-

tion,

Theorem 3.8: Let f = {an} be a O-dimensional filtra-

tion on a noetherian ring A and let g = {Mn} be a
stable f-filtration on an A-module M . Then for
s = alt(f) , u(s,g) exists if and only if w(f,M)

exists, in which case they are equal.
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N
Proof: ©Let N be such that F&1=E:un—iMi for
i=0
all n . Then for m 2N, a . €0, o and of course
M. €M so
(3.4) oMeEM cao MEM y -

The first three members of this chain imply

(n-N)S s! H(n-N,M,f) _ s! H(n,g) . s: H(n,M, £)
n (n-N) S nS aS

and passing to the limit, existance of r(£,M) forces
L(s,g) to exist and equal up(f,M) . The converse follows
from a similar argument using the last three members of

the chain (3.4). QR.E.D,

In [8] and [9], Smoke applied a definition of
multiplicity due to Serre [7] and Fraser [2] to finitely
generated graded algebras over a field k and to finite-
ly generated graded modules over such algebras. The
multiplicity function defined there ordinarily takes
values in 2Z[[t]] . In this work the emphasis has been
in a different direction more closely related to the
classical formulation of multiplicity as an integer
derived from the leading coefficient of some polynomial.
The multiplicity defined here is always a real number.

It is encouraging to see that when these two types of
multiplicity are comparable, there is a strong connection

between their values. To restrict consideration to those
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finitely generated graded algebras for which his
multiplicity is a real number ( so in fact an integer)
for every finitely generated graded module, Smoke imposed
the condition of regularity; i.e., the algebra has finite
global dimension. As he proved [9,Theorem 7.5 p.38] the
condition of regularity is equivalent to requiring that
the algebra be a finitely generated graded polynomial
algebra over the field k . It is in this situation

that the connection between the two types of multiplicity
can be given for all finitely generated modules by
multiplication with a fixed positive integer which depends

only on the algebra.

[--]
Let R = @ RP be a noetherian graded ring,
p=0
R® k, a field. Any finitely generated graded R-module

1}

-]
o) MP  has the property that for some N ,

p=0
N
M = R( Gabﬁj . On checking degrees, it follows that
p=0
N - -
P = ) RP"M' for p 2N and thus
i=0
N
(3.5) M =) (BRS)(@Mt)
p29q 120 s2q-i /\tzl

for each q 2 N .
This situation may be interpreted in terms of

filtrations as follows. Let

(3.6) £ = [an} where a_ = PRrRP for each nz2o0 .
p2n
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By taking a set of homogeneous generators

[rl,...,rn] of R over k, R 1is seen to be the
homomorphic image of A = k[Xl,...,Xn] . Let T = (d;)
d.
. s 1
where di = deg(ri) for each 1 ; that 1s, rs € R .

Define f_  on A via Example 2.25. Since the di are

positive integers, hence rational numbers, f_ is

essentially powers. Observe that under the extension

from A to R, £ © = f so that f 1is essentially

T
powers as well. Since R k , £ 1s O-dimensional

a
1
and by Corollary 2.23, u(f,M) exists for every finitely

generated R-module M ,

@©

The finitely generated graded R-module M = MP
p=0
is filtered by defining
(3.7) g = {Mn} where Mn = @Mp for each n .
p2n

Equation (3.5) implies that g 1is f-stable. By Theorem
3.8 and the fact that u(f,M) exists, it follows that
p(s,g) exists with u(s,g) = p(£,M) where s = alt(f) .
Furthermore u(s,_) is an additive function on the
category of finitely generated graded R-modules.
Incidentally, Corollary 2.23 implies u(s,g) 1is a
rational number for each finitely generated R-module.

At this point, Smoke's multiplicity eR(M) is an
element in Z[[t]] and as such is not comparable with
u(s,g) . If, however, R 1is regular, Smoke showed that

the polynomial ring A above can be chosen isomorphic to
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R and he can compose from Z[[t]] to 3 and recover
the formulation of multiplicity given by Serrel7] in this

situation; that is
n

- R
(3.8) e (M) = 2;(-1)ld1kaori(k,M) )

i=1
The relationship which exists between these two types of

multiplicity is stated in the following theorem.

Theorem 3,9: In the situation described above,identify

A =R . Then dl...dnuA(n,g) = eA(M) .

Proof; Since Theorem 3.8 implies uA(n,g) = uA(fT,M),

it follows from Proposition 2.54 that

_ 1
u.A(n,g) = d—l—Tr-l' MA((X),M) ’
where (X) = (xl,...,xn) is the maximal ideal generated
by {X;,...,X } . Thus to complete the proof one needs

only to show that
(3.9) wa((X), M) = e (M)

That is, eAﬁM) is just the multiplicity of M with
respect to the maximal ideal (X) . To prove (3.9)

note first that alt(X) = n . Hence by definition

b (CO,M) = n! lim LA(M/(X)mM) )

Mo

n
m
The limit formula of Samuel implies [5, Theorem 13, P.329]

that this multiplicity is the same as Northcott's
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ey (X, .. X M) [5, P.299]. Then by [5, Theorem 5, P.370]
uA((X),M) is the Euler-Poincar€ characteristic of the
homology complex of the Koszul complex K(X;M) of M

with respect to xl,...,xn . That is,

n
a0, =) DML BLKEGM)
i=1
Since (X) annihilates each homology module, [5, Theorem
3, P.364], L,(H;K(X;M) = L (HK(X;M)) = dimy (HK(X;M))

and the equation above may be rewritten as

n
(3.10) paCCO,M = ) (1) dim HK(X;M)
i=1
Now Xl,...,)(.n form an A-sequence (i.e.,((Xl,..,Xi):Xi+l)

= (xl"°"xi) for each i=0,...,n-1) so [7, Proposition
2, P.IV-4] the Koszul complex K(X) of A with respect to
Xys...,X  ~provides a projective resolution of k =~ A/ (X)
with the augmentation map K(X) —A/(X) being just the

canonical map K?(X) ~ A—A/(X) . The Koszul complex of

M with respect to xl,...,xn is just

K(X;M) = K(X)®M
Thus
HK(KGM) = H (KGO®M) = Tori(A/(X),M) = Tor’ (k,M)
which together with (3.10) implies
n
i, A
(3.11)  w,(QO,M = ) (-1)Fdimy Tord(k,M)
i=1
Since A =R, (3.8) and (3.11) prove (3.9). Q.E.D.
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IV AN EXAMPLE

In this chapter, another class of pseudo-valuations
on k[X,Y] , k a field, is considered. The main result,
Proposition 4.4, establishes for each pseudo-valuation
in the class necessary and sufficient conditions on the
parameters for the corresponding filtration to be approxi-

matable by powers.

Let A = k[X,Y] and let 7T = [Tn} be a sequence

of positive integers such that

(1) T > for each n € IN and

(4.1) n+2 Tn»flTn

(ii) gcd(Tn,Tn+l) =1 for each n € N .

Using this sequence of integers, inductively define the

following sequence of polynomials in A ,

(1) @, = X
(4.2) (ii) ¥, = Y, and
T T
e e n-2 n-1
(iii) @ = o a5 for all n > 2 .
Proposition 4.1: For any B € A , there exists a unique
representation for B as
k k
_ N\ (k) _ 1 n
B =) aq® ‘Zakl,...,kn"l'"“n » 05 kg < Tin

where (k) = (kl,...,kn,o,o,...) for some n € N and
2K € k . This representation will be called the

standard form for B8 .

72
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Proof: Existance of such a representation will
be known provided the result is shown for each ",
n,m € NU {0} . The proof is by induction on n + m .

If n+m =1, then XY™ is either X or Y
and the statement is true. Assume validity for
n+m=Lk>1_, The argument now depends on two very
similar cases; namely n >0 or m >0 . If n>0,
X" = X(Xn-lYm) and by the inductive hypothesis

k.+l k k

n,m _ (k)| _ ' 1 2 n
XY - X(E a(k)a )— Zakl,u..,knal 02 ---an\ b}

0s ki < Tisl - The other case is almost the same,

k k+1 Lk k
n,m _ (k) _ 1 2 3 n

0 = ki < Tisl These expressions need not be in the

proper form but they both can be so rewritten by

establishing the statement: Any monomial

k k
(k) _ 1 n . .
o =) T, kj < T4l for j # 1 and
. (k) _ (k")
ki < 2Ti+l , has a representation « = E‘a(k,)a ,
(0 IS k3 < Tj+1 for all j . To establish this assume
Tisl S ki < 2Ti+l (otherwise it is already correctly
Tisl 4
expressed) and use o = o;,, - @; ) to express
RO T UL RE PO PSR Vo S S PSS
S S | i+l Tis42 i+3 *°" n
L KT MiatT) Mee M
- l...i i+1. i"_z .-.n -
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Since 0 < k; = Ty < Ty 00 Kjup + 1< 275,45, and

k 4+ T. < 2Ti

isl i the problem exponent has been

+2 7
transferred to higher indices. Continuing if necessary

to the index n , the process terminates.

Proof of uniqueness of the representation is much
more difficult and because one aspect of the proof is
rather cumbersome only an incomplete proof will be given.

First note that uniqueness of the representation

is equivalent to k-linear independence of B , the set

o ()

of all power products , Os ki < T, for all i .

1+1
To this end, fix n and consider Bn the set of all

(k) . _ . .
o such that ki =0 for 1 >n . Since Bn < Bn+l

for each n and UBn =B , it suffices to show B is

linearly independent over k for each n . This is

proved by induction on i =1,...,n-1 of the statement:

(K ~ L .
Bn,i = {a "€ Bnlkj =0 for j<n-i} is a linearly

independent set. It is essential to the proof that each

consecutive pair o be algebraically independent.

o
n’ n+l

This follows at once from noting that o, 1is integral

over k[an,an+l] and continuing inductively

k[X,Y] = kla),@,] 1is integral over kl« 1 . Then

o
n’ n+l

the assumption that @ and o be algebraically

n+1l
dependent leads to a contradiction.
It is easily seen that Bl is linearly independent

so assume n > 1 . Suppose 1 =1 and
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0 = z:a(k)a(k) with a(k) € Bn 1 for each (k).
k k
- n-1 n
= E;akn_l,knan-l % s 0% kg < Tig -

From the independence of & , and o map to k(T] ,
T T
n-1

T a new indeterminate, via @ {—*T , aﬁ—*T " . Then

T k + T7_k
_ n-1 n-1 nn
0 = YA qoT ’

Cancellation within the sum requires that

— ] ]
Tn-lkn-l + Tnkn B Tn-lkn-l * Tnkn = Tn—l(kn-l - kﬂ-l)
=1 (kl-k). But |k _; - k! | <7 and (T _,,7) =1;
thus kn—l = kﬁ-l , kn = kﬁ and no cancelling can occur.

Thus a(k) = Q0 for all (k) .

Assume, then, that Bn . has been shown to be
b
i

i
linearly independent for 2 2 . The proof that B

n, i+l
is also linearly independent follows from knowing that

each polynomial of the form

"n-i Tn-i-1
(4.3) Z - (an-i-i-l - Q’n_i )
is irreducible over k[an-i’dn-i+l] = k[an_i,...,an] ,
and hence over k(an-i,an-i+1) (since k[an-i’an—i+1] is

isomorphic to k(S,T] , a unique factorization domain).

Then {1l,a_ . v 2, o Tn—l-l} is a basis for
'n-i-1’""n-i-1’°"°"°"’ " n-i-1 °
k(a, < ,,...,2,) as a vector space over k(an_i,...,an) .

It now follows that B is linearly independent over

n,i+l
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k as well. The proof that the polynomial (4.3) is
irreducible will be omitted but is outlined as follows.
First translate the problem to new indeterminates §S,T ,

using the fact that o_ . and o

n-i n-i+l are algebraically

independent; then show that Z® . (S - T is irreducible
over k[S,T,Z] for any relatively prime m,n € N .
Although tedious, the argument is straight forward;

i.e., assume a factorization in k[S,T,Z] ,
fg = 2" - (S -TH

and derive that f£ or g must be in k . It is helpful
in this endeavor to first show that 2™ + ™ is

irreducible in k[Z,T] . Q.E.D.

Using the unique representation given by Proposition

(k)
2 a(k)a € A

min{zkiTil 31 # 0} .

I

4.1, define for any B

(4.4) v (B) = v(B)

Proposition 4.2: The function v defined by (4.4) 1is

a pseudo-valuation on A .,

Proof: The fact that v(B + y) 2z min{v(B),v(Yy)]
is immediate from using the standard form representations
of each and then adding. The result is then in standard
form with possibly more zero coefficients. To show
v(BY) 2 v(B) + v(y) , it suffices to show the result

where B and vy are defining monomials B = u(J) ,
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Y = a(k) . Even more is true in this case; namely,

(4.5) v(a(j)a(k)) = V(d(j)) + v(a(k)) .

Since a(J)a(k) = a(J)+(k) , statement (4.5) is implied

by the statement

(4.6) v(a(m)) = zmiTi y 0= my, i=1,...,n , n € N,
If each m; < Tisl there is nothing to prove. Choose,
then, the smallest index 1 for which m, 2Ty and
T. T,
. _ 1 1+1
using o ., = @. ) + express
m m, m m m,-T. . m. m
1 i n _ 1 i i+l i 1+1 n
LT TR - R (o ooy 1d0s 0 .. a
_o, ™, M Tien, Miel, Mie2*t Mz M
-1 i i+l i+2 i+3 "' n
Co M MM, i) M2 T
1 °°°71 i+l i+2 """ n :
If My = Tia1 2 Tigq 0 repeat the process again at 1

obtaining two more terms for each of those in the ex-

pression. If mo- Ty

< T, i
i+l i+1 ° TMove, 1in each of these

terms, to the next index for which the exponent is

m m
""too large'. Eventually, @y %..Un T will be reduced
kl k
to a sum of terms of the form oy ...Wp P with
ki < Tial for all i =1,...,p . Inspection of this

procedure shows that precisely one of the terms has
exactly the value Zm,; T, and all the others have higher

value since
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T

_ _ i
vi@g,0) = Ty T Ty = vieg,y) , and
(4.7) ] ]
i _ i+1
vleg ) = vleg 70

at every 1 where a substitution is made. Then collect-

ing terms gives the standard form representation for

m m
o %..un I with precisely one term of value ZmiTi
and all others greater. By definition,
m, m_
vley voap ) = EZmgT. o Q.E.D.
Remark &4.3: Equation (4.5) is motivation for suspecting

that v = v_ is always a valuation. It is not; for

suppose T = {7.} 1is defined by T, =1, T, =2 , and

1 1 2
"Thel = "nTnp*l for nm 22 . Let B = ¥, + @5 and
Y = dlaz - g Then
- 2, 2 2, _ 2 _
v(By) = v(ozl @, " - a7) = vy, oy - aa) = 7 , but
v(B) + v(y) = 34+ 3 = 6 .

By taking char(k) = 2 , this example shows that v
need not be homogeneous; i.e., there are some B € A

and n € N for which v(8™ # nv(B) .

Proposition 4.4: For any sequence 7T = {Tn} which

satisfies (4.1), the filtration £, = {an} which

corresponds to the pseudo-valuation v, is approximatable

T,
by powers if and only if the infinite product ;—%13—
) i=1 i i+l
converges to a finite limit.
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Proof: The proof will be based on the equivalent
formulation of "approximatable by powers" given by Theorem
2.51. By Remark 2.52 it 1s seen that attention may be

restricted to approximating filtrations of the form

(4.8) £

N
{“n,j} where 5 = z:aj-iai » N, € N .
i=1

Lemma 4.5: Let fn be given by (4.8) with N = TnTn-1
and vy = Ve . Then for n 2 4
n
(1) vn(aj) = Tj for j =< n,
(i) wvle ) = T 1™n o
.o 2
(iin) v (e .,) Tho1Tn » @nd
. _ 2
vy vplon,) = "na1™n Tnelcc - Tnek-2  for k = 3.
Proof: By the definition of fn , an,i = 0 for
i< 4, and therefore vn(aj) = v(aj) for js n.
For j=n+k, k€ N, the argument is by induction

on k with the difficult point being for k =1 . To

show Vn(an+1) = T0Th-1 replace the Tj sequence by
T =1, j < vt =18 !
3 where TJ TJ for 3 n and TJ 73_273_1 + 1

.

for j > n . This sequence satisfies (4.1) and the

resulting sequence {a&] of (4.2) has the property that

T! T!
o =a;, for i =1,...,n and @l = ai_i'2+ ai_;'l for
all i >n . The definitions of * 4 and o! . agree
so that ¥ e T aﬁ+l but its value has been replaced by
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T Tno1 * 1 . For the rest of the proof of the case k =1,
the primes will be omitted since only small indices occur
and v, is the same whether obtained from the orginal

filtration or from the new one. This is because v is

n
defined entirely by the ideals 6, , 1= 1""’TnTn-1
which agree for £, and fT, , since the smallest index

j for which VT(aj) might differ from vT&aj) is n + 1

and then each value exceeds T In fact, the only

n'n-1 °
reason for introducing the primes at all is to assure
that the value of «

may be assumed to be LT + 1

n+l n-1

in the argument.

First it will be shown that

(4.9) v (o

n n+l) < V(O!rwl) = T 1.

n n-1

Suppose this assertion is false. Then

Tni?-l
o € a = a A P
n+l n,TnTn_l+l N TnTn_l+l—l 1
i=1
It then follows that @ .1 can be represented as
o = Z(ZBY) , B € a . Y € a; .
n+l ’ T n-1*l-1 °’ 1

Represent each pair B and vy in their standard forms,
= (s) : - :
B = Za(s)d such that mm{zszj | a(g) #0}= T no1*l 1

Y =E,b(t)a(

Expanding the right side of the above, it follows that

t) : .
such that mln[zthj | b(t)#o] =i

_ (m) :
@y = Ec(m)a where m < 2Tj+l for all J .
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(m)

The unique representation for Elc(m)a can be obtained

(m)

by reducing each Cm? to its unique representation
and then combining similar terms. Of course, this must

be a .. since it is already in the unique form. Hence
(m)

with mj < 27j+l for all j ,

must yield a term which is a non-zero multiple of ¥ 41 -
(m)

Since reduction of « yields only terms of value

reduction of some «o

and since the value of

a(m))

greater than or equal to v(

each term of By 1is greater than or equal to

o (1)

TnTn-l+l

it must be true that this has value exactly

(m)y _ " May  _ _
T -1t 1. Thus v(« ) = v(al ,_,aq ) = zmiTi =
T "n-1 * 1 . Since q > n and mq > Q0 are only possible

in this expression if one of the indices is n 4+ 1 and

the corresponding Mo = 1 and all other m; =0 and

of (m)

since this situation contradicts the choice o as

a product of lower terms, it may be assumed that q s n .

It is claimed that the assumption of @ appearing as

(m)

+1

a term in the reduction of o to standard form is false.

Py Ph-1_ Pn .
Let @y cLewp qoTay be from any term in the second to

(m)

the last stage of the reduction of « to standard

form. That 1is pj < Tj*l

+ 1 . If EpiTi >

for j=1,...,n-2 and

zpiTi 2 TnTn-l " n-1 * 1,

it cannot yield a term of « so assume equality. If

n+l

p, > 0 , each term of the reduction has a factor of
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T
n

a
Yne2 * Fnsl

P, 2 Tn+l) and 1n any case, the term @1 cannot be

obtained. Thus p =0 . Now pyTy + ...+ P, 17 4

or a, (depending on whether or not

T Tne1 * 1 . If Phy > T the left side of this
equation is greater than "1 * 1 and we have a
contradiction. If p_, = T , cancel to obtain

PyTy *eee* P 5T p = 1. 1If T, > 1 , this 1s impos-
sible; otherwise, p; = 1, P; = 0 for j=2,...,n-2
and @y will appear as a factor in tge red;ction, again
a contradiction. If Phop < T 0 9 }..dn_?-l is al-

ready in standard form and cannot be reduced to yield

the term « Thus « . £ 8t a1 which implies

n+l ° ' Th -1

T.T

v ) < T.T.,+1l. On the other hand, since

T T

_ n-1 n .
@ T Y + @ 1 1t follows that
Vn(an+l) 2 mln{Tn-an(an)’Tnvn(an—l)}
= min{r _v(e),r v(e )} = 7.7 ..

Hence Vn(an+l) = "Tn"n-1
For the remainder of the argument, the T sequence
is the original one. For k = 2 , the fact that

T
n n+l . .

o = o + im

n+2 n+l n plies

vn(an+2) = min{Tnvn(an+l)’Tn+lvn(an)} ’

with equality holding in case one of these has strictly

smaller value than the other. Now
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T v _( =T T 7T =T 2 d (0 ) =717
01 T Tn"n"n-1 T "n-1"n 2™ Tue1n®n) T Tnnsl
Since Toel zZ T Tho1 * 1> TnTn-1 * the first expression
.. _ 2 ..
has minimum value. Thus Vn(dn+2) = Tn_lTn . Similarly
_ 2 .
vn(an+3) = T0o1™n Toal and in general
- 2
Vn(an+k) "n-1"n "o+l Tnak-2

The proof of Lemma 4.5 is now complete.

Returning now to the proof of Proposition 4.4,
suppose f = f,r 1s approximatable by powers. Then there
is a sequence of filtrations fﬁ of the type (4.8) and

a sequence of real numbers Xn-—*l such that

] 1
fn s f < ann for all n .

Choose any n , for simplicity n =1 and let Nl be
given by (4.8). Since T m-1 ' &S m== , an m
can be chosen with N, s T ool - Let fm be given by
(4.8) with No = "mm-1 - Then

(4.10) £1 s £, 05 £ s ME] s ME,

and cdﬁééduently Alvm 2 v where Vo = Ve - In

particular, Alvm(am+k) 2 V(am+k) for all k € N.
By Lemma 4.5, it follows that

2
>‘1Tm--l’rm Tm+1"'Tm+k-2 2 Tm+k ?

or equivalently
k
A > Ttk - "m+i
1 2 - T

Tm—le Tm+l"'Tm+k-2 i=1

. T .
m+i=-2 m+i-1
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This inequality is true for all k so the infinite
product converges to a limit no greater than kl .

Multiplying by the first finitely many products

T .
;jéég— , jJ=1,...,m-2 , one has
J J+l ®
T.
142
(4.11) ]_T T.T < e .
1=1 1 1+l
- Ti42
Conversely, suppose ]—r T converges. Let
i=1 i i+l
T.
f be as in Lemma 4.5 and let A_ = ]_T _i+2
n n . T.T.
i=n-1 1 1+l

It is claimed that for n = 4

(4.12) fn s f = Anfn , kd——4l as n-—

The inequality fn < £ is trivial and the fact that
kﬁ-—*l as n=—o 1is standard from the theory of con-
vergent products. To prove f < Anfn , recall that the
value of any element B € k[X,Y] 1is found by expressing
B 1in standard form,

Y (k)
IR TG

and letting v(B) = min[ZkiTiI (1) # 0} . Since A

is a pseudo-valuation,

knvn(a) 2 min{zkixnvn(ai)l a1 # 07 .

Thus it suffices to show knvn(aj) 2 v(aj) T. for all j.

J
n+ k, k€N

If j<£n, vn(aj) = V(aj) , SO assume j

Using Lemma 4.5, one computes
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2
hnvn(an+k) ann-lTn Tn+1"’Tn+k-2
2 T
= "l‘—ii n-17n27n+]_ ce - Tn+k-2
i=n-1 1 i+l
n+k-2 ©
_ Tie2 . e 2 . Tis2
f=n-1 TiTier PL R o RALTTIRARe2 o1 TiTin
= T
_ ll 142
= Thtk . T.7T
i=n+k-1 i i+1
> —

T
n+k

Thus (4.12) is established.

Remark 4.6: In the proof

matable by powers implies

that Xn-—*l was not used

that there exists some A

is essentially powers with

(4.13) £

1 <

forces the product to converge and hence

approximatable by powers.

£

powers, 1

has a regular

V(Q’n-i-k)

Q.E.D.

of the statement, "f is approxi-

TET Ti+2

! T.T.
i=1l 1 i+1

< ’

@

the fact

in any way. The mere fact

and some filtration fl which

f =

Xfl

£ to be

£

subsequence of powers

Since is essentially

(k)
£

Then statement (2.30) implies

%{Ak}m <

that is, condition (2.25) i

(rad(£))™ for all m ;

s satisfied. The converse is
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also true; i.e. if condition (2.25) is satisfied, (2.31)
implies that some essentially powers filtration £' and
some A can be found such that (4.13) is satisfied. Thus
a filtration of the type considered in this chapter is
approximatable by powers if and only if condition (2.25)
is satisfied. It is unknown whether or not this is the

case for every filtration on a noetherian ring.
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