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I PRELIMINARIES

In [11] Mityagin and Shvarts list many problems con-
cerning functors and dual functors in categories of Banach
spaces. Included in these problems are the following
questions: (1) What properties characterize compact func-
tors? and (2) If a functor is compact is its dual functor
compact? The motivation for this present paper is to
answer these questions. Precisely, the purpose of this
paper is threefold:

(1) to investigate when the hom functor d;‘and

the tensor functor I, take (strictly) normal

X
exact sequences to normal exact sequences.
(2) to answer the question: If a functor takes
compact operators to compact operators, does
its dual do the same?
(3) to find when ZX and Qx take compact operators
to compact operators. More generally, the pﬁrpose
is to find a characterization of all functors
that take compact operators to compact operators.
This section consists of a discussion of preliminary
concepts needed for these investigations. Functional
analysis concepts may generally be found in [3]. Categor-
ical terms may be found in [10]. 1In the following discus=-
sion, B will denote the category in which the objects are

Banach spaces over the real scalar field and the morphisms

1
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are continuous linear functions, sometimes called mappings
or operators. Elements of the scalar field I are generally
denoted by letters such as a,B, and y. The objects of B
will be designated by letters such as A,B,C,X,Y, or Z;
the morphisms will be denoted by letters like f ,g,h, and
k. However , in a later section of the discussion, these
letters will also be used to denote functions that are
not morphisms in B. The set B(A,B) is the set of all
morphisms from A to B, The notation f:A——B is used to
mean f is a morphism in B(A,B). B(A,B) is a Banach space
with norm given by |f| = sup|f(a)].
al<l
The concept of functor will be fundamental to what

follows.

Definition 1.1 A (covariant) functor F:B—B is an

assignment of ;ach object A in B to an object F(A) (or FA)
in B and of each morphism f:A—B in B tb a morphism
F(f):F(A)—F(B) (or Ff:FA—FB) in B subject to the
following conditions:
(1) If the composition gef :A—>C of f:A—B
and g:B—C is defined in B, then F(g.f) =
F(g)eF(f) :F(A)—F(C) in B.
(2) If ij:A—A is the identity of A in B, then
FiA = iFA’
(3) For each A and B in B, F:B(A,B)—B(FA,FB)

the identity of FA in B.

is a linear contraction. This means

F(f+g) = Ff+Fg f,zeB(A,B)
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F(af) = oF(f) ael, and

IF(e) | < 1],
Note: The concept of a contravariant functor is defined
similarly. The difference between a covariant and contra-

variant functor lies in the fact that if F:B—B 1is
contravariant and f:A—B is a morphism in B, then Ff is
a morphism from FB to FA. Thus for each A and B in B,

F induces a map from B(A,B) to B(FB,¥A), and (1) in (1.1)
becomes F(gof) = F(f)eF(g):F(C)—F(A). An important
example of a contravariant functor is the functor x which
assigns to each A in B its conjugate space A¥ and to each
f:A—B its adjoint [¥;B¥ —rA¥%,

Remark 1.2 Condition (3) in (1.1) is generally not part

of the definition of a functor. All functors in the
following are assumed to satisfy this condition.
Functors will be denoted by letters such as F, G, and H.

Definition 1.3 Let F,G be functors from B to B. A natural

transformation n:F—>G is an assignment to each object

X in B of & morphism ny:FX—>GX in B such that:
(1) for any morphism f:A—B in B the following
diagram is commutative.

Ff
FA >FB

N ﬂB

Gf
GA >»GB
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(2) sup {|nX|:X in B} is finite.

If for each X in B, nx:FX-—+GX is an isomorphism (one-to-

one, onto) , then n is called a natural isomorphism, and

F and G are naturally isomorphic. If for each X in B,

nX:FX——+GX is an equivalence, that is, an isometric iso-

morphism, then F and G are called naturally equivalent.

Remark 1.4 Although condition (2) is generally not part

of the definition of a natural transformation, all natural
transformations in this paper will be assumed to satisfy
it. Natural transformations will be designated by letters
like 6 ,n,t, and A,

Basic to the following study will be the concept
of the projective tensor product of two Banach spaces.
A brief description of this concept is given below. A
more detailed description can be found in [14] and [16].
Let A and B be two Banach spaces and let IAXB be the
vector space over I consisting of all functions f:AxB -—1I.

For each (a,b) in AXxB, let asxb be the element in IAXB

defined by
asxb(p,q) = 1 if (p,a) =(a,b), and
awb(p,a) = 0 if (p,q) # (a,b).
Let I(AXB) be the subspace of IAxB spanned by the

elements of the type a*b. Define a relation ~ on I(AXB)

by the following rules:
(1) (al+ai)*b1+a2*b2+ c.. ta #bpy ~ ajwbi+
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1) -~
(2) al*(b1+b1)+a2*b2+ vo. tap*b, a *b .+

'+ *b + ... + .
al*b1 8, b2 an*bn

2

(3) al(al*b1)+a (az*b2)+ .o +an(an*bn) ~

2
(alal)*b1+(a2a2)*b2+ eo. +(apa,)*b,.
(4) (alal)*b1+(a2a2)*b2+ «o. t(opap)*p, -~
a,#(a b, )+a x(a,b,)+ ... +ap*(apby).
Now define the equivalence relation = on I(AXB) by
Zai(ai*bi) = XBi(ci*di) if and only if Zai(ai*bi) can
be transformed into )B;(cj#dj) by a finite number of
applications of the rules (1) - (4). The algebraic tensor
product A®B of A and B is the quotient space I(AXB)/z,
and the equivalence class of Zai(ai*bi) is designated by
Eaiai@bi.
The linear space A®B can be made into & normed linear
space with the norm given by
lu] = inf{2|ai||ail|bi|:u = Jajajebj}.
It can be shown that this defines a crossnorm on A®B,
that is, a norm with the additional property that
Iaebl = |a||b| for aeA and beB. The completion of

A®B with this norm, denoted by A§B, is called the projective

tensor product of A and B, or simply the tensor product of

A and B.

If f:A —C and g:B—D are morphisms in B, feg:
A®B —C®D (considered as normed spaces) is the continuous
linear map given by

feg(la;eb;) = }f(aj)eg(by).
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It can be checked that |f0g| = |f||g|. By definition
fég:AéB——+C§D is the unique extension of feg to ASB of
the same norm.

The following proposition is useful in dealing with
the projective tensor product.

Proposition 1.5 If A, B, and C are Banach spaces, then

B(A®B,C) and B(B,B(A,C)) are isometrically isomorphic
(equivalent).

Sketch of Proof. A complete proof can be found in [1L4].

Define £:B(A®B,c)—B(B,B(A,C)) by [(£f)b] = f(aeb) for
feB(A®B,C), beB, and acA. The function £ is linear and
le(£)| < |£]. Define fi:B(B,B(A,C)—>B(A®B,C) by i(g)(asb) =
(g(b))a for geB(B,B(A,C)) and extend linearly to A®B.

For each g in B(B,B(A,C)), |i(g)]| < |g|, which means that
for each g, ﬁ(g):A@B——*C is uniformly continuous. By

the Principle of Extension by Continuity [3,p.25],
ﬁ(g):A@B——+C has a unique uniformly continuous extension
u(g) :A8B—>C. Let u:B(B,B(A,C))—B(A®B,C) map g to the
unique extension u(g). It can be shown u is linear snd
also |u(g)| = |g|. Because u is an inverse for £, the
proposition follows.

"=" may sometimes be used to

Note: The equals symbol
mean two Banach spaces are equivalent. Thus, "B(A®B,C) =
B(B,B(A,C))" means these spaces are isometrically

isomorphic.

Two functors that will play a prominent role in the
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following discussion are the hom and tensor functors,

designated for an X in B by QX and ZX respectively. For

each X in B, QX is defined by the following assignments:

(L) If A is in B, QX(A) = B(X,4).

(2) If f:A—B is a morphism in B, then ,(f):

QyA—>Q,B is given by Qx(f)g = fog for geB(X,A).
Since
le £] = sup|ay(£)eg| < sur|f]|lg] = |£],
lgl<1 glsi

QX can easily be seen to be a functor,

For each X in B the functor I, is given by the

X

following assignments:

(1) If A is in B, ZXA = X®A.

(2) I1If f:A—B is in B, Exf:xaA——+X§B is the

morphism ing.

Remark 1.6 If F and G are functors from B to B, then

the compositions FoG and G+F are also functors from B to B.
Also to each functor F:B—B can be associated a functor
F::B'—*B, defined by the following rules:
(1) Fy(A) = F(A*)* for each A in B where
F(A*)* is the conjugate (dual) space of F(A¥).
(2) If £f:A—B is in B, Fy(f) = F(L¥)*:
F(A*)* —F(B*)* | the adjoint of F(f#),
Another useful functor is the "double-dual" functor
from B to B designated by ##. It assigns to each A in B

its second conjugate space A¥¥ gnd to each f:A-—B
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the second adjoint £*¥ :A¥¥ —B¥¥,

*
Proposition 1.7 The functors on** and (ZX)* are

naturally equivalent.

Proof: The fact that for each A in B, B(X,A¥¥*) is iso-
metrically- isomorphic to (X®A*)* is given by (1.5) as
B(X,A**) = B(X,B(A*,I)) and (X®A*)* = B(X®A*,I). Let

f:A—B be any morphism in B. It must be shown that the

diagram
. (ixéf*)* R
(XQA%*)* —» (XOB*)*
&A £
v Qy(£%%) ¥
B(X,A¥%¥*) > B(X,B¥%*)

commutes where £, and £, are the equivalences given in
A B

(1.5). Let ge(X®A*)*, xeX, and b*ecB*, Then

[(2y£**(£,(g))xlo* = [(£*%og,(g))x]n®
[£%* (g, (g) (x)) b

[€A(g)(x)o £*]b*

g(xef*(b*)).

On the other hand,

([eg((iyof*)*(g))]x)p* ([EB(sa(iXQf*))]X)b*

[go(iydt*) ] (x0b¥)

g(xof*(b*)).

Proposition 1.8 The contravariant functors *ezx and
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lyo # are also naturally equivalent. This means if f:A—B

is in B, the diagram

Qxf*
B(X ,B¥) » B(X,A%)
Hp UA
. (iyée)*
(XeB)* » (x6a)F

commutes where Wy and u, are given by (1.5).
Proof: By (1.5) Mg and u, are equivalences. It remains
to be shown that the diagram commutes. Let geB(X,B¥).

Then for xeX and acA,

[((iydf)% ug)gl(xea) = [uglg)e(iyxér)](xea)
X B B

[ug(g) l(xef(a))

g(x)(£(a)).

Also

[up(£¥ g)1(xoa)
[(£*eg)x](a)

[g(x)of](a) = g(x)(£(a)).

[(npeyt*)g]l(x0a)

Notation and Definition 1.9 If F and G are two functors,

(F—G) will denote the "class" of all natural transfor-
mations from F to G. When (F—G) is a set, it is a
Banach space with the norm given by

|t] = sup{|ry| :XeB} 1e(F—G) ,
and addition and scalar muitiplication given by

(t+n)y = Ty 4Ny X in B, and

(ar)x = aty X in B and aceI.
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10

Definition 1.10 Let F :B—B be a functor. The dual

functor to F, denoted as DF, is the functor given by the
following assignments:
(1) If X is in B, DFX = (F—Iy). (It will
be established below that this is a set.)
(2) If f:X—Y is a morphism in B, DFf :DFX—DFY
is given by the equation
(DP£(1)), = (foip)et, 1eDFX, and A in B.
This is depicted in the following diagram.

T

A
FA\\\\\\\\\\ T
(DFf(T))A \ felA
~
\\\\\\‘ !
ZYA

Lemma 1.11 If A and B are any two Banach spaces, then

B(A,B) and (ZK——+ZB) are equivalent.
Proof: Let feB(A,B). Define 1,e(Z,—>Ig) by the formula

(1p)y = foiyx:I,X—>IgX for X in B.

Then [T |£] since for each X in B, [(tg)y| = |£oiy| =

el =
|f|. Let g:X—Y be in B. It is easily checked that

the diagram

L, g
A
ZAX > ZAY
(), (tg)y
ZBX =ZBY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11
commutes so that Tf is a natural transformation. Now let

T be any element in (I ——*ZB). Define f:A—B as

A

TI:ZAI(=A)——+ZBI(=B). It must be shown that for each
X in B, Ty = fSix. Let x:I—X be given by x(e) = x.

By the commutativity of the diagram

. x
- A N
A—ZAI > ZAX
fJ TX
B=ZBI - £ > ZBX
B

Tx(aox) = (Txo(iA;Q))a@e = (iB6£)(f(a)) fla)ex = fgix(aox).

Lemmg 1.12 If F:B—B is a functor and A is in B, then

(QK——+F) is isometric to FA.

Proof: For acFA define t_ in (QA——+F) by the formula

a
(15)xf = F(f)a for fe@,X = B(A,X).
It can be checked that Ta is a natural linear transfor-

mation. It is in (QA——+F), since

|t ] = sup |[(t,)y]| = sup sup |(1,)yf]
® xinB % xinB |f|aa *%
= sup sup |F(f)a| < supla| = |a].
X in B [f|<z1 X in B

Now if t is any member of (QA——*F), put a = TA(iA)eFA.

Since the diagram

Ff
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12

commutes for any f:A—X, Tx(f) = F(f)a. This means the
correspondence above is onto, that is t = Tge Since
lal = legigl = 1), il < legl < lal,

the correspondence is isometric.

Examples 1.13

(1) The functors r, and Q, are dual to each other

for each A in B. That DQA = I, (that is , is equivalent

to) follows from the equation

DRyX = (QA——+ZX) = IyA = I,X

using (1.12). That DI, = QA follows from (1.11) and the

equation

DI, X (£

A —I ) = B(A,X) = Q,X.

A X

It remains to bpe shown that the relations are natural,

that is, in the first case if f:X——Y, then the diagram

DQAf
DQAX -+ DQAY
ZAX C z > ZAY
A
commutes. Let T be in DQAX = (QA——+ZX). Using the

isometry established in (1.12) between DR,X and IyA,

the lower left half of the diagram takes Tt to iAGf(TA(iA)).
Using the isometry of (1.12) again, the upper right half
takes T to the same element. The naturality in the

second case is shown in ; similar manner.

(2) The dual of the identity functor LB:B-—+B is
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13
itself. Using (1.11) , that DIg = Ig follows from
DIBX = (IB——>2X) = (zI——->zX) = B(I,X) = X =1

That these isometries for each X in B give a natural

BX.

transformation can be checked as in (1).

Definition 1.14 A morphism f:A—B in B is a normal

morphism if the induced continuous linear function from
A/Ker £f—f(A) is an isometry. In addition, it is a

strictly normal morphism if for each b in f(A) , there is

an ach such that f(a) = b and |a] = [b].

Definition 1.15 A sequence
g

f
0 —A —B —C —0

in B is a normal exact sequence if it is exact (f is a

monomorphism, g is an epimorphism, and Ker g = Im £)

and each morphism is normal. It is strictly normal

exact if it is exact and each morphism is strictly normal.
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II THE HOM AND TENSOR FUNCTORS AND EXACT SEQUENCES

This section is devoted to the investigation of
when the hom and tensor functors take (strictly) normal
exact sequences to normal exact sequences. In order to
proceed with this investigation, preliminary knowledge
of the spaces L!(u) is needed. This is given below. A
more detailed account may be found in [1].

In the following discussion, E will always denote
a locally compact topological space. K(E) will designate
the vector space of all real-valued continuous functions
f on E with compact support.

Definition 2.1 A positive (Radon) measure on E is a

linear functional u:K(E)—>I which satisfies the following
conditions:
(1) 1f f(x) > 0, xeE, then u(f) > O.
(2) For each compact subset K of E, there
exists a number M(K,u) > 0 such that for each
f in K(E) with support contained in K,
u(£)| < M(Kp)+|f|, where [f|_ = sup|f£(x)| .
xeR
Note: Each space Ll defined below depends on some
locally compact space E and a measure u. In the discus-
sion that follows , some fixed space E and measure u are

understood.

Remarks and Definitions 2.2 To each positive extended

1k
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real valued f defined on E, one can associate a positive
number u*(f) (perhaps + =), designated sometimes by

[¥fdu, called the upper integral of f. If f is in K(E),

*
then u*(f) = u(f); that is, u is an extension of wu.

The exterior measure p*(A) of AcE is defined to be u*(xA).

AcE is negligible if p*(A) = 0. An extended real-valued

positive function f is negligible if f(x) = 0, xeE,

almost everywhere; that is, {xeE : f(x) # 0} is negligible.

Definition 2.3 Let S be any set. Two functions f ,g:E—S

are equivalent (with respect to u) if f(x) = g(x) almost

everywhere on E. A function f:A—>5, AcE, is said to be

defined almost everywhere if EVA is negligible. The

relation "f is related to g if f is equivalent to g" is
an equivalence reliation on the set SE of functions from
E to S. The equivalence class of f is denoted by f. The
equivalence class of a function f:A——S, AcE, defined
almost everywhere on E, can still be considered and
contains , among other functions, all functions defined
everywhere on E and equal to f at all points in A. If
the set S is a vector space over I, by defining
f o+ é = f’:Jg f,geSE, and

af = af ael ,
a vector space structure on the set of equivalence classes
is obtained.

Now let B be & Banach space over I.

Definition 2.4 For each function f:E —B and for each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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integer 1 < p < +=, define Np(f,u) or Np(f) to be the
finite or infinite positive number,

N, (£) = ([*]2¢-) [Paw) /P,
where |f(*)]| is the positive function E—I given by
x —|f(x)].

Remark 2.5 Np is a semi-norm on BE. Consider now the

set of equivalence classes of elements of BE formed by
the above relation. It can be shown that the function
Np(%) = Np(f) is a well-defined function from this set
of equivalence classes to I; that is, if % = é then
Np(f) = Np(g). Moreover , this function defines a norm
on the set of equivalence classes. This means

Np(af‘) = |a|Np(£‘) ael ,

Np(f+é) < Np(f)+Np(é), and

NP(%) = 0 if and only if f = 0.

Definition 2.6 For 1 < p < +=, let ?-‘:g(E,u) or ;rg (E and
4 being understood) be the semi-normed vector space of

all elements f in BY such that N,(f) < +=. Let Kp(E)
denote the vector space of all continuous functions

f :E—>B with compact support. (KB(E) can be shown to be

a subspace of ig.) Define ig(E,u) or ig to be the closure
in the space 7% of KB(E). Define Lg to be the normed
linear space of equivalence classes of functions in ig.

Elements of lg are called pEQ power integrable functions.

Proposition 2.7 Lg is a Banach space.

Proof: See [1, p.133].
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17

Remark 2.8 Although the elements of Lg are equivalence

classes of functions , they are generally thought of as
functions that are pth power integrable. It must be
kept in mind that two functions are considered the same
if they are equivalent.

Definition 2.9 A function f:E—B is measurable if for

each compact subset K of E there exists a negligible set
NcK and a partition of Kn(E\N), formed from a sequence
(Kn) of compact sets , such that the restriction of f to

each Kn is continuous. A subset A of E is measurable if

its characteristic function Xp is measurable.

Proposition 2.10 In order that a function f:E —B be

measurable, it is necessary and sufficient that it satisfy
the conditions:
(1) the set f'(U) is measurable where U is
any closed ball in Bj and
(2) for each compact set KCE, there is a
countable subset H of B such that f(x)eEH
(closure of H) for almost all xeK.
Proof: See [1, p.191].

Proposition 2.1l1 In order that a function f:E —B be

measurable, it is necessary and sufficient that
(1) the set fi(U) is measurable where U is
any closed ball in Bj; and
(2) for each compact set KcE, there is a

negligible set S in K such that f(K\S) is
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18
separable.
Proof: It must be established that (2) is equivalent
to (2) of (2.10). Clearly (2) of (2.10) is equivalent
to the statement:
(3) For each compact set KCE there is a count-
able subset H of B such that f(K\S)cH for some
negligible set S in K.
It must still be shown that (2) is equivalent to (3).
Suppose (3) is true. Then for each compact subset K of E,
f(K\S) is contained in a separable metric space for some
negligible set S in K.. Since a subset of a separable
metric space is separable, f(K\S) is separable. Now
suppose (2) is true. Then for each compact subset K of E,
f(K\S) is separable for some negligible set S in K. Let
H be a countable set in f(K\S) so that H (closure in
f(K\S))= £(X\s). Then f(K\S)cH (closure in B).

Proposition 2.12 In order that f:E —B be pth power

integrable for 1 < p < +», it is necessary and sufficient
that f be measurable and Np(f) be finite.
Proof: See [1, p.194].

Proposition 2.13 ©Suppose A and B are Banach spaces

and h:A —B is in B. For each feig, hef belongs to Ig
(1 < p < +»), Moreover, if f = g, then hef = H?é.
Proof: Since feig, for each e€>0 there exists a function
geKy (E) such that Np(f—g) < e. Since

|nef-nhog(+)| = |ne(£-g)(*)| < |n

f-g(')ls
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N (hef-heg) < |nl N, (£-g) < e-[n].
Because heg is continuous and has compact support, hef
is in i%, being in the closure of Kyz(E). The last state-
ment of the proposition is true because subsets of neg-
ligible sets are negligible.

Example 2.14 Take the special case where E is any space

with the discrete topology. Then K(E) = {f:E —I|f(x) =0
for all but finitely many xeE}. Define u:K(E) —I by

p(f) = § f(x), a finite sum. The function p satisfies
the conzzfion of (2.1). If B is a Banach space and
feKB(E), N, (f) = ZEIf(x)I, a finite sum. A function
f:E—B is in ié ?; and only if ) |f(x)| is finite by

XeB
(2.6). The space L! in this case is denoted by é, and

B
the measure p is called a discrete measure.
Note: ©Since the spaces Li, A in B, are objects in B, its
elements will be denoted by letters like a, b, x, and y;
letters like £, g, and h will now be reserved for morphisms
in B.
Proposition (2.13) helps to make the next defiuition

valid.

Definition 2.15 Let LP:B—B (1 < p < ») be the functor

given by the rules:

(1) 1Pa Li, and

P ., .
(2) 1If £:A—B is in B, Lpf:Li——-*LB is given
by LPe(x) = fox for ieLK.

The following result is proved by Grothendieck [5, p.59].
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Proposition 2.16 The functors ZLI and L! are naturally
I

equivalent.

Proposition 2.17 If

f

0 —B ——B-6¢

is an exact sequence in B with f normal, then

D D
0 —1Pp L f,1pp L7&, 1P,

is exact for 1 < p < « with LPf normal.
Proof: Since f is isometric, for xeiPA,
[fox (=) ] = |£(x(+))] = |x(+)].
Therefore, NP(LPf(;)) = N (fo%x) = Ny(fox) =
(J*le(x(-))|P)/R = ([*]x(-)|P)2/P =

Np(x) = Np(i).

This means Lp(f) is isometric.’

~

Now suppose freLp such that LPg(y) = g6¥ = 0. Then

B
goy = 0 almost everywhere on E so that y(t)eKer g = Im f
almost everywhere for teE. It can be supposed that

v(t)eKer g for all teE. Define x in LPA to be the
equivalence class of x:E—>A defined by the rule: if

teE, x(t) is the unique element in A so that f(x(t)) = y(t),
and |x(t)| = |y(t)|. It must be shown that xefPA. By
(2.12) it suffices to show x is measurable and Np(x)

is finite. Since |[x(+)]| = |y(*)], Np(x) = Np(y) is

finite. To show x is measurable the conditions of (2.11)

must be verified. Let U be any closed ball in A. Then

1 (u) = y1(£(U)) since f is isometric. Suppose U =

{a:|a-a,| < r}. Then £(U) = {f(a):|f(a)-f(a,)] < r}.
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Let V = {b:beB and |b-f(a, )| < r}. Then £(U) = vnr(a).

Hence, yi(£(u)) Yy vas(a)) = yi(vInyl(£(a))

yHUVInE = yi(v).

Since y is measurable, y*(v) is a measurable set and
hence x!(U) is measurable.

It must still be shown that for any compact set KcE,
there is a negligible set S so that x(K\S) is separable.
Since y:E—B is measurable, a negligible set S does exist
so that y(K\S) is separable. Let H be a countable dense
subset of y(K\S). Let H' be the subset of x(K\S) in a

one~-to-one correspondence with H via f. H' is countable.

Also , H(closure in y(K\S)) y(K\S)NnH(closure in B)

y(K\8).

i

Hence, x(K\S) fl(y(k\s)) = £ (y(K\s)nH)

x(K\S)Nfl1(H) = x(K\S)nH'(closure in A)

H'(closure in x(K\S)).

This means H' is dense in x(K\S) so that x(K\S) is
separable.

Proposition 2.18 If B-B+c —0 is strictly normal exact

in B, then for any X in B,
.~ i,eg

X@B —X——X§Cc—0

is normal exact.

Proof: Since (iyeg):X@B-—X8C is a surjection, ixsg(xéB)
is dense in X8C. To show iX;g is a surjection,it will
be shown that the induced map from XéB/Ker(ixag) to X@C

n
is an isometric map. Let zxioci be in X®C. By assumption,
i=1
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for each i = 1, ...,n; there is a b,eB such that |bi| =
Ici| and R % % %
i egl x;8b,) = x.0g(b.) = X.®cC, .
X gy 2 8 i=1 * 3 i=1 * 1t
n n
Therefore, z Ixillbi| = X |x ||c . Considering
i=1 i=1

[Z x;0b, ] as an element of X®B/Ker(i @g),

x=1
I[.leiebi]l = : 1n£|?| > zlx ec, |.
u 1= ue xiQ i i
1 1 = : .

Now let Z xjocj = .Z x;ec, in X8C. By assumption, for

J=1 i=1
each J = 1, ... ,m there exists b' such that |b3| = |c'|

J J

and g(b') = ¢'. Therefore,
J J m n

m
ixag(szobj) = Zx3@c3 Zx ;8cy » and
J J i
m m m
1 'b|. 'b' t )
lngo s §| yH=xgl = § Hedl

Since this is true for each element of X®C equal to

ZXioc., n
i * |[2x ob ]| inwc.l.
i

Now let y be any element of 1xog(X®B) Then there
is a sequence of elements yi in X®C such that yi——+y
in X8C. By the preceding argument , there exist z; in
X8B such that |[z;1]| = |y;| end iyeg(z;) = y;. Since
I[zi]—[zj]l = |[Zi_ZJ]| = IYi-yj|’

[Zi] is a Cauchy sequence in X®B/Ker(i_eg) converging

X

to some [z] and ix;g(z) = y. Also,
[[z]] = liml[zi]l = limlyi| = |y]|.

Thus XaB/Ker(ixag)-—#Xﬁc is an isometric map.

t g
Proposition 2.19 If 0 —A +B >C —>0
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is a strictly normal exact sequence in B, then
0 —1{éa—1i88 —Lléc —o0
is normal exact in B.
Proof: By (2.18), L%éB——*L%@C-—»O is normal exact. By
(2.16), the functors Ij) and Ll are naturally equivalent
I

by a natural equivalence t. Hence the diagram

(#) 0 yL1pA v L1908 —L16C—0
ik I I
]TA TB TC
4 Lir ' Llig
. . W T 1 N
(%%) 0 "Ly L} "L +0

commutes. Since LIf is isometric and (##) is exact at
Lé by (2.17), sequence (%) is normal exact.

Corollary 2.20 If 0 ——A—B —C—0 is strictly normal

exact in B, then 0——+Li-—+Lé——+Lé——+0 is normal exact

in B.

Propostion 2.20 Let 0 —mA —B —C —0 be a strictly

normal exact sequence in B. If X is a retract of Li
(meaning there exists f:X——+L% with |f| < 1 and g:Li——+X

with |g| < 1 such that gef = iy), then

0 —X®A —>X6B —XOC—>0
is normal exact in B.
Proof: Since gof = iX and Igl <1, £ is an isometric
map. Since for any Banach space Y, fGiY:XﬁY——*LiﬁY and
goiy :L}@Y—XBY are in B so that (geiy)e(foiy) = ixgy,
|£8iy| < 1, and |(g;iY)| < 1; féiy is an isometric map.

Since the following diagram is commutative with the
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middle row normal exact by (2.19), the top (or bottom)

row is normal exact.

0 XD A »X9B *XPC »0

| l

0 —L{8A —L}6B —L18C —0

——

0 —X®A »X®B »X8C +0
Lemma 2.22 If
f g

0 —A —B —C—0

is normal exact in B, then
0 —C¥* " *B ¥ *A¥ —0

is strictly normal exact.
£¥
Proof: B¥* *A¥ —>0 is strictly normal exact due to the
g*
Hahn-Banach theorem [3, p.63]. To show 0 —C¥ ——B¥

is strictly normal exact, it must be shown |g¥*(c*)| = |c¥*|
for all c*eC*, Since |g*] < 1, |g*(c*)| < |c*|. Let
€ > 0 be arbitrary. For each ¢ in C, there exists b€ in
B so that g(b.) = c and [b | < |e|+e. Hence,

le*(e)] = le*(g(d )] = |g*(c*) (v )]
lg*(e*) | | < |e*(e*)|(|c|+e)

= lg*(c*)|lc|+|g*(c*)|e.

A

Since €>0 is arbitrary, |c*(c)]| < |g*(c*)|-|c|] so that
le*| < leg*(c*)].

Exactness at B¥ must yet be shown. Suppose £f#(b¥*) =
b¥af = 0. I

\
b*

\i*
f g

0 —A~—B —C—0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2L



25
This means Ker b¥s5Im f = Ker g. Define c¥:C—I by
c*¥(c) = b*(b) where g(b) = ¢. This is well-defined,
since if b'eB so that g(b') = ¢, then g(b-b') = 0 so
that b*(b-b') = 0. By an argument similar to that above,
|c*| = |b*| and clearly g*(c*) = b*.

Corollary 2.23 If 0—*A—B —>C—~—>0 is a normal exact

sequence with B reflexive, then it is strictly normal exact.

The proof of the following proposition can be found

in [71].

Proposition 2.24 X is equivalent to a space Li (for
some Radon measure M on & locally compact space E) if
and only if for each Banach space B and closed linear
subspace A of B, the map ixéf:X5A——+X@B is an isometric

(into) map where f:A—B is the insertion map.

Lemma 2.25 If X is a Banach space such that X¥*¥* is

(equivalent to) a space Li, then X is also a space L%.
Proof: Let A be any Banach space, BcA any closed sub-
space, and f:A—B the insertion map. By (2.24) it

suffices to show ixaf is isometric. Let nX:X——+X** be

the natural embedding. It suffices to show nxaiA in the

diagram .
" ixof .
X®A +XOB
l"XQiA R 1“x°1B
- 1 **Qf ~
X#®a X »X*%PB

is isometrie. By (2.22) it is the same to show (nX@iA)*:

(X**@A)*——+(X5A)* is a (strictly) normal epimorphism.
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However , (X**@®A)* and (X6A)* are BL(X**,A) and BL(X,A)
respectively , the spaces of continuous bilinear forms on
X*%XA and XXA., Also,BL(X,A) is equivalent to B(A,X¥*) by
the map H—Gy, where (GH(a))x = H(x,a). For each H in
BL(X,A) , associate to Gy the element nyyoGy in B(A,X¥¥¥),
Since B(A,X***) is equivalent to BL{X¥**,A), to nyx° Gy 1is
associated the form H in BL(X*¥*,A), given by

H(x** ,a) = [nyxoGy(a)]x**.
Now H "restricted"to XxA is equal to H. Indeed, if x is

in XeX**(consider X as subspace of X¥¥) , then

H(x,a) = [nx*oGH(a)]i = [nx*(GH(a)]i
= Q(GH(a)) = [GH(a)]x = H(x,a).
Aso, 8] = Ingas Oyl = log] = 5]

Hence, (nyei,)* is a strictly normal epimorphism or
nXSiA is an isometric map. It follows that ixaf is
isometric.

Lemma 2.26 Suppose X is a Banach space satisfying the

conditions illustrated in the following diagram.

B ——C
The morphism h is a normal epimorphism, while dim B = 3
and dim C = 2, It is assumed that for all such B, C,
and h:B—C, for any feB(X,C), the diagram can be filled
in with geB(X,B) so that heg = f and |g| = |f|. Then

X* satisfies the condition that for any Banach space YcZ
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with dim 2 = 3 and dim Y = 2, every element in B(Y,X*)
has a norm preserving extension from Z to X¥.

*

£
h!
0 —Y —>

X
*
L |
1 8
]
(]
Z

Proof: A morphism g'eB(Z,X*¥) must be found so that

lg'| = |£']| and g'oh' = £' where h' is the insertion map.

a7

Consider the dual diagram where cX:X——+X** is the canonical

embedding.
X
V4
//
c
// v X
g // X ##*
/7
.7 £
¥ h'¥* ¥
A >y #*
By assumption, g:X-—Z¥* exists so that h'¥%eg = f'*ocX
and |f'*ocX| = |g].
X*
-x-T
'
£
ht**
y * >7, % %
*
c c
Y h' Z
Y >Z

If f' can be shown to be c;°f'**°cY’ then letting g'
g*ocz, the proposition is proved. Let yeY and xeX.

Then if y denotes cy(y) and x denotes ex(x),
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[(cyef'**ec )ylx = [ch(£1**(3))]x
= [f'**(f)ocx]x
= [§af'*ocx]x = [fr\af'*]}'E

y(xet")

= y(£r#(x))
= (xef")y = x(£'(y))
= £'(y)(x).

This means cyof'*¥ocy = £,

The next lemma will also be used below.

Lemma 2.27 If X is a Banach space, SX(xo,ro) denotes

{xeX:|x-x,| < r,}. If two balls SX(xl,rl) and Sy (x5 ,rp)

o
intersect in X, then Sx(xl,rl)nsx(xz,rz)nA # ¢ where A is
any two-dimensional subspace of X containing Xy and Xoe
Proof: Let C = (l-a)xl+ax2, 0 <a <1, be the curve in
X connecting x; and x,. C is homeomorphic to [0,1].
Hence there exists a maximum o, in [0,1] so that
(l—ao)xl+aox2 is in SX(xl’yl)° It can be shown that
.I(l-ao)xl+aox2-xl| = r; and |(l—ao)xl+aox2-x2| < ro.

The following facts, given here without proof, will

be needed for the next proposition.

Facts 2.28 (1) If X is a Banach space, let {Sx(xa,ra)}

be a collection of mutually intersecting balls in X.
Then there is a Banach space Z2X with dim Z/X = 1 such
thatlgsz(xa,ra) # ¢. For proof see [8, p.51] and [12].

(2) Let X be a Banach space such that S54(0,1) has
at least one extreme point, and such that X has the

following property:
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For every collection of four mutually intersecting
balls {Sy(x, ,r;): i = 1,2,3,4} such that {x : i =
i"1 i
1,2,3,4} span a two-dimensional subspace of X,
L
N S(xi,ri+€) # ¢ for every €>0.
i=1
Then X* is a space Li. For proof see [8, p.T1l].

Theorem 2.29 The following statements are equivalent.

(1) X is equivalent to a space L%.

(2) If B is reflexive and
0 —A —B —+C —0
is any normal exact sequence in B, then
0 —B(X,A) —B(X,B) —B(X,C) —0
is strictly normal exact.
(3) Same as (2) with B finite dimensional.
(4) Same as (2) with dim B = 3 and dim C = 2.

Proof: Statement (1) implies (2). By (2.22)

0 —C* —B¥ —A¥ —0
is strictly normal exact. By (2.19)
0 —(X8C*) —> (XEB*) —(XBA*) —>0
is normal exact. Again by (2.22)
0 —(XOA*)* —>(X®B*)* —s(XQCH*)* —>0
is strictly normal exact. By (1.7) the following diagram

is commutative with £A,€B, and £C equivalences.

(%) 0 —>(XOA*)* — (XOB*)* —(X®C*)* —0
o s
(%) 0 —B(X,A**)—B(X,B**)—B(X,C**¥)—0

This means sequence (##) is strictly normal exact, or
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since B is reflexive (hence A and C are reflexive),
0 —B(X,A) —B(X,B)—B(X,C)—0
is strictly normal exact.
The proofs that (2) implies (3) and (3) implies (L)
are trivial.

Statement (4) implies (1). From the hypothesis of

(4) , X satisfies the conditions of (2.26). It will be
established that X* (in which the unit ball alweys has

an extreme point by the Krein-Milman theorem [3, p.L4ko])
satisfies (2) of (2.28) so that X** will be a space L%.
By (2.25) X will then be a space L%. It is sufficient

to show that for every collection of four mutually inter-
secting balls {Sx*(xi,ri): i =1,2,3,4} such that the
centers span a two-dimensional subspace of X¥, there
exists & x in X* such that |x-xi| <ry for i = 1,...,k.
Let Y be the two-dimensional subspace spanned by the set
{x;: 14 =1,2,3,b}. By (2.27) the balls in {Sy(x; ,r;):
i=1,2,3,4} are mutually intersecting. By (1) of (2.28)
there exists Zo2Y with dim Z/Y = 1 and a point z in Z

such that |z—xi| =r, for i = 1,...4. Let g:Z2-—X¥* be

1

the operator whose restriction to Y is the insertion

f:Y—>X* and for which |g| = |f| (see (2.26)). Then
x = g(z) satisfies for each i = 1,...,4,
|x-x;| = |gl(z-x4)| < |z-x;] < r;. Q.E.D.

One might ask whether the condition that B be

reflexive in (2) of (2.29) may be dropped. The answer
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is contained in the following theorem. In order to prove
this theorem, several observations from the literature
are needed, and they are given here without proof.

Facts 2.30 (1) Let X be a space L% where the measure is

not discrete. This means that L% is not a space R% (see
(2.14)). Then X contains a subspace isometric to L!(0,1).
(L1(0,l) is the classical space of Lebesque integrable
functions from (0,1) to I.) See [6, p.159]. Hence,

X has a subspace isometric to the two-dimensional inner
product space [9, p.k493].

(2) A Banach space is called smooth if the norm is
Gateaux differentiable at every point on the boundary of
its unit ball. The space 2% does not contain any smooth
subspace [9, p.498)]. The two-dimensional inner product

space is smooth [2, p.119].

Theorem 2.31 The following statements are equivalent.

(1) X is equivalent to a space Y%.
(2) 1f
(%) 0 —A —B —C —0
is any normal exact seguence in B, then
() 0o —B(X,A) —BX,B) —B(X,C)—0
is normal exact.
(3) If (#) is strictly normal exact in B, then
(##) is strictly normal exact.
() 1If 0 —A —B—X —0

is strictly normal exact in B, then for every
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Banach space Y,
0 —B(Y,A) —B(Y,B) —B(Y, Xx) —0
is strictly normal exact.

Proof: Statement (3) implies (1). Let A be a closed

linear subspace of the Banach space B and let f :A—B
be the insertion map. The sequence

0 —A —B—B/A—>0
is a normal exact sequence. By (2.22), the sequence

0 —(B/A)¥ —B¥* —pA¥ —0
is strictly normal exact. Therefore by (3),

0 —B(X,(B/A)*) —B(X,B*) —B(X,A*) —0
is strictly normal exact. Therefore by (1.8), the

following diagram is commutative.

(%) 0 —B(X,(B/A)*) —B(X,B*) —B(X,A*) —0
l“B/A l“B l”A
(%%) 0 —>(XOB/A)* ——(XBB)* —(XQA)* —0

Therefore (##) is strictly normal exact which implies ,
0 —>(XBA)#* —>(X@B)*¥ —(XBC) ** —0
is strictly normal exact. This means X®A—>X8B is an
isometric map, so that by (2.24), X is equivalent to &
space L%. It must still be established that the measure
u is discrete, that is, X is a space ﬂ%. If not, by (1)
of (2.30), X has a subspace isometric to the two-dimen-
sional inner product space. Consider the space Ri =
X%(sx,u) as in (2.14) where Sy is the unit ball of X

with the discrete topology. If teﬂi, t can be written
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as z Aixx- where t(xi) = Ai and E|Ai| < ®, Define
X.ES 1
1 X
h:Y%——+X by h( z Aixx ) = Zkixi. Then the sequence
xieSX i

0 —Ker h-—+g% —Q—+X——+O

is strictly normal exact. If
1
0 —B(X,Ker h) —B(X, RI) —B(X,X)—0
is strictly normal exact, the map iX:X —X has a norm

preserving lifting X-—+Q%. This means the diagram

X
,/
.
f1=—n—x
commutes for some f:X——+f; where |f| = 1. Moreover, f is
an isometric map as |x| = |n(f(x))| < |£(x)]| < |x]| for

all x in X. Therefore,‘X% contains a smooth subspace,
the space isometric to the inner product subspace of X.
By (2) of (2.30), this is impossible.

Statement (1) implies (2). Let Z be any Banach

space. The space B(Q;(E,u),z) is isometrically isomorphic
to x;, the space of bounded sequence (za), aeE, of ele-
ments of Z. This isomorphism is given by
o 1
(zo)ely — (A )eflm] Auz,).

oel
Let k:Q} —C be in B and let £>0 be arbitrary.

i
Jx

B —&—c —0

There exists, therefore, a unique element c¢ = (ca) in X:
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corresponding to k as above; and |c| = sup|ca| = |k]|.
aelE

For each aeE, let byeB be such that g(ba) = ¢, and

> |byl-e. set b = (b ), .g- Then vel3 ana

legl

[b| = sup[b,| < sup(fe,f+e) < |e]+e.
aeE aelE

The element b corresponds to a continuous linear map
h:Ri——+B with |h| = |b] < |k|+e. It is immediate that
goh = k., Hence,

s(f1.5)—s(]i,c)—o0
is normal exact. It is easy to show that for any space
X in B the sequence

0 —B(X,A) —B(X,B)—B(X,C)

is normal exact. Hence (1) implies(2).

Statement (1) implies (3). If
0 —A —B —C —0
is strictly normal exact, in the proof of (1) implies (2)

= |ba] with g(b,) = ¢, so that |[o] = |e|. Therefore

leg |

o
x| = [n].

Statement (2) implies (1). By a demonstration

similar to that in the proof that (3) implies (1), it can
be shown that X must be equivalent to a space L%. It
must still be shown that this is a space Ei. Consider
again the space Xi(SX’“) as in (2.14) where Sy is the
unit ball of X. As shown in the proof of (3) implies (1)
X is isomorphic to a quotient space K%(Sx,u)/H. By
assumption, since

0 —H —-J%(SX M) L-*R}(SX,IJ)/H —0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3L



is normal exact,
i i
0 —B(X,H) —B(X,A;) —B(X, [[/H) —0
is normal exact. If gsB(X,g;/H) is the isomorphism men-
tioned above, then k:X——+?% exists so that hek = g or
-1 . . Ql gl
(g eh)ek = ix. Therefore, X is a retract of A;. In I
the weakly compact subsets are compact [3, p.295].
Therefore, the same is true for X. However, if X is a
space L; where the measure is nondiscrete, X contains
1 .
L (0,1) by (1) of (2.30). But in Ll(O,l) the sequence
fn = sin nx for n = 1,2, ... , for example, converges
weakly but not in the norm topology. See [18, pp.336 +
1
377]. Therefore X must be a space [I'

Statement (4) is equivalent to (1). The proof can

be found in [9, p.L498].

Theorem 2.30 The following statements are equivalent.

(1) X is equivalent to Li.
(2) Ir
(%) 0 —A —B —C —*0
is strictly normal exact, then
(#%) 0 —X®A —X®B —X&C —»0
is normal exact.
(3) If (#) is normal exact with B reflexive,
then (##) is normal exact.
(4) If (%) is normal exact with B finite
dimensional, then (%*%) is normal exact.

(5) If (%) is normal exact with B of dimension
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3 and C of dimension 1, then (%##%) is normal
exact.

Proof: Statement (1) implies (2) by (2.19) Using
(2.23), statement (2) implies (3). It is easy to see
that (3) implies (%) and (4) implies (5). It must now
be shown that (5) implies (1). Let

0 W —Y —Z —0
be any normal exact sequence in B with dim Y = 3 and
dim 2 = 2. By (2.22),

0 —Z¥ —Y¥ —W¥ —0
is strictly normal exact with dim Y*¥ = 3 and dim W¥ =
By assumption,

0 —X®Z* —XOY* —XBW* —0
is normal exact. By (2.22),

0 —>(XOW*)* —(XOY*)* —(X@2%*)* —0
is strictly normal exact. As in the proof of (2.29),
this means that

0 —B(X,W**) —B(X,Y**) —B(X,2%%) —0
is strictly normal exact. Hence,

0 —B(X,Ww) —B(X,Y) —B(X,2) —0
is strictly normal exact. By (2.29), X is equivalent

1
to LI'
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IIT NATURAL TRANSFORMATIONS AND THEIR DUALS

Definition 3.1 Let T:F—G be a natural transformation

from functor F to G. The dual transformation Dt:DG—DF

(refer to (1.10)) to T is the transformation which assigns
to each object X in B the morphism (DT)X:DGX-—+DFX defined by
((DT)XH)A = MyeT, for neDGX, A in B.

Definition 3.2 Let T:F —G be a natural transformation.

To each morphism f:X—Y in B associate the morphism

1(f) defined as T,oF(f) or its equal Gfort

Y X’
Ff
FX >FY
TX 1TY
l Gf
GX *GY

The transformation T is called a compact natural trans-

formation if whenever f:X—Y is a compact operator
[3, p.485], ©(f) is also a compact operator.

Definition 3.3 Similar to (3.2), the concepts of weakly

compact, epimorphic, and monomorphic natural transformations

are defined. Thus, for example, T is a monomorphic
transformation if whenever f is a monomorphism, t(f)
is a monomorphism,.

Definition 3.4 A functor F:B—B is compact(weakly

compact , epimorphic, or monomorphic) if the identity

natural transformation i1_,:F—F is compact (weakly com-

F
pact , epimorphic, or monomorphic).

37
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The purpose of this section is to prove, among other

results, that if a transformation is compact, its dual

is compact.

Definitions and Notations 3.5 Let F:B —B be a functor

and F::B-—ﬁB the functor given in (1.6). For each A in B

define f; as the compositions of the functors %% and I,.

Using the functors EA’ define functor DF by the rules:
(1) if X is in B, DFX = (F —E,), the natural
transformations from F to EX'
(2) if f:X —Y is a morphism in B, then DFf:

ﬁ%x —DFY is defined by the commutative diagram

Ta

FA.\\\\\ >ZXA
¥ g * %
(DFf(T))A \\\\‘ (f@lA)
ZYA

where Te(F-—+§x) = DFX.
For each A in B and X in B, let ni be the natural
embedding of A&X into (Aéx)**. It is easy to verify that
for each A in B the maps n% generate a natural transfor-

A:EA——+§A. Using the natural transformations nA,

mation n
define a natural transformation p:DF-—+ﬁ§ by the assign-
ments:

A .
(8) = no8 8eDFA, A in B.

These assignments are depicted by the following commuta-

tive diagram.
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Bx
FX Ny ¥E, X
(p,0) lnA
A X \\\\* X
T X
A

Lemma 3.6 The assignment p is indeed a natural transfor-
mation.
Proof: Let f:A—B be in B. It must be verified that

the following diagram commutes.

DFf
DFA > DFB
P p
AJ o~ l B
~ Ff ~
DFA — DFB

Let 6eDFA = (F-—+2A). Then if X is in B,

[B%f(nA°9)]X = (fSiX)**onioa .

[(b”pfepA)e]x X

Also,

[(poDF)0ly = [p (DF£(8))], = neDF£(6)y

B ~ .
nxo(fle)°eX.

: o * % A = B o i
In the diagram below, (folx) ° Ny nx°(folx).

. f&ix .
A®X »B@X
nﬁl , |2
(foix)** N
(Adx)** > (BOX ) **

This means

~ A B ~
c ) #% = i
(f@lx) onxoe nxo(falx)oex.

X
. . A A,
Since for each A in B, lpA(O)I = |nfe6| and n, is an
isometric map for each X in B, |pA(6)| = |6[; that 1is,

pA is an isometric map.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Definition 3.7 For each A in B, let Tr:A¥§A —I be the

continuous linear operator which is the unique extension

of the map from A¥®A —I given by

n n
J a¥ea, —] a¥(a,).
i=1 + 0t oi=p b7
(It can be checked that |Tr| = 1.) Also for each A in B,

define the linear mapping AA:DFA-—+F:A by the rule AA(e) =
TroeA* for 6¢DFA; this is shown by the following commuta-

tive di:gram.

eA* -
F(A%*) —A¥QA
I
Since 'AA(G)I = ITr°9A*| A leA*I < lef, IAA‘ < 1.

Lemma 3.8 The mappings AA generate a natural transforma-
tion A:DF—F¥,

*
Proof: Since |A| < 1, condition (1) of (1.3) remains to

be shown. Let f:A-—B be in B and 6eDFA. It must be

demonstrated that ((Ff*)*oAA)B = (ABoDFf)e.

DFf
DFA +~DFB
)\A )\B
(Fe*)*
(FA*)* “(FB*)*

Now
((Ff*)*oAA)e = AA(b)oFf* = Tred ,oFf*, and
(AgeDFE)8 = AB(DFf(e)) = Tro(foi o y.

Since ee(F-—+2A), the following diagram commutes.
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b1

3]
B#
#* > *
FB ZAB
* i mf¥
Ff llAaf
6
A
* > *
FA EAA

Therefore to prove the proposition, it suffices to show

. R n
that Tro(iAof*) = Tro(foiB*). Let iglaiob; be an element
in A®B*. Then

- n * n *
[Tro(iAof*)](.Z ajob,) Tr( § a;0(b.°f))

i=1 i=1
n
*
= ) bi(f(ai)),
i=1
and
- n * n *
[Tre(foigy)]( | ajeby) = Tr(.z £(a;)eb,)
i=1 i=1
n
*
= ] v,(£(a3)).
”~ P Ai=l
Therefore, Tro(iAof*) = Tro(f@iB*)awB*-—+I.

The next important lemma is proved in [11, p.82].
Lemma 3.9 There exists a natural transformation ¢:F:——+ﬁ%
such that ¢oA = p and |¢]| < 1.

Proposition 3.10 For each A in B, AA is an isometric

linear function of DFA into (FA%)¥*,

Proof: Let 0eDFA. Using (3.6) and (3.9),

lo] IpA(e)I = I(erlA)el A IAAGI < leots
IAA(e)l.

Corollary 3.11 Let X in B be finite dimensional. If FX

which implies |0]

is finite dimensional, DFX is finite dimensional. Let
X in B be reflexive. If FX is reflexive, DFX is reflexive.

Definition 3.12 Let F:B—B be a functor. A subfunctor
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G:B—B of F is a functor so that,
(1) for each X in B, GX is a closed subspace
of FX; and
(2) if f:X—;+Y is in B, Ff(GX)eGY and Gf = Ff
on GX.

Proposition 3.13 For any functor F:B—B, DF is naturally

equivalent to a subfunctor R of F:.
Proof: For each A in B, let RA be the subspace of (FA¥)¥*

equivalent to DFA by (3.10). Since the diagram

DF?f
DFA »DFB
*a lAB
(Fr*)* +
(FA*)* »(FB*) ¥

commutes for f:A—B in B, and each yeRA equals AA(O)

for a unique 6eDFA; (Ff*)*(y) = (ABoDFf)G, an element

in RB. This means (Ff*)*(RA)CRB. Therefore, by defining
Rf to be (Ff*)* restricted to RA, these assignments make
R a subfunctor of F: naturally equivalent to DF.

Lemma 3.14 Let t:F —G be a natural transformation.

For each A in B, let T:A be the morphism (TA*)*:(GA*)*-—#
*
(FA*)*, The morphisms T, generate a natural transfor-
. * % # A
mation 1 :Gy —F,..

Proof: Let £f:X —Y be in B. Since T is a natural trans-

formation, the following diagram commutes.

Ff*

Fy#* — FX*
T Ty %
Y*l GE#* X

GY ¥ > GX¥*
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Hence, the following diagram commutes.

(GE*)*
(Gx¥*)* »(GY*)*
* *
Tex Txy
(Fe*)*
(FX*)* »(FY#*)*
. * % *
Since IT*AI = I(TA*)*l = ITA*|, |T*| < ®» so that 1, is a

natural transformation.

Definition 3.15 Let t:F——G be a natural transformation,

"F' a subfunctor of F, and G' a subfunctor of G. Then F'

and G' are compatible subfunctors with respect to 1 if

for each X in B, the restriction T, of Tx to F'XCFX

X
maps F'X into G'X.

Lemma 3.16 The mappings Ty defined in (3.15) generate a

natural transformation T:F'—G'.
Proof: Let f:X-—Y be in B. Since Ty, Ty, F'f, and G'f
are the restrictions of Ty 5Ty Ff, and Gf; the inner

square below commutes,.

Ff
FX »FY
R\\\\\\ F'f /////

F'X sF'Y
TX fx ?Y TY
G'f
G'X »G'Y
4 ./ Gf \
GX »GY

Proposition 3.17 Let 1:F—G be a natural transformation
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and T::G:-—+F: the generated transformation defined in
(3.14). Then DG and DF are naturally equivalent to com-
patible subfunctors of G: and F: respectively (compatible
with respect to T:).

Proof: Let R and S be the subfunctors of F: and G: which
by virtue of (3.13) are naturally equivalent to DF and

DG respectively. Let A:DF —F, and A':DG —G, be these
equivalences. Let f:X —Y be & morphism in B. Consider

the following diagram.

(Gr*)*
(Gx*)* > (GY*)*
R\\{§ o ////
85X > SY
.l
(3 8) '_]_ )\'-1
DGf Y,
DGX *DGY
* =% | ) *
T*X Tax QTX DTY Tey Ty
i
; DFf
I DFX *DFY
X Ay l
v Rf r
RX > RY
J/ \
} /X (Ff*)* . N
(FX*)* > (FYy#*)*
Define ?:x to be the morphism AxoDrxokgl. It must be
shown jxof§X = T:Xoix where iX and jy are insertion maps.

Let seSX. Then s = Troex* for a unique 6eDGX. Also

(Dty(0)), = 6,07, for each A in B and Dt,(6)eDFX. There-
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*
fore, Tyy(s) in RX is the element Tro® F(X*)——1I.

x#°Txe?

Now consider s = Troex* as an element of (GX*)¥* vie iX'

*
By definition tsy = (Tx*)*:(GX*)*—»(FX*)*. Therefore,

*

* = * .
Tay(Trobyy) = Trobyyet Hence, JyoTyy, = Tyy,oiy and

X¥*°
-% . s * . -
Tgyx 1s the restriction of Tt to SX. Similarly Txy is
the restriction of T:Y to SY.

Proposition 3.19 If T1:F —G is a compact natural trans-

formation, then T::G:-—+F: is also.
Proof: Let f:X—Y be compact. It must be shown that
any one of the equal morphisms
(tyu)®e(GE*)* = 1} oGyf = Fyfothy = (FE¥)%oqy,
is compact. Since f¥:Y* —X* is compact [3, p.485] and
T is a compact transformation, Gf*orY* is compact.
Hence (Gf*ory*)* = (TY*)*O(Gf*)* is compact.

Lemma 3.20 Let T:F —G be a natural transformation,

F' and G' compatible subfunctors with respect to t of

F and G, and T:F'—G' the transformation given by (3.16).
If T is a compact transformation so is T:F'—G'.

Proof: Let f:X —Y be a compact mapping. The morphism
G'fc?x is the restriction of the morphism GfoTX to F'X
(refer to (3.16)). Let S' be the closed unit ball of

F'X and S the closed unit ball of FX. It suffices to

show G'fofx(s') is sequentially compact in G'Y (see

[3, p.22]). Since S'eS and G'foTX(S') = Gfet,(8')cGfoty(8),
every sequence of points in Gf'o?X(S') is a sequence in

Gfet,(8). Since Gfoty(S) is sequentially compact, every

x(
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sequence of points in Gf‘ofX(S') has a subsequence con-
verging to a point of GY. However since G'Y is closed in
GY, this point is in G'Y; and Gf'o?X(S') is sequentially
compact.

Lemma 3.21 Let 17:F —H be a natural transformation which

is the composition of the natural transformations n:F -—G
and 8:G—H3; that is, T = 6en. If 6 or n is compact, T
is compact.

Proof: Let f:X—Y be a compact map. In the commutative

diagram
Ff
X > FY
Ny Ny
4 Gf v
GX > GY
eX eY
' HE ‘
HX - HY

if Hf°9X is compact , then Hf°‘rX = vaex"nX is compact
(see [3, p.486]). 1If nyeFf is compact, then TyeFf =
9Y°HY°Ff is compact.

Theorem 3.22 1If T:F—G is a compact natural transfor-

mation, then D1:DG —DF is a compact natural transforma-
tion.

. . * *
Proof: Since T:F—*C is compact, by (3.19) 1,:G4—F«
is compact. By (3.17), DG and DF are naturally equivalent

to compatible subfunctors S and R of G: and F:. By (3.20),
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the transformation ?::S-—+R is compact. Refering to dia-
gram (3.18), Dty = X§°f:X°Ai for each X in B, or Dt =
XJo?:oA'. By (3.21) Dt is compact.

Theorem 3.23 If 1:F—G is a weakly compact natural trans-

formation, then Dt:DG —DF is a weakly compact natural
transformation.

Proof: By similar proofs, it can be shown that with the
words "weakly compact" inserted for the word "compact"

in (3.19), (3.20), and (3.21) the corresponding statements
are true. Using these altered statements , the proof of
this theorem is similar to the proof of (3.22).

Theorem 3.24 If T:F—G is an epimorphic natural trans-

formation, then DTt:DG——DF is a monomorphic natural
transformation.
Proof: Let f:A —B be a monomorphism. Then f¥:B¥ —A¥
is an epimorphism. Hence, TA*oFf*:FB*——+GA* is an epi-
morphism since T is epimorphie. Therefore,

(T 4o FE¥)* = (Ff*)*o't:* = F:foT:A = Tyf
is a monomorphism, or T::G:——+F: is monomorphic. Using
diagram (3.18), it can be seen that DFfeDty is a mono-

morphism. Hence DT is monomorphic.

Theorem 3.25 Let F:B —B be a functor. Then

(1) if F is compact, DF is compact;
(2) if F is weakly compact, DF is weakly
compact; and

(3) if F is epimorphic, DF is monomorphic.
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Proof: Let 1p:F —F be the identity transformation.

Then Dt lpe Therefore if lp is compact, weakly com-

.
pact, or epimorphic, by (3.22), (3.23), and (3.24),
DtF = 1p is respectively compact , weakly compact, or
monomorphic. Q.E.D.
Results (3.22) through (3.25) have been proved

independently in a similar way by Evans in [k4].
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IV CHARACTERIZATIONS OF COMPACT FUNCTORS

In this section, necessary and sufficient conditions
will be given for the functors Iy and QX to be compact.
More generally, conditions will be given to insure that
certain functors F:B —B are compact.

Definition 4.1 A functor F:B —fB has finite rank (or is

a finite rank functor) if whenever a morphism f:A—B has

finite rank (dim f(A) is finite), Ff:FA —FB has finite
rank.

Lemma 4.2 A functor F:B —B has finite rank if and only

if FX is finite dimensional whenever X is finite dimensional.
Proof: Let f:A—B in B have finite rank. Since f(A)

is finite dimensional, it is a Banach space and the fol-
lowing is a commutative diagram in B, where g and f' are

the obvious maps.

£(Aa)

A > B

Therefore the following diagram commutes.
F(£(4))

Ff? \\\}g
yd Ff \A

FA * FB

Therefore, Ff(FA) is contained in s finite dimensional
Banach space Fg(F(f(A))) and Ff has finite rank.

Conversely, let A be a finite dimensional Banach

49
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space. Then iA:A——+A has finite rank. Hence iFA(FA) = FA

has finite dimension.

Definition 4.3 Let X and Y be in B. An element f in

B(X,Y) is a Fredholm operator if

(1) Ker £ = £1(0) is finite dimensional, and
(2) Coker £ = Y/f(X) is finite dimensional.
The proof of the following lemma can be found in

[13, p.120].

Lemma 4.4 Let X and Y be in B. If feB(X,Y) and there

exists h and h' in B(Y,X) such that hef-iy and foh'-iY

are compact, then f is a PFredholm operator. Conversely,

if f is a Fredholm operator, then there exists a g in

B(Y,X) so that gof-iy and fog-iy have finite rank and

hence are compact.

Definition 4.5 A functor F:B—B is a Fredholm functor

if whenever f:A—B is a Fredholm operator, Ff:FA—FB is
a Fredholm operator.

Proposition 4.6 A functor F:B—B is a Fredholm functor

if and only if it has finite rank.
Proof: Let A be a finite dimensional Banach space. Then
0:A—A (the zero morphism) is a Fredholm operator.
Hence F(0) = 0:FA—FA is Fredholm, which implies Ker F(0) =
FA is finite dimensional.

Conversely, let F have finite rank and let f:A —B
be a Fredholm operator. Using (4.l4), there is a g:B—A

in B such that fog—iB and gof—iA have finite rank. Hence,
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FfeFg-1i and FgaFf-iFA have finite rank and hence are

FB
compact. By (4.4), Ff is a Fredholm operator.

Corollary 4.7 If F:B—B is a Fredholm functor so is

DF:B—B.

Proof: If F has finite rank so does DF by (3.11) and
(h.2).

Lemma 4.8 If F:B—B is a compact functor , then F has
finite rank and hence is a Fredholm functor.

Proof: Let A be a Banach space. Then iA:A——+A is compact
if and only if A is finite dimensional. Let A be finite
dimensional. Then, by assumption, iFA:FA——+FA is compact
so that FA is finite dimensional. The result follows

from (L4.2).

Corollary 4.9 If zx is a compact functor, X must be

finite dimensional.
Proof: By (4.8), if A is a finite dimensional Banach

space, then X®A must be finite dimensional. 1In particular,

-~

X®I = X must be finite dimensional. Q.E.D.
Let N = {1,2,...,0} with the discrete topology. The

space Xi(N,u), A in B, is the space of all n-tuples a =
n
l,...,an) made up of elements of A with u(a) = } |ai|.
i=1
1
Define the functor Qn:B——+B by R;A RX(N,u).

1 .
Proposition 4.10 For each integer n, Xn:B-—*B is a com-

(a

pact functor.
Proof: Let f:A—B be a compact mapping. It suffices to

show that if (al,...,an)J = (alj’aej""’anj) for J = 1,2,...
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1 n
is a sequence in XnA so that for each J, Z laij‘ <1,
1 i=1
then L £((a) oiieyy)) = (2(ag)) flapy) e s2layy)) for
J = 1,2,... has a convergent subsequence. Since (alj) is
a sequence in A such that |alj| <1l for j = 1,2,... and

f is compact, the sequence f(a.,) has a convergent sub-

13

sequence f(a ). Thus a subsequence (f(a ) .f(a

) seees
13, 1dy 2y
f(anj )) of the original sequence (f(alj)""’f(anj)) is
k

obtained where f(a ) converges to a point b, of B. In

ljk
e similar manner , obtain from the sequence f(aQJk) a sub-
sequence converging to a point b2 of B. Using this sub-
sequence, a subsequence of (f(aljk)""’f(anjk)) is
obtained in which the two sequences formed by the first
two components on each n-tuple each converges to a point
of B. Continuing in this manner, eventually a subsequence
of (f(alj),...,f(anj)) for § = 1,2,... is obtained in
wvhich the sequence formed by each component converges to

a point of B. Clearly, this subsequence will converge

1
to the element of QnB that has for its components these

n-limits.

Proposition 4.11 The functor I ,1 is a compact
functor.

1
Proof: By (2.16), the functors ZXI(N and 2 are natur-
=== (0 ,u) n
a2lly equivalent by a transformation 1. Let f:A—>B be
a compact mapping. By naturality , the following diagram

commutes.
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i X%Gf

Y%(N’u)éA

TA TB
fle
1 n , 1l
fla g R:

By (4.10), ﬂéf is compact. Therefore iRiSf is compact.

Proposition 4.12 If X is a finite dimensional Banach

space , then ZX:B~—*B is a compact functor.

Proof: Let the dimension of X be n. Since g%(N,u) has
dimension n if N = {1,2,...,n}, Q%(N,u) and X are isomor-
phic via an isomorphism f. Therefore when g:A—B is in

B, the following diagram commutes.

. ixag R
X®A > X@B

f@iA f'@iB

ijg1eg
{1(N,u)8A A1 {3 (v, u)8B
If g is compact, then by (4.11) iXISg is compact. There-
fore ixég is compact. '
The following theorem summarizes the above discussion.

Theorem U4.13 The following statements are equivalent.

(1) X is a finite dimensional Banach space.
(2) ZX:B——+B is a compact functor.
(3) I :B——B is a Fredholm functor.
(%) 2 ,:B-—B is a compact functor.
(5) QX:B-—+B is a Fredholm functor.

The question remains whether each finite rank functor

is a compact functor. The following discussion shows that
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in all known cases the answer is in the affirmative.

Definition L4.14 A Banach space X is said to satisfy the

approximation property if for each €>0 and for each rela-

tively compact subset C of X, there exists a map f:X—X
of finite rank so that
[f(x)-x| < € for all x in C.
Note: No Banach space is known that does not satisfy
(4.14). see [5, p.135] and [17, p.521].
The following lemma is contained in a theorem by
Grothendieck [5, p.168].

Lemma 4.15 Let X be a Banach space that satisfies the

approximation property. Then for any Banach space Y,
for any compact mapping f:Y—X, there exists for each
€>0 a mapping fE:Y——*X of finite rank such that lf"fe| < €,
Proof: Since f:Y —X is compact, f(S) is relatively
compact in X if S is the unit ball of Y. Since X satisfies
(k.14), given €>0, there exists f :X—X of finite rank
such that |f (x)-x| < e for x in f£(S). Let f_ = f of:Y—X.
Then f_. has finite rank and

|£c-£1 = sup|£ (£(x))-£(x)| < e.

X€ES
Proposition 4.16 Let B denote the full subcategory of B

consisting of Banach spaces which satisfy the approxima-
tion property. Then a functor F:B—B is compact if and
only if F is a finite rank functor.

Proof: Necessity follows from (4.8). To prove the con-

verse, let f:A —B be a compact operator in B. By (k.15),
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there exists a sequence fn:A-—+B of operators with finite
dimensional range in B converging to f in the uniform
operator topology. By the hypothesis, an:FA-—ﬁFB are
operators of finite rank and hence are compact. Since

an-Ff|-i |t ~f| for n = 1,2,...,
the sequence an converges to Ff in the uniform operator
topology. Hence Ff is compact [3, p.486].

Theorem 4.17 Let f:A—>B be any compact mapping with

B satisfying the approximation property. If F:B —B is
a functor , then Ff:FA—FB is compact if and only if F
is a finite rank functor.

Proof: The proof is identical to that of (L4.16).

Corollary 4.18 Let f:A —B be any compact operator with

B a space with a Schauder basis. If F:B —B is a functor,
then Ff is compact if and only if F is a finite rank func-
tor.
Proof: Every Banach space with a Schauder basis satisfies
the approximation property. Indeed, let {b,} be a norm-
alized basis. Each b in B has a unique representation

P
b = 'z f(b)bn where feB¥* and the series converges uni-
formi;lon every compact subset of B.

Example 4.19 Consider the functor Qé:m-—+m given after

(4.6) where n is some positive integer. The functor Yé
can also be considered as a functor from B to B. Indeed,
let A be in B. It must be shown that {lA is in B. Let

C be any relatively compact set in [;A and €>0 be arbitrary.
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For each i = 1,... ,n let pi:QéA-—+A be the ith projection:
p;((ay,...,8,)) = a;. For each i, pi(ﬁ) is compact in
A. Let fi:A-—+A be a map in B of finite rank so that
for each x in p;(C), Ifi(x)-xl < €/n. Define fE:[éA-—»
[1a by the formula £_((ay,...,a,)) = (£1(ay) 5.0 f ().
Then £, is in B and has finite rank. Also for each
(al,...,an) in CcféA,
|fe((al,...,an))—(al,...,an)l =
igllfi(ai)-ail < €.
Therefore QéA is in B. This example reaffirms the validity
of (k4.10).
Now let G and F:B —B be functors such that for each
A in B, GA is isomorphic to FA. Then if F can be consid-
ered as a functor from B to ﬁ, so can G. If X is a finite
dimensional space, ZXA and QXA are isomorphic to QéA
where n is the dimension of X (see (2.15) and [17, p.522]).
Therefore Iy and Q. map B into B if X has finite dimension.
The following lemma is similar to (4.15) and is

contained in a result by Grothendieck [5, p.168].

Lemma 4.20 If Y is in B so that Y* satisfies the approx-

imation property, then for any Banach space X, for any
compact mapping f:Y —X, there exists for each €>0 a
mapping f_:¥Y—X in B of finite rank so that | £ -f] < €.
Proof: Since f:Y—X is compact, it is weakly compact.
Therefore , f¥*(Y*¥)cn, (X)cX** where n :X —X*¥ is the

natural embedding [3, p.482]. Since f¥:X*¥ —Y¥ is also
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compact , the image of the unit ball of X¥ by f* is con-
tained in a relatively compact subset C of Y¥, By assump-
tion, for each €>0 there is a mapping fé:Y*-*»Y* in B of
finite rank so that |fé(y*)-y*| < e for'all y¥ in C. Now
represent f! by the sum fé(y*) = Zfi(y*)yﬁ, v¥eY¥, fieY**,
and where yI are basis elements for the range of fé in Y¥*,
Then flof* = X(fiof*)(-)y:, and by the above argument,
Fjof* = f**(fi) = xienX(X)CX**. This implies

If*-in(-)y:|= sup lf*(X*)-Xxi(X*)Y:I
x®eX¥® ,|x*|<1

=| iupl|f*(x*)_2fi(f*(x*))y:|
x* <

= sup [£*(x*)-f'(£*(x*))| < ¢
|x*]<1 ¢

since f*(x*)eC. Since f*—in(')y: is the adjoint of
f—ZyI(*)xi (treating the x; as elements of X), the
inequality

lf-Zy:(-)xi| <€
is true. Letting fe = Zy:(')xi, the lemma is proved.

Theorem 4.21 Let f:Y—X be any compact map with Y¥*

satisfying the approximation property. If F:B—B is a
functor, then Ff is compact if and only if F is a finite

rank functor.

Lemma 4.22 Let h:C —A be a normal epimorphism and

g:B—D a normal monomorphism in B. Then
(1) f:A—B is compact if and only if fo.h:C —B

is compact , and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o7



58

(2) £:A—*B is compact if and only if geof:A —D

is compact.
Proof: (1) If £ is compact, foh is compact. Suppose
foh is compact. Since h:C—*A is a normal epimorphism,
there is a bounded set U in C such that h(U) = S, the unit
ball in A. By assumption, f(S) = £f(h(U)) is relatively
compact in B,

(2) 1If f is compact, gof is compact. Now suppose
gof is compact. Then f*og¥* is compact with g¥* a normal
epimorphism. Hence by (1), f* is compact. Therefore f
is compact.

The following proposition gives sufficient conditions
for a functor to be compact.

Proposition 4.23 Let F:B —B be a functor.

(1) If F is a finite rank functor and preserves
normal epimorphisms, then F is compact.

(2) If F is a finite rank functor and preserves
normal monomorphisms , then F is compact.
Proof: (1) Let f:A—B be a compact map. Consider the
space f% = Y%(S,u) as in (2.1L4) where S is the unit ball
of A with the discrete topology. Then the map h:f%-—»A
given by h(x) = ) x(s)s is a normal epimorphism. The
operator foh:fi%iEB is compact. According to Grothendieck
[5, p.185], the space (gi)* satisfies the approximation
property. By (4.21), F(feh) = FfeFh is compact. Since

Fh is a normal epimorphism, by (4.22), Ff is compact.
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(2) Again, let f:A —B be a compact map. Let S¥%
be the unit ball of B*. The dual of I%(s*,u) is the space
Q;(S*,u), the Banach space of all functions x:S%¥ —I such
that |f| = sup|f(s*)| is finite. According to

s¥cgo*

Grothendieck [5, p.185], {;(S*,u) satisfies the approxi-
mation property. The map g:B ~+Y;(S*,u) given by
g(b) = xy :S% —I, where xp,(s*) = s*(b), is an isometric
map. The map gef is compact. By (4.17), F(gef) = F(g)oF(£)

is a compact map. Since F(g) is an isometric map, F(f)

is compact by (L4.22).
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