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Highly Hamiltonian Graphs and Digraphs

Zhenming Bi, Ph.D.

Western Michigan University, 2017

A cycle that contains every vertex of a graph or digraph is a Hamiltonian cycle. A
graph or digraph containing such a cycle is itself called Hamiltonian. This concept is
named for the famous Irish physicist and mathematician Sir William Rowan Hamilton.
These graphs and digraphs have been the subject of study for over six decades. In this
dissertation, we study graphs and digraphs with even stronger Hamiltonian properties,
namely highly Hamiltonian graphs and digraphs.

A Hamiltonian graph G of order n > 3 is k-path Hamiltonian for some positive
integer k if for every path P of order k, there exists a Hamiltonian cycle C' of G such
that P is a path on C. A graph G of order n > 3 is pancyclic if G contains a cycle
of length /¢ for each integer ¢ with 3 < ¢ < n. These two concepts have been studied
extensively. For integers k and n with 2 < k < n — 1, a graph G of order n is k-path
pancyclic if every path P of order k in G lies on a cycle of every length from k + 1 to
n. We present sufficient conditions for graphs to be k-path pancyclic. For a graph G of
order n > 3, we establish sharp lower bounds in terms of n and k for (a) the minimum
degree of G, (b) the minimum degree-sum of nonadjacent vertices of G and (c) the size
of G such that G is k-path pancyclic

A graph G of order n > 2 is panconnected if for every two vertices u and v, there is
a u — v path of length ¢ for every integer ¢ with d(u,v) < ¢ < mn — 1. For two vertices u
and v in a connected graph G, a u — v geodesic is a shortest © — v path in G. A graph G
of order n is geodesic-pancyclic if for each pair u, v of vertices of G, every u — v geodesic
lies on a cycle of length k for every k with max{2d(u,v),3} < k < n. For a nontrivial
graph G that is not complete, let o2(G) denote the minimum sum of the degrees of
two nonadjacent vertices in G. It is known that if G is a graph of order n > 4 such

that o2(G) > 3"2_ 2 then G is both panconnected and geodesic-pancyclic. We present

improved lower bounds for panconnected and geodesic-pancyclic.



A Hamiltonian digraph D of order n > 3 is /-path Hamiltonian for some positive
integer £ with 1 < ¢ < n if every (directed) path of order ¢ lies on a (directed) Hamiltonian
cycle of D. The Hamiltonian extension number he(D) of D is the greatest positive
integer ¢ such that D is j-path Hamiltonian for every integer j with 1 < j < £. For
a Hamiltonian oriented D graph of order n > 4, it is shown that (1) if D is (n — 2)-
path Hamiltonian, then D is both (n — 1)-path Hamiltonian and n-path Hamiltonian
and (2) if D is not n-path Hamiltonian, then D is neither (n — 1)-path Hamiltonian
nor (n — 2)-path Hamiltonian. We also study connections between path Hamiltonian
oriented graphs and their underlying graphs. Furthermore, we study path Hamiltonian
tournaments, including regular tournaments and almost regular tournaments. For a
Hamiltonian graph G, let H(G) = {D : D is a Hamiltonian orientation of G}. The
upper Hamiltonian extension number he™ (G) of G is the maximum value of he(D) among
all D € H(G) and the lower Hamiltonian extension number he™ (G) is the minimum such
value. These two parameters are determined for some classes of Hamiltonian graphs.
Results, conjectures and open questions are presented.

A rainbow coloring of a connected graph G is an edge coloring ¢ of G (where adjacent
edges may be colored the same) with the property that for every two vertices u and v of
G, there exists a u — v rainbow path (no two edges of the path are colored the same). In
this case, G is said to be rainbow-connected (with respect to ¢). The minimum number
of colors needed for a rainbow coloring of G is referred to as the rainbow connection
number of G. This concept has been studied extensively in the past decade.

A path that contains every vertex of a graph is a Hamiltonian path. A graph G
is Hamiltonian-connected if every pair of vertices of G are connected by a Hamiltonian
path. A graph is edge-colored if each of its edges is assigned a color (where adjacent
edges can be assigned the same color). A path P in an edge-colored graph is a rainbow
path if no two edges of P are colored the same. An edge coloring of a Hamiltonian-
connected graph G is a Hamiltonian-connected rainbow coloring if every two vertices
of G are connected by a rainbow Hamiltonian path. The minimum number of colors
required of a Hamiltonian-connected rainbow coloring of G is the rainbow Hamiltonian-
connection number hre(G) of G. If G has order n and size m, then n —1 < hre(G) < m.
The rainbow Hamiltonian-connection number is investigated for the Cartesian product
of complete graphs and of odd cycles with K5. As a result of this, both the lower
bound n — 1 and the upper bound m for hrc(G) are shown to be sharp. We also study
Hamiltonian-connected rainbow colorings of the powers of connected graphs and two
classes of Hamiltonian-connected graphs having the minimum possible size.

A (directed) path that contains every vertex of a digraph is a Hamiltonian path. A



nontrivial digraph D is Hamiltonian-connected if for every pair u, v of distinct vertices of
D, there exists both a Hamiltonian u — v path and a Hamiltonian v — u path. For a non-
trivial Hamiltonian-connected digraph D, an arc coloring of D is called a Hamiltonian-
connected rainbow coloring if for every pair u,v of distinct vertices of D, there is both
a rainbow Hamiltonian u — v path and a rainbow Hamiltonian v — v path. The min-
imum number of colors required of a Hamiltonian-connected rainbow coloring of D is
the rainbow Hamiltonian-connection number of D, denoted by hrc(D). It is shown that
(1) if D is a nontrivial Hamiltonian-connected digraph of order n, then hre(D) =n — 1
or hre(D) = n and (2) if G* is the symmetric digraph of G, then hre(G*) < hre(G).
Consequently, if G is a Hamiltonian-connected digraph n > 4 and hre(G) = n — 1, then
hre(G*) = n— 1. Furthermore, there exist Hamiltonian-connected digraphs D of order n
with hre(D) = n.

An edge coloring of a graph G is proper if every two adjacent edges of G have different
colors and the minimum number of colors in a proper coloring of G is the chromatic index
of G, denoted by x/(G). Let G be an edge-colored connected graph, where adjacent edges
may be colored the same. A path P in G is a proper path in G if no two adjacent edges
of P are colored the same. An edge coloring c is a proper-path coloring of a connected
graph G if every pair u, v of distinct vertices of GG are connected by a proper u—wv path in
G. The minimum number of colors in a proper-path coloring of G the proper connection
number of G. Recently, this topic has been studied by many.

An edge coloring of a Hamiltonian-connected graph G is a proper Hamiltonian-path
coloring if every two vertices of G are connected by a properly colored Hamiltonian
path. The minimum number of colors in a proper Hamiltonian-path coloring of G
is the proper Hamiltonian-connection number of G. Proper Hamiltonian-connection
numbers are determined for several classes of Hamiltonian-connected graphs and two
classes of Hamiltonian-connected graphs of minimum size. In particular, it is shown that
hpc(Ky,) = 2 for n > 4 and hpe(C O Ky) = 3 for all prisms C O K», where C' is an odd

cycle.
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Chapter 1

Introduction

1.1 Basic Definitions and Notation

A Hamiltonian path in a graph G is a path containing every vertex of G and a graph
having a Hamiltonian path is a traceable graph. A Hamiltonian cycle in a graph G
is a cycle containing every vertex of G and a graph having a Hamiltonian cycle is a
Hamiltonian graph. A graph G is Hamiltonian-connected if G contains a Hamiltonian u—
v path for every pair u, v of distinct vertices of G. Among many sufficient conditions for a
graph G to be traceable, Hamiltonian or Hamiltonian-connected are those concerning the
minimum of the degree sums of two nonadjacent vertices in G and are those concerning

the size of G. For a nontrivial graph G that is not complete, let
09(G) = min{degu + degv : uwv ¢ E(G)}.

For a connected graph G, let diam(G) denote the diameter of G (the largest distance
between two vertices of G). It is known that if G is a graph of order n > 3 such that
02(G) > n — 1, then G is connected and diam(G) < 2. In fact, more can be said. The

following result is well known (see [16, p. 152], for example).

Theorem 1.1.1 If G is a graph of order n > 2 such that o2(G) > n — 1, then G is

traceable.

The following two results are due to Ore, the first of which was obtained in 1960 [42]
and the second in 1963 [43].

Theorem 1.1.2 (Ore) If G is a graph of order n > 3 such that o2(G) > n, then G is

Hamiltonian.

Theorem 1.1.3 (Ore) If G is a graph of order n > 4 such that o2(G) > n+ 1, then

G is Hamiltonian-connected.



Each of Theorems 1.1.1-1.1.3 has a corollary providing a lower bound on the mini-

mum degree 0(G) for a graph G to possess the respective property.

Corollary 1.1.4 If G is a graph of order n > 2 with §(G) > (n — 1)/2, then G is

traceable.

The following corollary is the first theoretical result on Hamiltonian graphs. This

result occurred in 1952 and is due to Gabriel Dirac [17].

Corollary 1.1.5 (Dirac) If G is a graph of order n > 3 with 6(G) > n/2, then G is

Hamiltonian.

Corollary 1.1.6 If G is a graph of order n > 4 with §(G) > (n + 1)/2, then G is

Hamultonian-connected.

All bounds stated in Corollaries 1.1.4, 1.1.5 and 1.1.6 are best possible for, in each
case, if the respective bound is reduced by %, then the statement is no longer true.
The following results give other sufficient conditions for a graph to be traceable,

Hamiltonian (see [14, p. 136]) or Hamiltonian-connected (see [43]), respectively.

Theorem 1.1.7 If G is a graph of order n > 3 and size m > (”51) + 1, then G is

traceable.

Theorem 1.1.8 If G is a graph of order n > 3 and size m > (";1) + 2, then G s

Hamultonian.

Theorem 1.1.9 (Ore) If G is a graph of order n > 4 and size m > (";1) + 3, then G

is Hamiltonian-connected.

Some 40-50 years ago, there was a great deal of research activity involving Hamilto-
nian properties of powers of graphs. For a connected graph GG and a positive integer k,
the kth power G* of G is the graph whose vertex set is V(G) such that uov is an edge of
G* if 1 < dg(u,v) < k where dg(u,v) is the distance between two vertices v and v in
G (or the length of a shortest u — v path in ). The graph G? is called the square of G
and G the cube of G. In 1960, Sekanina [55] proved that the cube of every connected
graph G is Hamiltonian-connected and, consequently, the cube of a connected graph G is
Hamiltonian if its order is at least 3. In the 1960s, it was conjectured independently by
Nash-Williams [39] and Plummer (see [14, p. 139]) that the square of every 2-connected
graph is Hamiltonian. In 1974, Fleischner [20] verified this conjecture. Also, in 1974
and using Fleischner’s result, Chartrand, Hobbs, Jung, Kapoor and Nash-Williams [8]
proved that the square of every 2-connected graph is Hamiltonian-connected. Thus, the

square of every Hamiltonian graph is Hamiltonian-connected.
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1.2 Panconnected and Pancyclic Graphs

A graph G of order n is panconnected if for every pair u, v of distinct vertices of GG, there
is a u — v path of length k for every integer k with d(u,v) < k < n — 1. This concept
was introduced in the doctoral dissertation [47] of Williamson. It is shown in [1] that
if G is a connected graph, then the cube of GG is panconnected. The following result of
Williamson [48] was obtained in 1977.

Theorem 1.2.1 (Williamson) If G is a graph of order n > 4 with 6(G) > (n + 2)/2,

then G is panconnected.

This bound too is sharp since the statement is no longer true if (n 4 2)/2 is replaced
by (n +1)/2 [48]. Furthermore, Williamson showed that if G is a graph of order n > 4
such that 02(G) > n+ 2, then G need not be panconnected. For example, for the graph
G of order 8 shown in Figure 1.1, 02(G) = 10 = n + 2 but G is not panconnected since,
for example, d(u,v) =1 but G contains no u — v path of length 2 (see [7]).

u

AN

v

Figure 1.1: A graph G of order n with o2(G) =n + 2
such that G is not panconnected

Williamson [48] not only showed that o2(G) > n + 2 does not imply that a graph G
of order n > 4 is panconnected but also o2(G) > n + ¢ does not imply that a graph G of
order n is panconnected for any constant ¢. He did prove the following, however.

Theorem 1.2.2 (Williamson) If G is a graph of order n > 4 such that o2(G) > 22,

then G is panconnected.

Williamson showed that if n is even, then the lower bound for o2(G) in Theorem 1.2.2

3”2_ 2 cannot be replaced by 3”2_ 4 Thus, Williamson showed that

if the lower bound in Theorem 1.2.2 is reduced by 1, then the result no longer holds. In

is best possible, that is,




Chapter 2, it will be shown that the lower bound 3"; 2 in Theorem 1.2.2 can be replaced
by 3”2—_3 when n is odd.

A graph G of order n > 3 is pancyclic if G contains a cycle of every possible length,
that is, G contains a cycle of length ¢ for each integer ¢ with 3 < ¢ < n. The following

result was obtained by Bondy [52] in 1971.

Theorem 1.2.3 (Bondy) If G is a graph of order n > 3 such that o2(G) > n, then

either G is pancyclic or n is even and G = K

|3
|3

For two vertices u and v in a connected graph G, a u — v geodesic is a u — v path
of length d(u,v) in G. A graph G of order n is defined in [6] to be geodesic-pancyclic
if for each pair u,v of vertices of G, every u — v geodesic lies on a cycle of length k
for every k with max{2d(u,v),3} < k < n. In particular, a geodesic-pancyclic graph is
edge-pancyclic, that is, every edge of G lies on a cycle of each of the lengths 3,4,...,n.
The following results are due to Chan, Chang, Wang and Horng [6].

Theorem 1.2.4 (Chan, Chang, Wang and Horng) If G is a graph of order n > 4 such
that 02(G) > 2222 then G is geodesic-pancyclic.

Here too, it is known that if n is even, then the lower bound for o2(G) in Theo-
3”2_ 2 cannot be replaced by 3”—2_4. In Chapter 2, it will
be shown that the lower bound % in Theorem 1.2.4 can be replaced by 3”; 3 when n
is odd.

For a connected graph G of order n > 4 and an integer k£ with 1 < k < n — 3, the

rem 1.2.4 is best possible, that is,

graph G is k-Hamiltonian if G — S is Hamiltonian for every set S of k vertices of G and
k-Hamiltonian-connected if G — S is Hamiltonian-connected for every set S of k vertices
of G. If the order of a connected graph G is at least 4, then Chartrand and Kapoor
[9] showed that the cube of G is 1-Hamiltonian. Over the years, many other highly
Hamiltonian concepts have also been introduced and studied (see [22, 25, 26, 27, 51] for

example).

1.3 Path Hamiltonian Graphs

The concepts of Hamiltonian cycles, Hamiltonian paths and Hamiltonian graphs are,
of course, named for the famous Irish physicist and mathematician Sir William Rowan
Hamilton. Hamilton observed that every path of order 5 on the graph G of the do-
decahedron can be extended to a Hamiltonian cycle of G. That is, for every path P

of order 5 in G, there exists a Hamiltonian cycle C of G such that P is a path on C.

4



What Hamilton observed for paths of order 5 on the graph of the dodecahedron does
not hold for all paths of order 6 as is illustrated in Figure 1.2 since the path of order 6
(drawn with bold edges) cannot be extended to a Hamiltonian cycle on the graph of the
dodecahedron. This led to a concept defined in [54] for all Hamiltonian graphs.

Figure 1.2: The graph G of the dodecahedron

A Hamiltonian graph G of order n > 3 is k-path Hamiltonian, k > 1, if for every
path P of order k, there exists a Hamiltonian cycle C' of G such that P is a path on C.
The Hamiltonian cycle extension number hce(G) of G is the largest integer k such that
G is k-path Hamiltonian. So 1 < hce(G) < n. Therefore, if hce(G) = k, then G is a
Hamiltonian graph such that

(1) for every path P of order k, there is a Hamiltonian cycle of G' containing P as a

subgraph;

(2) for k < n—1, there is some path @ of order k+ 1 for which there is no Hamiltonian
cycle of G containing () as a subgraph.

Among the results obtained in [54] are the following.

Theorem 1.3.1 (Chartrand, Fujie and Zhang) If G is a graph of order n > 3 and
(G) >n/2, then
hee(G) > 26(G) —n+ 1.

The lower bound in Theorem 1.3.1 is sharp.

Theorem 1.3.2 (Chartrand, Fujie and Zhang) If G is a graph of order n > 4 such
that 6(G) > rn for some rational number r with 1/2 <r < 1, then

hee(G) > (2r — )n + 1.



The lower bound presented in Theorem 1.3.2 for the Hamiltonian cycle extension
number of a graph is sharp for every rational number r. The following two theorems are

known (see [54], for example).

Theorem 1.3.3 Let k and n be positive integers such that n > k+ 2. If G is a graph
of order n such that 02(G) > n+k — 1, then G is k-path Hamiltonian.

Theorem 1.3.4 Let k and n be positive integers such that n > k+ 2. If G is a graph
of order n and size m > (ngl) + k41, then G is k-path Hamiltonian.

Again, the lower bounds in both Theorems 1.3.3 and 1.3.4 are best possible for every

positive integer k.

1.4 Hamiltonian Digraphs

For a vertex v in a digraph D, the outdegree odv of v is the number of vertices of D
to which v is adjacent, while the indegree id v of v is the number of vertices of D from
which v is adjacent. The out-neighborhood N T (v) of a vertex v in a digraph D is the set
of vertices adjacent from v, while the in-neighborhood N~ (v) of v is the set of vertices
adjacent to v. Thus, odv = [NT(v)| and idv = [N~ (v)|. The degree degv of a vertex v
is defined by degv = odv + idv.

A digraph D is symmetric if whenever (u,v) is an arc of D, then (v, u) is an arc of D
as well. A digraph D is called an oriented graph if whenever (u,v) is an arc of D, then
(v,u) is not an arc of D. Thus, an oriented graph D can be obtained from a graph G
by assigning a direction to each edge of G. In this case then, the digraph D is called an
orientation of G. A tournament is an orientation of a complete graph.

When discussing digraphs, a path always refers to a directed path and a cycle always
refers to a directed cycle.

The underlying graph of a digraph D is the graph obtained by replacing each arc
(u,v) or symmetric pair (u,v), (v,u) of arcs by the edge wv. A digraph D is connected
(or weakly connected) if the underlying graph of D is a connected graph. A digraph D
is strong or strongly connected if for every pair u,v of vertices, D contains both a u — v
path and a v — u path. A digraph D of order at least 3 is Hamiltonian if D contains a
spanning cycle C'. Such a cycle C' is then called a Hamiltonian cycle of D. Thus, every
Hamiltonian digraph is strong. While every Hamiltonian digraph is strong, the converse
is not true in general. However, this is not the case for tournaments. The following

result is due to Camion [5].



Theorem 1.4.1 (Camion) A nontrivial tournament T is Hamiltonian if and only if

T s strong.

For a nontrivial digraph D, let o2(D) denote the minimum value of the degree sums

of two nonadjacent vertices in D, namely
o2(D) = min{degu + degv : (u,v), (v,u) ¢ E(D)}.

The following result of Meyniel [35] gives a sufficient condition for a digraph to be

Hamiltonian.

Theorem 1.4.2 (Meyniel) If D is a nontrivial strong digraph of order n such that
o92(D) > 2n — 1, then D is Hamiltonian.

The following are some known results on Hamiltonian digraphs (see [24, 49]).

Theorem 1.4.3 (Woodall) If D is a nontrivial digraph of order n such that odu +
idv > n whenever u and v are distinct vertices with (u,v) ¢ E(D), then D is Hamilto-

nian.

Theorem 1.4.4 (Ghouila-Houri) If D is a strong digraph of order n such that degv >

n for every vertex v of D, then D is Hamiltonian.
The following is a consequence of Theorem 1.4.4.

Corollary 1.4.5 If D is a digraph of order n such that odv > n/2 and idv > n/2 for

every vertex v of D, then D is Hamiltonian.

The following 1934 result of Rédei [40] is the first theoretical result on tournaments.

A path in a digraph D containing every vertex of D is a Hamiltonian path.
Theorem 1.4.6 (Rédei) Ewvery tournament contains a Hamiltonian path.

A tournament T is transitive if whenever (u,v) and (v, w) are arcs of T', then (u, w) is
also an arc of T'. It is known that (1) a tournament is transitive if and only if it contains
no cycles, (2) for every positive integer n, there is exactly one transitive tournament of
order n and (3) every transitive tournament contains exactly one Hamiltonian path.

A digraph D of order n > 3 is pancyclic if it contains a cycle of length ¢ for each
£ =3,4,...,n, while D is vertez-pancyclic if each vertex of D lies on a cycle of length £

for each £ = 3,4,...,n. Harary and Moser [28] showed the following.
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Theorem 1.4.7 (Harary and Moser) FEvery nontrivial strong tournament is pancyclic.
Moon [37] extended this result by showing the following (also see [38]).
Theorem 1.4.8 (Moon) FEvery nontrivial strong tournament is vertez-pancyclic.

While a graph G is Hamiltonian-connected if for every two vertices v and v of G,
there is a Hamiltonian v — v path, there are two natural ways to define this concept
for digraphs. A digraph D is weakly Hamiltonian-connected if for every two vertices
u and v of D, there is either a Hamiltonian v — v path or a Hamiltonian v — u path.
A digraph D is strongly Hamiltonian-connected or, simply, Hamiltonian-connected if for
every two vertices u and v of D, there is both a Hamiltonian ©—v path and a Hamiltonian
v —u path. A digraph D of order n is weakly panconnected if for each integer ¢ with
3 < ¢ <n-—1 and for every two vertices u and v of D, there is either a © — v path of
length £ or a v — u path of length £ in D. A digraph D of order n is stronly panconnected
or panconnected if for each integer ¢ with 3 < ¢ < n — 1 and for every two vertices u and
v of D, there are both a u — v path of length £ and a v — u path of length ¢ in D. For a

tournament 7" of order n, the irreqularity i(T) is defined as
i(T) = max{|odz —idz|: z € V(T)}.

Thus, if i(T") = 0, then T is regular and if i(T") = 1, then T is almost regular. Thomassen
[45] proved the following result in 1980.

Theorem 1.4.9 If T is a tournament of order at least 5i(T) + 9, then T is strongly
panconnected. In particular, if T is a reqular tournament of order at least 9, then T is
strongly panconnected. Furthermore, every almost reqular tournament of order at least 10

strongly panconnected.
The following is a consequence of Theorem 1.4.9

Corollary 1.4.10 If T is a tournament of order at least 5i(T) + 9, then T is strongly
Hamiltonian-connected. In particular, if T is a reqular tournament of order at least 9,
then T 1is strongly Hamiltonian-connected. Furthermore, every almost reqular tourna-

ment of order at least 10 is strongly Hamiltonian-connected.

Figure 1.3 shows two regular tournaments T and T~ of order 5 and 7, respectively.
It can be shown that the tournament 75 in Figure 1.3(a) is not Hamiltonian-connected;

while the tournament 7% in Figure 1.3(b) is Hamiltonian-connected.



N

(b)

Figure 1.3: Regular tournaments of order 5 and 7

In [45], Thomassen characterized weakly Hamiltonian-connected tournaments and
weakly panconnected tournaments and provided a sufficient condition in terms of con-
nectivity for a Hamiltonian path with prescribed initial and terminal vertex. From these
results, he verified that every 4-connected tournament is Hamiltonian-connected and
that every arc of a 3-connected tournament is contained in a Hamiltonian cycle of the
tournament. Furthermore, he described infinite families of tournaments demonstrating
that these results are best possible.

We refer to the books [14, 15] for graph theory notation and terminology not described
in this dissertation. All graphs and digraphs under consideration here are nontrivial and

connected.



Chapter 2

On k-Path Pancyclic Graphs

Inspired by the concept of k-path Hamiltonian graphs, we introduce the concepts of k-
path pancyclic graphs and path pancyclic graphs. For integers k and n with 2 < k < n-—1,
a graph G of order n is k-path pancyclic if every path P of order k in G lies on a cycle
of every length from k + 1 to n. In particular, a 2-path pancyclic graph G of order n is
called an edge-pancyclic graph, that is, every edge of GG lies on cycles of lengths from 3
to n. A graph G of order n > 3 is path pancyclic if G is k-path pancyclic for each integer
k with 2 < k <n — 1. In this chapter, we present sufficient conditions for a graph to be
k-path pancyclic in terms of its order, size, minimum degree as well as the sum of the
degrees of every two nonadjacent vertices of the graph.

In addition, we present sharp lower bounds for a graph to be panconnected or
geodesic-pancyclic, which improve results by (1) Williamson and (2) by Chan, Chang,
Wang and Horng, respectively, presented in Chapter 1.

2.1 Minimum Degree Conditions

In this section, we establish a sufficient condition on the minimum degree of a graph G
in terms of its order n and a fixed integer k with 2 < k < n — 1 such that G is k-path
pancyclic. We saw that if n > 4 and §(G) > 2L, then G is Hamiltonian-connected and
therefore GG is 2-path Hamiltonian. In fact, more can be said. First, we state a result
due to Faudree and Schelp [19].

Theorem 2.1.1 (Faudree and Schelp) If G is a graph of order n > 5 such that
02(G) > n+ 1, then for every pair u,v of distinct vertices of G, there is a w — v path of
length £ for every integer £ with 4 < <mn—1.

With the aid of Theorem 2.1.1, we are able to verify the following.
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Theorem 2.1.2 Let k and n be integers withn > 4 and 2 < k <n—1. If G is a graph
of order n such that §(G) > %’H, then every path of order k lies on a cycle of length
¢ for each integer € with k+1 < £ < n except possibly k + 2.

Proof. Let P be a path of order k where 2 < k <n — 1 in G, where say
P=(u=w,va,...,0p, =)

is a u — v path. We consider two cases, according to whether £k =2 or k£ > 3.

Case 1. k = 2. Then wv € E(G). If n = 4, then G = K, and the result is
true trivially. Thus, we may assume that n > 5. Since §(G) > ", it follows that
N(u)NN(v) # 0 and so there is w € V(G) such that (u,v,w,u) is a triangle in G. Hence
uv lies on a cycle of length ¢ = 3. Also, since §(G) > ”TH, it follows by Theorem 2.1.1
that there is a u — v path @y of length ¢ for every integer ¢ with 4 < ¢ < n — 1. Thus,

uv lies on a cycle of length ¢ for each integer ¢ € {5,6,...,n}.

Case 2. 3<k<n-—1. 1If k=3 andn =4, then G = K4 and the result is true
trivially. Thus, we may assume that n > 5. For each integer ¢ with £+ 1 < ¢ < n and
0 # k+2, we can write £ = (k —2) + ¢ for some ¢ with 3 < /¢ <n—k+2and ¢ # 4.
Then the graph H = G —{va,v3,...,v,_1} has order nyg = n— (k—2) and the minimum

degree

n+12<7—1 k2= [n—(k;Q)]-i-l _ nH2+1'

First, suppose that uv is an edge of H. It then follows by Case 1 that uv lies on a cycle
Cy of order ¢ for each integer ¢ with 3 < ¢ <n — (k—2) and ¢’ # 4. Then the u — v
path Cp — uv of Cp and P form a cycle of order £ = ¢/ + (k — 2) in G that contains

S(H) >

P. Next, suppose that uv is not an edge of H. Then the graph H' = H + uv has order
n—(k—2)and 6(H') > 6(H). Again by Case 1, the edge uv lies on a cycle Cy of order
¢"in H' for each integer ¢’ with 3 < ¢ <n— (k—2) and ¢ # 4. Similarly, the u — v path
Cyp — uv of Cp and P form a cycle of order £ = ¢’ + (k — 2) in G that contains P. L]

The lower bound for the minimum degree of a graph in Theorem 2.1.2 cannot be
improved. To see this, let n and k be integers of the same parity such that n > k 4 2
and let Fpy, F1, F5 be three vertex-disjoint graphs where Fy = K}, is the complete graph
of order k and Fy = Fy = K(;,_y)/» are the complete graph of order (n—k)/2. The graph
G is then constructed from Fpy, F, F» by joining every vertex of Fy to every vertex in F}
and Fy. Then the order of G is n and 0(G) = %H Observe that each path of order k

in Fj does not lie on any cycle of order n in G.
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We will deal with the exceptional situation in Theorem 2.1.2 when every path of
order k lies on a cycle of length k + 2 later in this section.

Recall that a graph G of order n is panconnected if for every pair u,v of distinct
vertices of G, there is a u—v path of length & for every integer k with d(u,v) <k <n-—1.
The following result was established by Williamson [48] in 1977, which was also stated
in Chapter 1.

Theorem 2.1.3 (Williamson) If G is a graph of ordern > 4 such that 6(G) > (n+2)/2,

then G is panconnected.

With the same minimum degree condition, Randerath, Schiermeyer, Tewes and Nolk-

mann [44] showed that those graphs are edge-pancyclic in 2002.

Theorem 2.1.4 (Randerath, Schiermeyer, Tewes and Nolkmann) If G is a graph of
order n > 4 such that §(G) > (n + 2)/2, then G is edge-pancyclic.

For two vertices u and v in a connected graph G, a u — v geodesic is a u — v path
of length d(u,v) in G. A graph G of order n is defined in [6] to be geodesic-pancyclic if
for each pair u,v of GG, every u — v geodesic lies on a cycle of length k for every k with
max{2dg(u,v),3} < k < n. In particular, a geodesic-pancyclic graph is edge-pancyclic.
The following result is due to Chan, Chang, Wang and Horng (see [6]), which was stated
in Chapter 1.

Theorem 2.1.5 (Chan, Chang, Wang and Horng) If G is a graph of order n > 4 such
that 6(G) > (n+2)/2, then G is geodesic-pancyclic.

Observe that if G is a graph of order n > 4 such that §(G) > (n + 2)/2, then
diam(G) < 2 and so a u — v geodesic in G is either the edge uv or a u — v path of

length 2. Therefore, the following result is an extension of Theorems 2.1.4 and 2.1.5.

Theorem 2.1.6 Let k and n be integers withn > 4 and 2 < k <n—1. If G is a graph
of order n such that 6(G) > ”TH“, then G is k-path pancyclic.

Proof. Let P be any path of order k¥ > 2 in G, say P = (u = v1,v2,...,0p = v) is a
u — v path. We consider two cases, according to whether k = 2 or k > 3.

Case 1. k = 2. Then uv € E(G). For each integer ¢ with 3 < ¢ < n, we can write
¢ =1{ +1 for some ¢' > 2. Since §(G) > (n + 2)/2, it follows by Theorem 2.1.3 that G
is panconnected and so G contains a u — v path Qg of length ¢ for each integer ¢’ with

1 =dg(u,v) < <n—1. Then Qu + uv is a cycle of order .
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Case 2. k > 3. For each integer ¢ with k + 1 < ¢ < n, we can write { = ¢' + (k — 1)
for some integer ¢ with 2 < ¢ <n —k+ 1. Then the graph H = G — {vo,v3,...,v5_1}
has order ng =n — (k — 2) and

n+k n—(k—-2)]+2 ng+2

S(H) > —(k-2) = > =~

Thus H is panconnected and furthermore dg(u,v) < 2. Therefore, H contains a v — v
path Qg of length ¢’ for each integer ¢’ with 2 < ¢ < ny — 1. Then Qu and P form a
cycle of order £ = ¢+ 1+ (k—2) =¢ + (k—1) in G that contains P. L]

The lower bound for the minimum degree of a graph in Theorem 2.1.6 cannot be
improved. To see this, let k& > 2 be an integer and let G = kK} V K2_;,, be the join of
kK and Kj2_j 1, where kK, is the union of k vertex-disjoint copies of Kj. Then G is
a k%-regular graph of order n = 2k? — k+ 1. Observe that §(G) = %’H = k2. However,
each path of order k in any subgraph K} in G does not lie on a cycle of order £+ 2 in G.

We now determine the exceptional situation in Theorem 2.1.2 when every path of
order k lies on a cycle of length k£ + 2. By Theorem 2.1.6, if GG is a graph of order n > 4
with §(G) > ”T*k, then G is k-path pancyclic for 2 < k < n — 1 and so every path
of order k lies on a cycle of length k + 2. Thus, it remains to consider the case when

I(G) = %IH and k and n are of opposite parity.

Theorem 2.1.7 Let k and n be integers withn > 5 and 2 < k < n — 3, where k and
n are of opposite parity, and let G be a graph of order n such that 6(G) = %’H Then
every path of order k in G lies on a cycle of length k + 2 if and only if (i) n = 5,6 or
(4i) n>7 and k =n — 3.

Proof. First suppose that n =5,6. If n =5, then k =2, 6(G) =3 and G = K5 — M
where M is a matching of size 1 or 2. If n =6, then k =3, 6(G) =4 and G = K¢ — M
where M is a matching of size 1, 2 or 3. In each case, it is easy to see that every
path of order k lies on a cycle of length k£ + 2 in G. Next, suppose that n > 7 and
k =mn—3. Then 6(G) = n—2 and we show that every path of order n — 3 lies on a cycle
of length n — 1 in G. Let P = (uy,ug,...,u,—3) be a path of order n — 3 in G and let
V(G) — V(P) = {v1,v2,v3}. Since 6(G) = n — 2, each of v, v2, v3 is adjacent to at least
one vertex in {v1,ve,v3} and to at least one vertex in {u1,u,—3}. Hence we may assume
that (v1,ve,v3) is a path in G and vou,—3 € E(G). Also, uy is adjacent to at least two
of v1,v2,v3 and so u; is adjacent to at least one of v; and v, say ujv; € E(G). Hence,

P lies on the cycle (u1,us, ..., un—3,v2,v1,u1) of length n — 1 in G.

13



For the converse, we show that for each pair k,n of integers with n > 7 and 2 <
k < n — 5 where k and n are of opposite parity, there is a graph G of order n with
I(G) = %IH such that G contains a k-path that does not lie on any cycle of length
k + 2 in G. We start with three graphs G1,Go and G3. Let G; = K be the complete

graph of order k and u and v are two distinct vertices of G, let Go = K n—x—1 be the
2

empty graph of order ”‘Tk—l and let G3 = K noko1 be the complete graph of order "_I;_l.

The graph G of order n is constructed from G; (1 < i < 3) by adding a new vertex w
and (i) joining w to each vertex in both G; and G3, (ii) joining each vertex of G; to
every vertex in Gg and (iii) joining each vertex in both V(G1) — {u,v} (if £ > 3) and
G+ to every vertex of G3. The graph G is shown in Figure 2.1. If x € {u,v,w} UV (G2),
then degga = 2=l if 2 € V(G1) — {u,v}, then deggx = n — 1 > =L (since
k < n—3) and if z € V(G3), then deggz = n —3 > %’H (since K < n — 5).
Thus, 0(G) = =L Let P, be a u — v Hamiltonian path of order k in G;. Since
Ng(u) =V (Py) = Ng(v) =V (P;) = V(G2) U{w}, which is an independent set of vertices
in G, it follows that if u is adjacent «' and v is adjacent to v’ where u/ # v/, then
u'v' ¢ E(G). Thus Py does not lie on any cycle of length k + 2 in G. ]

Figure 2.1: The graph G in the proof of Theorem 2.1.7

The following is a consequence of Theorems 2.1.2 and 2.1.7.

Corollary 2.1.8 Let k and n be integers withn > 4 and 2 < k <n —1 and let G be
a graph of order n with §(G) = %’H Then G is k-path pancyclic if and only if (i)
4<n<6or(it)n>7andk € {n—3,n—1}.

2.2 Degree-Sum and Size Conditions

In this section, we establish sufficient conditions on the degree-sum of nonadjacent ver-

tices and the size of a graph G (in terms of its order and a fixed integer k) such that G
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is k-path pancyclic. We begin with the degree-sum condition. We saw in Theorem 1.1.3
that if G is a graph of order n > 4 such that o2(G) > n + 1, then G is Hamiltonian-
connected. It is known, however, that there are non-panconnected graphs G of order n
such that o9(G) > n+2 (see [14, p. 133]). We saw such a graph of order 8 in Chapter 1.
Next, we illustrate this fact with the following more general example, which will provide
information on k-path pancyclic graphs.

Let n = 2p + 2, where p > 3, and let H = Ky, be the complete graph of order
2p. Partition V(H) into V; and Vo with |Vi| = |V2| = p. Define G to be the graph
obtained by adding two adjacent vertices x and y to H and joining (1) x to every vertex
in V7 and (2) y to every vertex in Vo. Then degx = degy = p+ 1 and degu = 2p
for all u € V(G) — {z,y}. Thus if u and v are two nonadjacent vertices in G, then
degu+degv =2p+p+1=(2p+2)+(p—1) > n+ 2 since p > 3. However, there
is no x — y path of length 2 in the graph G. Therefore, G is not 2-path pancyclic since
xy does not lie on a cycle of order 3 in G. In addition, if P is an x — y path of order
k for some integer k with 4 < k < n — 1, then P does not lie on a cycle of order k + 1
in G. Thus, G is not k-path pancyclic. This example also illustrates the fact that there
is no constant ¢ such that if G is a graph of order n with o2(G) > n + ¢, then G is

panconnected. Similarly, this example provides the following.

Proposition 2.2.1 For any two integers k and n withn >4 and 2 < k <n —1, there
is no constant ¢ such that if G is a graph of order n with o9(G) > n+c, then G is k-path

pancyclic.

The following two results provide sufficient conditions on o2(G) in terms of the order
of a graph G such that G is panconnected and geodesic-pancyclic, respectively (see
[6, 48]), which were also stated in Chapter 1.

Theorem 2.2.2 (Williamson) If G is a graph of order n > 4 such that o2(G) > 22,

then G is panconnected.

Theorem 2.2.3 (Chan, Chang, Wang and Horng) If G is a graph of order n > 4 such
that o2(G) > 3";2, then G is geodesic-pancyclic.

It can be shown that if G is a graph of order n > 4 such that o2(G) > 3”2_ 2 then

diam(G) < 2. Therefore, the following result is an extension of these two theorems

above.

Theorem 2.2.4 Let k and n be integers withn >4 and 2 < k <n-—1. If G is a graph
of order n such that o9(G) > W, then G is k-path pancyclic.
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Proof. By Theorem 2.2.2, the statement is true for £ = 2. Thus, we may assume that
k > 3. Let P be a path of order k in G, say P = (x = v1,v92,...,0p = y) isSan  — y
path. Let H = G — {v2,v3,...,v4_1}. The order of H isnyg =n—(k—2)=n—k+2.

If u and v are any two nonadjacent vertices of H, then

3 k—4 3n—k+2)—2 3ng—2
degHu+degHv2%—2(k—2): (n ; ) = nH2 .

Thus, H is panconnected by Theorem 2.2.2 and, furthermore, dg(z,y) < 2. Therefore,
H contains an x — y path Qg of length ¢ for each integer ¢ with

2<lV <ng—-1=n—-—k+1.
Then @y and P form a cycle of order
b=V+14+(k-2)=0+(k-1)
in G that contains P for each ¢ with k+1 </ < n. n

If 2 < k < n—2, then Theorem 2.2.4 can also be verified with the aid of Theorem 2.1.6
as follows. Assume, to the contrary, that G is not k-path pancyclic. It then follows by
Theorem 2.1.6 that there is a vertex w in G such that degu < ”TM < n —1 (since
k < mn —2). Thus, there is a vertex v in G such that u and v are nonadjacent and so

deggs v < n — 2. However then,
degg u + degg v < B 4 (n — 2) = 3kt
which is a contradiction.

The lower bound (3n + k —4)/2 in Theorem 2.2.4 for the sum of the degrees of two
nonadjacent vertices of a graph cannot be replaced by (3n + k£ — 6)/2. For example,
let H = Ky, be the complete graph of order 2p for some integer p > 3, let F' = K,
be the complete graph of order k¥ > 3 and let P = (z = vy,v2,...,0, = y) isan z — y
Hamiltonian path in F. Partition V(H) into V; and V, with |Vi| = |Va| = p. Define G
to be the graph obtained by (1) joining z to every vertex in Vi, (2) joining y to every
vertex in V5 and (3) joining each vertex v; (2 < i < k — 1) to every vertex in H. Then
the order of G is n = 2p + k. Furthermore,

degor =deggy=p+(k—1)anddegz=2p—1)+(k—1)=2p+k—2
for all z € V(G) — V(F). Thus, if u and v are two nonadjacent vertices in G, then

3n+k—6

deggu+deggv=2p+k—-2)+(p+k—1)=3p+2k—-3= 5
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Observe that the path P of order k does not lie on a cycle of order £ + 1 in G and
so G is not k-path pancyclic. On the other hand, the lower bound (3n + k — 4)/2 in
Theorem 2.2.4 for the sum of the degrees of two nonadjacent vertices of a graph can be
replaced by (3n + k — 5)/2 when n and k are of opposite parity. In order to show this,

we first present a useful lemma.

Lemma 2.2.5 Let k and n be integers withn >4 and 2 < k <n—1. If G be a graph
of order n such that §(G) > %’H, then |N(u) N N(v)| > k — 1 for every two distinct

vertices u and v of G.

Proof. For two distinct vertices u and v of G, let A = N(u)— N(v), B= N(v)— N(u)
and C' = N(u) N N(v). Since degpu = |A| + |C] > %’H and deggv = |B| + |C] >
nth=1 it follows that [A| > “E=L —|C| and |B| > “=L — |C|. If w ¢ E(G), then
|A| + |B| + |C| < n — 2; while if wv € E(G), then |A| + |B| + |C| < n. In either case,

Cl < n—(JA[+|B]) <n—2 (5= - |C])
and so |N(u) N N(v)| = |C| > k — 1 as desired. ]

We are now prepared to present a lower bound for a graph to be k-path pancyclic.

which is an improvement of Theorem 2.2.4.

Theorem 2.2.6 Let k and n be integers withn > 4 and 2 <k <n—1. If G is a graph
of order n with oo(G) > ?”L‘*'TH, then G is k-path pancyclic.

Proof. First, we show that if 05(G) > 325 then §(G) > “4=1. Let v € V(@) such
that deg, v = 0(G). Since G is not complete, §(G) < n — 2 and so there is a vertex u in
G such that wv ¢ E(G) and degg u < n—2. Because degq u+degg v > 02(G) > =5,
it follows that

3n+k—5 3n+k—5 k-1
degsz%—degGuZ%—(n—Z):%

and so 0(G) > %’H If 6(G) > "T‘H“, then G is k-path pancyclic by Theorem 2.1.6.

%’H and so k and n are of opposite parity. We can

Thus, we may assume that §(G) =
further assume that 2 < k < n —5 by Corollary 2.1.8. Now by Theorem 2.1.2, it suffices

to verify the following:

For integers n and k with n > 7 and 2 < k < n — 5, if G is a graph of order
n such that o9(G) > 32HE=5 and §(G) = =L then every k-path in G lies
on a cycle of length k + 2.
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Assume, to the contrary, that there is a path P = (uj,ug,...,ux) of order k for some
integer k with 2 < k < n — 5 that does not lie on any cycle of length k£ + 2 in G. Since
I(G) = %’H, it follows by Theorem 2.1.2 that P lies on a cycle of length k + 1 in G.
Let (ui,us,...,u, w,ui) be such a cycle. If there is v € V(G) — (V(P) U {w}) such
that v is adjacent to both w1 and w or v is adjacent to both u; and w, then P lies on
the cycle (ug,us,...,ug, w,v,u;) or on the cycle (uy,ua,...,ug, v,w,u;) of length k 4 2.
Thus, we may assume that no vertex in V(G) — (V(P)U{w}) is adjacent to both u; and
w or to both u; and w.
Since §(G) > ™E=L it follows by Lemma 2.2.5 that

|IN(u1) "N (w)| > k—1 and |N(ug) N N(w)| >k — 1.
This implies that
N(up) N N(w) = {ug,us,...,ux} and N(ug) N N(w) = {ui,ug,...,ux_1}.

Hence wu; € E(G) for 1 < i < k, uyu; € E(G) for 2 < i < k and wiu; € E(G) for
1<i<k—1. Let

X =V(G) - V(P)U{w}) ={x1,22,..., Tp——1}-

Since 6(G) = ”+12“_1 and u; is adjacent to exactly k vertices in V(P) U {w}, it follows
that w; is adjacent to at least "%IH vertices in X. We may assume, without loss of
generality, that u; is adjacent to z; for 1 <4 < ”_T'H Similarly, w is adjacent to the
k vertices of P and so w is adjacent to at least ”%’H vertices in X. Since there is no
vertex in X that is adjacent to both u; and w or to both u; and w and | X|=n—k—1,

it follows that

n—k—1
2

(i) w1 is adjacent to exactly vertices in X, namely xz; for 1 <i < "‘Tk_l,

(ii) w is not adjacent to any z; (1 < i < ”‘Tk—l) and so w is adjacent to all of the

”%IH remaining vertices in X, namely z; for ”%M <j<n-—k—1and

(iii) ug and u; have exactly the same neighbors in X.
This situation is illustrated in Figure 2.2, where
X = {1'1,.%2,...,.%%1@71} and Xo = X — X.
Therefore,

n+k—1

degs up = deggug = degqw = 5
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e

|X1| = 2=5=

N

Figure 2.2: A step in the proof of Theorem 2.2.6

Now let € X». Since z is adjacent to neither u; nor uy, it follows that degy z < n—3.
Because 02(G) > 3= and wyz ¢ B(G), it follows that

n+k—->5
degg u1 +degg x > %
However then,
3n+k—-5 n+k—->5 E+1
2 2 2
which, however, contradicts (2.1). (]

The lower bound %'*'TH in Theorem 2.2.6 is best possible. In fact, for every pair k,n
of integers with n > 7, 2 < k <n —1 and n and k are of opposite parity, there exists a
graph G of order n such that o9(G) = 3”%’“_7 and G is not k-path pancyclic. To see this,
let G1 = K}, where u and v are two distinct vertices of (G1, and Gy = K,,_j. Partition
the vertex set V(G2) into two sets X and Y where |X| = 2=E=1 and |Y| = =2+ (Note
that (1) if k = 2, then V(G1) —{u,v} = 0 and (2) if k = n — 1, then X = ().) The graph

G of order n is constructed from G and G2 by

(i) joining u to every vertex in X and v to every vertex in Y and

(ii) joining each vertex in V(G1) — {u, v} to every vertex in Gs.

The graph G is shown in Figure 2.3. Then degpu = ”“2“73, degpv =

degsw =n—1 for each w € V(G1) — {u, v} (if V(G1) — {u,v} #0), deggw =n — 2 for
w € V(G2). Thus,

n+k-7
2
for each y € Y. Let P, be a u — v Hamiltonian path of order k£ in ;. Since

02(G) = deggu + degpy =
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(Ne(u) = V(P)) N (Na(v) = V(F)) =0,

it follows that Pj does not lie on any cycle of length k£ 4+ 1 in G. Hence, G is not k-path

pancyclic.

| / \ !
Gy =Ky _j: ”_I;_l vertices "7§+1 vertices
X Y

Figure 2.3: Illustrating that the lower bound W in Theorem 2.2.6 is sharp

The following two results provide sufficient conditions on the size of a graph G for G

to be panconnected or geodesic-pancyclic, respectively (see [6, 48] ).

Theorem 2.2.7 (Williamson) If G is a graph of order n > 4 and size m > (ngl) +3,

then G is panconnected.

Theorem 2.2.8 (Chan, Chang, Wang and Horng) If G is a graph of order n > 4 and

size m > (ngl) + 3, then G is geodesic-pancyclic.

Since the diameter of a graph of order n > 4 and size m > (";1) + 3 is at most 2,

the following is an extension of Theorem 2.2.8.

Theorem 2.2.9 Let k and n be positive integers such that n > k + 2. If G is a graph
of order n and size m > (";1) + k+ 1, then G is k-path pancyclic.

Proof. By Theorem 2.2.7, the statement is true for £ = 2. Thus, we may assume
that k£ > 3. Let G be a graph of order n > k + 2 and size m > (";1) + k41 and let
P = (u=v1,v9,...,u, =v) be a path of order k in G. Let H = G — {vg,vs3,...,v5_1}.
Thus, H has order ng =n — k 4+ 2 and size

mH 2 <n;1>+’f+1—[(n—1)+(n—2)+---+(n—k+2)]

B n—k+1 _(np—1
_( : )+3_< ) )+3.

20



Thus, H is panconnected by Theorem 2.2.7 and, furthermore, di(x,y) < 2. Therefore, H
contains an u—v path Qu of length ¢’ for each integer £’ with2 < /¢ <nyg—-1=n—k+1.
Then Qp and P form a cycle of order £ = ¢/ +1+ (k—2) = '+ (k—1) in G that contains
P for each ¢ with k+1 < /{ <n. [

The bound on the size m of a graph in Theorem 2.2.9 cannot be improved. To see
this, let G be a graph of order n > k+2 > 4 consisting of a complete subgraph G’ of order
n — 1, where V(G') = {v1,v9,...,v,-1} and another vertex v adjacent to vy, ve,. .., v.
Then the size of G is m = (”51) + k. However, the path P = (vq,v9,...,v;) of order k
lies on no Hamiltonian cycle of G. Hence P cannot be extended to a cycle of order n in

G. Thus, G is not k-path pancyclic.

2.3 An Improved Bound for Panconnected Graphs

As we indicated in Chapter 1, it is known that if n is even, then the lower bound for
02(@G) presented in Theorem 2.2.2 for a graph G to be panconnected is best possible;
that is, 3”2_ 2 cannot be replaced by 3”2—_4. With the aid of Theorem 2.2.6, we next show
that % in Theorem 2.2.2 can be replaced by 3"2—_3 when n is odd.

Theorem 2.3.1 If G is a graph of order n > 4 such that oo(G) > 3”2_3, then G 1is

panconnected.

Proof. If n is even, then o9(G) > {3”2—_31 = # and so the result follows by Theo-
rem 2.2.2. Thus, we may assume that n is odd and so n > 5. Since 02(G) > 3%-3 and
n > 5, it follows that §(G) > “t. By Lemma 2.2.5, the diameter diam(G) of G (the
largest distance between two vertices of () is at most 2. Let u and v be any two vertices
of G. Thus d(u,v) =1 or d(u,v) = 2. We show that there is a u — v path of length ¢ for
every integer ¢ with d(u,v) < ¢ <n —1.

First, suppose that dg(u,v) = 1 or wv € E(G). Then (u,v) is a u — v path of
length ¢ = 1. For 2 < ¢ < n — 1, we apply Theorem 2.2.6 to the path (u,v) of order 2
(that is, k = 2 in Theorem 2.2.6). Since o9(G) > %3 = 32E=5 it follows that G is
2-path pancyclic and so (u,v) lies on a cycle Cyp of length ¢/ in G for 3 < ¢/ < n. Then
Cyp —uvisawu—uvpathof length £ =¢ —1in Gfor2</{<n-—1.

Next, suppose that dg(u,v) = 2. Since n > 5, it follows that

-3 -5
> =4+ 2 >t
2 2
By Theorem 2.1.1, there is a u — v path of length ¢ for every integer £ with 4 < /¢ <n—1.
Since dg(u,v) = 2, there is a u — v path of length ¢ = 2. Thus, it remains to show
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that there is a u — v path of length ¢ = 3. Let (u,w,v) be a u — v path in G. Because
§(G) > L it follows that N (v) N N (w) # 0 by Lemma 2.2.5. Let z € N (v) N Ne(w).
Since u ¢ Ng(v) and so u ¢ Ng(v) N Ng(w), it follows that  # u. Hence, (u,w,x,v) is
a u — v path of length 3. Therefore, there is a u — v path of length ¢ for every integer ¢
with d(u,v) =2<{¢<n-—1. ]

The lower bound 3"—2_3 in Theorem 2.3.1 is best possible; that is, 3%=3cannot be

2
replaced by 3”2_ 5 when n is odd. To see this, let G be the graph constructed from the

complete graph K,,_3 where n > 7 is odd and the path (u,v,w) of order 3 by
(i) joining u to exactly "773 vertices of K, 3,
(ii) joining v to the remaining ”T_s vertices of K,,_3 and
(iii) joining w to every vertex in K, _s.

n

See Figure 2.4. Then degsu = %1, degnv = ”%Fl, deg;w = degg x = n — 2 for each
= 3n2_5~ Since Ng(u) N Ng(v) = 0, it follows that G

contains no u — v path of length 2. Therefore, GG is not panconnected.

u

/o

I 4 /
3

Kn_s: "T*?’ vertices 5 vertices

vertex x of K,_3. Hence, 02(G)

v w
Q,

A) \ N N

Figure 2.4: Illustrating that the lower bound

=3 for o5(G) in Theorem 2.3.1 is sharp

2.4 An Improved Bound for Geodesic-Pancyclic Graphs

As we indicated in Chapter 1, it is known that if n is even, then the lower bound for
09(G) presented in Theorem 2.2.3 for a graph G to be geodesic-pancyclic is best possible;

that is, 3"2_ 2 cannot be replaced by %. However, it is not known whether 222 can be

2
replaced by % when n is odd. First, observe that Theorem 2.2.3 is best possible for
n = 5. For example, let G = CyV K be the wheel of order 5 (the join of a 4-cycle Cy and
K1) where Cy = (v1,v2,v3,v4,v1) and V(K1) = {v}. Then 02(G) = 6 = 23-3. Since

the vy — v3 geodesic (vi,v,v3) of order 3 (or the vy — vy geodesic (ve, v, v4) of order 3)

does not lies on any 5-cycle in G, it follows that G is not geodesic-pancyclic. On the
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other hand, for an odd integer n > 7, the lower bound for o3(G) in Theorem 2.2.3 can

be improved, as we show next.

Theorem 2.4.1 If G is a graph of order n > 4 and n # 5 such that 02(G) > 3";3,

then G is geodesic-pancyclic.

Proof. If n is even, then 03(G) > [2%52] = 3222 and so the result follows by Theo-
rem 2.2.3. Thus, we may assume that n > 7 is odd. Since 03(G) > 23 it follows that
§(G) > L and so diam(G) < 2. Let u and v be any two vertices of G. Hence, either

d(u,v) =1 or d(u,v) = 2. We show that every u — v geodesic lies on a cycle of length ¢

for every integer ¢ with max{2d(u,v),3} < ¢ <n.

First, suppose that d(u,v) = 1 or wv € E(G). We apply Theorem 2.2.6 to the path
(u,v) of order 2 (that is, k& = 2 in Theorem 2.2.6). Since 03(G) > 32 = 3"+2k_5,
it follows that G is 2-path pancyclic and so (u,v) lies on a cycle of each length ¢ =
3,4,...,n.

Next, suppose that d(u,v) = 2 and so uv ¢ E(G). Since §(G) > . and w ¢ E(G),
it follows that |Ng(u) N Ng(v)] > 3. Hence, every u — v geodesic lies on a cycle of

length ¢ = 4. For 5 < ¢ < n, let (u,w,v) be an arbitrary u — v geodesic for some
w € Ng(u) N Ng(v) and let H = G — w. Then the order of H is ny = n — 1. To show
that (u,w,v) lies on a cycle of length ¢ in G for each £ = 5,6, ..., n, it suffices to show
that H contains a uw — v path of length k for each k = 3,4,...,n — 2, as these paths
together with the path (u,w,v) produce the cycles in G with the desired property.

Since |Ng(u) N Ng(v)| > 3, it follows that [Ny (u) N Ny (v)| > 2 and so dg(u,v) = 2.
First, we show that H contains a u — v path of length 3. If this were not the case, then
no vertex in Ny (u) is adjacent to any vertex in Ny (v); for otherwise, let v’ € Ny (u) and
v" € Np(v) such that v'v' € E(H) and then (u,’,v’,v) is a u — v path of length 3. Let
x € Ng(u). Then zy ¢ E(H) for each y € Ny (v) and so xy ¢ E(QG) for each y € Ny (v).
Since | Ny (v)| = degy v = deg v — 1 > 2L it follows that

deggw < (n—1) — 251 = 23,

which contradicts the fact that 6(G) > "T‘H Therefore, H contains a u — v path of
length 3. For 4 < k < n — 2, since 03(G) > 3”{3 and n > 7, it follows that

3n—3
> _
- 2 2

2:?m—? n—"7T

UQ(H) =n-+

>ng + 1.

By Theorem 2.1.1, there is a w — v path of length k in H for every integer k with
4<k<n-2
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Therefore, H contains a u — v path of length k£ for each k¥ = 3,4,...,n — 2 and so
(u,w,v) lies on a cycle of length ¢ in G for every integer £ with 5 < ¢ < n. (]

The lower bound ?”3;3 in Theorem 2.4.1 is best possible; that is, 3"{ 3 cannot be

replaced by 3”—2_5 when n is odd. To see this, let G be the graph constructed from the

complete graph K,,_3 where n > 7 is odd and the path (u,w,v) of order 3 by

i) joining u to exactly 2=2 vertices of K, _3
joining y "5 ,

(ii) joining v to the remaining "773 vertices of K,,_3 and
(iii) joining w to every vertex in K, _s.

See Figure 2.5. Then deg; u = degv = ”Tfl, degow =n—1 and degn z = n — 2 for each

3n—5
2

does not lie on any cycle of length 4 in G, it follows that G is not geodesic-pancyclic.

vertex x of K,,_3. Hence, 02(G) = . Since d(u,v) = 2 and the u—v geodesic (u, w, v)

u
Q

7 7

3

w v
A ) L4 N A )
n—3

Kn_3: "% vertices —5- vertices

Figure 2.5: Showing that the lower bound

% for 09(G) in Theorem 2.4.1 is sharp
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Chapter 3

On k-Path Hamiltonian Digraphs

3.1 Introduction

A digraph D is Hamiltonian if D contains a spanning (directed) cycle. Such a cycle
is called a Hamiltonian cycle of D. A Hamiltonian digraph D of order n > 3 is ¢-
path Hamiltonian for some positive integer ¢ with 1 < ¢ < n if every (directed) path
of order ¢ lies on a (directed) Hamiltonian cycle of D. In this chapter, all paths and
cycles refer to directed paths and cycles. Thus, every Hamiltonian digraph D is 1-path
Hamiltonian and a Hamiltonian digraph D is 2-path Hamiltonian if each arc of D lies on
a Hamiltonian cycle in D. The Hamiltonian extension number he(D) of D is the greatest
positive integer ¢ such that D is j-path Hamiltonian for every integer j with 1 < j < /£.
Therefore, if D is a Hamiltonian digraph of order n > 3, then

1 <he(D)<n
and furthermore,

(i) he(D) =1 if and only if there is an arc in D that does not lie on any Hamiltonian

cycle of D and

(ii) he(D) = n if and only if every path in D lies on some Hamiltonian cycle of D; that
is, for each integer j with 1 < j < n, every path of order j lies on some Hamiltonian

cycle of D.

First, we describe some classes of Hamiltonian digraphs D of order n > 4 such that
he(D) = 1. For a pair n,r of integers with 3 <r <mn —1, let Cp,, be the Hamiltonian
digraph of order n obtained from the directed n-cycle (vq,va,...,v,,v1) by adding the
arc (v1,vr). The digraphs C73 and C74 are shown in Figure 3.1. Since the arc (vy,v,)

does not lie on any Hamiltonian cycle of D, it follows that he(C), ) = 1. In fact, C,, , is
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(-path Hamiltonian if and only if either £ =1 or n —r + 3 < ¢ < n. For example, C,, 3
of order n > 4 is ¢-path Hamiltonian if and only if £ € {1,n} and C,, 4 of order n > 5 is
¢-path Hamiltonian if and only if £ € {1,n — 1,n}. While every path of order 7 lies on
a Hamiltonian cycle in the digraph C7 3 of Figure 3.1, the path (v, vs, v, vs, v6, v7) of

order 6 lies on no Hamiltonian cycle in the digraph C7 3.

V1 U1
@ /
v7 \7}2 U7 5 Q Vo
UG U3 U6 & } U3
Vs V4 Vs V4

Figure 3.1: The digraphs C7 3 and C7 4

There are ¢-path Hamiltonian digraphs for some integers ¢ > 3 that are not (¢ — 1)-
path Hamiltonian. We have seen this for the class of Hamiltonian digraphs C,,, (3 <
r<mn—1).

We now describe another class of Hamiltonian digraphs D,, of order n > 4 such that
he(D,) = 1. Let D, be the Hamiltonian digraph of order n > 4 and size n + 2 with
Hamiltonian cycle (v1,ve, ..., v,,v1) such that e; = (v3,v1) and ea = (ve,v4) are arcs of
D,,. Figure 3.2 shows the digraph D,, for n = 7.

Us o

Figure 3.2: A Hamiltonian digraph D7 of order 7

No Hamiltonian cycle in D,, contains e; (or e3) and so he(D,) = 1. In fact, by
considering subpaths of the n-path (vs, v1, v, v4,vs5, .. .,vy,), it follows that D, is {-path

Hamiltonian if and only if £ = 1. Consequently, the Hamiltonian tournament of order 4
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is £-path Hamiltonian if and only if £ = 1.

Next, we describe two classes of Hamiltonian digraphs D of order n > 4 such that
he(D) = n. For a graph G, the symmetric digraph G* is obtained from G by replacing
each edge uv of G by the two arcs (u,v) and (v,u). The symmetric digraphs K} and C?

N

are shown in Figure 3.3.

Figure 3.3: Symmetric digraphs K} and C3

For integers k and r where k,r > 2, the digraph Dy, has vertex set V' that can be
expressed as the disjoint union Ulevi of k subsets V; of V where |V;| =r for 1 <i <k
such that (u,v) is an arc of Dy, if and only if u € V; and v € Vi 1(moa k) If kK > 3, then
Dy, 1 is the directed k-cycle C_"k; The graph D3 > is shown in Figure 3.4.

P

Va Vs

S

Vi

Figure 3.4: The digraph D3 o
The following result was obtained by Chartrand, Kronk and Lick [13] in 1969.

Theorem 3.1.1 A Hamiltonian digraph D of order n > 3 has Hamiltonian extension
number n if and only if D is either K, C) or Dy, for some positive integers k and r

where k > 2 with n = kr.

Thus, the Hamiltonian digraphs K7, %, D32 in Figures 3.3 and 3.4, whose orders

are n = 4,5, 6, have Hamiltonian extension number n.

3.2 On (n—1)-Path Hamiltonian Digraphs

We saw that all those Hamiltonian digraphs of order n in Theorem 3.1.1 have Hamiltonian

extension number n. In this section, we describe some results concerning (n — 1)-path
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Hamiltonian digraphs as well as (n — 2)-path Hamiltonian digraphs.
Figure 3.5 shows all Hamiltonian digraphs of order 3. By Theorem 3.1.1, he(D;) =
he(D3) = 3. For the remaining digraphs of Figure 3.5, he(D3) = he(Dy4) = 1.

ANARARA

Figure 3.5: Hamiltonian digraphs of order 3

Again by Theorem 3.1.1, the symmetric digraphs Kj and C} as well as C, are the
only Hamiltonian digraphs of order 4 having Hamiltonian extension number 4. The
Hamiltonian digraph of order 4 in Figure 3.6 is not a symmetric digraph. Since the path
(w,z,u) of order 3 lies on no Hamiltonian cycle of D, it follows that he(D) < 2. Let
C = (u,z,w,v,u) be a Hamiltonian cycle of D. The table accompanying Figure 3.6

shows that each arc of D lies on a Hamiltonian cycle of D. Hence, he(D) = 2.

U—=<——Du

Figure 3.6: A Hamiltonian digraph of order 4

arcs e of D Hamiltonian cycle containing arcs e
(v,u), (u,x), (z,w), (w,v): C

(u,v), (v,z), (w,u): (u,v,z,w,u)

(z,u), (u,w) (, u, w,v,u)

(w,x), (x,v): (w, x,v,u,w)

The digraph in Figure 3.6 shows that if D is a Hamiltonian digraph of order n that is
(n — 2)-path Hamiltonian, then D need not be (n — 1)-path Hamiltonian. This digraph

is not an oriented graph however.

Theorem 3.2.1 If D is a Hamiltonian oriented graph of order n > 4 such that D is
(n — 2)-path Hamiltonian, then D is also (n — 1)-path Hamiltonian.
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Proof. Since the result holds if D itself is a cycle, suppose that this is not the case.
Note that a digraph D of order 4 is 2-path Hamiltonian if and only if D itself is a cycle.
Hence, suppose that D is (n — 2)-path Hamiltonian, where n > 5. Consider an (n — 1)-
path P = (v1,v2,...,0,—1) with the vertex v, not on P. Since P’ = P — v, is an
(n — 2)-path, there is an arc between v,—1 and v, in D. We show that (v,_1,v,) must
be an arc of D.

Assume, to the contrary, that (v,,v,—1) is an arc of D. Since P’ lies on a Hamil-
tonian cycle of D, it follows that (vn—2,vy), (vn—1,v1) € E(D). Next, we consider the
(n — 2)-path P” = P — v;. Since P” lies on a Hamiltonian cycle of D, it follows that
(v1,vn), (Vn,v2) € E(D). Hence, D contains the (n—2)-cycle C' = (va,vs, ..., Vp_2, Un, V2)
and so C' — (vg,v3) is the (n — 2)-path (vs, v4, ..., Uy—2,0p,v2). Since C' — (va, v3) lies on
a Hamiltonian cycle of D, it follows that (v1,v3), (v2,vn—1) € E(D). If n =5, then the
3-path (v, v2,v4) lies on no Hamiltonian cycle, which is a contradiction.

We may therefore assume that n > 6. Since the (n — 2)-path C' — (v3,v4) lies on a
Hamiltonian cycle of D, it follows (v1, v4) and (vs, v,—1) must be arcs in D. However, the
(n — 2)-path (v1,v4, Vs, ..., Vn—2,Vpn, Up—1) lies on no Hamiltonian cycle, a contradiction.

Hence, as claimed, (v,—1,vy,) is an arc of D. Then (v,,v;) must be also an arc in
order for P’ to be on a Hamiltonian cycle. Consequently, P is on a Hamiltonian cycle in

D and so D is (n — 1)-path Hamiltonian. ]
On the other hand, if D is a Hamiltonian digraph of order n that is (n — 1)-path

Hamiltonian (whether D is an oriented graph or not), then D is also n-path Hamiltonian.

Theorem 3.2.2 If D is a Hamiltonian digraph of order n > 4 that is (n — 1)-path

Hamiltonian, then D is also n-path Hamiltonian.

Proof. Let D be an (n — 1)-path Hamiltonian digraph of order n > 4 and let P =
(v1,v2,...,v,) be an n-path of D. Then P’ = (v1,v2,...,v,-1) is an (n — 1)-path of D.
Since D is (n — 1)-path Hamiltonian, it follows that P’ lies on a Hamiltonian cycle of D
and so (vp—1,vn), (vn,v1) € E(D). Therefore, C = (v1,v9,...,vy,v1) is a Hamiltonian

cycle of D containing P. ]

As a consequence of Theorem 3.2.1, we have the following useful fact.

Corollary 3.2.3 Let D be a Hamiltonian oriented graph of order n > 4.

(a) If D is (n — 2)-path Hamiltonian, then D is both (n — 1)-path Hamiltonian and

n-path Hamiltonian.
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(b) If D is not n-path Hamiltonian, then D is neither (n — 1)-path Hamiltonian nor
(n — 2)-path Hamiltonian.

The converses of both Theorems 3.2.1 and 3.2.2 are false. To see this, recall that
for integers m and r with 3 < r < n — 1, the Hamiltonian digraph C,,, of order n
(obtained from a directed n-cycle (v1,va,...,v,,v1) by adding the arc (vq,v,)) is ¢-path
Hamiltonian if and only if either £ = 1 or n—r+3 < ¢ < n. As we mentioned, the digraph
C,3 of order n > 4 is n-path Hamiltonian but not (n — 1)-path Hamiltonian and the
digraph C), 4 of order n > 5 is both n-path Hamiltonian and (n — 1)-path Hamiltonian
but not (n — 2)-path Hamiltonian.

Next, we provide sufficient conditions under which a Hamiltonian oriented graph D

of order n is neither (n — 1)-path Hamiltonian nor (n — 2)-path Hamiltonian.

Proposition 3.2.4 Let D be a Hamiltonian oriented graph of order n > 4 containing

a Hamiltonian cycle C.

(a) If there exists a 3-path (z,y,z) in C such that (x,z) € E(D), then D is neither
(n — 1)-path Hamiltonian nor (n — 2)-path Hamiltonian.

(b) If there exists a 3-path (x,y,z) in D such that (z,z) € E(C), then D is neither

(n — 1)-path Hamiltonian nor (n — 2)-path Hamiltonian.

Proof. Let C = (v1,v,...,v,,v1). For (a), we may assume, without loss of generality,
that (v1,v3) € E(D). Since (v,v1) ¢ E(D), the (n—1)-path (v1,vs,v4,...,v,) does not
lie on any Hamiltonian cycle in D. Therefore, D is not (n—1)-path Hamiltonian. For (b),
we may assume that (va,v1,va+1) is @ 3-path in D for some integer a with 3 < a < n—2.
Then D contains the (n — 1)-path P = (v3,04,...,0Va, U1,Va41sVat2s---,0pn). If D
is (n — 1)-Hamiltonian, then P lies on a Hamiltonian cycle in D, which implies that
(vn,v2) € E(D). This contradicts (a) however. By Theorem 3.2.1, it follows that D is

also not (n — 2)-path Hamiltonian. ]

We now consider connections between ¢-path Hamiltonian oriented graphs and their
underlying graphs. The underlying graph of a Hamiltonian digraph is certainly Hamil-
tonian. While an orientation of a Hamiltonian graph G may or may not be Hamiltonian,
the graph G has at least one Hamiltonian orientations. If a given Hamiltonian graph G
contains vertices of high degree, then any Hamiltonian orientation of G cannot be ¢-path

Hamiltonian for certain values of £, which we show next.
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Theorem 3.2.5 Let G be a Hamiltonian graph of order n such that A(G) =n—1> 4 or
0(G) >n—22>5. If D is a Hamiltonian orientation of G, then D is neither (n—1)-path

Hamiltonian nor (n — 2)-path Hamiltonian.

Proof. By Theorem 3.2.1, it suffices to show that D is not (n — 1)-path Hamiltonian.
Let C = (v1,v2,...,vUn,v1) be a Hamiltonian cycle in D. First, suppose that A(G) = n—1
and that degv; = A(G). By Proposition 3.2.4(a), if either (v,_1,v1) or (v1,v3) is an arc
of D, then D is not (n — 1)-path Hamiltonian. Hence, we may assume that (vs, v1, vp—1)
is a 3-path in D. This implies that there is a vertex v; with 3 < ¢t < n — 2 such that
(v, v1) and (v1,ve41) are both arcs of D and so (vg,v1,v441) is a 3-path in D. Thus, by
Proposition 3.2.4(b), D is not (n — 1)-path Hamiltonian.

Next, suppose that A(G) = §(G) =n—2 > 5. That is, G is an (n — 2)-regular graph
of even order n > 8. Assume, to the contrary, that there is a Hamiltonian orientation
D of G such that D is (n — 1)-path Hamiltonian. Again, let C' = (vy,v2,...,0p,v1)
be a Hamiltonian cycle in D. Since deggpvi = n — 2, there is exactly one vertex v;
(3 < i < n—2) that is not adjacent to v; in G. We now consider two cases, according
to whether vivs and v1v,_1 are edges of G.

Case 1. vivs ¢ E(G) or viv,—1 ¢ E(G). We may assume that vivs ¢ E(G) since
the argument for the case when viv,—1 ¢ E(G) is similar. Thus, vjv4 and vzvs are edges
of G. We claim that (v1,v4) and (vs,vs3) are arcs in D. Assume, to the contrary, that
(vg,v1) is an arc in D. By Proposition 3.2.4(a), the arc (v, vn,—1) must belong to D.
Thus, both (v4,v1) and (vi,v,—1) are arcs in D, which then implies that (v, v1,vit1)
is a 3-path in D for some ¢t with 4 <t < n — 2. However then, D is not (n — 1)-path
Hamiltonian by Proposition 3.2.4(b), which is a contradiction. Therefore, (vi,v4) is an
arc in D. The fact that (vs,vs) is an arc of D follows from Proposition 3.2.4(a).

Since (v1,v4) and (vs,vs3) are arcs in D, it follows that
P = (Uﬁa U7,...,Un, V1, V4, Vs, U3)

is an (n — 1)-path in D. Because (vg,v3) is an arc of D, it follows that P cannot be
extended to a Hamiltonian cycle in D, which is a contradiction.

Case 2. vivs,v1v,—1 € E(G). By Proposition 3.2.4(a), (vs,v1,v,—1) is a 3-path in D.
Then viv, ¢ E(G) for some integer o with 4 < o < n — 2.

We now make two claims, the first of which is the following:
For each integer j with o +1 < j <n — 2, the arc (v1,v;) belongs to D. (3.1)

Assume, to the contrary, that (v;,v1) is an arc in D for some j with a+1 < j <n —2.

Since (vi,v,—1) is also an arc in D, it follows that (v, v1,v.41) is a 3-path in D for

31



some ¢t with a +1 <t < n — 2. However then, D is not (n — 1)-path -Hamiltonian by
Proposition 3.2.4(b), which is a contradiction. Therefore, (v1,v;) must be an arc of D
for each j with a+ 1 < j < n — 2, verifying the claim described in (3.1).

The second claim is the following;:
For each integer j with 3 < j <« — 1, the arc (v;,v1) belongs to D. (3.2)

Assume, to the contrary, that (vi,v;) is an arc in D for some j with 3 < j < o — 1.
Let t € {3,4,...,a — 1} be the smallest integer such that (vi,v:) € E(D). Thus, t > 4
and (vj,v1) € E(D) for 3 < j <t—1. Since (v4—1,v1) € E(D) and (vi,v) € E(D),
it follows that (vi_1,v1,v;) is a 3-path in D. However then, since (v;—1,v;) € E(D),
it follows by Proposition 3.2.4(b) that D is not (n — 1)-path -Hamiltonian, which is a
contradiction. Therefore, (v;,v1) belongs to D for each j with 3 < j < o — 1, verifying
the claim described in (3.2).

First, suppose that o = 4. Then (v1, vg) is an arc in D by (3.1). It follows by Propo-
sition 3.2.4(a) that (v4,v2) is also an arc in D. Then P = (vg,v2,v3, 01,06, V7, ..., Up) is
an (n — 1)-path in D. Since (vs,v4) is not an arc of D, it follows that P does not lie on
a Hamiltonian cycle in D, a contradiction.

Next, suppose that 5 < a < n — 2. By (3.1) then, (v1,v441) is an arc in D. Since
vve ¢ E(G) and 0(G) = n — 2, it follows that v,v,, vavs € E(G). By Proposi-
tion 3.2.4(a), both arcs (vp, vn—2) and (ve,va—2) belong to D. Applying (3.1) and (3.2)

to the vertex v,, we see that
(1) if 2 <j < a—2, then (vq,v;) € E(D) and
(2) if a +2 < j <n, then (vj,v,) € E(D).
In particular, (v,,vs) and (ve,vs) are arcs in D. Hence,
P = (U1, 0041,Va42; -« s U, Uy U3, Vg« « oy V1)

is an (n — 1)-path in D. Since (v1,v2) is an arc of D, it follows that P does not lie on a

Hamiltonian cycle in D. m

Let G be a Hamiltonian graph of order n > 7 containing a pair z,y of nonadjacent
vertices with degax = degy = n — 2. If D is a Hamiltonian orientation of G and D is
{-path Hamiltonian, then 1 < ¢ < n —3 or £ = n. This fact is a consequence of the proof

of Theorem 3.2.5, which we state next.

Corollary 3.2.6 Let G be a Hamiltonian graph of order n > 7 that is the join of a
graph of order n—2 and a graph of order 2 (so that K2,—2 C G.) If D is a Hamiltonian
orientation of G and D is £-path Hamiltonian, then 1 <€ <n—3 or{ =n.
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The condition stated in Corollary 3.2.6 that the order of a Hamiltonian graph is at
least 7 is necessary. To see this, consider a Hamiltonian orientation D of G = K329 of
order 6. Let C = (vy,vy,...,vs,v1) be a Hamiltonian cycle in D. If there are two vertices
2 and y such that zy ¢ E(G) and do(z, y) = 2, say vivs ¢ E(G), then either at least one
of (v3,vs), (v4,v1), (vs,v1) is an arc in D or (vg, vy, v4, V5, v3) is a 5-path in D. In either
case, D is not 5-path Hamiltonian. Hence, suppose that the sets V; = {v;, vi13}, 1 <@ <
3, are the three partite sets of G. By Proposition 3.2.4(a), the orientation D shown in
Figure 3.7 is the only Hamiltonian orientation of G that is 5-path Hamiltonian. In fact,
D = D3 5, which is shown in Figure 3.4 and we have seen that D3 o is /-path Hamiltonian
for all £ € [6] = {1,2,...,6}. These observations together with Theorem 3.2.5 yield the

following result.

A

U5 V3

™

V4

Figure 3.7: A Hamiltonian orientation D of K399 for which he(D) =6

Corollary 3.2.7 For an even integer n > 4, let G = K, — M where M is a perfect
matching in G and let D be a Hamiltonian orientation of G. Then D is (n — 1)-path
Hamiltonian if and only if either (i) n = 4 and D = Cy or (ii) n = 6 and D = D3 .
Furthermore, he(D) = n for each D € {C4, D33},

3.3 Preliminary Results on Tournaments

It is well known that there are only four non-isomorphic tournaments of order 4, only
one of which is strong. Consequently, by Theorem 1.4.1, there is only one Hamiltonian
tournament of order 4. This tournament can be constructed from the 4-cycle C' =
(v1,v2,v3,v4,v1) by adding the two arcs (v1,v3) and (ve,v4). The cycle C is the only
Hamiltonian cycle in T'. Since the arc (vq, v4) does not lie on C, the tournament 7 is not
2-path Hamiltonian. Consequently, the paths (va, v4, v1) and (ve, v4,v1,v3) do not lie on
C' either. Thus, T is not ¢-path Hamiltonian for any ¢ € {2,3,4}. Since T is obviously
1-path Hamiltonian, 7" is ¢-path Hamiltonian if and only if £ = 1. By Theorem 3.2.5, if
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a Hamiltonian tournament of order 5 is ¢-path Hamiltonian, then £ # 3, 4.

In the remainder of this section, we therefore restrict our attention to Hamiltonian
tournaments of order 5 or more. For each integer n > 5, we next describe a Hamiltonian
tournament D,, of order n with V(D,) = {v1,va,...,v,}. Let T,, be the transitive

tournament of order n > 5 with vertex set V(7T,,) = {v1,v2,...,v,} and arc set
E(T,) = {(vi,vj) : 1<i<j<n}

The tournament D,, is then obtained from 7;, by changing the directions of the two arcs
(v1,vy) and (ve,v4). This is shown in Figure 3.8. Hence, C = (v1,v2,v3,...,Un,v1) is a

Hamiltonian cycle in D,,.

Figure 3.8: The tournament D,, of order n > 5

We now make some observations concerning the Hamiltonian tournaments D,, for
n > 5.

Observation 3.3.1 Let n > 5. The Hamiltonian tournament D,, of order n > 5 is

£-path Hamiltonian if and only if

{1,2,n} ifn=5
66{ {1,n} if n > 6.

In particular, the arc (vg,v,) lies on no Hamiltonian cycle in D,,, and the 3-path
(va, vy, v1) lies on no Hamiltonian cycle in D,,. Furthermore, the path (vg, vgi1,. .., v1,v3,v5)

lies on no Hamiltonian cycle in D,, where 6 < k < n.

Observation 3.3.2 Let D be a Hamiltonian tournament of order n = 3,4, 5.
(a) Form =3, D is {-path Hamiltonian for £ = 1,2, 3.
(b) Forn =4, D is {-path Hamiltonian only if { = 1.

(¢c) For n = 5, D is {-path Hamiltonian for ¢ = 1,2,5. Furthermore, D is 5-path
Hamiltonian if and only if D = Ds.
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Combining Theorem 3.2.5 and Observation 3.3.2, we obtain the following results for

tournaments.

Corollary 3.3.3 If D is an £-path Hamiltonian tournament of order n > 4, then
1<é<n—-3orl=n.

We saw that the Hamiltonian digraph C, , of order n, where n and r satisfy 3 < r <
n — 1, is ¢-path Hamiltonian if and only if £ =1 or n —r + 3 < ¢ < n. Certainly, the
underlying graph G of Cy,, is the n-cycle (v, va, ..., vn,v1) with the chord e = (vy, v;).
Since e does not lie on any Hamiltonian cycle in G, it follows that G is ¢-path Hamiltonian
if and only if £ = 1. On the other hand, while a complete graph of order n > 3 is clearly
f-path Hamiltonian for 1 < ¢ < n, Corollary 3.3.3 states that every tournament of
order n > 4 is not ¢-path Hamiltonian for £ € {n —2,n — 1}. These examples show that

(1) there is an ¢-path Hamiltonian graph G for some integer ¢ such that G has an

orientation D that is not ¢-path Hamiltonian and

(2) there is a graph G’ that is not ¢-path Hamiltonian for some integer ¢ but G has

an orientation D’ that is ¢-path Hamiltonian.

In order to present some preliminary results on tournaments, we first establish some
additional definitions and notation. For a digraph D, the mazimum outdegree A™*(D)
and the minimum outdegree §* (D) of D are defined, respectively, by

AT (D) = max{odv:v e V(D)}
§T(D) = min{odv:v e V(D)}.
Similarly, the mazimum indegree AT (D) and the minimum indegree 51 (D) of D are
defined, respectively, by
AT (D) = max{idv:veV(D)}
07 (D) = min{idv:v e V(D)}.
The mazimum semi-degree A°(D) and the minimum semi-degree 6°(D) of D are defined,
respectively, by
AYD) = max{A*(D),A(D)}
(D) = min{6"(D),6 (D)}
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Hence, for every digraph D, it follows that

IN
IA

8°(D)
(D)

(D)

At(D) < A°D)
~(D) _

’ (3.3)
5 (D) < AY(D).

IN
IA

Furthermore, if D is a tournament of order n, then there exist vertices u and v of D such
that odu = AT(D), idu =6 (D) and odv = A~ (D) and idv = 67(D). Thus,

AT(D)+67 (D)= A" (D) +67(D) = A%D) +8°(D)=n—1. (3.4)
The following three lemmas are well-known facts (see [14, 38]).

Lemma 3.3.4 If D is a tournament of order n > 3 with A*(D) — 6%(D) < n/2, then

D is Hamiltonian.

Equivalently, Lemma 3.3.4 can be stated as follows:

If D is a tournament of order n > 3 with odu —odv < n/2 for every pair

u,v of vertices of D, then D is Hamiltonian.

Lemma 3.3.5 If z is a vertex of mazimum outdegree AT (D) in a tournament D, then

d(z,v) <2 for every vertex v of D.

Lemma 3.3.6 Each vertex x of a nontrivial tournament D with odx = AT (D) is the

initial vertex of some Hamiltonian path in D.
Lemma 3.3.6 can be extended as follows.

Lemma 3.3.7 Fvery nontrivial tournament D contains a Hamiltonian x —1y path where
odz = AT(D) and ody = 6+ (D).

Proof. Since the statement holds for tournaments of order at most 3, we may assume
that D is a tournament of order n > 4. Let

X={veV(D):odv=AT(D)} and Y ={v e V(D) :odv=4§"(D)}.

If AT(D) =6%(D), then X =Y = V(D) and the result is immediate by Lemma 3.3.6.
Hence, we may assume that 67(D) < AT(D) and so X NY = . For each v € X, let
¢(v) be the order of a longest v — u path where u € Y and let

¢ =max{l(v) :v € X}.
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We claim that £ > 3. Assume, to the contrary, that £ = 2. Then |Y| = 1,say Y = {y}.
By Lemma 3.3.6, each vertex in X is the initial vertex of some Hamiltonian path in D.
This implies that (z,y) € E(D) for each x € X. Since ody = §t(D) < AT(D), it
follows that N~ (y) # 0. Let z € X and 2z € N~ (y). We now consider od z. Since
(z,y) € E(D), it follows that (z,z) € E(D); for otherwise, (z, z,y) has order 3, which
contradicts the fact that ¢ = 2. Furthermore, if w € Nt (z), then (z,w) € E(D), for
otherwise, (z,w,z,y) has order 4, which is impossible. Hence, N*(z) U {z} C N*(z).
However then, odz > odz +1 = A%(D) + 1, a contradiction. Therefore, ¢ > 3, as
claimed.

Let x € X such that ¢(z) = ¢ and let P = (z = v1,v2,...,v = y) be an  — y path
of order £ where y € Y. We claim that P is a Hamiltonian path.

Assume, to the contrary, that this is not the case. Thus, 3 < /¢ <mn — 1. Let

Zi = N~(y) = V(P) and Zy = N*(y) — V(P).
Then
Z=71UZy=V(D)—=V(P)#0.

If z € Z and (z,v;) is an arc for some i > 2, then so is (z,v;_1); for otherwise, z can be
inserted between v;_1 and v; in P to form an x — y path that is longer than P, which
cannot occur.

Next, let z be an arbitrary element of Z. Then exactly one of the following three

situations occurs:
(i) V(P) S N*(2),
(ii) V(P) C N~ (z),

(iii) there exists an integer @ (1 < a < ¢ — 1) such that v; € NT(z) if and only if
1<i<a

Obviously, z € Z; if and only if (i) occurs. We consider two cases, according to whether
Zl 75 @ or Z1 = @

—

Case 1. Zy # 0. Let z € Z;. Then (i) occurs and so d(z,z) = 2 by Lemma 3.3.5.

Hence, there exists 2’ € Z such that (x, 2/, 2) is a path. However then,
(x, 2, 2, 09,03, ..., 00_1,Y)

is an x — y path that is longer than P, which is impossible. Therefore, this case cannot

occur.
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Case 2. Z1 = ). Thus, Z = Zy # (). Let z € Z. Since (P, z) is a path longer than P,
it follows that z ¢ Y, that is,
|Z] <ody < odz. (3.5)

The condition in (3.5) implies that (ii) cannot occur or V(P) € N~ (z). To show this,
assume, to the contrary, that V(P) C N~ (z). Since (1) N*(y) = Z = V(D) — V(P),
(2) Nt (2) N N~ (2) = 0 and (3) V(P) C N~ (z), it follows that N*(2) NV (P) = @ and
so Nt (z) C V(D) —V(P) = N*(y). However then, od z < od y, which is impossible by
(3.5).

Next, we claim that N*(z) C V(P). Assume, to the contrary, that Nt (z) — V(P) #
. Then N*(z) —V(P)C Z. Let 2/ € N*(z) — V(P) C Z. Since V(P) € N~ (2'), there
is v; € V(P), where 2 < j < £ — 1, such that (z/,v;) € E(D). Then (2,v;) € E(D)
for each integer ¢ with 1 < ¢ < j (for otherwise, there is an x — y path longer than P).
In particular, (2/,v1) = (2/,2) € E(D), which is impossible. Hence, N*(x) C V(P), as
claimed.

Now, let @ = max{i : v; € N*T(2)}. Since N*(x) C V(P), we have (z,z) € E(D)
and so 1 < o < ¢ — 1. Since (z, P) is also a path longer than P, it follows that z ¢ X
and so

odz < od z. (3.6)

If odz = 1, then by (3.5) ody = 0 and so Z = (), which is impossible. Hence, 2 <
odz <odz < |V(P)| —1. Then 2 < ¢ —2 and so £ > 4 and the four arcs (z,x), (z,v2),
(ve—1,2), (y,z) are in D.

If (z,v;) is an arc for some ¢ (3 < i < ¢ — 1), then so is (y,v;—1) to avoid an = — y
path longer than P (for otherwise, (x,v;, viy1,...,v = Y, 2,0V2,...,0;—1,Y) is an  — y
path longer than P). Hence, if we let N = N*(z) — {ve,y}, then odx < |N|+ 2 and
ody > |[N|+|Z| > |N|+ 1. Hence, odz — ody = 1. However, this contradicts the fact
that ody < od z < odx by (3.5) and (3.6). Thus, Case 2 cannot occur. ]

With the aid of Lemma 3.3.7, we have the following result.
Proposition 3.3.8 Let D be a tournament of order at least 3. If e = (z,y) is an arc

in D such that odz = 6T (D) and ody = A1 (D), then e lies on a Hamiltonian cycle in
D.

Proof. Let D’ be the tournament obtained from D by reversing the direction of e, that

is, (y,z) is now an arc of D’. Then AT(D') = AT(D) + 1 and §*(D’) = §7(D) — 1.
Furthermore, odpr v = AT (D’) if and only if v = y and odp v = §+(D’) if and only if
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v = x. By Lemma 3.3.7 then, there exists a Hamiltonian y — x path P in D’ and so in

D as well. The path P together with the arc e forms a Hamiltonian cycle in D. n

3.4 Two Classes of Tournaments

We are now prepared to consider two classes of well-known tournaments. A digraph D
is reqular if there is a nonnegative integer r such that odv = idv = r for every vertex v
in D. In this case, D is said to be r-reqular and the order of D is 2r + 1.

A digraph D is almost regular if there is a nonnegative integer r such that D contains
exactly r vertices of out-degree r and the remaining r vertices have out-degree r — 1.
In this case, D is said to be almost r-reqular and the order of D is 2r. An almost
regular tournament can be obtained from a regular tournament by deleting a vertex.

The following two results are consequences of Lemma 3.3.4.

Proposition 3.4.1 FEvery reqular tournament of order at least 3 is Hamiltonian.

Proposition 3.4.2 Fvery almost reqular tournament of order at least 4 is Hamiltonian.
The following is a consequence Proposition 3.3.8.

Corollary 3.4.3 FEvery nontrivial regular tournament is 2-path Hamiltonian.

While every arc in a nontrivial regular tournament lies on a Hamiltonian cycle, it
turns out that every arc in such a tournament of order n > 5 lies on a Hamiltonian
path that cannot be extended to a Hamiltonian cycle. Since a 2-regular tournament of
order 5 is unique, this can be verified readily. For n > 7, we have a stronger fact, namely
that every arc is the initial arc of a Hamiltonian path that cannot be extended to a

Hamiltonian cycle. In order to show this fact, we first verify the following.

Lemma 3.4.4 Let D be an almost reqular tournament of order n > 6. Then for
every x € V(D) with odx = AT(D), there exists a Hamiltonian x — y path in D with
ody = AT(D).

Proof. Suppose that D is an almost r-regular tournament of order n = 2r for some

integer r > 3. Let
X={veV(D):odv=r}

Thus, |X| = r. Let x be an arbitrary vertex in X. For each v € V (D), let £(v) be the
order of a longest x — v path in D. Let y € X such that
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0 ={(y) = max{l(v) :v e X}.

If ¢ = 2, then |X| = 2. This implies that » = 2, which is impossible since n > 6.
Hence, ¢ > 3. Let P = (z = v1,v2,...,v; = y) be an x — y path of order /.

It suffices to show that P is a Hamiltonian path in D, namely ¢ = 2r. Assume, to
the contrary, that this is not the case. Let Z = V(D) — V(P), which is then nonempty.

Observe that, for each z € Z, exactly one of the following three situations occurs:
(i) V(P) € N~ (2),
(ii) V(P) C NT(z) and

(iii) there exists an integer a (1 < a < £ — 1) such that v; € N*(2) if and only if
1 <1 <.

Hence, if we let Z = Z; U Zy, where Z; = N (z) — V(P) and Zy = N~ (z) — V(P),
then z € Z; if and only if (i) occurs. We consider the following two cases, according to
whether Z; # () or Z; = 0.

Case 1. Z1 # (). Let z € Z1. Then z satisfies (i) and so NT(z) C Z. If 2/ € NT(2),
then 2’ € N1 (vy) since otherwise an z — y path that is longer than P is formed by
inserting (z, 2’) between z and ve in P. However then, N*(2)U{z,v3} C Nt (vs) and so

od vy — od z > 2, which is impossible. Thus, this case never occurs.

Case 2. Z; = (). Then Z = Zy and so every vertex in Z satisfies either (ii) or (iii).
Hence, r = odz < |[V(P)| — 1 (or, equivalently, r — 1 = idz > |Z]). Let z € Z. If z
satisfies (ii), then |V(P)| < odz < r, which contradicts the fact that r < |[V(P)| — 1.
Therefore, for every z € Z, (iii) occurs and so (y, z, z) is a path. Since (P, z) is an © — z
path longer than P, it follows that odz = r — 1. In other words, X N Z = 0.

If |Z] > 2, then there exists a vertex 2’ € Z such that (2/,v3) is an arc since |Z| <
r —1. Now let N = N*(z) — {vs}, which must be a subset of V(P). If v; € N, then
(T, V4, Vig1y ooy Vp—1,Y, 2, V2,03, ...,0;_1) is an & — v;—1 path that is longer than P and
so odv;—1 = r — 1. Hence, P contains at least |[N| (= r — 1) vertices not belonging
to X. However then, |X| < 2r — |N U Z| < r, which cannot occur. Therefore, we
may assume that Z = {z} and ¢ = 2r — 1. Moreover, N*(z) = {z,v9,...,v,_1} and
N=(2) ={vp, Vpy41, ..., V20-2, Y}

If vg € NT(z) for some 8 (3 < 8 < r), then v, € N~ (vg_1) for r+1 < v <

~—

2r — 1 since the x —y path (2,08, V841, -+, Uy—1,2,V2,V3, . . . , VB—1, Uy, Uyl - - -, V2r—2, Y

cannot exist. However then, odvg_1 < r — 2, a contradiction. Therefore, N1 (x)

{v2,Vp41,Vr42, ..., V2r—2,y}, which then implies that od v; = r—1 for r < i < 2r—2 since
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(T, Vi1, Vig2,y -+ oy V22, Y, 2, V2, U3, ..., v;) is & Hamiltonian x —v; path for r <1i < 2r—2.
Thus, X = {z,v9,...,v,_1,y}. Now, depending on the direction of the arc between v,

and y, exactly one of the two paths

(x7y7v7“7v7’+17 vy, V20 —2,2,02,03,..., U’I‘—l)

(vaT+17,UT'+2a <oy V2r—2,2,0V2,03,...,0Up, y)

is a Hamiltonian path in D with x as the initial vertex. However, this is again a contra-

diction as both v,_; and y belong to X. =
We are prepared to show the following result.
Proposition 3.4.5 If D is an r-regular tournament where r > 3, then every arc in D

1s the initial arc of a Hamiltonian path that cannot be extended to a Hamiltonian cycle
in D.

Proof. Lete = (z,y) be an arc in D. Then the tournament D’ = D —x of order 2r > 6
is almost regular and odpr v = r if and only if v € N*(z). By Lemma 3.4.4, the existence
of a Hamiltonian y — z path P in D" with z € NT(x) is guaranteed. Then P = (z, P’) is
a Hamiltonian x — z path in D whose initial arc is e. Furthermore, P cannot be extended

to a Hamiltonian cycle as 2 € N*(x). "
In summary, we have the following.
Corollary 3.4.6 Let D be a regular tournament of odd order n > 3.

* For n > 5, every vertex is the initial vertex of a Hamiltonian path that cannot be

extended to a Hamiltonian cycle.

*x Forn > 17, every arc is the initial arc of a Hamiltonian path that cannot be extended

to a Hamiltonian cycle.
Furthermore,

(1) D is 2-path Hamiltonian for every odd n > 3 and
(2) D is n-path Hamiltonian if and only if n = 3.

We now turn our attention to almost regular tournaments. There is exactly one
Hamiltonian tournament D of order 4, which is also the only tournament D of order 4
that is almost regular. We have already seen that D is not 2-path Hamiltonian. There are
exactly two arcs not belonging to any Hamiltonian cycle, which are shown in Figure 3.9

as dashed line segments.
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Figure 3.9: The almost regular tournament of order 4

Now, let D be an almost regular tournament of order 6. There are exactly five such
tournament D, two of which contain an arc that cannot be extended to a Hamiltonian
cycle, which we denoted by D; and Ds as shown in Figure 3.10. The tournament Ds is
obtained from D; by by reversing the direction of the arc (z,y). In each of D; and Do,

the arc, denoted as a dashed line, is the only arc that does not lie on any Hamiltonian

N

|
| |
Dy : I Do : I

A N

Figure 3.10: Two almost regular tournaments of order 6

cycle.

QO

Proposition 3.4.7 An almost reqular tournament D of order 6 is not 2-path Hamilto-
nian if and only if it is isomorphic to one of the two tournaments D1 or Do shown in
Figure 3.10. Furthermore, there is exactly one arc that belongs to no Hamiltonian cycle
in D; for each fori=1,2.

Proof. Let D be an almost regular tournament of order 6 with

V(D) = {'Ul, V2, ... ,’UG}.

Thus, A*t(D) = 67(D) +1 = 3. Since neither Dy nor Dy is 2-path Hamiltonian, it
remains to verify the converse. Suppose that D is not 2-path Hamiltonian. We show
that D = D; or D = Dj. Assume, without loss of generality, that e = (vs,vg) is an
arc that does not lie on any Hamiltonian cycle in D. Let D’ be the tournament of
order 4 obtained from D by deleting vs and vg. It can be verified that if AT(D') = 3
or §T(D') = 0, then the arc e does belong to a Hamiltonian cycle in D. Hence, D’
must be isomorphic to the tournament shown in Figure 3.9. In particular, D’ contains

a Hamiltonian cycle, say (v1, ve, vs,v4,v1). If (vg,v1) is an arc, say, then so is (vs, v4) in
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order to avoid a Hamiltonian cycle containing e. Hence, it must be that od vg < od vs.
If either (vg,v2) or (vg,v4) is also an arc in addition to the arc (vg,v1), say the former,

then both (vs,v1) and (vs,v4) are arcs. Then exactly one of the 6-cycles
(’1)5, Ve, V2, V4, V1, U3, ’U5) and (057 V6, V1, U3, V4, V2, ’U5)

is in D depending on the direction of the arc between vy and vy, both of which contains
the arc e.
It then follows that, if e = (vs,vg) is an arc that does not lie on a Hamiltonian cycle

in D, then we may assume that
(a) odvs =odwvg+ 1 =3,
(b) D’ contains a 4-cycle C' = (v1, ve, v3,v4,v1) and

(c) N*(vg) = {v1,vs}.
Since the tournament with (v, vs) as an arc in D is isomorphic to the tournament with
(v3,v1) as an arc in D, we may suppose that (vy,v3) is an arc. By (c), it also must
be that N (vs) = {v2,v4,v6}. Hence, D must contain the digraph in Figure 3.11 as a
spanning subgraph. Therefore, D is isomorphic to one of the two tournaments Dy or Do
shown in Figure 3.10.
v5

iy

!
N

Ve

v3 Vg

Figure 3.11: A subgraph in a tournament of order 6 that is not 2-path Hamiltonian

Finally, we show that every arc in E(D) — {(vs,v6)} lies on a Hamiltonian cycle.
Observe that if (z,y) € E(D) with odz =ody + 1 =3 and (z,y) # (vs, vs), then (z,y)

belongs to exactly one of the three 6-cycles
(Ulu v2, V3, Vs, V4, Vg, /Ul)) (1)17 U5, V2, Vg, U3, V4, Ul)u (Ula v3, U5, U, W, Vg, Ul)v
where {u,w} = {va,v4}. By (a), the desired result follows. n

Using the fact that an almost regular tournament of order 6 contains at most one arc
that cannot be extended to a Hamiltonian cycle, we are able to establish the following

general result.
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Theorem 3.4.8 Fvery almost regular tournament of order at least 8 is 2-path Hamil-

tonian.

Proof. Let D be a tournament of even order 2r > 8 with A*(D) = §*(D)+1 = r.
Hence, {odv,idv} = {r—1,r} for each vertex v. Assume, to the contrary, that e = (x,y)
is an arc in D that lies on no Hamiltonian cycle in D. If we let Ny = N~ (z) and
Ny = NT(y), then |N;| = idz and |Na| = ody. We consider the tournament D’ of
order 2r — 2 > 6 obtained from D by deleting x and y. Note that e = (x,y) lies on a
Hamiltonian cycle in D if and only if D’ contains a Hamiltonian 3’ —z’ path with 2/ € Ny
and y' € Ns.
Observe that, for each v € V(D’),

odpv—2 ifve Ny — Ny
odpv = odpwv if v € Ny — Ny
odpv —1 otherwise.

Hence, r —3 < 67 (D') <r—2and r — 1 < AY(D’) < r. Furthermore, Ny — Ny # () if
dT(D')=r—3and No — Ny # 0 if AT(D') =r.

Case 1. A1(D') — 6T (D') = 3. Then there exists a Hamiltonian y' — 2’ path P’
in D' with odp/2’ = r — 3 and odpry’ = r. Since 2/ € Ny — Ny and v/ € Ny — Ny,
a Hamiltonian cycle (P’,z,y,y’) in D containing the arc (z,y) is produced, which is a

contradiction. Hence, this case never occurs.

Case 2. AT(D') — 6T (D') < 2. Then D’ is Hamiltonian by Lemma 3.3.4, say C' =
(v1,v2,...,v2,_2,v1) is a Hamiltonian cycle in D’. If v; € Ny, say, then vo,_o ¢ Ny in
order to avoid a Hamiltonian cycle in D containing e. Hence, it must be that ody < od z
and so |Ni| = |N2| = r — 1. Since D is almost regular, odpx = r and odpy = r — 1.
Since V(D') = 2r — 2 and |Ny| = |Na| = r — 1, it then follows that Ny N Ny = . If
odp z = r for some z € Ny, then odp 2z = odp z = r. Since AT(D') — 5T (D) < 2, it
follows that odpv = r for each vertex v € Nj. Thus, each vertex in N U {x, z} has
outdegree r in D, that is, D contains at least r + 1 vertices of outdegree r in D, which
is impossible.

So we may assume that odp z = r — 1 for each vertex z € Ns. Since D is almost
regular and odpy = r — 1, it then follows that odpu = r for each v € Ny U {z} and
odpv = r — 1 for each v € Ny U{y}. Thus, odpru = r — 2 for each u € Ny and
odprv = r — 1 for each v € Ny. Hence, D’ is an almost regular tournament of order

2r — 2. By Lemma 3.3.7 D’ contains a Hamiltonian 3’ — 2’ path P with odp 3/ =r —1
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and odp 2’ = r — 2. Then (P, z,y,y’) is a Hamiltonian cycle in D containing e = (x,y),

a contradiction. n

Corollary 3.4.9 Let D be a reqular or almost regular tournament of order n > 3. If
n # 4,6, then D is 2-path Hamiltonian.

In a regular tournament of order n > 5, a 3-path (z,y, z) with (x, z) € E(D) lies on
a Hamiltonian cycle in D. This is because the tournament D —y contains a Hamiltonian
z — x path by Proposition 3.3.8. If D is a regular tournament of order n > 9, then every
3-path lies on a Hamiltonian cycle, that is, D is 3-path Hamiltonian. To see this, proving

the following is sufficient.

Lemma 3.4.10 Let D be an almost regular tournament of order n > 8. For every pair

x,y of vertices with odx > ody, there exists a Hamiltonian x — y path.

Proof. 1If (y,x) is an arc, then the result is immediate by the fact that D is 2-path
Hamiltonian. If (x,y) is an arc, then let D’ be the tournament obtained from D by
replacing (z,y) by ¢ = (y,x). Then D’ is also an almost regular tournament and so ¢’
lies on a Hamiltonian cycle in D', that is, there exists a Hamiltonian x — y path in D’.

Since this path exists in D as well, the result now follows. =
Corollary 3.4.11 FEvery reqular tournament of order n > 9 is 3-path Hamiltonian.

A consequence of Corollary 3.4.11 is that, if D is an almost regular tournament of
order n > 8, then every 3-path in D lies on a Hamiltonian path. By examining almost

regular tournaments of order less than 8, we obtain the following result.

Corollary 3.4.12 Let D be an almost regular tournament of order n > 4. Then D is
2-path Hamiltonian if and only if every 3-path lies on a Hamiltonian path in D.

Figure 3.12 shows the two almost regular tournaments of order 6 that are not 2-path
Hamiltonian, which we already saw in Figure 3.10. In each of these two tournaments,
the 3-path expressed by dashed line segments is the unique 3-path that does not belongs

to any Hamiltonian path in the tournament.

Problem 3.4.13 Is every almost reqular tournament of sufficiently large even order

3-path-Hamiltonian?
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\\\///

Figure 3.12: Two almost regular tournaments of order 6

No almost regular tournament of order at most 6 is 3-path Hamiltonian and there is
an almost regular tournament of order 8 that is not 3-path Hamiltonian. Thus, if there
is an even integer N such that an almost regular tournament of order n > N is 3-path

Hamiltonian, then N > 10. In fact, there is a more general question.

Problem 3.4.14 For a fized positive integer k, does there exist a positive integer N (k)
such that every regular or every almost regular tournament tournament of order n >
N (k) is k-path Hamiltonian?

3.5 Upper and Lower Hamiltonian Extension Numbers

For a Hamiltonian graph G, let
H(G) ={D: D is a Hamiltonian orientation of G}.

The upper Hamiltonian extension number he™ (G) of G is the maximum value of he(D)
among all D € H(G) and the lower Hamiltonian extension number he™ (G) is the mini-

mum such value. That is,
he™ (G) = max{he(D) : D € H(G)} and he (G) = min{he(D) : D € H(G)}.
Therefore, if G is a Hamiltonian graph of order n > 3, then
1 <he (G) < het(G) < n.

If G = C,,, n > 3, then there is only one Hamiltonian orientation of G, while we saw

that this is also the case if G = K4. Consequently,
he™(C,,) = he™ (C,,) = n for all n > 3 and het(Ky4) = he™ (K) = 1.
This suggests the following question:

What other graphs G have the property that he™ (G) = he™ (G)?
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The result below shows that for any other graphs G with he™(G) = he™ (G), it is neces-
sary that he™ (G) = 1.

Proposition 3.5.1 For a Hamiltonian graph G of order n > 3,

o [ n=he"(G) fG=0C,
he™(G) = { 1 otherwise.

Proof. Let C = (vi,v2,...,0n,Unt1 = v1) be a Hamiltonian cycle in G. Direct the n
edges v;vi11 (1 < i < n) on C such that (v;,v;+1) are arcs to obtain a directed n-cycle
C. If G # C, then orient each edge vivj € E(G) — E(C) as (v;,v;) is an arc if and only
if 1 <4 < j < n. In the resulting orientation of GG, observe that C is the only directed
n-cycle and so each of the arcs not belonging to C cannot lie on any Hamiltonian cycle.
Hence, he™ (G) = 1. ]

To further illustrate these concepts, we determine the numbers he™ (W,,) and he™ (W,,)
for the wheel W,, = C), V K7 of order n + 1.

Proposition 3.5.2 For each integer n > 3,

1 ifn is odd

2  ifn is even

het(W,) = {

he™(W,) = 1.

Proof. By Proposition 3.5.1, he™ (W,,) = 1 for all n > 3. It therefore remains only
to determine he™ (W,,). Let W, be constructed from the n-cycle C = (v1,v2, ..., v, v1)
by adding the vertex v, which is joined to each vertex of C. Let D be an arbitrary
Hamiltonian orientation of W,,. In any Hamiltonian cycle in the graph W,,, the vertex v
must be adjacent to two adjacent vertices v; and vj of C', where then |j —i| =1 (mod n)
fori,j € {1,2,...,n}. Hence, we may assume that D contains the arcs (v,,v) and (v, v1)
and the (directed) path (vy,vs,...,v,). This is illustrated in Figure 3.13.

We consider two cases, according to whether n is odd or n is even.

Case 1. n > 3 is odd. We have already seen that he™ (K,) = he™ (K4) = 1. Since
W3 = K4, we may assume that n > 5. Because n is odd, either D contains two arcs
(v,vi), (v,vi41) or two arcs (v;,v) and (vj41,v) for some ¢ € {1,2,...,n — 1}. If D
contains two arcs (v, v;), (v,v;+1), then (v, v;41) lies on the unique Hamiltonian path P =

(v, Vit1, Vit2, .-, Vi—1,v;) in D. Since (v;,v) is not an arc of D, it follows that (v, v;y1)
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v1

Un v2

Un—1 v3

Un—2 V4

.

Figure 3.13: Some arcs in a Hamiltonian orientation D of W,

does not lie on any Hamiltonian cycle in D. If D contains two arcs (v;,v) and (viy1,v),
then (v;,v) lies on no Hamiltonian path in D and, consequently, on no Hamiltonian cycle
in D either. Hence, D is not 2-path Hamiltonian. Since D is an arbitrary Hamiltonian
orientation of W, it follows that het (W,,) < 2. Therefore, he™ (W,,) = 1 if n > 3 is odd.

Case 2. n > 4 is even. Let j be the minimum positive integer such that (v;,v) is an
arc of D. Thus, 2 < j < n. Hence, Q = (vj,v,v;—1) is a path of order 3 in D. Since D
contains the path (vi,ve,...,v,), the path @ does not lie on any Hamiltonian cycle in D
and so D is not 3-path Hamiltonian. Because D is an arbitrary Hamiltonian orientation
of Wy, it follows that he™ (W,,) < 2. Next, consider the Hamiltonian orientation D’ of
Wy, containing (1) the arcs (v,v;) if 7 is odd and (v;,v) if 7 is even and (2) the directed
cycle (vi,v9,...,0,,v1). Figure 3.14 shows the Hamiltonian orientation D" of W, for

n = 8.

U8 V2

v7 U3

V4

. [

(%)

Figure 3.14: A Hamiltonian orientation D’ of Wy

For each integer i with 1 < i < n, we observe the following, where the subscript of

each vertex is expressed as an integer modulo n:
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* for an odd integer i, the arc (v;,v;4+1) lies on the Hamiltonian cycle
(U’i7 Vi+1, Uy Ui42, Ui43, - -+ Vi1, Ui)a

* for an even integer i, the arc (v;,v;4+1) lies on the Hamiltonian cycle

(Viy Vig1s Vig2, Uy Vig3, Vigds -+ Vi1, Vi),
* the arc (v, v;) lies on the Hamiltonian cycle (v, v;, vi+1, Vit2, - .-, Vi—1, ),
* the arc (v;,v) lies on the Hamiltonian cycle (v, v, V41, Vig2, ..., Vi—1, ;).

Thus, he(D’) > 2. Since the path (v;,v,v;13), where 7 is even, does not lie on any
Hamiltonian cycle in D, it follows that he(D’) < 2 and so he(D’) = 2. Therefore,
he™ (W) = 2 if n > 4 is even. n

By Proposition 3.5.2, if n > 3 is odd, then het(W,,) = he™ (W,,).

Next, we consider he® (K, ,) and he™ (K, ,) for complete r-regular bipartite graphs

K, , for r > 2. By Proposition 3.5.1,
he+(K272) = he™ (KQ’Q) =4
and he™ (K, ,) =1 for » > 3. We begin with r = 3.

Proposition 3.5.3 he™(K33) =3 and he” (K33) =1

Proof. Aswe already saw, he” (K3 3) = 1 and so it remains to show that he™ (K3 3) = 3.
There are exactly two Hamiltonian orientations D and D, of K33, both shown in
Figure 3.15. Note that the only difference in these two Hamiltonian orientations of K33

is the edge vous is oriented to produce (ve,vs) or (vs,v2).

A

/

v2

/\

U3

’U4 V4

Figure 3.15: The two Hamiltonian orientations of K33

Let e; = (v1,v4) and e3 = (v3,vg). When es = (va,v5) is an arc, observe that none

of eq,e9,e3 lies on a Hamiltonian cycle of Dy. Thus, Dy is not 2-path Hamiltonian.
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In Dy, the direction of the edge vovs is reversed and e}, = (vs,v2) is an arc. Here,
every arc lies on a Hamiltonian cycle of Dy and so Ds is 2-path Hamiltonian. Since the
path (v1,v2,v3,v6) does not lie on a Hamiltonian cycle of Do, this digraph is not 4-path
Hamiltonian. On the other hand, it is straightforward to show that every path of order 3

lies on a Hamiltonian cycle of Dy. Therefore, he™ (K33) = 3. m
We now consider the values of he™ (K, ,) and he™ (K, ) for r > 4, beginning with

even integers r > 4.

Theorem 3.5.4 For each even integer r > 4,
he™(K,,) =2r and he (K,,)=1.

Proof. By Proposition 3.5.1, he™ (K,,) = 1. Let G = K,, where r = 2s for some
positive integer s. Let U = U; UUs and U’ = U, U Uy be the partite sets of G, where
|Ui| = s for 1 <i < 4. Now let D be the orientation of K, , obtained by directing each
edge in [U;,U;y1] from U; to Ujyq for 1 < @ < 4 and Us = Uy (see Figure 3.16). So
D = Dy, which we described earlier. Since he(Dy ) = 4s = 2r by Theorem 3.1.1, it
follows that het (K, ,) = 2r. ]

| X

Figure 3.16: An Hamiltonian orientation of K.,

Next, we consider the values of he™ (K. ,) and he™ (K, ,) for odd integers r > 5.
Theorem 3.5.5 For each odd integer r > 5,
he™(K,,) <2r—5 and he (K,,)=1.
Proof. By Proposition 3.5.1, he™ (K, ,) = 1. It therefore remains to show that
he (K,.,) < 2r — 5.

Let G = K,.,. Assume, to the contrary, that there is a Hamiltonian orientation D of
G such that D is (2r — 4)-path Hamiltonian. Let C' = (v1,ve,..., V2, V2,41 = v1) be

a Hamiltonian cycle in D. Thus, {v1,vs,...,ve,—1} and {va, vy, ..., v} are the partite
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sets of G. We consider two cases. In each case, the subscript of a vertex is expressed as

a positive integer modulo 2r.

Case 1. (v;,viy5) s an arc in D for some i with 1 < ¢ < 2r. Without loss of
generality, we may assume that (vi,ve) is an arc in D (see Figure 3.17).
We consider the (2r — 4)-path

Q1 = (vr,v8,v9, ..., V21, V2, V1, Vg).

Thus, V(Q1) = V(G) — {ve,v3,v4,v5}. Since D is (2r — 4)-path Hamiltonian, it follows
that Q1 can be extended to a Hamiltonian cycle in D. This implies that each of the arcs

(vg,v3), (vs,v2) and (va,v7) must belong to D.

Figure 3.17: The path @ lies on a Hamiltonian cycle
Next, consider the (2r — 4)-path

Q2 = (vg, v9, V10, - - . , V2r—1, V2p, V1, V2, V7).

See Figure 3.18. Thus, V(Q2) = V(G) — {v3,v4,v5,v6}. Since Q2 can be extended to a

Hamiltonian cycle in D, it follows that (v7,v4) and (vs, vs) are arcs in D.

v1 v3 U5 U7 V9 V2r—1

Figure 3.18: The path Q2 lies on a Hamiltonian cycle

Assume, for each integer ¢ with 2 < ¢ < 2r — 1, that Q;_1 is defined and that Q;_1

can be extended to a Hamiltonian cycle in D. Now, consider the (2r — 4)-path
Qi = (Vit6, Vit7, " 5 V2r—1, V2, U1, V2, * , Vj, Viy5).
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Then

V(Qi) = V(GQ) — {vit1, vit2, Vits, Viga}

Since @; can be extended to a Hamiltonian cycle in D, it follows that (viys,v;4+2) and
(vit1,vite) are arcs in D. Hence, (viy5,v;t2) and (viy1,vi46) are arcs in D for 1 < i <
2r — 1. This implies that for each integer j with 1 < j < 2r, the arcs (vj43,v;) and
(vj,vj45) both belong to D.

Next, consider the (2r — 4)-path

Py = (v1,v6,v3,04, V5,02, V2p_1,V2r—4,V2r—3, V2p—2,

V2 —5, U2r—8, V2r—7, V2r—6, - - - , U13, V10, V11, V12)-

Thus, V(P1) = V(G) —{v7, vs, vg, vo, }. Since P; can be extended to a Hamiltonian cycle
in D and (v7,vg) is an arc in D, it follows that (vg, ve,), (v2,, v7) and (vs,v1) are arcs in
D. This is illustrated in Figure 3.19 for r = 9.

v2 V4 V6 Vg v10 v12 V14 V16 V18
Figure 3.19: The path P; lies on a Hamiltonian cycle
We now consider another (2r — 4)-path

Py, = (vg,v7,v4,0s,06,03, U2r,V2r—3,V2r—2, V21,

V2r—4, V2r—7, V2r—6, U2r—5, * * , U14, V11, V12, V13)-

Thus, V(P) = V(G) — {v1,v8,v9,v10} Since P, can be extended to a Hamiltonian cycle
in D and (vg,v19) is an arc in D, it follows that (vig,v1), (v1,vs) and (vg, v2) are arcs in
D. Once again, this is illustrated in Figure 3.20 for » = 9. However then, both (v, vs)

and (vg,v1) are arcs in D, which is a contradiction.

Case 2. (viys,v;) 18 an arc in D for each i with 1 < i < 2r. We consider two
subcases.

Subcase 2.1. (vi13,v;) is an arc in D for each 1 < i < 2r.
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V2 v4 V6 vg V10 v12 V14 V16 V18

Figure 3.20: The path P, does not lie on a Hamiltonian cycle

Now consider the (2r — 4)-path

P = (v4, v1,V2r—2,V29—1,V2r, V2p—3,V2r—6, V2r—5, U2r—4,

V2r—7, V2r—10, V2r—9, V2r—8; - - - , V11, U, V9, V10, U7).

Thus, V(P) = V(G) — {v2,v3,v5,v6}. Since P can be extended to a Hamiltonian cycle
in D, it follows that (v7,v2) is an arc of D. Because (i) (vs,v2) and (vg,v3) are arcs of
D and (ii) (ve,vs,v4,vs, V6, v7) is a path in D, it follows that P cannot be extended to a
Hamiltonian cycle in D, which is impossible. This is illustrated in Figure 3.21 for r = 9,
where all bold arcs do not belong to the v4 — v7 path P in D.

Subcase 2.2. (vi,viy3) is an arc in D for some i with 1 < i < 2r. Without loss of
generality, we may assume that (vi,v4) is an arc in D.

We consider the (2r — 4)-path

Py = (v7,v8, 09, ...,V2p—1,V2p, V1, V4).

Thus, V(P1) = V(G) — {v2,v3,vs,v6}. Since D is (2r — 4)-path Hamiltonian, it follows
that P, can be extended to a Hamiltonian cycle in D. This implies that (vs,vg) and
(vs, v2) must belong to D.

Next, consider the (2r — 4)-path

P3 = (vg,v10, - . ., U2r—1, U2y, V1, V2, U3, Vg).

Thus, V(P2) = V(G) — {v4,vs, v7,v8}. Since Q2 can be extended to a Hamiltonian cycle
in D, it follows that (v7,v4) and (vs,vs) are arcs in D.

Assume, for each integer odd integer ¢ with 3 <4 < 2r — 1, that P;_o is defined and
that P;_s can be extended to a Hamiltonian cycle in D. Now, consider the (2r —4)-path

Pi = (vi"rﬁv Vi475 0 5 UV2r—1, V27, V1,02, ", Vs, Ui+3)'
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Then V(P;) = V(G) —{vit1,Vi+2, Vit4, Vit5}. Since P; can be extended to a Hamiltonian
cycle in D, it follows that (viye2,v;+5) and (vi+4,vi+1) are arcs in D. Hence, (vi12,vit5)
and (viy4,v;41) are arcs in D for 1 < ¢ < 2r — 1. This implies that for each integer odd
integer j with 1 < j <2r — 1, the arcs (v;,v;43) and (v;,v;—3) belong to D.

Next, consider the (2r — 4)-path

Q1 = (vs, v3,v6, V7, V10, - - - , V2r—1, V2p, V1).

Then V(Q1) = V(G) — {v2,v4,v5,v9}. Since @1 can be extended to a Hamiltonian cycle
in D, it follows that (vg,vg) is an arc in D.

Similarly, by considering the (2r — 4)-path

Q2 = (v7,v4, 05,02, V9, . .., V2r_1,V2;),

we have that (v1,vs) belongs to D.
Then the (2r — 4)-path Hamiltonian path

Q = (v1,v8,v3,V6, V7,010 - - -, V2p—1, V27 ),

with V(Q) = V(G) — {va, v4,v5,v9} cannot be extended to a Hamiltonian cycle in D,

which is a contradiction. ]

Figure 3.21: The path P does not lie on a Hamiltonian cycle

We have seen that there is only one Hamiltonian orientation of K33 that is 6-
path Hamiltonian. In fact, this orientation is ¢-path Hamiltonian if and only if ¢ €
{1,2,3,5,6}. By Theorem 3.5.5, he™ (Kj55) < 5. In fact, 3 < he™ (Kj55) < 4, as we show

next.

Proposition 3.5.6 There exists a Hamiltonian orientation of K55 having Hamiltonian

extension number 3.

54



us

ue

Figure 3.22: The Hamiltonian orientation D* of K55 in Proposition 3.5.6

Proof. Let U = {uy,us,us,ur,ug} and W = {ug,uq, ug, us,uip} be the partite sets
of K55. Consider the orientation D* of K55 shown in Figure 3.22. Therefore, idu =
odw =1 for each u € U and w € W.

It can be shown that D* is ¢-path Hamiltonian for ¢ = 1,2,3 and so he(D*) > 3.
Since the path (us,u2,us,us) of order 4, for example, does not lie on any Hamiltonian
cycle in D*| it follows that D* is not 4-path Hamiltonian. Therefore, he(D*) < 3 and so
he(D*) = 3. n

Next, we show that D* is the only Hamiltonian orientation of Kj 5 that is 5-path

Hamiltonian.

Proposition 3.5.7 The digraph D* in Figure 3.22 is the only Hamiltonian orientation
of K55 that is 5-path Hamiltonian.

Proof. First, using a case-by-case analysis, we see that the digraph D* in Figure 3.22
is 5-path Hamiltonian. Now, let D be a 5-path Hamiltonian orientation of K55 with
a Hamiltonian cycle C' = (v1,v9,...,v10,v11 = v1), where all subscripts of vertices are

expressed modulo 10. We show that D = D*. We consider two cases.

Case 1. For eachi € {1,2,3,...,10}, JD(’UZ‘, v;+3) > 1. Since i+ 3 and i are opposite
parity and (v;, v;+3) is not an arc in D, it follows that (v;y3,v;) is an arc in D for each
i €{1,2,3,...,10}. Thus, D contains the subdigraph shown in Figure 3.24. By the
symmetry of the graph, either

(i) (ve,v7), (vg,v1) € E(D) or (ii) (v7,v2), (ve,v1) € E(D).

If (i) occurs, then the 5-path (v4, vs, vg, v1,vg) cannot be extended to a Hamiltonian cycle
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vg Q V4

vr O’U5
e
Figure 3.23: A Hamiltonian cycle C' = (vy,vo, ..., v10,v1) in D

since (v2,v;) is an arc for ¢ € {3,7,9}. If (i7) occurs, then the 5-path (v4, vs, v2, vg, v10)

cannot be extended to a Hamiltonian cycle. Thus, this case cannot occur.

vl

1o / "

%

v7

V9 v3

V8 (2

U5

V6

Figure 3.24: A subdigraph in D in Case 1

Case 2. There exists i € {1,2,3,...,10} such that JD(vi,vi+3) =1 or (v,viy3) €
E(D). We may assume, without loss of generality, that (vs,vs) € E(D). Let P be
the set of 6-paths in D that cannot be extended to a Hamiltonian cycle. Thus, P # ()
by Theorem 3.5.5. We now consider the 6-path @Q = (v1,v2,vs,v4,v5,v8). Note that

(Q,vg, vg, v7,v10,v1) is the only possible Hamiltonian cycle in D that contains (). Hence,
if @ € P, then

either (i) (vg, vs), (vi0,v7) € E(D) or (ii) (ve,v9) € E(D).
Let Q' = Q — v1 = (v2,v3,v4, v5,v8) be the 5-path in D.
x If (i) occurs, then (Q',vg,v10,v1, V6, v7,v2) is the only possible Hamiltonian cycle
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containing Q" and so (v1,vs), (v7,v2) € E(D). However then, no Hamiltonian cycle

in D contains the 5-path (vig,v7,v2,v3,v4). Hence, (i) cannot occur.

* If (ii) occurs, then every Hamiltonian cycle containing " must be of the form
(Q', *,%,%,x,v7,v2) and so (v7,v2) € FE(D). Now consider the 5-path Q" =
(vg, vg, V10, V1,V2). Since (vg,v7,v2) is in D, every Hamiltonian cycle containing
Q" must be of the form (Q", *, *,v7, *, *,v5). However, one can verify that this is

impossible and so (ii) cannot occur either.

Consequently, @ ¢ P. In other words, if (vs,vg) is an arc in D, then there exists
a Hamiltonian cycle in D containing the 6-path Q@ = Q1 = (v1,ve,vs, vy, V5, vg), im-
plying that (v7,v19) and (vg,vs) are both arcs in D. This produces another 6-path
Q3 = (vs3,v4,v5,v6,v7,v10) not belonging to P and so (v1,vs) and (vg,v2) are also arcs.

Continuing in this manner, we have the following:

Let C = (v1,v9,...,v10,v1) be a Hamiltonian cycle in a 5-path Hamiltonian
orientation D of Kss. If (va,va43) € E(D) for some «, then (vg,vg+3) €
E(D) if and only if o and 8 are of the same parity.

Thus, we may assume that D contains the digraph shown in Figure 3.25 as a spanning

o) N vs
SR
) §

ugQ
Figure 3.25: A spanning subgraph of D

subdigraph.

\?
uy7 e

ue

We claim that (uq,uq+5) is an arc in D if and only if « is odd. If this is not the
case, say (ug,u1) is an arc in D, then the 5-path (uq4, us, ug, u1, ug) cannot be extended
to a 10-cycle since (u;,u1p) is an arc for ¢ € {3,7,9}. Thus, the claim is verified and so
D = D*. [

The following is a consequence of Theorem 3.5.5 and Propositions 3.5.6 and 3.5.7.
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Corollary 3.5.8 3 <he'(Ks5) < 4.

Proof. Since he(D*) = 3 by Proposition 3.5.6, it follows that he™(K55) > 3. By
Proposition 3.5.7 then, D* is the only Hamiltonian orientation of K55 that is 5-path
Hamiltonian. This implies that there is no Hamiltonian orientation D of K55 with
he(D) = 5. It then follows by Theorem 3.5.5 that he™ (K55) < 4. (]

It is not known whether het (K5 5) = 3 or he™ (K5 5) = 4.

Problem 3.5.9 Determine a lower bound for he+(Kmn) for odd integers r > 7.
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Chapter 4

Rainbow Hamiltonian-Connected
Graphs

4.1 Introduction

A rainbow coloring of a connected graph G is an edge coloring ¢ of G (where adjacent
edges may be colored the same) with the property that for every two vertices u and v of
G, there exists a u — v rainbow path (no two edges of the path are colored the same). In
this case, G is said to be rainbow-connected (with respect to ¢). The minimum number
of colors needed for a rainbow coloring of G is referred to as the rainbow connection
number of G and is denoted by rc(G). These concepts were introduced and studied by
Chartrand, Johns, McKeon and Zhang in 2006. The first paper [10] on this topic was
published in 2008. In recent years, this topic has been studied by many and, in fact,
there is a book [34] on rainbow colorings, published in 2012.

While, in a rainbow-connected graph G, every two vertices u and v of G are connected
by a w — v rainbow path, there is no condition on what the length of such a path must
be. For certain highly Hamiltonian graphs G, however, it is natural to ask whether there
exists an edge coloring of GG using a certain number of colors such that every two vertices
of G can be connected by a rainbow path of a prescribed length.

For a Hamiltonian-connected graph G, an edge coloring ¢ : E(G) — [k] = {1,2,...,k}
is called a Hamiltonian-connected rainbow k-coloring if every two vertices of G are con-
nected by a rainbow Hamiltonian path in G. An edge coloring ¢ is a Hamiltonian-
connected rainbow coloring if ¢ is a Hamiltonian-connected rainbow k-coloring for some
positive integer k. The minimum & for which G has a Hamiltonian-connected rainbow
k-coloring is the rainbow Hamiltonian-connection number of G, denoted by hrc(G).

If H is a Hamiltonian-connected spanning subgraph of a graph G and c is a Hamiltonian-

connected rainbow coloring of H, then the coloring ¢ can be extended to a Hamiltonian-
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connected rainbow coloring of G by assigning any color used by ¢ to each edge in
E(G) — E(H). Thus, we have the following observation.

Observation 4.1.1 If H is a Hamiltonian-connected spanning subgraph of a graph G,
then

hre(G) < hre(H).

Let G be a Hamiltonian-connected graph of order n > 4. Since (1) every Hamiltonian-
connected rainbow coloring of G is a rainbow coloring, (2) there is no Hamiltonian-
connected rainbow coloring of G using less than n — 1 colors and (3) the edge coloring
that assigns distinct colors to distinct edges of GG is a Hamiltonian-connected rainbow

coloring, we have the following observation.

Observation 4.1.2 If G is a Hamiltonian-connected graph of order n > 4 and size m,
then

max{rc(G),n — 1} < hre(G) < m.

If G is a Hamiltonian-connected graph of order n > 3 and size at most 2n — 3, then
hre(G) # n — 1, for otherwise, each (n — 1)-edge coloring of G results in some edge
e = uv of G having the property that e is the only edge possessing the color assigned to
it. However then, there is no rainbow Hamiltonian « — v path P in G. This gives rise to

the following observation.

Observation 4.1.3 If G is a Hamiltonian-connected graph of order n > 3 and size at
most 2n — 3, then hre(G) > n.

We now present infinite classes of Hamiltonian-connected graphs G such that hre(G) =
|V (G)|—1. For two vertex-disjoint graphs F' and H, let 'V H denote the join of F' and H.

For an integer n > 3, the wheel W,, = C,, V K7 of order n + 1 is Hamiltonian-connected.
Theorem 4.1.4 For each integer n > 3, hre(W,,) = n.

Proof. Let W, = C,, V Kj, where C,, = (v1,v2,...,0,,v1) and the vertex v € V(K7)
is adjacent to each vertex of C,. Since hrc(W,,) > n by Observation 4.1.2, it remains
to show that hrc(W,,) < n. Define an n-edge coloring ¢ : E(W,,) — [n] by c(vjvi+1) =
c(viv) =i for 1 < i < n, where v,4; = v;. We show that every two vertices x and y
in W,, are connected by a rainbow Hamiltonian path in W,,. We may assume, without

loss of generality, that z = vy. If y = v, then (vi,v9,...,v,,v) is a rainbow Hamiltonian
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v] — v path. If y = vy, then (vi,v2,v3,...,0p-1,v,v,) is a rainbow Hamiltonian v; — v,
path. If y = v; where 2 < i < n—1, then (v1,v2,...,0i—1,V, Up, Vp—1,...,0;) iS a rainbow
Hamiltonian v; — v; path. Thus, ¢ is a Hamiltonian-connected rainbow coloring of W,
and so hrc(W,,) < n. Therefore, hre(W,,) = n. m

Figure 4.1: An n-edge coloring ¢ of W,, = C, V K1

The following results are consequences of Observations 4.1.1 and 4.1.2 and Theo-
rem 4.1.4.

Corollary 4.1.5 If G is a Hamiltonian graph of order n > 3, then

hre(G Vv K1) = n.
Corollary 4.1.6 For each integer n > 4, hre(K,) =n — 1.

If G is a graph of order n > 3 containing a Hamiltonian path, then the join G V K>
of G and K> is Hamiltonian-connected. In particular, P, V K5 is Hamiltonian-connected
for n > 3. In this section, we determine the rainbow Hamiltonian-connection numbers

graphs that are joins of graphs possessing a Hamiltonian path with K.
Theorem 4.1.7 For each integer n > 3, hre(P, V Ko) =n + 1.

Proof. If n = 3, then P3 O K5 is the wheel of order 5 and so hrc(Wy) = 4 by

Theorem 4.1.4. Thus, we assume that n > 4. Let G = P, V Ko where V(K32) = {u,v}

and P, = (x1,x2,...,Z,). Since G has order n+ 2, it follows that hrc(G) > n+1. Thus,

it remains to show that G has a Hamiltonian-connected rainbow (n + 1)-coloring.
Define the edge coloring ¢ : V(G) — [n + 1] of G by

*x c(ux;) =i for 1 <i<nandc(rjrit1) =i+ 1for 1 <i<n-—1and
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* c(vry) =1 and c(ve;) =i+ 1for 2 <i<n-—2and c(x,—1) =c(zy) =n+1.

This coloring is shown in Figure 4.2. To show that c is a Hamiltonian-connected rainbow
coloring of G, we illustrate a rainbow Hamiltonian path connecting each pair of the

vertices of G as listed below.

Figure 4.2: An (n + 1)-edge coloring c of P, V Ko

UuU—v (u, 21, 22,T3,...,Tn,V)

U — T; (Uy iy 1, Tty o ooy Ty U, T, T2, ..., xy) for 1 <i<n—1

U — Ty (u, 1, T2, T3, ..., Tp_2,V,Tp_1,Ty)

v— T : (U, Ty Ty« vy Tt 1, Uy 1, T2, .-, y) for 1 <i<m—1

v — Tp (U, Tp—1, T2, "+ , L1, Uy Tp)

XTi — Tit1 (Tiy Tim1y ey XUy Ty Ty v oy T2, Uy Tigq) for 1 < i <m—2
1 — Tp: (xn 1,V,Tn—2,Tn— 3,...,.271,'&,1‘”)

T — (T Ti1y o L Uy Tig 1y« ooy Tjm1, Uy Ty Ty - - -, L)

for1<i<j<n-—-1
Ti — Tp: (Tiy i1y ey XLy Uy Ty e - vy T2, Uy Tp1, Tpy) for 1 < i <m —3
n—2 — Tn : (Tp—92,Tn_3,...,T1,0, Tn_1,U, Tp).

Therefore, ¢ is a Hamiltonian-connected rainbow coloring of G and so hre(G) =n+1. =

The following are consequences of Observations 4.1.1 and 4.1.2 and Theorem 4.1.7.
Corollary 4.1.8 If G is a graph of order n > 3 containing a Hamiltonian path, then
hre(GV Ko) =n + 1.

We have seen in Observation 4.1.2 that if G is a Hamiltonian-connected graph of

order n > 4 and size m, then
n—1 <hre(G) < m. (4.1)
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In the next two sections, we will investigate the rainbow Hamiltonian-connection numbers
of the Cartesian products H 1 Ko of graphs H and K, where H belongs to one of two
infinite classes of graphs, for the purpose of verifying that the bounds in (4.1) are sharp.
We will show in Section 4.2 that for graphs H in one class, hre(H O K3) attains the lower
bound in (4.1), while in Section 4.3 that for graphs H in the other class, hrc(H O K»)
attains the upper bound in (4.1).

4.2 The Graphs K, [ Ky

In this section, we investigate the rainbow Hamiltonian-connection numbers of the Hamiltonian-
connected graphs K, [ K for several integers n > 3. First, we determine the rainbow
Hamiltonian-connection number of K3 [1 K5, the unique Hamiltonian-connected cubic

graph of order 6.
Theorem 4.2.1 hrc(K3 0O Ky) =17.

Proof. First, we consider the 7-edge coloring of the graph G = K3 [0 K5 shown in
Figure 4.3. This edge coloring is a Hamiltonian-connected rainbow 7-coloring since each

of the following (g) = 15 Hamiltonian paths are rainbow paths. Therefore, hre(G) < 7.

1. rainbow Hamiltonian u; — ug path: (u1,v1,ve,vs, us, u2)
2. rainbow Hamiltonian u; — ug path: (uq,ug, ve, v1, vs, us)
3. rainbow Hamiltonian u; — vy path: (u1,u9,us,vs, v, v1)
4. rainbow Hamiltonian u; — vg path: (u1,v1,vs, ug, ug, v2)
5. rainbow Hamiltonian u; — v3 path: (u1,v1,ve, ug, us, vs)
6. rainbow Hamiltonian ug — ug path: (ug,uy,v1,va, v3,us)
7. rainbow Hamiltonian uy — vy path: (ug,uq,us,vs, ve,v1)
8. rainbow Hamiltonian ug — vy path: (ug,u1,us,vs, v1,v2)
0. rainbow Hamiltonian uy — vg path: (usg,ve,v1,u1, us, v3)
10.  rainbow Hamiltonian ug — vy path: (us,vs,ve, ug,u1,v1)
11.  rainbow Hamiltonian uz — vy path: (us,vs,vi,u,ug,va)
12.  rainbow Hamiltonian ug — v3 path: (ug,u1,ug,ve, v1,v3)
13.  rainbow Hamiltonian v; — ve path: (v1,vs,us, u1, uz, ve)
14.  rainbow Hamiltonian v; — vg path: (v1,ve, ug, u1,us, vs)
15.  rainbow Hamiltonian vy — vs path: (vg,v1,u1, ug, us, vs)

It remains to show that hrc(G) > 7. Of course, hrc(G) > n —1 = 5. To see that
hre(G) > 6, assume, to the contrary, that hrc(G) = 5. Then there is a Hamiltonian-

connected rainbow 5-coloring of G. Since G has nine edges, some edge uv of G has
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Figure 4.3: A Hamiltonian-connected rainbow coloring of K3 [0 K5 using 7 colors

the property that it is the only edge possessing the color assigned to it. However, by
definition, there is a rainbow Hamiltonian v — v path P in G. Since the length of P is 5
and P does not contain uv, it is impossible for P to be a rainbow path. Thus, hrc(G) > 6.
Hence, either hrc(G) = 6 or hre(G) = 7. We show that hrc(G) # 6; for suppose that
there is a Hamiltonian-connected rainbow 6-coloring ¢ : E(G) — {1,2,...,6} of G. For
each pair x,y of vertices of GG, there are exactly two Hamiltonian x — y paths. At least
one of these two paths is necessarily a rainbow path. These 2 (g) = 30 Hamiltonian paths

are shown below. Also, see Figure 4.3.

uy — ug paths: (ug,vi,v2,v3,us,u2), (u1,us,vs, v, va, u2)

Uy —us paths: (’LL Uu2,v2,v1,03,U 3)7 U1, 01,3, 02,U2,U 3)

w1 — vy paths:  (u1,ug, us, vs,v2,v1), (u1,us, uz, v2, v3, V1

U1, v1, U2, Uz, ug, v3), (U1, us, ug, v2,v1, V3

) v1)
uy; — vg paths: (u1, v, vs, us, uz, v2), (U ug, U3, V3, V1, V2)
u; — v3 paths: ( v3) v3)

) us)

up — uz paths: (ug,ur,vi,v2,v3,u3), (u2,v2,v3,v1, ur, us

U2 — V1 pathS: uz,uy,us,vs, v2,v1), (U2, V2,3, u3, U1, U1

NS kW N =

U2 — V2 paths: uz,u1,us, v3, v, U2 u2,us3, Uy, V1, V3, U2

)

9. U2 — V3 paths: uz,v2,v1, U1, u3,v3), (U2,U3, U1, V1, V2, V3

(
(
(
, (u3,ur, ug, v2,v3,v1
11.  wug — vy paths: (
(

(
(
(
10. w3 — vy paths: (us,vs, va, ug, ui, vy
(
(

12. w3 — w3 paths: (us3,u1,u2,v2,v1,v3), (U3, uz,ur,v1,v2,v3

13. vy —wg paths: (v1,u1,u2,us,vs, v2), (v1,v3, U3, U1, U2, V2

i

v1)
v2)
v3)
v1)
U3, U2, UL, V1, V3, V)
v3)
v2)
v3)
)

v1)
v2)
v3)
v1)
U3, V3, V], UL, U2, V),
v3)
v2)
v3)
)

( (
14. vy — w3 paths: (v1,v2, ug, ur, us,v3), (v1,ui, us, uz, v2, v3
( (

15.  wg — w3 paths: (vo,u2,us,u1,v1,v3), (v2,v1, U1, u2, uz, v3

Because of the symmetry of two Hamiltonian u; — ug paths, we may assume that the
Hamiltonian-connected rainbow 6-coloring c is such that the first of the paths in (1) is a

rainbow path. Thus, we may assume that
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c(uivr) =1, ¢(viv2) = 2, c(vavs) = 3, c(vsugz) = 4, c(uguz) = 5.

See Figure 4.4.

Figure 4.4: A rainbow Hamiltonian u; — ug path of K3 O K>

It remains, therefore, to determine the possible colors assigned to the remaining four
edges of G. For this purpose, we make a number of observations, beginning with the
possible color of the edge ujug. Since both Hamiltonian us — ve paths in (11) contain
both edges ujv; and ujuz, the edge ujug cannot be colored 1. Similarly by (12), the edge
ujug cannot be colored 2. According to (10), ujuz cannot be colored 3. By (13), ujus

cannot be colored 4. Consequently, this edge must be colored 5 or 6. See Figure 4.5.

Figure 4.5: A step in the proof of Theorem 4.2.1

Next, we consider the possible color of the edge wjus. Since the two Hamiltonian
ug — v3 paths in (9) contain both edges ujv; and wjus, it follows that c(ujus) # 1. Also
by (9), c(uius) # 2. By (7), c(urus) # 3 and c(ujus) # 4. Therefore, either c(ujuz) =5
or ¢(ujug) = 6. Again, see Figure 4.5.

Next, we consider the possible color of the edge usvs. Since the two Hamiltonian
uj — vy paths in (5) contain both edges ugvy and vivg, it follows that c(ugve) # 2. By
(10), c(ugua) # 3. By (5), c(ugva) # 5. Thus, c(ugva) € {1,4,6}.
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Next, we consider the possible color of the edge vivs. The two Hamiltonian usg — v
paths in (11) contain both edges v1v3 and ujvy. Thus, c(vivs) # 1. By (4), c(vivs) # 4
and c(vivs) # 5. Hence, c(vivs) € {2,3,6}.

If c(ugve) = 6, then c(ujug2) = 5 by (10) and c¢(ujug) = 5 by (14). Also, if ¢(viv3) = 6,
then c(ujuz) = 5 by (11) and c(ujug) = 5 by (8). That is, if either c(ugv2) = 6 or
c(vivs) = 6, then c(ujuz) = c(urug) = c(ugus) = 5. However, this is impossible by (3).
Thus, c(ugve) € {1,4} and c(viv3) € {2, 3}(see Figure 4.5).

If ¢(ujus) = 5, then no rainbow Hamiltonian u; — v3 path can contain both ujug
and usuz. Thus, the only possible rainbow Hamiltonian u; — vs path contains the edges
ujv1, ugve and ugvs (see (5)). Since each of these three edges is colored 1 or 4, this is
impossible. Therefore, c(ujuz) = 6. Similarly, if c(ujuz) = 5, then no rainbow Hamil-
tonian u; — vo path can contain both ujuo and usus. Hence, the only possible rainbow
Hamiltonian u; — ve path contains the edges wjv1, uovs and usvs, again a contradiction,
and so c(ujuz) = 6. Since no rainbow Hamiltonian path can contain both ujus and ujus,
the only possible rainbow Hamiltonian us — v path must contain the edges ujvy, usve
and ugvs, a contradiction.

Thus, ¢ is not a Hamiltonian-connected rainbow coloring of G and so hrc(G) =7. =

According to Theorem 4.2.1 then, for the graph K3 [ K5 of order n = 6 and size m =
9, we have hre(K3 0 K9) = 7 = n+1. Next, we turn our attention to the graphs K,, 0 K,
where n > 5. First, we determine hrc(W O K3) for all wheels W of order 5 or more.

Theorem 4.2.2 If W is a wheel of order n > 5, then hre(W O Kj3) = 2n — 1.

Proof. Let G = W [ K> be obtained from two copies F' and F” of the wheel W of order
n > 5, where V(F) = {u,u1,uz,...,up,—1} and V(F') = {v,v1,v2,...,0p-1}, by adding
the n edges uv and w;v; for 1 < i < n—1. Furthermore, assume that F' = C},_1V K7 where
Crn-1 = (u1,ug,...,up—1,up = uy) and F' = C,_1 V Ky where C,_1=(v1, v2, ..., Up_1,
vp, = v1). The edge coloring cp : E(F) — [n— 1] defined by cp(u;uit1) = cp(uju) = i for
1 < i <n—1is a Hamiltonian-connected rainbow coloring of F' and the edge coloring
cpr : E(F') = {n,n+1,...,2n — 2} defined by cp(vjvi41) = cpr(viv) = n— 1+ for

1 <4 < n—11is a Hamiltonian-connected rainbow coloring of F’. Define the (2n—1)-edge
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coloring ¢ : E(G) — [2n — 1] by
([ cr(e) ifec E(F)
cpr(e) ifee E(F)
cle) = 1 if e = w111

n+2 ife=ugvs

2n—1 ife=wore=wuv;fort=2o0rd4<i<n-—1.

For n = 6, this coloring ¢ of G = W U Kj is illustrated in Figure 4.6. Since n > 5,
it follows that u; and us are nonadjacent vertices in F' and v; and wvg are nonadjacent
vertices in F’. We show that ¢ is a Hamiltonian-connected rainbow (2n — 1)-coloring
of GG; that is, we show that every two vertices x and y of G are connected by a rainbow

Hamiltonian path in G. We consider two cases, according to the locations of z and y
in G.

Figure 4.6: A Hamiltonian-connected rainbow 11-coloring of W 0 Ky for n = 6

Case 1. © € V(F) and y € V(F'). Since n > 5, there exists z € V(F) — {z} such
that (1) the corresponding vertex 2’ of z in F” is not y and (2) ¢(z2') = 2n — 1 (namely,
272" is not ujvy, ugvs or the two edges between F and F”’ incident with x or y). Let P
be a rainbow Hamiltonian x — z path in I’ and let P’ be a rainbow Hamiltonian 2’ — y
path in F’. Then the path (P, P’) is a Hamiltonian x — y path in G.

Case 2. x,y € V(F) or x,y € V(F'). We may assume, without loss of generality,
that z,y € V(F). Let Q = (x = z1,22,...,2, = y) be a rainbow Hamiltonian = — y
path in F. Since {c¢(zjzit1) : 1 < i < n—1} = [n — 1], there is exactly one integer

t € [n — 2] such that c(xy2441) = 1. Let @} and x;_; be the corresponding vertices of x;
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and x4 in F', respectively. Thus, {c(zsx}), c(zip12i,1)} = {1,2n — 1}, say c(zx)) =1
and ¢(x117},1) = 2n — 1. Let Q" be a rainbow Hamiltonian x} — x;_; path in F”. Next,
let @1 be the 1 — x; subpath of @@ and let QY2 be the x441 — x,—1 subpath of ). Then
the path (Q1,Q’, Q2) is a rainbow Hamiltonian z — y in G. n

Corollary 4.2.3 For each integer n > 5, hre(K,, O Ki) = 2n — 1.

By Corollary 4.2.3 then, for each integer n > 5, it follows that
hre(K, O K3) — 2hre(K,) = 1.

For every Hamiltonian-connected graph H of order n > 4, the number hrc(H O Kj) —
2hrc(H) cannot be much larger than 1.

Theorem 4.2.4 If H is a Hamiltonian-connected graph of order n > 4, then

hrc(H O K3) < 2hre(H) + 2.

Proof. Suppose that hre(H) = k. Let G = H OO K3 be obtained from two copies F'
and F’ of the graph H of order n > 4, where V(F) = {u1,us,...,u,} and V(F') =
{v1,v9,...,v,}, by adding the n edges u;v; for 1 < i < n. Since hrc(H) = k, it follows
that H has a Hamiltonian-connected rainbow k-coloring. Let cp: V(F) — {1,2,...,k}
and cpr : V(F') = {k+1,k+2,...,2k} be a Hamiltonian-connected rainbow k-coloring
of F and F’, respectively. Define the (2k + 2)-edge coloring ¢ : E(G) — [2k + 2] by

cr(e) ifee E(F)
cri(e) ifee E(F)
=9 2kt1 ife=umand1<i<|]
2k +2 if e = u;v; and L%J—#—lgign.

We show that ¢ is a Hamiltonian-connected rainbow coloring of (G; that is, we show that
every two vertices x and y of G are connected by a rainbow Hamiltonian path in G. We
consider two cases, according to the locations of x and y in G.

Case 1. © = u; and y = vj where 1 < 4,5 < n. Let t € [n] — {i,j}. Let P be a
rainbow Hamiltonian u; —u; path in F and let P’ be a rainbow Hamiltonian v; —v; path
in F'. Then the path (P, P’) is a Hamiltonian u; — v; path in G.

Case2. x,y € V(F) orz,y € V(F'), say the former. Suppose that = u; and y = u;
where 1 <¢,7 < n and ¢ # j. Let @ be a rainbow Hamiltonian u; — u; path in F, say
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Q = (u; = x1,72,..., 2y, = u;). Thus, thereis ¢ € [n—1] such that c(xx}) # c(@ir177,),
where x} and x;, are the corresponding vertices of ; and x41 in F”, respectively. Let
Q1 be the 1 — z; subpath of @ and let Q5 be the x411 — z,, subpath of Q. Now, let @’
be a rainbow Hamiltonian «} — }; path in F'. Then the path (Q1,Q’, Q2) is a rainbow

Hamiltonian u; — u; in G.

Therefore, ¢ is a Hamiltonian-connected rainbow coloring of G and so hre(G) <
2k 4 2. m

By Theorem 4.2.1 and Corollary 4.2.3, we then have the following.

7 ifn=3

Corollary 4.2.5 hre(K, O K») = { m—1 ifn>5

Thus, as far as the numbers hrc(K,, 0 K3), n > 3, are concerned, only hrc(K4 O K»)
is unknown. On the other hand, hre(Ky O K3) is either 7 or 8 by Theorem 4.2.4.

The upper bound in Theorem 4.2.4 can be improved for a Hamiltonian-connected
graph H if H possesses a Hamiltonian-connected rainbow coloring with a particular
property. Before describing this bound, we first present an additional definition. For a
Hamiltonian-connected graph H, let ¢ : E(H) — [k] be an edge coloring of H. For each
integer @ with 1 < i <k, let E; = {e € E(H) : c(e) =i} be the set of edges of H that
are colored i by ¢ and let H[E;] be the subgraph induced by E; in H. If T} and T3 are
edge-disjoint stars in H such that their central vertices are not adjacent in H, then T}
and T5 are referred to as nonadjacent stars in H. The following result is a more general

case of Theorem 4.2.2.

Theorem 4.2.6 Let H be a Hamiltonian-connected graph of order n > 5 and let ¢ :
E(H) — [k] be a Hamiltonian-connected rainbow coloring of of H for some integer
k > n —1. If there are two distinct colors o, € [k| such that H[E,| and H[Eg] are
nonadjacent stars in H, then hre(H O Ky) < 2hre(H) + 1.

Proof. Let G = H [0 K5 be obtained from two copies F' and F’ of the graph H of
order n > 5, where V(F) = {uy, ug,...,u,} and V(F') = {v1,v2,...,v,}, by adding the
n edges u;v; for 1 < i < mn. Let cp : E(F) — [k] be a Hamiltonian-connected rainbow
coloring of F' such that there are two distinct colors «, 5 € [k] for which F[E,] and
F[Ejg] are nonadjacent stars in F'. We may assume that the central vertex of F[E,]
is u; and the central vertex of F[FEg| is us, where then u; and us are not adjacent

in F'. For an edge e of F, let ¢ denote the corresponding edge of e in F’. The coloring
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cpr @ E(F') — {k+ 1,k + 2,...,2k} of F’ defined by cpr(¢') = cp(e) + k for each
¢/ € E(F") is then a Hamiltonian-connected rainbow coloring of F”.
We now define the (2k + 1)-edge coloring ¢ : E(G) — [2k + 1] of G by

cr(e) ifee E(F)
cri(e) ifee E(F)
cle) = o if e = ujvy

k+ 6 if e = usvo

2k +1 ife=wu;v; for 3 <i < n.

We now verify that ¢ is a Hamiltonian-connected rainbow (2k + 1)-coloring of G by
showing that every two vertices « and y of G are connected by a rainbow Hamiltonian
path in G. We consider two cases, according to the location of z and y in G. In each of

these cases, we denote, for a vertex w of F, the corresponding vertex of w in F’ by w’.

Case 1. © € V(F) and y € V(F'). Since n > 5, there exists z € V(F) — {z} such
that 2z’ is neither wjvq, ugvo nor either of the two edges between F' and F’ incident
with z or y. Let P be a rainbow Hamiltonian x — z path in F' and let P’ be a rainbow

Hamiltonian 2’ — y path in F’. Then the path (P, P’) is a Hamiltonian x — y path in G.

Case 2. x,y € V(F) or x,y € V(F'). We may assume, without loss of generality
that z,y € V(F). Let Q = (r = 1,22, ...,Z, = y) be a rainbow Hamiltonian x —y path
in F and let ¢(Q) = {c(zjzit1) : 1 <i < n — 1} be the set of colors of the edges of Q.
First, suppose that a € ¢(Q). Since @ is a rainbow Hamiltonian path of F' and H[E,]
is a star, there is exactly one integer ¢ € [n — 1] such that c¢(zi2441) = . Then either
oy Or 41 is the central vertex of H[E,]. So, #} and z} ., are the corresponding vertices
of z; and x4 in F’, respectively. Since the central vertices of F[E,| and F[Eg] are not
adjacent in F, it follows that {c(zsx}), c(@ip17; 1)} = {a, 2k + 1}, say c(z4r;) = a and
c(xt412y 1) = 2k + 1. Let Q' be a rainbow Hamiltonian x; — z}; path in F'. Next, let
@1 be the x1 — x4 subpath of @ and let Q)2 be the z;11 —x,, subpath of (). Then the path
(Q1,Q’,Q2) is a rainbow Hamiltonian z — y path in G. Next, suppose that o ¢ ¢(Q).
Since @ is a rainbow Hamiltonian path of F', there is exactly one integer ¢ € [n — 1] such
that 2; = uy (the central vertex of F[E,]). Let x} and x;_; be the corresponding vertices
of x; and ¢yq in F’, respectively. Let Q' be a rainbow Hamiltonian x} — z},; path in
F’. Next, let Q1 be the x7 — z; subpath of Q and let Q2 be the x;41 — z,, subpath of Q.
Then the path (Q1,Q’, Q2) is a rainbow Hamiltonian x — y path in G. [

A graph is a galazy if each of its components is a star. If H; and Hy are edge-disjoint

subgraphs of a graph H where H; and Hs are galaxies, such that no central vertex of
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any component in H; is adjacent to a central vertex in a component in Hs, then H;
and Hy are referred to as nonadjacent galaxies in H. The argument used in the proof of

Theorem 4.2.6 yields the following result.

Corollary 4.2.7 Let H be a Hamiltonian-connected graph of order n > 5 and let
c¢: E(H) — [k] be a Hamiltonian-connected rainbow coloring of of H for some integer
k > n —1. If there are two distinct colors o, € [k| such that H[E,| and H[Eg] are
nonadjacent galaxies in H, then hrc(H O Kj3) < 2hrc(H) + 1.

4.3 Hamiltonian-Connected Prisms

We have now seen (in Theorem 4.1.4, Corollary 4.1.6, Theorem 4.2.2 and Corollary 4.2.3)
Hamiltonian-connected graphs G of order n for which hrc(G) = n — 1. We also saw in
Theorem 4.2.1 a Hamiltonian-connected graph G of order 6 with hrc(G) = n+ 1. While
we have not determined the value of hre(Ky O Ks), no graph H of order n > 4 with
hrc(H) = n has been established. Indeed, the examples described thus far may suggest
the existence of a constant ¢ such that hrc(G) < n + ¢ for every Hamiltonian-connected
graph G of order n > 4. There is no such constant, however, as we verify in this section.

For an integer n > 3, the prism C,, 1 K5 is Hamiltonian-connected if and only if n is
odd. Thus, if G is a Hamiltonian graph of odd order n > 3, then G [ K is Hamiltonian-
connected. For an odd integer n > 3, let C,, [J Ky be obtained from two copies C' and

C’ of the n-cycle C,,, where
C= (Ul,UQ, ceey Un, Un+1 = ul) and C' = (Ula V2. ,Un, Untl = Ul)?

by adding the n edges u;v; for 1 <1i < n. We will refer to this labeling of the vertices of
Cp, O K, for all results in this section. By Theorem 4.2.1, hre(C3 O K3) = 7. Next, we
show that hrc(C,, O K3) = 3n for each odd integer n > 5. In order to do this, we first

present some preliminary results.

Lemma 4.3.1 Let n > 5 be an odd integer. For each integer i with 1 < i < n, there

are exactly two u; — v; Hamiltonian paths in C, O Ks.

Proof. By the symmetry of the graph G = C,, O Ko, it suffices to show that there
are exactly two Hamiltonian w1 — v; paths in G. First, G contains the following two

Hamiltonian u; — v; paths:

P = (UJl,un,Un,l,...,UQ,UQ,U?,,U4,..-,Un,’Ul) (42)

Q = (u1,u2,u3,...,Un, Vp, Up—1,...,02,01). (4.3)
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The Hamiltonian u; — v; paths P and () are shown in Figure 4.7 for n = 7, where solid

lines indicate edges in P or ) and dashed lines indicate edges not in P or Q.

ul

..... 4

o—2o0

P Q

Figure 4.7: The two Hamiltonian w1 — v1 paths in C7 O Ko

Thus, it remains to show that P and ) are the only Hamiltonian u; — v1 paths in G.
Let R be a Hamiltonian u; — v; path in G. Since ujv; ¢ E(R), it follows that exactly
one of uju, and wujug belongs to R, say uiju, € E(R) and ujus ¢ E(R). Since G is
3-regular and R is a Hamiltonian path of G, for each x € V(G) — {u1, v1}, exactly one
of the three edges incident with = does not belong to R. Since ujus ¢ E(R), it follows
that (ve,u2,us) is a subpath of R and exactly one of viv, and vivy belongs to R. We

consider these two cases.

Case 1. viv, € E(R) and viva ¢ E(R). Since viva ¢ E(R) and G is 3-regular,
it follows that vevs € E(R). Hence, unv,,usvs ¢ E(R). This implies that w,u,—1,
UpUn—1, Uguy, v3vy are edges of R. Continuing this argument, we see that u;v; ¢ E(R)
for 3 <i < n and so R is the path P described in (4.2).

Case 2. vivy, ¢ E(R) and viva € E(R). Then vivy, vov3 ¢ E(R) and s0 (Up, Un, Un—1)
and (us,vs,vs) are subpaths of R. Thus, u,u,—1,usuy ¢ E(R). If n =5, then v,_1 =
vs. However then, u4 does not belong to R, which is a contradiction. If n > 7, then

(v4, ugq,us) is a subpath of R and so vqvs ¢ E(R). Continuing this argument, we conclude
that

(U47 Uyg, U5, V5, V6, UG, - - - y Un—2, Un—2, vnfl)

is a subpath of R. However then, u,_1 does not belong to R, which is a contradiction.

Thus, Case 2 cannot occur. ]

Lemma 4.3.2 If ¢ is a Hamiltonian-connected rainbow coloring of Cp, OO Ko for some
odd integer n > 5, then for each integer i with 1 <1i < n, the coloring c assigns distinct
colors to the 2(n — 2) edges in the two paths C — u; and C' —v; in C,, O Ks.
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Proof. Let ¢ be a Hamiltonian-connected rainbow coloring of G = C,, 10 K> for some
odd integer n > 5. By the symmetry of the graph G, it suffices to show that ¢ must
assign distinct colors to all edges in the two paths C' — u; and ¢/ — vy in G. Let
X = E(C —u1)UE(C" —vp). Then |X| = 2(n — 2). By Lemma 4.3.1, the paths P in
(4.2) and @ in (4.3) are the only Hamiltonian u; — v; paths in G. Thus, at least one of
P and @ is rainbow. Since X C E(P)N E(Q) (see Figure 4.8 for n = 7), it follows that

all edges in X must be assigned different colors. [

ul ul

Figure 4.8: The set X of edges in C7 O Ky

Lemma 4.3.3 Let n > 5 be an odd integer. For each integer i with 1 < i < n, there

are exactly two u; — v;11 Hamiltonian paths in Cp, O K.

Proof. By the symmetry of the graph G = C,, O Ko, it suffices to show that there
are exactly two Hamiltonian uw; — ve paths in G. First, G contains the following two

Hamiltonian u; — vo paths:

P = (ul,’l)l,’l)n,un,Un_h'l)n_l,’l)n_g,un_g,un_3,Un_37... 7”37“37“271}2) (44)

Q = (u1,u2,us,v3,v4,Us,Us, Vs, Vg, - - -, Un—1, Un—1, Un, Un, V1, U2). (4.5)

The Hamiltonian u; — vo paths P and @ are shown in Figure 4.9 for n = 7, where
solid lines indicate edges in P or () and dashed lines indicate edges not in P or Q.

Thus, it remains to show that P and () are the only Hamiltonian u; — vy paths in G.
Let R be a Hamiltonian u; — vo path in G. Then R contains exactly one of ujvy, ujus
or uiu,. We consider these three cases.

Case 1. wjvy € E(R) and wiug,uru, ¢ E(R). Clearly, viva ¢ FE(R). Hence,
(ve, ug,u3) and (v1, vy, Un, Un—1) are subpaths of R. Since v is an end-vertex of R, it
follows that vovs ¢ E(R). Now vovs, v,v,—1 ¢ E(R) and so (us, vs,v4) is a subpath of R.
If n =25, then
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p Q

Figure 4.9: The two Hamiltonian u; — v9 paths in C7; O Ko

R= (uly V1, Us, U5, U4, V4, V3, U3, U2, U2)7

which is the path P in (4.4), while if n > 7, then, by a similar argument, we conclude
that R is the path P in (4.4).

Case 2. ujug € E(R) and uivi,uiuy, ¢ E(R). Then (ve,v1,vpn, U, Up—1) is a sub-
path of R. Since v,v,—1 ¢ F(R), it follows that (u,—1,vn—1,v,—2) is a subpath of R.
Continuing in this way, we see that R is the path @ in (4.5) in this case.

Case 3. ujuy, € E(R) and ujvy,ujug ¢ E(R). Since R is a Hamiltonian path and G
is 3-regular, it follows that (v, v1, v, ug, us) is a subpath of R, which is impossible since

vg9 is an end-vertex of R. Thus, Case 3 cannot occur. [
Lemma 4.3.4 Letn > 5 be an odd integer. For each integer i with 1 < ¢ <mn, let

Ri = (Wig1, Uit2, Vit2, Vi3, Wit 3, Uit dy Vigd, Vit 5, - - - 5 Vi—2, Uim2, Ui—1,Vi—1,V;)  (4.6)

be the path in C, O Ky, where the subscript of each vertex is expressed as an integer
modulo n. If ¢ is a Hamiltonian-connected rainbow coloring of C, J Ks, then ¢ assigns
distinct colors to the edges of R; for 1 <i <mn.

Proof. Let ¢ be a Hamiltonian-connected rainbow coloring of G = C,, 1 K> for some
odd integer n > 5. It suffices to show that all edges in R; must be colored differently
by ¢. Observe that

Ry = (u2,u3, v3, V4, Ud, Us, V5, V6, - - - ; Un—1, Un, Un, U1 = U1).

By Lemma 4.3, the paths P in (4.4) and @ in (4.5) are the only Hamiltonian u; — vy
paths in G. Thus, at least one of P and () is rainbow. Since E(R;) C E(P) N E(Q)
(see Figure 4.10 for n = 7), it follows that all edges in E(R;) must be assigned different

colors. -
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Figure 4.10: The path Ry in C7 [J Ko

We now make a useful observation. Let E[C,C’] = {u;v; : 1 < i < n} be the set of
edges of C,, O K that do not belong to E(C)UE(C"). For each integer ¢ with 1 <i < n,
let R; be the path of C,, O K defined in (4.6). Then E[C, C'] — {u;vi, uit+1vi+1} C E(R;)
and u;v;, ui41vi+1 ¢ E(R;). For example, R; contains all edges u;v; for 3 < i < n and
uivy, ugvy ¢ E(Ry).

Theorem 4.3.5 For each odd integer n > 5, hre(C,, O K3) = 3n.

Proof. Let G = C, O K5 for some odd integer n > 5. Since the size of G is 3n, it
follows by Observation 4.1.2 that hrce(C,, O K2) < 3n. It remains to show that every
Hamiltonian-connected rainbow coloring of G must assign distinct colors to distinct edges
of G. Let ¢ be a Hamiltonian-connected rainbow coloring and let e, f € E(G). We show
that c(e) # c(f).

First, suppose that at least one of e and f belongs to the two n-cycles C and C’ in G,
say e € E(C)U E(C"). Assume, without loss of generality, that e = ujus. We consider
two cases, according to whether f € E(C)U E(C") or f € E[C,C"].

Case 1. f € E(C)U E(C"). Thus, either f = ujujy1 € E(C) where 2 < j < n
or f = vjvjp1 € E(C') where 1 < j < mn. Since n > 5, it follows that there exists
i € [n]—{1,2,4,7 +1}. Thus, e,f € E(C — ;) UE(C" — v;). It then follows by
Lemma 4.3.4 that c(e) # c(f).

Case 2. f € E[C,C'"]. Let f = ujv; where 1 < j < n. First, suppose that f = ujv;

or f = usvs, say the former. Then both e = ujus and f = ujv; lie on the path
R3 = (ug, Us, Vs, V6, UG, UTy -+« y Up—1y Up—1, U, U, V1, U, U2, V2, V3),

as described in (4.6). The path R3 is shown in Figure 4.11 for n = 7, where e and f are
indicated by bold lines, the edges in R3 are indicated by solid lines and all other edges
(that are not on R3) are indicated by dashed lines.
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R3 R7

Figure 4.11: The paths R3 and R; in C7 0 Ko

By Lemma 4.3.4, c¢(e) # ¢(f). Next, suppose that f = u;v; where 3 < ¢ < n. By
symmetry, we may assume that 3 <1 < [%w + 1. Then e = ujug and f = u;v; lie on the
path

Rn - (U/la U2,v2,03,U3,U4,...,Un—-2,Un—-2,Un—1, Un—lavn)7

as described in (4.6). For f = wgvy4, the path R; is shown in Figure 4.11 for n = 7
which contains both e and f. Since u;v; € E(R,,) for 3 < i < (%W + 1, it follows that
f € E(R,). Thus, both e and f belong to R,, and so c(e) # ¢(f) by Lemma 4.3.4.
Next, suppose that neither e nor f belongs to E(C) U E(C’). Assume, without
loss of generality, that e = ujv1 and f = wjv; where 2 < j < n. Since n > 5, there is
i € [n]—{1,7} such that e, f € E(R;). It then follows by Lemma 4.3.4 that c(e) # c(f).m

It is a consequence of Theorem 4.3.5 that there is no constant ¢ such that hre(G) <
n + ¢ for every Hamiltonian-connected graph G of order n. If p > 5 is an odd integer,
then Cp, O K3 is a Hamiltonian-connected graph n = 2p and hre(C, OK3) = 3p = 3n/2.

This gives rise to the following question.

Problem 4.3.6 Does there exist any Hamiltonian-connected graph G of order n for
which hre(G) > 3n/27

4.4 The Square of Hamiltonian Graphs

During 1960-1980, there was a great deal of research activity involving Hamiltonian

properties of powers of graphs. For a connected graph G and a positive integer k, the
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kth power G* of G is the graph whose vertex set is V(G) such that uv is an edge of G¥
if 1 <dg(u,v) < k, where dg(u,v) is the distance between two vertices u and v in G
(the length of a shortest v — v path in G). The graph G? is called the square of G and
G3 the cube of G. In 1960, Sekanina [55] proved the following result.

Theorem 4.4.1 IfG is a nontrivial connected graph, then G is Hamiltonian-connected.

In the 1960s, it was conjectured independently by Nash-Williams [39] and Plum-
mer (see [14, p. 147]) that the square of every 2-connected graph is Hamiltonian. In
1974, Fleischner [20] verified this conjecture. Also, in 1974, using Fleischner’s result,
Chartrand, Hobbs, Jung, Kapoor and Nash-Williams [8] proved the following.

Theorem 4.4.2 If G is a 2-connected graph, then G? is Hamiltonian-connected. In

particular, the square of every Hamiltonian graph is Hamiltonian-connected.
In 2009, Chia, Ong and Tan [53] proved the following stronger result.

Theorem 4.4.3 If G is a connected graph having only one cut-vertex, then G* is pan-

connected and, consequently, G is Hamiltonian-connected.

By Theorem 4.4.2, the square of every Hamiltonian graph is Hamiltonian-connected.
Since the square of a Hamiltonian graph G of order n > 3 contains the square C2
of an n-cycle C, as a spanning subgraph, it then follows by Observation 4.1.1 that
hre(G?) < hre(C2). Thus, it is of interest to investigate the rainbow Hamiltonian-
connection numbers of the squares of cycles. Since hre(K,,) =n — 1 for n > 4, it follows
that hre(C2) = n — 1 for n = 4,5. For n > 6, hrc(C?) > n — 1 by Observation 4.1.2.
The following theorem says that for every integer n > 6, either hrc(C?) = n — 1 or
hre(C2) = n.

Theorem 4.4.4 For each integer n > 6, hre(C?) < n.

Proof. Let G = C2, where C,, = (v1,v2,...,0pn,v1). We show that G has a Hamiltonian-
connected rainbow coloring using n colors. Define the n-edge coloring ¢ : E(G) — [n] by
c(vivit1) = i and c(vjvi42) =i+ 1 for 1 < i < n, where the subscript of each vertex is
expressed as a positive integer modulo n. This is illustrated in Figure 4.12.

We show that every two vertices z and y in G are connected by a rainbow Hamiltonian
path in G. Since C), is a rainbow Hamiltonian cycle in G, we may assume that x and y
are not consecutive vertices of C,. By symmetry of the graph G and the coloring ¢, we

may further assume that x =v; and y = v; for 3 < <n —1.
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Un—4 . V6

Figure 4.12: A Hamiltonian-connected rainbow coloring of 0721 using n colors

* If i is odd, then (vi,Vn, Vn—1,..., Vit1, Vi—1,Vi—3, ..., V2, V3, V5, U7,...,0;) IS a rain-

bow Hamiltonian vy — v; path.

* If i is even, then (v1, Up, Un—1,. .., Vit1, Vim1,Vi—3, ..., U3, V2, V4, Vg, . .., V;) IS & rain-

bow Hamiltonian v, — v; path.

For example, if n = 10, then (v, v19, vg, v8, V7, Vg, V4, V2, U3, V5) is a rainbow Hamiltonian
v] — o5 path and (v, v19, v9, vs, U7, U5, U3, V2, V4, Vg) is a rainbow Hamiltonian v; —vg path.

Thus, ¢ is a Hamiltonian-connected rainbow coloring of G and so hrc(G) < n. ]

If G is a Hamiltonian graph of of order n > 4 having diameter at most 2, then
G? = K,, and so hrc(G?) = n — 1. In general, the following is an immediate consequence
of Theorem 4.4.4 and Observation 4.1.1.

Corollary 4.4.5 If G is a Hamiltonian graph of order at least n > 6, then

hre(G?) < n.

In fact, the rainbow Hamiltonian-connection number of C’g is 5. To show this, con-
sider the 5-edge coloring of the graph G' = C? shown in Figure 4.13. This edge coloring is
a Hamiltonian-connected rainbow 5-coloring since each of the following (g) = 15 Hamil-

tonian paths are rainbow paths. Therefore, hre(G) = 5 by Observation 4.1.2.

1. rainbow Hamiltonian v; — vy path: (v1, ve, vs, V4, V3, V2)
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Figure 4.13: A Hamiltonian-connected rainbow coloring of 062 using 5 colors

V4

2. rainbow Hamiltonian vy — vg path: (vy, ve, vs, V4, V2, V3)
3. rainbow Hamiltonian vq — vg path: (v1,ve, vs,v3, V2, v4)
4. rainbow Hamiltonian v; — vs path: (v1, ve, vy, V2, v3,vV5)
5. rainbow Hamiltonian vy — vg path: (v1,va, v3,v4, V5, V6)
6.  rainbow Hamiltonian ve — v3 path: (va, vy, vs, ve, v1,v3)
7. rainbow Hamiltonian vy — vg path: (ve,vs, vs,v1, ve, V4)
8. rainbow Hamiltonian vy — vs path: (ve, vg, v1, V3, v4,v5)
9. rainbow Hamiltonian vy — vg path: (ve,v1,vs, vy, V5, V6)
10.  rainbow Hamiltonian vz — vy path: (vs,ve,ve, v1, Vs, V1)
11.  rainbow Hamiltonian v — vs path: (vs,v1,ve, v2,v4,v5)
12.  rainbow Hamiltonian vs — vg path: (vs,ve,v1, vs, v4, Ug)
13.  rainbow Hamiltonian vy — vs path: (v4,ve, v, v1,v3,v5)
14.  rainbow Hamiltonian vs — vg path: (vg4,ve,v1,v3, U5, Ug)
15.  rainbow Hamiltonian vs — vg path: (vs,vs,v1, V2, v4,6)

By Theorem 4.4.4, for each integer n > 7, the rainbow Hamiltonian-connection num-
ber of C2 is either n — 1 or n. By Theorem 4.4.1, if G is a nontrivial connected graph of
order n, then G® is Hamiltonian-connected and so G* is Hamiltonian-connected for each
k > 3. Therefore, if G is a Hamiltonian graph of order n > 3, then hrc(G*) € {n —1,n}
for each integer k > 3.

4.5 Minimum Hamiltonian-Connected Graphs

If G is a Hamiltonian-connected graph that is not complete and v and v are nonadjacent

vertices of GG, then G + wv is also Hamiltonian-connected and hre(G + uv) < hre(G) by
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Observation 4.1.1. This suggests that Hamiltonian-connected graphs having the greatest
rainbow Hamiltonian-connection numbers are minimal Hamiltonian-connected graphs.
This leads us to consider Hamiltonian-connected graphs of order n and minimum size.
Every Hamiltonian-connected graph of order at least 4 is 3-connected. Therefore, if
G is a Hamiltonian-connected graph of n > 4, then 6(G) > 3, which implies that the
il

minimum size of a Hamiltonian-connected graph of order n is L The following

result is due to Moon [36].

Theorem 4.5.1 For each integer n > 4, there exists Hamiltonian-connected graph of

order n and size LB‘”Q—HJ

For each integer k > 2, let P, O K5 be the grid of order 2k in which two paths of
order k are P, = (z1,x2,...,2%) and P, = (y1,y2,...,yx) such that z;y; € E(P, O Ka)
for 1 <14 < k. Now, let Hj be the cubic graph of order 2k + 2 obtained by adding two
adjacent vertices u and v to the grid P, O K5 and joining (1) the vertex u to x1 and y;
and (2) the vertex v to z and yi in P, O Ky (see Figure 4.14).

Y2

Y1 Y2 Y3 Yk—1 Yk

Figure 4.14: Graphs Ho, H3 and Hy,

The graph Hj3 has order 8 and rainbow Hamiltonian-connection number 10, as we

show next.
Theorem 4.5.2 hrc(H3) = 10.

Proof. Let G = Hs. First, we make an observation. For each pair w,z of distinct
vertices of G, there are exactly two Hamiltonian w — z paths except for {w, z} = {z1,y3}
and {w,z} = {x3,y1}, in which case, there are exactly four Hamiltonian w — z paths.
Since there are (g) = 28 pairs of vertices of GG, there are 2(2) +4 = 60 Hamiltonian paths
in G. For each pair w, z of distinct vertices of G, we list the Hamiltonian w — z paths in
G as well as the edges commonly belonging to each of these w — z paths. We label the
vertices and the edges of G as indicated in Figure 4.15.
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vertices of GG, at least one of these w — z paths is necessarily a rainbow path. First,
we consider the 10-edge coloring of the graph G shown in Figure 4.16. A Hamiltonian
path P is a rainbow path if P contains at most one edge in {uxi,uy:} and at most
one edge from {vrs,vys}. For each pair w,z of distinct vertices of G, at least one of

these w — z paths contains at most one edge in {uxi,uy;} and at most one edge from

O

1 Y2 Y3

Figure 4.15: The graph Hs

U — v (’U, Z1,Y1,Y2,22,23,Y3,V )a (u7y17m17$27y27y33x33 ) €3,€6, €9

u—x1: (U, v, Y3, T3, T2, Y2, Y1, 71), (U, Y1,Y2,Y3,0, T3, T2, T1), €5, €7, €11
u—y1: (U, v, 23,93, Y2, T2, T1, Y1), (U, T1, T2, T3,V, Y3, Y2, Y1), €4, €8, €10
u— a0 (u,v,23,Y3,Y2, Y1, 21, T2), (U, T1,Y1,Y2,Y3,V, 23, T2), €3, €5, €5, €10
U — Y2 (U v y3,13,$27$1,y1,y2), (U,y1,m1,xz,x37v7y3,yz)7 €3,€4,€7,€11
u—x3: (U, 0,Y3,Y2, Y1, T1, T2, T3), (U, Y1, 21, T2, Y2,Y3,V, T3), €3, €4, €8, €11
u—ys: (u,v,23,T2,71,Y1,Y2,Y3), (U, T1,Y1,Y2, T2, T3,0,Y3), €3, €5, €7, €10
r — (961,%1/1792,:32,3?3793, ) ($17$2,$37y37y2,y1,u7v) €2, €5, €7, €9
1 —Yi1: (xl,u,v,y3,x3,x2,y2,y1 > (151,3327?/2,?!37333,11,%1;1 €6,€9,€12

b) b
) )
1 — x2: (21,0, Y1, Y2, Y3, U, T3, T2), (T1,Y1,U,V, T3,Y3, Y2, T2), €2,€8, €10
1 —y2: (21,Y1,U,0,Y3, T3, T2, Y2), (1,72, 23,Y3,V,U, Y1,Y2), €2,€7,€9, €11, €12
Ty — 230 (T1,T2,Y2,Y1,U,V, Y3, 73), (T1,Y1, U, V, Y3, Y2, T2, T3), €2, €6, €11, €12
r1 —y3: (21,22, Y2, Y1, 4,0, 23,93), (T1,U, Y1, Y2, T2, 23,V,Y3),
($1,$27$37U7U7y1,yz7 3) ($1,y1,u v $379€27y27y3), €2, €10
y1 —v: (Y1, u, 21, T2, Y2,Y3, 23,0), (Y1,Y2,Y3, T3, T2, T1,U, V), €1, €4, €8, €9
Y1 — T2l (yl,ﬂﬂhu v 5173,1/37312,952), (y17y2,y3,$3avauaxl,$2)a €1, €8,€9,€10,€12
Y1 —y2r (Y1,21,4,0, Y3, T3, T2,Y2), (Y1,U,T1,T2,73,0,Y3,Y2), €1, €7, €11
y1 —x3: (Y1, Y2, T2, T1, U,V y3,x3), (yl,yg,y3,v,u7m1,x2,x3)
(917331,U V,Y3,Y2,%2,T 3) (y17U,3617332,y2,y3,U,$3), €1,€11
Y1 —y3: (Y1,Y2, T2, T1, U, 0, 23,Y3), (Y1,21,U,V, T3,T2,Y2,Y3), €1, €6, €10, €12
To — U (xg,xg,yg,yg,yl,xl,u,v), (z2,21,u, Y1, Y2, Y3, T3, V), €1, €5, €8, €9
T2 — Y2: (x27x1,ylauavax3ay3,y2)a (x27x37y3avau7mlaylay2)a €3,€9, €12
T2 — 31 (T2,Y2, Y1, T1, U, V, Y3, T3), (T2, T1,U, Y1, Y2, Y3, 0, T3), €1, €5, €11
T2 — Ys: ($27y2,y17331,u7v7333,y3)7 (x2’$37vvuaxlvylay2vy3)’ €1, €3, €5, €10, €12
Yo — Ut (y27y3,363,3327331,y1,% U)a (y27y1,u,m1,x2,w3,y3,v), €2, €4, €7, €9
Y2 — x3: (Y2, T2, T1, Y1, U, U, Y3, 23), (Y2,Y3,V,U, Y1, T1, T2, T3), €2,€3, €4, €11, €12
Y2 — y3: (Y2, Y1, U, T1, T2, T3,0,Y3), (Y2, T2, T1,Y1,U,V, T3,Y3), €2, €4,€10
T3 — v (T3, T2, T1,U,Y1,Y2, Y3, V), (T3,Y3,Y2, T2, T1,Y1,U, V), €2, €4,€8
T3 — Ys: ($37vauyy1,$1,$27y2,y3)7 ($3a$27y2,y173317u7v7y3)a €3,€6,€12
Yz — vt (y37y2,yl7u733179€2,$3711), (y3730379€2>y27yl,$1,%v), €1, €5, €7.

For each Hamiltonian-connected rainbow coloring of G and each pair w, z of distinct

81



{vxs,vys}. Thus, this edge coloring is a Hamiltonian-connected rainbow 10-coloring and
so hre(G) < 10.

Figure 4.16: A rainbow Hamiltonian coloring of G

It remains to show that hrc(G) > 10. Of course, hre(G) > n — 1 = 7. To see that
hre(G) > 8, assume, to the contrary, that hrc(G) = 7. Then there is a Hamiltonian-
connected rainbow 7-coloring of G. Since G has 12 edges, some edge e = wz of G has
the property that it is the only edge possessing the color assigned to it. However, by
definition, there is a rainbow Hamiltonian w — z path P in G. Since the length of P
is 7 and P does not contain wz, it is impossible for P to be a rainbow path. Thus,
hre(G) > 8. In fact, every Hamiltonian-connected rainbow coloring of G must use at
least 10 colors, as we show next.

Let ¢ be a Hamiltonian-connected rainbow coloring of G. If e and f are two distinct
edges of G such that e and f belong to every Hamiltonian w — z path of G for some pair
w, z of distinct vertices of G, then e and f cannot be assigned the same color by c¢. For
example, since e3 and eg belong to both two Hamiltonian u — v paths of G, it follows
that c(e3) # c(eg). We now construct a graph G* with V(G*) = E(G) such that two
vertices z and y of G, that is, two edges = and y of GG, are adjacent in G* if the edges =
and y of GG belong to every Hamiltonian w — 2z path of G for some pair w, z of distinct

vertices of G. The graph G* is shown in Figure 4.17. The degrees of the vertices in G*

are
7 =6
1 o i=4,57,8
G €T 10 i=1,2,10,11
11 i=3,9,12.

The minimum number of independent sets into which V(G*) can be partitioned is
therefore 7. Since degq«e; = 11 for i = 3,9,12, it follows that {es}, {e9}, {e12} are
maximal independent sets. Since degq«e; = 10 for ¢ = 1,2,10,11 and {ej,e2} and
{e10, €11} are independent sets, they are both maximal independent sets. This leaves the

five vertices ey, €5, €6, €7,€g. The two sets {eyq,e5} and {e7,eg} are independent, while
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eg €6
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Figure 4.17: The graph G*

each vertex of {e4,e5} is adjacent to each vertex of {e7,es}. The vertex eg of G* is
adjacent to none of ey, e5, e7, es. Hence, a Hamiltonian-connected rainbow coloring ¢ of
G must assign distinct colors to the vertices of G* in the seven sets {e3}, {e9}, {e12},
{e1,e2}, {e10,€11}, {ea,e5}, {e7,es}, while eg may be assigned the same color that is
assigned to e4 and e5 or to e7 and eg. Next, let A = {{e1,e2},{e10,e11},{es,e5},{er,es}}.
The digraph D of Figure 4.18 has vertex set A. For S,T € A, (5,7T) is an arc of D if the
vertices in S are colored the same by ¢, then the vertices of 7' must be colored differently.
For example, let S = {e4,e5} and T' = {e7,eg}. Since (i) Q1 = (u,v,ys, x3, T2, T1, Y1, Y2)
and Q2 = (u,y1,*1,T2,23,0,Y3,y2) are the only Hamiltonian u — yo paths in Hs and
(i) S € E(Q1) and T' C E(Q2), it follows that if c(es) = c(es), then c(er) # c(es).
Thus, (S,7T) is an arc of D. Similarly, (7,5) is also an arc of D. While with the aid
of the Hamiltonian u — y3 paths and Hamiltonian z; — v paths, the remaining arcs of
D in Figure 4.18 are determined. Consequently, the minimum number of colors can be
obtained when {ej,es} and {ejg,e11} are color classes.

Next, we show that the remaining eight vertices of G* are in individual color classes.
Recall that a Hamiltonian-connected rainbow coloring ¢ of G must assign distinct col-
ors to the vertices of G* in the seven sets {es}, {eo}, {e12}, {e1, €2}, {e10,€11}, {ea, €5},
{e7,es}, while eg may be assigned the same color that is assigned to e4 and e or to e7 and

es. Thus, it suffices to show that eg must be assigned a different color from the colors as-
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{e1,e2}

{ea,es} {er,es}

{e10,€e11}

Figure 4.18: The digraph D in the proof of Theorem 4.5.2

signed to any of ey, e5, e7, eg; that is, {eg} must be a color class. Consider the two Hamil-
tonian yo — y3 paths Ry = (y2,y1, u, 1, T2, x3,v,y3) and Re = (y2,x2, 1, Y1, U, v, T3, Y3)
in Hs. Since c(e1) = ¢(ez) in Ry, it follows that R; is a rainbow Hamiltonian ys — y3
path. Thus, c(eg) # c(eq). Similarly, by considering the Hamiltonian z9 — x3 paths,
the Hamiltonian y; — yo paths and the Hamiltonian x; — z9 paths, we obtain c(eg) ¢
{c(es), c(er), c(es)} and so {es} is a color class. Therefore, hre(G) = 10. ]

We saw that there are infinitely many Hamiltonian-connected graphs G of order n
for which hre(G) = n — 1. If G = K3 O Kj, then hrc(G) = 7, while if G = Hs, then
hre(G) = 10. Thus, there exist Hamiltonian-connected graphs G of order n for which
hre(G) € {n+ 1,n + 2}. However, it is not known whether there exists a Hamiltonian-
connected graphs F' of order n for which hrc(F) = n. A more challenging question is
to determine an infinite class of Hamiltonian-connected graphs G of order n such that
hrc(G) = k for each integer k € {n,n + 1,n + 2}.
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Chapter 5

Rainbow Hamiltonian-Connected
Digraphs

5.1 Hamiltonian-Connected Digraphs

We now turn our attention from rainbow Hamiltonian-connected graphs to rainbow
Hamiltonian-connected digraphs. A nontrivial digraph D is Hamiltonian-connected if for
every pair u, v of distinct vertices of D, there exists both a Hamiltonian v — v path and a
Hamiltonian v — u path. This has been referred to as a strongly Hamiltonian-connected
digraph by some. A nontrivial digraph D is sometimes called weakly or unilaterally
Hamiltonian-connected if for every pair u,v of distinct vertices of D, there is either a
Hamiltonian v — v path or a Hamiltonian v — u path.

Not a great deal of research seems to have been done on Hamiltonian-connected
digraphs. There is a discussion of Hamiltonian-connected tournaments and related topics
by Thomassen [45]. Roberts [41] obtained the following result.

Theorem 5.1.1 (Roberts) If D is a digraph of order n > 2 such that odu + idv >
n + 1 for every pair u,v of distinct vertices of D for which (u,v) ¢ E(D), then D is

Hamiltonian-connected.

A digraph D is symmetric if whenever (u, v) is an arc of D, then (v, ) is an arc of D as
well. For a Hamiltonian-connected graph G, let G* denote the symmetric (Hamiltonian-
connected) digraph whose underlying graph is G. For the symmetric digraph Ky, of
order n = 2r, odu + idv = n for every pair u,v of distinct vertices of K7, for which
(u,v) ¢ E(K,); yet, K, is not Hamiltonian-connected. That is, the result stated in
Theorem 5.1.1 is best possible. On the other hand, the condition stated in Theorem 5.1.1
for a digraph D to be Hamiltonian-connected is only sufficient. For n > 5, the symmetric
digraph W) obtained from the wheel W,, of order n* = n + 1 has the property that
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odu +idv =6 < n* for every pair u, v of distinct vertices of W} for which (u,v) is not
an arc in W7; yet, W, is Hamiltonian-connected. For example, let the wheel Wg of order 7
be obtained from the 6-cycle C' = (v1, va, v3, v4, v5, V6, v1) by adding the vertex v, which
is adjacent to each vertex of C. Then (v1,v2,vs,v,vs,vs,v4) and (vy, vs, vg, v, V3, V2, V1)

are Hamiltonian v1 — v4 and v4 — vy paths in W, respectively.

5.2 Hamiltonian-Connected Rainbow Colorings

For a nontrivial Hamiltonian-connected digraph D, an arc coloring
c: E(D)— k] ={1,2,...,k}

of D is called a Hamiltonian-connected rainbow k-coloring if for every pair u, v of distinct
vertices of D, there is both a rainbow Hamiltonian v —v path and a rainbow Hamiltonian
v—u path. The minimum & for which D has a Hamiltonian-connected rainbow k-coloring
is the rainbow Hamiltonian-connection number of D, denoted by hrc(D). Clearly, if D

is a Hamiltonian-connected digraph of order n > 2 and size m, then
n—1 < hre(D) < m. (5.1)

To illustrate the concepts just described, we determine hre(D) for the Hamiltonian-

connected digraph D of order 4 of Figure 5.1(a).

Figure 5.1: A digraph D of order 4 and a 4-arc coloring of D

Proposition 5.2.1 If D is the Hamiltonian-connected digraph of order 4 shown in
Figure 5.1(a), then hrc(D) = 4.

Proof. The 4-arc coloring shown in Figure 5.1(b) has the property that for every
two vertices s and t, there is both a rainbow Hamiltonian s — ¢t path and a rainbow
Hamiltonian ¢ — s path. Thus, this coloring is a Hamiltonian-connected rainbow coloring
and so hre(D) < 4.
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To verify that hrc(D) > 4, we show that no 3-arc coloring of D is a Hamiltonian-
connected rainbow coloring. Assume, to the contrary, that there is a Hamiltonian-
connected rainbow 3-arc coloring ¢ : E(D) — {1,2,3} of D. Since there is only one
Hamiltonian w — x path P, = (w,v,u,z) in D, it follows that P; is rainbow. Thus,
we may assume that c(wv) = 1, ¢(vu) = 2 and c(ux) = 3. Because there is only one
Hamiltonian v — w path P, = (v,u,z,w) in D, it follows that P, is rainbow and so
c¢(xw) = 1. Next, consider the unique Hamiltonian v — v path P3 = (u,z,w,v) in
D. Since c(zw) = c(wv) = 1, it follows that P; is not rainbow and so there is no
rainbow Hamiltonian u — v path, which is impossible. Consequently, for this digraph D

of order n = 4, we have hre(D) = n. ]

5.3 Rainbow Hamiltonian-Connection Numbers

We now show that the possible values of the rainbow Hamiltonian-connection numbers
hre(D) of Hamiltonian-connected digraphs D of order n are quite limited, namely hrc(D)

is either n or n — 1.

Theorem 5.3.1 If D is a nontrivial Hamiltonian-connected digraph of order n, then
hre(D) =n — 1 or hre(D) = n.

Proof. Let V(D) = {v1,ve,...,v,}. For n =1,2,... n, assign the color i to each arc
directed into v;. Now, let u and v be two distinct vertices of D. Since D is Hamiltonian-

connected, there exists a Hamiltonian v — v path

P = (u=v;,0iy, ..., 0, 1,0, =0).
For k = 1,2,...,n — 1, the color of the arc (v;,,v;,,,) on P is iyyq. Hence, the set of
colors of the arcs in P is {ig,i3,...,i,} = [n] — {i1}, which consists of n — 1 distinct

colors. Thus, P is a rainbow Hamiltonian u — v path and therefore this arc coloring is a
Hamiltonian-connected rainbow n-coloring. Hence, hrc(D) < n. It then follows by (5.1)
that hre(D) =n — 1 or hre(D) = n. ]

Proposition 5.3.2 If G is a Hamiltonian-connected graph, then hrc(G*) < hre(G).
Consequently, if G has order n > 4 and hrc(G) =n — 1, then hre(G*) =n — 1.

Proof. Let hre(G) = k and let ¢ : E(G) — [k] be a Hamiltonian-connected rainbow
coloring of G. For each edge uv of G, assign the color ¢(uv) to the two arcs (u,v) and

(v,u) of G*, which produces an edge coloring ¢* : E(G*) — [k] of G*. Since for every
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two vertices u and v of G, there is a rainbow Hamiltonian path (u = vy, ve,...,v, =v),
it follows that (u = vy, v2,...,v, = v) a rainbow Hamiltonian (directed) v — v path in
G* and (v = vp,Up—1,...,v1 = u) is a rainbow Hamiltonian (directed) v — u path in G*.
Thus, ¢* is a Hamiltonian-connected rainbow k-coloring of G* and so hre(G*) < k =
hre(G). Furthermore, if G has order n > 4 and hrc¢(G) = n — 1, then hre(G*) =n — 1
by (5.1). m

For each integer n > 2, the complete symmetric digraph K, of order n has both arcs
(u,v) and (v, u) for every two distinct vertices u and v. Since hrc(K,,) = n—1, it follows
that hrc(K}) = n — 1 for each integer n > 3. Therefore, there is an infinite class of
Hamiltonian-connected digraphs D of order n for which hre¢(D) = n — 1. The digraph
of Figure 5.1 is Hamiltonian-connected by by Theorem 5.1.1. This digraph shows that
Hamiltonian-connected digraphs D of order n exist for which hre(D) = n. This gives

rise to the following question:

Is there an infinite class of Hamiltonian-connected digraphs of order n having

rainbow Hamiltonian connection number n ?

If T is an r-regular tournament of order 2r + 1 > 3, then T is strong and is therefore
Hamiltonian by Theorem 1.4.1. Let C' be a Hamiltonian cycle in T'. If for each arc (u,v)
on C, we add the arc (v,u) to T, then the resulting digraph D is Hamiltonian-connected
by Theorem 5.1.1. Such a Hamiltonian-connected digraph D is shown in Figure 5.2.

This is another Hamiltonian-connected digraph D of order n with hre(D) = n.

Vi

Figure 5.2: A Hamiltonian-connected digraph D of order 5

Proposition 5.3.3 If D is the Hamiltonian-connected digraph of order 5 shown in
Figure 5.2, then hrc(D) = 5.

Proof. By Theorem 5.3.1, either hrc(D) = 4 or hre(D) = 5. Assume, to the contrary,
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that hrc(D) = 4. Then there is a Hamiltonian-connected rainbow 4-coloring ¢ of D.

First, we make the following observation.

Observation For i = 1,2,3,4,5, there is a unique Hamiltonian v; — v; 4o
path in D, namely @Q; = (v;,vi—1, Vit+1, Vi+3, Vi+2), where each subscript is

expressed as an integer modulo 5.

Next, we verify the following claim.

Claim. The restriction of the coloring ¢ to the 5-cycle C'=(v1, vs, v4, v3, V2,

v1) is a proper arc coloring.

Assume, to the contrary, that the Claim is false. Then we may assume that (i)
c(vg,v1) = ¢(v1,v5) = 1 and (ii) the colors of the arcs in the unique Hamiltonian v; — v3

path Ql - (vla V5, V2, V4, U3) are
c(v1,v5) = 1, ¢(vs,v2) = 2, ¢(va,v4) = 3 and c(vy, v3) = 4. (5.2)

Since Q4 = (v4, v3, V5, V2, v1) is the the unique Hamiltonian vy — vy path where c(vy, v3) =
4, c(vs,v2) = 2 and c(ve,v1) = 1, it follows that c(vs,vs) = 3. This is illustrated
in Figure 5.3.

Figure 5.3: A step in the proof of Proposition 5.3.3

Next, we show that c(vs,va) ¢ {1,2,3,4}, which is a contradiction.

* First, consider the unique Hamiltonian vs — vs path Q3 = (v3, va, v4, v1, vs5).

Since ¢(vg,v4) = 3 and ¢(vy,v5) = 1, it follows that c¢(vs, v2) ¢ {1, 3}.

* Next, consider the unique Hamiltonian vy — v4 path Qo = (va, vy, v3, v5, v4).

Since c(ve,v1) = 1 and ¢(v3,vs) = 3, it follows that {c(vi,v3), c(vs,v4)} = {2,4}.
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* Finally, consider the unique Hamiltonian vs — vy path Q5 = (vs, v4, v1, v3, v2).

Since {c(vs,v4), c(vi,v3)} = {2,4}, it follows that c(vs,v2) ¢ {2,4}.

Hence, c(vs,v2) ¢ {1,2,3,4}, a contradiction. Thus, the Claim holds.
Suppose that the colors of the arcs in Q1 = (v1,vs, v, v4, v3) are as described in (5.2).
By the Claim, c¢(vg,v1) # c(v,v5) = 1 and 1 = c(vy,v5) # c(vs,v4) # c(vg,v3) = 4.

Hence,

c(va,v1) # 1 and c(vs,v4) ¢ {1,4}. (5.3)

Once again, we show that c(vs, v2) ¢ {1, 2, 3,4}, which implies that there is no Hamiltonian-

connected rainbow 4-coloring of D.

* First, consider the the unique Hamiltonian vy — v; path Q4 = (v4,v3,vs5,v2,v1).
Since ¢(vg,v1) # 1 by (5.3), it follows that c¢(ve,v1) = 3 and so ¢(vs, vs) = 1.

* Next, consider the unique Hamiltonian vy — vq path Qo = (va, vy, v3, v5,v4). Since
c(vs,va) ¢ {1,4} by (5.3) and c(ve,v1) = 3, it follows that c(vs,vs) = 2 and so

c(vy,v3) = 4.

* By the Claim, c(vs,v2) ¢ {1,2,3,4}, a contradiction. [
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Chapter 6

Proper Hamiltonian-Connected
Graphs

6.1 Introduction

A proper edge coloring c of a nonempty graph G is a function ¢ on E(G) with the property
that c(e) # ¢(f) for every two adjacent edges e and f of G. If the colors are chosen from
a set of k colors, then c is called a proper k-edge coloring of G. The minimum positive
integer k for which G has a k-edge coloring is called the chromatic index of G and is
denoted by x/(G). It is immediate for every nonempty graph G that x'(G) > A(G). The

most important theorem dealing with chromatic index is one obtained by Vizing [46].
Theorem 6.1.1 (Vizing’s Theorem) For every nonempty graph G, X' (G) < A(G) + 1.

As a result of Vizing’s theorem, the chromatic index of every nonempty graph G is
one of two numbers, namely A(G) or A(G)+ 1. A graph G with X'(G) = A(G) is called
a class one graph while a graph G with x'(G) = A(G) + 1 is called a class two graph.

Let G be an edge-colored connected graph, where adjacent edges may be colored the
same. A path P in G is properly colored or, more simply, P is a proper path in G if
no two adjacent edges of P are colored the same. An edge coloring c is a proper-path
coloring of a connected graph G if every pair u, v of distinct vertices of G are connected
by a proper u — v path in G. If k colors are used, then c is referred to as a proper-path
k-coloring. The minimum k for which G has a proper-path k-coloring is called the proper
connection number pc(G) of G. Recently, this topic has been studied by many (see [2, 4]

for example). In fact, there is a dynamic survey of this topic due to Li and Magnant [33].

91



6.2 Proper Hamiltonian-Path Colorings

If G is a Hamiltonian-connected graph with a proper edge coloring, then for every two
vertices u and v of G, there is a proper Hamiltonian u — v path in G. Indeed, every
Hamiltonian path in G is a proper Hamiltonian path. However, if our primary interest
concerns edge colorings of graphs G with the property that for every two vertices u and
v of G, there exists a proper Hamiltonian u — v path in G, then this may very well be
possible using fewer than x’(G) colors. Of course, graphs possessing such edge colorings
are necessarily Hamiltonian-connected. For a Hamiltonian-connected graph G, an edge
coloring ¢ : E(G) — [k] is a proper Hamiltonian-path k-coloring if every two vertices of
G are connected by a proper Hamiltonian path in G. An edge coloring c is a proper
Hamiltonian-path coloring if ¢ is a proper Hamiltonian-path k-coloring for some positive
integer k. The minimum number of colors required of a proper Hamiltonian-path coloring
of G is the proper Hamiltonian-connection number of G, denoted by hpc(G). Since every
proper edge coloring of a Hamiltonian-connected graph G is a proper Hamiltonian-path

coloring of G and there is no proper Hamiltonian-path 1-coloring of G, it follows that
2 < hpe(G) < X(G). (6.1)

To illustrate these concepts, consider the graph G = C2. Since A(G) = 4 and the
edge coloring of G in Figure 6.1(a) is a proper 4-edge coloring, it follows that x/(G) =
A(G) = 4. Next, consider the 2-edge coloring ¢ of G shown in Figure 6.1(b).

v1

2
v6
2
3 2
1 1
3
2 2
vs
X
v4
(b

Figure 6.1: A proper 4-edge coloring and a proper Hamiltonian-path 2-coloring of C’g

2

v3

1

2
2
(a) )

We show that ¢ is a proper Hamiltonian-path coloring of GG; that is, every two vertices u
and v of G are connected by a proper Hamiltonian v —v path P in G. If {u,v} = {v1, v}
or {u,v} = {v1,v6}, say the former, let P = (v1,vg, v5, v4, v3,v2); if {u,v} = {v1,v3} or
{u,v} = {v1,vs}, say the former, let P = (v1, v, vg, Vs, v4,v3); while if {u,v} = {v1,v4},

let P = (v1,v2,v6,05,v3,v4). By the symmetry of this edge coloring, ¢ is a proper
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Hamiltonian-path 2-coloring and so hpc(G) = 2. Therefore, hpe(G) < X/'(G).

Next, we give an example of a graph G with hpc(G) = X'(G). Let G = K3 O Ko,
where the two triangles K3 in G are (u,x,w,u) and (v,y,2,v) and uv,zy,wz € E(G).
Since there is a proper 3-edge coloring of G shown in Figure 6.2 and A(G) = 3, it follows
that x/(G) = 3. Hence, hpc(G) < 3.

Figure 6.2: A proper 3-edge coloring of K3 [0 K>

We now show that hpc(G) > 3. Assume, to the contrary, that there is a proper
Hamiltonian-path 2-coloring ¢ of G using the colors red (color 1) and blue (color 2).
There are only two Hamiltonian u — v paths, namely (u, w, z,y, z,v) and (u, x,w, 2,7y, v).
Because of the symmetry of these paths, we may assume that the first path is a proper
Hamiltonian v — v path and its edges are colored as c(uw) = c(xy) = c¢(zv) = 1
and c(wz) = ¢(yz) = 2. Next, we consider a proper Hamiltonian = — z path. There
are only two Hamiltonian x — z paths in G, namely, Q1 = (z,w,u,v,y,z) and Q2 =
(z,y,v,u,w, z). Since the path @ = (w,u,v,y) lies on both 1 and Q2, it follows that
@ must be proper. This implies that c¢(uv) = 2 and c¢(vy) = 1. Similarly, there are
only two Hamiltonian w — y paths in G, each of which contains the path (z,u,v, z), and
so this path must be proper. This implies that c¢(ux) = 1. We now consider a proper
Hamiltonian @ — v path. There are only two Hamiltonian z — v paths in G, namely,
Ry = (z,u,w, z,y,v) and Ry = (x,y, z,w,u,v). Since the path R = (y, z,w,u) lies on
both R; and Ro, it follows that R must be properly colored by the colors 1 and 2. Since
c(yz) = 2 and c(wu) = 1, this is impossible. Thus, there is no proper Hamiltonian x — v
path in G, which is a contradiction. Therefore, hpc(G) > 3 and so hpc(G) = 3.

We now consider some well-known Hamiltonian-connected graphs, beginning with
complete graphs, which are supergraphs of all Hamiltonian-connected graphs. It is easy
to see that hpc(K3) = 3. When n > 4, hpc(K,,) = 2, however, which we verify next.

Theorem 6.2.1 For every integer n > 4, hpe(K,) = 2.

Proof. We consider two cases, according to whether n is even or n is odd.

Case 1. n is even. The complete graph G = K, contains a 1-factor F. Define an

edge coloring ¢ of G by assigning the color red to each edge of F' and the color blue to the
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remaining edges of G. We show that c is a proper Hamiltonian-path 2-coloring of GG; that
is, for every two vertices u and v of G, there is a proper Hamiltonian u —v path in G. Let
n = 2k and let V(G) = {v1,v2,...,v2}. Suppose that E(F) = {vg;_q1v9; : 1 < i < k}.
There are two possibilities, depending on whether uv is a blue edge or uv is a red edge.
Thus, we may assume that either (1) v = v; and v = vy or (2) u = vy and v = vy.
Consider the properly colored Hamiltonian cycle C' = (v1,vg,...,v9,,v1) of G. If (1)
occurs, then (u = v1,vg,...,v9, = v) is a proper Hamiltonian v — v path in G; while if
(2) occurs, then (u = vy, vs,...,v9,v; = v) is a proper Hamiltonian v — v path in G.
Therefore, hpe(K,,) = 2.

Case 2. n > 5 is odd. Let C = (v1,v2,...,Un,v1) be a Hamiltonian cycle in G = K,.
Define a coloring ¢ of G by assigning the color red to each edge of C' and the color blue
to the remaining edges of G. We show that ¢ is a proper Hamiltonian-path 2-coloring of
G} that is, for every two vertices v and v of G, there is a proper Hamiltonian v — v path
in G. We may assume that v = v, and u = v; for some integer ¢ with 1 <¢ < (n—1)/2.

First, suppose that u = v1. If n =1 (mod 4), then
(u = v1, V9, V4, V3, Us, Vg, Ug, U7, V9, « -« ; Up—3, Up—1, Up—2, U, = V)
is a proper Hamiltonian u — v path in G; while if n =3 (mod 4), then
(u = v1,v2, V4, V3, V5, V6, U8, U7, V9, - - -, Un—5, Un—3, Un—d Un—1, Un—2, Un = )

is a proper Hamiltonian v — v path in G.

Next, suppose that u = v; where 2 < j < (n—1)/2. If n = 5, then u = vy and
(vs,v3,v4,v1,v2) is a proper Hamiltonian w — v path in G. Thus, we may assume that
n > 7is odd. Let A = {vi,v2,...,vj_1} and B = {vjq1,vj42,...,vn—1}. Let |[A] =a
and |B| = b. Since n > 7 is odd, it follows that (1) b > 3 and (2) a+b =n — 2 is odd
and so a and b are of opposite parity. We consider two subcases, according to whether

a is even or a is odd.

Subcase 2.1. a is even. Then
Q= (u=1vj,0j-2,Vj_1,Vj—4,Uj—3,Vj—6,Vj—5, ..., V1,02, Vj42)
is a proper u — v;j12 path in G with V(Q) = {v1,v2,...,v;} U{vj;2} and
/ —
Q - (Uj-‘rQ? Vj+15Vj4+4, Vj+3, Uj+6, Uj+5, UVj48, Uj+T5 - - -, Un—2, Un—3, Un—1, Un = U)

is a proper v;12 —v path in G with V(Q') = {vjt1,vj42,...,v,}. Thus, V(Q)UV(Q') =
V(G), V(Q)NV(Q') = {vj+1} and vavji2 and vji1vj42 have distinct colors (namely,
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v2vj42 is blue and vj11vj42 is red). Therefore, the path @ followed by Q' produces a
proper Hamiltonian v — v path in G.
Subcase 2.2. a is odd. If a =3 (mod 4), then

Q= (u=vj,0j_1,0j-3,Vj_2,Uj_4,Vj_5,Vj—7,Uj—6, - - . , V1, V2, Vj11)
is a proper u — vj41 path in G; while if a =1 (mod 4), then
Q= (U= 0j,Vj-1,Vj-3,Vj-2,Uj—1,Vj—5,Vj—7,Uj—6, - - - , U3, V4, V1, V2, Vj11)

is a proper u — vj4+1 path in G. We now show that () can be extended to a proper
Hamiltonian v — v path in G. If b =0 (mod 4), then

' — (v, . . . . . . . —
Q' = (U]-‘,-ly Vj+2, Vj+4, Vj+3, Uj+5, Vj+6, Uj+8, Uj+7; - - - s Un—3; Un—1, Un—2, Un = U)

is a proper vj;1 — v path in G; while if b= 2 (mod 4), then b > 6 (since b > 3) and

[— . . . . . . . . —
Q - (U]-‘,-ly Vj+2,Vj+d, Vj+3, Uj+5, Vj+6, Vj+8, Uj+T, - - -y Un—4, Un—1, Un—2, Un = U)

is a proper vj11 — v path in G. Thus, as in Case 1, the path @ followed by @’ produces
a proper Hamiltonian v — v path in G. [

We saw that if G is a Hamiltonian-connected graph of order at least 4, then 6(G) > 3.
There are infinitely many Hamiltonian-connected cubic graphs. For each odd integer
n > 3, the prism C,, OO K3 is cubic and Hamiltonian-connected (see [31]). We saw that
hpe(Cs O K2) = 3. In fact, hpe(C,, O K») = 3 for all odd integers n > 3, which we now

verify.
Theorem 6.2.2 For each odd integer n > 3, hpce(C,, O K3) = 3.

Proof. For an odd integer n > 3, let G = (), OO K5, which is constructed from the
two n-cycles (u1,ug,...,un,u1) and (v1,va,...,v,,v1) by adding the n edges u;v; for
1 <4 < n. Since X'(G) = 3, it follows by (6.1) that hpc(G) < 3. It remains to show that
hpc(G) > 3. Assume, to the contrary, that there is a proper Hamiltonian-path 2-coloring
¢ of G using the colors 1 and 2.

First, consider a proper Hamiltonian u; — usz path P in G. Observe that either P
begins with ui,ue or P ends with ue,us. Suppose that P begins with uy,us. Hence,
P must begin with g, ug,ve and so ujuy,,ujv; ¢ E(P). Since each vertex in V(G) —
{u1,us} has degree 2 in P, it follows that viv,,v1v2 € E(P) and so P begins with the
subpath (u1,ug,ve,v1,v,). Since uy,u; ¢ FE(P) and u, has degree 2 in P, it follows

that upvy, upun,—1 € E(P) and so P contains the subpath (uy,ug, v, v1, Upn, Un, Up—1).
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Similarly, v,v,—1 ¢ E(P) and up—1vp—1,Up—10n—2 € E(P). Continuing in this way, we

see that P is the following path
Pl = (Ul, u2,v2, V1, Un, Un, Un—1, Un—1, Un—2, Un—2, - - - , U4, V4, U3, US)- (62)

Next, suppose that P ends with ug,us. This implies that ujug, ugvs, usus ¢ E(P) and
SO ugv2, Vo3, v3v4 € E(P). Hence, P ends with the subpath (v4,vs,vs, u2,u3). An

argument similar to the one above shows that P is the following path
Py = (U1, 01, Vn, Un, Un—1, Vn—1, Un—2, Un—2, - - - , Ud, Vg, U3, V2, U2, U3).
In either case, P must contain the subpath
P’ = (01, Uy Uy Up—15 Un—1, Up—2, Up—2, - - - , Ug, Vg, V3).

The paths P; and P» are illustrated in Figure 6.3 for Co O Ko.

28

ur

Figure 6.3: Two Hamiltonian u; — uz paths in Cy O Ky

By the symmetry of the graph G, we may assume, without loss of generality, that
P = Py, described in (6.2). Since ¢ is a proper Hamiltonian-path 2-coloring of G using
the colors 1 and 2, we may assume, without loss of generality, that c¢(ujug) = 1. Since
P is a proper path and c(ujug) = 1, it follows that c(ugve) = 2 and ¢(v1v2) = 1. For the
remaining edges e of Py, it follows that c(e) = 1 if e = w;v; and c(e) = 2 if e belongs to
one of the two n-cycles. In particular, ¢(viv,) = 2. Next, consider a proper Hamiltonian
ug — us path @ in G. The argument above shows that there are two possibilities for
Q). This is illustrated in Figure 6.4 for C9 O K3. Furthermore, () must contain the
subpath Q' = (vs, va, U2, U1, V1, Un, Un, Up—1, Vp—1, Un—2, Un—2, - - - , Ug, V6, V5). Since Q' is
proper and c(ugvy) = 2, it follows that ¢(vsve) = 1 and so the colors of Q" are alternately
colored by 1 and 2, beginning with 1. In particular, ¢(viv,) = 1, which contradicts the
fact that c(vivy,) = 2. ]
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Figure 6.4: Two Hamiltonian us — us paths in Cy [J Ko

6.3 Two Minimum Hamiltonian-Connected Graphs

We start this section with a useful observation.

Observation 6.3.1 If H is a Hamiltonian-connected spanning subgraph of a graph G,
then hpe(G) < hpe(H).

If G is a Hamiltonian-connected graph that is not complete and v and v are nonadjacent
vertices of G, then G + wv is also Hamiltonian-connected and hpc(G + uv) < hpe(G) by
Observation 6.3.1. This suggests that Hamiltonian-connected graphs having the greatest
proper Hamiltonian connection numbers are minimal Hamiltonian-connected graphs.
This leads us to consider Hamiltonian-connected graphs of order n and minimum possible
size. Every Hamiltonian-connected graph of order at least 4 is 3-connected. Therefore,
if G is a Hamiltonian-connected graph of n > 4, then §(G) > 3, which implies that the
minimum size of a Hamiltonian-connected graph of order n is L%J

result is due to Moon [36].

The following

Theorem 6.3.2 For each integer n > 4, there exists a Hamiltonian-connected graph of

order n and size L?’"Q—JAJ

We now determine the proper Hamiltonian connection numbers of graphs belonging

to two classes of Hamiltonian-connected graphs of order n and size L3”2+ IJ, one class for

n even and the other class for n odd, beginning with the case when n is even.

For each integer k > 2, let P, [ K5 be the grid of order 2k in which two paths of
order k are Py = (x1,2,..., ;) and P, = (y1,%2, ..., yx) such that z;y; € E(P, O K»)
for 1 < ¢ < k. Now, let Hy be the cubic graph of order 2k + 2 obtained by adding two
adjacent vertices u and v to the grid P, O K5 and joining (1) the vertex u to x; and y;

97



and (2) the vertex v to xy and yy in P, O Ka. (see Figure 6.5). Each graph Hj, has the
property that it is Hamiltonian-connected (see [36]) and hpc(Hy) = x/(Hy) = A(Hy) =
3. We verify this now.

v Y2 Y3 Yk—1 Yk

Figure 6.5: Graphs Ha, H3 and Hy,

Theorem 6.3.3 For each integer k > 2, hpc(Hy) = 3.

Proof. Let C = (u, 21,22, .., TkyV, Yk, Yk—1, - - - » Y3, Y2, Y1, u) be a Hamiltonian cycle
of Hy. Define a proper 3-edge coloring of Hj by alternately assigning the colors 1
and 3 to the edges of C' and assigning the color 2 to the remaining edges of Hi. Thus,
hpe(Hy) < x/(Hy) = 3. Figure 6.6(a) shows this edge coloring for the case when k is

odd and Figure 6.6(b) shows this edge coloring for the case when k is even.

1
(b) 2 v
k is even 3 1 3 3 1 3

Y1 Y2 Y3 Yk—1 Yk

Figure 6.6: Edge colorings of Hy,

It therefore remains to show that hpc(Hy) > 3. Assume, to the contrary, that there is

a proper Hamiltonian-path 2-coloring ¢ of Hj, using the colors 1 and 2. First, consider a
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proper Hamiltonian u—wv path. There are only two Hamiltonian u—v paths in G. Because
of the symmetry of these paths, we consider the path (u, 1, y1, Y2, T2, T3, Y3, - - - , Tk, Yk, V)
if k is odd and (w, z1, Y1, Y2, T2, T3, Y3, - - - , Yk, Tk, v) if k is even. Choosing c(uz1) = 1, the
colors of the remaining edges on the path are determined as shown in Figure 6.7 when
k is odd.

Y1 Y2 Y3 Yk—1 Yk

Figure 6.7: A step in the proof of Proposition 6.3.3 when k is odd

Next, consider a proper Hamiltonian v — xo path P in Hjp. If P begins with
u,y1, then P cannot contain x1, which is impossible. Suppose that P begins with
u,v. Then P must end as z3,ys,¥y2,y1,T1,T2. Since c(xsy3) = 2, it follows that
¢(y2ys3) = 1, which is impossible as ¢(y1y2) = 1. Hence, P must begin with u,x; and so
P = (U, X1,Y1,Y2y« -+ Yk Uy Thpy Tho1y - - - , T2).

Furthermore,
the edges of P are alternately colored 1 and 2. (6.3)

We now consider the Hamiltonian 1 — z9 paths in G. There are only two Hamiltonian
1 — x9 paths Q and Q' in G, where

Q == ($1,U7y17y2; ey Yy Uy Ty Tho—15 - - '7'%'2)
and
O - (T1, Y1, Uy Uy Ypoy Thoy Tho—1y Y1, - - -, Y2, T2) i k is even
(xla Y1, U, UV, Ty Yy Ye—15 The—15 - - - 5 3/27$2) if k& is odd.

If c(uy1) = 1, then @ is not proper and so @’ must be proper. However then, c(z;2;41) =
1 for each integer ¢ with 1 <+ < k — 1, which contradicts (6.3). Hence, the edges of the
Hamiltonian x1 —xz2 path @ are alternately colored 1 and 2, beginning and ending with 1.
Now, consider a Hamiltonian u — y9 path ). Proceeding as above with the path P, we
see that (Q must contain x1y1, 122, x2x3 as consecutive edges on Q. Since c(x1y;) = 2,
it follows that c¢(z1z2) = 1. However, c(xaz3) = 1, which is impossible. Thus, no such

proper Hamiltonian u — y2 path exists. Therefore, hpc(Hy) > 3 and so hpc(Hg) = 3. =

For each integer k > 3, recall that P, [J K5 is the grid of order 2k in which two paths
of order k are P, = (x1,2,...,2;) and P}, = (y1,Y2, . .., yx) such that z;y; € E(P, O K»)
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for 1 < ¢ < k. The graph F}, of order 2k+1 is constructed from P O K2 by adding a new
vertex u and joining u to each vertex in {x1,zk,y1,yx} (as shown in Figure 6.8). Thus,
F} has 2k vertices of degree 3 and one vertex of degree 4. It is known [36] that F, is a
Hamiltonian-connected graph of odd order and has the minimum size of a Hamiltonian-
connected graph of order 2k+1 for each integer k& > 3. Furthermore, x'(F}) = A(Fy) = 4.
We show that hpc(F)) = 3.

u

Figure 6.8: Graphs F3, Fy and Fj,

Theorem 6.3.4 For each integer k > 3, hpc(Fy) = 3.

Proof. For each integer k > 3, let P, 1 K5 be the grid of order 2k in which two paths of
order k are Py = (x1,22,..., %) and P, = (y1,%2, ..., yx) such that z;y; € E(P, O K»)
for 1 < ¢ < k. The graph Fj of order 2k + 1 is constructed from P, [0 K5 by adding
a new vertex u and joining u to each vertex in {z1,xg, y1,yr}. Define an edge coloring
c: E(Fg) — {1,2,3} of F} by alternately assigning the colors 1 and 3 to the edges of Py
and P, beginning with 1 and assigning the color 2 to the remaining edges of P, O Ko.
Furthermore, if k > 3 is odd, then let c(uz1) = c¢(uy;) = 3 and c(uxy) = c(uyg) = 1 and
if k > 4 is even, then let c(uz1) = c(uy1) = 3 and c(uxy) = c(uyx) = 2. Figure 6.9(a)
shows this edge coloring for the case when k is odd and Figure 6.9(b) shows this edge
coloring for the case when k is even.

Next, we show that the 3-edge coloring of Fj described in Figure 6.9 is a proper
Hamiltonian-path 3-coloring of Fy; that is, we show that Fj contains a proper Hamilto-
nian w — z path for each pair w, z of distinct vertices of F}. First, observe that every
Hamiltonian path P of Fj is proper unless P contains both uxi and uy; or contains

both uz; and uy,. Hence, if either w or z is u, then Fj contains a proper Hamiltonian

100



(a)

k is odd

(b)

k is even

Figure 6.9: Edge colorings of Fj,

w — z path with initial vertex u. Therefore, we may assume that neither w nor z is u.

We consider the following cases.
Case 1. {w,z} = {x;,x;} or {w,z} = {yi,y;}, where i < j, say the former. If i is

even, then consider the x; — u path

P = (fL‘i,fUiH, ey Ti—1,Yi—1,Y5—-25 - - - Yir Yi—1, Ti—1, Li—2, Yi—25 - - - ,y1,1‘1,u);
while if 4 is odd, then consider the z; — u path

Pl = (i, Tig 1y - s T 1 Yjm 15 Y20+ o> Yir Yim 1y Tie 1, Tim 2, Y2y - - -5 T1, Y1, ).
Next, if k — j is even, then consider the u — x; path

P = (U, Yks Thy T 1, Yk 15 Yk—25 - - - > Yjr Tj);
while if £ — j is odd, then consider the u — z; path
P" = (U, Tk, Yy Yk—15 The 1, The2y Yk—25 - - - 1 Yjs T5)-

Then, P’ followed by P” is a proper Hamiltonian x; — x; path.
Case 2. {w, z} = {z;,y;}. We may assume that ¢ < j. There are two subcases.

Subcase 2.1. i = j. If i is even, then consider the x; — u path
Pl = (24, %i—1,Yi—1, Yi—2, Ti—2, Ti—3, . . . , L1, Y1, U);
while if 4 is odd, then consider the x; — u path
P = (24, %51, Yi1, Yi—2, Ti—2, i3, - - -, Y1, T1, U).
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Next, if k — i is even, then consider the u — y; path

/! .
P" = (U, Yk, Ty The1, Yh—1> Yk—25 - - - » Tit1, Yit1, Yi);

while if k£ — 7 is odd, then consider the u — y; path

P" = (W, Tk, Ybs Yk—1, Th1, Th—25 - - - » Tirk 1, Yk 1, Yi)-
Then, P’ followed by P” is a proper Hamiltonian x; — y; path.
Subcase 2.2. i < j. If i is even, then consider the x; — u path
Pl = (T4, Tig1, -+ T 1, Yjm 15 Yj=25 - 5 Yis Yim s Tim 15 Tim2, Yim2y - -+ 5 Y1, T1, W)
while if 7 is odd, then consider the z; — v path
P = (2,241, - L1y Y1 Yj—2s - o s Yin Yie 15 Tim 1y Tim2y Yim2s - - -, T1, Y1, U).
If k — j is even, then consider the u — y; path

/! .
P" = (ua$k7yk7yk—laxk—laxk—Q;yk—27'")xj7yj)a

while if £ — j is odd, then consider the u — y; path

/!
P = (uaykvxk‘wrk—layk—lvyk—vak—Qa'"7mj7yj)'

Then, P’ followed by P” is a proper Hamiltonian z; — y; path.

It therefore remains to show that hpc(Fy) > 3. Assume, to the contrary, that there
is a proper Hamiltonian-path 2-coloring ¢ of Fj using the colors 1 and 2. First, consider
a proper Hamiltonian u — v path. We consider two cases, according to whether & is odd

or k is even.

Case 1. k > 3 is odd. Let k = 2t + 1 for some positive integer ¢. First, consider
the vertices z;11 and u. Let P be a proper Hamiltonian x;y; — w path in Fj. First,
observe that P cannot start with o1, ys+1. Thus, either P starts with z;11, x; or starts
with 441, 2442. Suppose, without loss of generality, that P starts with z;y1,z;. Since

Tp41T+2, Tri1y+1 ¢ E(P) and yy11 and x449 have degree 2 on P, it follows that

(Yt Yt+1, Yta2, Ter2, Ter3) is a subpath of P. (6.4)

If t > 2, then ayy; ¢ E(P) (for otherwise, y;—1 cannot belong to P). Similarly, x;y; ¢
E(P) for 2 < i <t. Hence, P contains the subpath (411, %¢, ..., Z1,Y1, Y2, -+, Ytt+1, Yt+2)-
By (6.4), if ¢ is odd, then

P = ($t+1,l't, s T Y1, Y25 - Yt 1 Y425 T2, Lt4-3 Yt4-35 - - - ’y/ﬁxkau);
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while if ¢ is even, then

P = ($t+1,1’t7 s T, Y1, Y25 - Yt 1, Y425 T2, Tt435 Yt4-35 - - -5 Tk ykvu)'

Since c is a proper Hamiltonian-path 2-coloring of F} using the colors 1 and 2, we may
assume that P is alternately colored 1 and 2, beginning with 1 and ending with 2. Thus,
the colors of some edges of P, [J K are determined. This is shown for k € {5,7} in Fig-
ure 6.10 where each bold edge belongs to the path P. In particular, {c(y1y2), c(zox3)} =

{clzerizr), c(mirameys) ) = {1,2}.

x1 T2 x3 x4 x5
(@) o [ ] o 'O
2 1 2
1 1 1
2 1 2
O
Y1 Y2 Y3 Ya Y5
1 T2 T3 T4 5 L6 T7
s —— Q) — ) ——O
1 1 2
2
2 1 1 1
1 2 1 2 2
U J
Y1 Y2 Y3 Ya Ys Y6 yr

Figure 6.10: The colors of some edges of P, [0 K5 in Case 1 for k € {5,7}

Next, consider the vertices x1 and u. Let ) be a proper Hamiltonian 1 — u path in
Fy. Since @ cannot begin with x1,u, exactly one of 129 and x1y; is an edge of Q). We

consider these two subcases.

Subcase 1.1. x1x2 € E(Q) and z1y1 ¢ E(Q). Then

Q = (x17$2> s s Ty Yk Yk—1y -+ - ,yl,U).

Since c(xyxi41) = 1, it follows that c(xiy12442) = 2 and c(zpyox443) = 1, which is a

contradiction.

Subcase 1.2. x1x9 ¢ E(Q) and z1y1 € E(Q). Here,

Q = (x17y17y27x27$37 vy Ye—2,Yk—1,Tk—1, Tk, Yk, ’LL)

Since {c(y1y2), c(xax3)} = {1, 2}, there is no color for ysxs and so @ is not proper.

Case 2. k > 4 is even. Let k = 2t for some integer t > 2. First, consider the vertices
x; and u. Let P be a proper Hamiltonian z; — v path in Fj. As in Case 1, the path
P cannot start with x,y;. Thus, either P starts with xy, ;1 or x4, x¢r1. We consider

these two subcases.
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Subcase 2.1. P starts with x¢,x4—1. Since y; and x441 have degree 2 in P, it follows
that

(Yt—1,Yts Yt+1, T+1, Te42) is a subpath of P. (6.5)

If t > 3, then xy_1y,—1 ¢ E(P) (for otherwise, y;—2 cannot belong to P). Hence, P

begins with the subpath (x4, x4—1,...,21,y1,¥2,-..,y). Because of (6.5), if t > 3 is odd,
then

P = (mtywt—ly e X1, Y15Y25 - YUty Y1, L1 Te42y - - - 7yk71;yk7$k7u);

while if ¢ > 2 is even, then

P = (xtamt—lv s L1 YL, Y2 - Yty Yt 1 D41, T2, -+ - 5 The—1, xknyk?u)'

Since ¢ is a proper Hamiltonian-path 2-coloring of Fj using the colors 1 and 2, we
may assume that P is alternately colored 1 and 2, beginning with 1 which is shown in

Figure 6.11. In particular, ¢(zi—12¢) = 1 and ¢(z¢412+42) = 2 whether ¢ is odd or even.

fL“Cl g2 x3 x4 Ts5 x6
o
2 1 2 1 't
1 1 | 1 1
2 1 2 2
C o]
Y1 Y2 Y3 Ya Ys Ye
1 o 3 T4 x5 T6 x7 xrg
o C o o o
1 2 1 2 2
2 1 1 1 1
1 2 1 2 2
O
Y1 Y2 Y3 Y4 Ys Y6 yr Y8

Figure 6.11: The colors of some edges of P, [0 K5 in Subcase 2.1 for k € {6, 8}

Next, consider the vertices x1 and u. Let Q be a proper Hamiltonian 1 — u path in

Fy. Since @ cannot begin with x1, u, exactly one of z1x9 and x1y; is an edge of Q.

* First, suppose that zizs is an edge of @@ and x1y; is not an edge of . Since each
of x9 and y; has degree 2 in @, it follows that @ starts with (x1,x2,x3) and ends
at (y2,y1,u). This forces @ to be the following path

Q= (9617162,---,961@,1/1«7%—1, . -,y27y1>u)-

Since ¢(x¢—17¢) = 1 and ¢(xy412142) = 2, regardless of the color of z;x441, it follows

that @ is not proper.
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* Next, suppose that x1y; is an edge of () and x1x2 is not an edge of (). Since each

of z9 and y; has degree 2 in @Q, it follows that @ must start with (x1,y1,y2, T2, x3).
This forces ) to be the following path

Q= (1,Y1,Y2, 22, T3, Y3, Ydy - - - Th—2y The1s Yk—1, Yhs Th, U)-

Since {c(y1y2), c(x2x3)} = {1,2} (see Figure 6.11), regardless of the color of zays,
it follows that () is not proper.

Subcase 2.2. P starts with xy,x441. Since xyxi—1,zyr ¢ E(P), it follows that
(4—2, Tt—1, Yt—1, Yt, Yr+1) is a subpath of P. Thus, if ¢ > 3 is odd, then

P = ($t7$t+17 s Ty Yk Yk—1y -+ Yty Yt—1, Tt—1, Tt—2, . - . , T2, X1, yl?“’);

while if £ > 2 is even, then

P = ($t>$t+17 s Ty Yk Yk—15 -+ 5y Yty Yt—1, Tt—1, Tt—25 - -+ 1/27?J1,$1,U)-

Since ¢ is a proper Hamiltonian-path 2-coloring of Fj using the colors 1 and 2, we

may assume that P is alternately colored 1 and 2, beginning with 1 which is shown in
Figure 6.12.

1 X2 x3 T4 x5 X6
(@) ° O
2 0 1 2 1 1
1 1 2
2 1 2 1
o O o]
Y1 Y2 Y3 Ya Ys Y6
x1 T2 x3 T4 x5 X6 x7 g8
O——o0 (] 0] O _ o
2 1 2 1 2
1 1 1 1
2 2 1 2 1 2
(@) o]
Y1 Y2 Y3 Ya Ys Y6 y7 ys

Figure 6.12: The colors of some edges of P, [J K5 in Subcase 2.2

Next, consider the vertices x1 and u. Let Q be a proper Hamiltonian 1 — u path in

Fy. Since Q cannot begin with x1, u, exactly one of zix2 and x1y; is an edge of Q.

* First, suppose that z1xs is an edge of () and x1y1 is not an edge of (). Since y; has
degree 2 in @, it follows that @ ends with (y2,y1,u). Furthermore, x2ys ¢ E(Q)
and so zows, yoy3 € F(Q). This forces @ to be the following path

Q = (33]_,332,. s Ty Yk Yk—1,5 - - 'ayQ)ylvu)'
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Since {c(xixey1), c(xi—2x1—1)} = {1, 2}, there is no color for z;_j2; and so @ is not

proper.

* Next, suppose that x1y; is an edge of @ and z1x2 is not an edge of ). Since each
of z9 and y; has degree 2 in @ and y1u ¢ E(Q), it follows that

Q = ($17y17y27$27$37y37 s Yt—1, Yty Tty Ttt1y - - -5 Yk l’k,U)-

Since {c(yi—1yt), c(zewer1)} = {1, 2}, there there is no color for ¢(x:y:) and so @ is

not proper. [

It was shown in [4] that if G is a 2-connected graph, then the proper connection
number of G is at most 3. Since every Hamiltonian-connected graph G of order at least 4
is 2-connected (in fact, 3-connected), pc(G) < 3. Since we have seen no Hamiltonian-

connected graph G for which hpc(G) > 3, we are led to the following conjecture.

Conjecture 6.3.5 If G is a Hamiltonian-connected graph, then hpce(G) < 3.
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