Date of Defense

Summer 8-13-1971

Department

Biological Sciences

First Advisor

D. Fowler

Second Advisor

S.B. Friedman

Third Advisor

R.C. Eisenberg

Abstract

Induction of Entner-Duodoroff pathway enzymes in Pseudomonas fluorescens was investigated to study the role of gluconate as a possible inducer. Glucose oxidase-deficient mutants were isolated and characterized. One of these mutants, gox-7, was deficient in particulate glucose oxidase; another mutant, gox-17, was deficient in particulate glucose and gluconate oxidase activities. Gluconate, but not glucose, induced synthesis of gluconokinase and 6-phosphogluconate dehydratase in both mutants. High constitute levels of 2-keto-3-deoxy-6-phosphogluconate aldolase were found when both mutants were grown on glucose. Growth of parent and both mutant strains on glycerol also resulted in high levels of Entner-Doudoroff pathway enzymes. It was concluded that glucose cannot serve as an inducer molecule for depression of Entner-Doudoroff pathway enzymes in P. fluorescens. Evidence presented provides good support for gluconate being the true inducer of this pathway in P. fluorescens. A relationship is presented for explaining distribution of the Entner-Doudoroff pathway in certain groups of bacteria.

Access Setting

Honors Thesis-Campus Only

Share

COinS