mfngéAﬂ N Western Michigan University

UNIVERSITY ScholarWorks at WMU

Computer Architecture and Systems Research . . ,
Laboratory (CASRL) Electrical and Computer Engineering

10-2016

A Comparison of x86 Computer Architecture Simulators

Ayaz Akram
Western Michigan University, ayaz.akram@wmich.edu

Lina Sawalha
Western Michigan University, lina.sawalha@wmich.edu

Follow this and additional works at: https://scholarworks.wmich.edu/casrl_reports

b‘ Part of the Computer and Systems Architecture Commons

WMU ScholarWorks Citation

Akram, Ayaz and Sawalha, Lina, "A Comparison of x86 Computer Architecture Simulators” (2016).
Computer Architecture and Systems Research Laboratory (CASRL). 1.
https://scholarworks.wmich.edu/casrl_reports/1

This Technical Report is brought to you for free and open
access by the Electrical and Computer Engineering at
ScholarWorks at WMU. It has been accepted for inclusion
in Computer Architecture and Systems Research
Laboratory (CASRL) by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

WESTERN
MICHIGAN

UNIVERSITY

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/casrl_reports
https://scholarworks.wmich.edu/casrl_reports
https://scholarworks.wmich.edu/ece
https://scholarworks.wmich.edu/casrl_reports?utm_source=scholarworks.wmich.edu%2Fcasrl_reports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholarworks.wmich.edu%2Fcasrl_reports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/casrl_reports/1?utm_source=scholarworks.wmich.edu%2Fcasrl_reports%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

A Comparison of x86 Computer Architecture

Simulators
Ayaz Akram and Lina Sawalha

Electrical and Computer Engineering Department
Western Michigan University, Kalamazoo, MI 49008

Abstract

The significance of computer architecture simulators in advancing computer archi-
tecture research is widely acknowledged. Computer architects have developed numerous
simulators in the past few decades and their number continues to rise. This paper explores
different simulation techniques and surveys many simulators. Comparing simulators with
each other and validating their correctness has been a challenging task. In this paper, we
compare and contrast x86 simulators in terms of flexibility, level of details, user friendli-
ness and simulation models. In addition, we measure the experimental error and compare
the speed of four contemporary x86 simulators: gem5, Sniper, Multi2sim and PTLsim.
We also discuss the strengths and limitations of the different simulators. We believe that
this paper provide insights into different simulation strategies and aims to help computer
architects understand the differences among the existing simulation tools.

1 Introduction

Due to huge costs associated with building real systems for testing and verification purposes,
computer architects rely on simulation and modeling techniques to evaluate different design
options. Major percentage (approximately 90%) of papers published in top conferences use
simulation as performance evaluation methodology [1]. Previous surveys on computer archi-
tecture simulations are old and do not include recent simulators [2]. Some of them focus
only on teaching or memory related simulators [3} 4]. This paper compares and contrasts x86
simulators based on different characteristics and features, and show several examples of con-
temporary simulators. x86 is one of the oldest and widely used instruction set architectures
(ISAs) in desktops and servers. With the recent diversion of x86 towards mobile computing, it
is gaining more attention and use.

There is not much literature dealing with the evaluation of x86 simulators by comparing
them to each other and to the state-of-the-art processors. The absence of performance vali-
dation of simulators may cause experimental errors that can result in incorrect conclusions, if
the errors are large. Nowatzki et al 5] discussed some reasons for why finding and correcting
errors in simulators is difficult including: implicit assumption of simulator features, absence
of detailed documentation, inefficient and mislabeled microoperations that causes unnecessary
register dependencies, etc. Academic researchers often use experimental error of a simulator’s
ability to model an existing hardware [6, [7]. In this paper, we configure four state-of-the-art
x86 computer architecture simulators to model Intel’s Haswell microarchitecture. Then we
quantify the experimental errors and evaluate the accuracy of such an approach. In addition,
we compare the performance results of the simulators among each other, and pinpoint some

causes of inaccuracies. The paper also discusses the strengths and limitations of different x86
simulators. The purpose of this paper is not to criticize a particular simulator for showing high
experimental error, but to emphasize the importance of validating simulators and to help the
community understand some sources of inaccuracies.

Our main contributions in this paper are:

e An up-to-date survey of various types of simulators that support x86 ISA with a com-
parison of their features and characteristics.

e A detailed comparison of four modern x86 simulators: gem5 [8]], Sniper [/]], Multi2sim [9]
and PTLsim [10].

e A comparison of simulation speed of these four simulators, in addition to quantifying
the experimental errors of each simulator modeling real hardware.

The rest of this paper is organized as follows: section 2] discusses simulators’ categories
and examples of x86 simulators that belong to each category. Section [3|describes in detail four
contemporary x86 simulators. Section 4| discusses our experiments methodology to verify
the performance of the simulators and measure the experimental error, and section[5|shows the
obtained results and analysis of simulators verification. Finally, section[6|concludes the paper.

2 Classification and Survey of Simulators

Simulators can be divided into various types based on: the level of simulation details, the scope
of target, and the input to the simulator. Next, we discuss the classes of x86 simulators based
on the aforementioned factors.

2.1 Functional vs. Timing Simulators

Functional simulators simulate the functionality of the target only and do not model microar-
chitectural details. Examples of functional simulators that support x86 are ‘sim-safe’ and
‘sim-fast’ models of SimpleScalar [[11]] and Simics [12].

Timing simulators (also referred as performance simulators) provide detailed information
about the real timing/performance of a simulated computer system or parts of a computer
system. Timing simulators that keep track of all clock cycles on a simulated processor while a
particular benchmark is executing on it, are known as cycle-level simulators. Keeping track of
such detailed information makes them slow and resource intensive in comparison to functional
simulators and other subtypes of timing simulators [13]. For example, the fastest functional
simulator for SimpleScalar can simulate instructions 25 times faster than its detailed (cycle-
level) simulation model known as ‘sim-outorder’. Other examples of cycle-level simulators are
GEMS [14], GemS5 [8]], PTLsim [10] and Flexus [15].

Event-driven simulators perform simulation corresponding to events, instead of simulating
the target on a cycle-by-cycle basis (thus save simulation time). It is also possible to combine
cycle-level to event-driven simulators by modeling some parts of the simulated structures on a
cycle-by-cycle basis and others on an event-driven basis. McSimA+ [[16]] is a timing simulator
that supports both in-order (I0) and out-of-order (OOQ) x86 pipelines. SimFlex [17], which
is based on sampling microarchitecture simulation (SMARTS) [18] framework, and Flexus
(Simics) [15] are cycle-level timing simulators while some components are event-driven in-
ternally. Many alternatives to cycle-level and event-driven simulators have emerged recently,

2

which provide a good tradeoff between simulation speed and accuracy. For example, inter-
val simulation [19]] has been recently proposed, which focuses on simulation of multi-core
systems. The fundamental idea of interval simulation is that the miss events like branch mis-
predictions and cache misses divide the normal flow of instructions through the pipeline into
intervals. These miss events can be determined by respective simulator blocks (e.g. branch
predictor simulator, memory simulator) and an analytical model can be used to find the tim-
ing for each interval. Using both the miss event simulators and mechanistic analytical model,
performance information can be acquired. Sniper [7]], an x86 multicore simulator, is based on
this technique.

2.2 Application-Level vs. Full-System Simulators:

Application-level/User-mode simulators are able to run only target applications instead of a
full fledge target operating system (OS). Thus, they have to simulate microprocessor and only
limited peripherals. In user level simulations, any system service requests by the simulated ap-
plication/benchmark bypass the user-level simulation and are serviced by the underlying host
OS. For compute intensive benchmarks for example SPEC CPU, little time is spent in the exe-
cution of system-level code [20], thus relying only on the simulation of user-level code might
not be a problem. However, for many other workloads (server workloads, transaction pro-
cessing and database benchmarks), this simulation will not be enough because a considerable
amount of time is spent in the execution of system-level code. Application-level simulators
are usually less complex but may show some inaccuracies due to lack of system level code
support. SimpleScalar, Sniper [7/] and McSimA+ [16] are examples of application-level sim-
ulators. Zesto [21] (built on top of SimpleScalar) and ZSim [22] are application level timing
simulators that support x86 ISA.

Full system simulators can simulate an entire OS for the target. I/O devices needed to boot
an OS are also simulated. Gem5 [8]], ML-RSim [23]], MARSSx86 [24] and PTLSim [10] are
some examples of full system timing simulators.

2.3 Trace-Driven vs. Execution-Driven Simulators:

Trace-driven simulators use trace files as their inputs. These files contain recorded streams
of instructions from a program’s run on some real hardware. These simulators do not need to
emulate the ISA of the target, which makes them relatively simple. One problem with the trace-
driven simulators is that the generated trace files can be very large in size and reading such
large files from disk can be slow. This can be solved by using trace sampling and reduction
techniques [25].

In the case of execution-driven simulation, instructions of any particular benchmark are
executed on the simulated machine directly. Different performance related aspects are calcu-
lated at the same time as the program is executing. As opposed to trace-driven simulators,
these simulators can simulate misspeculated code paths. However, they are more complex
compared to trace-driven simulators and can take longer to run if statistical sampling is used
to simulate portions of the benchmarks because of fast forwarding time. SimpleScalar [[11],
Augmint [26] and Gem5 [8]] are examples of these simulators.

There are four main factors to consider when comparing different computer architecture
simulators: performance, flexibility, detail of simulation model and accuracy. Table|l{shows a
comparison of some detail and flexibility features of several x86 computer architecture simu-
lators. In the next sections, we compare four of these simulators with more details.

Table 1: Comparison of x86 Simulators

i Supported MultiCore
Simulator Supported hosts (ISA/OS) Category Processor Models Support
Gem5 x86, ARM, SPARC, Alpha, PPC/Linux,MacOSx,Solaris,OpenBSD FS/MOD/TIM (cycle-accuate) 10, OO0 yes (HMP)
Multi-2sim x86/Linux UM/MOD/TIM 000, multithreaded yes (HMP)
Sniper x86/Linux parallel UM/TIM (interval simulation) 10, OO0, SMT cores yes (HMP)
PTLsim x86/Linux FS/TIM simulator (cycle-accurate) 000 yes
ZSim x86/Linux parallel UM/TIM 10, 000 yes (HMP)
Simple-Scalar x86/Linux, Win2000, SPARC/Solaris UM/ED/TIM 000 no
SIMFLEX x86 FS/MOD/TIM (decoupled functional and timing) 000 yes
SIMICS Alpha, PPC, UltraSparc, x86/Linux, Windows FS/functional functional yes
Augmint x86/Unix and Windows NT ED/TD functional yes
Mec-SimA+ x86/Linux UM/TIM (decoupled functional and timing) 10, OO0 yes (HMP)
GEMS x86/Linux, AMD64-linux, and SparcV9 (Solaris 8) FS/TIM (decoupled functional and timing) 000 yes
MARSSx86 x86-64/Linux FS/TIM 10, OO0 yes
Graphite x86/Linux parallel UM/TIM (decoupled) 10 yes
OVPsim x86/Windows and Linux functional 10 yes
Flexus x86/Linux FS/TIM/ED (cycle-accurate) 10, OO0 yes
Zesto x86 UM/TIM cycle-level 000 yes
McPAT x86/Linux power, area and TIM 10, 000, NOCs yes (HMP)

Note: UM=user mode, FS=full-system, ED=execution-driven, EvD=event-driven, TD=trace-driven,
TIM=timing, MOD=modular, IO=in-order, 00O=out-of-order, HMP=hetrogeneous multiprocessor

3 Selected Simulators for Detailed Study

We selected four simulators for detailed study, gem5 [8l], Multi2Sim [27], Sniper [7] and
PT Lsim [10]], because they have diverse design strategies with respect to detail and abstrac-
tion. All of them are contemporary simulators with active development, except PTLsim that is
currently not in active development but still being heavily used. Next, is a brief discussion of
all these simulators along with validation efforts that were performed for them in the past.

3.1 Gem5

Gem5 [8] is a full system simulator that supports many ISAs with various CPU models (Ta-
ble [T). GemS5 borrows the detailed CPU modeling from M5 [28] and the detailed memory
system modeling from GEMS [14]. Gem5 primarily supports four CPU models: ‘Atomic-
Simple’, ‘TimingSimple’, ‘InOrder’ and ‘O3’. AtomicSimple and TimingSimple are non-
pipelined single-cycle microarchitectures. The ‘InOrder’ and ‘O3’ are pipelined IO and OOO
core models. Both are ‘execute-in-execute’ meaning that instructions are only executed in the
execute stage after all dependencies have been resolved. These can be configured to simulate
different number of pipeline stages, issue widths and number of hardware threads.

Gutierrez et al. [29] and Butko et al. [30] validated the accuracy of gem5 by modeling
real systems based on ARM. After making some modifications to the simulator, apart from
configuring it to match the experimental board (ARM Cortex A15), Gutierrez et al [29] were
able to achieve a mean percentage runtime error of 5% and a mean absolute percentage run-
time error of 13% for SPEC CPU2006 benchmarks [29]. Butko et al. [30] have analyzed the
accuracy of gem5 for simulation of a multicore embedded system (ARM Cortex A9). Various
benchmarks related to scientific workloads (SPLASH-2), media applications (ALPBench) and
memory bandwidth (STREAM) were used for validation. The results show that the accuracy
varies form 1.39% to 17.94%. We have not been able to find any validation effort for x86
based targets for gem5 simulator.

3.2 Sniper

Sniper [/]] is a parallel simulator for simulating large scale multicore systems using interval
simulation [19], which provides a balance between detailed cycle-level simulation and one-
IPC simulation model (one-IPC model is defined as an IO single issue pipeline model). Sniper

is based on Graphite [31] that supports various one-IPC models. Carlson et al [7] validated
Sniper against real hardware (4-socket 6-core Intel Xeon X7460 Dunnigton shared-memory
with simultaneous multithreading (SMT) support) using SPLASH-2 benchmark suite. They
concluded that Sniper’s interval simulation is within 25% accuracy on average compared to
real hardware. Carlson et al. introduced the instruction-window centric core model that im-
proved the accuracy of base interval simulation model [32]. Validation of this model against
Nehalem microarchitecture based system showed a single-core error of 11.1% using a subset
of SPLASH-2 benchmarks.

3.3 Multi2Sim

Multi2Sim is another recently developed simulator for CPU-GPU computing, which supports
various ISAs (Table [T). Multi2Sim [9] uses three different simulation models: functional,
detailed and event-driven. The detailed simulator and the event-driven module collectively
perform timing simulation. Multi2sim supports only OOO execution mode, and can support
SMT. Memory hierarchy and interconnect networks are highly configurable. Multi2Sim bor-
rows some of its very basic modules from Simplescalar [11]. It does not simulate an OS but
still can execute parallel workloads with dynamic threads creation. Ubal et al [27] validated
Multi2Sim for GPU simulation using commercial AMD Radeon 5870 GPU as a reference
model, and AMD OpenCL SDK [33] as benchamark inputs. They verified functional cor-
rectness of the GPU simulator. The average error percentage between the execution time and
simulated execution time vary from 5% to 30%. We have not found any validation efforts for
x86 CPUs on Multi2Sim.

3.4 PTLsim

The fourth simulator that we experimented with is PTLsim, a cycle-level full-system x86 sim-
ulator. It can model a superscalar OOO core with SMT and a simple non-pipelined sequential
core which is designed for functional simulation only. The default pipeline model is a modern
00O, based on a combination of features from the Intel Pentium 4, AMD K8, Intel Core 2,
IBM Power4/Power5 and Alpha EV8 [10].

Yourst [10] configured PTLsim processor pipeline and memory hierarchy as close as possi-
ble to real 2.2 GHz AMD Athlon 64 (K8 micro-architecture) based machine, for experimental
evaluation. He used rsync, client server benchmark to include kernel-level effects in simula-
tion. By comparing PTLsim statistics and the real K8-based core’s performance counters, the
author measured a 5% error compared to the real hardware run.

Table [2| shows a comparison among different features and configuration parameters of the
aforementioned four simulators in addition to a recently developed simulator ZSim [22]. gem5
supports the highest number of OSes and architectures as shown in Table[I} Sniper runs on any
modern Linux-OS. Multi2Sim supports Linux, MacOS X (X86, ppc). PTLsim runs on Linux
based x86 or x86-64 machine.

Fast forwarding and cache warmup are supported by gem5 and Sniper. Multi2Sim and
ZSim support only fast-forwarding. PTLsim does not have a working fast forwarding or warmup.
Sniper cannot create checkpoints itself, but it can use checkpoints created by Pin [34] and Sim-
point tools. Only gem35 and Multi2Sim support the creation and later use of checkpoints during
simulation. All of these simulators support the creation of execution traces during simula-
tion. Gem3 produces very detailed simulated performance statistics (including pipeline stages
throughput, instruction mix and performance of various structures). Multi2Sim and PTLsim

Table 2: Feature Comparison

Feature GemS5 | Sniper | PTLsim | Multi2Sim | ZSim
Platform support P++ P P P+ P
Target support T++ T T T+ T
Full system v X v X X
Fast forwarding & cache warmup v v X v v
Checkpointing v X X v X
Trace generation v v v v v
Details of generated performance stats. | D++ D D+ D+ D+
Pipeline depth configuration v X v X v
Energy and power modeling E++ E E E- E
In-order pipeline support v v X X v
HMP support M,G,S | S X M,G S
GPU-Modelling v X X v X
Multi-threaded app. support v v v v
Community support C++ C++ C- C C+
Note: [feature’s 1st letter]++ is better than [Feature’s 1st letter]+ which is better than [feature’s 1st letter]

which is better than [Feature’s Ist letter]- , S=Single-ISA, M=Multi-ISA, G=GPU

also produce detailed statistics but the details are less than those produced by gem5. Sniper
does not produce very detailed performance statistics. In Gem5, PTLsim and ZSim, branch
misprediction penalty can be configured implicitly by varying the pipeline depth. Sniper and
Multi2Sim do not have explicit options to configure pipeline depth, but they have options to
set misprediction penalty and instruction latencies. To support power and energy modeling,
gemS5 and Sniper provide support for dynamic voltage and frequency scaling (DVFS), mak-
ing it possible to run experiments to simulate energy efficiency. Multi2Sim, GemS5, Sniper
and ZSim can interact with McPAT [335]] to evaluate power and energy consumption. PTLsim
does not provide any support for energy consumption modeling. In terms of the support for
heterogeneous multicore (HMP) simulation, Sniper and ZSim support only single-ISA (also
known as asymmetric) HMP simulation. Gem5 has currently integrated a GPUsim model to
run cpu-gpu heterogeneous simulations. Moreover, it can be modified to simulate single- and
multi-ISA HMP system, as it supports multiple ISAs. Multi2Sim integrates models for CPU
and different GPU architectures and has extensive support for GPU-CPU computing simula-
tion. Gem5 and Sniper have large development communities and support forums. Multi2Sim
and ZSim also maintain support groups to discuss problems related to the simulators. There is
currently no maintained support forum for PTLsim.

4 Simulators Verification Methodology

To experimentally evaluate the error in the selected simulators to model real hardware, we
have configured them to model an existing processor, Corei7. The target system is similar
to Haswell p-architecture (Intel core i7 machine 17-4770 cpu, 3.40 GHz). We then compare
the performance of simulated benchmarks with their runs on the real hardware. This section
discusses the configurations used for the simulators, experimental workloads and the method
followed for measuring real hardware metrics.

4.1 Target System (Core i7 Like)

As all the exact configurations for this processor are not published by Intel, we tried our best
to model Haswell microarchitecture based on some Intel documentation [36, [37]] and other
resources [38, 39, 140, 41]]. The basic features of this target system are in Table [3] The sim-
ulators are configured to model a 19-stage pipeline with 14-cycles misprediction penalty. All
simulators in this study do not model fused p-ops, thus we use pipeline stages’ widths in
equivalent p-ops. As we do not have the exact specifications of branch predictors in Haswell
u-architecture, and not all simulators implement the same branch predictors, we have tried to
configure similar tournament branch predictors in all simulators. We use a 4K-entries branch
target buffer (BTB) and 16-entries return address stack (RAS) with a tournament predictor
where at least one of them is a 2-level predictor. Details of these predictors are available in
next sub-sections.

Table 3: Target Configurations.

Parameter Core i7 Like

Pipeline Out of Order

Pipeline stages 19

Fetch width 6 instructions per cycle
Decode width 4-7 fused p-ops per cycle
Decode queue 56 u-ops

Rename width and Issue width | 4 fused u-ops per cycle
Dispatch width 8 u-ops per cycle
Commit width 4 fused u-ops per cycle
Reservation station 60 entries

Reorder buffer 192 entries

Number of stages 19

L1 data cache 32KB, 8 way

L1 instruction cache 32KB, 8 way

L2 cache size & Associativity | 256KB, 8 way
L3 cache size & Associativity | 8 MB, 16 way

Cache line size 64 Bytes

L1 cache latency 4 cycles

L2 cache latency 12 cycles

L3 cache latency 36 cycles
Instruction latencies Based on [36, 138]]
Branch target buffer 4096, 4 way
Return Address Stack 16 entries
Branch misprediction penalty | 14 cycles
Physical Int/FP registers 168 each
Instruction TLB 128 entries

Data TLB 64 entries, 4 way
L2 TLB 1024 entries, 8 way

4.2 Configurations of Simulators for Core i7 Target

Our main objective while configuring simulators was to be as close as possible to the real target
system. Another, important aim was to configure these simulators as close as possible to each
other, so that we could perform a fair and impartial comparison. Although these simulators
have diverse support for configuration parameters, we tried our best to keep the simulation
configurations the same. We also performed initial level accuracy experiments with ZSim.
This section includes ZSim configurations as well, but we do not include results from ZSim
experiments in this report. Table 4 shows differences in configurations across all simulators
due to different level of support for different features by these simulators. Table 5 shows
detailed configurations for all simualtors. First column describes the configuration parameter,
while rest of the columns describe the corresponding simulator’s parameter name and set value
for this parameter. Definition of that parameter for a particular simulator is also mentioned in
brackets where required.

Table 4: Differences in Simulator Configurations

Parameter GemS5 Sniper PTLsim Multi2Sim ZSim
Branch Predictor Tournament Pentium M (Bim- Hybrid (Bimodal: Combined (Bimodal | 2-level BP

(Local:4K, Gobal: odal:4K, 4K, Gshare: 4K, :4K,2 Level: (L1 size:4K,

4K,Choice: 4K) global:4K) Choice: 4K) 4K,Choice:4K) L2 size: 4K)
BTB associativity | 1 way (direct) 4 way 4 way 4 way ideal btb
TLB associativity | 1 way (direct) 4, 8 way 1 way - no tlb
Instruction queue unified (60 entries) unified (60 entries) | distributed (4 queues, | unified (60 entries) unified

16 entries each) (60 entries)
Memory address store sets NC NC NC NC
disambiguation
Delay between configured to achieve NC NC NC configured
pipeline stages overall 19 stage pipeline
TLB levels single double single - no tlb
Note: NC = Not Configurable

Gem5’s pipeline configuration is very flexible, in fact it is the most flexible out of the four
simulators that we have studied. A 19-stage pipeline is set by configuring different delay values
between the existing pipeline stages of gem5’s OOOQ pipeline, such that branch misprediction
penalty stays 14 cycles. Since u-ops are known at the fetch stage in gem5, all pipeline width
parameters are set in (-ops. Moreover, to incorporate the effect of fused p-ops (not supported
in gem5), we have translated the width of 4 fused p-ops to 6 normal p-ops. The branch pre-
dictor simulated is a tournament predictor similar to the one present in Alpha 21264 machine
[42]]. This scheme maintains local and global history to predict the direction of a given branch,
where a choice predictor selects one out of the two predictions. The size of local, global and
choice predictors and direct-mapped BTB are 4K entries each. Each entry contains a 2-bit
counter.

In case of Sniper, to configure any target system, a primary configuration script base.cfg
is already provided. Various scripts used to configure different core models and structures are
available that can override the default configuration parameters. Moreover, configurations for
some modern Intel processors are also provided. We have overwritten the basic configurations
with those for Haswell.

1o1owrered ON=JN 910N

(1 - Aefop wreu
dN dN dN dN | = $93e1s JO "Ou) € = | -3I PUB IPOIIP UIIM)
KR[OOWRUIYPOL2P0OIIP | -3q SI3e)s Jo *ON
} i (1 - Aerop Ipod
(1) mwﬂﬁm‘ HOLdd dN dN dN | = so3eis JO -Ou) ¢ = | -9p puB [I)3J UIIM)
() ADVLS 4d004ad KR[9(OP029OLYOIR) | -3q Sdge)s Jo °ON
(sdo-1 Jo winu (Qurpdid [[omsey
dN AN 95 = | 41 anonb do-11 JO9zZIS) | 9¢ = 9zISanand)yo1dJ jo ozs ananb sdo
d4ZIS dNdN0O HOLAd o.m _ oﬁmo:osdmm n ' -1l 39poddp se duwres
- 39S 3z1S) Ianan() Y23
(9ouo e JpNq
AAd/sAq dN Mwwwocowﬁwqwoaowww\nmw ur onanb yo393 w%mmmww_ (s314q ur az15) Rpng Yyaag
219 se owres : : = JZISIPNgyUoIQ
R 91 = ALIMVINN | 91 = 9zIgenan(yorog o SIIREINR
“VdD HOLHA HHOVOI
(ddo'21097000) (91942 12d (10
91 = HIDAD ¥dd dN | payoey sdo-11 ~xeu) dN | -£5 1od sdo-11 ur yipim WPIM 102
- SHLAY HO.Ldd 8 = HLAIM HOIHd U919)) 8 = WPIMYIJ
(2109 [[omsey [Qopw
0] pasn ST yomym (ourpodid (nd> 98x 10§ (qurpadid 19p10 JO INO)
000=2d£1 2100 : : | aurpadid 19p1o Jo 1no) N [Ppou 310)
[Ppowr nddo aseq) | J9pIO JO INO) 10D 000 o porredp = adAj)-ndo
- pa[ielop = WIS-98X
WARYAU = [QPOW 210D
ZHIN o — ZHIN e —) 2100
00vs = Aouonbaiy ZHD t'¢ = fouanboy dN 00vs = Aouonbaig ZHOY'€ =¥00p-ndd Jo Aduanbaiy o)
RE]

JjPueIRd WISZ

RPweIed diug

IRPueIe WIsTLd

-dweded WISTHMIN

IJPPUWRIRJ SUIIN)

J9juIeIeg

9Iqe], uoneIn3yuo)) SIoR[NUWIS :G J[qeL,

110wered ON=JN 910N

(syun
- (91940 12d ponsst | [euonouny 03 onanb
(8) suod jo 8 = HLdIM

JoquInt £q pAUILLINP dN ANSSSEXVIN suononnsurr Jo | uononisur woij pans [IPIM INSST

: 'ON) 8§ = UIPIAANSST | -ST 2q ued jeyy sdo-n

'XBJN) 8 = YIPIANINSSI

(91940

(31045 1ad dutgadud jo (91945 12d payojedsip | 1od ononb uononnsur
9 9 = yIpIm-yoredsip puxvq 03 paydredsip suononnsury jo .o7.© 0} wonoﬁmw%.o@ ueo Ppm yajedsiq

ATOAD ¥dd SANSSI sdo-1f jo ou) 9 = o = wpuprdsiq | ey sdo-r xe)

HLdIM HOLVdSId 9 = wprmyoedsip

(puajuoiy (o1y 19381391 [ROISAyd

9 AIDAD ¥ad ourpadid Jo 910A> 1ad 3ursn 9942 1od powreu
-Savay 4y AN sdo-ri ur wpmw) 9 = AN a1 sdo-ri "XBIA) YR ot

HLAIM ANAINOdA 9 = UPpMsweuar

(puauoiy

ourpadid Jo oppko 1od (91949 12d papooap (91940 10d

dN dN | qo-rl PpIm) 9 = suoroNIISul 98X) | papodap sdo-11 “XeJN) YIPIM PO
: : - = 1DIA AP0 = 1PIA AP0

HLAIM ANALNOYA 1% WPIMSPO33Qd | 9 YIPIMSPO39p
(1 - Aep 101111 (15)
dN dN dN dN | -9p = so3els JO "OU) { | puUB YOBQIILIM UIIM)
= AB[o@NWWODOIMII | -3q S3IZe)S JO “ON
(In (1 - Kepop A
IOVLS ANSSI - (1) dN dN dN | = se3els Jo -ou) 7 = | -9Xd pUE INSSI UIIM)
HOVLS HOLVdASId Ke[oJINOOXHOLANSST | -3q $ITe)s Jo ON
) - (1 - Aep ans
-ﬂ m_vO<r_Lm mm_ooma dN dN dN | -9p = sa8®e]S JO "Ou) { | -SI pUB JWBUII UIIM)
1) HOVLS HASSI = Ae[oQ M HIOLQWRUAI | -9q S3ge)s Jo "ON

1)

Jd)PweIe] WISZ

JPuesed Rdiug

JPweIe WISTLd

-weled WIS

IdJPuWRIRJ SUIIN)

IPWRIR]

10

191owered ON=dN :9I0N

a0 < 9°Z61 T61 = 9ZIS MOpuIM ¢61 =dZIS 90y 761 =971Sq0Y col .
> I NgIopIody ’ ’ ’ = seuggOYwnu | -ud JIJJNq JIPJI0RY
891 =dZIS d1I4 _ 891 REINKERAMEY
dN dN DAY SAHd BOL =S | — s3owupskyquinu | -apur reorsyd go -oN
891 = AZIS AT _ 891 s.19)s13a. jutod Sur
dN dN DAY SAHd 891 = o2iSdR | _ sSoyieosAyquinu | -yeopy [edrsdyd jo ‘oN
fop (wayp Jo) 91 = (sdo SALIYUD
SUIMSUL < 094201 09 = SALNUY SI _ ~ | -1 ur oz1s onanb uon 09 = saugOrunu :
>2INIONIISMOPUIA q471S"dNdNO dNSSI -onnsup) 9 = 9zi1Sby ananb uonponsuy

anan()210ls < 97y

(44

(sdo

> pngIpIooy | = seiow-SupueIsnG 7 =43Z1IS OLS | -1 ur 9z1s ananb 2103s v = samug S SALNUA INdNb 103§
peo) yI1 = azishs
ananQOpeo] < 9°ZL L (sdo
7L =H49ZIS OAT | -1 ur az1s ananb a103s 7L = samug)1 SALIUd Indanb peor
>IOPNGIopIody | = speo[Suipuesino :
JngIoplooy PEO[SUIp peo) y11 = ozighs
(91949 12d papruriod (91940 1od poantwa | (9942 1od panrwriod (91940 12d pay
dN | suononnsur "Xe]N) | -wod sdo-1 Jo "oN) § | suononnsurn jo ‘oN) | -wwod sdo-1 XeA) PIPIM WO
y = ypmijiuwod | = HIAIM LINNOD |8 = Wpmiwwon | 8 = [PLMWHWWOD
(sdo-11 ur a3e1s
dN dN (sdo-ri ut) 9 = dN | 3deqaim - Jo .SEB UIPIA HOBqIIIA
HLAIM DVIALIEIM XeN) 8 = UIPIAMQM
(91940 12d
dN dN dN dN | paysenbs sdo-11 "xe[y) PP ysenbg
8 = wpipysenbs
JjPueIRd WISZ RPwesed Pdiug | RPwered WISTLd . JdjouIeIRd SUIAN) BEIE1IA LS|

-weled WIS

11

10)owrered ON=JN :9I10N

dN dN dN ¢ =Unoo JJodpeay)10 peay dyoen
1509 ‘ . suonetddo Alp pue

: : A ST | _ LS $a10K0 1 °¢ P
ddoropooop ur ‘powr | uononnsur oneIs) Gy | Al — = re1doAarqieord | edo Alcrim mu juiod Sujreopy
= A} ¢ ¢ = [y ¢ =AIpy dO My dOo e 1do NNAIROLT | w®] [N dd 3o £o>uaye| uonesad(
[= 1@ TonsS'AL(JIBOL] Qoo | = suoge.rado
ddo-epooap ur “powr dN | [=AIPFdO TMwydo | ., - | Arp pue mu jurod Sur
1o TONSSTINIAIROL] | JeTonssT AN dd yeo]] Jo £ouayey anssy
 UNONALATEG suonerddo
ddo opooap ur -powr dN NWH O AAIPOL 7 =Unod AN dd | AIp pue [nu jurod

: JUNO0D)INJAIROL] : 5
unpeoy jJo juno)
(302 ¢ =11dO'pPPVIeol] S99 one
ddoropooop ur ‘powr | suononnsur onels) | O ¢=x1dO - 3 -do ny jurod Suneoy
= qns}] ‘ [= ppeJ Ao RIdwISIvold | - € =3v7do TV dd Jo Kdudje| uonerddQ
_ . suon
I [=X3dO | e[enss[o[dWiSIeo[] | [= Je[onsst 17V dd -ye0p Jo Koudye] anss|
. . ‘ ¥ =3UNn0)'ppVvILo[_ sy jurod
ddoapooap ur powr dN 1NdA ‘ondA N0y o duIgIEOL] p=1UN0 VIV dd | guneon jo junon
(81509 = =1 1dO AU 10Ad T pue AIp pue [nu jul
ddoopooop ur ‘powr | uononisur one)s) ~ 0z = i A TP 'P put [jul
: ’ 3 : XAIp"dO ‘p=X[nw JO | ‘b= 1 1dONANY] | + = 1e1do AIINIAIU] | Jo Adudje] uonetddQ
0= Alp ~ y = [nu

7 = UNOD)'AI(] sjun

ddo opooap ur -powr = JUNOd AI(PINAIU ’
pOSIp UL 'p dN QU qUnODNARY =1 [MIADU] AN Jo 3uno)

(opood

ddo opooap ur -powr suisuege - Aq - siun =juno)y’ u =JUnod u SN[V Jul Jo Juno

pOSp UL 'p dN [BUOTIOUN MAU PAppE) ¥ = Unoy ppviu] =1 N TV JV jul Jo Junoy)
ENIVTAIVINIVONTV

Jd)PweIe] WISZ

JPuesed Rdiug

JPweIe WISTLd

1)
-weled WIS

IdJPuWRIRJ SUIIN)

IPWRIR]

12

191owrered ON=JN :2ION

((TD 21981 £10)
-s1y wioped J10J sown

9¢C =d14d!
8Cl =
Ioyrpaiquouergdoor]

9601 = 9[qEL [epowutyq

(areys-3 Jo 19)S1321
AI01S1Y [BQO[3 JO 9ZIS)
¢l = HLIAMIAIHS

(oreys-3 jo

J1qe1 10381y UIAed Jo
9z1S) 960y = AZISTT
(10

-o1paid areys-3 e sy
SOYeW [=9ZIS ‘9ZIS J[q
-B) [[2A9]) [= AZISTT
(oz1s

J0301pa1d [epowiiq)

(19151301 A103S1Y
youeiq jo 9zIs) gl =
9ZISAIOISIH [OAYTOM],

((319®1 [949] puo
-09s) 2[qe) A10)SIY UId)
-Jed ur suwnjod jJo ou)
[= 9ZISTT[PATOM],

(101
-o1paid aandepe [9A9]
om} Jo 9[qer Kioisty

youerIq Ul $I19)SI3aI
A10)S1Y youeIq Jo -ou)

[= 9ZISI T[PATOML

(10101p
-a1d 921010 Ul SALIUD)

(10301p2ad
Q010D JO 19)unod 1ad
$1Q) ¢ = sNgNHIdIoyd
(10301paxd

3010Yd JO 97IS) 9601
= 9ZISIO}OIPAIJIIOYD

(x0301pa1d

[eqoI3 jo Igunod 1ad
$11Q) ¢ = sNgN)[eqo[3
(a0101paxd

[eQO[3 JO 971S) 960%
= 9ZI1SIO0IPAIJ[LQO[3
(s19®1 K10381Y

[BO0] JO 97Z1S) 80T =
9Z1S9[qQR L AI0ISTH[BIO]

(x0301pa1d
[e20] Jo I9unod 1ad

-ud (gmody) 71=4'1 9607 = AZISAOWIL | 960F = 9ZIS'010Y) | SIq) T = SNGHI[eI0]

(s19181301 JIYS AI103SIY (epoo ur s1gjowrered (10101paxd (10101paxd
youerq [JOJ SALUQ | papoopIey) 9601 (3215 10301pard erour) [epowIIq Ul SAIMUI) | [BO0] JO 9AZIS) 8H0OT SIqE) 1031P
(dN)modz) ZI=dN | = JIowIpald [eqo[D 00y = HZISVIAN 960y = 9ZIS'pouwnq | = 9ZISIOIPald[eo0] road ypurq Jo ans
(10301paId [9A9] 7) wwnnuag 1O15IPALI DAUIAUO AUIQUWOA = DUL juawr JI0)21p
3vdIoiparquouelg | = J1030Ipald youeig 19IPIdPtqUOD PoUIQUIoD = Pty -euno], = odArpaid | -aad youraq jo adAy,
dN dN dN | =3Unood 3049 LI)10 ILIAA dYde)
JPweIe] WwiS7Z JPwere] Rdiug JpPuere] wisTLd . JIPWRIR] SWII) REIRIIILA LR

-weled WIS

13

10)owrered oON=gN :9I10N

Q] = sossmuu 3ut

SI9)SIGd

9l = syswrIy| PUBISING- YL [dN 91 = dHSIN 9] = sIysw | Sul[puey snje)js ssiu
. YIEd wondINISUI I
g = skem 17 8= 8 g = 00SSY g = J0sse Aagenosse

AJIATIRIDOSSE QUOBII [|

= INNOD AVM II'T

AYdoerd uondNISUl 1

(2109 03 asuodsar
Surpuas Jo Aoude|

y= = Koudje[-asuodsax (S9Pd
y = Aoudge 1] JuII)SSI2JB BIRP dN SO[0Ad 4 = Aoudje] | ‘Ouoed JO Adudle[Y | -£d) Adudje] SSADE
QUoBII [= Aoudie[y) ¢+] | AYIBd uondnysur |

= Kouaye asuods

-1+ Aoudre iy

(so3e)s qurpadid (Syeuad | (uonorpardsiut youeiq (so3®r)s uoam)
T SO[0AD 1 | uonorpardstu youelq | I9)je pa[els s193 a3ers Lyreudd uon

JUSIAYIp JO SuLqQUINU
£q 1es Apmorduy) 1

Kyreuad-iorpaxdsiu

19S 0} pasn)] =
SHOVLS ANHINOYA

[019] S9[9Ad JO "ON)
yI = KrUQJIA0IY

-9q Ae[op poin3yuod
£q 1es Apmrduy) 1

SIpaadsia youeag

9ZIS

pazieap! dN 91 = AZISSVY 91 =715 SV 91 =USSVA | e o ine wamgoyt
(= SAVM NN

ynomy s st An p=SAVMELE p=00ssy gLl soLuo

oZI[eapI) , . = somu

POAEPY| aneroosse) o60p | ‘95z = slasdld | vol = swesaLd | 0 A8 sogng jore youeag

= SAPLINT WON
19)

Jd)PweIe] WISZ

JPuesed Rdiug

JPweIe WISTLd

-weled WIS

IdJPuWRIRJ SUIIN)

IPWRIR]

14

10wered ON=JN 910N

7€ = sossmuu-3ut

(SYHSIN

SI9)S13da Surpuey

91 = SIgswW ¢| - - [l jJo wns) (8 = ¢¢ = dHSIN ¢ = siysu
-pueBISINO-9YIBI snje)s SSIu AYoed
P e LNNOD dNIdSSIN s S e Tl
_ 8= ,_ I _ _ An
§ =shem gl KIATIRIOOSSE QUOBO | 8= INNOY AVA 1 8 = 008V 8 = 008s% -A[JRID0SSE YR T
(9yoed JO [oA9] 1oddn
0] osuodsar Jurpuas
(91945 '
_ - Jo Koude] = Adudje|
[) QWDn $Sadoe s3e) .
= AouQje] [| ayoeo ®IRp] + 8= XONAIVT 1 g = Kouaie] ssuodar ‘ayoed 7' Aouay
8 ~ 0} [T woiy Adudjel | -B[SSIIEB IYIBd 7'
(SO[0AD 1) QWIN $SAD _
-o® yoedBIBP | o= Aouaeri)
+ = Aoudje-asuods
-1+ Aoudrer iy
91 (SYHSIN SI9)ST
9] =SIYySW p[[| = SossTwguIpue)s | [[B JO wns) (g = 91 = YHSIN 9] =sysw | -331 Julpuey snje)s
-jno Qyord BIEp [LNNOD dNdSSIN SSIwx ayoed ejep 7]
= skem g=Auan | o _ 3 - = 00SS = 00Sse Aagen
8= PII -BI00SSE QORI BIEP [[8 = LNNOD AVA T 8= v 8= -0sse JYoed Blep I
(2105 01 asuodsax
Surpuas Jo Aoudje|
p= = Koudre[-asuodsal
¥ = Aouaye] pI1 210118 RNeTo ko) o A1 4] = IVIAVOT ¥ = AouayerT | ‘oyoed Jo Aduaje| Ny Houaey
: o ~ 7| $S920® Jyded BvIRp I
AuoedBIBP [= Aoudje[Iny) ¢+
= Kouaye-asuods
I+ Aoudrer iy
1)

Jd)PweIe] WISZ

JPuesed Rdiug

JPweIe WISTLd

-weled WIS

IdJPuWRIRJ SUIIN)

IPWRIR]

15

1o1owrered ON=JN :2ION

Jd)PweIe] WISZ

JPuesed Rdiug

JPweIe WISTLd

-weled WIS

IdJPuWRIRJ SUIIN)

01TD-cc€1-e9ad 061 = ADNALVT su/G = Aouoe Adudje]
odA) wowr ur jnejop (su) £g = Kouope wreap -INAHIN NIVIN $1245 061 = Aouare] bo&mozoaa_m_ KIOUWRA] urey
KLorod
NY1 N1 NA'1 NA1 N1 Jowaoedor ayoe)
Y9 = 9ZISUI[| {9 = 9ZIS HI0[q 9Y3ed m_NHm\mZHwﬂmImme ¥9 = 9ZISYO0[d 12 9ZIS UL 3YdE))
91 = 91 Ay
o1 = skem ¢ KJIATJRIDOSSE QUOBI ¢ INNOD AVMA €1 91 =008V 91 = 00858 -AIJBIDOSSE Yded ¢
(ayoed JO [9A9] 1oddn
(91940 0) osuodsar Jurpuas
%) QWIN ™SS0~ Jo Aoudre] = Aouoje|
-s3e)-oyoro 7| ~ asuodar ‘ayoed ¢ 0) £oud)
vz = Ao 1 + (so04d 1€) P2 = AONHLVTET vg = Aouare] 71 woiy Adudje] Iy | -B[SSIJIB IYILd ¢
21111 NN=hok] 1] = Aouderiy) g+l
LliplaNy| = Koudyeasuod
I+ Aoudrer iy
19

IPWRIR]

16

Available pipeline configurations are also changed according to values in Table |3 The
branch predictor modeled in Sniper is based on Intel Pentium M’s branch predictor [43]. We
have changed the table sizes of this branch predictor so that global predictor, bimodal predictor
and BTB each are 4K entries in size. Pentium M branch predictor also contains a loop predictor
(128 entries) and a direct-mapped iBTB (indirect branch target buffer) with 256 entries for
indirect branches.

PTLsim is also quite flexible in terms of feature configurability. To set the pipeline and
other basic configuration parameters some header files have to be changed. PTLsim directly
fetches pre-decoded p-ops from a basic block cache. Branch prediction is highly configurable
in PTLsim. It includes a hybrid G-share and bimodal predictors and set-associative BTB, each
set to 4k entries. PTLsim supports both distributed and shared issue queues. It is not possible
to model a shared instruction queue as well as clusters in PTLsim. Thus, distributed instruction
queues (with extra entries for compensation) are configured as done by Hayes et al [44].

Multi2Sim’s configuration is set using two basic configuration scripts: one is used to set
memory hierarchy configurations and the other is used to set pipeline configuration parameters.
Both are configured according to target configurations. The configured branch predictor is a
tournament predictor consisting of a bimodal predictor and two-level adaptive predictor in
addition to a set associative BTB with similar sizes as other simulators.

ZSim needs changes in some headers files alongwith a configuration file to fully model a
target architecture. We have changed the header files to add new functional units and config-
ure different pipeline stages to model Haswell pipeline. ZSim does not support a tournament/
hybrid branch predictor. Therefore, a two level branch predictor (with table sizes as for other
simulators’ configured predictors) is modeled. Moreover, ZSim assumes an ideal branch target
buffer.

As details of cache prefetchers on Haswell are not available, we did not configure any prefetcher
on any simulator to eliminate one source of inaccuracy. We also deactivated cache prefetchers
on real hardware before collecting reference performance statistics.

4.3 Experimental Workloads

We ran our experiments using SPEC CPU 2006 [45] and subset of the MiBench embedded
benchmarks [46]] benchmark suites.We simulated complete MiBench benchmarks, however;
running complete SPEC benchmarks in simulated environment will take impractically long
time. Thus, each application was executed for 500 million x86 instructions chosen from a
statistically relevant portion of the program [47]. Simulation is fast-forwarded for all bench-
marks and are warmed up for 100 million instructions before start of detailed simulation. We
changed Multi2Sim and PTLsim’s code to support the warmup functionality.

4.4 Performance Measurement on Real Hardware

We used PAPI [48] to measure IPC (instructions per cycle) values for entire execution of
embedded benchmarks. In case of SPEC benchmarks we measured the IPC values for the same
500 million instructions interval that we simulated. Benchmarks were run five non-consecutive
times and results are averaged to compare with simulation results and measure experimental
error. We also used PAPI to measure number of cache misses and branch mispredictions on
the real hardware. The compiler that we used is gcc 4.4.7. We started with 32-bit binaries for
all simulators as multi2sim supports only 32 bit binaries, but many of them failed to work on
gem35. So, we have used 64-bit binaries for gem5 only. The host OS used for compilation and

17

the execution of benchmarks is Scientific Linux 2.6.32. For gem5, experiments are performed
on a Ubuntu 14.04 host OS. Reference hardware performance metrics are measured on both
systems as well. We have used gem5’s stable version of September 2015, Multi2Sim version
5.0, Sniper version 6.0 and PTLsim version available at [49] for all experiments.

S Results and Analysis

H GEMS Multi2Sim B PTLSim ™ Sniper
1.8

1.6
1.4
1.2

0.8
0.6
0.4
0.2

_
—
) e e
JPEg ——
e
QSOrt e—
String_search ——
typeset —
t—
—
—
—
bzip_chicken |
8CC_200 mmmm—_ |
—
—
hmmer —
—
——
E—
OMNEtPp m— |
sjeng_ref |
Xalanchmk — |
gamess m_______ | |
gemsFDTD wm
gromacs mem
——
-
—
—_—
milc =
—
povray m_—_ | |
soplex
——
e

libquantum e—

perlbench m—_
—
—

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Ibm
leslie

Normalized IPC Values
o -
—
bitcnts —

namd

basic_math
dijsktra
avgERROR
gobmk
h264ref
mcf_in

avgERROR-NO
avgERROR

avgERROR-NO
avgERROR

AVEERROR-NO me—

MiBench INT-Spec2006 FP-Spec2006
Figure 1: Normalized IPC values for all benchmarks

In this section, we compare the IPC, cache hit rate and branch misprediction results of the
four simulators to that of real hardware runs on a Haswell processor. We also quantify the
errors and evaluate the accuracy of this approach. All figures in this section show two types
of average errors for all evaluated metrics: one including all benchmarks, avgFE, and the other
without outliers, avgE — NO; where an outlier corresponds to more than 50% inaccuracy in
a metric. Figure [I] shows the normalized IPC values for all benchmarks to the real hardware
results. From the figure we can see that Sniper shows the least error and only include one
outlier. For embedded benchmarks, the mean absolute percentage error (MAPE) compared
to real hardware runs are: 9.5%, 44.77%, 38.3% and 47.04% for Sniper, Gem5, PTLsim and
Multi2Sim respectively. The MAPE values excluding outliers for Gem5 and Multi2Sim are
37.6% and 41.9% respectively.

The MAPE for integer benchmarks for Sniper, Gem5, PTLsim and Multi2Sim are 12.5%,
41.1% (24.0% excluding outliers), 36.5% and 57.4% (40.4% excluding outliers) respectively. For
floating point benchmarks, the MAPE excluding outlier are 8.2%, 28.8% and 41.4% for Sniper,
Gem5 and Multi2Sim respectively. PTLsim shows much greater inaccuracy in floating point
benchmarks, with most of the benchmarks showing more than 50% error (PTLsim shows very
high p-ops to instructions ratio for most of them).

We have been able to observe various reasons which can contribute to overall inaccuracy
shown by the simulators. For example, one of the primary reasons for the high underestimation
of IPC for some benchmarks in PTLsim is the way x86 instructions are decoded into f-ops.
We observed that for all benchmarks including outliers, which have high inaccuracies in IPC
values for PTLsim, the ratio of committed p-ops to committed x86 instructions is very high
compared to other simulators. For example, the ratio is 9 for gemsF DT D using PTLSim (on
Gem5 and Multi2Sim, it is 1.36 and 2.27), 6.07 for gamess (on GemS5 and Multi2Sim it is 1.5
and 2.16), 5.43 for povray and 4.2 for soplex. As all pipeline widths are configured in number
of 1-ops, thus if this ratio is very high, the overall IPC can diminish significantly.

18

Figures2|and |3|show normalized L1 data cache misses and L3 cache misses per instruction
for SPEC benchmarks. Figure [4] shows normalized values of branch mispredictions to hard-
ware performance counters results. There are many cases where the average error goes above
100%. These figures help to understand very high underestimation of IPC values by simulators
for some benchmarks. For example, most of the outliers in Gem5 (h264ref, gcc-200, gobmk,
perlbench, libquantum, namd, povray) have much higher branch mispredictions and cache
misses in comparison to real hardware. The reason for these inaccuracies in simulated branch
predictors is that the modeled branch predictor fails to mimic the behavior of branch predictor
of the real core for these benchmarks. The benchmarks that have high overestimated branch
mispredictions have significant number of committed branch instructions (20% or more) com-
pared to other benchmarks (4-5% committed branch instructions). This exposes the ineffi-
ciency of modeled branch predictor when compared to Haswell branch predictor. Some of the
IPC inaccuracies can be due to the way some of the x86 instructions are decoded and imple-
mented in GemS5. For example, integer division is implemented using loops of division u-ops,
where each p-op computes a single bit of the quotient (each p-op will have minimum one
cycle latency). This implementation is different than the division algorithm on the real hard-
ware. In addition, some inaccuracies in Gem5 were seen due to the mislabeled and inefficient
microoperations [3l].

u GEMS Multi2Sim ® PTLSim ™ Sniper mGEMS Multi2Sim ®PTLSim m Sniper

937
1661
9609 1239 1006
1407
A ||I|I|i|| ||I
2 £ E
% c
¥
E

INT-Spec 2006 FP-Spec 2006

&
s

w

Normalized L1 DCache Misses
hooN
oukrErUNUVWUL AUV

=
-
gobMK —
h264ref m——

=3

hmmer =,

SOPleX mm—

avEER R OR

avgERROR-NO

libQUANTUM E——
P — 4
mcf_in —
—_—
omnetpp —
—_—
I
———
-
—_
——
—
—
-
—
gamess
geMSFDTD —
—_—
gromacs mm o
—_—
lom -
leslie -
milc «
I o
N ——
—_—
POVIaY
SOplex | m—
—_—
=
Normalized L3 Cache Misses
mcf_in
gamess
gromacs
leslie
povray

oCrNWHRULON®LOOD
bzip_chicken ;—
200 _-_
-
==
h264ref -—
perlbench _—
—
sjeng_ref
-

bauantum =_
-'
omnetpp -—

bzip_chicken
gec_200
perlbench
sjeng_ref
xalancbmk
avgERROR
avgERROR-NO =
avgERROR
avgERROR-NO =
li
xalancbmk
avgERROR-NO
gemsFDTD

INT-Spec2006 FP-Spec2006

Figure 2: Normalized L1 DCache Misses Figure 3: Normalized L3 Cache Misses

Similarly for Multi2Sim most of the outliers (gcc_200, h264re f, hmmer, perlbench, gems —
FDTD, namd) have high overestimated branch mispredictions, that obviously highly affects
overall IPC values. As observed for Gem5 as well, most of these benchmarks have high num-
ber of overall committed branch instructions (20% or more). It should be noted that the high
overestimated branch mispredictions might not explain underestimated IPC values always. For
example, branch mispredictions for gromacs on Sniper are highly overestimated, however; the
total number of branch mispredictions is too low to affect overall IPC value (in fact Sniper
highly overestimates the IPC value for gromacs, being the only outlier for Sniper). How-
ever, all examples mentioned for Gem5 and Multi2Sim previously have significant number of
overall branch mispredictions that affects the overall IPC values. It is worth noting that most
of the benchmarks that show highly overestimated L3 cache misses (h264ref, xalancbmk,
perlbench, leslie3d, namd) by the simulators have low number of overall L3 cache misses on
the real hardware. As a result this high inaccuracy might not affect the overall IPC accuracy
significantly. Another reason for high L3 cache misses inaccuracy can be accumulation of
inaccuracies from lower level of caches into L3 cache. We also noted that the inaccuracy in
L2-$ misses to L.3-$ misses ratio is lower than the inaccuracy of L.3-$ misses alone.

Some of the inaccuracies can be a result of lack of support of fused t-ops, and p-op cache
of Haswell (which can significantly reduce the effective pipeline depth in case of p-op cache

19

hits) by the simulators. The abstract level of some simulators and the lack of other micro-
architectural details can also induce errors in simulation models.

To observe the effect of changes in simulator configurations on simulated performance, or
relative performance, we ran the simulations for embedded benchmarks after halving pipeline
stages’ width from Table [3] Figure [5] shows the IPC values of those runs normalized to IPC
values with normal pipeline width. It is not easy to say what should be the exact effect of such
a change for each benchmark, however; the figure shows that Sniper seems to have the largest
difference in relative performance and thus the most sensitive to the width of stages.

Figure [5] and [6] show the percent change in IPC values for pipeline width and cache size
change respectively, from the normal configurations in table III. For many benchmarks, the
simulators show similar relative change in performance. PTLsim is the least sensitive on
average among all other simulators. Multi2Sim seems to be more sensitive to change in cache
sizes than other simulators as its memory mode is pretty detailed. Sniper and gemS show
similar sensitivity to cache size change. They also show, on average, very close IPC change in
pipeline width, being more sensitive than PTLSim and Multi2Sim.

In addition to comparing the simulated results of the simulators, we compare the time it
takes for each simulator to simulate 500 million instructions including the fast forwarding
time. Figure[/|depicts the average simulation time for each simulator for the different types of
benchmarks. As shown from the figure, Sniper is the fastest simulator, followed by PTLsim.
gemS and Multi2Sim show close simulation time on average. It should be noted that the
average simulation time is based on only a subset of overall simulation experiments, which
were run in an isolated environment on host systems.

Our main observations based on our experiments are following:

e The main sources of inaccuracies in simulated statistics are highly overestimated branch
mispredictions, imprecise decoding of instructions into microoperations, high cache
misses and lack of modeling of all optimization structures of real hardware.

e Although it is widely accepted that simulators cannot provide speed and accuracy si-
multaneously, for the given target, Sniper shows the most accurate and fastest results out
of those studied simulators. Sniper is fast because its simulation model combines both
interval and cycle-level simulation. Moreover, Sniper shows the least experimental error
as it is the only one of the four simulators that has been modified and validated for x86
architectures, including Nehalem pt-architecture [32]. On the other hand, we did not find
any validation efforts for x86 processors for other simulators.

e An uncalibrated/unvalidated simulator for a particular architecture can show significant
simulated performance differences when compared to real hardware. This is also demon-
strated in an attempt to calibrate MARSSx86 for a particular target machine [?].

e A more accurate simulator may still not be able to fit your needs. For instance, Sniper
though shows greater accuracy, is not very flexible to allow one to model new micro-
architectural features compared to Gem5. On the other hand, Gem5 and PTLsim are
more flexible and can help in studying performance of particular micro-architectural
blocks.

e For given workloads Sniper appears to be the most accurate, for other type of workloads
specially full system workloads it might not show similar accuracy as it does not have
extensive device modeling support. On the other hand GemS5 might be better suited for
such workloads as it supports full system simulation and supports vast device models.

20

e Better accuracy and high speed makes Sniper a convincing choice for many-core x86
architectures (specially modern Intel processors like). GemS5’s detailed processor mod-
eling, multi-ISA support, full system simulation support and active development com-
munity makes it a good choice to perform detailed experiments on a particular processor
sub-system, to study OS interaction with hardware or to study interaction of an x86 core
with a different ISA core. Multi2Sim can be good option for CPU-GPU architecture
simulation. PTLsim can serve as base x86 simulator to develop more diverse simulators
as done in the case of MARSSx86 simulator.

W GEMS Multi2Sim WPTLSim W Sniper

ocRrNwWREUVON® oS

153 13§ W66
aza § 582

PercentPCChange

baip_ chicken]
zip_chicken ||

Normalized Branch Mispredictions

°

b
leslie
milc |

5
5

h264ref
o ——
hmmerr“ ‘ “
B
—"\\\\
e e B L
s
= |
R e 2 o o 1
e
S &
\ ‘ :
—
=L
—
i
L

perlbench
sieng_ref
gamess
gemsFDTD
gromacs
avgERROR

aVgERROR-NO
avgERROR-NO |

INT-Spec2006 FP-Spec2006

Figure 4: Normalized branch mispredictions Figure 5: IPC change for half pipeline width

6 Conclusion

In this paper, we presented a comprehensive study of x86 architectural simulators. We have
surveyed and compared many x86 computer architecture simulators and grouped them in re-
spective categories. We performed verification tests of four modern computer architecture
simulators and measured their experimental error compared to real hardware runs. The exper-
imental error rate shown by the simulators does not necessarily mean that main cause are bugs
in the simulator. Some reasons of inaccuracies include: not modeling all microarchitecture
optimization details as real hardware, which makes it harder to validate; varying degree of
flexibility and configurability; inaccurate decoding of instructions into microoperations; and
different labeling of microoperations of simulators. The results show that Sniper has the least
absolute error. In terms of single-core simulations speed, Sniper comes out at the top with

m GEM5 Multi2Sim ®PTLSim ® Sniper

1.8
w
g 16
%1.4
> 12
g 1 1
o 038
S o | 1
2 06
g o | 1
£ 04
& o2 I II
0 i
£ v © W ¢ < + W cox"—LEcQ__c“—xLu waEmg-c>.><u_|
4] £] 0 O £ 7] *n 4] = =
EE L a3zt e? $REZSEZLE2HEY ¢ 5 es3EEL Y
S22 Y8 g EgeRESECS P §%6 - 839
o 2 T |2 S & ¥ = <= 3 ET % & W g g o
3 2z = g %a”% %
— N =
+ Kol
. w
MiBench INT-Spec2006 FP-Spec2006

Figure 6: IPC change for reduced cache size

21

80000 -

70000

60000

50000

- Gems
40000

= Sniper
30000

PTLsim

20000 = Multi2Sim

Avg. Simulation Time ()

10000

MiBench INT-Spec2006 FP-Spec2006

Figure 7: Average simulation time

shortest simulation time. However, choosing a simulator can differ depending on the main
focus of the research. For example, Sniper is targeted for multicore simulations and is the
most accurate among the studied simulators, however; it does not produce detailed perfor-
mance statistics for simulated system and not very flexible compared to the others. It can be
a best choice for some symmetric and asymmetric x86 multicore research project but not for
multi-ISA heterogeneous multicore because it only supports x86. On the other hand, gem5
produces very detailed results and can be helpful in studying only particular blocks of proces-
sor and supports multiple ISAs. In future work, we will consider digging deeper to figure more
sources of inaccuracies by performing further experimentation using certain f-benchmarks to
find more sources of inaccuracies. We will also study some other new x86 simulators.

References

[1] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Lilja, and V. S. Pai, “Challenges
in Computer Architecture Evaluation,” Computer, vol. 36, pp. 30-36, August 2003.

[2] http://www.diva-portal.se/smash/get/diva2:829764/FULLTEXTO1. pdf.

[3] B. Nikolic, Z. Radivojevic, J. Djordjevic, and V. Milutinovic, “A survey and evaluation
of simulators suitable for teaching courses in computer architecture and organization,”
IEEE Transactions on Education, vol. 52, no. 4, pp. 449-458, 2009.

[4] R. A. Uhlig and T. N. Mudge, “Trace-driven memory simulation: A survey,” ACM Com-
puting Surveys, vol. 29, no. 2, pp. 128-170, 1997.

[5] T. Nowatzki, J. Menon, C.-H. Ho, and K. Sankaralingam, “Architectural simulators con-
sidered harmful,” IEEE Micro, vol. 35, pp. 4-12, Dec. 2015.

[6] R.D.D.B.S. Keckler, “Measuring experimental error in microprocessor simulation,” in
ISCA, 2001.

[7] T.E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the Level of Abstraction
for Scalable and Accurate Parallel Multi-Core Simulation,” in ACM Int. Conf. for High
Performance Comp., Net., Storage and Analysis, pp. 1 — 12, 2011.

[8] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5 Simulator,” SIGARCH Comp.
Arch. News, vol. 39, pp. 1-7, May 2011.

22

http://www.diva-portal.se/smash/get/diva2:829764/FULLTEXT01.pdf

[9] R. Ubal, J. Sahuquillo, S. Petit, and P. Lopez, “Multi2sim: A simulation framework to
evaluate multicore-multithreaded processors,” in Int. Symp. on Comp. Arch. and High
Perf. Comp., pp. 62-68, Oct. 2007.

[10] M. T. Yourst, “PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural Sim-
ulator,” in IEEE Int. Symp. on Perf. Analysis of Systems & Software, pp. 23-34, 25-27
April, 2007.

[11] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure for Computer Sys-
tem Modeling,” Computer, vol. 35, p. 59.

[12] P. S. Magnusson, F. Larsson, A. Moestedt, B. Werner, J. Nilsson, P. Stenstrom, F. Lund-
holm, M. Karlsson, F. Dahlgren, and H. Grahn, “SimICS/Sun4m: A VIRTUAL WORK-
STATION,” in Usenix Annual Technical Conference, pp. 119-130, Jun. 1998.

[13] T. Sherwood and J. Y. Joshua, “Computer Architecture Simulation and Modeling,” IEEE
Micro, vol. 26, pp. 5-7, July/August 2006.

[14] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen,
K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s General Execution-Driven Multi-
processor Simulator (GEMS) Toolset,” SIGARCH Comp. Arch. News, vol. 33, pp. 92-99,
November 2005.

[15] http://parsa.epfl.ch/simflex/.

[16] J. H. Ahn, S. Li, O. Seongil, and N. P. Jouppi, “McSimA+: A Manycore Simulator
with Application-level+ Simulation and Detailed Microarchitecture Modeling,” in IEEE
ISPASS, pp. 74-85, April 2013.

[17] N. Hardavellas, S. Somogyi, T. F. Wenisch, R. E. Wunderlich, S. Chen, J. Kim, B. Fal-
safi, J. C. Hoe, and A. G. Nowatzyk, “Simflex: A Fast, Accurate, Flexible Full-System
Simulation Framework for Performance Evaluation of Server Architecture,” ACM SIG-
METRICS Perf. Eval. Review, vol. 31, pp. 31-34, Mar. 2004.

[18] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “SMARTS: Accelerating
Microarchitecture Simulation via Rigorous Statistical Sampling,” in ISCA, pp. 84-95,
9-11 June 2003.

[19] D. Genbrugge, S. Eyerman, and L. Eeckhout, “Interval Simulation: Raising the Level of
Abstraction in Architectural Simulation,” in IEEE Int. Symp. on High Perf. Comp. Arch.,
pp. 1-12, 9-14 Jan. 2010.

[20] L. Eeckhout, Computer Architecture Performance Evaluation Methods. Morgan & Clay-
pool Publishers, 2010.

[21] G. H. Loh, S. Subramaniam, and Y. Xie, “Zesto: A cycle-level simulator for highly
detailed microarchitecture exploration,” in [EEE ISPASS, pp. 53—-64, April 2009.

[22] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchitectural Simulation
of Thousand-Core Systems,” in Int. Symp. on Comp. Arch., vol. 41, pp. 475-486, June
2013.

23

http://parsa.epfl.ch/simflex/

[23] L. Schaelicke and M. Parker, “MI-rsim reference manual,” Dept. of CSE, Univ. of Notre
Dame, Tech. Rep. TR, pp. 02—-10, 2002.

[24] A. Patel, F. Afram, and K. Ghose, “MARSS-x86: A Qemu-Based Micro-Architectural
and Systems Simulator for x86 Multicore Processors,” in Int. QEMU Users Forum, held
in conjunction with Design Automation and Test in Europe, pp. 29-30, 18 Mar. 2011.

[25] P. Crowley and J.-L. Baer, “On the Use of Trace Sampling for Architectural Studies of
Desktop Applications,” in Workload Characterization: Methodology and Case Studies,
pp- 15-24, Dallas, TX, 1999.

[26] A. Sharma, A.-T. Nguyen, J. Torellas, M. Michael, and J. Carbajal, “Augmint: A Multi-
processor Simulation Environment for Intel x86 Architectures,” Tech. Rep. 1463, Center
for Supercomputing Research and Development, UIUC, 28 Mar. 1996.

[27] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A Simulation Frame-
work for CPU-GPU Computing,” in Int. Conf. on Parallel Arch. and Compilation Tech-
niques, pp. 335-344, 2012.

[28] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and S. K. Reinhardt,
“The M5 Simulator: Modeling Networked Systems,” IEEE Micro, vol. 26, pp. 52-60,
July/August 2006.

[29] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi, C. D. Emmons,
M. Hayenga, and N. Paver, “Sources of Error in Full-System Simulation,” in ISPASS,
pp. 13-22, 2014.

[30] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli, “Accuracy Evaluation of GEMS5 Simu-
lator System,” in Int. Workshop on Reconfigurable Communication-centric Systems-on-
Chip, pp. 1-7, 2012.

[31] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald III, N. Beckmann, C. Celio, J. Eastep,
and A. Agarwal, “Graphite: A Distributed Parallel Simulator for Multicores,” in IEEE
Int. Symp. on High Perf. Comp. Arch., pp. 1-12, Jan. 2010.

[32] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An evaluation of
high-level mechanistic core models,” ACM TACO, vol. 11, no. 3, p. 28, 2014.

[33] http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-
p p p
parallel-processing-app-sdk/.

[34] V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn, “PIN: A Binary Instrumentation
Tool for Computer Architecture Research and Education,” in Proceedings of the work-
shop on Comp.arch. education: held in conjunction with ISCA, p. 22, June 2004.

[35] S.Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi, “McPAT:
An Integrated Power, Area, and Timing Modeling Framework for Multicore and Many-
core Architectures,” in I[EEE/ACM Int. Symp. on Microarch., pp. 469—480, 12-16 Dec.
20009.

[36] http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.htmll

24

http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

[37] http://www.intel.com/content/www/us/en/architecture-and-technology
/64-ia-32-architectures-optimization-manual.html.

[38] http://www.agner.org/optimize/instruction_tables.pdf.

[39] http://www.realworldtech.com/haswell-cpu/.

[40] http://www.anandtech.com/show/6355/intels-haswell-architecture/6.
[41] http://xania.org/201602/haswell-and-ivy-btb.

[42] R. E. Kessler, E. J. McLellan, and D. A. Webb, “The Alpha 21264 Microprocessor Ar-
chitecture,” in ICCD: VLSI in Computers and Processors, pp. 90-95, 1998.

[43] V. Uzelac and A. Milenkovi¢, “Experiment Flows and Microbenchmarks for Reverse
Engineering of Branch Predictor Structures,” in IEEE ISPASS, pp. 207-217, 2009.

[44] T. Hayes, O. Palomar, O. Unsal, A. Cristal, and M. Valero, “Vector extensions for deci-
sion support dbms acceleration,” in IEEE/ACM MICRO, pp. 166-176, 2012.

[45] “SPEC CPU 2006.” https://www.spec.org/cpu2006/.

[46] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,
“Mibench: A free, commercially representative embedded benchmark suite,” in /EEE
WW, pp. 3—14, Dec. 2001.

[47] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically characterizing
large scale program behavior,” in the 10th Inter. Conf. on Architectural Support for Progr.
Languages and Oper. Sys., pp. 45-57, October 2002.

[48] “Performance Application Programming Interface.” http://icl.cs.utk.edu/papi/.
[Online; accessed 5-August-2015].

[49] https://github.com/stephand/ptlsim.

25

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.agner.org/optimize/instruction_tables.pdf
http://www.realworldtech.com/haswell-cpu/
http://www.anandtech.com/show/6355/intels-haswell-architecture/6
http://xania.org/201602/haswell-and-ivy-btb
https://www.spec.org/cpu2006/
http://icl.cs.utk.edu/papi/
https://github.com/stephand/ptlsim

	A Comparison of x86 Computer Architecture Simulators
	WMU ScholarWorks Citation

	Introduction
	Classification and Survey of Simulators
	Functional vs. Timing Simulators
	Application-Level vs. Full-System Simulators:
	Trace-Driven vs. Execution-Driven Simulators:

	Selected Simulators for Detailed Study
	Gem5
	Sniper
	Multi2Sim
	PTLsim

	Simulators Verification Methodology
	Target System (Core i7 Like)
	Configurations of Simulators for Core i7 Target
	Experimental Workloads
	Performance Measurement on Real Hardware

	Results and Analysis
	Conclusion

