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Abstract—Genomic data is growing exponentially due to next
generation sequencing technologies (NGS) and their ability to
produce massive amounts of data in a short time. NGS tech-
nologies generate big genomic data that needs to be exchanged
between different locations efficiently and reliably. The current
network transfer protocols rely on Transmission Control Protocol
(TCP) or User Datagram Protocol (UDP) protocols, ignoring
data size and type. Universal application layer protocols such
as HTTP are designed for wide variety of data types and
are not particularly efficient for genomic data. Therefore, we
present a new data-aware transfer protocol for genomic-data
that increases network throughput and reduces latency, called
Genomic Text Transfer Protocol (GTTP). In this paper, we
design and implement a new network transfer protocol for big
genomic DNA dataset that relies on the Hypertext Transfer
Protocol (HTTP). Modification to content-encoding of HTTP
has been done that would transfer big genomic DNA datasets
using machine-to-machine (M2M) and client(s)-server topologies.
Our results show that our modification to HTTP reduces the
transmitted data by 75% of original data and still be able to
regenerate the data at the client side for bioinformatics analysis.
Consequently, the transfer of data using GTTP is shown to be
much faster (about 8 times faster than HTTP) when compared
with regular HTTP.

I. INTRODUCTION

DNA molecules are made of two twisting paired strands, of-
ten referred to as a double helix. Each DNA strand is made of
four chemical units, called nucleotide bases, which comprise
the genetic ”alphabet.” The bases are adenine (A), thymine (T),
guanine (G), and cytosine (C) [1]. NGS technologies generate
a large amount of data and produce up to a petabyte of data in a
single run [2] [3]. Many experimental biologists rely on cloud
infrastructures and services to exchange, process, and analyze
those datasets. However, most of the data migration takes
place using traditional data-oblivious networking protocols.
Since the amount of data is large it generally takes significant
amount of time for the scientists to transfer the data over
networks via the internet. We assert that networking protocols
that are data-aware are essential to transfer large amount of
genomic data efficiently. Since the cost of producing genomic
data is decreasing dramatically, we expect experimental labs to
produce even larger genomic data sets than currently possible.

*Correspondence should be addressed to Fahad Saeed at
fahad.saeed@wmich.edu

As shown in table 1 [4] the capability of producing data is
increasing and the cost of producing such data is decreas-
ing rapidly. New technologies have increased Internet usage
tremendously that exceed current bandwidth use, which leads
to traffic congestion and other associated problems. There are
multiple transfer protocols in TCP/IP application layer which
work for all data types such as HTTP and File transfer protocol
(FTP) [5]. Those protocols work over a secure protocol (TCP)
that run within second (transport) layer [6] unlike UDP which
is vulnerable [7]. Despite the fact that HTTP is the best choice
for exchanging different data kinds between clients and servers
[8], all of these protocols are data-oblivious i.e. they are not
aware of the underlying data that is being transmitted. We
assert that protocols that are data-aware, especially in the field
of genomics, would be extremely useful for transference of
data with high efficiency and throughput.
The paper begins with an author’s contribution (section 2)
and a literature review in section 3. Section 4 describes a
background, and section 5 describes the proposed transfer
protocol (HTTP content-encoding modification). Section 6
discuss the experiments and results, section 7 and 8 present a
future work and conclusion respectively.

TABLE I
QUANTITATIVE ADVANCES SINCE THE HUMAN GENOME PROJECT(HGP)

HGP
Genome sequencing 1990 2003 2014

Generate cost $1 Billion $10-50 Million 3-5 thousand
Generate time 6-8 years 3-4 months 1-2 days

II. AUTHOR’S CONTRIBUTION

Genomic data processing applications continue to grow in
their scope, ambition and functionality. Therefore, we believe
creating a data-aware transfer protocol would optimize each
byte of transferred data, which increases network throughput,
saves bandwidth, time and resources. This paper proposes a
new network transfer protocol that relies on HTTP as the
base protocol and modification are done suitable for big
genomic data. Our paper assumes that the data consists of
genomic data with only four base pairs (A, T, G, C) that
need to be transferred, processed, visualized, and exchanged



Content-Decompress

Client

7

8

9

2

Header Check

Content-Decoding

1 connect

Request Response

Server

3

5

46

Header Check

Content-Compress

Content-Encoding

Fig. 1. GTTP architecture and life cycle. The life cycle consists of 9 stages like HTTP but the content-encoding is different i.e. 2-bits for each nucleotide in
GTTP while 8-bit in HTTP.

over networks. Thus, modifying the HTTP content-encoding
mechanism represents the key idea of this work since the
HTTP contains many headers [9] that offer different functions
for data transmission. Content-encoding is responsible for
managing encoding and compressing algorithms and specify-
ing the character set of transferred data. The simple form of
HTTP is request-response mode after establishing a connection
between client (browser) and server over TCP. In the proposed
work four bytes are packed into one byte by assigning two bits
for each genomic letter instead of eight bits as shown in table
2.
Our experiments suggest that the proposed encoding scheme

TABLE II
PROPOSED CODES TO USE IN GTTP CONTENT-ENCODING

Genomic symbols
Coding A T G C
HTTP 01000001 01010100 01000111 01000011
GTTP 00 01 10 11

reduces the amount of data that needs to be transferred by
three fourths (3/4) since it converts every 32 bits to 8 bits.
Moreover, proposed encoding approach decreases transfer time
incredibly because less data needs to be transferred. After
the customized encoding the encoded-data is passed into a
compression algorithm such as GZIP to compress data [8]. Our
results show that GTTP improves the network performance via
minimizing latency and maximizing throughput. The GTTP
architecture and timing sequence diagrams are presented in
figures 1 and 2 respectively. In this paper, the performance of
GTTP is evaluated in context of size and transfer time using

a TCP as a baseline for performance evaluation.

III. LITERATURE REVIEW

We are not aware of any network transfer protocols specific
for big genomic data. Several protocols are used to transfer ge-
nomic datasets such as HTTP, FTP, BitTorrent [10], GridFTP
[11], GeneTorrent [12]. However, all of the protocols are data-
oblivious and the genomic data are also transferred using same
procedures as any other data. GridFTP relies on opening two
connections one for control and another one for data itself.
GridFTP allows third party to transfer files between two clients
through separating control and data channels. However, for
using GridFTP the client has to stay active at all times. In
case the client state is lost the transferring must restart from
beginning. BitTorrent and GeneTorrent increase their through-
put by transferring data in parallel using multiple machines
distributed on different locations. GeneTorrent is file transfer
protocol which uses BitTorrent technique to transfer genomics
data, which was originally designed to support distributed
peer-to-peer (P2P) file transfer applications. In other words,
GeneTorrent distributes same file(s) on different machines
settled in different locations and configure those machines to
transfer certain part(s) of that file(s) to a requester. Although
higher throughput can be achieved by using multiple machines
for transferring data, the underlying data is still transferred
using general-purpose protocols. Therefore, there is a need to
create a data-aware network transfer protocol for the DNA
genomic data that uses minimum resources of network to
deliver data efficiently.
In this paper we modify the HTTP protocol that is specific



to genomics datasets and can transfer data using different
network topologies (one-to-one, one-to-many, and many-to-
many). Specifically we modified the content-encoding of the
HTTP protocol specific to genomic data which allows us
to transfer much more data than is possible using generic
encoding. The focus of this paper is to design and develop a
data-aware networking protocol, which is faster, efficient and
lightweight as compared to the existing protocols that are data-
oblivious. This paper assumes that the data that needs to be
transferred comprises of DNA sequences with four nucleotides
(A, T, G, C). This paper introduces a new network transfer
protocol dedicated for genomic data that relies on HTTP with
modification to encoding mechanism that increase network
performance and throughput.

IV. BACKGROUND

A. HTTP overview

The HTTP is an application layer protocol of TCP/IP model
which allows transfer of data over the Internet. HTTP works
in request-response mode by sending a request for certain
data from the client (requester) to the server (data source).
The request contains extra information such as method (GET,
PUT, POST, etc.), a uniform resource locator (URL), and
headers. A complete cycle of transportation in HTTP starts
by establishing a client-server connection using 3-way TCP
handshaking. After that, client sends a request with some
headers using supported methods. Server receives the request
and checks headers to determine the needed contents via an
accepted data type and content-encoding. The server encodes
(here our contribution), compresses, and transmits required
data over the network medium as seen in figure 1.

B. Standard HTTP Headers

Content-encoding header is one of HTTP headers that spec-
ify the range and the kind of data to be transferred, the com-
pression algorithm [9] and character set. The charset names
may be up to 40 characters taken from the printable characters
of US-ASCII [13]. Transfer-encoded indicates transferred data
size, either known (static) or unknown (dynamic). Transfer-
encoded header assigns fixed value if data is stored or chunked
value if generate on the fly. Genomic data has a limited
character size (4-alphbets) and we exploit this in our content-
encoding for greater efficiency and throughput.

C. Compress Data in Websites Using GZIP

GNU zip (GZIP) is utility relies on the DEFLATE com-
pression algorithm [14] that mix LZ77 [15] [16] and Huffman
coding [17] together. LZ77 algorithm works by replacing
repeated strings with references. Each reference has two
values, distance to last seen and string length. Distance is
limited to 32KB and length is limited to 258B. Huffman
coding is a variable-length coding that works by assigning
shorter codes for the more repeated characters. A variable-
length coding needs to know the start and end points for each
character to decode it. Huffman coding solves this problem
by creating a prefix code, where no codeword is prefix of

another one. Therefore, GZIP relies on three parameters, which
are distance, string length, and beginning and ending of each
character. Based on [18] GZIP and DEFLATE compress the
data to reach 25% of original size. GZIP has the added
advantage that most browsers around the world support it.

V. PROPOSED TRANSFER PROTOCOL

The GTTP determines location of required data to encode
and compress to transfer it over the network. The main
contribution begins when server starts transferring needed data
by encoding into 2-bits form instead of 8-bits. GTTP reads
each 4 letters and store them in only one letter to reduce
data by 75%. Generated encoded data (25% of original) is
then passed into compression algorithm (gzip) which is part
of the HTTP and reduces data by 75%. The binary encoded
form for each genomic letter can be found in table 2. For
instance, GTTP encoding will encode genomic ASCII of
AAAA into 00000000 binary form and save 24-bits to pass
8-bits into compress stage that reduce data by 75%. The total
of transmitted data would be 6.25% of original data or less
(25% from encoded stage * 25% from compress stage) as
shown in equations 1 and 2 and table 2. Let us assume we
have genomics file Gen = {a1, a2, a3, ..., an} ai ∈ {A, T, G,
C} Where n is the number of characters in the file and each
character will encoded into c(ai) as c(ai) = {A = 00, T = 01,
G = 10, C = 11} = 2 bit From that we create a new equation
as in

B(Gen) =

n∑
i=1

ailength(ci) (1)

Where B(Gen) is binary convert of Gen file, and length(ci)
represents the length of coded ai in bits. For example, suppose
we want to send a FASTA file (genomics) format that contains
100,000 characters, then we would get in:

1) Normal coding would require 100,000 * 8 = 800,000 bits.
2) Proposed encoding uses only 100,000 * 2 = 200,000 bits

with 75% saving.
Therefore, we obtain on a new equation as in

B(Gen) =
1

4

n∑
i=1

ailength(ci) (2)

Computationcost(Cc) = O

(
HCc + CEc + CCc

)
(3)

Communicationcost(Ec) = O

(
3waysc+ transferc

)
(4)

Totalcost(Tc) = (Cc) + (Ec) (5)

Equations 3-5 show the total cost for transceiver data over
HTTP and GTTP. Where HCc refers to header check cost,
CEc refers to content-encoding {here is our contribution},
CCc indicates to content-compress, 3waysc refers to 3-ways
TCP handshaking, and transfer represents network bandwidth.
It is easy to conclude minimizing content-encoding leads
to minimize data amount to be compress and then reduce
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transferred data. So that minimizing CEc significantly impacts
on Tc.
To get 800,000 * 0.25 = 200,000 bits in normal way whereas
200,000 * 0.25 = 50,000 bits in the propose approach. Conse-
quently, we will end up with sending 0.0625 of original data,
which is much more efficient than existing techniques.
GTTP protocol can be summarized in algorithm 1.

Briefly, in the first stage produces only 25% of original

Algorithm 1 Proposed GTTP content-encoding
1: procedure ENCODING
2: if inputStream.hasGenomicFileheader then
3: outputStream.write(GenomicFileheader)
4: end if
5: while !inputStream.EOF do
6: genomicChar ← inputStream.GetChar().
7: twoBits← towBitsEncoding(genomicChar).
8: oneByteStore.store(twoBits).
9: if oneByteStore.ISFull() then

10: outputStream.write(oneByteStore).
11: oneByteStore.empty().
12: end if
13: end while
14: if !oneByteStore.ISEmpty() then
15: outputStream.write(oneByteStore).
16: outputStream.write(NumOfExtraBits).
17: end if
18: end procedure

data and the second stage will produce (25%) of first stage.
Thus, GTTP will send about (6.25%) of original data that
causes a significant increase in the network performance.
It is hypothesized that the proposed study will minimize
impairment in transmitting genomic big data using GTTP

as well as improving network throughput by sending less
data. GTTP is first data-aware protocol for genomic data
that modifies the HTTP encoding mechanism to increase
data transfer rates at higher throughput using same network
bandwidth and hardware.

VI. EXPERIMENTS AND RESULTS

In order to validate our theoretical results we performed
experiments on real (table 3) as well as simulated (table
4) genomic data sets up to 50GB. For our experiments we
implemented a genomic data simulator that generates genomic
DNA datasets randomly in FASTA format and works in two
modes.

• Auto Genomic DNA Generator.
• Manual Genomic DNA Generator.

In auto-mode, the application generates genomic dataset of
specific size with random frequency of DNA nucleotides in the
data. In the case of manual mode, we are able to control the
frequency of genomic DNA symbols (A,T,G,C) in the data. In
both modes, we can specify the size of the file to be generated
(in MB or GB). For instance, 10GB-A-35 means generates
genomic DNA dataset with size of 10GB with occurrence
rate (35%) for symbol (A) and the remaining (65%) for three
other genomic symbols are randomly chosen. To validate
our experiments, we generated 18 genomic DNA datasets
between 100MB-50GB with 3 percentages (25%, 35%, and
50%) for the symbol (A). We used different rates to assure
that our strategy is independent of nucleotide frequencies in
the data. The genomic DNA generator algorithm can be seen
in algorithm 2. We used (FASTA format) as genomic files to
exchange between two machines (client-server). Experimental
results can be seen in figures 3-10. Those results came from
our implementation using visual C# language version (2013)



TABLE III
REAL GENOMIC DNA DATASETS USED FOR EXPERIMENTS

Sequence ID Organism Platform Size(MB) Renamed

gi|157704448|ref|AC 000133.1| Homo sapiens chromosome 1 ILLUMINA 9.44 1
gi|157731950|ref|AC 000135.1| Homo sapiens chromosome 3 ILLUMINA 9.73 2
gi|157718668|ref|AC 000151.1| Homo sapiens chromosome 19 ILLUMINA 12.38 3
gi|157713538|ref|AC 000149.1| Homo sapiens chromosome 17 ILLUMINA 12.67 4
gi|528476670|ref|NC 018912.2| Homo sapiens chromosome 1 ILLUMINA 12.76 5
gi|528476558|ref|NC 018928.2| Homo sapiens chromosome 17 ILLUMINA 13.85 6
gi|157734152|ref|AC 000138.1| Homo sapiens chromosome 6 ILLUMINA 15.02 7
gi|528476658|ref|NC 018914.2| Homo sapiens chromosome 3 ILLUMINA 15.61 8
gi|157704449|ref|AC 000142.1| Homo sapiens chromosome 10 ILLUMINA 16.20 9
gi|157704453|ref|AC 000144.1| Homo sapiens chromosome 12 ILLUMINA 17.96 10
gi|528476637|ref|NC 018917.2| Homo sapiens chromosome 6 ILLUMINA 17.97 11
gi|157734237|ref|AC 000155.1| Homo sapiens chromosome X ILLUMINA 18.55 12
gi|528476628|ref|NC 018918.2| Homo sapiens chromosome 7 ILLUMINA 18.56 13
gi|528476665|ref|NC 018913.2| Homo sapiens chromosome 2 ILLUMINA 18.84 14
gi|157734151|ref|AC 000137.1| Homo sapiens chromosome 5 ILLUMINA 19.13 15
gi|528476546|ref|NC 018930.2| Homo sapiens chromosome 19 ILLUMINA 22.08 16
gi|157704452|ref|AC 000143.1| Homo sapiens chromosome 11 ILLUMINA 24.13 17

gi|74230042|gb|CH471078.2| Homo sapiens 211000035833619 genomic scaffold ILLUMINA 31.97 18
gi|71517006|gb|CH471076.1| Homo sapiens 211000035835228 genomic scaffold ILLUMINA 32.26 19
gi|74230049|gb|CH471059.2| Homo sapiens 211000035844098 genomic scaffold ILLUMINA 55.86 20
gi|74273668|gb|CM000265.1| Homo sapiens chromosome 14 ILLUMINA 84.46 21
gi|74422211|gb|CM000231.2| Rattus norvegicus chromosome 1 ILLUMINA 84.97 22
gi|74230054|gb|CH471051.2| Homo sapiens 181000117649897 genomic scaffold ILLUMINA 100.39 23
gi|74273673|gb|CM000260.1| Homo sapiens chromosome 9 ILLUMINA 107.93 24
gi|74273671|gb|CM000262.1| Homo sapiens chromosome 11 ILLUMINA 127.84 25
gi|74273659|gb|CM000274.1| Homo sapiens chromosome X ILLUMINA 150.32 26

TABLE IV
GENERATED GENOMIC DNA DATASETS USING OUR GENERATOR USED IN

EXPERIMENTS

Datasets
Number of DNA Symbols in each Dataset

A C G T A% C% G% T%

100M[25] 26843545 26843645 31808042 21878898 0.25% 0.25% 0.30% 0.20%
100M[35] 37580963 30868915 13425306 25498926 0.35% 0.28% 0.13% 0.24%
100M[50] 53687091 14786579 25675457 13224952 0.50% 0.14% 0.24% 0.12%
500M[25] 134217728 149129757 149112975 104410196 0.25% 0.28% 0.28% 0.19%
500M[35] 187904819 153550318 116324344 79091072 0.35% 0.29% 0.21% 0.15%
500M[50] 268435456 93792797 100263349 74378798 0.50% 0.17% 0.19% 0.14%

1G[25] 268435456 219637924 292809252 292858680 0.25% 0.21% 0.27% 0.27%
1G[35] 375809638 221793199 254370797 221767473 0.35% 0.20% 0.24% 0.21%
1G[50] 536870912 203878326 101922932 231068630 0.50% 0.19% 0.09% 0.22%
5G[25] 1342177280 1283854849 1517198501 1225475930 0.25% 0.24% 0.28% 0.23%
5G[35] 1879048192 1143192988 1203320398 1143143958 0.35% 0.21% 0.22% 0.22%
5G[50] 2684354560 723874757 1176284699 784189984 0.50% 0.13% 0.22% 0.15%
10G[25] 2684354560 2467876125 2338051024 3247131411 0.25% 0.23% 0.22% 0.30%
10G[35] 3758096384 2594087000 2532325440 1852902248 0.35% 0.24% 0.24% 0.17%
10G[50] 5368709120 894831061 2013252324 2460615495 0.50% 0.08% 0.19% 0.23%
50G[25] 13421772800 13421823505 14380428192 12463041103 0.25% 0.25% 0.27% 0.23%
50G[35] 18790481920 10550108277 9738567871 14607897292 0.35% 0.20% 0.18% 0.27%
50G[50] 26843545600 10949303940 7064179103 8830011357 0.50% 0.20% 0.14% 0.16%

over two different environments (machine specifications and
bandwidth) as following:

• 1-26 (real) genomic DNA datasets
Windows 8.1 pro (64-bit), Intel Core i7 with clock speed
of 2.4 GHz. The system is equipped with 8GB RAM,
L2 Cache (per Core) of 256 KB and L3 Cache of 6 MB
over 37.59 Mb/s DOWNLOAD and 4.22 Mb/s UPLOAD
speeds.

• 100MB[xx]-50GB[xx] (generated using
our genomic generator) genomic DNA
datasets
Windows 8.1 Enterprise (64-bit), Intel Xeon CPU
W3565 with clock speed of 3.20GHz, 4 Cores, 8 logical
processors. The system equipped with 24GB over 76.59
Mb/s DOWNLOAD and 103 Mb/s UPLOAD speeds.

First 26 tested files came from The National Center for
Biotechnology Information advances science and health
(NCBI) [19] and remaining 100MB[xx]-50GB[xx] we gen-
erated them randomly using generator for FASTA files imple-

Algorithm 2 Genomic DNA Generator Algorithm
1: procedure GENERATE
2: FileSize← Get Genomic File Size .
3: TotalSymoblsToBeGenerated← FileSize .
4: Mode← Get Generation Mode.
5: if Mode = Manually then
6: Symbol ← Get Genomic Symbol to control its ←

frequency.
7: Ratio← Get the Genomic Symbol’s percentage .
8: SymbolGenerate(OutputFile,Symbol, ←

Ratio * FileSize).
9: TotalSymoblsToBeGenerated ←

FileSize *(1-Ratio).
10: end if
11: RandomlyInitArray(SymbolsArray). . SymbolsArray

will be filled with genomic symbols randomly, the array
size is calculated randomly too

12: while TotalSymoblsToBeGenerated > 0 do
13: ArrayIndex ← Random.GetNumber % ←

SymbolsArray.Length. . Pick an element from
SymbolsArray randomly

14: GenomicSybmol← SymbolsArray[ArrayIndex].
15: OutputFile.write(GenomicSybmol).
16: TotalSymoblsToBeGenerated ←

TotalSymoblsToBeGenerated -1 .
17: end while
18: end procedure
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Fig. 3. Transfer size of first actual 13 genomic DNA datasets (9.44MB-
18.56MB) over both HTTP and GTTP protocols with range of 37.59 Mb/s
DOWNLOAD and 4.22 Mb/s UPLOAD speeds.

mented by us as showed in algorithm 2.
Our experiments start by client requesting a specific genomic
data file from the server. The server encodes required data
into binary form using our GTTP protocol and passes it to
gzip algorithm to send zipped file to the client. When a client
receives a zipped file, it decompresses and decodes it to get
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original genomic data. We also implemented a normal HTTP
request-response to compare and assess with our GTTP results.
Experiments were performed on different genomic files to
determine the minimum time required to transfer them using
both protocols, HTTP and GTTP. Our experiments show that
GTTP encoded mechanism decreased transmitted data, which
also reduced the transfer time. Figures 3, 5, 7, and 9 show
transferring data size via both protocols HTTP and GTTP.
For example, experiment 2 transfers 10203125 bytes using
HTTP, while we only need to transfer 2508540 bytes of data
using GTTP, which is 75% decrease in the data set size.
Also, experiment 33 (1GB[25]) transfers 1073741312 bytes
(1GB) through HTTP, whereas 268435328 bytes (0.25GB)
through GTTP with saving 0.75 to send 0.25 instead. Figures
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Fig. 6. Transfer time of second actual 13 genomic DNA datasets (18.84MB-
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Fig. 7. Transfer size of first simulated 9 big genomic DNA datasets
(100MB[xx]-1GB[xx]) over both HTTP and GTTP protocols with range of
76.59 Mb/s DOWNLOAD and 103 Mb/s UPLOAD speeds.

4, 6, 8, and 10 show transferring time for genomic files
using both protocols HTTP and GTTP. For instance, HTTP
needed 1095 ms to transfer 10203125 bytes from experiment
2, whereas GTTP spent only 151 ms to transfer the same
file with 7.27 times faster. Also, HTTP spent 1880973 ms
to transfer 10737413120 bytes (10GB[25]) from experiment
39, while GTTP spent only 208439 ms to transfer the same
file, which is 9.02 times faster.
Our proposed strategy and the experimental results show that
using our data-aware strategy significant reduction in size
and increase in throughput can be achieved when transferring
genomic data sets. The results are also summarized in table 5.
To our knowledge this is first data-aware protocol for genomic
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Fig. 8. Transfer time of first simulated 9 big genomic DNA datasets
(100MB[xx]-1GB[xx]) over both HTTP and GTTP protocols with range of
76.59 Mb/s DOWNLOAD and 103 Mb/s UPLOAD speeds.
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Fig. 9. Transfer size of second simulated 9 big genomic DNA datasets
(5GB[xx]-50GB[xx]) over both HTTP and GTTP protocols with range of
76.59 Mb/s DOWNLOAD and 103 Mb/s UPLOAD speeds.

data.

VII. FUTURE WORK

The proposed data-aware protocol is applied on a point-
to-point network topology (single server-client). Future ex-
periments will include using multiple servers to increase
throughputs either using cluster nodes or BitTorrent technique.
Currently, GTTP is designed for transfer of fixed file size.
Future works include developing an online protocol that could
transfer data from the NGS machines in real-time using our
data-aware encoding strategies. Elimination of headers that are
not used by our protocol will also be useful.
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Fig. 10. Transfer time of second simulated 9 big genomic DNA datasets
(5GB[xx]-50GB[xx]) over both HTTP and GTTP protocols with range of
76.59 Mb/s DOWNLOAD and 103 Mb/s UPLOAD speeds.

TABLE V
OPTIMIZATION OBTAINED BY GTTP CONTENT-ENCODING FOR THE

TRANSFERRED SIZE AND SPEED UP TIME AGAINST HTTP

Datasets size time Datasets size time

1 0.25x 6.79x 23 0.25x 8.42x
2 0.25x 7.27x 24 0.25x 9.01x
3 0.25x 6.77x 25 0.25x 7.64x
4 0.25x 8.50x 26 0.25x 10.24x
5 0.25x 9.16x 100MB[25] 0.25x 7.23x
6 0.25x 7.87x 100MB[35] 0.25x 6.06x
7 0.25x 9.66x 100MB[50] 0.25x 5.73x
8 0.25x 8.40x 500MB[25] 0.25x 9.19x
9 0.25x 7.94x 500MB[35] 0.25x 8.47x
10 0.25x 9.23x 500MB[50] 0.25x 9.14x
11 0.25x 10.34x 1GB[25] 0.25x 8.91x
12 0.25x 8.16x 1GB[35] 0.25x 9.08x
13 0.25x 9.80x 1GB[50] 0.25x 6.53x
14 0.25x 10.65x 5GB[25] 0.25x 10.05x
15 0.25x 8.20x 5GB[35] 0.25x 9.46x
16 0.25x 9.38x 5GB[50] 0.25x 8.80x
17 0.25x 8.29x 10GB[25] 0.25x 9.02x
18 0.25x 10.54x 10GB[35] 0.25x 9.70x
19 0.25x 6.53x 10GB[50] 0.25x 7.64x
20 0.25x 8.59x 50GB[25] 0.25x 10.24x
21 0.25x 8.78x 50GB[35] 0.25x 8.94x
22 0.25x 9.50x 50GB[50] 0.25x 9.66x

VIII. CONCLUSION

We presented a new strategy for network transfer protocol
by designing and implementing a novel data-aware protocol
for genomic sequences, called GTTP. Our results showed that
the data transfer time between the 2 machines using our
approach is much faster (about 8 times faster than HTTP



especially for big files) and more network throughput is
achieved when compared to a regular HTTP. Such data-aware
protocols will also be useful for other Big Data domains.
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