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Abstract

Modern proteomics studies utilize high-throughput mass spectrometers which can pro-

duce data at an astonishing rate. These big Mass Spectrometry (MS) datasets can easily

reach peta-scale level creating storage and analytic problems for large-scale systems biology

studies. Each spectrum consists of thousands of peaks which have to be processed to deduce

the peptide. However, only a small percentage of peaks in a spectrum are useful for peptide

deduction as most of the peaks are either noise or not useful for a given spectrum. This

redundant processing of non-useful peaks is a bottleneck for streaming high-throughput

processing of big MS data. One way to reduce the amount of computation required in

a high-throughput environment is to eliminate non-useful peaks. Existing noise removing

algorithms are limited in their data-reduction capability and are compute intensive making

them unsuitable for big data and high-throughput environments. In this paper we introduce

a novel low-complexity technique based on classification, quantization and sampling of MS

peaks

We present a novel data-reductive strategy for analysis of Big MS data. Our algorithm,

called MS-REDUCE, is capable of eliminating noisy peaks as well as peaks that do not

contribute to peptide deduction before any peptide deduction is attempted. Our experiments

have shown up to 100x speed up over existing state of the art noise elimination algorithms

while maintaining comparable high quality matches. Using our approach we were able to

process a million spectra in just under an hour on a moderate server.

The developed tool and strategy will be available to wider proteomics and parallel com-

puting community at the authors webpages after the paper is published.

1 Introduction

Mass Spectrometry is an analytical chemistry technique which is used for determining the type

and amount of constituents of a mixture. Mass Spectrometry has found its application in the

field of biomedical research. Among all the applications of Mass Spectrometry in biology and

medicine [1] protein identification and quantization has proved to be the most widely used.

Mass Spectrometry based proteomics [2] is very frequently used for profiling of exosomes [3],
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toxicological screening [4], evolutionary biology [5] and numerous other applications [6]. Wide

variety of computational techniques such as estimation of false positive rates [7], protein quan-

tification from large datasets [8], phosphopeptide filtering [9], phosphorylation site assignments

[10], spectrum-to-peptide matching [11], [12] and denovo peptide identification [13] are required

to make this MS data useful.

With the introduction of modern mass spectrometers such as Thermo Orbitrap, thousands

of spectra can be generated in just a single run of experiment [14]. An MS2 spectrum consists

of mass-to-charge ratio and associated intensities for each peak depicting their abundance in

the sample under consideration. On an average total number of peaks for one spectrum may

range up to 4000 [6] and for 60k human proteins the number of distinct peaks that need to be

compared is close to 240 million (assuming that there is no redundancy). This number is just

for a single human proteome and with projects like Peptide Atlas the number of distinct human

observations are close to 35, 000 which makes the total number of peaks equal to 8.4 × 1012.

Note that this number does not include other species, distinct experimental conditions or novel

post-translational modifications which exponentially increases the number of peaks that needs

to be processed.

The current computational analysis techniques have not been designed for such massive data

sets. The current peptide identification techniques (e.g. Sequest, Mascot) [11], [12] assume that

each peak that is encountered is useful in making peptide deductions. This leads to processing

much more number of peaks than are necessary to make a peptide deduction [6], [15] [16], [17] .

The processing of peaks that are noise and/or do not contribute in deduction of peptides makes

the processing of these large data sets time consuming. We assert that in order to process big MS

data we should be able to eliminate noisy peaks and the peaks that do not contribute to peptide

deduction before an in-depth analysis of the spectra. This will clearly result in faster processing

of the MS/MS spectra and will save overhead for peptide searches by reducing the number

of peaks to be analyzed. Only processing the peaks that are useful rather than performing

intensive per-peak-computations will result in tremendous time and space-advantages. To the

best of authors knowledge there is no algorithm available which can perform the noise removal

function without performing an in-depth analysis on spectra. Further, we are not aware of any

procedure that can eliminate non-noisy and yet non-essential peaks that do not contribute to

peptide deduction.

In this paper we introduce a novel algorithm, called MS-REDUCE, for ultrafast reduction

of MS/MS data in pre-processing stage. The proposed algorithm is a low-complexity procedure

based on random sampling, approximate classification and quantization making it highly scal-

able with increasing number of spectra. Further, user defined reduction ratio makes it suitable

for a variety and sizes of MS data sets. Our experiments show peptide deduction accuracy of

up to 95% with reduction in the data size of up to 70%. Our results also indicate that we are

able to process 1,000,000 spectra in under 1 hour on a sequential machine making it highly

efficient for big data sets. Comparable reduction tools took over 3 days for the same data set
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on a similar machine.

2 Literature Review

Spectral pre-processing has become an essential part of the MS based proteomics in recent

years. Most of the spectral pre-processing techniques have a common objective i.e. to improve

the reliability of the peptide to spectral matches assigned by a peptide search engine such as

Sequest or Mascot. Some of the pre-processing methods that allow better identification of

peptides include spectral clustering [15], noise reduction in spectra [17], quality assessment of

spectra [18] and precursor charge determination [19]. The prime objective of these techniques is

to reduce the noise level in spectra which leads to better identification of peptide using standard

search engines. It is also shown by several studies that reduction in data can also speedup the

process of peptide identification in peptide search engines [17]. Below we will emphasize on the

application of the existing work for reduction of Big Mass Spectrometry data. Note that we

are not aware of any method that allows elimination of peaks that are not noise and may not

contribute to peptide identification; with or without significant processing of the data.

In the literature several noise reducing or spectral denoising algorithms are available. These

algorithms identify the noisy peaks in a spectrum, depending upon the approach each algorithm

uses these peaks are then either removed or their intensity is decreased to a certain value. Mu-

jezinovic et al. [16] presented the MS Cleaner software for removing the unwanted peaks from

the spectra to facilitate the peptide search engines. Their technique provided an added advan-

tage of data reduction. They made use of numerical analysis and signal detection approach to

form four different algorithms. Each algorithm looked for multiply charged ions, isotopic clus-

ters of peaks, periodic background noise and detection of non-interpretable spectra. However,

these methods are deemed to be too compute-intensive to be used as a big data pre-processing

application especially for high-throughput put environments e.g. the authors report compute

time per spectrum of 0.25s while treating 53944 spectra. Their results show a total reduction

of 15% to 39% in raw data. The same authors presented an upgrade of MS Cleaner software,

a version 2.0 in 2010 [20]. The improved software employs a new algorithm for screening the

interpretable spectra. It detects the peptide ladder sequence using a fixed number of most

intense peaks from each spectrum. With this upgrade they claim to have reduced the data to

upto 80%. Time per spectrum for newer version has been stated about 0.02s to 0.08 seconds

per spectrum depending upon the dataset used.

The method presented in [17] consists of two steps. In first; a peak intensity adjustment takes

place based upon scores obtained from five different features. In the later stage a morphological

reconstruction filter is employed to remove the noisy peaks based upon their adjusted intensity

in the previous stage. This algorithm is able to reduce up to 69% of data but is extremely

compute intensive to be used for high-throughput or parallel processing. Our experiments show

a computational time of around 3 days for 1,000,000 spectra. Two other similar algorithms can
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be found in [21] and [22]. Like previously discussed algorithms they also suffer from huge

number of per-peak calculations. The implementation of [22] takes approximately 1.7s per

spectrum and will take hours to process a million spectra.

A quality assessment technique for spectra has been presented in [23]. The authors estimate

the probability of a spectrum being a high quality one by treating this problem as a constraint

optimization problem. Their results show that a total of 63% to 74% of low quality spectra were

removed while losing 9% to 10% of high quality spectra in the process. In [24] a new feature

has been introduced for assessment of spectral quality which is based on cumulative intensity

normalization. The results show a removal of about 60% spectra with a loss of losing 2% of

high quality spectra. Some other spectral quality assessment algorithms have been presented

in [25], [18], [26], [27]. All of these algorithms take different approaches towards assessing the

spectra. However, most of the approaches are compute intensive which makes them impractical

and ineffective for evaluation of big data sets.

3 Proposed MS-REDUCE Algorithm

In this paper we present a highly efficient dimensionality reduction technique which allows

massive reduction in number of peaks per spectra and in turn decrease the overall amount of data

that needs to be processed. Our work builds upon a random sampling strategy that we presented

earlier [6]. The proposed algorithm, apart from being more accurate than previous strategies,

has very low-computational complexity which makes it ideal for big data computations. Our

classification and sampling strategy allows us to determine useful peaks before any peptide

deduction calculations. Also in each stage calculations are performed on only a handful of peaks

from each spectrum regardless of the size of individual spectrum. This makes processing for

each spectrum a constant time operation resulting in linear-time algorithm. Here we formally

introduce the problem. Notations will be introduced and defined wherever they occur first

throughout the paper.

Definition 1 : Let there be N number of spectra S = {s1, s2, . . . , sN}. If length of spectrum

si is li then each spectrum can be represented as a series of peaks i.e. si = {p1, p2, p3, . . . , pl}.
Where p is a peak in a spectrum.

Definition 2 : If s′i denotes a spectrum after being processed by MS-REDUCE and the size

of the processed spectrum be l′i then R is the reduction factor such that R = (l′i/li) ∗ 100 for

each spectrum.

Each spectrum s in S needs to be reduced to obtain s ′ such that both s and s ′ correspond

to the same peptide with a high confidence value. Note that there may be cases where s and s ′

do not correspond to a same peptide, in that case if the peptide match for s ′ has a confidence

value better than the threshold value to qualify for a high confidence hit then that counts as a
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correct hit. For example a raw spectrum s might correspond wrongly to a peptide A but after

being reduced using MS-REDUCE its noise level may get lowered and the reduced spectrum

s ′ may correspond correctly to another peptide B or vice versa. The correctness of match is

determined using quality assessment method discussed in Section 5.3.

MS-REDUCE exploits the fact that about 90% of peaks in a spectrum are noisy or are not

required for peptide deduction [20]. The sampling technique is dependent on the level of noise

and intensity variation in a given spectrum. The algorithm comprises of a three stage pipeline.

Each spectrum streams throught it while discarding the peaks that cannot pass through the last

stage. The three stages of the pipeline are i) Spectral Classification ii) Peak Quantization iii)

Weighted Random Sampling. Fig. 1 shows the proposed three stage pipeline for MS-REDUCE

algorithm.

The spectral classification module is the first stage in the pipeline of MS-REDUCE. The

main objective of this module is to determine an estimate of a spectrums noise level. To this

end, we present a novel metric, called Spectral Intensity Spread that allows us to bring about

an approximate classification of spectra according to their noise level. The Intensity Spread of

a spectrum roughly estimates how diverse the intensities of different peaks are. The module

makes this plain assumption that larger the value for Intensity Spread, more noisy the spectrum

is [28].

Once a spectrum has been assigned a class based on its estimated noise level, it is sent

forward to the Spectral Quantization module. Here the spectrum is quantized into several

levels along the intensity axis. The number of quantization levels depends on the class of

spectra that was assigned in previous stage. A noisier spectrum is quantized into larger number

of quanta. This module distributes the peaks into different groups based upon their intensity

levels thus making it much simpler and faster to access peaks based on their intensity levels.

The quantized spectra is sent into the last module, where possible signal peaks are retained

using random peak sampling on the quanta. The number of peaks to be retained are calculated

based on the user defined reduction factor R. Weighted sampling rates are calculated for each

quantum such that the sum of peaks gathered from each level equals to the percentage of

peaks required. Here sampling rate is defined as the percentage of peaks to be retained in one

quantization level. We give details of each module below.

3.1 Spectral Classification

Most pre-processing algorithms process the spectra without any regards to the quality of spectra

i.e. a spectra with better signal to noise ratio is processed in the same way a spectra with poor

S/N ratio. This results in a wastage of resources as a lot of redundant work is performed for the

spectra already having a higher S/N ratio. This module takes care of this issue by classifying

spectra on the basis of approximate noise content in them.
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Figure 1: Figure showing the pipeline for MS-REDUCE algorithm.

3.1.1 Intensity Spread

The classification is performed by comparing each spectrums Intensity Spread with the Average

Intensity Spread of the dataset. More formally:

Definition 3 : Let N be the total number of spectra in set S then S = {s1, s2, s3, . . . , sn}
here si represents one spectrum. Then the intensity spread for spectrum si can be calculated

as:

Vi = Max10Avg(si)−Min10Avg(si) (1)

where Vi is the Intensity spread of the spectrum i and Max10Avg(si) and Min10Avg(si) present

the average of ten most and least intense peaks of the spectrum respectively.

Similarly Average Intensity Spread for a dataset can be calculated as :

Vavg =

∑N
i=1(Max10Avg(si)−Min10Avg(si)

N
(2)

where:

Vavg = Average Intensity Spread

N = number of spectra in set S

For each incoming spectrum the Intensity Spread value is calculated. As seen in Eq. (2),

this calculation requires only twenty peaks from each spectrum regardless of its size.
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Figure 2: Figure depicts a visual representation of classification stage. The shaded regions
present the Spectral Spread (V ), larger the shaded area larger the value of V and noisier the
corresponding spectrum is considered.

3.1.2 Classification

Spectra are classified in four different classes depending upon how much above or below the Vavg

their value of V lies. Details regarding the choice of number of classes can be found in Section

4.1 of supplementary materials. Classes are named in increasing numerical order; higher classes

contain spectra with larger value of V and vice versa. Threshold values for V to be assigned

to a particular class are determined based on each dataset’s Vavg. More formally the threshold

values for each class can be defined as follows:

Definition 4 : Let x denote a class then for x = {1, 2, 3}

Sx = {si|(x− 1) ∗ 1

4
∗ Vavg ≤ Vi ≤ x ∗ 1

4
∗ Vavg} (3)

and for x = {4} :

Sx = {si|
3

4
∗ Vavg ≤ Vi} (4)

where: Sx = Class x containing spectra assigned to it.

It can be seen in Fig. 2 how spectrum 1 and 2 have very different range of intensities yet

they have similar spectra spread hence have been assigned the same class. Algorithm 1 in

supplementary materials presents a pseudo code for the classification module.

3.2 Spectral Quantization

In our proposed algorithm quantization of spectra takes place along the intensity axis. The

intensity of a peak is simply compared with the upper and lower level of a quanta, if it lies
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within the limit, the peak is assigned to that quantum. This process provides us with different

bins, each containing peaks of intensities within a specific range. The advantage of quantization

is exploited in the following step, where useful peaks are just picked out from their quanta

and added to the final reduced spectrum. Thus preventing the need of performing per peak

computations.

3.2.1 Quantization Levels

Number of quantization levels is chosen such that those spectra having wide Intensity Spread are

quantized into larger number of levels while those having a narrow spread are processed using

smaller number of quantization levels. Our in house experiments suggest that a spectrum with a

smaller intensity spread yields no improvement if processed using larger number of quantization

levels while increasing the processing time. In order to save time and space resources we use

the smallest possible number of quantization levels necessary to perform the computation.

Similarly the spectra with wider Intensity Spread needs more number of quantization levels to

achieve similar accuracy. Classes 1, 2, 3 and 4 are assigned 5, 7, 9 and 11 levels of quantization

respectively. These values have been chosen based upon an empirical study, details of which can

be found in Section 4.2 of supplementary materials. The quantization process can be formally

defined as:

Definition 5 : Let nx be the maximum number of quantization levels for class x then we can

have n1=5, n2=7, n3=9 and n4=11. qij represents the quantum j of spectrum i. Then following

equations are calculated for each spectrum si, for each quantum j from 1 till nx.

for j < nx

qij = {p|(j − 1)

nx
∗M10A(si) ≤ ‖p‖ ≤

j

nx
∗M10A(si)} (5)

for j = nx

qij = {p|(j − 1)

nx
∗M10A(si) ≤ ‖p‖} (6)

where:

j = quantization level under consideration

qij=jth quantization level of ithspectrum

nx = number of quantization levels for class x

‖p‖ = intensity of peak p

M10A(si) = Average Intensity of 10 most intense peaks of si

Eqs. (5) and (6) are computed for each value of nx ranging from 1 till nx. The quantum

number assigned to each peak represents certain characteristics e.g. quantum 1 is the lowest and

it contains the least intense peaks, similarly the quantum number 11 would be the highest for

class 4 spectra and would contain the most intense peaks. The quanta are equally spaced rather

than being of irregular spread because about 90% of the data is redundant so the probability

8



Figure 3: Figure represents quantization of a class I spectrum with five different quantization
levels. The red colored peaks are the most intense and belong to the fifth quantum while the
light blue colored are the least intense and have been binned into the lowest quantum.

that any outlier (if any) will affect the quality of the hits is extremely small. Algorithm 2 in

supplementary materials shows a pseudo code for this module.

3.3 Weighted Random Sampling

Rather than dealing with each peak, this step deals with quanta of peaks. Here this assumption

is made that each peak within one quantization level has an equal probability of being a useful

peak. Also because of the presence of more high intensity peaks, probability of finding a useful

peak is greater in the higher quanta [29]. In order to determine the number of peaks to be

sampled from one quantum, sampling weights are determined as explained below.

3.3.1 Weights Calculation

First an estimate of number of peaks to be retained is calculated based upon the user defined

reduction factor. Then a recursive method estimates the sampling weights for each quantum

such that they satisfy the following equation:

nx∑
i=1

(
xi

100
∗ qi) = p

′
(7)

where:

xi = sampling rate for quantization level i

qi = ith quantization level
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Figure 4: Figure presents a visual representation of the random sampling module. In this figure
the top most quantum is assigned a weight of 100% while the fourth quantum is assigned a
weight of 50%. Peaks from all other quanta are discarded owing to their zero sampling rate.

‖qi‖ = number of peaks at ith quantization level

p
′

= number of peaks required to satisfy the reduction factor

Peaks are taken starting from the highest quantization level and continuing with lower levels

until the required number of peaks is reached. If there are more peaks at a given quantization

level than are needed to reach the required number of peaks, the sufficient peaks are chosen at

random from that quantization level. Formally this can be presented by Eqs. (8) through (10):

case 1 : ‖qnx‖ = p
′

xi =

100, if i = nx.

0, otherwise.
(8)

case 2 : ‖qnx‖ > p
′

xi =


‖qi‖−(‖qi‖−p

′

‖qi‖ ), if i = nx.

0, otherwise.
(9)

case 3 : Default

xi =

100, if p
′ − ‖qj‖ > ‖qj+1‖.

p
′−

∑nx
j=i+1 ‖qj‖
‖qi‖ , otherwise.

(10)

Fig. 4 shows an example of weighted random sampling being performed on a class I spec-

trum. In the right half of the figure a reduced spectrum can be observed, it can be noticed that

among the two peaks from fourth quantum only one appears in the final spectrum because of

50% sampling rate. This one peak is chosen totally at random.
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4 Experimental Datasets and Method

We made use of thirteen data sets to carry out performance and speed evaluation of MS-

REDUCE algorithm. The details of the data sets have been provided in Supplementary Mate-

rials.

5 Performance Evaluation

We carried out performance evaluation of MS-REDUCE in two phases. In first part we evaluate

the time complexity and the speed up achieved in comparison to some of the existing algorithms.

In the second part we perform the quality assessment experiments. This tests the quality of

the peptide matches obtained after performing data reduction using MS-REDUCE. We also

compare the quality assessment results of MS-REDUCE with the existing algorithms as well as

investigate the improvement achieved above the previous random sampling approach [6].

5.1 Time Complexity

Time complexity of the algorithm can be formulated by observing the working of each module

closely and summing up the individual complexities of the modules. Theoretical time complexity

for MS-REDUCE comes out to be O(N). The step by step calculations to obtain this result

can be found in supplementary materials.

In order to verify this linear time complexity over datasets varying from conventionally sized

to the modern big data sets we replicated UPS2 dataset several times to obtain data sets of

desired sizes. We formed ten datasets with each subsequent set having 100,000 more spectra.

The MS-REDUCE has been designed keeping in mind the challenges of big datasets from

proteomics so it makes sense to use such huge datasets to perform time related experiments.

For all the experiments discussed from here onwards we made use of a Linux based server with

24 CPUs, each operating at 1200 MHz.

Fig. 5 shows the time taken by MS-REDUCE to process each datasets explained above.

Currently the MS-REDUCE has been developed only as a single threaded program. To compen-

sate for background tasks and other time delays we performed the experiment on each dataset

about ten times and averaged the time taken. For these experiments we set the user defined

reduction factor to 50 and 90.

It can be observed from Fig. 5 that MS-REDUCE has a linear time complexity with respect

to the number of spectra processed which is in agreement with our theoretical computational

complexity. It can further be observed that a varying reduction factor does not significantly

affect the running time efficiency of the algorithm. A reduction factor as described before

determines the amount of data to be retained by the algorithm. It can be observed that the

algorithm was able to retain its linear trend while being run with different values of Reduction

Factor.
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Figure 5: Figure showing a graph between processing time of MS-REDUCE and the number of
spectra processed at reduction factors of 10, 30, 60 and 90. The horizontal axis represents the
number of spectra while the vertical axis represents time in milliseconds.

5.2 Speed Comparison

We compared the processing speed of MS-REDUCE with the denoising algorithm presented

in [17]. In order to compare the speed we define two metrics here. One is the conventional

speed up calculation method while the other is spectra per second or SPS. Following equations

describe both these metrics:

S = Tother/Treduce (11)

Where S is the speed up obtained, Tother is the processing time of other algorithm under

consideration while Treduce is the time taken by MS-REDUCE.

SPS = Spectra/Time (12)

Eq. (11) presents the conventional way of calculating speed up and the Eq. (12) presents

spectra per second metric. Larger number of spectra per seconds would mean a faster processing

rate for the algorithm. Here we will refer the algorithm in [17] as De-Noising Algorithm.

5.2.1 Comparison with Denoising Algorithm

Both the algorithms were operated in similar environments for this study. As it was explained

before, De-Noising algorithm makes use of four different scoring techniques to perform peak

adjustments and then undesirable peaks are filtered out using a morphological filter.

Table 1 shows the results from timing experiments performed for comparing the time taken
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Spectra Tdenoise(msec) Treduce(msec) Speed Up
9.61×104 2.35×107 2.25×105 103
1.92×105 4.41×107 4.50 ×105 96
2.89×105 6.49×107 6.78×105 94
3.85×105 8.60×107 9.03×105 94
4.81×105 1.09×108 1.12×106 95
5.78×105 1.31×108 1.75×106 83
6.74×105 1.55×108 2.0×106 86
7.71×105 1.76×108 2.05×106 94
8.67×105 1.97×108 2.29×106 94
9.63×105 2.20×108 2.47×106 98
1.06×106 2.43×108 2.81×106 99

Table 1: Table showing comparison between run runtimes of the De-Noising Algorithm denoted
by Tdenoise and MS-REDUCE denoted by Treduce.

by the De-Noising Algorithm and MS-REDUCE. The columns two and three show the process-

ing time for algorithms in milliseconds. The De-Noising algorithm takes almost three days to

process 1 million spectra. Poor scalability of such algorithms with increasing size of the data

sets renders them unsuitable for high-throughput environments. The table shows MS-REDUCE

takes around 47 minutes to process a million spectra thus achieving an average speed up of 100.

5.3 Quality Assessment

In this section we investigate the quality of the peptide matches obtained from spectra that have

been processed by MS-REDUCE. First we present the quality improvements achieved over the

previous technique and then we compare the results with the two similar algorithms described

before.

Fig. 6 presents procedure for assessing the quality of peptide matches obtained after the

application of MS-REDUCE algorithm. The raw spectra are fed into the MS-REDUCE or

any other algorithm under observation. The processed spectra are then sent to the Tide [30]

search engine of Crux toolkit [31]. Tide provides with the peptide spectral matches (PSMs)

and decoy peptide matches based on a decoy database. These two datasets are then sent to

the post processing tool known as the percolator [32]. The percolator computes a statistical

confidence value based upon the PSMs and the decoy database matches which serve as a false

discovery rate (FDR) and assigns it to each PSM. We calculated the number of PSMs for same

FDR threshold obtained by using the datasets which had been treated by the test algorithm.

Using this information we were able to calculate a percentage of high quality PSMs obtained

by the processed spectra with respect to the number of high quality PSMs obtained using the

raw spectra. This experiment was repeated for FDR values of 1%, 3%, 5%, 7% and 9%. We

are taking FDR of 5% as a nominal value, so in the following experiments because of limited

space we will only be presenting the results for FDR of 5%.
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Figure 6: Figure shows flow of quality assessment experiments. The Test Algorithm shown in
top right corner is replaced by the algorithm under observation i.e. MS-REDUCE, MSCleaner
2.0 and Denoising Algorithm

5.3.1 Comparison with Random Sampling of peaks

We performed the above explained experiment on all the thirteen datasets which have been

explained in the supplementary materials and plotted the results for each dataset. The results

are for FDR value of 5% but the results are extendible to other FDR values. Figs. 7 and 8

present the results for quality assessment experiments performed on MS-REDUCE and and the

random peak sampling method [6] using three HCD datasets and the UPS2 dataset. Results

for remaining datasets can be found in supplementary materials (Figs. 8, 9 and 10).

The graphs have been plotted by varying the value of reduction factor for MS-REDUCE

and Sampling rate of random peak sampling approach from 10% to 90%. The 100% presents

the untreated raw dataset. MS-REDUCE presents significant improvement over the random

sampling approach. For some datasets percentage matches are nearing 90% with a data reduc-

tion rate of only 20%. The results are also shown to be consistent for a given fragmentation

type (HCD or CID) with MS-REDUCE doing a bit better for HCD due to better S/N ratio for

HCD data sets [33].

5.3.2 Comparison with conventional algorithms

We also compared the quality of peptide matches for the data processed by MS-REDUCE

with that processed by conventional noise reducing algorithms. The approach taken for these

experiments was also the same as presented in Fig. 6. Fig. 9 shows quality assessment plots of

De-Noising Algorithm, MSCleaner 2.0 and performance of MS-REDUCE at reduction factors
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of 30, 60 and 90. MS-REDUCE out performs MSCleaner 2.0 for all datasets except UPS2 while

operating at nearly all the values of reduction factors. It out performs De-Noising Algorithm

while operating around a reduction factor of 60. Note that other both algorithms are compute-

intensive and take much longer time as compared to MS-REDUCE to produce comparable

results as shown in Fig. 9.

6 Conclusion

Analysis of high-throughput mass spectrometry (MS) based proteomics data is an essential

task in systems biology. Data from multiple experiments can scale from million to a billion

spectra and this data volume can easily reach tera- to peta-byte level. The Big Data from

modern mass spectrometers creates scaling problems for existing software designed for much

smaller datasets. Although these algorithms are useful for interpretation of simple spectra, the

search match routine becomes computationally intractable for complex peptides. The big data

volume that one gets from these high-throughput machines is enormous and low scalability

of conventional tools cannot keep up with the rate of data generation. Hence dimensionality

reduction techniques that can reduce the number of peaks that needs to be processed are

essential for fast and efficient processing of MS data for system- wide studies.

In this paper we presented a novel dimensionality reduction technique, called MS-REDUCE,
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for pre-processing big Mass Spectrometry data sets. To our knowledge, the proposed strategy

is first attempt at data reduction of MS data for high-throughput environments. Our low-

computational cost strategy is based on classification, quantization and sampling of MS data

peaks. An approximate classification of spectra followed by a quantization step results in

binning of peaks. Each quantum of a spectrum contains peaks within a particular intensity

range. Then a random sampling step is performed on these bins to obtain the peaks which

form the final reduced spectrum. Our strategy is linear in time complexity with increasing

number of spectra which is confirmed by our experiments. We also show that MS-REDUCE

can process up to a million spectra in 47 minutes as compared to the De-Noising Algorithm,

which processes the same number of spectra in about 3 days. We performed rigorous testing

of the algorithm using experimental data sets and compared its performance with two of the

existing algorithms. The implemented software will be available for free academic use at the

authors webpages.
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1 Proteomics Pipeline

A usual proteomics pipeline is show in Fig. 1.

2 Pseudo Codes for Algorithms

Algorithm 1 is the pseudo code for the spectral classification module of the MS-REDUCE
algorithm.

Algorithm 1 Pseudo code for Classification module

Data: a file containing MS/MS spectra
Result: MS/MS spectra with class labels
while not the end of input spectra file do

V avg ← Average Spectral Spread

V ← Spectral Spread of a Spectrum S
if V in range of threshold of class I then

Assign Spectrum S to class I
if V in range of threshold of class II then

Assign Spectrum S to class II
if V in range of threshold of class III then

Assign Spectrum S to class III
if V in range of threshold of class IV then

Assign Spectrum S to class IV
end

Algorithm 2 is the pseudo code for the spectral quantization module of the MS-REDUCE
algorithm.
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Figure 1: Figure showing a modern day proteomics pipeline. Denoising/Data Reduction Algo-
rithm pre-process the data being sent to the peptide search engines.

Algorithm 2 Pseudo code for Classification module

Data: an MS/MS spectrum
Result: quantized MS/MS spectrum
while not the end of spectrum do

P ← Intensity of Peak

C ← Class of Spectrum

T ← Calculate Thresholds for Quanta using C
if P lies within range first n-1 quanta, using T then

bin into the suitable quantum
else

bin into the top most quantum
end

end

3 Time Complexity Calculations for MS-REDUCE

Time complexity of the algorithm can be formulated by observing the working of each mod-
ule closely and summing up the individual complexities of the modules. Time Complexity
calculations are as follows:

1) In the first module Intensity Spread of each incoming spectrum is calculated. As described
before (see section Proposed MS-REDUCE Algorithm) this step involves two processes. First
being the sorting of spectrum with respect to peak intensities and in the second step average
intensity of max and min peaks is calculated. The first step is a O(lilog(li)) process where
li is the length of spectrum i. The second step is a constant time processes and has a time
complexity of O(1). This process is repeated for each spectrum, if we assume total number of

2



spectra to be N where N >> li thus resultant time complexity of this step would be linear
with respect to number of spectra N i.e. O(N).

2) Second step of the first module classifies each spectrum into classes based on the estimated
noise level. This process involves comparison of Average Intensity Spread associated with each
spectrum with a pre calculated value. The comparison step is a constant time process. When
repeated for N spectra it results into a linear time complexity with respect to the number of
spectra. Hence time complexity for this module is also O(N).

3) The quantization module involves comparison of each peak with pre calculated values.
This is a constant time process which is repeated four times for each peak in a worst case
scenario. This results in a time complexity of O(4 ∗ l). This module works on each of the
incoming spectrum which gives a resultant time complexity of O(4∗ l ∗N). as N is much larger
than other values so it can be presented as O(N).

4) The last module performs a random sampling of peaks based upon user defined sampling
rate R. Random selection of the peaks is a linear process with respect to the number of total
peaks to be sampled. Number of peaks to be sampled is given by s ∗ l. Considering the process
for N spectra the total time complexity is be given by O(s ∗ l ∗N). As N is the dominant term
so the time complexity can be represented as O(N) i.e. linear with respect to the number of
spectra.

Result can be summed upto O(4 ∗N ∗ L) which is approximately equivalent toO(N) since
N is much larger than L.

4 Choice of Classes and Quanta

The number of classes chosen for the Classification stage and the number of Quantization
levels chosen for each class are based upon an empirical study. Following is a discussion of the
experimentations performed before choosing the numbers mentioned in the paper.

4.1 Number of Classes

The choice of number of classes is governed by two factors i.e. quality of spectral hits and
processing time. To assess these two factors we performed several experiments by varying the
number of classes. The results of which have been depicted in Fig. 2 and Fig. 3.

It can be ovserved that quality is not affected much by the number of classes. However
theoretically (refer to Section 3.3 of manuscript) very small number of classes will lead to a
smaller number of quanta which in turn will increase the probability of choosing a noisy peak.
While larger number of classes require more processing time hence we chose four classes to keep
a balance between quality and speed.

=‘
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Figure 2: Results of the study performed to judge the
quality of spectra hits by varying the number of classes.
These results are for UPS2 dataset
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4.2 Number of Quanta

A wider intensity spread requires larger number of quanta in order to reduce the probability
of choosing a noisy peak on random. Thoeretically; higher the number of quanta better will
be the quality but our empirical study shows that for each class a saturation limit is reached,
beyond which an increased number of quanta does not significanlty improve quality any further
while increasing the compute time.

To perform this analysis we first classified the spectra among chosen number of classes i.e.
4 and then performed quality assessment experiments on each class by varying the number of
quanta.

Fig. 4 through Fig. 7 show the quality plots for Classes One through Four with number of
quanta where each class saturation limit is reached. Our choice of 5, 7, 9 and 11 quanta is based
upon this empirical study and to maintain uniformity among number of quanta for subsequent
classes.
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=‘

5



figure

20 40 60 80 100

70

80

90

100

Reduction Factor

P
er

ce
n
ta

ge
M

a
tc

h

Quality comparison for varying number of quanta

Six Quanta
Seven Quanta
Eight Quanta

Figure 5: Quality analysis of Class Two spectra from
UPS2 dataset by varying the number of quanta. Af-
ter Six quanta the class two spectra show no further
improvement in quality.
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5 Experimental Data

The following section explains the methods using which the experimental data was generated.
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5.1 Data for different Fragmentations and Molarity

In order to perform rigorous testing of MS-REDUCE algorithm we chose very diverse set of
datasets. To test it for different fragmentation strategies i.e. HCD and CID we opted for
the dataset used in the testing of CAMRS algorithm [4]. A piece of freshly isolated rat liver
was minced and sonicated in guanidine-HCL(6M, 3ml). A peptide standard corresponding
to the C-terminal sequence of the water channel Aquaporin-2 (AQP2) from rat, (Biotin-
LCCEPDTDWEEREVRRRQS*VELHS*PQSLPRGSKA) phosphorylated at both S256 and
S261 were added to 500 g aliquots of liver sample (prior to trypsinization) with distinct amounts
of 0.2 nmol, 20 pmol and 2 pmol. For simplicity and further reference we named them DS1,
DS2 and DS3 respectively. The same procedure as above was repeated for another AQP2 pep-
tide standard (Biotin-LCCEPDTDWEEREVRRRQSVELHSPQS*LPRGSKA) phosphorylated
at S264, with amounts of 0.2 nmol, 20 pmol and 2 pmol. For simplicity and further reference
these were named DS4, DS5 and DS6 respectively. Peptide samples were desalted, and then
were suspended in 0.1perc formic acid prior to analysis by Mass Spectrometry using HCD as
well as CID fragmentation. Through out this paper name of each dataset will be preceded by
the type of fragmentation for example HCD-DS5 means DS5 with HCD fragmentation. The
raw data obtained from Mass Spectrometry was then searched using the Tide [1] search engine
of Crux framework [3]. Tide is an open source re-implementation of the Sequest algorithm [2].
The spectra were searched using the rat proteome database obtained from (http://uniprot.org).
Before running the search an index database was generated with following static modification:
carbamidomethyl (C: +57.021 Da) and dynamic modifications: Phospho (S,T,Y: +79.966),
Deamidation (N,Q: +0.984), Oxidation (M: +15.995). The peptide spectral matches obtained
after performing the search on the raw data were used as the gold standard for the quality
assessment experiments (see Quality Assessment section). The final raw MS data will contain
the synthetic peptides as well as peptides from the rat liver.

5.2 UPS2 dataset from Sigma Aldrich

In order to test the MS-REDUCE on wide variety of data we also made use of Proteomics
Dynamic Range Standard Set (UPS2) from Sigma-Aldrich. This set can be used to standardize
and evaluate LC-MS/MS analysis and also the electrophoretic analysis. UPS2 contains a mix-
ture of 48 individual human sequence recombinant proteins, each of which has been selected to
limit heterogeneous posttranslational modifications. The protein standard is formulated from
6 mixtures of 8 proteins to present a dynamic range of 5 orders of magnitude, ranging from
50pmol to 500amol. Briefly, 10.6 ug total protein (one vial) was resuspended in 50 ul of denatu-
ration solution (8M urea, 50 mM Tris-HCl, 75 mM NaCl) followed by reduction and alkylation.
The protein samples were then digested with the enzyme Trypsin at a 1:20 (w/w) ratio for 16
hours at 37C. Peptides obtained were then desalted (PepClean C-18 Spin Columns, Thermo
Scientific) and eluted in 0.1perc formic acid. Sample amounts of 10, 50, and 200 ng of digested
peptides were analyzed on an LTQ Orbitrap Velos (Thermo Scientific), named as UPS-10,
UPS-50 and UPS-200. Spectra obtained were searched using the TIDE peptide search engine
of CRUX framework in the data Rat Refseq Database (National Center for Biotechnology In-
formation, March 3, 2010, 30,734 entries). This database also contains the sequences for all
human proteins included in the standard set UPS2, as well as a list of common contaminating
proteins. For the search process configurations used were: Precursor ion tolerance at 25 ppm,
fragment ion tolerance of 1.0 Da. Three missed trypsin cleavage sites were allowed. For the
creation of indexed database Carbamidomethylation of cysteine (+57.021 Da) was added as a
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Figure 8: Quality assessment plots for CID-DS1, CID-DS2 and CID-DS3 datasets. The red
colored plots represents the performance of MS-REDUCE while the blue colored plots represent
the Random Sampled data. Three datasets have been differentiated using different symbols.
The x-axis contains Reduction Factor i.e. amount of data retained. And the y-axis shows the
percentage of accurate peptide hits obtained from the processed data.

static modification where as variable modifications included oxidation of methionine (+15.995
Da) and deamidation of asparagine and glutamine (+0.984 Da). Known contaminant ions were
excluded.

6 Remaining Results for Quality Assessment Experiments

The Figs. 8, 9 and 10 present the results for quality assessment experiments for the remaining
datasets :
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Figure 9: Quality assessment plots for CID-DS4, CID-DS5 and CID-DS6 datasets. The red
colored plots represents the performance of MS-REDUCE while the blue colored plots represent
the Random Sampled data. Three datasets have been differentiated using different symbols.
The x-axis contains Reduction Factor i.e. amount of data retained. And the y-axis shows the
percentage of accurate peptide hits obtained from the processed data.
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Figure 10: Quality assessment plots for HCD-DS4, HCD-DS5 and HCD-DS6 datasets. The red
colored plots represent the performance of MS-REDUCE while the blue colored plots represent
the Random Sampled data. Three datasets have been differentiated using different symbols.
The x-axis contains Reduction Factor i.e. amount of data retained. And the y-axis shows the
percentage of accurate peptide hits obtained from the processed data.
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