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1 Introduction 

1.1 Research Problem 

Walking and biking are forms of transportation that offer basic mobility for all people. In totality, 

walking and bicycling improve quality of life in many ways such as increasing physical activity 

and active lifestyles which consequently result into health benefits. In communities where walking 

and biking is encouraged, the number of motor vehicle trips, which are often the cause of air 

pollution and congestion, are reduced. Walking and biking can also boost local economy by 

inviting retail merchant to invest in places near homes and working places. In USA, trips that are 

done by walking and bicycling rose from 9.5 percent in 2001 to 11.9 percent in 2009 (National 

Household Travel Survey, 2009).   

On the other hand, bicyclists and pedestrians are 2.3 and 1.5 times, respectively, more likely be 

killed in a crash for each trip as compared to vehicle occupants (Beck et al, 2007).  Therefore, 

transportation agencies have several prevailing concerns with respect to pedestrian and bicycle 

safety.  Resource constraints make it imperative that such agencies develop a framework to identify 

locations that are at highest risk for pedestrian- and bicyclist-involved accidents. Most importantly, 

the ability to not only develop, but also to evaluate effectiveness of appropriate countermeasures, 

is crucial for ensuring safety of pedestrians and bicyclists. Against this backdrop, safety 

performance functions (SPFs) provide a promising approach for quantifying the risk for pedestrian 

accidents at specific intersections or road segments.   

Currently in Michigan, there is no robust SPF reflecting statewide non-motorized safety. The 

difficulty has been mostly lack of necessary data (especially pedestrian bicyclist counts) for model 

development. Another set of data which is necessary, but very often difficult to obtain, is the 

motorized traffic volume, especially for collectors and local roads, where pedestrians and 

bicyclists are commonly found. These data are essential part of the model as they explain most of 

variation of the non-motorized crashes occurring at different locations. Therefore a careful 

sampling plan which capture the randomness of non-motorized crashes and inclusion of reliable 

proxy exposure measure for pedestrians and bicyclists will help developing the robust statewide 

SPF for bicyclist and pedestrians. These SPFs can be modified over time as more planning agencies 

within the state are starting to collect pedestrian and bicycle volumes for planning purposes in their 

jurisdiction.  
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1.2 Objective of the project 

The main purpose of this project was to develop a methodology for estimating statewide safety 

performance functions for pedestrians and bicyclists at intersection. A case study for this research 

was all urban collector and arterial roads intersections in Michigan. Specifically, the methodology 

addressed the following: 

 Proper sampling procedure to establish an unbiased sample size for model development 

 Developing proxy measures of pedestrian and bicyclist exposure using data that are readily 

available at statewide level.  

 Assessment of SPF performance using cross-validation technique. 

 

1.3 Project Scope 

The SPFs developed focused on urban intersections in Michigan, specifically for collector and 

arterial roads. Methodology formulated in this research can be used to develop non-motorized 

SPFs at county level, census tract, census block group and at corridor level, for instance at the road 

mid-blocks areas. Transferability of the model to other state is possible provided that proper local 

calibration factors are applied.  
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2 Literature Review 

2.1 Overview  

This section presents review of past studies that have focused on different aspects of non-

motorized safety as listed below: 

 Non-motorized performance measures that use crash data  

 Different exposure measures used in past studies to account for level of risk that the 

pedestrians and bicyclists experience as they interact with other road users. 

 The use of structural equation modelling aspects in modeling and explaining factors that 

are associated with pedestrian and bicycle crashes.  

2.2 Non-motorized performance measures 

Performance measures for non-motorized safety refers to the factors that can be used to quantify 

the level of risk that the pedestrians and bicyclists are experiencing for a given roadway 

environment. Over the past years, different performance measures developed have been relatively 

simple to complicated ones. Names have been assigned to those performance measures depending 

on the type of data and the methodology that was used. With regards to data, performance measures 

have been mainly developed using crash data, behavioral data and safety ratings. This review 

mainly focused on studies that have used crash data for developing safety performance measures.  

 

Level of risk experienced by pedestrians and bicyclists on given road infrastructure have been 

often quantified using non-motorized crash data. Crash data are observed incidents and therefore 

represent the actual facts. However they are rare and random events. As a consequence, it has been 

a challenge to develop robust modelling approaches to compute the observed variation of non-

motorized crashes at a given location.  

 

Using non-motorized crash data, safety performance measures have been developed using two 

main approaches, as summarized in Table 1: 

 Quantifying non-motorized risk by normalizing the crash data with the exposure measure 

such as pedestrian volume, distance walked and time spent walking. 

 Developing models which relate the number of non-motorized crashes with the roadways, 

demographic, social economic and non-motorized facility characteristics. Performance 
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measures developed using this approach are commonly referred to as Safety Performance 

functions (SPFs).
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Table 1: Summary of literatures that have used crash data to develop non-motorized safety performance measures              

Author  Modelling approach  Model outcome 

Schneider et al., 2010 

  

Pedestrian at signalized intersections 

 

Use of crash rates to quantify 

risk(crashes per 10 million 

pedestrians crossing) 

 

Negative binomial regression to 

identify geometric characteristics that 

have significant relationship with 

pedestrian crashes. 

Factors associated with increase in pedestrian crashes: 

 Vehicle volume 

 Number of pedestrian crossing  

 Number of right turn movement by vehicles 

 Non-residential driveways within 50 feet 

 Commercial properties within 0.1miles 

 Percentage of young residents (age <18 years) within 0.25miles 

Factors associated with decrease in pedestrian crashes: 

 Raised medians  

Nordback, K., Marshall, W. E., 

& Janson, B. N., 2014 

 

Bicyclist SPFs for intersections 

 

Negative binomial model using 

generalized linear model with log link 

function. 

Factors increasing pedestrian crashes: 

 Bicyclist volume (Annual average daily bicyclist, AADB) 

 Traffic volume (AADT) 

Intersections with more than 200 entering cyclists had fewer collision per 

cyclist. This demonstrated safety in number concept. 

Minikel, 2012 Relative collision rate for bicycle 

facility running parallel to the 

arterials.  

 

Collision rates on bicycle boulevards are 2-8 times lower than on parallel, 

adjacent arterial routes. Factors associated with diminished bicyclist safety 

include: 

 Vehicle speed and volume 

 Presence of heavy vehicle  

Oh et al., 2013 Poisson regression model-pedestrian 

intersection SPF. 

 

Negative Binomial regression-

bicyclist intersection SPF. 

 

Increase in pedestrian crashes at intersection were significantly related with:  

 Decrease in total number of lanes for minor roads  

 Increase in average daily traffic approaching to the intersection  

 Increase in number of bars  

 Decrease in number of people with graduate degree within ¼ mile  

Increase in bicycle crashes at intersection were significantly related with 

increase in: 

 Number of right turn lane on the major approach   

 Bicycle volume 

 Average daily traffic volume 

 Presence of bus stop 

 Business land use 
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Author  Modelling approach  Model outcome 

Oh et al., 2013 Negative Binomial method was used 

for both pedestrian and bicycle 

midblock SPFs 

 

Increase in pedestrian crashes at the midblock was significantly associated 

with 

 Increase in number of access points  

 Increase in Average Daily Traffic  

 Increase in pedestrian volume  

 Decrease in speed limit 

 Increase in length of the segment 

Pedestrian crashes in the midblock was significantly associated with: 

 Increase in bicycle volume 

 Decrease in speed limit 

 Increase in number of bus stops 

 Increased number  bike commuters  

 Presence of bike lane(decreases) 

Turner et al, 2011 Generalized Linear model-Poisson or 

Negative Binomial  

 

SPFs were developed by crash type 

Increase in crashes was significantly related with the following variables:  

 Increase in bicycle and vehicle volumes  

 Decrease in total intersection approach width  

 Absence of advanced stop boxes 

 Increase in intersection depth  

 Decrease in bicycle lane width, curbside lane width  

 Increase in midblock length 

Jonsson, 2013 Generalized Linear model- Negative 

binomial distribution 

Non-motorized SPFs for midblock 

SPF for bike-bike, pedestrian alone 

using hospital data. 

Variables that were significantly increasing crashes include 

 Segment length  

 Traffic volume 

 Different mix of land use 

 

McArthur, A., Savolainen, P., 

& Gates, T. (2014). 
 SPF for child pedestrian at 

school zone(1mile radius) 

 Negative binomial 

distribution 

 Census data; average family size, children ages 5 to 14(increase 

crashes), average parents per household (decrease crashes), median 

family income $1000 (decrease crashes), population density 

(increase crashes) and proportion of non-whites households 

(decrease crashes) 

 Number of students enrolled (increase crashes) 

 School located on local roadway (increase crashes) 
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2.3 Exposure measures for pedestrians and bicyclists 

The Federal Highway Administration (FHWA) and the National Highway Traffic Safety 

Administration (NHTSA) have identified bicyclist and pedestrian exposure among the top four 

most important research area (Hedlund. J, 2000). Planners and safety advocates have been using 

crash data alone in assigning risks that are associated with pedestrians and bicyclists at different 

facilities. This has led to misallocation of effort to improve the non-motorized safety. Better 

comparison of risk across different facilities and models of transportation could be obtained using 

non-motorized crashes normalized by either of the following 

 Population density 

 Number of pedestrians using the facility 

 Time spent walking  

 Distance walked 

 Number of trips 

 Other surrogate measures such as number of potential collision etc. 

In essence, there is no single measure that is most suitable to represent pedestrian exposure to 

traffic unless there was continuous monitoring of pedestrian movement at all time. The choice of 

exposure is dependent upon the intended purpose of the study. For example distance travelled by 

a pedestrian will be preferred if analyzing the effectiveness of the sidewalks (Greene-Roesel et al, 

2010). Different exposure measures are discussed in the section below as they have been used in 

different studies.  

 

2.3.1 Population data 

Population data is mostly represented as population density in a particular geographic unit. It is 

used with the underlying assumption that crashes between a pedestrian/bicyclist and motor 

vehicles will likely to occur as number of residents, drivers, bicyclist and pedestrians increase in a 

given area. It has been widely used as it is readily available from the census data. However, it is 

recommended not to use this exposure measure, unless it is impractical to obtain other granular 

measure of exposure, because it is a crude measure of pedestrian exposure and only provide coarse 

picture of non-motorized safety. Malino (2000) commented on the insensitivity of population 

density to location specific factors such as changes in travel behaviors of bicyclist and pedestrian. 

Population exposure also assumes the pedestrian exposure is uniform for a given population and 



  

13 

 

does not account for the number of people who actually walk or bike. Distance and time a 

pedestrian or bicyclist is exposed to traffic are not taken into consideration. 

 

2.3.2 Pedestrian/bicyclist volume 

Pedestrian/bicyclist volume is defined as the number of pedestrian/bicyclist observed in a roadway 

at a given location in a specified duration. This exposure measure can be incorporated in 

pedestrian/bicyclist safety studies as hourly count, or it can be annualized to account for the time 

of the day, day of the week, and month of the year. It can be collected using different ways such 

as manual count, video data and through other sophisticated technologies such as the use of active 

and passive infrared, inductive loops, pneumatic tubes and computer visioning. The choice of 

which method to use for counting will depend on the purpose of the count, required level of 

accuracy and overall cost.   

Statistical models have been developed which relate pedestrian and bicycle volume with geometric 

characteristics of the road, facility information, socio-economic and demographic factors. Raford 

et al., (2003) develop a space syntax pedestrian volume modeling tool for the Oakland City in 

California. The method utilizes data such as connectivity of street grids, population density 

employment density and pedestrian count at some key locations within the pedestrian grid 

network. The space syntax software correlate and extrapolate the aforementioned data to estimate 

pedestrian volume at street level. Nordback et al., (2014) used negative binomial volume model to 

estimate bicycle hourly count. Independent variables were hourly temperature, parameter to 

account for working and nonworking days in a year, solar radiation and school days parameter. 

Available continuous count were used to calibrate the model. Oh et al (2013) developed a model 

to estimate pedestrian and bicyclist volume as the function of land use, demographic and socio-

economic characteristics. Based on the nature of sample data collected, log-linear model and 

negative binomial model were used for developing pedestrian and bicyclist volume models, 

respectively. Qin and Ivan (2001) used generalized linear regression model to predict pedestrian 

volume in rural areas as the function of population density, site characteristics, demographic 

characteristics, land use characteristics and road characteristics. In addition to pedestrian and 

bicycle volumes, the interaction of pedestrian volume and traffic volume at intersection has been 

used in evaluating the risk associated with variety of pedestrian characteristics and behaviors 

(Davis et al, 1987 and Tobey at al, 1983). The shortcoming of this exposure metric is that it does 
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not account for the time of separation and how close a motorist is from a pedestrian. A situation 

might happen when a pedestrian was crossing the road at different time when motorist passes and 

pedestrian might be walking far away from the moving traffic thus reducing the chances of the 

crash to occur (Molino et al, 2000). 

 

2.3.3 Number of trips 

The number of trips made, as an exposure metric, can be obtained from survey data such as the 

National Household Travel Survey (NHTS), U.S. Census Journey to Work and America 

Community Survey. It is mostly used to assess the changes in pedestrian behavior across different 

jurisdictions. Using number of trips as an exposure measure offers flexibility in analysis since trips 

can be analyzed at individual, household or location level. However, since most of the information 

is from survey, the reliability of the data is usually questioned as most of the pedestrian and 

bicyclist trips are underreported in surveys (Schwartz, 2000). 

 

2.3.4 Distance travelled 

This is the distance that the pedestrian walks while exposed to vehicular traffic. It is mostly 

expressed as million-person-miles travelled when analyzed at individual level (Chu, 2003). It can 

be obtained in aggregated format by summing the pedestrian distances travelled in a given defined 

area to get total pedestrian miles travelled. Molino et al (2012) estimated annual pedestrian and 

bicyclist exposure for Washington DC defined as 100million pedestrian/bicyclist miles travelled. 

Distances that pedestrians and bicyclists travel on the shared facility with motor vehicles and 15 

minutes raw count data were used for development of this exposure metric.  

Using distance travelled to account for non-motorized exposure also has its own setbacks. 

Pedestrians are not exposed to traffic every time when walking. Aggregating distance travelled by 

pedestrian/bicyclist in a certain geographical unit might overestimate the actual level of exposure 

that the pedestrians are experiencing. It does not account for the difference in speed among 

individuals who are walking, which could moderate the individual risk level to traffic. One mile 

of walking represents greater effect than one mile of a person riding on a passenger car because of 

difference in travelling speed between these two travelling modes (Chu, 2003). 
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2.3.5 Time spent walking 

This is defined as the time taken by the pedestrian when walking while exposed to vehicular traffic. 

This exposure metric has been used in comparing pedestrian risks across different transportation 

modes and in different social groups based on age and sex (Greene-Roesel et al, 2010). Other 

useful application can be on quantifying the risk that pedestrians are facing while crossing the 

intersection. Knoblauch et al (1996) suggest that time spent crossing at intersection can be a better 

representation of exposure than a volume count because it takes into account pedestrian age, 

gender, weather condition, compliance with signal control and signal length. However, it is 

difficult to obtain this granular data when dealing with large geographical area. Always cost 

constrain is an impediment for collecting this exposure metric.  

 

2.4 The Use of Structural Equation Modeling in Traffic Safety Studies 

Structural Equation Modeling (SEM) is a multivariate modeling technique that has been applied 

for creating and testing the causal models. It is a combination of confirmatory factor analysis, path 

analysis and regression analysis. In most cases, SEM is used as confirmatory tool that test the 

theory the researcher has hypothesized during model construction. For this reason, the researcher 

has to establish the causality between different variables involved in the model. SEM will then test 

how well the sample used by the researcher support the model specification. Schumacker et al 

(2004) provide a good introduction to structural equation modeling for beginners. Step by step 

procedures are elaborated on how to develop the structural equation model including model 

specification and identification, model fit, model estimation, testing and assessing the goodness of 

fit. It is not the aim of this research to explore in details such steps. Rather the goal is to leverage 

the benefits of SEM in developing tools for assessing non-motorized safety. 

SEM has been widely used due to its ability to model complex phenomena, incorporate latent 

variables in the model and advance in statistical software with minimal coding efforts. Latent 

construct can be estimated in the model as a function of measurable variables.  

Endogeneity effect among variables is explicitly accounted for in the process of explaining 

complex phenomenon between variables using SEM. Endogeneity exists when there is a loop of 

causality between variables. In traffic safety studies that involve modeling of crash frequency, 

often times researchers have been getting results which can be easily judged as counterintuitive.  

A good example was the one provided by Jonsson (2005) whereby road with low speed limit were 
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highly associated with high non-motorized crashes as compared to high speed limit roads. This 

can be due to high pedestrian levels in those low speed roads, which in turn increases the conflicts 

between vehicular movements and pedestrians. Thus more chances for collision to occur 

 

2.5 Examples of Structural Equation Modeling Applications in Traffic Safety 

2.5.1 Modeling of Crashes 

Wang, K., & Qin, X. (2014) used SEM to model severity of single vehicle crashes. Force and 

speed were introduced as the latent variables which in turn were hypothesized to influence the 

crash severity. Manifest variables that were used to measure force that include the type of object 

that was hit by the vehicle. Speed as latent construct was estimated using roadway, weather and 

lighting condition, gender and age. By using this model technique, it was possible to explain some 

of the relationship that could not be revealed using normal ordinal models. Inclement weather, 

poor lighting condition, and poor pavement surface condition were found to reduce speed (latent 

variable), which in turn reduced the injury severity.  

Initially, SEM was designed for continuous variables whereby the estimation was done in a sample 

variance-covariance matrix. Therefore it was impossible at that time to incorporate other data 

format such as nominal, ordinal and intervals. Overtime SEM has been modified to handle the 

aforementioned data format but introducing a link function which defines the type of data used. 

Application of this type of modification can be found in the study done by Xie et al (2016). They 

estimated the effect of secondary collision on injury severity levels using SEM. Injury severity is 

ordinal in nature and therefore had to be specified in the model. SEM results were compared with 

those from ordered probit model. The ordered probit model tends to overestimate the safety effect 

of confounding variables by lumping their direct and indirect effects. By using SEM, it was 

possible to separate direct and indirect effects of confounding variables that were related directly 

to crash severity and occurrences of secondary collisions respectively. 

 

2.5.2 Modeling of Road User Travelling Behavior and Mobility 

A study conducted by Kim (2003) used SEM to determine factors that were significantly 

associated with elderly mobility. Urban form was used as the latent construct estimated by retail 

employment density, population density, age, gender and household size. Likewise, mobility was 

measured by non-home activity time, travel time and travel distance of elderly persons. SEM was 
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used to unveil how urban form affect mobility of elder drivers. With the use of SEM age and 

gender showed to have significant effect on older driver mobility. Whereby older women had less 

mobility than older men and it’s more likely for a person to refrain his or her desire for travelling 

as the age increases. 

Ranaiefar et al (2016) estimated bicycle ridership using SEM as a function of different 

demographic and environmental characteristics surrounding the bike sharing stations. By using 

SEM, it was possible to forecast origin-destination bike share ridership. 
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3 Site selection 

3.1 Sampling Strategy and Preliminary Data Collection 

Many sampling strategies can be used in selecting a sample size from a population. They range 

from crude sampling procedures such as random sampling which doesn’t take into account the 

sampling error, to more sophisticated sampling techniques such as stratified random sampling.  

For this study, a sampling strategy designed to generate a true representation of statewide 

conditions was designed and implemented. Details of the factors that were used to obtain the 

sample size and selection technique were adopted from the procedure developed by Aggarwal 

(1988). Figure 1 below summarize the sampling strategy process. 

 

Figure 1 Sampling Strategy Process 

In order to develop sample size and sampling technique, available resources in terms of cost, time, 

manpower and equipment have to be evaluated. This should go concurrently with the proper 

understanding of the type of study that will be carried out to achieve the project objectives. Upon 

consideration of all factors, stratified random sampling was selected as sampling technique for the 

study. The following section explains how stratified random sampling technique was utilized, 

selection of sample size and finally descriptive statistics of crashes that occurred at urban 

intersection are discussed.  

The choice of urban intersections as the target group was driven by data availability such as 

average annual daily traffic (AADT) and high number of non-motorized crashes in urban areas as 

compared to rural areas. Also there was no statewide non-motorized safety performance function 
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developed for urban intersections in Michigan.  The urban intersections that were included involve 

those joining arterial and/or collector road segments. ArcGIS was used as the tool for identifying 

all urban intersections in Michigan so that the sample could be drawn from it.  Sampling procedure, 

using ArcGIS is summarized below in a concise manner. 

 

3.1.1 Identifying Collector and Arterial Road Intersections 

Michigan road shapefile, which provide the statewide road network was used in ArcGIS to identify 

all road intersection points. As mentioned earlier, only intersections connecting arterial and 

collector road segments were selected. Therefore based on Road Functional Classification (NFC), 

three groups of intersections were identified which were Arterial-Arterial intersections, Arterial-

Collector intersections and Collector-Collector intersections. The Figure 2 below provide an 

example of these intersection types as identified in Michigan road shapefile. Over eleven 

thousands urban intersections were identified.  
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Figure 2 Distribution of Urban Intersections in Michigan 
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3.1.2 Subdividing the Target Population into Subgroup 

Stratified random sampling require the target population to be subdivided into groups each having 

similar characteristics. To achieve this goal, parameters that were available at statewide level were 

used as shown in Table 2 below. 

 

Table 2  List of Parameters and Subcategories.  

Parameters  Subcategory  

Road function Intersection connecting arterial roads 

Intersection connecting arterial road and collector road 

Intersection connecting collector roads. 

Intersection type Three leg intersection 

Four leg intersection 

Urban population  5000-49,999 

50,000-199,9999 

200,000-more 

Non-motorized 

crashes: Pedestrians 

and Bicyclists 

crashes(2010-2014) 

No crash observed 

1-5 crashes  

6-10 crashes 

11-16 crashes 

 

Based on subcategory for each parameter, seventy-two groups were created and each of the eleven 

thousand intersections was placed to its corresponding group. 

 

3.1.3 Sample Size Computation 

The decision on the total sample size was based on the available resources such as time frame and 

manpower for data collection and cost associated with obtaining the data. In order to determine 

the number of intersections each of strata will contribute to the total sample size, a weighting factor 

was used.  Formula to computing weighting factor and sample size for each of strata is shown 

below. 
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𝑤𝑖 =
𝑁𝑖

𝑁𝑡𝑜𝑡

 

𝑆𝑖 = 𝑤𝑖 ∗ 𝑁 

Whereby  

𝑤𝑖 = Weighted factor for intersections in group 𝑖 

𝑁𝑖 = Number of intersections in group 𝑖 

𝑁𝑡𝑜𝑡 = Total number of intersections for all groups 

𝑆𝑖 = Number of intersections drawn from group 𝑖 

𝑁 = Required total sample size from all groups 

 

Table 3 to Table 5 provide the output of the sampling process using stratified random sampling. 

Weighted factors were computed based on all urban intersections in Michigan joining collector 

and arterial roads.  
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Table 3 Sampling Process for Arterial-Arterial Intersections 

Intersection 

 type no/Wi 

Urban  

population no/Wi no 

Non-

motorized 

Crashes No. 

Weight 

(Wi) 

Sample  

size (N) 

Sample 

size(Si) 

 Wi xN 

3 leg 

  

5000-49,999 

 
1 0 228 0.0203 500 11 

262 2 1-5 34 0.0030 500 2 

0.023 3 6-10 0 0.0000 500 0 

 
4 11-16 0 0.0000 500 0 

50,000-

199,9999 

 
1 0 285 0.0254 500 13 

1890 337 2 1-5 51 0.0045 500 3 

0.169 0.030 3 6-10 1 0.0001 500 1 

  

 
4 11-16 0 0.0000 500 0 

200,000-more 

 
1 0 1072 0.0956 500 48 

1291 2 1-5 219 0.0195 500 10 

0.115 3 6-10 0 0.0000 500 0 

 
4 11-16 0 0.0000 500 0 

4 leg 

  

5000-49,999 

 
1 0 293 0.0261 500 14 

448 2 1-5 149 0.0133 500 7 

0.0400 3 6-10 6 0.0005 500 1 

 
4 11-16 0 0.0000 500 0 

50,000-

199,9999 

 
1 0 401 0.0358 500 18 

3273 702 2 1-5 293 0.0261 500 14 

0.292 0.063 3 6-10 8 0.0007 500 1 

  

 
4 11-16 0 0.0000 500 0 

200,000-more 

 
1 0 1034 0.0922 500 47 

2123 2 1-5 1019 0.0909 500 46 

0.189 3 6-10 64 0.0057 500 3 

 
4 11-16 6 0.0005 500 1 
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Table 4 Sampling Process for Arterial-Collector Intersection. 

Intersection 

 type no/Wi 

Urban  

population no/Wi no 

Non-

motorized 

Crashes No. 

Weight 

(Wi) 

Sample  

size (N) 

Sample 

size(Si) 

 Wi xN 

3 leg 

  

5000-

49,999 

 
1 0 430 0.0415 500 21 

504 2 1-5 74 0.0071 500 4 

0.049 3 6-10 0 0.0000 500 0 

 
4 11-16 0 0.0000 500 0 

50,000-

199,9999 

 
1 0 286 0.0276 500 14 

1740 340 2 1-5 54 0.0052 500 3 

0.168 0.033 3 6-10 0 0.0000 500 0 

  

 
4 11-16 0 0.0000 500 0 

200,000-

more 

 
1 0 648 0.0625 500 32 

896 2 1-5 239 0.0231 500 12 

0.086 3 6-10 9 0.0009 500 1 

 
4 11-16 0 0.0000 500 0 

4 leg 

  

5000-

49,999 

 
1 0 516 0.0498 500 25 

685 2 1-5 169 0.0163 500 9 

0.0661 3 6-10 0 0.0000 500 0 

 
4 11-16 0 0.0000 500 0 

50,000-

199,9999 

 
1 0 365 0.0352 500 18 

2576 522 2 1-5 155 0.0150 500 8 

0.249 0.0503 3 6-10 2 0.0002 500 1 

  

 
4 11-16 0 0.0000 500 0 

200,000-

more 

 
1 0 840 0.0810 500 41 

1369 2 1-5 509 0.0491 500 25 

0.132 3 6-10 18 0.0017 500 1 

  4 11-16 2 0.0002 500 1 
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Table 5 Sampling Process for Collector-Collector Intersections 

Intersection 

 type no/Wi 

Urban  

population no/Wi no 

Non-

motorized 

Crashes No. 

Weight 

(Wi) 

Sample  

size (N) 

Sample 

size(Si) 

 Wi xN 

3 leg 

  

5000-49,999 

 
1 0 229 0.0221 500 12 

240 2 1-5 11 0.0011 500 1 

0.0232 3 6-10 0 0.0000 500 0 

 
4 11-16 0 0.0000 500 0 

50,000-

199,9999 

 
1 0 99 0.0096 500 5 

764 111 2 1-5 12 0.0012 500 1 

0.074 0.0107 3 6-10 0 0.0000 500 0 

  

 
4 11-16 0 0.0000 500 0 

200,000-

more 

 
1 0 370 0.0357 500 18 

413 2 1-5 43 0.0041 500 3 

0.040 3 6-10 0 0.0000 500 0 

 
4 11-16 0 0.0000 500 0 

4 leg 

  

5000-49,999 

 
1 0 333 0.0321 500 17 

382 2 1-5 49 0.0047 500 3 

0.037 3 6-10 0 0.0000 500 0 

 
4 11-16 0 0.0000 500 0 

50,000-

199,9999 

 
1 0 132 0.0127 500 7 

970 149 2 1-5 17 0.0016 500 1 

0.094 0.014 3 6-10 0 0.0000 500 0 

  

 
4 11-16 0 0.0000 500 0 

200,000-

more 

 
1 0 352 0.0340 500 17 

439 2 1-5 85 0.0082 500 5 

0.042 3 6-10 2 0.0002 500 1 

 
4 11-16 0 0.0000 500 0 
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3.2 Descriptive Statistics of Crash Data Collected During Sampling Process 

3.2.1 Trend of Pedestrian and Bicycle Crashes at Urban Intersections 2010-2014 

Figure 3 below depicts the distribution of pedestrian and bicyclist involved crashes at urban 

intersections from 2010 through 2014. Pedestrian involved crashes had an upward trend up to 2012 

and there was a drop in number of crashes up to 2014. Similar trend can be observed on bicyclist 

involved crashes. A more realistic trend could have been observed if non-motorized crashes at 

those intersections were normalized by number of non-motorized volume. However, such data was 

not available at statewide level. 

 

Figure 3 Trend Of non-motorized Crashes from 2010-2014 at intersections 

 

3.2.2 Distribution of Non-Motorized Crashes by Injury Severity Level 

In total, there were 106 fatal pedestrian-involved crashes and 17 bicyclist-involved crashes from 

2010 to 2014 at all urban intersections in Michigan connecting collector and arterial roads as 

indicated in Figure 4 and Figure 5. For pedestrians, it represented 3.4 percent of all pedestrian 

crashes occurred at urban intersections, while for bicyclist it represented 0.5 percent of all bicyclist 

crashes occurred at urban intersections. Based on these statistics, it is evident that pedestrians are 
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more likely to be involved in fatal crashes as compared to bicyclist in such locations. Upon looking 

on the fatal crashes distribution by intersection roadway functional type, it was found that most of 

these fatal crashes occurred at intersection joining two arterial roads as shown in  

Figure 6 and Figure 7.  High speed associated with such arterial roads is likely to exacerbate the 

severity of crash once it happens. 

 

Figure 4 Trend of Pedestrian Crashes by Severity: 2010-2014 

 

Figure 5 Trend of Bicycle Crashes by Severity: 2010-2014 
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Figure 6 Distribution of Pedestrian Fatal Crashes by Intersection Roadway Types 

 

Figure 7 Distribution of Bicyclist Fatal Crashes at Urban Intersection 
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3.2.3 Distribution of Non-Motorized Crashes at Urban Intersection: Comparison with Other 

Locations 

In five years, pedestrian crashes at urban intersections constituted 27.8 percent of all pedestrian 

related crashes. For bicyclist-involved crashes, the percentage was 33.5 percent of all bicyclist-

involved crashes. More number of bicyclist were involved in crashes as compared to pedestrians 

at the urban intersection as shown in Figure 8 and Figure 9. 

 

Figure 8 Distribution of Pedestrian Crashes by Location 

 

Figure 9  Distribution of Bicycle Crashes by Location 
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Figure 10 and Figure 11 show the distribution of pedestrian and bicycle involved crashes by 

roadway type and urban population.  For both cases, nearly half of all crashes occurred at 

intersections joining two arterial roads located in areas with urban population greater than 200,000 

people. Densely populated areas are more likely to have high pedestrian and bicyclist movements. 

The presence of arterial roads in such locations, which are usually characterized by high volume 

of traffic, likely increases the chances of non-motorized crashes occurrence. 

 

Figure 10 Pedestrian Involved Crashes: By Roadway Type and Urban Population 
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Figure 11 Bicycle Crashes by Roadway Type and Urban Population 
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4 Data Collection 

This chapter covers methods and challenges encountered when gathering data that were used to 

develop safety performance functions for pedestrians and bicyclists. The data collected can be 

subdivided into six major groups: 

 Non-motorized crash data 

 Demographic data 

 Land use data  

 Road Geometry data 

 Walk score index 

 

4.1 Crash Data 

Pedestrian and Bicyclist crash data for five years (2010-2014) were acquired from the Michigan 

State Police (MSP) in the office of Highways Safety and Planning (OHSP). Only crash data 

attribute that were considered relevant for this research were kept in order to facilitate efficient 

handling and processing of the data in tools like ArcGIS.  ArcGIS was used to depict spatial trend 

and patterns of non-motorized crashes. A buffer of 150ft, established from previous study 

(Dolatsara, 2014) for aggregating non-motorized intersection crashes, was used. ArcGIS provides 

spatial join option which is the convenient means of aggregating crashes to each intersection. 

Figure 12 depicts how the buffer were created in ArcGIS. 
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Figure 12 Collecting Intersection Crashes Falling Within 150ft Buffer 

 

4.2 Land Use Data 

Michigan land use shapefile was used to obtain the land use data for given urban intersections.  

Four major categories of urban land use data were considered for the analysis. These were 

commercial, residential, industrial, institutional, and outdoor recreation as shown in Figure 13. 

Commercial areas include Central Business District (CBD) and neighborhood business. In order 

to capture the dominant land use for a given intersection, weighted factors by area were used 

instead of dummy variables. Each land use area at the intersection was divided by the total area of 
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blocks joining that intersection to obtain the weighted factors. Summation of weighted factors for 

all land use type in a given intersection will then be equal to one. 

In previous studies, intersection with more than one land use type was considered as having mixed 

land use, not considering the fact that the proportions of each land use adjoining to intersection are 

different. Therefore area proportion were used so as to come up with unbiased description of land 

use characteristics surrounding a given intersection. 

 

Figure 13 Example of Land Use Distribution 
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4.3 Average Annual Daily Traffic (AADT) 

AADT is one of the essential parameter when evaluating risks that road users are experiencing 

when using road infrastructure.  Most of the AADT data were collected from the Road Commission 

Transportation Count Database System (TCDS) of each county. The database acts like the central 

hub for storing and disseminating AADT data. Since the data are coming from different agencies 

within the same county, the data are first cleaned and validated before being available to the public. 

The level of details such as time of the day, hourly count differ across counties that have adopted 

this system. Below are some of the counties that have adopted this system in Michigan.  

 Counties under SEMCOG (Wayne, Washtenaw, Macomb, Oakland, Monroe, St. Clair and 

Livingston) 

 Counties under Grand Valley Metropolitan Counsel (Kent and Ottawa)  

 Genesee  County 

 Kalamazoo County  

 Eaton County 

 Ingham County 

With good cooperation from South Eastern Michigan Counsel of Governments (SEMCOG), it was 

possible to obtain AADT shapefiles for the counties under SEMCOG. This helped to automate the 

process of assigning AADT data to intersection segments.  For other counties the data were 

recorded manually from their TCDS database.   

 

4.4 Geometric Data 

A list of all geometric factors of the roads that have been established from past studies to have an 

influence on non-motorized crashes was created. Google Earth was used as the main tool for 

obtaining all the road geometric characteristics.  Below is the summary of main categories of 

roadway characteristics.  

Signal information: Consist of the attributes such as signal control type, signal 

configuration (box or diagonal), left turn protection and no turn on red. 

 

Intersection type: This provide information of whether the intersection was three leg or 

four leg intersection 
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Lane uses information: This group consists of attributes that described the lane use for 

each approach. Lane use information such as number of exclusive through lane, number of 

shared through-right lane, number of shared through-left lane, number of exclusive right 

lane, number of exclusive through  lanes and total number of outgoing lanes were recorded.  

 

Pedestrian facility: For each approach, information about the presence of pedestrian 

facility was collected. To be more precise, the pedestrian facilities were subdivided into 

four categories as shown below.  

 Pedestrian sidewalk on one side separated from traffic 

 Pedestrian sidewalk on one side not separated from traffic 

 Pedestrian sidewalk on two sides separated from traffic 

 Pedestrian sidewalk on two side not separated from traffic 

The reason for subdivision of non-motorized facility information was to capture different 

level of risk that each category of pedestrian facility will have. For example presence of 

sidewalk which is not separated from the main road is more dangerous that the separated 

sidewalk. Also providing sidewalk only on one side of the road might have an implication 

on non-motorized movements and the way they interact with traffic as compared to 

providing pedestrian facility at both sides of the road. 

  

Bicycle facility: This include information about presence of bike lane and the position of 

bike lane for each approach at the intersection. For example, the bike lane can be in-

between lanes or the far right side of the approach.   

 

Figure 14 and Figure 15 provide plan view and the street view in one of the intersection 

included in the study. The plan view provided geometric characteristics of the intersections, 

lane designation and facility information while the street view provided the signal 

information. 
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Figure 14 Plan View of Intersection as Seen From Google Earth 

 

Figure 15 Google Earth Street View of an Intersection with Signal Information 
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4.5 Walk Score Index 

This parameter has been used mostly in the field of urban planning, real estate and public health. 

Walk Score Index measures walkability of a given point or area on a scale of one to one hundred. 

The points are given after analyzing different walking routes to the amenities that are nearby. 

Distance decay function is used to model score index. Amenity that have 5min walk get the 

maximum points and the point keep on diminishing up to zero after 30 min walk. Also walk score 

captures pedestrian friendliness of a given location by considering population density, block length 

and intersection density.  

Table 6 provides a description for different ranges of walk score. It ranges from car dependent 

areas to what is referred as walker’s paradise. Figure 16 and Figure 17 shows two examples of 

intersections, one situated in a car dependent community while the other one situated in walker’s 

paradise community.  

 

Table 6 Definition of Walk Score Index 

Score Definition 

90-100 Walkers’ Paradise 

Daily trips do not require a car 

70-89 Very Walkable 

Most trip can be accomplished on foot 

50-69 Somewhat Walkable 

Some trips can be accomplished on foot. 

25-49 Car Dependent 

Most trips require a car 

0-24 Car Dependent 

almost all trips require a car 
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Figure 16 Eastern Ave SE @ 60th St SE Intersection with Walk Score of 17 

 

 

Figure 17: E Fulton St @ Lafayette Ave NE with the walk score of 91 
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4.6 Demographic Data 

Demographic information at census block level using census shapefile were obtained for all 

selected urban intersections. Information that was extracted include population by age, educational 

status, poverty level, means of transportation to work and household income. Figure 18 provides 

part of Kent County were some of the urban intersections were included in the sample size. It can 

be observed that non-motorized crashes clustered in areas with high population density, below 

poverty level area and in areas with relatively high percentage of people who are walking and 

biking. 

 

Figure 18 Census Information Extracted from Michigan Census Shapefile 

 



  

41 

 

5 Development of Safety Performance Function for Pedestrian and 

Bicyclist 

This section describe how the safety performance functions (SPFs) for pedestrians and bicyclists 

were developed. The SPFs can be used to provide estimates of expected number of pedestrian and 

bicycle involved crashes given changes in traffic, geometric characteristics of the road, 

demographic and land use. In nutshell the procedure for developing SPFs is summarized below 

 Structural equation modeling (SEM) to unveil the relationships between variables. 

 Factor analysis for estimating proxy measure of pedestrians and bicyclists volume. 

 Development of SPFs using different counts model.  

 Comparison of models outcome using goodness of fit measures. 

 Cross-validation of the SPFs  

 Recommendation of final model based on within sample and cross validation results. 

 

5.1 Structural Equation Modeling 

In this project structural equation modeling (SEM) was used to unveil complex relationship 

between dependent and independent variables. With the use of SEM it was possible to quantify 

direct and indirect effects of observable variables on non-motorized crashes. The SEM has 

mainly two parts: (1) the structural model, which shows the potential causal dependencies 

between endogenous and exogenous variables, and (2) the measurement model, which shows the 

associations between latent variables and their indicators. Figure 19 shows the topology for 

pedestrian SEM while Figure 20 shows the topology for bike SEM. Variables that were 

significant at 95% confidence level were retained in the model. 
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Figure 19. Pedestrian Crashes SEM 

 

 

Figure 20. Bicycle Crashes SEM 

 

The structural model results show that bike level and pedestrian level indices at intersection 

increase with the increase of vehicular activities (traffic index) which in turn increases pedestrian 

and bicycle crashes, respectively. 
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The measurement model indicated that high traffic index at intersections was manifested by type 

of intersection (i.e. four leg intersection), number of  lanes in major and minor approaches, 

Average Annual Daily Traffic (AADT) in major and minor approach, and type of intersection 

control (i.e. signal control). The model also showed that high bike level score is associated with 

speed limit on both major and minor approaches, presence of bicycle facility, percentage of 

people below the poverty level in a given census block group where the intersection is located, 

population density around the intersection, and proportional of commercial land use in a given 

block where the intersection is situated. Furthermore, the measurement model showed that high 

pedestrian level score is manifested by proportion of commercial land use in a given block where 

the intersection is situated, increase in population density at a given census block group where 

the intersection is situated, and high walk score index. Other factors associated with pedestrian 

level score include number of people walking per square mile in a given census block group 

where the intersection is situated, presence of pedestrian facility separated from the motorized 

traffic, and percent of people using public transport in a given census block. 

 

5.2 Factor Analysis 

This is a multivariate technique which aims at explaining the joint variation and covariation of 

observed variables using less number of unobserved constructs which are called factors.  It is a 

means of reducing dimensionality of correlated data as it tends to clusters variables into 

homogeneous sets. These set of unobserved constructs are unmeasured since we don’t have a 

single perfect measure to represent them. In some instances, they are difficult to measure because 

of data insufficiency and other practical reasons.  

Factor analysis accounts for measurement error when relating observed variables with the factors 

as opposed to methods which use Ordinary Least Square (OLS) approach. The error term express 

the percentage of observed variable variance that could not be explained by a factor. The estimation 

procedure utilize maximum likelihood approach which estimate model parameters that will 

minimize the discrepancy between the observed and predicted variance-covariance matrix.  The 

parameters estimated from the factors analysis include factor loadings, observed variable error 

variances, factor variances and covariance.  Factor loadings inform how each observed variable is 

related with the factor. It’s a slope of regression coefficient between observed variable and a factor 
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when presented in unstandardized form. When factor loading are standardized they represent 

correlation between a factor and an observed variable. Preference on which format of factor 

loading to be used depends on the type of study and intended outcome of the analysis.  

Using matrix notation, factor analysis can be presented as 

 

𝑦𝑛𝑥1 = Σ𝑛𝑥𝑚𝐹𝑚𝑥1 + 𝑒𝑛𝑥1 

[

𝑦1

⋮
⋮

𝑦𝑛

]

𝑛𝑥1

= [

𝜆11 ⋯ ⋯ 𝜆1𝑛

⋮ ⋱  ⋮
⋮  ⋱ ⋮

𝜆𝑛1 ⋯ ⋯ 𝜆𝑛𝑚

]

𝑛𝑥𝑚

[
𝐹1

⋮
𝐹𝑚

]

𝑚𝑥1

+ [

𝑒1

⋮
⋮

𝑒𝑛

]

𝑛𝑥1

 

Where  

𝑦𝑛𝑥1  = Observed variables matrix 

Σ𝑛𝑥𝑚= variance-covariance matrix which comprises of factor loadings, 𝜆𝑛𝑚 

𝐹𝑚𝑥1 = Factor Matrix 

𝑒𝑛𝑥1 = Error term 

 

Estimation procedure of unknown parameters such as factor loading and error term utilize 

Maximum Likelihood (ML) approach, which aims at minimizing the following function. 

Γ𝑚𝑙 = 𝑙𝑛|Σ| − 𝑙𝑛|S| + 𝑡𝑟𝑎𝑐𝑒|(𝑆)(Σ−1)| − 𝑝 

Where 

Γ𝑚𝑙 = Log likelihood function 

|Σ| = Determinant of predicted covariance-variance matrix 

|𝑆| = Determinant of observed covariance-variance matrix 

𝑝 = Number of input indicators/observed variables 

Trace= Sum of the diagonal values in the covariance-variance matrix 

 

In ideal case where  |Σ| =|𝑆|,  (𝑆)(Σ−1) will turn out to be an identity matrix in which its trace 

value will be equal to 𝑝. Hence the log likelihood function, Γ𝑚𝑙 will be equal to zero (Jaccard et 

al, 1996) 
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5.2.1 Model Specification 

Due to unavailability of non-motorized volume count, factor analysis was used in this research to 

estimate proxy measure of pedestrians and bicyclists volume at urban intersections. Observed 

variables that were used to form proxy measure of pedestrians and bicyclists exposure were 

selected based on prior research knowledge and results of the SEM model presented in Section 

5.1. Variables that were significant at 95 percent confidence level were retained in the final factor 

analysis model.  Table 7 and table 8 provide the descriptive summary of the variables that were 

significant for pedestrians and bicyclists factor analysis respectively. Figure 21 and Figure 22 

provide a schematic diagram of significant observed variables for pedestrians and bicyclists factor 

analysis. The error terms 𝜀 for each observed variable was estimated in the process. 

 

Table 7 Variable Description: Proxy Measure of Pedestrians Exposure 

Variable Description Mean 

Std. 

Dev. Min Max 

Percent using 

public transport 

Percentage of people using 

public transit in a census block 

where the intersection is located 

0.97 2.39 0 22.15 

Population per 

square mile 

Population density for a census 

block  
420.18 370.61 12.87 2384.90 

Percent of 

poverty below 

Percentage of people below 

poverty level in a census block 
13.47 14.20 0 83.72 

Walking per 

square mile 

Walking commuters density in a 

census block 
36.02 148.45 0 1671.94 

Pedestrian 

facility 

Dummy variable for the 

presence of pedestrian facility 

separated from roadway 

0.59 0.49 0 1 

Walk score 

Walk score index estimated 

using distance decay function 
35.77 24.98 0 94 

Proportion of 

commercial land 

use 

Proportion of commercial land 

use by area 0.15 0.28 0 1 
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Table 8 Variables That Description: Proxy Measure of Bicyclists Exposure 

Variable Description Mean 

Std. 

Dev. Min Max 

Bike facility 
Presence of bike facility 

(side path/bike lane) 
0.60 0.49 0 1 

Poverty level below 

Percentage of population 

below poverty level in a 

given census block group 

13.44 14.19 0 83.72 

Population per square 

mile 

Population density for a 

census block 
419.05 370.75 0 2384.90 

Speed limit major 
Speed limit in the major 

approach 
42.83 8.98 25 70 

Speed limit minor 
Speed limit in the minor 

approach 
34.89 8.65 20 55 

Proportion of 

commercial land use 

Proportion of commercial 

land use by area 
0.15 0.28 0 1 

 

 

 

Figure 21 Schematic Diagram for Pedestrians Factor Analysis 

 

Percent of public 

transport 
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Figure 22 Schematic Diagram for Bicyclist Factor Analysis 

5.2.2 Model Estimation 

As summarized in Table 9, the increase in pedestrians level score index at a given intersection was 

manifested by the increase in percentage of people using the public transit in a given block group 

where the intersection was located, population density, percentage of household below poverty 

level, number of workers commuting to their working places by foot per square mile, walk score 

index, proportion of commercial land use and presence of pedestrian facility separated from the 

roadway. 

Table 9 Standardized Factor Loadings for Pedestrians Level Score 

Variable 

Standardized 

Coef. Std. Err. z P>z 

Percent using public transport 0.5397 0.0440 12.26 0 

Population per square mile 0.6959 0.0345 20.17 0 

Percent of poverty below 0.6131 0.0392 15.65 0 

Walking per square mile 0.5299 0.0448 11.82 0 

Pedestrian facility 0.2568 0.0545 4.72 0 

Walk score 0.8347 0.0288 29.01 0 

Proportion of commercial land use 0.3244 0.0518 6.26 0 
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Table 10 summarized the significant factor loading for bicyclist factor analysis. Bicyclist level 

score, a proxy measure of bicyclist volume was found to increase with the following factors; the 

presence of bicycle facility which includes bike lanes and sidewalks, increase in percentage of 

people below poverty level, increase population density, lower speed limit in major and minor 

approach and increase in proportion of commercial land use by area in a given census block group 

were the intersection is situated.  

Table 10 Standardized Factor Loadings for Bicyclist Level Score 

Variable 

Standardized 

Coef. Std. Err. z P>z 

Bike facility 0.3713 0.0547 6.79 0 

Poverty level below 0.4860 0.0507 9.59 0 

Population per square mile 0.5454 0.0496 11.01 0 

Speed limit major -0.7318 0.0415 -17.61 0 

Speed limit minor -0.6646 0.0423 -15.7 0 

Proportion of commercial land use 0.1358 0.0601 2.26 0.024 

 

5.2.3 Estimation of Bicyclists and Pedestrians Level Score  

Pedestrians and bicyclists level score were then estimated from their respective significant 

observed variables. There are different methods in which the factor score can be estimated such as 

sum score by factor, weighted sum scores, regression scores, Bartlett Scores and Anderson-Rubin 

Scores. Distefano et al (2009) provides a good description of these factors giving applicability, 

pros and cons of each. For this study, the estimation procedure adopted was least squares 

regression approach a procedure similar to regression score developed by Thomson (1935). 

Stata, which was the statistical package used in data analysis for this project, utilizes this approach 

in computing factor scores. In this method, the observed variables are centered to their mean. The 

final factor score is the sum of the product between factor score weights and their respective 

observed variables. The factor score weight are obtained by multiplying the inverse of observed 

variable covariance matrix by factor-observed variables covariance matrix. 

Mathematically estimation of factor score can be expressed as follows 
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𝑓𝑖 = (Σ−1 ∗ Λ) 

𝐹𝑎𝑐𝑡𝑜𝑟 𝑠𝑐𝑜𝑟𝑒 =  ∑ 𝑓𝑖

𝑖=𝑛

𝑖=1

∗ (𝑥𝑖 − 𝑥̅𝑖) 

Whereby  

𝑓𝑖 = the factor score weight for observed variable i 

Σ−1 = Inverse of observed variable covariance matrix 

Λ = Factor-observed variable covariance matrix 

𝑥𝑖 = the observed variable i 

𝑥̅𝑖 = the mean of observed variable i  

 

Latent pedestrian level score can be computed as  

𝑷𝒆𝒅𝒍𝒆𝒗𝒆𝒍 = 0.0707(𝑝𝑒𝑟𝑐𝑝𝑢𝑏𝑙 − 0.974) + 0.0008(𝑝𝑜𝑝𝑠𝑞𝑚𝑖𝑙𝑒 − 420.178) +

0.0153(𝑝𝑜𝑣𝑡𝑜𝑡𝑏𝑙𝑤
− 13.473) + 0.0011(𝑤𝑎𝑙𝑘𝑖𝑛𝑔𝑞𝑚𝑖𝑙𝑒 − 36.32) + 0.1233(𝑝𝑒𝑑𝑓𝑎𝑐𝑙𝑡𝑦 −

0.586) + 0.0244(𝑤𝑎𝑙𝑘𝑠𝑐𝑜𝑟𝑒 − 35.772) + 0.2828(𝑝𝑟𝑜𝑐𝑜𝑚𝑚 − 0.146)  

  

Latent bicyclist level score can be computed as  

𝑩𝒊𝒌𝒆𝒍𝒆𝒗𝒆𝒍 =  0.0415(𝑏𝑖𝑘𝑒𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 − 0.598) + 0.0021(𝑝𝑜𝑣𝑡𝑜𝑡𝑏𝑙𝑤
− 13.44) +

0.0001(𝑝𝑜𝑝_𝑠𝑞𝑚𝑖𝑙𝑒 − 419.052) − 0.0086(𝑠𝑝𝑒𝑒𝑑𝑙𝑚𝑡_𝑚𝑖𝑛 − 34.893) −

0.0063(𝑠𝑝𝑒𝑒𝑑𝑙𝑚𝑡_𝑚𝑎𝑗 − 42.828) + 0.0231(𝑝𝑟𝑜_𝑐𝑜𝑚𝑚 − 0.146)  

 

5.3 Development of SPFs 

Before considering any potential count model to be used for formulating safety performance 

function, distribution of pedestrian and bicyclist-involved crashes at selected urban intersections 

were studied. 85 percent of the selected intersections were used for model calibration process 

and the remaining 15 percent were used for cross-validation. Figure 23 and Figure 24 below 

provide the summary of intersections that were used for calibration process. Non-motorized 

crashes as described in the data collection section comprised of four year from 2010 through 

2014. About 70 percent of selected intersections had zero pedestrian crashes in five years while 

for bicyclist 73 percent of the intersections had zero crashes. The presence of excess zero in the 
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sample size provided a clue on which type of count models that were to be considered in the 

analysis.   

 

Figure 23 Distribution of Pedestrian Crashes(2010-2014) at Selected Intersections 

 

Figure 24 Distribution of Bicyclist Crashes(2010-2014) at Selected Intersections 
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5.3.1 Model Comparison 

After studing the distribution of non-motorized crashes at selected intersections, four count model 

were considered for the analysis as listed below: 

 Poisson Regression Model (NRM) 

 Negative Binomial Regression Model (NBRM) 

 Zero Inflated Poisson Regression Model (ZIP) 

 Zero Inflated Negative Binomial Model (ZINB) 

Poisson model and negative binomial regression model have been used widely in most of the 

researches that analyze count data. Equidispersion assumption of Poisson regression model that 

the mean and variance are identical is often violated. That’s why Negative Binomial have become 

most commonly used count model because it account for over-dispersion. 

Zero inflated models were also considered as the potential fit to the data due to presence of excess 

zero at the selected intersections. For zero inflated models, there are two type of zero counts. The 

first type of zero is predicted by the binary component of the model, whereby it shows locations 

that will always have zero count. The second type of zero are predicted by the count model 

component whereby it shows location that are most likely but not always have zero counts. 

Kwigizile et.al (2014) provided a good and simple formulation of four count models that were 

compared in this analysis as show below. 

 

5.3.1.1 Poisson and Negative Binomial Regression 

The probability of intersection 𝑖 having pedestrian/bicycle crashes in a given time period can be 

written as:  

 
!

)(

i

y

i
i

y

EXP
yP

i 
  

Whereby  

i  is the  Poisson parameter for urban intersection i, which for this study it can be defined as the 

expected number of pedestrian/bicyclist crashes in five years period. This parameter is a function 

of predictor variables given as 

𝜆𝑖 = 𝐸𝑋𝑃(𝜷𝑿𝑖) 
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Where 𝜷 is the vector of estimable parameter 

Estimation of parameters deploy maximum likelihood method given as  

𝐿𝐿(𝛽) = ∑[−𝐸𝑋𝑃(𝜷𝑿𝑖) + 𝑦𝑖𝜷𝑿𝑖 − ln(𝑦𝑖!)]

𝑁

𝑖=1

 

Negative binomial regression which handle cases where mean and variance of the count data are 

not equal can be derived from the Poisson model as follows; 

Generalizing Poisson model by introducing unobserved effect 𝜀𝑖, whereby the expected Poisson 

parameter becomes  

𝜆𝑖 = 𝐸𝑋𝑃(𝜷𝑿𝑖 + 𝜀𝑖) 

With 𝜆𝑖 = 𝐸𝑋𝑃(𝜀𝑖) known as gamma distributed error term with mean of one and variance of

2 . 

Upon modification mean-variance relationship for expected number of pedestrian/bicycle 

crashes 𝑦𝑖  becomes: 

          21 iiiii yEyEyEyEyVar    

If α is significantly different from zero then the bicyclist/pedestrian involved crash data are said 

to be overdispersed for positive α values and underdispersed for negative α values. For 

overdispersion case, the resulting Negative binomial probability distribution becomes 

 
  
     
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Whereby 

)(x  is a value of the gamma function. 

  is an overdispersion parameter  

iy  is the number of pedestrian/bicyclist involved crashes for intersection i 

 

5.3.1.2 Zero Inflated Models  

As it has been mentioned earlier, zero inflated models are used when there is excess number of 

zero in the count that tends to violate assumptions used in Poisson or Negative binomial model 
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formulation. For ZIP model the probability for the two component (binary logistic and Poisson 

regression) can be estimated as follows (Lord et al, 2005) 

Pr(𝑦𝑖 = 0) = 𝑝𝑖 + (1 − 𝑝𝑖)𝑒𝑦 

Pr(𝑦𝑖 > 0) = (1 − 𝑝𝑖)
𝑒−𝑦𝑦𝑛

𝑛!
 

 

 The probability of zero pedestrian/bicyclist intersection crashes for the binary component of the 

ZINB model can be computed as:  

𝑃𝑟(𝑦𝑖 = 0) = 𝑝𝑖 + (1 − 𝑝𝑖) [
1

𝛼⁄

1
𝛼⁄ + 𝜆𝑖

]

1
𝛼⁄

 

As for count component of the model with the probability of  𝑦𝑖 > 0 it can be computed as  

Pr(𝑦𝑖 = 𝑦) = (1 − 𝑝𝑖) [
Γ ((1

𝛼⁄ ) + 𝑦) 𝜓𝑖

1
𝛼⁄

(1 − 𝜓𝑖)
𝑦

Γ(1
𝛼⁄ )𝑦!

] 

With 𝜓𝑖 =
1

𝛼⁄

1
𝛼⁄ +𝜆𝑖

. 

 

5.3.2 Goodness of Fit Tests 

Goodness of fit test that were used to analyze how well the model fits the data are summarized 

below  

 Akaike’s Information Criterion (AIC) 

 Bayesian Information Criterion (BIC) 

 Vuong test 

 Residual probability plot  

 Mean Standard Error (MSE)  

The selection of the best model was based on collective assessment of all goodness of fit 

measures. AIC, BIC and Vuong test were used to test within sample goodness of fit. Residual 

probability was used for within sample and for cross validation. Hilbe (2011) provide good 

description and application of BIC, AIC, Vuong test and Residual probability plot. Mathematical 

formula for the given goodness of fit measures are provided below: 
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Akaike’s Information Criterion (AIC) 

𝐴𝐼𝐶 =  
−2𝐿 + 2𝑘

𝑛
 

 

Bayesian Information Criterion (BIC) 

𝐵𝐼𝐶 = −2𝐿 + 𝑘𝑙𝑜𝑔(𝑛) 

 

With  

k=number of predictors including the intercept 

n= number of observation 

L= model log-likelihood. 

 

Vuong Test 

Test whether the zero inflated models are preferred over non-inflated models. It’s the most 

commonly used test despite invention of other test serving the similar purpose. It is conservative 

and therefore reduces the chances of making incorrect decision (Clarke 2007). 

It is given as the log ration of the sum of probability for each observation computed as  

𝜙𝑖 = ln (
∑ 𝑃1(𝑦𝑖 𝑥𝑖⁄ )𝑖

∑ 𝑃2(𝑦𝑖 𝑥𝑖⁄ )𝑖
) 

 

With Vuong test statistics is a calculated as  

𝑉 =
√𝑁(𝜙̅)

𝑆𝐷(𝜙𝑖)
 

Where  

P1(yi/x)= Probability of observing pedestrian/bicyclist involved y crashes on the basis of 

variable x for model i (inflated model) 

P1(yj/x) = Probability of observing pedestrian/bicyclist involved y crashes on the basis of 

variable x for model j (Non-inflated model) 

𝜙̅ = Average of the log ratios  

 𝑆𝐷(𝜙𝑖) = Standard deviation of the log ratios 

If V is greater than 1.96, model i is favored while if V is less than -1.96, model j is favored 
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Residual Probabilities 

It is computed as the difference between the average observed probability and average predicted 

probability for each pedestrian/bicyclist observed crash count at intersection. The model with the 

best performance has residual probabilities close to zero for all the pedestrian or bicyclist observed 

crash count  

 

Root Mean Square Error (RMSE) 

RMSE is the square of the difference between observed values and the values predicted by a model.  

Individual differences between observed and predicted values are normally called residuals. It can 

be computed as  

𝑅𝑀𝑆𝐷 = √
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑁

𝑖=1

𝑁
 

With  

𝑦̂𝑖 = predicted pedestrian/bicyclist crashes for intersection i 

𝑦𝑖 = observed pedestrian/bicyclist crashes for intersection i 

N= total number of intersections 

 

5.4 Pedestrian Safety Performance Function 

Table 11 provides the descriptive statistics of significant variable that were retained in the final 

pedestrian SPF. Significant predictor variables were Average Annual Daily Traffic in major 

approach, Average Annual Daily Traffic in minor approach and pedestrians level score. 
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Table 11 Descriptive Statistics of Significant Variables Used in Pedestrians SPF 

Variable Description Mean 

Std. 

Dev. Min Max 

Pedestrian 

crashes 

Pedestrian Crashes (2010-

2014) 0.479 0.872 0 5 

AADT major 

approach 

AADT in the major 

approach in thousands  14.887 8.826 1.388 57.285 

AADT minor 

approach 

AADT in the minor 

approach in thousands 6.807 5.107 0.346 24.716 

Pedestrian level 

score 

Standardized Latent 

Pedestrians Level -0.016 1.175 -1.580 4.562 

 

The coefficient for significant predictor variables and their respective z-score values in bracket 

are shown in Table 12. Both AADT in the major approach, AADT in the minor approach and 

pedestrians level score increase the likelihood of expected number of pedestrian crashes. Both 

were significant at 95 percent confidence level. For Zero-inflated model, predictor variable in the 

binary component of the model was pedestrian level score.  
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Table 12 Summary of Significant Predictor Variables Used in Pedestrian SPFs 

Variable PRM NBRM ZIP ZINB 

AADT major 

approach 

0.0352 

(3.84) 

0.0361 

(3.3) 

0.0234 

(2.14) 

0.0234 

(2.13) 

AADT minor 

approach 

0.0433 

(3.02) 

0.0454 

(2.6) 

0.0405 

(2.51) 

0.0409 

(2.49) 

Pedestrian level 

score 

0.5204 

(9.19) 

0.5627 

(7.81) 

0.2329 

(2.69) 

0.2392 

(2.59) 

Constant term 

-1.912 

(10.36) 

-1.965 

(-9.45) 

-1.094 

(-4.46) 

-1.1117 

(-4.27) 

Over dispersion parameter 

alpha   0.319 
 

0.027 

Inflate(For zero-inflated models) 

Pedestrian level 

score     

-2.375 

(-4.31) 

-2.403 

(-4.18) 

Constant     

-0.9181 

(-1.88) 

-0.972 

(-1.73) 

*Note: Values in brackets indicate z-score 

 

5.4.1 Comparison of the Models Based on Goodness of Fit Tests 

Post estimation results such as expected number of counts and predicted probability of each 

count were obtained. Goodness of fit tests were performed so as to select the model with the best 

fit. Table 13 provides the BIC and AIC values for each model. The model that fits best the data, 

is the one with the lowest BIC or AIC value. Zero Inflated Poisson (ZIP) model had the lowest 

value for both BIC and AIC. The Vuong test was performed to test whether the zero inflated 

models are preferable to the non-inflated count models. In other words, the test shows if the 

number of zeros in the data exceed Poisson or negative binomial distributional assumption. The 

test favored zero-inflated models as shown in Table 14 with the p-value that was below 0.05.  
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Table 13 BIC and AIC Values for Pedestrian SPFs 

Variable PRM NBRM ZIP ZINB 

BIC 563.6 564.3 550.7 556.5 

AIC 548.3 545.2 527.8 529.7 

 

Table 14 Vuong Test for Pedestrian SPFs 

Comparison z p Comment 

ZIP over PRM 2.443 0.007 Significant(<0.05) 

ZINB over NBRM 2.206 0.014 Significant(<0.05) 

 

Comparison based on Residual probabilities was performed for both models as shown in Figure 

25 . Theoretically, if the model fit the data well then residual probabilities will be zero for each 

crash count. Poisson regression showed to have high deviation from zero residual probability when 

predicting zero up to two crashes per intersection. The remaining three models had better 

predictive performance for all crash counts per intersection found in the data.  

 

Figure 25 Residual Probabilities for Each Crash Counts per Intersection 
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5.4.2 Cross Validation 

Figure 26 and Figure 27 display residual probability and root mean square error for out-of-sample 

estimation respectively. Residual probability plots from cross validation analysis using the 

remaining 15 percent of the data were less precise in prediction for all four models as compared to 

within sample prediction. Inflated models had a better performance as compared to NBRM and 

PRM. Similar outcome was observed when comparing RMSE values for each model as shown in 

Figure 27. 

 

 

Figure 26 Probability Residual Plots for Out-Of-Sample Prediction 
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Figure 27 Mean Square Error from Cross Validation Data Set 

 

5.4.3 Final Proposed Pedestrian SPF 

Based on the assessment of goodness of fit measures, Zero Inflated Poisson Regression Model was 

selected as the final model for pedestrians SPF.  Mathematically it can be expressed as:  

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑝𝑒𝑟 𝑓𝑖𝑣𝑒 𝑦𝑒𝑎𝑟𝑠 =  

[1 −
1

1 + 𝑒(0.918+2.375𝑝𝑒𝑑𝑙𝑒𝑣𝑒𝑙)
] [𝑒−1.094+0.0234𝑎𝑎𝑑𝑡𝑚𝑎𝑗+0.0405𝑎𝑎𝑑𝑡𝑚𝑖𝑛+0.2392𝑝𝑒𝑑𝑙𝑒𝑣𝑒𝑙]  

Where 

𝑎𝑎𝑑𝑡𝑚𝑎𝑗 = AADT in the major approach in thousands 

𝑎𝑎𝑑𝑡𝑚𝑖𝑛 = AADT in the minor approach in thousands 

𝑝𝑒𝑑𝑙𝑒𝑣𝑒𝑙 = Pedestrian level score 
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5.5 Bicycle Safety Performance Function 

 

Table 15 below provides the descriptive statistics of significant variable that were kept in the final 

bicyclist SPFs for the count models that were compared. Significant predictor variables were 

Average Annual Daily Traffic (AADT) in major approach, Average Annual Daily Traffic (AADT) 

in minor approach and bicycle level score.  

 

Table 15 Descriptive Statistics of Variables Used in Bicyclist SPFs. 

Variable Description Mean Std. Dev. Min Max 

Bicycle-involved 

crashes 

Bicyclist Crashes  

(2010-2014) 
0.5621 1.2316 0 8 

AADT major 

approach 

 AADT in the major 

approach in thousands 
14.628 8.9760 1.388 57.285 

AADT minor 

approach 

 AADT in the minor 

approach in thousands 
6.647 5.1600 0.346 24.716 

Bicycle  level 

score 

 Standardized latent 

Bicyclist Level 
-0.012 0.159 -0.340 0.411 

 

5.5.1 Modeling Results 

Both of the predictor variables had a positive coefficient as listed in Table 16. As their magnitude 

increases they tend to increase the likelihood for the crash to occur. For example using PRM model, 

a unit increase in bike level score will tend to increase the log of expected bicyclist crashes by 

3.487. For other predictor variables, their coefficient can be interpreted in similar fashion. For the 

inflated model, the predictor variable for binary component was bike level score. For ZIP it was 

significant at 95 percent confidence while for ZINB it was significant at 90 percent confidence 

level.  
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Table 16 Summary of Significant Predictor Variables Used in Bicycle SPFs 

Variable PRM NBRM ZIP ZINB 

AADT major approach 
0.0334 

(3.72) 

0.0406 

(2.69) 

0.0217 

(2.15) 

0.0347 

(2.37) 

AADT minor approach 
0.0801 

(6.29) 

0.0870 

(3.63) 

0.0730 

(5.15) 

0.087 

(3.91) 

Bicycle  level score 
3.487 

(6.75) 

3.561 

(4.64) 

1.593 

(2.07) 

2.007 

(1.94) 

Constant term 
-1.949 

(-11.29) 

-2.144 

(-8.39) 

-0.895 

(-3.56) 

-1.637 

(-4.29) 

Over dispersion parameter 

alpha   1.561 
 

0.801 

Inflate(For zero inflated models) 

Bicycle  level score 
    

-3.677 

(-2.34) 

-5.839 

(-1.73) 

Constant 
    

0.177 

(0.77) 

-0.903 

(-1.12) 

*Note: The values inside the brackets are z-score 

 

5.5.2 Comparison of Models 

Table 17 and Table 18 summarize goodness of fit measure for within-sample prediction. Negative 

Binomial regression model (NBRM) had a lowest BIC value while Zero inflated negative binomial 

(ZINB) had AIC value slightly below NBRM. Vuong test show insignificant preference of ZINB 

over NBRM with the p-value>0.05. Therefore based on the three test NBRM outperform other 

three models.  
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Table 17 Information Criteria Goodness of Fit Tests for Bicycle SPFs 

Variable PRM NBRM ZIP ZINB 

BIC 677.453 618.335 633.446 626.686 

AIC 662.161 599.22 610.507 599.925 

 

Table 18 Vuong Test for Bicycle SPFs 

Comparison z p Comment 

ZIP over PRM 2.71 0.003 Significant 

ZINB over NBRM 0.893 0.186 Not significant 

 

Figure 28 illustrate the residual probability for within the sample bicyclist crashes per intersection 

prediction. Within-sample residual probability depicts fairly similar trend for NBRM and ZINB. 

ZINB had a slight better prediction for intersection with zero, one and three bicycle crashes per 

intersection in five years period. Poisson regression model had a least performance.  
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Figure 28 Within-Sample Residual Probability Plot Comparing Bicyclist SPFs 

5.5.3 Cross Validation 

Residual probability plots in Figure 29 indicated less precision of both models in predicting out-

of-sample bicyclist-related crashes. ZIP had a better predictive performance as compared to 

NBRM and ZIP.  Upon comparing Root Mean Square Error (RMSE) as shown in Figure 30, zero-

inflated models had a better performance than non-inflated models.  
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Figure 29 Cross Validation Residual Probability Plot Comparing Bicyclist SPFs 

 

Figure 30 Mean Square Error from Bicyclist Cross Validation Data 
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5.5.4 Final Proposed Bicyclist Safety Performance Function 

Therefore based on the assessment of goodness of fit measures it was concluded that Negative 

Binomial model seems to slightly outperform other count models. The final equation for Bicyclist 

SPF is provided below: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑘𝑒 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 𝑝𝑒𝑟 𝑓𝑖𝑣𝑒 𝑦𝑒𝑎𝑟𝑠 = 

𝑒(−2.114+0.087𝑎𝑎𝑑𝑡𝑚𝑎𝑗+3.561𝑎𝑎𝑑𝑡𝑚𝑖𝑛−2.144𝑏𝑖𝑘𝑒𝑙𝑒𝑣𝑒𝑙)  

 

Where 

𝑎𝑎𝑑𝑡𝑚𝑎𝑗 = AADT in the major approach in thousands 

𝑎𝑎𝑑𝑡𝑚𝑖𝑛 = AADT in the minor approach in thousands 

𝑏𝑖𝑘𝑒𝑙𝑒𝑣𝑒𝑙 = Bicycle level score 
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6 Conclusions 

This project established the methodology for developing statewide safety performance function 

for bicyclist and pedestrian. Specific focus was on urban intersections in Michigan connecting 

collector and arterial roads. Proper sampling procedure was needed so as to come up with the 

unbiased sample representative of all urban intersections in Michigan. Stratified random sampling 

was selected as the sampling strategy. All urban intersections in Michigan that were put into strata 

of similar characteristics. These characteristics were established by the parameter that were 

available at statewide level. These were National Function Classification (NFC) of the roadway 

forming an intersection, intersection type (three legged or four legged intersection), Urban 

population and number of non-motorized crashes per intersection in five years. A total of 72 strata 

were created from which a sample intersections were selected for developing SPFs. 

Due to lack of pedestrian and bicycle volume counts at intersections it was necessary to 

develop a reliable proxy exposure measure. Factor analysis was used to develop pedestrian and 

bicycle level score using variable that are readily available at statewide level.  Latent bicyclist level 

score, a proxy measure of bicyclist volume was found to increase with the presence of bicycle 

facility which includes bike lanes and sidewalks, increase in percentage of people below poverty 

level, increase population density, lower speed limit in major and minor approach and increase in 

proportion of commercial land use by area in a given census block group were the intersection is 

situated. Pedestrian level score was manifested by the increase in percentage of people using the 

public transit in a given block group where the intersection was situated, population density, 

percentage of household below poverty level, number of workers commuting to their working 

places by foot per square mile, walk score index, proportion of commercial land use and presence 

of pedestrian facility separated from the roadway. 

During model development comparison was made across all potential count models that could 

fit the data. Appropriate goodness of fit tests and cross validation techniques were used in selecting 

the model with the best fit. Zero Inflated Poisson Model (ZIP) and Zero Inflated Negative Binomial 

Model (ZINB) were used as the final count model for pedestrian and bicycle SPFs respectively. 
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8 Appendix 

Table 19: List of all the data that were collected for modeling purpose 

Description Mean 

Std. 

Dev. Min Max 

Total number of bicycle crashes(2010-2014) 0.647 1.353 0 8 

Total number of pedestrian crashes(2010-2014) 0.474 0.968 0 10 

Average pedestrian crashes(crashes/year) 0.299 0.464 0 2 

Average Bicycle Crashes(crashes/year) 0.317 0.513 0 2 

Intersection  type  3.701 0.458 3 4 

Intersection type: Three leg 0.299 0.458 0 1 

Intersection type: Four leg 0.701 0.458 0 1 

AADT of the major approach 

14664.

0 8879.0 1388 57285 

AADT of the minor approach 6696.3 5207.7 346 24716 

Number of exclusive through lane in the major 

approach 1.534 1.564 0 8 

Number of shared through-right turn lane in  the major 

approach 0.876 0.848 0 2 

Number of share through-left turn lane in the major 

approach 0.126 0.403 0 2 

Number of shared through-right-left turn lane in the 

major approach 0.209 0.584 0 2 

Number of shared left-right  turn lane in the major 

approach 0.039 0.193 0 1 

Number of exclusive right  turn lane in the major 

approach 0.570 0.739 0 3 

Number of exclusive left turn lane in the major 

approach 1.253 0.849 0 4 

Number of lane for leaving traffic in the major 

approach 2.925 1.367 0 9 

Presence of crosswalk in the major approach 0.611 0.488 0 1 

Presence of median in the major approach 0.088 0.283 0 1 

Presence of pedestrian  facility in the major approach 0.773 0.419 0 1 

Presence of pedestrian facility separated from traffic in 

the major approach 0.446 0.498 0 1 

Presence of bike lane in  the major approach 0.018 0.133 0 1 

Presence of on-street parking in the major approach 0.031 0.173 0 1 

One way indicator for the major approach 0.008 0.088 0 1 

Number of exclusive through lane in the minor 

approach 0.853 1.314 0 8 

Number of shared through-right turn lane in  the minor 

approach 0.784 0.841 0 2 
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Number of share through-left turn lane in the minor 

approach 0.147 0.427 0 2 

Number of shared through-right-left turn lane in the 

minor approach 0.312 0.688 0 2 

Number of shared left-right  turn lane in the minor 

approach 0.088 0.283 0 1 

Number of exclusive right  turn lane in the minor 

approach 0.515 0.713 0 3 

Number of exclusive left turn lane in the minor 

approach 1.080 0.924 0 4 

Number of lane for leaving traffic in the minor 

approach 2.356 1.140 1 8 

Presence of crosswalk in the minor approach 0.580 0.494 0 1 

Presence of median in the minor approach 0.064 0.246 0 1 

Presence of pedestrian facility in the minor approach 0.742 0.438 0 1 

Presence of pedestrian facility in the minor approach 

separated from  roadway 0.392 0.489 0 1 

Presence of bike lane in  the minor approach 0.015 0.124 0 1 

Presence of on-street parking in the minor approach 0.039 0.193 0 1 

One way indicator for the minor approach 0.018 0.133 0 1 

Control type: Traffic signal 0.742 0.438 0 1 

Control type: Two way stop sign 0.216 0.412 0 1 

Control type: All way stop sign 0.041 0.199 0 1 

Control type: Stop sign(Two way and all way 

combined) 0.258 0.438 0 1 

Signal configuration/arrangement: Diagonal 0.466 0.500 0 1 

Signal configuration/arrangement:  Box 0.276 0.447 0 1 

No turn on red on the major approach 0.015 0.124 0 1 

Protected left turn on the major approach 0.302 0.460 0 1 

No turn on red on the minor approach 0.018 0.133 0 1 

Protected left turn on the minor approach 0.291 0.455 0 1 

Presence of crosswalk  0.647 0.479 0 1 

Presence of median  0.131 0.338 0 1 

Presence of pedestrian  facility  0.794 0.405 0 1 

Presence of pedestrian facility separated from traffic  0.577 0.495 0 1 

Presence of bike lane  0.034 0.180 0 1 

Presence of on-street parking  0.590 0.492 0 1 

One way indicator for the major approach 0.049 0.216 0 1 

Presence of pedestrian facility 0.026 0.159 0 1 

National functional classification: Arterial: Arterial 0.521 0.500 0 1 

National functional classification: Collector-Arterial 0.358 0.480 0 1 

National functional classification: Collector-Collector 0.121 0.327 0 1 

Speed limit on the major approach 43.144 9.038 25 70 

Speed limit on the minor approach 35.180 8.781 20 55 

Walk score index 35.188 24.828 0 94 
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Proportion of land use by census block : Commercial 0.252 0.281 0 1 

Proportion of land use by census block: Industrial 0.063 0.171 0 1 

Proportion of land use by census block: Institutional 0.078 0.159 0 1 

Proportion of land use by census block: Outdoor 

recreation 0.036 0.136 0 1 

Proportion of land use by census block: Residential 0.570 0.316 0 1 

Proportion of land use by area: Commercial 0.146 0.283 0 1 

Proportion of land use by area: Industrial 0.054 0.184 0 1 

Proportion of land use by area: Institutional 0.030 0.117 0 1 

Proportion of land use by area: Outdoor recreation 0.025 0.132 0 1 

Proportional of land use by area: Residential 0.746 0.357 0 1 

Means of transportation: Percentage of worker using 

cars in a given census block 94.216 8.341 

34.9616

2 100 

Means of transportation: Percentage of worker using 

public transport in a given census block  0.940 2.348 0 22.2 

Means of transportation: Percentage of worker using 

bus in a given census block 0.931 2.321 0 22.2 

Means of transportation: Percentage of worker using 

taxi in a given census block 0.055 0.512 0 9.2 

Means of transportation: Percentage of worker using 

motorcycle in a given census block 0.217 0.615 0 5.9 

Means of transportation: Percentage of worker biking  

in a given census block 0.044 0.187 0 2.4 

Means of transportation: Percentage of worker 

walking  in a given census block 1.453 4.595 0 40.8 

Bicyclist commuter density for a census block 0.596 2.716 0 29.8 

Walking commuter density for a census block 34.638 

145.51

0 0 

1671.

9 

Percentage of household above poverty level in given 

census block 79.934 25.587 

0.46854

3 100.0 

Percentage of household below the poverty level in a 

given census block 13.128 14.032 0 83.7 

Percentage of whites in a census block 79.409 26.327 0 100.0 

Percentage of blacks in in a census block 13.446 25.636 0 99.7 

Percentage of Indian Alaska in a census block 0.385 1.591 0 28.1 

Percentage of Asian in 0.25 mile  in a census block 3.167 5.081 0 35.6 

Population density in a census block 

412.57

4 

366.54

5 0 

2384.

9 
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