Western Michigan University ScholarWorks at WMU

Waldo Library Student Exhibits

University Libraries

Summer 2024

Quasi – Monte Carlo Estimation for Functional Generalized Linear Mixed Models

Ruvini Jayamaha Western Michigan University, ruvinikjayamaha@gmail.com

Follow this and additional works at: https://scholarworks.wmich.edu/student_exhibits

Part of the Statistics and Probability Commons

WMU ScholarWorks Citation

Jayamaha, Ruvini, "Quasi – Monte Carlo Estimation for Functional Generalized Linear Mixed Models" (2024). *Waldo Library Student Exhibits*. 9. https://scholarworks.wmich.edu/student_exhibits/9

This Poster is brought to you for free and open access by the University Libraries at ScholarWorks at WMU. It has been accepted for inclusion in Waldo Library Student Exhibits by an authorized administrator of ScholarWorks at WMU. For more information, please contact wmuscholarworks@wmich.edu.

can be conceptualized as functions.

- Random Intercept model:

$$g[E(Y_{ik})] \approx \beta_0 + \sum_{k=1}^{\kappa} b_{1k} x_k + ZU_0 \quad i = 1, \cdots, n$$

Let $P_K = \{c_k: k = 1, ..., K\} \in C^q$. The QMC approximated log-likelihood is,

$$V(\beta,\theta) = \log\left[\frac{1}{K}\sum_{k=1}^{K}\exp\left\{\sum_{i=1}^{n}I_i(\beta,\Sigma^{\frac{1}{2}}F^{-1}(c_k))\right\}\right]$$

 \square MLE $\hat{\beta}$ of β must be the solution of the score equations:

$$\dot{I}_{\beta} = \frac{\partial}{\partial\beta} I(\beta, \theta) = \sum_{k=1}^{\kappa} w_k \left\{ \sum_{i=1}^{n} \frac{a_i(y_i - h(\eta_{ik}))}{\phi v(\mu_{ik}) \dot{g}(\mu_{ik})} x_i \right\} = 0$$

QUASI – MONTE CARLO ESTIMATION FOR FUNCTIONAL GENERALIZED LINEAR MIXED MODELS Ruvini Jayamaha and Dr. Hyun Bin Kang Department of Statistics, Western Michigan University, Kalamazoo, MI