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Chapter 1: Introduction 

The recent rise in cycling in many cities can be attributed to municipal efforts to promote the 

health, environmental, and economical benefits of non-motorized modes. Cycling’s increased 

mode share consequently leads to a higher demand for reliable bicycle traffic assignment 

methodology. Unfortunately, there is only a limited quantity of tools and methods available for 

modeling bicycle trips in a network. Only a few research efforts focus on network analysis for 

bicycle trips (e.g., Klobucar and Fricker, 2007; Broach et al., 2011; Mekuria et al., 2012). While 

these methods do provide pioneering efforts to develop traffic assignment methods for bicycle 

trips, they are too simplistic. Given an origin-destination (O-D) trip table that describes the travel 

demand pattern within a study area, the traffic assignment problem is to determine the flows by 

assigning the O-D trip table to routes in a transportation network according to some behavioral 

route choice rules. However, current methods are based simply on the all-or-nothing (AON) 

assignment method using a single attractiveness measure such as distance, safety, or a composite 

measure of safety multiplied by distance. This is problematic because cyclists travel not only on 

one route, but on many different routes based on different levels of biking experience and 

different preferences using different combinations of criteria for selecting a cycle route. The 

AON simplistic modeling of cyclists’ route choice will affect the bicycle traffic assignment 

results and may influence investment decisions for bicycle infrastructures. Therefore, it is 

imperative to incorporate heterogeneous cyclist route choice behaviors in the bicycle traffic 

assignment model in order to enhance the accuracy of bicycle traffic forecasts. 

 

The route choice model for bicycles is much more complex than the model for private motorized 

vehicles because there many influential factors affecting cyclist route choice decisions. 

According to empirical studies on bicycle route analysis, cyclists choose routes based on any 

number of criteria that may include distance, number of intersections, road grade, bicycle 

facility, and safety. In identifying the factors that affect cyclist route choice decisions, Stinson 

and Bhat (2003), Hunt and Abraham (2007), and Broach et al. (2011) discovered travel 

distance/time was significant while Hopkinson and Wardman (1996), Akar and Clifton (1996), 

Dill and Carr (2009) and Winters et al. (2011) revealed safety was likewise influential. Sener et 

al. (2009) confirmed that the travel distance/time and safety were important factors in cyclist 



Space Syntax: Regional Planning for Bicycles 

3 

 

route choice. Mekuria et al. (2012) suggested that stress is an important factor in cyclist trip-

making behavior.  Handy and Xing (2011) analyzed the key factors in commuting trips in six 

small U.S cities, while Heinen and Handy (2012) compared the factors with respect to health, 

environmentally friendliness, and travel enjoyment in bicycle cities like Davis in the United 

States and Delft in the Netherlands. Using GPS tracking data, Hood et al. (2011) developed a 

path-size logit (PSL) model (Ben-Akiva and Birelaire, 1999) as a cyclist route choice model and 

performed the bicycle traffic assignment on a pre-enumerated path set generated by the doubly 

stochastic method (Bovy and Fiorenzo Catalano, 2007). Menghini et al. (2008) also adopted a 

PSL model for traffic assignment on a pre-generated path using a breadth-first search link 

elimination approach. On the other hand, Ryu et al. (2015) developed a two-stage bicycle traffic 

assignment model. The first stage considers two key criteria (e.g., distance related attributes and 

safety related attributes) to generate a set of non-dominated (or efficient) paths, while the second 

stage determines the flow allocation to the set of efficient paths. 

 

While it is important to analyze the various criteria that affect cyclist decision making, it is also 

critical to consider multiple user classes in a bicycle traffic assignment model. According to a 

study on Portland cyclists (Geller 2006), residents can be categorized into four types of cyclists: 

“The Strong and the Fearless,” “The Enthused and the Confident,” “The Interested but 

Concerned,” and “No Way No How.” Each group has distinct relationships and attitudes with 

bicycle transportation that may affect their preferences in route choice. 

 

Consequently, the purpose of this research is to build on these existing studies by developing a 

multi-class and multi-criteria bicycle traffic assignment model that explicitly considers multiple 

user classes and multiple criteria affecting cyclist route choice decisions for estimating bicycle 

volumes on a transportation network. The multi-class component aims to model the different 

types of cyclists by segmenting them into multiple user classes according to the cyclists’ 

characteristics, while the multi-criteria component aims to model the relevant factors (e.g., least 

elevation gain route, shortest distance route, safest route, least accident route, bike friendly route, 

lowest pollution route, route with green space, etc.) that affect each user class’s behavior in 

making route choice decisions. By integrating both the multi-criteria and multi-class components 
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into the model, this research seeks to gain a more comprehensive understanding of cyclist 

decision making and of bicycle network analysis.  

 

The overall procedure for developing the multi-class and multi-criteria bicycle traffic assignment 

model follows a two-stage process (Ryu et al., 2015). The first stage considers key criteria (e.g., 

one or more factors relevant to each user class) to generate a set of non-dominated (or efficient) 

paths for each user class, while the second stage determines the flow allocation to each user’s set 

of efficient paths. Specifically, the multiple objective shortest path problem based on relevant 

key attributes is developed in Stage 1 to generate the efficient paths for each user class, and the 

path-size logit (PSL) stochastic traffic assignment method is adopted in Stage 2 to determine the 

flow allocations in a network. Numerical experiments are conducted to demonstrate the two-

stage approach for the multi-class, multi-criteria bicycle traffic assignment. 

 

The remainder of this paper is organized as follows. After the introduction, the multiple bicycle 

user classes and criteria are described, followed by the presentation of the two-stage traffic 

assignment procedure, a numerical experiment to demonstrate the features and applicability of the 

proposed two-stage procedure, and some concluding remarks. 
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Chapter 2: Methodology 

This section describes the methodology for modeling the multi-class, multi-criteria bicycle traffic 

assignment procedure as shown in Figure 1. There are two stages in this procedure: (1) route 

generation for determining individual route choice sets based on the relevant criteria for each user 

class, and (2) traffic assignment for allocating flows to routes of each user class. The multi-class, 

multi-criteria bicycle traffic assignment model assigns the bicycle O-D matrices of multiple user 

classes (assumed to be given from the mode choice step of a four-step travel demand forecasting 

model) based on the path-size logit (PSL) stochastic traffic assignment model using the relevant 

individualized route sets to obtain the bicycle traffic flow pattern on the network. 

 

 

Figure 1. Multi-class, multi-criteria bicycle traffic assignment procedure 

 

The following subsections describe the multiple user classes, the multiple criteria affecting cyclists’ 

route choice decisions, the multi-objective shortest path algorithm, and the PSL stochastic traffic 

assignment model for flow allocations to the efficient paths. 
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2.1 Multiple User Classes 

Based on the Portland study (Geller, 2006), it has been suggested that there are four types of 

transportation cyclists as indicated in Figure 2. These four types of cyclists are: (1) strong and 

fearless, (2) enthused and confident, (3) interested but concerned, and (4) no way no how. Strong 

and fearless cyclists represent less than 1% of the population; they are the rare daily commuters 

who “will ride regardless of roadway conditions.” Enthused and confident cyclists represent 7% 

and are semi-regular cyclists who are “comfortable sharing the roadway with automotive traffic, 

but they prefer to do so operating on their own facilities” (e.g., bicycle lanes and bicycle 

boulevards). The interested but concerned cyclists, who represent 60% of the population, are 

irregular cyclists who are “curious about cycling” but are concerned with riding a bicycle. Lastly, 

no way no how travelers represent 33% and are simply “not interested in bicycling at all, for 

reasons of topography, inability, or simply a complete and utter lack of interest”. The study also 

noted that “the separation between these four broad groups is not generally clear-cut”. However, 

this classification with percentage to each user class serves as a good foundation to develop a 

multi-class version of the multi-criteria bicycle traffic assignment model. 

 

 

Figure 2. Four types of cyclists in Portland (Geller, 2006) 

 

2.2 Criteria Affecting Cyclists’ Route Choice 

Empirical studies on bicycle route choice analysis indicate that cyclists choose routes based on a 

number of criteria. Examples of key criteria include travel distance or time (Stinson and Bhat, 

2003; Hunt and Abraham, 2007; Broach et al., 2011), safety (Hopkinson and Wardman, 1996; 

Akar and Clifton, 2009; Dill and Carr, 2003; Winters et al., 2011), stress (Mekuria et al. 2012), 

travel distance/time and safety (Sener et al., 2009), etc. Willis et al. (2015) summarized the 

influential factors that may affect bicycle travel with 24 relevant papers published between 2005 

and 2015. Route planners acknowledge the diversity and quantity of influential factors by 

Interested but Concerned (60%) No way No How (33%)

Enthused and Confident (7%)

Strong and Fearless (<1%)
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providing a variety of bicycle routes that optimize different factors (e.g., least elevation gain route, 

shortest distance route, safest route, least accident route, bike friendly route, lowest pollution route, 

route with green space, etc.) to serve the needs of different cyclists.  

In this study, three key criteria (e.g., route distance related attributes, route safety related attributes, 

and route pollution related attributes) are adopted to develop the multi-class, multi-criteria bicycle 

traffic assignment model. These criteria are composed of many factors; it encompasses the relevant 

factors identified by the literature for modeling route choice decisions for each cyclist class. For 

example, criteria related to route safety incorporates many of the cyclist safety concerns that 

Hopkinson and Wardman (1996), Akar and Clifton (2009), Dill and Carr (2003) and Winters et al. 

(2011) uncovered in their research regarding route choice. Figure 3 provides a summary of the 

different factors by organizing them into four groups and showing how the factors contribute to 

the three key criteria used to model cyclists’ route choice decisions for different user classes. The 

four factor category groups include (a) motorized traffic related data (e.g., traffic volume, 

proportional of heavy vehicles, speed limit, etc.) used in the Highway Capacity Manual (HCM, 

2010), (b) network topology (e.g., link distance, slope, intersection configuration, etc.), (c) bicycle 

facility (e.g., bike lane, bike path, bike parking, etc.), and (d) user preferences (e.g., road cognition, 

environmental impact, bike friendliness, etc.). These factors are further applied into the three key 

criteria (distance-related attributes, safety-related attributes, and air pollution related attributes) to 

determine cyclist route choice decisions for different user classes. The details of these three key 

criteria are described in the following subsections. 
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Figure 3. Three key criteria affecting cyclists’ route choice decisions 

 

2.2.1 Route Distance  

As a composite measure, route distance is composed of both the sum of link distances along the 

route and the turning movement penalties (or delays) at intersections that the route passes through. 

Intersection delays are especially significant for cyclists; they have been shown to be a major 

deterrent against route choice. To address the unit incompatibility problem between link length 

and intersection turning movement penalty (link length measures length in meters while 

intersection penalty measures time in seconds), penalty is converted to an equivalent distance unit 

with an appropriate conversion factor. The route distance can be computed as follows: 

, RS, K
i i

rs rs t t rs rs m

k a ka i i ka kb rs

a A a IN b OUT

d l cf d rs k  
  

       (1) 

where 
rs

kd  is the distance (in meter) on path k connecting O-D pair rs; al  is the length (in meter) 

on link a; 
rs

ka (
rs

kb ) is the path-link indicator; 1 if link a (b) is on path k between O-D pair rs and 

0; 
t

icf  is the penalty conversion factor  to an equivalent distance unit (in meter/second) for turning 

movement t at intersection i; 
t

id  is the penalty (in second) of turning movement t at intersection i; 

A is the set of links; INi and OUTi are the sets of links terminating into and originating out of 
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intersection i; RS is the set of O-D pairs; and Km

rs  is the set of paths connecting O-D pair rs of 

class m. The route distance in Eq. (1) can be computed by summing the link distances (first term) 

and the intersection penalties (second term) caused by turning movement from link a to link b of 

intersection i that comprise of that path. Note that the first term can further include other attributes 

such as penalty for links with elevation gain, restriction on gradient, or any attribute that has an 

impact on the physical geometry of the link. On the other hand, the second term can further include 

signalized delays at intersections. Note that using two consecutive path-link indicators rs rs

ka kb   (i.e., 

link a and link b along path k between origin r and destination s), correct turning movement penalty 

(left, through, and right) can be appropriately added to the route cost without the need to expand 

the network to represent turning movements for all approaches of each intersection (Chen et al., 

2012). 

2.2.2 Route Bicycle Level of Service (BLOS)   

The safety aspect of bicycle facilities (or the suitability for bicycle travel) can be assessed by a 

variety of different measures. Lowry et al. (2012) recently reviewed thirteen methods used in the 

research community and found that most measures score the perceived safety of bicycle facilities 

by using a set of variables to represent conditions of the roadway and environment that affect a 

cyclist’s comfort level. To account for the different attributes contributing to the safety of bicycle 

routes in this paper, we decided to use the Highway Capacity Manual’s (2010) bicycle level of 

service (BLOS) measure as a surrogate measure. The BLOS measure is a reasonable bicycle safety 

measure to use because it is considered to be a state-of-the-art method and thus widely used across 

the United States as a guide for bicycle facility design. It should be noted that the BLOS measure 

is not the only measure of bicycle safety and that other bicycle safety measures can be easily 

substituted into our proposed framework for modeling cyclists’ route choice behavior. The route 

BLOS measure is a composite measure based on the average segment bicycle score on a route 

(ABSeg), the average intersection bicycle score on a route (ABInt), and the average number of 

unsignalized conflicts/driveways per mile on a route (Cflt). Based on the HCM (2010), the route 

BLOS can be computed as follows.  

 0.200 ( ) 0.030 exp( ) 0.050 ( ) 1.40, RS, Krs rs rs m

k k k rsBLOS ABSeg ABInt Cflt rs k        
 

(2) 
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where rs

kBLOS  is the bicycle level of service on path k between O-D pair rs; rs

kABSeg is the length 

weighted average segment bicycle score on path k between O-D pair rs              

( rs rs rs

k a a ka a ka

a A a A

ABSeg l Bseg l 
 

   
      
   
  ); la is the link length (in meter);

 
rs

kABInt is the 

average intersection bicycle score on path k between O-D pair rs 

(
i i

rs rs rs

i ka kb k

i I a IN b OUT

rs

kABInt IntBLOS N 
  

  ) ; rs

kClft is the number of unsignalized conflicts per 

km; 
rs

kN is the number of intersections on path k between O-D pair rs. 

Note that the segment and intersection bicycle scores (Bsega and IntBLOSi) provided in Eqs. (3) 

and (4) are calibrated based the volume and speed of motorized vehicles, the width configuration 

of bicycle facilities, pavement conditions, number of intersections, etc. The derived BLOS score 

is a relative measurement without score unit to evaluate the comfortableness on cycling route. The 

details of the BLOS development can be found in NCHRP Report 616 (Dowling et al. 2008). 

 
2

2

2

0.507 ln 0.199 1 10.38
4

1
7.066 0.005( ) 0.76

a
a a a

a a

a

a

v
BSeg Fs HV

PHF La

We
PC

 
     

  

 
  

 

 

(3) 

15
0.2144 0.0153 0.0066 4.1324i

i i i

i

Vol
IntBLOS Wt CD

L

 
       

   

(4) 

where  

aPHF   : peak hour factor of link a 

aHV     : proportion of heavy motorized 

vehicles of link a   

aWe      : average effective width on outside 

through lane of link a (m) 

aFs   : effective speed factor on link a 

aLa    : total number of directional through 

  lanes on link a 

av    : directional motorized vehicle volume   

              on link a (vph)   

iWt  : width of outside through lane plus 

paved shoulder (including bike lane 

where present) of intersection i 

iCD  : crossing distance, the width of the 

side  

street (including auxiliary lanes 

and median) of intersection i 

15iVol  : volume of directional traffic during a  

               15 minute period of intersection i 

iL         : total number of directional through 

              lanes of intersection i 
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aPC  : FHWA’s five point pavement surface  

  condition rating on link a 

To calculate segment and intersection LOS scores, it requires not only the volume and speed of 

motorized vehicles, which are obtained exogenously by solving the multi-class traffic assignment 

problem with multiple vehicle types, but also detailed network topology information (e.g., 

pavement surface condition, average effective width of outside through land, crossing distance, 

etc.). 

2.2.3 Route Pollution  

In some cities where air quality is inadequate, cyclists may prefer a route that avoids pollution. For 

simplicity, we choose carbon monoxide (CO), which has been shown as an important indicator for 

the level of atmospheric pollution, as a representative attribute of air quality. In addition, there 

exist empirical functional expression and data availability for computing the network-wide CO 

pattern. However, other pollutants can be modeled in a similar manner (see Pankow et al. (2014) 

for a more detailed evaluation of cyclists’ exposure to traffic related air pollution). In this study, 

the route pollution is computed as follows: 

, K , RSrs rs m

k a ka rs

a A

CO g k rs


    
 

(5) 

where ag is the amount of CO pollution in grams per hour (g/h) on link (or segment) a.
 
To estimate 

the amount of CO pollution, we adopt the nonlinear macroscopic model of Wallace et al. (1998): 

   
 

0.7962
0.2038 exp a

a a a a

a a

l
g v t v

t v

 
     

 
 (6) 

where
 av is the motorized vehicle volume on link a;  a at v  is the link travel time (in minutes); and 

la is the link length (in meters). The above CO emission has also been adopted in Yin and 

Lawphongpanich (2006), Nagurney et al. (2010), Chen and Xu (2012), Chen and Yang (2012), 

Ng and Lo (2013), Xu et al. (2013, 2015), and Szeto et al. (2014).  

 

2.3 Multi-Objective Shortest Path Procedure 
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The three key criteria identified in Section 2.2 will be used in the multi-objective shortest path 

procedure to generate non-dominated (or efficient) paths relevant to each user class. The solution 

procedure for multiple objective shortest path problems involves the generation of a set of non-

dominated (or Pareto) paths because there may not be a single optimal path that dominates all other 

paths in all objectives. This detail makes the solution procedure for the multi-objective shortest 

path problem distinct from that of the single objective shortest path problem. In the literature, there 

are several solution procedures that have been developed for solving the multi-objective shortest 

path problem, including the label correcting approach (Skriver and Andersen, 2000), the label 

setting approach (Tung and Chew, 1992), the ranking method (Climaco and Martins, 1982), and 

the two-phase method (Ulungu and Teghem, 1995). In addition to generating a set of efficient 

paths, the multi-objective shortest path procedure needs to handle a non-additive route cost 

structure (i.e., the route cost is not a simple additive sum of the link attributes). Of the objectives 

(or criteria) considered for bicycle route generation, route BLOS is non-additive. It is a composite 

measure based on the average segment bicycle score (ABSeg given in Eq. (3)) on a route, the 

average intersection bicycle score (ABInt given in Eq. (4)) on a route, the average number of 

unsignalized conflicts/driveways per mile on a route (Cflt), and the route-specific constant (1.40). 

These four terms (ABSeg, ABInt, Cflt, and 1.40) are non-additively combined to calculate the route 

BLOS. Of the four multi-objective shortest path methods mentioned above, the label correcting 

approach, the label setting approach, and the ranking method are not directly applicable for solving 

non-additive shortest path problems with multiple objectives. In this paper, we adopted the two-

phase procedure developed by Ulungu and Teghem (1995) for solving the multi-objective shortest 

problem with non-additive route cost structure to generate a set of efficient paths. Note that Ehrgott 

et al. (2012) also adopted the two-phase procedure for solving the bi-objective cyclist route choice 

model. The overall two-phase procedure is described in Section 3.  

 

2.4 Path-Size Logit Stochastic Traffic Assignment 

In the stochastic traffic assignment problem, route overlapping is one of the major concerns in 

modeling route choice decisions (see Prashker and Bekhor (2004) and Chen et al. (2012) for a 

detailed description of the different approaches for handling the route overlapping problem). In 

this paper, the path-size (PS) factor is adopted to handle the route overlapping problem due to its 
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simplicity and relatively better performance compared to other closed-form models (e.g., cross-

nested logit (CNL) model and paired combinatorial logit (PCL) model). The PS factor accounting 

for different path sizes is determined by the length of links within a path and the relative lengths 

of paths that share a link as follows: 

K

1
, RS, K

m
rs

rs ma
k rsrs rs

a k k la

l

l
PS rs k

L 



 
   

       
   

 




 (7) 

where rs

kPS  is the PS factor of path k between O-D pair rs; la is the length of link a; and rs

kL  is the 

length on path k between O-D pair rs. Paths with a heavy overlapping with other paths have a 

smaller PS value, while paths that are more distinct have a larger PS value. For other functional 

forms of the PS factor, see Bovy et al. (2008) and Prato (2009). With the derived PS value in Eq. 

(7), the PS-logit (PSL) probability for the stochastic traffic assignment problem can be expressed 

as 

 

 
1

exp
, RS, K

exp

rs rs

k krs m

k rsn
rs rs

j j

j

PS U
P rs k

PS U



   


 (8) 

where rs

kU  is the utility of path k between O-D pair rs. A possible way to define the utility is as 

follows: 

      , RS, Krs rs rs rs m

k k k k rsU d BLOS CO rs k
  

        (9) 

where ,  and  are parameters of the utility function. Figure 4 provides an illustration of how the 

PSL model resolves the route overlapping problem using the loop-hole network. This network, 

which is shown in Figure 4(a), consists of three routes. Route 1 (R1) is an independent route (i.e., 

no overlapping with other routes), while Route 2 (R2) and Route 3 (R3) share an overlapping 

percentage x between the two routes. For illustration purposes, all three routes have the same 

distance. The route choice probability with different percentages of route overlapping is shown in 

Figure 4(b). As can be seen, the PSL model gives the same choice probability as the multinomial 
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logit (MNL) model when there are no route overlaps (x=0). In this case, the independence 

assumption (i.e., the three routes are distinct without any overlap) is fully satisfied, and the PSL 

model degenerates to the MNL model at x=0. However, when there are route overlaps (x>0), the 

PSL choice probability of the two overlapping routes (R2+R3) becomes smaller with an increasing 

x value (i.e., shown in the green line), which is more reasonable compared to the constant MNL 

choice probability results (i.e., R1 shown in the red line and R2+R3 shown in the yellow line) for 

all x values. 

The PSL stochastic traffic assignment model is used to allocate the multi-class O-D demands based 

on different types of cyclists described in Section 2.1 using the combined utilities of multiple 

criteria via the PSL probability expression in Eq. (8).  

 

 

 

(a) Loop-hole network        (b) Route choice probability 

Figure 4. Illustration of the PSL model in resolving the route overlapping problem 

 

Chapter 3: Solution Procedure 

The overall procedure for solving the multi-class and multi-criteria bicycle traffic assignment 

model follows a two-stage process, which is described in Figure 1. The first stage generates a set 

of non-dominated, efficient paths for each user class by inputting multiple criteria (route distance, 

route level of service, route air pollution) in a multiple objective shortest path algorithm. The 

second stage then produces a complete bicycle flow pattern on the network by adapting a path size 

logit (PSL) stochastic multi-class traffic assignment model that determines the flow allocations to 
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the efficient paths generated in Stage 1. This section describes the details of the two-stage multi-

class, multi-criteria bicycle traffic assignment procedure. 

3.1 Stage 1: Multi-Objective Route Generation 

In Stage 1, the two-phase procedure developed by Ulungu and Teghem (1995) is adopted to solve 

the multi-objective shortest problem with non-additive route cost structure. In the first phase, the 

possible routes are generated using one of the objectives, while the second phase determines the 

efficient routes (or non-dominated routes) relative to the remaining objectives. The overall two-

phase procedure is described in Figure 5.  

 

 

Figure 5. Two-phase procedure for generating efficient routes 

 

Using the three key criteria as an example for illustration purposes, the first phase uses the 

distance-related attributes (i.e., link distance and intersection delay) to generate a set of realistic 

routes without exceeding the maximum allowable bound. The corresponding safety-related 

attributes (route BLOS) and pollution-related attributes (route CO) are also computed. If the routes 

are higher than the threshold values (e.g., 
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with the minimum distance. Then, the next route is compared to the routes in the efficient route 

set to determine whether it satisfies the non-dominated route condition. If the route is satisfied, the 

route will remain in the efficient route set. The process is repeated for the remaining routes in the 

set.  A pseudo code of the two-phase procedure is provided to generate efficient routes for all 

origin-destination (O-D) pairs and all user classes as follows: 

do rs=1 to RS 

 do m=1 to M 

Km

rs     
// Initialize route set 

   while 
1 1( )rs rs

k kz z  

K Km m

rs rs k    // Generate all possible routes for the first objective 

             end while                           

   if  
2 2 3 3( ) ( )rs rs rs rs

k kz z or z z   K Km m

rs rs k   

end if                     // Exclude dominated routes by comparing with other objectives 

  do n=1 to Criteria # -1 

   Ascending order with 
1

rs

kz  

 
K {1}m

rs   
// Initialize efficient route set with the first route  

   do k=2 to |K |m

rs
   // Update efficient route set with other routes  

 do l=1 to |K |m

rs
 

     if  1, 1,( )rs rs

n k n lz z   K Km m

rs rs k    

  else  K K { }m m

rs rs k   

  end if 

    end do  

   end do 

  end do 

end do  

end do  

 

Each user class has its own efficient route set that considers the tradeoffs among the multiple 

criteria that are important to the users in each class. The route generation procedure extends the 

two-phase multi-objective shortest path procedure to determine multiple efficient path sets for 

multiple user classes. To reduce the intensive memory requirements of storing efficient paths, a 

universal efficient path set is designed to store the efficient paths for all user classes without the 

need to separately store efficient paths for each individual user class (i.e., an efficient path can be 

shared or used by multiple user classes). A binary (true/false) indicator in each user class is used 

to determine the individual class efficient path set out of the universal efficient path set. This 
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simple scheme can help reduce the memory requirements by eliminating the storage of redundant 

efficient paths for each user class. Figure 6 provides an example of the individual class efficient 

path set and the universal efficient path set for all classes with three criteria obtained from the route 

generation procedure in Stage 1. 

 

 

Figure 6. Example of individual class efficient route set and the universal efficient route set 

 

3.2 Stage 2: Customized Path-based Algorithm  

In Stage 2, a customized path-based algorithm is developed for solving the PSL stochastic multi-

class and multi-criteria bicycle traffic assignment model. The overall flowchart is provided in 

Figure 7. The main steps include: (1) computing the path-size factor and utility for each efficient 

path identified in stage one for each user class, (2) calculating the path probability based on the 

PSL model for each user class, (3) assigning the demand to the efficient paths according the PSL 

probabilities for each user class, and (4) outputting the bicycle flow pattern on the network, which 

includes individual class route and link flows as well as aggregate route and link flows of all classes.  
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Figure 7. Path-based bicycle traffic assignment procedure 

 

4 NUMERICAL RESULTS 

To demonstrate the multi-class, multi-criteria bicycle traffic assignment problem, three classes of 

cyclists are adopted to develop the numerical experiments for examining the effects of multiple 

user classes and multiple criteria on the bicycle traffic assignment results. The three cyclist classes 

are as follows: the “strong and fearless” cyclist class (who compose of less than 1% of the 

population), the “enthused and confident” cyclist class (7% of the population), and the “interested 

but concerned” cyclist class (60% of the population). The “no way no how” cyclist class, who 

compose of 33% of the population, is not included in the numerical experiments because this user 

class does not consider cycling as a potential mode. The two-stage bicycle traffic assignment 

procedure is coded in Intel Visual FORTRAN XE and runs on a 3.60GHz processor and 16.00GB 

of RAM. The total computational efforts require 603 seconds, about 95% of which is spent in the 

first stage. 
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4.1 Description of the Network and Scenarios 

A real network in the City of Winnipeg, Canada is used to demonstrate the applicability of the 

two-stage procedure for performing the multi-class, multi-criteria bicycle traffic assignment 

problem. Figure 8 provides an illustration of the Winnipeg network, which consists of 154 zones, 

1,067 nodes, 2,555 links (1,943 links without centroid connectors), and 4,345 O-D pairs for 

motorized vehicles. The network structure, O-D trip table for motorized vehicles, and link 

performance parameters are from the Emme/4 software (INRO Consultants, 2013). The bicycle 

network is assembled based on information obtained from the City of Winnipeg (2013). 541 of the 

2,555 links are bikeways.  The bicycle O-D demand is created based on the gravity model with the 

gamma impedance function using 2006 census data (City of Winnipeg, 2006). Note that trip 

lengths greater than 10 km are excluded in generating the skim trees for the gravity model. To 

create the multi-class bicycle O-D trip tables, the bicycle O-D demand is segmented into the three 

user classes mentioned above (i.e., strong and fearless cyclists, enthused and confident cyclists, 

and interested but concerned cyclists). Table 1 provides a summary of the generated bicycle O-D 

demand for each user class and the total demand for bicycle trips. Figure 9 presents the trip length 

frequency distribution (TLFD) for the bicycle trips using route distance to define the trip categories. 

As can be seen, the majority of the bicycle trips are between 2 to 7 km in length, which is in 

accordance with the values observed in Washington, D.C. (2012). 
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Figure 8. Winnipeg network with bike lanes  

 

Table 1. Generated bicycle demand for each user class 

Class # Type Proportion Total demand 

1 Strong and Fearless 1.5% 82.0 

2 Enthused and Confident 10.3% 573.9 

3 Interested but Concerned 88.2% 4919.1 

Total  100.0% 5575.0 

 

 

Figure 9. Bicycle trip length frequency distribution 
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Two scenarios are set up to examine the effects of using different number of criteria in the utility 

function on the multi-class bicycle traffic assignment model. Table 2 provides a summary of the 

two scenarios. Scenario 1 assumes all user classes adopt two criteria for the utility function, but 

the two criteria are different for each user class. On the other hand, Scenario 2 assumes the 

following: Class 1, the strong and fearless cyclist class, is only concerned with route distance; 

Class 2, the enthused and confident cyclist class, uses both route distance and route BLOS; and 

Class 3, the interested but concerned cyclist class, adopts all three criteria (route distance, route 

BLOS, and route CO) for route choice decisions. 

 

Table 2. Summary of criteria used for the utility function of each user class in the two scenarios 

 
Scenario 1 Scenario 2 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

Route Distance X X  X X X 

Route BLOS  X X  X X 

Route CO X  X   X 

 

4.2 Characteristics of the Winnipeg Network 

Figure 10 shows the characteristics of the Winnipeg network that are used to compute the three 

key route choice criteria described in Section 2.2. Figure 10(a) depicts the link length distribution 

used for computing the three route choice criteria; Figure 10(b) and Figure 10(c) plot the motorized 

volume and speed distributions obtained from the multi-class motorized vehicle traffic assignment 

results provided by the Emme/4 software (INRO Consultants, 2013); Figure 10(d) and Figure 10(e) 

show the computed bicycle segment and intersection LOS distributions based on Eqs. (3) and (4) 

from HCM (2010); and Figure 10(f) plots the link CO distribution based on the nonlinear 

macroscopic model of Wallace et al. (1998) given in Eq. (6). A segment with a high motorized 

vehicle volume typically gives a higher BLOS value, while links with a larger effective width on 

the outside lane typically gives a lower BLOS value. In addition, a segment with a high motorized 

vehicle volume typically yields a large value for CO due to the congestion effect. These  
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(a) Link length distribution 

 
(b) Motorized volume distribution 

 
(c) Motorized speed distribution 

 
(d) Segment LOS distribution 

 
(e) Intersection LOS distribution 

 
(f) Link CO distribution 

Figure 10. Characteristics of the Winnipeg network 
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characteristics of the Winnipeg network serve as the input factors for calculating the three route 

criteria: route distance, route BLOS, and route pollution. 

 

4.3 Route Generation Results from Stage One 

Based on the characteristics of the Winnipeg network shown in Figure 10, Stage 1 uses the two-

phase procedure to generate a set of efficient routes for each user class according to the criteria 

adopted in the two scenarios. In this study, we assume an upper bound for each criteria (i.e., 10 

km for route distance, 7 for route BLOS, and 25 CO g/h for route pollution) to generate the efficient 

bicycle routes. 

Figure 11 provides a sample of the results of the route distribution using three criteria for Class 3 

in Scenario 2 and a comparison of the total number of efficient routes between the two scenarios. 

Specifically, Figures 11(a), (b) and (c) show the route distribution using distance, BLOS, and CO, 

respectively, while Figure 11(d) compares the total number of efficient routes for each user class 

in each of the two scenarios. For Class 3 in Scenario 2, the total number of efficient routes is 

50,994 with an average of 6.92 routes per O-D pair (there are 7,368 O-D pairs overall in the 

Winnipeg network). Longer distance O-D pairs typically have more efficient routes, while shorter 

distance O-D pairs have less efficient routes. In terms of the route distribution, most routes are 

between 5 to 8 km in terms of distance, 3 to 4 for BLOS values, and 5 to 8 CO g/h for pollution. 

As for the comparison between the two scenarios, the number of efficient routes depends on the 

number of criteria and the specific criteria used to generate the efficient routes.  

In Scenario 1, all three user classes use two criteria with different combinations of criteria (e.g., 

route distance and route pollution for Class 1, route distance and route BLOS for Class 2, and route 

BLOS and route pollution for Class 3) as shown in Table 2, but the numbers of efficient routes 

generated are quite different as shown in Figure 11(d). In Scenario 2, it is clear that as the number 

of criteria increases, the number of efficient routes increases. This is generally expected for the 

multi-objective optimization problem (i.e., the number of non-dominated solutions increases 

exponentially as the number of criteria increases). Between the two scenarios, users from Class 1 

have the least number of efficient routes (with either using route distance only as in Scenario 2 or 

using both route distance and route pollution as in Scenario 1). On the other hand, users from Class 
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3 have the most number of efficient routes with using either all three route criteria as in Scenario 

2 or just two criteria (i.e., route BLOS and route pollution) as in Scenario 1.  

 

 
(a) Route distribution by distance 

 
(b) Route distribution by BLOS 

 
(c) Route distribution by CO 

 
(d) Total number of efficient routes by user 

class between the two scenarios 

Figure 11. Route distribution by route criterion for class 3 of scenario 2 and total number of 

efficient routes by user class between the two scenarios 

 

4.4 Bicycle Traffic Assignment Results from Stage Two 

Using the efficient routes generated from the first stage for all user classes, we perform the 

customized path-based algorithm for assigning the multi-class bicycle O-D trip tables to the 

network according to the PSL stochastic loading method. In this study, the following parameters 
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are used for the utility function in Eq. (9): 0.862; 0.117;    (these two values are obtained 

from Kang and Fricker, 2013), and 0.05   (this value is assumed). Figure 12 depicts the link 

flow pattern of each user class for both scenarios. Note that the magnitude of the link flow is color 

coded and represented by the thickness of the line. For the link flow pattern of Class 1 in Scenario 

1, the total number of efficient routes (using the criteria route distance and route pollution) is 

10,695. Conversely, in Scenario 2 (which uses route distance as the sole criterion), the total number 

of efficient routes is 7,368. Therefore, the link flow patterns between the two scenarios are quite 

different since different numbers and route utilities are being used to assign the O-D demand of 

Class 1. On the other hand, Class 2 users of both scenarios use the same two objectives (route 

distance and route BLOS) to compute the route utilities, and consequently yield the same link flow 

pattern. As for Class 3, the two scenarios adopt different objectives (i.e., route BLOS and route 

pollution for Scenario 1 and all three route criteria for Scenario 2) and generate different numbers 

of efficient routes (See Figure 11(d)). However, the resulting link flow patterns are visually similar 

as this class has the largest amount of O-D trips (88% of total demand or 4919 trips out of 5575 

trips) compared to 656 trips or less than 12% in Class 2 and Class 3 (See Table 1).   
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Class Scenario 1 Scenario 2 

1 

  

2 

  

3 

  

Figure 12. Link flow pattern of each user class for both scenarios 
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For the aggregate network measures, Table 3 provides the average traveled distance, the average 

traveled BLOS, and the average traveled CO for each user class computed according the following 

equations:  

Average traveled distance: 
RS RSK K

/ , M
m m
rs rs

m rs rs rs

k mk mk

rs rsk k

ATD d f f m
  

     

 

(10) 

Average traveled BLOS: 
RS RSK K

/ , M
m m
rs rs

m rs rs rs

k mk mk

rs rsk k

ATB BLOS f f m
  

     

 

(11) 

Averaged traveled CO: 
RS RSK K

/ , M
m m
rs rs

m rs rs rs

k mk mk

rs rsk k

ATC CO f f m
  

        (12) 

 

Table 3.  Average traveled distance, BLOS and CO for each user class and all user classes 

  Class 1 Class 2 Class 3 All 

Scenario 1 

Route distance (km/h) 4.808 5.129 5.423 5.384 

Route BLOS 3.863 3.612 3.566 3.575 

Route CO (g/h) 3.999 4.221 4.335 4.318 

Scenario 2 

Route distance (km/h) 4.787 5.129 5.136 5.130 

Route BLOS 3.847 3.612 3.639 3.640 

Route CO (g/h) 4.022 4.221 4.198 4.198 

* bold and red fonts indicate the criteria used for the specific user class  

 

A cursory glance at Table 3 would reveal several obvious patterns in aggregate network measures.  

Firstly, the table shows that route distance seems to have a higher impact when comparing the two 

scenarios (e.g., Class 1 and Class 3). This is particularly obvious in Scenario 2: Class 1, which 

uses route distance as its only criterion, has the lowest average traveled distance among the three 

user classes and in both scenarios. Lastly, the table shows a positive-correlated relationship 

between route distance and route CO. Minimizing route distance implicitly reduces the value of 

route CO (see Eqs. (5) and (6)). 

A closer inspection of Table 3 would reveal the effects of using multiple criteria in the calculation 

of the aggregate network measures. The effect can be readily observed in Scenario 1 by examining 

the values for route BLOS and route CO for Class 2 and 3. Since Class 2 focuses on minimizing 

route distance and route BLOS while Class 3 focuses on minimizing route BLOS and route CO, 

we might expect that Classes 2 and 3 would have lower values for their respective criteria of focus. 

However, Table 3 shows that Class 3’s value for route CO is higher than Class 2’s value for route 



Space Syntax: Regional Planning for Bicycles 

28 

 

CO even though route CO was minimized in Class 3 and not in Class 2. These unexpected results 

may be attributed to the multi-criteria aspect of the calculation process. It is likely that the 

weighting between the two assigned criteria is influencing the results. In the case of Class 3’s 

relatively high route CO value, route BLOS was given more weight than route CO during the 

calculation process. Thus, we can conclude that the flow patterns are sensitive to the different 

combinations of criteria. 

For the disaggregate analysis, we examine the effect of multi-class and multi-criteria 

considerations on the route choice probabilities. The user classes considered in the analysis include 

single class and multiple classes. For the single user class, two different utility functions are used 

for comparison; the first utility function uses two criteria (route distance and route BLOS), and the 

second utility function uses three criteria (route distance, route BLOS, and route pollution). For 

the multiple user classes, we continue to use the setup from the two scenarios. For demonstration 

purposes, we use O-D pairs (5-2) and (43-4) to respectively represent a short O-D pair and a long 

O-D pair in the Winnipeg network. Figure 13 shows three major efficient routes for each O-D pair 

and the route choice probabilities. For both O-D pairs, Route 1 is the shortest-distance route among 

three efficient routes, while the other two are efficient routes (but these routes do not necessarily 

have the best value in the other two criteria). For the short O-D pair (5-2), Figure 13(a) shows that 

the single user class with a bi-criteria utility function assigns a higher probability for all three 

routes compared to those of the single user class with a three criteria utility function and both 

scenarios of the multiple user classes. The reason is that the number of efficient routes generated 

for the short O-D pair using the single user class with bi-criteria utility function is much less 

compared to the other cases. Therefore, it assigns a higher probability to these efficient routes. 

Figure 13(b) shows that there is less disparity in the assigned probabilities to the three major 

efficient routes for the long O-D pair (43-3) compared to the short O-D pair (5-2). Also, Scenario 

2 assigns a higher probability to Route 1 since it only uses the route distance as the objective for 

generating efficient routes, while Scenario 1 considers both route distance and route pollution. 

From Figure 13(c), we can observe that the route choice probabilities of each class are significantly 

different in the multi-class analysis. Cyclists from Class 1 travel only on the shortest route in both 

scenarios. Although Scenario 1 considers two objectives, the network generates only one efficient 

route because both objectives (i.e., route distance and route CO) are highly correlated. There are a 

few notable differences in route choice probabilities within individual user classes. In the long O-



Space Syntax: Regional Planning for Bicycles 

29 

 

D pair (43-4) analysis, the probabilities between Routes 1 and 3 for Class 2 cyclists in both 

scenarios differ by 4.4 percentage points. For Class 3 cyclists, there is little variance in route choice 

probability for all three routes in Scenario 1. However, in Scenario 2, Class 3 cyclists experience 

greater variance in route choice probability; the probabilities between Routes 2 and 3 differ by 5.1 

percentage points. 
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Single-class Multi-class 

Bi-obj. 
Tri-

obj. 
Scenario 1 Scenario 2 

Route 1 18.1% 12.1% 13.0% 14.0% 

Route 2 17.8% 11.9% 11.6% 12.3% 

Route 3 17.3% 11.5% 11.6% 11.9% 

(a) O-D pair (5-2) 

 

 

Single-class Multi-class 

Bi-obj. Tri-obj. 
Scenario 

1 

Scenario 

2 

Route 1 27.8% 28.2% 26.3% 29.2% 

Route 2 27.9% 28.3% 25.0% 27.9% 

Route 3 23.4% 23.2% 24.5% 22.9% 

(b) O-D pair (43-4) 

O-D Route # 

Multi-class 

Scenario 1 Scenario 2 

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 

(5-2) 

Route 1 100% 18.1% 11.0% 100% 18.1% 12.1% 

Route 2 - 17.8% 11.1% - 17.8% 11.9% 

Route 3 - 17.3% 11.1% - 17.3% 11.5% 

(43-4) 

Route 1 100% 27.8% 24.9% 100% 27.8% 28.2% 

Route 2 - 27.9% 25.0% - 27.9% 28.3% 

Route 3 - 23.4% 25.0% - 23.4% 23.2% 

(c) Route choice probablities of each class in both scenarios 

Figure 13. Effect of multi-class and multi-criteria considerations on route choice probabilities 

 

 

 

Route 1 

Route 2 

Route 3 

Route 1 
Route 2 
Route 3 

Distance  BLOS CO 

1.21 
1.24 
1.25 

3.96 
3.65 
3.80 

1.52 
1.56 
1.53 

Route 1 
Route 2 
Route 3 

Distance  BLOS CO 

7.81 
7.83 
8.07 

3.62 
3.52 
3.50 

6.15 
6.16 
6.29 

Route 1 

Route 2 

Route 3 
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5 CONCLUDING REMARKS 

In this paper, we present the development of a multi-class, multi-criteria bicycle traffic assignment 

model that explicitly considers multiple user classes and multiple criteria affecting cyclist route 

choice decision-making for estimating bicycle volumes on a transportation network. The multi-

class component incorporates defined cyclist classes with differing levels of cycling experience 

and interest, while the multi-criteria component incorporates relevant factors that affect each user 

class’ behavior in route choice decision-making. The overall procedure for developing the multi-

class and multi-criteria bicycle traffic assignment model follows a two-stage process. The first 

stage considers key criteria (e.g., one or more factors relevant to each user class) to generate a set 

of non-dominated (or efficient) paths for each user class, while the second stage determines the 

flow allocation to each user’s set of efficient paths using a path size logit model. After the 

development of the model, we tested the model on a real network in Winnipeg, Canada, to 

demonstrate the applicability of the model. 

The results of the Winnipeg experiment reveal that the integration of multiple user classes and 

multiple criteria into the bicycle traffic model yield variable outcomes. There are three main 

reasons that explain the variability in outcomes. First, each user class has different route choice 

preferences that affect the attributes used in the analysis. Second, the route choice probabilities are 

highly sensitive to the number of criteria used in the analysis (e.g., two objectives in the Scenario 

1 and three objectives in the Scenario 2). Also, the aggregate network measures for route distance, 

route BLOS, and route CO are highly sensitive to the number of criteria used in the utility function, 

to the weighting of each criterion in the calculation process, and to each specific user class. Finally, 

the flows patterns between the single class model and multi-class models are significantly different 
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because the single class model is incapable of using different combinations of criteria to match the 

specific preferences of each user class.  

This paper is based on three key criteria: route distance-related attributes, route safety-related 

attributes, and route pollution-related attributes. While the route distance attribute is fairly 

straightforward, we had to choose surrogate measures for the route safety and route pollution 

criteria. For our analysis, we chose to use route BLOS as a surrogate measure for modeling cyclists’ 

perception of safety and route CO as a surrogate measure for air pollution. There are other 

possibilities for surrogate measures; for example, it may be helpful to consider measures such as 

the bicycle compatibility index (Harkey et al. (1998)) or route stress (Mekuria et al., 2012) as a 

substitute for perception of safety. Other criteria, such as route cognition based on the concept of 

space syntax (Raford et al., 2007) from the field of urban planning, may also provide more insight. 

More numerical tests should be conducted with different network topologies, bicycle facilities, 

and cyclist characteristics. Note that the current two-stage bicycle traffic assignment model did 

not consider the effect of congestion (i.e., link travel times are independent of flows). It would thus 

be necessary to consider a flow-dependent model to capture the effects of congestion and safety in 

terms of motorized traffic in the bicycle traffic assignment procedure. In addition, the two-stage 

approach could be extended to consider other travel choice dimensions (e.g., mode choice, 

destination choice, and travel choice). One example is to consider mode choice in addition to route 

choice in a multi-modal road network (Li et al., 2015). Destination choice and travel choice could 

also be considered in a similar manner to create different combined travel demand models 

involving non-motorized modes. 
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