GRASP: A Program for Improving Upper Extremity Function

Rachel Marquardt
Western Michigan University

Sarah Eckert
Western Michigan University, sarah.c.eckert@wmich.edu

Follow this and additional works at: https://scholarworks.wmich.edu/ot_posters

Part of the Occupational Therapy Commons

WMU ScholarWorks Citation

This Article is brought to you for free and open access by the Occupational Therapy at ScholarWorks at WMU. It has been accepted for inclusion in Occupational Therapy Graduate Student Evidenced-Based Research Reviews by an authorized administrator of ScholarWorks at WMU. For more information, please contact wmu-scholarworks@wmich.edu.
GRASP: A Program for Improving Upper Extremity Function

Rachel Marquardt & Sarah Eckert | Western Michigan University

1 Ask: Research Question
What is the effectiveness of the GRASP (Graded Repetitive Arm Supplementary Program) for improving ADL function for individuals within one month post-stroke?

What is GRASP?
GRASP is an exercise program for upper extremity rehab following neurological injury. The program is taught by the therapist and then completed as a “homework-based program.” Manuals exist for the Hospital and Home setting and include instructions for the exercises. Most of the activities use objects commonly found around the house.

2a Acquire: Search Terms

Databases: SCOPUS, ClinicalKey, PubMed
Search Terms: “graded repetitive arm supplementary program”
P: Individuals within one month post-stroke
I: Receiving the GRASP as intervention
C: Receiving typical therapy
O: ADL function

2b Acquire: Selected Articles


3a Appraise: Study Quality

Study 1 – Level II (N = 103)
Strengths: RCT, reliable/valid assessment tools, single-blind design, large sample size, standardized protocols developed, high participant satisfaction.
Limitations: short intervention duration (4 weeks), severity not considered, possible Hawthorne effect, longitudinal effects not examined.

Study 2 – Level III (N = 8)
Strengths: mixed-methods design, reliable/valid assessment tools, diverse sample, data saturation achieved.
Limitations: convenience sample, no randomization or control group, small sample size, highly structured interviews, longitudinal effects not examined, environmental factors not controlled.

Study 3 – Level II (N = 63)
Strengths: RCT, single-blind design, reliable/valid assessment tools, structured protocols, severity assessed, high participant satisfaction, long intervention duration (19 weeks).
Limitations: different baselines between groups, poor training protocol, homogenous sample, small sample size, upper extremity exercises utilized instead of GRASP.

3b Appraise: Study Results

Study 1: Within acute rehab settings, the GRASP group scored significantly higher than the control group on the Chedoke Arm and Hand Activity Inventory (CAHAI-9) (p<.001), the Action Reach Arm Test (p=.025), grip strength (p=.027), the Motor Activity Log (MAL) amount of use scale (p=.023), and the MAL quality of movement scale (p=.007).
Study 2: Within the hospital, clinically significant change scores on the CAHAI-9 (Z=2.380, p=.017), Upper Limb subscales of the Motor Assessment Scale (Z=2.176, p=.030), Stroke Impact Scale (SIS) 3.0 physical dimension (Z=-2.521, p=.012), SIS 3.0 subscales for strength (Z=1.829, p=.067), ADLs/ADLs (Z=2.325, p=.020), mobility (Z=-2.524, p=.012), and hand function (Z=-1.265, p=.206). Qualitative data also supported the GRASP for ease of use and perceived benefit.
Study 3: Following the RCT in a community based setting, participants within the upper extremity exercise group demonstrated significant improvement in ADL function on the Wolf Motor Function Test (p=.003) and the Fugl-Meyer Assessment (p=.001) when compared to the control group.

4 Apply: Implications for Practice

Use of the GRASP improved ADL function for individuals experiencing hemiplegia post-stroke. Study participants demonstrated clinically significant improvements in ADL function as evidenced by post-assessment scores following the program. These improvements may be a result of increased time spent rehabilitating their affected upper extremity or the structured approach of GRASP. Severity and time since onset may also be factors. The program is inexpensive and easy to follow, which may be appealing to therapists in multiple settings.

Future studies should evaluate precise time needed to show results. More rigorous designs to assess longitudinal impact and compliance rates are needed. Improvements to the GRASP could include an additional instructional medium, such as videos. Additionally, studies directly comparing GRASP to other commonly used neurological approaches, like Constraint Induced Movement Therapy or mirror therapy, or neurological impairments, like TBI, would be beneficial to represent effectiveness and/or generalizability.

GRASP may improve ADL function in those experiencing recent hemiplegia post-stroke in acute care, inpatient rehab, and community-based settings.

References