12-6-2016

59th Conference on Senior Engineering Design

College of Engineering and Applied Sciences

Follow this and additional works at: https://scholarworks.wmich.edu/engineer_design_projects

Part of the Engineering Commons

WMU ScholarWorks Citation
https://scholarworks.wmich.edu/engineer_design_projects/33

This Conference Program is brought to you for free and open access by the College of Engineering and Applied Sciences at ScholarWorks at WMU. It has been accepted for inclusion in Senior Engineering Design Conference by an authorized administrator of ScholarWorks at WMU. For more information, please contact wmu-scholarworks@wmich.edu.
You are invited to attend the fifty-ninth Conference on Senior Engineering Design Projects. The conference will be held from 8:30 a.m. to 3:30 p.m., **Tuesday, December 6, 2016** at the College of Engineering and Applied Sciences on the Parkview Campus of Western Michigan University. The College of Engineering and Applied Sciences sponsors the conference to showcase the work of its graduating seniors, who are required to complete a capstone project that puts into practice what they have learned. Many of the projects are sponsored by business and industry. The conference is free and open to the public. You are welcome to attend all or part of the day’s events. Reservations are not necessary.

High school and community college teachers are encouraged to bring students to the conference. Buses can drop off passengers in the College Circle in front of the building and then park in lot P-2 (See map).

Parking is available in the ramps behind the College of Engineering and Applied Sciences (See: Lots P3 and P4). There is no charge for parking for those attending the Conference.

Presentations begin on the hour and half hour. Please do not enter a room after a presentation has begun.

Session locations, times, and page number for project descriptions:

<table>
<thead>
<tr>
<th>Civil and Construction Engineering</th>
<th>D-115</th>
<th>9:00 a.m. – 11:30 a.m.</th>
<th>pg. 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science</td>
<td>D-202</td>
<td>9:00 a.m. – 12:00 p.m.</td>
<td>pg. 7</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>D-204</td>
<td>9:00 a.m. – 1:30 p.m.</td>
<td>pg. 10</td>
</tr>
<tr>
<td>Engineering Design, Manufacturing, and Management Systems</td>
<td>D-201</td>
<td>8:30 a.m. – 12:00 p.m.</td>
<td>pg. 13</td>
</tr>
<tr>
<td>Industrial and Entrepreneurial Engineering & Engineering Management</td>
<td>D-208</td>
<td>11:00 a.m. – 12:00 p.m.</td>
<td>pg. 16</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering A</td>
<td>D-109</td>
<td>9:00 a.m. – 3:30 p.m.</td>
<td>pg. 17</td>
</tr>
<tr>
<td>Mechanical and Aerospace Engineering B</td>
<td>D-210</td>
<td>9:00 a.m. – 12:00 p.m.</td>
<td>pg. 21</td>
</tr>
</tbody>
</table>

A lunch break is scheduled from 12 p.m. to 1 p.m. There is a café available on site.

For more information about the conference, call Tamara Bergman at (269) 276-3248.

Brochure available electronically at:
<table>
<thead>
<tr>
<th>TIME</th>
<th>ROOM/DEPARTMENT</th>
<th>TOPIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30</td>
<td>D-201 EDMM</td>
<td>Aeration Device to Produce Resin-Coated Specimens</td>
</tr>
<tr>
<td>9:00</td>
<td>D-115 CCE</td>
<td>Total Bridge Replacement of M-13 over Cheboyganing Creek</td>
</tr>
<tr>
<td></td>
<td>D-202 CS</td>
<td>Role Based Access Control File System</td>
</tr>
<tr>
<td></td>
<td>D-204/205 ECE</td>
<td>6U CubeSat Power Systems and Cathode Design</td>
</tr>
<tr>
<td></td>
<td>D-201 EDMM</td>
<td>Contemporary Usonian House Design</td>
</tr>
<tr>
<td></td>
<td>D-109 MAE</td>
<td>Development of Autonomous Flight Control System for a Small-scale UAV</td>
</tr>
<tr>
<td></td>
<td>D-210 MAE</td>
<td>CubeSat ADCS Validation and Testing Apparatus</td>
</tr>
<tr>
<td>9:30</td>
<td>D-115 CCE</td>
<td>Mattawan Consolidated School Building Demolition and Rehabilitation</td>
</tr>
<tr>
<td></td>
<td>D-202 CS</td>
<td>Family Map</td>
</tr>
<tr>
<td></td>
<td>D-204/205 ECE</td>
<td>Hardware Acceleration of a Machine Learning Algorithm</td>
</tr>
<tr>
<td></td>
<td>D-201 EDMM</td>
<td>Multi-terrain Compactible Bicycle</td>
</tr>
<tr>
<td></td>
<td>D-109 MAE</td>
<td>Adjustable Shoe Manifold for Bottling Industry</td>
</tr>
<tr>
<td></td>
<td>D-210 MAE</td>
<td>Motor Controlled Direct-Drive Valve</td>
</tr>
<tr>
<td>10:00</td>
<td>D-115 CCE</td>
<td>WMU Campus Traffic Study & Improvements</td>
</tr>
<tr>
<td></td>
<td>D-202 CS</td>
<td>West Advising Website</td>
</tr>
<tr>
<td></td>
<td>D-204/205 ECE</td>
<td>2-U CubeSat Electrical Power System</td>
</tr>
<tr>
<td></td>
<td>D-201 EDMM</td>
<td>Study of Weld Lines with Underflow and Molecular Orientation</td>
</tr>
<tr>
<td></td>
<td>D-109 MAE</td>
<td>Design of Computerized Surgical Screwdriver</td>
</tr>
<tr>
<td></td>
<td>D-210 MAE</td>
<td>Vehicle Mounted Deployable Spike Strip</td>
</tr>
<tr>
<td>10:30</td>
<td>D-115 CCE</td>
<td>I-94 Detroit Advance Bridge Replacement</td>
</tr>
<tr>
<td></td>
<td>D-202 CS</td>
<td>OrderBrain, an Ecommerce Platform for Restaurants</td>
</tr>
<tr>
<td></td>
<td>D-204/205 ECE</td>
<td>Automated Photometric Testing System for Lighting</td>
</tr>
<tr>
<td></td>
<td>D-201 EDMM</td>
<td>Automated Packaging System for Low-Density Organic Fiber</td>
</tr>
<tr>
<td></td>
<td>D-109 MAE</td>
<td>Implementation of Magnetorheological Fluid for VVA</td>
</tr>
<tr>
<td></td>
<td>D-210 MAE</td>
<td>Energy Harvesting for Powering a White Cane</td>
</tr>
<tr>
<td>11:00</td>
<td>D-115 CCE</td>
<td>Dentist Office in Schoolcraft, MI</td>
</tr>
<tr>
<td></td>
<td>D-202 CS</td>
<td>DotStar Composer</td>
</tr>
<tr>
<td></td>
<td>D-204/205 ECE</td>
<td>RoboBronco II: Drive System and Autonomous Navigation</td>
</tr>
<tr>
<td></td>
<td>D-201 EDMM</td>
<td>Tooling Management Systems Integration</td>
</tr>
<tr>
<td></td>
<td>D-208 IEE</td>
<td>Manual Assembly Evaluation and Design</td>
</tr>
<tr>
<td></td>
<td>D-109 MAE</td>
<td>Cloud Controlled Aluminum Extrusion Machine</td>
</tr>
<tr>
<td></td>
<td>D-210 MAE</td>
<td>Electrical Connection to a Moving Rocker Arm</td>
</tr>
</tbody>
</table>

NOTE: CLOSED PRESENTATION TO PUBLIC
<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Department</th>
<th>Title & Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:30</td>
<td>D-202</td>
<td>CS</td>
<td>Introduction to Spark Cluster Computing</td>
</tr>
<tr>
<td></td>
<td>D-204/205</td>
<td>ECE</td>
<td>Automated Process Control for Custom EARSs</td>
</tr>
<tr>
<td></td>
<td>D-201</td>
<td>EDMM</td>
<td>Work Center Process Improvement</td>
</tr>
<tr>
<td></td>
<td>D-208</td>
<td>IEE</td>
<td>Product Changeover and Component Part Conveyance Improvements on Final Assembly Lines</td>
</tr>
<tr>
<td></td>
<td>D-109</td>
<td>MAE</td>
<td>Deployable Spike Strips</td>
</tr>
<tr>
<td></td>
<td>D-210</td>
<td>MAE</td>
<td>Modular Oven Accessories for Whirlpool</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NOTE: CLOSED PRESENTATION TO PUBLIC</td>
</tr>
<tr>
<td>1:00</td>
<td>D-204/205</td>
<td>ECE</td>
<td>Portable Ambient Light Sensor</td>
</tr>
<tr>
<td></td>
<td>D-109</td>
<td>MAE</td>
<td>Maestro Oil-less Pneumatic Surgical Drill</td>
</tr>
<tr>
<td>1:30</td>
<td>D-109</td>
<td>MAE</td>
<td>Vertical Take-off and Landing Unmanned Aerial Vehicle for Payload Delivery Applications</td>
</tr>
<tr>
<td>2:00</td>
<td>D-109</td>
<td>MAE</td>
<td>Ultrasonic Testing Fixture Redesign</td>
</tr>
<tr>
<td>2:30</td>
<td>D-109</td>
<td>MAE</td>
<td>Rolling Chassis Design of a Formula SAE Vehicle</td>
</tr>
<tr>
<td>3:00</td>
<td>D-109</td>
<td>MAE</td>
<td>Design of a Variable Oil Pressure Regulator</td>
</tr>
</tbody>
</table>
THANK YOU

The College of Engineering and Applied Sciences is grateful to these sponsors that have provided or cooperated in Senior Engineering Design Projects being presented in December 2016. If you have a project for our students or if you would like more information, please call Tamara Bergman at (269) 276-3248.

American Axle
Amway Corporation
Artificially Intelligent Machineshop, Conquer
Autodesk Incorporated
Consort Display Group
DENSO
Eaton
FBN Sales, Inc.
FEMA Corporation
Fishbeck, Thompson, Carr & Huber, Inc.
Herman Miller
HNTB Corporation
J Rettenmaier USA LP
Liberty Gears
Mattawan Consolidated Schools
Michigan Department of Transportation
Orthodrive LLC
Prein & Newhof
Ranir
Sinto Japan
StructureTec
Stryker Instruments
TecNiq Inc.
United States Air Force
Western Aerospace Launch Initiative (WALI)
Whirlpool
TOTAL BRIDGE REPLACEMENT OF M-13 OVER CHEBOYGANING CREEK
by: Daniel Burns, Paul Herbert, and Blake Nichols
Sponsor: Michigan Department of Transportation Bridge Design, James Ranger and Dina Tarazi
Faculty Advisor: Yufeng Hu
9:00 a.m. – 9:25 a.m.

The Michigan Department of Transportation sought a proposal for a complete replacement of the M-13 Bridge over Cheboyganing Creek in Bay County, MI. The replacement will consist of demolition of the existing bridge and construction of the substructure and superstructure including piers, abutments, support beams, concrete deck, and railings. MDOT has determined that bridge rehabilitation is not a design recommendation, design calculations, engineer’s estimate of cost, and construction drawings. The proposed design engineering services will consider the cost of demolition but will not include the full scope of demolition planning services required.

MATTAWAN CONSOLIDATED SCHOOL BUILDING DEMOLITION AND REHABILITATION
by: Alexander Fields, Seth Bergman, and Alexander DeHaan
Sponsor: Mattawan Consolidated Schools, Dr. Robin Buchler
Faculty Advisor: Decker Hains
9:30 a.m. – 9:55 a.m.

Due to the recent construction of the new Early and Late Elementary Schools, the Mattawan School District requested an alternative use for their soon-to-be vacated school buildings. Four alternatives were initially proposed to the school board. Input from the school board and Mattawan residents was considered in determining the most feasible alternative for the community’s needs. This alternative includes partial deconstruction of the Early Elementary school building and total deconstruction of the other two school buildings. The remaining section of the Early Elementary school building will be used for administration and early childhood development.
Western Michigan University’s Campus has been established since the early 1900’s and over the course of 100+ years has been developed and redeveloped to meet the needs of a growing University. Navigating the campus by vehicle is more of a challenge as students, faculty, and staff must safely access buildings across campus during all times of the year. As vehicle and pedestrian routes change over the years, it is important to access traffic patterns at intersections. Vehicle and pedestrian patterns have been studied at select intersections on campus and traffic improvements have been recommended based on traffic analysis.

I-94 DETROIT ADVANCE BRIDGE REPLACEMENT; BRUSH STREET BRIDGE
by: Saleem Alsharari, Mert Can Kose, and Craig McNees
Sponsor: HNTB Corporation, Thomas Weston
Faculty Advisor: Haluk Aktan
10:30 a.m. – 10:55 a.m.

I-94 Detroit Advanced Bridge Replacement is meant to improve and increase the capacity of a 6-mile segment along a corridor of I-94 from French Avenue to Trumbull Avenue, located in a suburban neighborhood of Detroit. There is a total of nine bridges, built in the 1950’s that need to be re-constructed for a capacity increase. Partial accelerated bridge construction technology will be implemented during the re-construction of the Brush Street Bridge, the one we chose to design. The suggested sustainable design will account for non-motorized traffic and a 100-year service life. The anticipated service completion date is August 2018.

DENTIST OFFICE IN SCHOOLCRAFT, MI
by: Juan Carlos Amarante Garcia, Daniel Brown, Thomas Palumbo, and Jonathan Welsing
Sponsor: Prein & Newhof, Mike Schwartz
Faculty Advisor: Decker Hains
11:00 a.m. – 11:25 a.m.

Alternate site design for a small medical office in Schoolcraft, MI. Includes site grading, design of a stormwater management system, parking lot, septic, well, and a detailed preliminary site plan. Sustainability and economic feasibility are incorporated as key project deliverables.
ROLE BASED ACCESS CONTROL FILE SYSTEM
by: Ryan DePrekel, Scott Linder, and Justin Lanyon
Sponsor: Department of Computer Science, Steve Carr
Faculty Advisor: John Kapenga
9:00 a.m. – 9:25 a.m.

Access control is a prerequisite for security in computing systems. Linux permission bits are insufficient for many applications. Advanced access control models, including Multi Level Security (MLS), Role Based Access Control (RBAC), and Domain Type Enforcement (DTE) offer added security. A Linux file system implementing Role Based Access Control was implemented as a teaching aid for courses on secure software design. The file system is implemented in C using the Filesystem in Userspace (FUSE) kernel module. This will help students to better understand RBAC and the need for mandatory access control.

FAMILY MAP
by: Hogan Charters and Alex Hill
Sponsor: Western Michigan University, Dr. Michael Liepman
Faculty Advisor: John Kapenga
9:30 a.m. – 9:55 a.m.

The Family Map is an essential tool in diagnosing and helping to solve addictive and destructive behavior within a family. Using a directive graph of actions, thoughts, and emotions, a Family Map visually represents the family’s actions in moving between abstinent behavior and using-intoxicant behavior. This method has been successfully used since the 1980’s to help families in need. By digitizing this work, we allow more clinicians to easily learn and adopt this practice. This software uses the Ruby on Rails framework alongside JointJS and CryptoJS to create a secure, iterative, and interactive Family Map.
WEST ADVISING WEBSITE
by: Caleb Francisco and Dan Peekstok
Sponsor: Western Michigan University CEAS Advising Office
Faculty Advisor: John Kapenga
10:00 a.m. – 10:25 a.m.

Western Engineering Scheduling Tool (WEST) is a website used by advisors, support staff, and students for scheduling advising appointments. WEST is a redesign, from the ground up, of the original advising website. By utilizing the Laravel web framework, the maintainability, extensibility and security of the website can be easily managed by future developers. MySQL was used for storing appointment data and Laravel Excel was used for exporting data to a spreadsheet format. A new user interface was implemented using Bootstrap, allowing for a better desktop and mobile experience.

ORDERBRAIN, AN ECOMMERCE PLATFORM FOR RESTAURANTS
by: Matthew Knapper and Luke Margules
Sponsor: OrderBrain
Faculty Advisor: John Kapenga
10:30 a.m. – 10:55 a.m.

Many consumers order food online every day. However, there is no easy solution for restaurants to provide this without; taking away the identity of the restaurant, charging expensive transaction fees for providing effective customer support. OrderBrain is an online ordering platform for restaurants that enables them to have an easily customizable website that doesn’t simply add their menu to an app. Customer’s place orders within the client’s web app and orders print in the store. OrderBrain is based on the secure test-driven framework, Django, the developer driven payment processor, Stripe, and the rock-solid scalable web host, AWS.

DOTSTAR COMPOSER
by: Aaron Branch, Zachary Jarman, and Peter Martinez
Sponsor: Juliana Payson
Faculty Advisor: John Kapenga
11:00 a.m. – 11:25 a.m.

There are limited systems for creating lighting effects choreographed with music for wearable LED costumes. The DotStar Composer was developed as an open source project to allow users to create lighting effects, synchronized with music to address this problem. A Pro Trinket microcontroller was programmed to hold these lighting effects and display them on DotStar RGB LED strips, synchronizing wirelessly with music on a laptop. Currently up to 5 strips of 100 DotStars on a costume were supported. Lithium Ion batteries were used and equipped with protection hardware to power the system on the user’s costume.
A computer cluster was created with the Apache Spark Cluster Computing Framework, on top of Hadoop’s Distributed File System to solve problems in Big Data. Instructions and documentation have been provided for data science students and researchers on how to build, configure, and run the Spark Cluster. This environment can support Java, Scala, Python and Mahout. Ansible provides configuration for the system and Galinga gives monitoring support. Parallel Graphing algorithm examples were provided with the cluster.
6U CUBESAT POWER SYSTEM AND CATHODE DESIGN
by: Jeremy Schweiger, Shane Sopel, Kaleb Vargo, and Matthew Wyman
Sponsor: United States Air Force
Faculty Advisor: Dean Johnson
9:00 a.m. – 9:25 a.m.

An Electrical Power System (EPS) for a Cube Satellite has been designed. The EPS is suitable to supply power to operate the satellite systems and payload, which may include a cathode design. The goal was to design a proof of concept prototype that will supply sufficient power to operate the satellite systems and payload. This was done by using small prototype boards, solar cells, battery management systems, and model subsystems to create a working model of the EPS.

HARDWARE ACCELERATION OF A MACHINE LEARNING ALGORITHM
by: Martin Cowley, and Alan Irwin
Sponsor: Department of Electrical and Computer Engineering, Lina Sawalha
Faculty Advisor: Lina Sawalha
9:30 a.m. – 9:55 a.m.

With machine learning being used in such diverse applications throughout modern technology, from spam filtering to voice recognition, there is a need to optimize associated operations in hardware to reduce cost and energy use and to increase performance speed of these operations. A hardware accelerator is a specialized architecture designed to perform either a single, complex operation or a set of operations. A Verilog floating point library was designed. The library was then used to implement the K-Nearest Neighbors algorithm on a Field Programmable Gate Array.
2-U CUBESAT ELECTRICAL POWER SYSTEM
by: Diomedes Mbekenga, Maria Yulanova, and Sean Huber
Sponsor: Western Aerospace Launch Initiative (WALI)
Faculty Advisor: Pablo Gomez
10:00 a.m. – 10:25 a.m.

The Cube Satellite, or CubeSat, that has been proposed by the Western Aerospace Launch Initiative, is made up of one Emitter Satellite and one 2-Unit CubeSat, or the Detector Satellite, which will detect and measure a plume of plasma from the Emitter Satellite. The Detector Satellite required an electrical power system to regulate, distribute, collect, and store power throughout the additional subsystems onboard. The design was modeled using MATLAB®, Simulink®, LTSpice, and AutoCAD®, and prototype was built to fulfill as many of the specifications as possible.

AUTOMATED PHOTOMETRIC TESTING SYSTEM FOR LIGHTING
by: Mathew Boyle, Phillip Peterson, and Steven Suter
Sponsor: TecNiq Inc.
Faculty Advisor: Damon Miller
10:30 a.m. – 10:55 a.m.

To ensure compliance with federal safety standards, lens assemblies are required to be tested for illuminance at specific angles. A system was designed and built to automate the process of adjusting and recording values of illuminance at predetermined points in space as set by the test engineer. The system consists of a controller for two axes of movement, a light sensor measuring illuminance, and a user interface. By designing a fully automated system, overall cycle time was reduced, allowing users to focus on other tasks, thereby facilitating improved quality control and reduced corrective action time.

ROBOBRONCO II: DRIVE SYSTEM AND AUTONOMOUS NAVIGATION
by: Samuel Hoff, Joshua Holovka, and Jacob Hunter
Sponsor: Tarun Gupta
Faculty Advisor: Bradley Bazuin
11:00 a.m. – 11:25 a.m.

A new generation RoboBronco is being constructed from the wheels up in collaboration between electrical, computer, industrial and manufacturing engineering students and faculty. Intended as a mobile, autonomous guide and information robot, a four wheeled base capable of moving throughout Floyd Hall has been constructed. The RoboBronco base and driving systems consist of multiple drive motors with embedded computer controls, a lithium-ion battery based power supply system, an inertial measurement unit and additional sensors that support fully autonomous motion and navigation, and Wi-Fi connectivity for remote video monitoring and manual control if and when desired.
AUTOMATED PROCESS CONTROL FOR CUSTOM EARs
by: Brian ThunderEagle, Caleb Kennett, Michael Tison, and Nathan Boswell
Sponsor: Dallas Chase
Faculty Advisor: Ralph Tanner
11:30 a.m. – 11:55 a.m.

A control system was designed for a mechanical process that works on extruded aluminum rails (EARs). These extruded aluminum rails have operations performed on them by a machine controlled by the designed electrical system. The operations performed on the rails are cutting to specified length, drilling both horizontally and vertically through the rails at specified locations. The cutting and drilling profiles are uploaded to the control system through a web based human machine interface.

PORTABLE AMBIENT LIGHT SENSOR
by: Abdullah Al Zaher
Sponsor: None
Faculty Advisor: Steven Durbin
1:00 p.m. – 1:25 p.m.

The purpose of the portable ambient light sensor is to measure ambient lighting conditions with respect to how they may affect the health of people. The designed low cost sensor is portable and battery-powered.
AERATION DEVICE TO PRODUCE RESIN-COATED SPECIMENS
by: Lekesh Chelladorai, Jason Collins, and Jack Seuss
Sponsor: Sinto Japan
Faculty Advisor: Sam Ramrattan
8:30 a.m. – 8:55 a.m.

Resin-coated sand technology is an important part of the metal casting industry. The ability to make complex thin wall cores is an essential part of automotive manufacturing. Sand aeration technology allows us to do this. An improved aeration device was designed using Creo Parametric modelling software. Materials were sourced, and the design was then built to allow the production of test specimens. Following final testing, the new device may be scaled up for mass production.

CONTEMPORARY USONIAN HOUSE DESIGN
by: Binyam Minassie Tadesse, Nick Romanowski, and Steve Wagner
Sponsor: David Middleton
Faculty Advisor: David Middleton
9:00 a.m. – 9:25 a.m.

Increasing costs of home construction and renovation have pushed consumers to explore non-traditional housing options. The movement toward alternative solutions prompted the design of a modern, customizable, and cost-effective residential home building system that appeals to the average family, yet can be easily modified to suit individual needs. Through extensive research in various aspects of commercial, industrial, and residential construction methods, a material list and sample floor plan were created using Autodesk Inventor. Designs were presented to a licensed architect for review and approval. The final housing plan satisfied the sponsor and architect, and can serve as a new model for residential construction.
MULTI-TERRAIN COMPATIBLE BICYCLE
by: Chris Diacono, Brenna George, Dakota Legge, Muhamad Shammas, and Johnny Shepherd
Sponsor: No sponsor
Faculty Advisor: David Middleton
9:30 a.m. – 9:55 a.m.

As city commuters’ demands have changed, the need for a compact, multi-terrain form of travel has increased. This new multi-terrain bicycle can provide both recreational trail and transport usage. The design intent was to keep the bike lightweight and compact enough to fit into a small car or a closet but still moderately priced for general public use. Designs were modeled parametrically using SOLIDWORKS and Siemens NX, and models were tested using finite element analysis. Cost analysis and project management techniques helped make the design as cost effective as possible. The final prototype represents a durable, unique, cost-effective, and mass-producible bike.

STUDY OF WELD LINES WITH UNDERFLOW AND MOLECULAR ORIENTATION
by: Zachary Alcini, Patrick Coliton, and James Meirndorf
Sponsor: Autodesk Incorporated, Jay Shoemaker
Faculty Advisor: Jay Shoemaker
10:00 a.m. – 10:25 a.m.

Understanding properties of plastics is crucial to good product design. Two molds were built to help students understand the concepts of weld lines, underflow and molecular orientation, and how they affect strength in molded products. Autodesk Inventor was used to design the molds, while Autodesk Moldflow simulated optimal gate locations for moving weld lines. Two different gate locations demonstrated the effect of weld line formation. Tensile and impact tests show how weld line strength is influenced by gate location. The second mold was used to show the influence of process conditions, material selection, and the shape of the flow front on molecular orientation. Project results will add to future students’ better understanding of these critical but under-studied aspects of product design.

AUTOMATED PACKAGING SYSTEM FOR LOW-DENSITY ORGANIC FIBER
by: Jordan Ahrens, Matthew Charles, Gary Hiatt, and Cody Smith
Sponsor: J. Rettenmaier USA LP, Jeff Hampton and Scot Miller
Faculty Advisor: Tarun Gupta
10:30 a.m. – 10:55 a.m.

Businesses need to renovate, repurpose, and replace production equipment to maintain a competitive edge in the 21st century. The current manual method of fiber compression and packaging at a local company is both costly and risk prone. When upgrading aging equipment, many variables need to be assessed to determine a cost competitive solution. This process requires extensive research and consideration on viable models, cost analysis, and working through the design process before improvements could be implemented. The modernized fiber compression packaging system will greatly improve worker safety, while also increasing productivity, lowering cost, and improving the process as a whole.
TOOLING MANAGEMENT SYSTEMS INTEGRATION
by: Erik Fritz, Bryan Kuntz, and Nick Manchik
Sponsor: StructureTec, Brian McClure
Faculty Advisor: David Lyth
11:00 a.m. – 11:25 a.m.

A local consulting and construction services firm was in need of a tooling management system. A vast variety of equipment and material is required to successfully complete roofing projects around the Midwest. In choosing a system to catalog, track, and maintain equipment, multiple software packages were analyzed to fit the predetermined needs for the company. An implementation trial of the chosen system allowed adjustments for efficiency, and the finalized system was installed into the company and used. Equipment needed and vehicle fleet specification are now readily available for project personnel. The new system reduces labor costs, provides tracking ability for tooling throughout the company, and, ultimately, provides increased efficiency and satisfaction for the company and their clients.

WORK CENTER PROCESS IMPROVEMENT
by: Adam Barnier, William Conway, and Jacob Patterson
Sponsor: Ranir, David Berkemeier, Brad Walbridge, and Ann Mason
Faculty Advisor: Larry Mallak
11:30 a.m. – 11:55 a.m.

Improving a process can lead to higher efficiency and lower production costs. A regional multi-national company produces a wide variety of dental hygiene products. A packaging work center was analyzed for improvement. Video analysis, process charts, and time studies were used to identify areas of inefficiencies, and lean manufacturing techniques were applied. Recommended actions should lead to higher output rates, increased effectiveness, and lower costs.
Manual Assembly Evaluation and Design
by: Zach Crawford, Ben Lawson, and Shaunise Williams
Sponsors: Amway Corporation, Bill Reymond and Patric Adams
Herman Miller, Diana Terpstra
Faculty Advisors: Azim Houshyar and Bob White
11:00 a.m. – 11:25 a.m.

An evaluation of a company’s externally contracted hand assembly processes revealed that there was potentially a significant financial incentive to internalize these operations which warranted further investigation. A cost analysis for bringing back all contracted hand assembly products to be made within the company justified this decision. In-depth product and capacity analyses were completed, identifying the optimal hand assembly location within the company. At this location, multiple hand assembly lines were designed and built to create a lean, efficient, high quality production environment for all products requiring hand assembly now and in the future.

Product Changeover and Component Part Conveyance Improvements on Final Assembly Lines
by: Michael Cunic, Luis Duarte-Perpuly, Wren Jacob, and Mike Riley
Sponsor: DENSO Manufacturing Michigan, Inc., Lee Washburn
Faculty Advisors: Azim Houshyar and Bob White
11:30 a.m. – 11:55 a.m.

The reduction of warehousing space in a facility has required final assembly lines to become more flexible and capable of frequent changeover between products, and just-in-time (JIT) production. Using time-studies, standard work procedures, and production quality statistics, improvements to the product changeover process were made to allow for even more frequent changeovers to enable JIT production. In order to further enable JIT production, the component parts delivery system had to be altered. Using time-studies and simulation, a new component parts delivery system was developed to enable JIT production.
DEVELOPMENT OF AUTONOMOUS FLIGHT CONTROL SYSTEM FOR SMALL-SCALE UAV
by: Nathan Beckman and Jeremy Gravedoni
Faculty Advisor: Kapseong Ro
9:00 a.m. – 9:25 a.m.

Unmanned Aerial Vehicles (UAV’s) are becoming very prominent within the aerospace industry in recent years. An autonomous flight control system is developed and implemented into a small scale aircraft. Flight dynamics and control was modeled using computational resources prior to experimental flight testing. The control system and software was tuned for the particular aircraft being flown. GPS waypoint navigation and autonomous level flight was performed. This project will benefit students’ knowledge of flight dynamics and the development of unmanned systems.

ADJUSTABLE SHOE MANIFOLD FOR BOTTLING INDUSTRY
by: Joe Gidley, Henry Hulbert, and Zach Wegner
Sponsor: FBN Sales Inc., Dennis LaVanWay
Faculty Advisor: Parviz Merati
9:30 a.m. – 9:55 a.m.

The scope of this project is to design an adjustable manifold for USB-style pressure gravity bottle filler. USB-style gravity filler uses a manifold to evenly distribute product through valves and into bottles. This filler is often used to fill different size bottles. Inside the current filler assembly there is a shutoff shoe that covers a designed percentage of the manifold port. The new design will allow for more adjustability for the shutoff shoe. This optimization will allow less product overflow, in turn saving the company time and money.
During internal fixation surgery, it is often necessary for surgeons to insert screws into trabecular bone. When a surgeon exceeds the maximum torque that a patient’s bone can withstand, trabecular bone may strip at the screw-bone interface. This effect may be the cause of a negative surgical outcome. A screwdriver was designed with instrumentation for measuring torque and rotation. A printed circuit board was designed and manufactured. A strain gauge based torque sensor was designed and integrated into the screw driver shaft. An algorithm was implemented to measure torque and rotation and provides surgical guidance.

IMPLEMENTATION OF MAGNETORHEOLGICAL FLUID FOR VVA
by: Robert Drumm, Dominic Leonard, Taylor Roe, and Joshua Rohrer
Sponsor: Eaton, Mark Van Wingerden
Faculty Advisor: Claudia Fajardo-Hansford
10:30 a.m. – 10:55 a.m.
NOTE: CLOSED PRESENTATION TO PUBLIC

A variable valvetrain actuation system incorporating a magnetorheological fluid was designed for application in internal combustion (IC) engines. Solid modeling, computer simulations and experiments were used to validate the design concept and assess its performance relative to the baseline system. The project was motivated by the need to improve fuel economy and reduce pollutant emissions in IC engines.

CLOUD CONTROLLED ALUMINUM EXTRUSION MACHINE
by: Dallas Chase
Sponsor: Artificially Intelligent Machineshop, Conquer
Faculty Advisor: Ralph Tanner
11:00 a.m. – 11:25 a.m.

Artificially Intelligent Machineshop is the next generation, fully autonomous machine shop. Part data is uploaded to our online web application, the system machines parts out of aluminum extrusion without operator assistance.
DEPLOYABLE SPIKE STRIPS
by: Zac Halfhill, Thomas Johnson, and Nicholas Parshall
Sponsor: No sponsor
Faculty Advisor: Javier Montefort
11:30 a.m. – 11:55 a.m.

High speed vehicle pursuits are extremely dangerous for authorities and civilians alike. Currently the methods to end these pursuits require officers to leave the safety of their vehicle to deploy spike strips. An optimized spike strip that eliminates the need for officers to leave their vehicles for deployment was designed. The completed design drastically increases accuracy, ensuring safety of civilians and officers while efficiently and quickly ending the pursuit. A 3D modeling software, was used to visualize the final design while MATLAB was used for calculations and durability analysis.

MAESTRO OIL-LESS PNEUMATIC SURGICAL DRILL
by: Najeeb Dababneh, Daniel Layton, and Ryan Tintera
Sponsor: Stryker Instruments, Corbin Glidden
Faculty Advisor: Pnina Ari-Gur
1:00 p.m. – 1:25 p.m.

Medical instrument sterilization is essential for maintaining patient safety. The current Maestro pneumatic motor requires oil for lubrication. This oil accumulates over time, eventually leaving the drill. During sterilization, this oil must be contained within a sterile barrier. If it escapes the barrier, the device must be re-sterilized before use. By researching and testing different pneumatic motor component materials for the drill, data was obtained for possibility of removing or greatly reducing the need for lubrication. In achieving the objective, the reduction of oil in the device reduces the likelihood of contamination at the surgical wound site.

VERTICAL TAKE-OFF AND LANDING UNMANNED AERIAL VEHICLE FOR PAYLOAD DELIVERY APPLICATIONS
by: David Ajoku
Sponsor: No sponsor
Faculty Advisor: Peter Gustafson
1:30 p.m. – 1:55 p.m.

The role of Vertical Take-off and Landing (VTOL) has expanded greatly in the last few decades. While primarily used in military applications, civilian accessibility to this technology brings numerous new capabilities for fixed wing Unmanned Aerial Vehicles (UAV’s). A VTOL vehicle was designed for payload delivery applications. The UAV was designed to meet the weight requirement of 55 pounds under the Federal Aviation Authority’s (FAA) current UAV regulations. The current design will provide a platform for future studies on payload delivery applications.
ULTRASONIC TESTING FIXTURE REDESIGN
by: Bryan Harris, Mason Moses, and Chris Vogelheim
Sponsor: American Axle Manufacturing, Thomas Moneypenny
Faculty Advisor: Mitchel Keil
2:00 p.m. – 2:25 p.m.

During the manufacturing process of testing welds on 1 speed and 2 speed gear assemblies, product changeovers between the two product lines resulted in machine downtime. This ultimately meant a loss in efficiency and an overall production shut down. This problem was overcome by redesigning the existing testing fixtures to be able to test more than one product line. A prototype was designed in Inventor and machined using a horizontal lathe. The new fixture increased overall process efficiency, total part count run through the machine during a shift, and made the machine easier for the operator to use.

ROLLING CHASSIS DESIGN OF A FORMULA SAE VEHICLE
by: Joseph Jagodzinski and Eric Bontrager
Sponsor: Western Michigan University
Faculty Advisor: Richard Hathaway
2:30 p.m. – 2:55 p.m.

Western Michigan University’s Formula SAE team continually competes at a higher level with each passing year and thus constantly requires a refinement and enhancement of pre-existing vehicle architecture to remain competitive. To achieve greater vehicle performance, the current rolling chassis platform is to undergo its second design iteration. This iteration includes heightened handling characteristics, strengthened torsional rigidity, weight reduction, and enhanced ergonomics for vehicle packaging. Proof of the conclusive design will be validated through physical, mathematical, and simulation based analysis.

DESIGN OF A VARIABLE OIL PRESSURE REGULATOR
by: Austin Karwacki
Sponsor: Eaton Corporation
Faculty Advisor: Yufeng Hu
3:00 p.m. – 3:25 p.m.

During cylinder deactivation in a combustion engine, valve motion is halted in order to shut off the cylinder. With this particular design, there is a chance of failure in the high risk case. The process to solve this started with extensive research on possible benchmarking, engine operation, motor oil, and fluid dynamics. Then, actual analytics were conducted followed by detailed drawings of a proposed design that will lead to a prototype and testing. In the end, the goal was to design a component that successfully meets the requirements and solves the problem.
CUBESAT ADCS VALIDATION AND TESTING APPARATUS
by: Jacob Stevens, Nicolas Theoret, and Tyler Chantrenne
Sponsors: Western Michigan University WALI Team, Jennifer Hudson
Consort Display Group, Bryan Lepley
Liberty Gears, Tom Sclesky
Faculty Advisor: Jennifer Hudson
9:00 a.m. – 9:25 a.m.

The WALI team at Western Michigan University requested a test environment to validate their CubeSat’s de-tumbling control system and hardware. The test environment required a Helmholtz cage and spherical air bearing. The Helmholtz cage provides an adjustable magnetic field to simulate low earth orbit; the spherical air bearing simulates the friction-free environment the CubeSat will experience in space. In conjunction, the two components create an adjustable system that simulates a satellite in low earth orbit.

MOTOR CONTROLLED DIRECT-DRIVE VALVE
by: Tyler Farrington and Aaron LaBomascus
Sponsor: FEMA Corporation, Jerry Boza
Faculty Advisor: Alamgir Choudhury
9:30 a.m. – 9:55 a.m.

Hydraulic proportional pressure-control valves (PPCs) are used in many industrial and off-highway applications for control of hydraulic systems. Conventional PPCs operate using open-loop control, but are vulnerable to transient instabilities that interfere with closed-loop control. A PPC valve was designed using MathCAD and SOLIDWORKS with the intent of removing the source of these transient instabilities. This Motor Controlled Direct-Drive Valve (MCDDV) utilizes a brushed DC motor with an eccentric engagement pin, and a closed-loop controller receiving feedback from a pressure transducer and magnetic encoder. A MCDDV prototype was built and tested to evaluate its performance with a closed-loop control system.
VEHICLE MOUNTED DEPLOYABLE SPIKE STRIP
by: Jake Peraino and Jon Silvenis
Sponsor: Larry Campbell
Faculty Advisor: Muralidhar Ghantasala
10:00 a.m. – 10:25 a.m.

High speed chases continue to be one of the most dangerous aspects of a police officer’s profession. This is in part because of how exposed the officers are when hand deploying spike strips. A system was designed to keep the officer safe inside the police cruiser, while also stopping the speeding vehicle. Compressed air inside a tube attached to the vehicle allows for safe deployment of the spikes by the officer with a simple press of a button. Spike strips are still necessary to hinder reckless drivers in order to limit further damage. With the addition of our system, this can be properly done without the risk of loss of life.

ENERGY HARVESTING FOR POWERING A WHITE CANE
by: Robert Rodriguez and Amanuel Sedi
Sponsor: No sponsor
Faculty Advisor: Pnina Ari-Gur
10:30 a.m. – 10:55 a.m.

White canes have been in use for nearly a century as the primary device that helps visually impaired people navigate and locate their surroundings. Some of these canes are equipped with devices that are composed of battery-powered sensors, but the frequent charging of the batteries can be problematic. An energy harvesting system was designed and built to use piezoelectric materials for harvesting the energy produced by the motion of the cane to power the sensors. Frequent analyses were made using data acquisition systems to record the energy harvested. The model will benefit the user by eliminating the need to remove the batteries for recharging.

ELECTRICAL CONNECTION TO A MOVING ROCKER ARM
by: Tyler Brown and Brooks McLaughlin
Sponsor: Eaton Corporation, Mark Van Wingerden
Faculty Advisor: Muralidhar Ghantasala
11:00 a.m. – 11:25 a.m.
NOTE: CLOSED PRESENTATION TO PUBLIC

Variable valve actuation (VVA) technology for internal combustion engines allows engines to operate more efficiently by giving increased control over engine air valve movement. Current production technology uses a hydraulically controlled latching mechanism while the use of an electronically actuated method could de-couple constraints due to oil pressure and temperature from the actuation system. The goal of this project is to explore different methods of power transmission for an electronically actuated VVA system and how they can be applied in a harsh engine environment.
MODULAR OVEN ACCESSORIES FOR WHIRLPOOL
by: Kyle Boyce and Josh Zantello
Sponsor: Whirlpool, Zachary Bruin-Slot
Faculty Advisor: Ho Sung Lee
11:30 a.m. – 11:55 a.m.
NOTE: CLOSED PRESENTATION TO PUBLIC

The oven holds a very important role in the kitchen. It is an appliance that many kitchens are centered around. The kitchen can be referred to as the “hub of the home”, so the importance of a high quality functioning oven is essential. While the oven is very important, it has a limited capability in methods of cooking. One method to alleviate this issue is to create special oven in oven accessories to expand the possibilities of cooking. For this Senior Design project, the team worked with Whirlpool to design modular oven accessories for an oven cavity. This project was centered around the design of two modular accessories. The deliverables of this project included CAD drawings, a FMEA, a DVP&R, a BOM, a concept safety review, design simulations, and prototyping if possible.
The College of Engineering and Applied Sciences offers a wide variety of programs:

Civil and Construction Engineering (269) 276-3210
- Civil Engineering
- Construction Engineering

Computer Science (269) 276-3101
- Computer Science - Theory and Analysis
- Computer Science - General option

Electrical and Computer Engineering (269) 276-3150
- Computer Engineering
- Electrical Engineering

Industrial and Entrepreneurial Engineering & Engineering Management (269) 276-3350
- Industrial and Entrepreneurial Engineering

Engineering Design, Manufacturing, & Management Systems (269) 276-3554
- Engineering Design Technology
- Engineering Management Technology
- Manufacturing Engineering Technology

Mechanical and Aerospace Engineering (269) 276-3420
- Aerospace Engineering
- Mechanical Engineering

Chemical and Paper Engineering (269) 276-3500
- Chemical Engineering
- Paper Engineering
- Graphic and Printing Science

College of Engineering and Applied Sciences Advising Office (269) 276-3270

The Master of Science in Engineering is offered in chemical, computer, electrical, mechanical, and industrial engineering. The Master of Science is offered in chemical engineering, computer science, construction engineering, engineering management, manufacturing engineering, and paper and printing science. The Ph.D. is offered in chemical engineering, computer science, electrical and computer engineering, industrial engineering, mechanical engineering, and paper and printing science.
Information about the College of Engineering and Applied Sciences at Western Michigan University

CEAS Mission
- Educate: develop career-ready engineering and applied science graduates for success in the global market;
- Discover: advance knowledge and innovation through high-quality research, teaching, and student engagement;
- Inspire: prepare our learning community for lifelong excellence, ethical behavior, and professional leadership;
- Transform: cultivate an inclusive learning environment, contributing to diversity in the engineering workforce; and
- Respond: answer challenges in our local and global communities to improve the well-being of society.

CEAS Vision
To be the College of choice for tomorrow’s engineers through excellence in education, discovery, and service.

CEAS Four Cornerstones
- Engagement: Produce job-ready graduates with the ability to grow in their profession and who are lifelong learners
- Innovation: Move the profession and society forward by providing engineers, scientists, and technologists with new capabilities
- Leadership: To graduate engineers, technologists, and applied scientists who are and will continue to be leaders in their profession and community
- Globalization: Our graduates must be prepared to work in a global engineering and applied sciences industry

CEAS Administration
- Dean of Engineering: Dr. Houssam Toutanji
- Chair of Civil and Construction Engineering: Dr. Osama Abudayyeh
- Chair of Computer Science: Dr. Steven Carr
- Chair of Electrical and Computer Engineering: Dr. Steve Durbin
- Chair of Engineering Design, Manufacturing Engineering and Management Systems: Dr. Steve Butt
- Chair of Industrial and Entrepreneurial Engineering and Engineering Management: Dr. Steve Butt
- Chair of Mechanical and Aerospace Engineering: Dr. Koorosh Naghshineh
- Chair of Chemical and Paper Engineering: Dr. Li Kecheng

CEAS Contact Information
- CEAS Advising Office: (269) 276-3270
- CEAS Dean’s Office: (269) 276-3253
- CEAS Student Outreach and Recruitment Coordinator: Scot Conant – (269) 276-3272
- CEAS Website: www.wmich.edu/engineer/news/senior