Study of 14B Using (d,p) Reaction in Inverse Kinematics

S. Bedoor 1, A. H. Wuosmaa 1, J. C. Lighthall 1,2, M. Alcorta 3, B. B. Back 3, P. F. Bertone 3, B. A. Brown 3, C. M. Deibel 4, S. T. Marley 1,2, K. E. Rehm 2, A. M. Rogers 3, J. P. Schiffer 5, D. V. Shetty 1

1 Western Michigan University, 2 Argonne National Laboratory, 3 Michigan State University, 4 Louisiana State University

Abstract

We describe a study of the 13B nucleus done using the 3(H,7B,1B) reaction in inverse kinematics using HELical Orbit Spectrometer (HELIOS) at the Tandem Linac Accelerator System (ATLAS) at Argonne National laboratory (ANL). One neutron is transferred from a 4He target to the 13B nucleus. The excitation energies and the transferred angular momenta are determined for four observed states in 13B, providing new information to guide models of nuclear structure.

Motivations

Introduction: Nuclei with neutron (N) to proton (Z) ratio (N/Z) \approx 1 are typically stable nuclei, nuclei become unstable with extreme neutron-to-proton compositions, which are known as "exotic nuclei." Here, the nuclei start to show phenomena such as "halos," where the last, loosely-bound, neutron orbits far from the tightly bound object that is the core of the nucleus and the usual nuclear-radius relation, $(R = 1.2 \times$ atomic mass$)^{1/3}$, is not valid. 13B is a halo nucleus with N/Z ratio \approx 0.5, and the valance neutron (the last neutron) is loosely bound with binding energy about 1 MeV.

Purpose of the research: The study of exotic nuclei is important for understanding how the chemical elements were created and synthesized in stars. Very little is known about the 13B nucleus and most of what is known is tentative and a new study can help use understand not just the structure of 13B but also other nuclei far from stability. For the first time a nucleon-transfer reaction is used to study 13B which provides new data, previously unobtainable, about the structure of 13B. These data will give new guidance for models of nuclear structure that can be used to describe not only 13B, but other nuclei that are far from stability.

Experimental Technics

The radioactive "secondary" 13B-beam was produced at the ATLAS facility. The 13C-beam collided with a solid 13C target to make 13B. The secondary-beam ions are focused by a superconducting magnetic spectrometer designed to detect the products of nuclear reactions done in inverse kinematics, and is constructed using a large bore superconducting solenoid with a uniform magnetic field.

The beam enters the solenoid through a hollow position-sensitive silicon-detector array (PSD-Array) placed inside the solenoid along the magnetic axis. The beam intercepts a 4He target placed inside the solenoid in a position along the magnetic axis. The emitted 4He (protons, red lines) are transported in a helical orbit back to the solenoid axis where the energy (E), the axial position (z), and the time of flight (t) are measured in the PSD-Array. We can calculate E_0 and θ from E and z.

The beam-like particles (13B, blue lines) emitted in the forward direction were detected in the recoil detector to insure we are looking at the right reaction.

The beam intensity and purity were monitored using a silicon surface barrier detector (called Zero-Degree) telescope placed on the solenoid axis.

Different angular-distribution shapes refer to different angular momentum transitions. The blue curves represent the orbital angular quantum number $\ell=0$, while the red curves represent $\ell=2$. The black dots represent experimental data while the violet curves are the sums of the blue and red curves fitted to the data.

Valence Neutron Binding Energy

The neutron binding energy at the $s_{1/2}$ and $d_{3/2}$ orbits of 13B, 13C, 14N, and 15O nuclei. Where the neutron in 13B became unbound at $d_{3/2}$ orbit and the $s_{1/2}$ orbit are inverted.

The Conclusions

• 4 negative parity states have been observed; namely (2,1,3,4) at energies: 0.00, 0.65, 1.38, and 2.08 MeV respectively.
• The ground and first excited states have a mix of $\ell=0$ and $\ell=2$. The black dots represent experimental data while the violet curves are the sums of the blue and red curves fitted to the data.

References

This work was supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contracts DE-FG02-04ER41320 and DE-AC02-06CH11357.