Western Michigan University Newsletter, July 1960

Follow this and additional works at: http://scholarworks.wmich.edu/western_newsletter

Part of the Higher Education Commons

WMU ScholarWorks Citation
http://scholarworks.wmich.edu/western_newsletter/51

This Newsletter is brought to you for free and open access by the Western Michigan University at ScholarWorks at WMU. It has been accepted for inclusion in Western Newsletter (1955-71) by an authorized administrator of ScholarWorks at WMU. For more information, please contact maira.bundza@wmich.edu.
On July 1 Dr. Gerald Osborn moved into the president's office at Western Michigan University upon appointment as acting president by the governing State Board of Education.

Dr. Osborn, a veteran of 21 years on the faculty, has served since 1956 as dean of the School of Liberal Arts and Sciences. He came to Western Michigan in 1939 as head of the chemistry department.

As head of the institution he succeeds Dr. Paul V. Sangren, who last December announced his impending retirement. Dr. Sangren became president in 1936, when the school had some 2,000 students and was known as Western State Teachers College.

Dr. Osborn is a native of Rockville, Ind. He attended elementary school at Sylvania, Ind., and high school at Bloomingdale, Ind., and graduated from the St. Johns, Mich., high school.

After graduating from Eastern Michigan University, he was a teacher and principal of the high school at Homer, Mich., from 1924 to 1926. His advanced study was at the University of Michigan and from 1926 to 1939 he taught at Eastern Michigan University.
NASA Mission Outlined by USAF Alumnus-General

Ostrander Guest Of Summer Session As Assembly Speaker

Maj. Gen. Don R. Ostrander, a student in 1932 and 1933, returned to the campus for his first visit since leaving for West Point, N.Y., and the U. S. Military Academy. On June 23 he addressed the opening Summer Session assembly program.

Among subjects which he covered was the work of the National Aeronautics and Space Administration, in which he serves as director of launch vehicle projects.

A 1937 West Point graduate and World War II ordnance expert, Gen. Ostrander continues on active duty with the U. S. Air Force while on loan to the NASA.

A portion of his speech follows:

An organization such as I have just described is, in essence, a collection of skills; but these skills have little meaning, of course, unless they are properly organized and directed to meet specific missions and objectives. In general, the objectives for our civilian space exploration program can be grouped into three major categories.

The first category is our Space Sciences Program, which is fundamental to all of our effort in that it provides the basic scientific knowledge that is essential to the development of specific uses of space environment. In this area, instrumented satellites and space probes measure and record the scientific properties of the atmosphere, ionosphere, and both nearby and outer space, and as time goes on will provide us with basic information on the origin, composition, and environment of the moon and the planets. In an overall sense, we have to expand our fundamental knowledge of space and its characteristics and concurrently develop the material and techniques that will allow us to probe even further into space. You might well ask whether this is not just a vicious cycle, wherein each new bit of knowledge we gain simply creates an insatiable desire for more knowledge and with it an even greater demand for new developments. The answer, quite obviously, is yes. In fact, this is our very purpose in being. However, I think the important point is that this process is not performed in a pure vacuum of intellectual curiosity. Both the elements of scientific exploration and the development of practical applications have to be integrated and balanced in relation to our long range objectives, and no one area can be carried on without the support of the other.

The second category in our program is this practical application of satellites to useful ends to benefit our day-to-day pattern of living. In this area we can already foresee tangible and very significant advances in the fields of communications, meteorology and navigation through the use of satellites. I am sure you are familiar with the recent launch of our meteorological satellite, Tiros I, which will be followed by its successors, Tiros II and Nimbus, each a little more complex and sophisticated, and contributing, we hope, to major advancements in weather forecasting. No less significant is our Project Echo, which will place metallic-coated, plastic balloons into orbit to be used as passive reflectors off of which we can bounce radio signals to improve our long range communications. Our first launch in this series, in May, was unsuccessful, but we have another scheduled later in the summer.

The third category is concerned with travel of man into space with anticipated trips to the moon and, ultimately, travel to the other planets. As you know, we are already deeply engaged in Project Mercury, as this program is called, and in other scientific investigations that we hope ultimately will lead to space travel. As to the immediate benefits, there is little question that a successful launching of man into space would do a great deal to enhance our national prestige. However, this is not the objective of Project Mercury. The goal is to determine the degree to which man can tolerate the environmental conditions of space flight and still perform operations sufficiently important to warrant his participation in future space explorations, with all the additional complexity his presence imposes.

During the current year, our efforts are directed primarily toward major tests of new vehicles, orbital experiments in meteorology and communications, and, on the more dramatic side, the first suborbital flight of a manned space vehicle under Project Mercury. By suborbital I mean, of course, that one of our astronauts will ride a capsule on a Redstone missile in a ballistic up-and-down trajectory much like the flight of a ballistic missile.

Assuming continued success in the schedule of tests for Mercury, the first orbital flight will occur in 1961. We also plan the launching of an advanced lunar impact vehicle during the latter part of '61 or the early part of '62.

From this point on, our major milestones include a comprehensive program of un-manned exploration of the moon and nearby planets leading toward manned circumlunar flights—flights around the moon and return—and ultimately a landing of man on the moon during the early 1970's.

The underlying philosophy in our vehicle development program rests upon three fundamental principles.

First, we must create a fleet of standard vehicles with a minimum number of different designs and configurations. The inevitable limitation of dollars alone dictates that we must take this approach.

Second, and closely allied to the first, we must attain a high degree of reliability through repetitive use of these basic vehicles, much as the automotive industry has achieved reliable cars through the millions of
83 to Europe for Summer Study, Travel

A record throng of 83 persons boarded a BOAC DC-7C at Detroit's Metropolitan airport June 14 for a summer adventure in Europe. Four intensive weeks of study are planned at Oxford University, to be followed by an exhaustive bus trip from Norway to Italy and back to Paris, where they will leave August 25 by plane for home.

Dr. Leonard C. Kercher is again a co-director of this fourth social studies seminar, and is aided this year by Dr. Howard Mowen, associate professor of history, replacing Dr. Russell H. Seibert, vice president for academic affairs. Their trip was marred in the beginning when the plane was forced to land at Montreal for repairs.

miles of driving on each of their standardized series.

And third, to avoid early obsolescence, we must insure that each new vehicle we develop incorporates the most advanced technical approaches and growth potential consistent with the reliability we require.

I would like to conclude with just one observation, and that is that in spite of all the criticism that NASA has experienced during its short history, I feel that we are on the right track. Although a broadbased program of this sort may not offer the immediate and dramatic appeal of the concentrated drive of our opponents, which is apparently oriented primarily to spectacular propaganda firsts, I feel that in the long run we will be further ahead. Our program is an aggressive one. It is based upon a sense of urgency, and we believe it to be logical and scientifically sound. I think it is a program in which you, as citizens, can have confidence, and in which, as time goes on, you can be justifiably proud.

Industrial Tech Advisors Named

Paul D. Rickman, president of the Bard Tool & Equipment Co., Kalamazoo, is the new chairman of the advisory committee for industrial technology.

Kalamazoo industrialists assisting in program planning are: George Brown, director of industrial engineering, KVP Sutherland Paper Co.; Jack Chappell, personnel manager, Hydrec division, New York Air Brake Co.; Cameron Davis, president, Miller-Davis Co.; Sewell Downs, vice president, Clarage Fan Co.; R. D. Hall, president, Durametallic Corp.; LaVerne M. Hanson, chief maintenance engineer, Upjohn Co.; Louis Kingscott, president, Kingscott & Associates-Architects; Arthur Lee, manager, Consumers Power Co.; and J. A. Wood, general manager, National Water Lift Co.

Other members include Power Custer, vice president-industrial relations, Kellogg Co., Battle Creek; Miles R. Fryer, industrial engineer,

Graduate Study

Added to an earlier published list of senior students receiving grants for advanced study are: Ronald Wykstra, assistantship in economics, University of Nebraska; Larry L. Bronson, fellowship in English, Rutgers University; Mary Chatterdon, fellowship in counseling, Syracuse University, and Jack L. Ristau, assistantship in business administration, Michigan State University.

Miss Ethel Green, associate professor of music, has been cited as the "outstanding music alumna of the year" at Ball State Teachers College.

Serving for the University are Dr. Russell H. Seibert, vice president for academic affairs; Dean George E. Kohrman, School of Applied Arts and Sciences; Dr. J. W. Giachino, head, department of industrial technology.
Promotions Go To 26 Faculty Members for Year

Twenty-six faculty members from the University will embark on another year of teaching with their abilities recognized by promotion in faculty rank.

By schools, those promoted and their new ranks are listed below:

Applied Arts and Sciences: William Weeks, associate professor of industrial technology; Dr. John Lindbeck and Dr. William Spence, associate professors of industrial education.

Business: Dr. Frances Hardin and Dr. Leo Niemi, associate professors.

Education: Dr. Louis Govatos, professor of education; Jack Jones, assistant professor of physical education, and James Hause, assistant professor of education.

Liberal Arts and Sciences: Elizabeth Smutz, associate professor of art; Dr. Paul Holkeboer, associate professor of chemistry; Dr. Myrtle Beinhauer, associate professor of economics; Dr. David Sadler and Dr. Philip Denenfeld, associate professors of English; Dr. Clyde Hankey, assistant professor of English; Dr. John Sommerfeldt, assistant professor of history; Dr. Alan Brown, associate professor of history; Dr. Stanislaw Leja, associate professor of mathematics; William Emblom, assistant professor of philosophy and religion; Dr. Stanley Derby, associate professor of physics; Dr. Samuel I. Clark, professor of political science; Dr. Claude S. Phillips, Jr., associate professor of political science; Dr. Eston J. Asher and Dr. Parviz Chab-bazi, associate professors of psychology; William Yankee, assistant professor of psychology, and Dr. Jerome Manis, professor of sociology.

In the Student Services area Miss Lola Haller has been promoted to an assistant professor in the counseling bureau.

Library Receives Weighty Gifts from Appeal by Chemists

There has been a rapid and weighty movement of materials in and out of the Dwight B. Waldo Library in recent months, as a direct result of activities of the library subcommittee of the chemistry advisory committee.

More than 15,000 pounds of materials have come to the library as gifts from interested persons who wish to see their own collections of greater use to other people. About 20 per cent of this material is of value to the chemistry collection and five per cent will supplement other collections. The remaining 75 per cent will be used for trades and exchanges to further augment our collections.

And just recently 20 volumes of the Journal of the American Chemical Society were shipped to Brazil to aid a library there in developing its holdings.

The library subcommittee has also launched a $200,000 drive to materially assist the University in developing a chemistry collection which will aid its graduate program.