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RANK-BASED ESTIMATION AND PREDICTION FOR MIXED EFFECTS
MODELS IN NESTED DESIGNS

Yusuf K. Bilgic, Ph.D.

Western Michigan University, 2012

Hierarchical designs frequently occur in many research areas. The experimental design

of interest is expressed in terms of fixed effects but, for these designs, nested factors are

a natural part of the experiment. These nested effects are generally considered random

and must be taken into account in the statistical analysis. Traditional analyses are quite

sensitive to outliers and lose considerable power to detect the fixed effects of interest.

This work proposes three rank-based fitting methods for handling random, fixed and

scale effects in k-level nested designs for estimation and inference. An algorithm, which

iteratively obtains robust prediction for both scale and random effects, is used along with

the proposed fitting methods including Joint Ranking (JR), Iteratively Reweighted Gen-

eralized Rank Estimate (GR), and Rank-based General Estimating Equation (GEER).

For simplicity, a 3-level nested design that deals with students nested within sections in

schools is handled. The asymptotic derivations for the proposed estimators are discussed.

The results of a Monte Carlo evaluation of the methods, including comparisons with the

traditional analysis are provided. The proposed methods compete with the traditional

method under normal case, outperform it when random errors are contaminated, and

inherit better efficiency properties of the estimates when outlier exists. The performance

of the rank-based estimators of fixed parameters is more efficient than the REML. When

random errors are contaminated, the intra-class correlation estimates in the proposed



algorithm are unbiased, while the REML estimates are biased. Also, real data examples

of applications are presented.



© Yusuf K. Bilgic 2012
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Chapter 1

Introduction

Considering ’noisy’ quantitative data sets in social science and educational research,

there is much variability in the response variable(s) to be explained by statistical analyses.

Additionally, the presence of non-normality or outliers makes a complete robust analysis

an attractive alternative to traditional analyses.

1.1 Nested Designs

Behavioral and social data commonly have a nested structure and much of educational

research deals with this nested structure regarding complex concepts such as learning,

achievement, school and teacher effectiveness (Raudenbush & Bryk, 2002; O’Connell &

McCoach, 2008; Sahai & Odeja, 2005). Observations taken from individuals within a

cluster tend to be similar. Within these clusters, individuals are no longer independent.

Nested random effects should be included in the models due to the similarity of each

cluster so that correlated structure is taken into account. These models are often referred

to as hierarchical models or the multilevel models.1 Similar studies are being conducted

in different fields as well, such as: survey sampling, meta-analysis, agriculture and health

research. Survey sampling might happen within organizational units, communities, clus-

ters, or hospitals. Also, meta-analysis is the pooling of results from separate studies.
1Nested models are the subset of hierarchical models, which are the subsets of mixed models.

1



CHAPTER 1. INTRODUCTION 2

Using statistical techniques that employ both information about individuals and

groups to which these individuals belong is one of the most challenging aspects of educa-

tional data analysis. Until the 1970s, nested structure in educational data was not incor-

porated in the model so that dependency and random effects were omitted in Ordinary

and General Least Square Analyses (OLS and GLS). In contrast to fixed assumptions on

clusters, random errors in nested design are dependent within clusters, so the OLS anal-

ysis is inappropriate. Taking cluster structure into account yields dependencies between

observations within the same clusters regardless of fixed or random block assumptions.

Also, to measure the impacts of educational interventions, schools are randomized in

practice. This leads to models with group random effects or a correlated model rather

than only fixed group effects models. In that regard, controversial inferences have been

causing debates about school effectiveness data analysis (Leeuw & Meijer, 2008). In-

evitably, reanalysis of data and disputes are common because existing methods lack the

ability to handle violations of the assumptions (Raudenbush & Bryk, 2002).

1.1.1 Correlation Structure Should Be Incorporated in Model

The notion of individuals nested in the same groups leads to dependency between the

individuals which is explained by intra-class correlation coefficients (ICC). Intra-class

correlation coefficient is information on the degree of dependencies of the observations

within the same cluster. It is a useful and contextual parameter associated with random

effects of clusters that measures the proportion of the variability in the outcome to the

total one. It is sometimes called cluster effect and applied only to random models (Rau-

denbush & Bryk, 2002). For example, independent observations within/between-cluster

yield an ICC of zero.

1.1.2 Common Research Questions

Nested designs in educational/social-science research often address questions related

to
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• the examination of differences within and across groups or contexts such as class-

rooms, schools, neighborhoods on individual outcomes

• the investigation of the degree to which individuals within a group or cluster are

similar as measured through the ICC

• the study of the factors that explain institution/school differences

• the effects of clusters and treatment on individual scores (e.g. student’s academic

achievement)

• the measurement of the impacts of interventions (e.g. educational) (Raudenbush &

Bryk, 2002; O’Connell & McCoach, 2008)

1.2 Existing Procedures: Techniques and Algorithms

It is customary in educational research to use classical statistical methodology to con-

duct mixed (more specifically hierarchical) models analysis when the correlated structures

and random effects are considered (Hill & Rowe, 1996; Leeuw & Meijer, 2008; Rauden-

bush & Bryk, 2002). Well-known statistical software such as SAS, SPSS, R and HLM use

procedures such as Maximum Likelihood (ML), Restricted ML (REML) and MINQUE

to evaluate variance components in mixed hierarchical models.

Consistent estimation of variance depends on large sample between-group sizes. Also,

analyses require moderate within-group sample sizes (e.g., n=30). In application, this

is often not the case (Leeuw & Meijer, 2008). Moreover, it is well known that the least

squares procedures and Gaussian techniques lack statistical power in the presence of

unbalanced data, heavy tailed or skewed error distributions. When unbalanced data occur

in the design, these procedures will tend to be biased in variance-covariance (var-cov)

components estimation. Further, they are quite sensitive to outliers and lose considerable

power to detect effects of interest.
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Perfectly balanced designs have closed-form expressions to estimate var-cov compo-

nents. However, for likelihood estimators in practice, these are not available for most

of the cases. Numeric optimization is done using iterative algorithms. These estimation

and prediction algorithms integrate fixed effects, random effects and var-cov components

in iterative schemes.

Example: To illustrate the issues involved in educational data analysis, consider

a simple example of a normally distributed 3-level nested data set where students are

nested within classrooms in different schools and measured on a variable of interest with

a binary covariate (say, a treatment and a control group). Such a model is commonly

used in the educational arena. It is known that the ICC is usually between .1 to .2 in the

USA schools. In this condition, the data were generated.

The problem is summarized in the linear model as

yijk = xTijkβ + ai + wj(i) + εk(ij),

k = 1, ..., nij; j = 1, ..., Ji; i = 1, ..., 7, where ai is the random effect for school i, wj(i) is the

random effect for the jth section of school i and kth student, εk(ij) is the error effect. Table

1.1 shows that the 35% of the total variability on SAT score is due to section differences,

the 23% is explained by school differences, and individual differences explain the 65%.

The REML estimates obtained from different packages disagree on this whereas the ML,

ANOVA and MINQUE agree.
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The fixed effect results under normal case are consistent except on the estimates

and standard errors in scale parameters. Thus, this produces contradictory significance

test results and statistical inferences; see, for example, the standard errors for σ2
sch. In

practice, statistical inferences are not trustworthy when data are unbalanced, small size,

with outliers or not normally distributed. This is a lack of robust statistical analyses for

hierarchical models. It is the purpose of this work to provide such analyses.

1.2.1 Likelihood Procedures

Traditional least squares procedures often require that error and random terms are

normally distributed and use large-sample properties. Based on these assumptions, like-

lihood (L) procedures have been developed for the estimation of the fixed effects and the

variance components in fitting linear mixed models. The basic idea in L is to choose esti-

mates for which the likelihood of observing the actual data is maximum. ML has a short-

coming, that is, estimates of var-cov components are conditional upon point estimates

of the fixed effects. REML estimates of var-cov components adjust for the uncertainty

about the fixed effects that have potential to yield negative variance in ML.

There are many iterative algorithms that can be considered for computing the GLM,

ML, REML, GEE and Bayesian estimates. For example, EM, Newton-Ralphson, RIGLS

(Goldstein, 1986), Fisher Scoring, and Fully Bayesian are most useful ones. These con-

ceptually distinct approaches are described in Harville (1977), Goldstein (1986; 1995),

Raudenbush & Bryk (2002), O’Connell & McCoach (2008) and Pinheiro et al (2011).

Under balanced designs and normal errors, these methods coincide in variance compo-

nent estimation. Depending on the degree to which the data are unbalanced and the

particular type of the inference sought, traditional statistical inferences are not trustwor-

thy (Raudenbush & Bryk, 2002), and no such exact tests exist.



CHAPTER 1. INTRODUCTION 6

Table 1.1: School Data Analysis with Existing Techniques
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1.2.2 Generalized Least Squares Estimates

One of the traditional methods is generalized least squares analysis to estimate fixed

and scale effects in the linear model. Using Goldstein’s (1995) Iterative Generalized

Least-Square Estimation (IGLS) approach, the general mixed model can be written and

estimated as follows:

Y = Xβ + e = Xβ + Zb+ ε, (1.2.1)

where Y denotes an n × 1 vector of responses, X is a n × p known fixed effects design

matrix, β is a p × 1 fixed effects parameter vector, Z is a n×k known random effects

design matrix, b is a k × 1 vector of random effects, and ε is an n × 1 vector of random

errors.

E{(Zb)(Zb)T}+σ2I = V and V is the covariance matrix of the response vector Y . In

the estimation of the random variables, at each iteration W = vec{(Y −Xβ̂)(Y −Xβ̂)T}

is regressed on design matrix. E(W ) = Z∗θ where Z∗is the design matrix for the random

parameters. When V is known then generalized least squares estimators for the fixed

effects are

β̂ = (XTV −1X)−1XTV −1Y (1.2.2)

and cov(β̂) = (XTV −1X)−1. If β is known but V is unknown, then estimators θ of the

parameters of V as θ̂ = (Z∗TM−1Z∗)−1Z∗TM−1W ,M = V ⊗V where ⊗ is the Kronecker

product. The covariance matrix of θ̂ is given by

(Z∗TM−1Z∗)−1Z∗TM−1cov(W )M−1Z∗(Z∗TM−1Z∗)−1 (1.2.3)

The iterative procedure iterates between (1.2.2) and (1.2.3) using the current estimates

of the fixed and random parameters. The IGLS procedure produces biased estimates and

a simple modification (called Restricted Unbiased IGLS or RIGLS) corrects the bias and

leads to REML estimates. Random effects are obtained via the estimates of covariance
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and residuals (Searle et al. 2006; Goldstein, 1995).

1.2.3 Why the Need to Improve Existing Techniques

Rank-based approaches are highly robust. They agree with traditional analyses when

the random errors are normally distributed, and they are much less sensitive to outliers

than the traditional analyses when the random errors are not normally distributed. For

example, under location problems, these approaches achieve up to 95% efficiency relative

to least squares methods when the data are normal and are much more efficient than

the least squares methods for heavy tailed error distributions (Terpstra & McKean, 2005;

Hettmansperger & McKean, 2011; Hollander & Wolfe, 1999).

In the literature, to our knowledge, robust concepts are employed for covariance es-

timation of fixed effects in ML setting which depends on normality assumptions (See

p.42 in Leeuw & Meijer, 2008; p.407-425 in O’Connell & McCoach, 2008). Rank-based

analysis in mixed model is theoretically introduced in Brunner & Denker (1994) and

Akritas & Brunner (1997) using general score function. This is a comprehensive theory

to test hypotheses, although not for fitting (estimation) and model checking. Kloke et

al. (2009) developed rank-based estimation using the joint ranking method and testings

for the fixed effects for models with dependent error structure. While their simple mixed

model analysis covered a two-level nested design, it does not handle many-level nested

structures.

Robust or nonparametric option for hierarchical linear models is not found in existing

softwares such as HLM, MLwiN, SAS MIXED, and R packages (i.e., nlme/lme4 ). Also,

efficient techniques in checking for influential clusters or observations are not yet available

for multilevel models (Goldstein, 1995).

1.2.4 Research Goal

In this dissertation, the goal is to investigate three proposed rank-based methods in

handling random, fixed and scale effects in k-level random effect nested designs. Asymp-
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totical results will be derived. For the sake of simplicity, a 3-level nested design that

deals with measurements nested within sections in schools will be used. This nested ana-

log could be adopted for other organizational studies and settings. The validation and

efficiency results of the proposed methods are presented via a Monte Carlo investigation

including a comparison with the traditional analysis. Further, these are shown with real

data examples.



Chapter 2

Methodology

2.1 Variance Component Estimators

Robust predictions of random effects have been discussed in several papers, including

Groggel et al. (1988), Dubnicka (2004), and Kloke at al. (2009). These techniques to

predicting random effects based on clusters use robust estimators of the variance compo-

nents. However, these consider models for cluster correlated data, namely here a 2-level

random nested design. In this study, the proposed procedures for the rank-based predic-

tions of the random effects use the similar algorithm as in the study of Groggel (1983),

Groggel et al. (1988), and Dubnicka (2004) for k-level nested designs. Kloke et al. (2009)

developed the asymptotic theory for the rank-based estimates of fixed effects using the

general rank theory of Thompson (1990), and Brunner and Denker (1994). This study

extends the theory of Kloke et al. (2009) for these fixed effects estimation. Also, the

theory of consistency of var-cov estimators in the study of Hettmansperger and McKean

(2011) and Groggel (1983) is extended.

2.1.1 Pseudo-Sample Approach

Groggel (1983) and Groggel et al. (1988) suggested the pseudo-samples of observations

that are asymptotically equivalent to the samples of the random and error effects formed

10
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using either sample means or sample medians in the simple mixed model. In particular,

to understand it, consider the one-way random effects model

yij = α + ai + εij (2.1.1)

for i = 1, 2, ..., k and j = 1, 2, ..., ni (say, k schools, ni students in each). ai and εij are

random cluster effects and error effects, respectively. We only observe the values of yij,

the variables ai and εij are not observable. We begin formation of the pseudo-samples

based on means as location estimate by defining the pseudo-effects Ai and Eij. We define

yi. = n−1
i

∑
j
yij, y.. = N−1∑

i

∑
j
yij, ε̄i. = n−1

i

∑
j
εij, ε̄.. = N−1∑

i

∑
j
εij and ā. = k−1∑

i
ai As

ni → ∞ and k → ∞, the sample Eij = yij − yi. = εij − ε̄i. behaves like the εij and the

sample Ai = yi. − y.. = ai + ε̄i. − ā. − ε̄.. behaves like ai because ε̄i., ε̄..and ā. converge in

probability to zero. The pseudo-samples Eij and Ai behave like independent samples of

the errors. In particular, the variances of them are equal to the variances of the errors in

the limiting case (See Chapter 3 for the theory and the consistency.)

For the 3-level nested structure, these pseudo random samples with means, school

effects A = {Ai}, section effects W = {Wij}and error effects E = {Eijk}, are defined as

Ai = yi.. − y... = ai + w̄i. + ε̄i.. − (ā. + w̄.. + ε̄...), Wij = yij. − yi.. = wij + ε̄ij. − (w̄.i + ε̄i..),

and Eijk = yijk − yij. = εijk − ε̄ij. . In case with covariates, yijk is replaced with eijk =

yijk − xTijkβ. Here, the mean estimate can be replaced with another consistent location

estimate with desired asymptotic properties (Groggel, 1983).

2.1.2 Rank Prediction Procedure (RPP)

For the k-level nested structure, we build pseudo-samples to predict random effects.

For simplicity, much of our discussion is for a 3-level nesting model. But our results

generalize to the k-level design. As described in the unpublished work by Terpstra &

McKean (p.18), suppose that students’ measurements are obtained from the sections.

The sections are random and nested within schools, and we take the school effect as a
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second random effect: I schools, Ji sections in school i, and nij students in section j of

school i. Let yijk denote the response for the kth student, in the jth section of the ith

school and let xijk denote the vector of covariates. Then yijk follows the model

yijk = xTijkβ + ai + wj(i) + εijk (2.1.2)

k = 1, ..., nij; j = 1, ..., Ji; i = 1, ..., I, where ai is the random effect for school i and

wj(i) is the random effect for the jth section of school i. That is, {ai} and {wj(i)} are the

components of b in (3.1.1). Denote the variances of the random effects ai and wj(i) by σ2
a

and σ2
w, respectively. That is, θ = (σ2

a, σ
2
w)t. Note that we can write the model as

yijk − xTijkβ = ai + wj(i) + εijk (2.1.3)

Let rijk = yijk − xTijkβ̂ denote raw residuals. Then, consider the model

rijk=̇ai + wj(i) + εijk (2.1.4)

With i and j fixed, this is a simple location model; hence, an estimate of that location is

ûij = medk{rijk}, which predicts ai + wj(i). To separate ai and wj(i), consider

ûi. = medJi{ûi1, ûi2, · · · , ûiJi}.

Then, for j = 1, ..., Ji, the difference ûij − ûi. is free of ai and, hence, is a predictor of

wj(i). That is, the prediction of wj(i) is

ŵj(i) = ûij − ûi..

Finally, move this prediction to the left side of equation (2.1.4) to obtain the model

rijk − ŵj(i)=̇ai + εijk.
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This simple location model yields as the prediction of ai,

âi = medjk{rijk − ŵj(i)}.

Proceeding over all sections, we obtain the predictions of the random effects. Since we

used the median as the location predictor, we adjust these with their common medians.

âi = âi −meds{âs} and ŵj(i) = ŵj(i) −meds,t{ŵt(s)}. Next, define the vectors of random

effects as â = (â1, · · · , âI), and ŵ = (ŵ1(1), · · · , ŵJI(I)). Hence, Disp2(â) and Disp2(ŵ)

serve as robust estimators of the variance components σ2
a and σ2

w, respectively. The RPP

algorithm needs residuals from rank-based fittings for predictions of the random effects in

random nested models. This recursive algorithm can handle a general number of nestings

in a hierarchical mixed model as above. We discuss several location and scale estimators

in the next section. Note that the pseudo-sample A’s and E’s are based on data, but for

large sample sizes, Ai behaves as ai and Eij behaves as εij. Groggel (1983) used these

pseudo-samples in this sense. It is similar to the first order analysis of robust residuals in

McKean et al. (1990). We connect these two approaches (See Groggel, 1983 and McKean

et al., 1990).

2.1.3 Location Estimators: Hodges-Lehmann and Median

The n(n + 1)/2 pairwise averages {(xi + xj)/2 : 1 ≤ i ≤ j ≤ n} are called Walsh

averages Hodges & Lehmann (1963). The estimate of location parameter in one sample

is the median of the Walsh averages, called the Hodges-Lehmann estimate (HL). Another

estimate of location in rank prediction algorithm is the median estimate.

2.1.4 Scale Estimators

The fitted model in a Rank-based method yields residuals that inherit all random

effects. We use them to estimate the variance components for each type of errors in
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nested levels. The dispersion function is defined as

D(e) =
n∑
i

a(R(ei))ei. (2.1.5)

The scores a(k) are generated from the score function, ϕ[k/(n + 1)], where ϕ(u) is a

specified nondecreasing, square integrable function on interval (0, 1). One of the robust

candidates for scale parameter estimators is

Disp(e) = 1
n
D(e) = 1

n

n∑
i=1

a(R(ei)) · ei. (2.1.6)

The other scale estimator is the median absolute deviation (MAD) defined as

MAD(e) = 1.483medi|ei −medj{ej}|.

Also, Hettmansperger & McKean (2011) defines the functional corresponding to the dis-

persion for Wilcoxon scores for a random vector e defined as

Disp(e) = 2
√
π

n

n∑
i=1

(
R(ei)
n+ 1 −

1
2

)
· ei. (2.1.7)

This is a consistent estimator of the scale parameter σe when the errors have a normal

distribution. Kloke et al. (2009) suggest that the MAD is a consistent estimator for scale

parameter in clustered correlated design.

2.1.5 Intra- and Inter- Correlation Coefficients

In a 3-level nested study (See Model 2.1.3), to measure each level’s contribution to

the variability, three intra-class correlations are defined as intra-error, σ2
ε

σ2
ε+σ2

sch
+σ2

sect(school)
,

intra-school, σ2
sch

σ2
ε+σ2

sch
+σ2

sect(school)
, and intra-section, σ2

sch+σ2
sect(school)

σ2
ε+σ2

sch
+σ2

sect(school)
. For a general number

of nestings in a purely hierarchical model (k-level nested), these are defined in this sense.
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2.2 Rank-Based Analysis

As discussed below, the rank-based analysis, the least squares (LS) Euclidean norm

is replaced with another norm; hence, the geometry and intuition remain the same as in

the traditional analysis. For example, in tests of linear hypotheses the reduction in sums

of squares in the least squares based analysis is replaced by the reduction in dispersion

of the rank-based analysis. The power of rank-based approach is insensitive to normality

assumptions. The analysis doesn’t require balanced design. It is robust to outliers in

response space by choosing other score functions and rank estimators such as GR, WIL

and Sign, and simple weighting schemes (HBR) yield resistance to outliers in factor

space. Choosing score function depending on the information about distribution gives

more powerful results. Rank-based approach is described in independent linear regression

models, simple mixed models, models with correlated error structure in Hettmansperger

& McKean (2011). The rank-based norm is

‖w‖ϕ =
n∑
i

a((R(wi))wi, (2.2.1)

wεRn, where the scores are generated as a(i) = ϕ[i/(n+ 1)] for a nondecreasing function

ϕ(u), defined on the interval (0, 1), and R(wi) is the rank of wi among w1, w2, ..., wn. We

assume without loss of generality that the scores sum to zero. Two of the most popular

score functions are the Wilcoxon ϕ(u) =
√

12 · (u − 1
2) and the sign ϕ(u) = sgn[u-1/2].

The joint rank-based estimate of β for the independent error model Y = Xβ + e is given

by

β̂ϕ = Argmin ‖Y −Xβ‖ϕ (2.2.2)

Let f(t) denote the pdf of error terms. In the iid linear model case, under regularity

conditions

β̂∼̇N(β, τ 2
ϕ(XTX)−1), (2.2.3)

τϕ = [
ˆ
ϕ(u)ϕf (u)du]−1, (2.2.4)
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with ϕf (u) = −f ′(F−1(u))
f(F−1(u) (See Chapter 3, Hettmansperger & McKean, 2011). The pa-

rameter τϕ is a scale parameter for the error terms ei.

The estimator of the fixed effects is asymptotically normal shown in the study of

Jaeckel (1972), Jureckova (1971), McKean & Hettmansperger (1976). Kloke et al. (2009)

obtained the asymptotic theory for the simple mixed model. In the next chapter, we ob-

tain the asymptotic theory for the GR estimator of fixed effects in the hierarchical model

and, further, we obtain the consistency of our robust variance component estimators.

We propose three new rank-based methods, Joint Ranking (JR), Generalized Ranking

(GR) and Rank-based Generalized Estimating Equations (GEER), which iteratively ob-

tain robust estimation for both the fixed and random effects, thus, intra-class correlation

coefficients. These methods employ the proposed algorithm, called Rank Prediction Proce-

dure (RPP), for predicting random errors and effect, and scale parameters. In particular,

main interest is to estimate β as fixed effects using these three Rank-based methods,

b as random effects and σ2
l ’s as scale parameters using the RPP with two alternative

estimators. Hence, intra-class correlation coefficients for each level is estimated.



Chapter 3

Ranked-Based Estimate and
Asymptotic Theory

In this chapter, we discuss the three Rank-based methods along with the random

effect prediction algorithm for the k-level nested random effects model.

3.1 Model and Assumptions

Consider the general mixed model,

Y = Xβ + e = Xβ + Zb+ ε, (3.1.1)

where Y denotes a n × 1 vector of responses, X is a n × p known fixed effects design

matrix, β is a p × 1 fixed effects parameter vector, Z is a n × k known random effects

design matrix, b is a k × 1 vector of random effects, and ε is a n × 1 vector of random

errors.

We will make the following model assumptions: Random effects of each nested level

are independent and identically distributed (iid) with mean 0 and variance σ2
l , (0, σ2

l ),

for levels l = 1, ..., k. The components of ε are iid (0, σ2
ε ) and ε and b are independent.

Hence, responses from individuals nested within a cluster are considered to be correlated

while responses from individuals nested within highest level cluster are not.

The models with independent vector of errors ei and three-level nested design can be

17
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expressed as

Yi = α1ni. +XT
i β + ei (3.1.2)

yijk = xTijkβ + ai + wj(i) + εijk, (3.1.3)

where Xi = [XT
i1, X

T
i2, ..., X

T
iJi

]T is ni· × p design and covariate matrix for school i, Yi =

[Y T
i1 , Y

T
i2 , ..., Y

T
iJi

]T is ni·× 1 response matrix for school i, the sum of observation in school

i is ni· =
Ji∑
j=1

nij, and N =
I∑
i=1

ni· is the sum of all observations. Schools, highest clusters,

are independent. Also, the three-level nested error model is expressed as

eijk = ai + wj(i) + εijk, k = 1, ..., nij; j = 1, ..., Ji; i = 1, ..., I, (3.1.4)

where εijk is error, ai is the random effect for school i and wj(i) is the random effect for

the jth section of school i. That is, {ai} and {wj(i)} are the components of b in (1.2.1).

Denote the variances of the random effects ai and wj(i) by σ2
a and σ2

w , respectively. Then

the vector of variance components is θ = (σ2
ε , σ

2
a, σ

2
w)t.

3.2 Joint Ranking Method (JR)

Consider the Rank-based estimates for fitting linear models with dependent errors.

The asymptotic theory for the clustered correlated model and simple mixed model in

rank-based analysis is presented in detail in Chapter 5 of the book of Hettmansperger

and McKean (2011). It is based on the work of Brunner & Denker (1994) and Kloke et al.

(2009). Here we only briefly summarize and discuss the modified form of the theorems in

terms of the random nested model in (3.1.3). Also, we derive the standard errors of the

fixed estimate.

The asymptotic linearity and quadratic dispersion for our case are derived in a manner

similar to that of the study in the independent case. The theory for the Joint Rank (JR)

estimate assumes that the marginal cdfs are the same; see Kloke et al. (2009), which is

true for our hierarchical model. We write the general result for the k-level design and
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specialize it to the three-level nested model. Then, we obtain the asymptotic variance-

covariance matrix of β̂JR, a consistent estimator of the asymptotic variance-covariance

matrix of β̂JR, and the Studentized residuals. Then, after fitting the model of interest,

random effects and scale estimates are estimated via the RPP algorithm found in Section

2.1.

Assume Model (3.1.2) is true. Under the required assumptions, J1-J6, listed in the

Appendix, consider Jaeckel’s (1972) dispersion function defined in terms of the pseudo-

norm

D(β) = ‖Y −Xβ‖ϕ =
I∑
i=1

a
[
R(Yi −XT

i β)
]
· (Yi −XT

i β). (3.2.1)

This is the objective function. Since it is convex, the estimator of the fixed effects β is

given by the value that minimizes D(β) i.e.,

β̂JR = ArgminD(β) = Argmin ‖Y −Xβ‖ϕ .

The negative of the gradient of D(β) is

S(β) = XT · a[R(Y −Xβ)].

The scores are generated via a score function as a(k) = ϕ[k/(N + 1)], where ϕ(u) is

a specified nondecreasing, square integrable function on interval (0, 1). Without loss of

generality, it is standardized so that
´ 1

0 ϕ(u)du = 0 and
´ 1

0 ϕ
2(u)du = 0.

Since the estimate is location and scale equivariant for the theory, without loss of

generality, the true parameters are assumed to be zero. And our theory is for general

score. The projection of the gradient is a random vector, with the covariance,

Sx(β) = X
′
ϕ[F (e)] (3.2.2)

cov(Sx(β)) = X
′
cov(ϕ[F (e)])X =

I∑
i=1

X
′

iΣϕ,iXi,
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where Σϕ,i is given by Σϕ,i = cov(ϕ(F (ei)); see Kloke et al (2009). The linearity result is

given by

Sx(β) = Sx(0)− τ−1
ϕ N−1(X ′X)−1X ′β + op(N1/2) (3.2.3)

for N1/2‖β‖ ≤ c, ∀c > 0, where N is the total sample size. This leads to the asymptotic

representation

N1/2β̂ = τϕN
1/2(X ′X)−1X ′ϕ[F (e)] + op(1). (3.2.4)

Thus the asymptotic variance of β̂JR is

var(
√
Nβ̂JR) .= τ 2

ϕ(X ′X)−1(limI→∞

I∑
i=1

X
′

iΣϕ,iXi)(X ′X)−1, (3.2.5)

where I is the number of independent clusters. In practice, it is expressed as

β̂JR
.= τϕ(X ′X)−1X ′ϕ[F (e)] (3.2.6)

and

var(β̂JR) .= τ 2
ϕ(X ′X)−1(Σϕ)(X ′X)−1, (3.2.7)

where limI→∞N
−1∑I

i=1 X
′
iΣϕ,iXi

.= ∑I
i=1 X

′
iΣϕ,iXi = Σϕ and τϕ is defined in expression

(2.2.4).

These results hold in general for the k-level nested designs with I independent clusters

with k-level subclusters. Our model of interest is the 3-level nested model in (3.1.3). Note

that the dispersion function can be written as

DJR(β) =
I∑
i=1

Ji∑
j=1

nij∑
k=1

a
[
R(yijk − xTijkβ)

]
· (yijk − xTijkβ) (3.2.8)

and that the gradient function is given by

S(β) = XT · a(R(Y −Xβ)) =
I∑
i=1

Ji∑
j=1

nij∑
k=1

xTijka[R(yijk − xTijkβ)]. (3.2.9)
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Assume var-cov of ϕ[F (ei)], that is Σϕ,i, and var-cov of ei, that is Σi, exist. Covariance

structure for the errors are selected as desired; i.e., structured (S), compound symmetry

(CS), autoregressive-one AR(1), working independence (WI), or unstructured (UN). For

example, in a three-level case, the three-parametered CS structures for cov(ϕ[F (e)]) and

cov(e) are defined and estimated as follows:

cov(ϕ[F (e)]) = σ2
ϕ ·B(1, ρϕ,sec, ρϕ,sch)

= σ2
ϕ · diag{B1(1, ρϕ,sec, ρϕ,sch), B2(1, ρϕ,sec, ρϕ,sch),

..., BI(1, ρϕ,sec, ρϕ,sch)}N×N , (3.2.10)

where B(1, ρϕ,sec, ρϕ,sch) is the block-diagonal matrix inN×N , and Bi’s are block matrices

in ni· × ni· defined as Bi(1, ρϕ,sec, ρϕ,sch) = cov(ϕ[F (ei)]), where ρϕ,sch’s are off-block

diagonal entries while cov(ϕ[F (eij)]) ’s are block-diagonal matrices in nij×nij. Since the

scores are standardized and F is the cdf of eijk,

var(ϕ[F (eijk)]) = 1.

Also, random errors from different highest clusters are independent, so

cov(ϕ[F (eijk)], ϕ[F (ei′j′k′)]) = 0.

For notation, define ρϕ,sec and ρϕ,sch as

cov(ϕ[F (eijk)], ϕ[F (eijk′)]) = E{ϕ[F (eijk)]ϕ[F (eijk′)]} = ρϕ,sec

and cov(ϕ[F (eijk)], ϕ[F (eij′k′)]) = E{ϕ[F (eijk)]ϕ[F (eij′k′)]} = ρϕ,sch.

Define intra-class correlation coefficients, ρsec(sch) and ρsch , found in Section 2.1.5. For

the error structure,

cov(e) = Σ = σ2 ·B(1, ρsec(sch), ρsch) (3.2.11)
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is a N × N block-diagonal matrix, B = B(1, ρsec(sch), ρsch) is a block-diagonal matrix

defined with ρsec(sch) and ρsch instead of ρϕ,sec and ρϕ,sch as in (3.2.10), with the notations

var(eijk) = σ2
ε + σ2

a + σ2
w = σ2, cov(eijk, eijk′) = σ2

a + σ2
w, and cov(eijk, eij′k′) = σ2

a. Let

êijk denote the residuals, i.e., êijk = yijk − xtijkβ̂JR. Estimates of ρϕ,sec and ρϕ,sch are

calculated using the simple moment estimator,

ρ̂ϕ,sch = 1
A

I∑
i=1

Ji∑
j>j′

nij∑
k=1

(a [R(êijk)])(a [R(êij′k)]), A =
I∑
i=1

Ji∑
j=1

nijnij − p

and ρ̂ϕ,sec = 1
B

I∑
i=1

Ji∑
j=1

nij∑
k>k′

(a [R(êijk)])(a [R(êijk′)]), B =
I∑
i=1

Ji∑
j=1

nij(nij − 1)− p.

The intercept estimator, which is location and scale equivariance, is obtained from

a consistent location estimator. One estimator is the median of the residuals; i.e., α̂ =

medi,j,k{êijk}. Its asymptotic representation is given by

α̂ = τS
I∑
i=1

Ji∑
j=1

nij∑
k=1

sgn(eijk) + op(1/
√
N). (3.2.12)

The asymptotic variance of the estimator is expressed as

var(α̂) = var(med{êijk}) = τ 2
s

1
N2

I∑
i=1

var(
Ji∑
j=1

nij∑
k=1

sgn(eijk))

= τ 2
s

1
N2

I∑
i=1
{
Ji∑
j=1

nij∑
k=1

var(sgn(eijk)) +
Ji∑
j=1

nij∑
k 6=k′

cov(sgn(eijk), sgn(eijk′))

+
Ji∑
j 6=j′

nij∑
k=1

cov(sgn(eijk), sgn(eij′k))}.
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In this 3-level case, letting τs = 1
2f(0), this variance is

var(α̂) .= τ 2
s

1
N2

I∑
i=1
{ni +

Ji∑
j=1

nij(nij − 1)cov(sgn(eij1), sgn(eij2))

+
Ji∑
j=j′

nijnij′cov(sgn(eij1), sgn(eij′1))}

.= τ 2
s

1
N2{N +

I∑
i=1

Ji∑
j=1

nij(nij − 1)cov(sgn(eij1), sgn(eij2))

+
I∑
i=1

Ji∑
j=j′

nijnij′cov(sgn(eij1), sgn(eij′1))}

.= τ 2
s

1
N
{1 + k1

N
c1 + k2

N
c2}, (3.2.13)

where k1 = ∑I
i=1

∑Ji
j=1 nij(nij−1), k2 = ∑I

i=1
∑Ji
j=j′ nijnij′ , and c1 = cov(sgn(eij1), sgn(eij2)),

c2 = cov(sgn(eij1), sgn(eij′1)). Consistent estimators for c1 and c2 are simple weighted mo-

ment estimators with school sample size. In the simulations, we use the weighted simple

moment estimator with the sample size of school. As an alternative to this estimator, we

can adjust the scores with its school averages by subtracting. The estimate of the scale pa-

rameter τϕ is obtained from τϕ = [
´
ϕ(u)ϕf (u)du]−1and ϕf (u) = −f ′(F−1(u))/f(F−1(u))

(See Koul et al., 1987; Hettmansperger & McKean, 2011).

3.2.1 Studentized Residuals

As described in Hettmansperger and McKean (2012, Chapter 3), using the error model

êJR = Y −α̂S1N−Xβ̂ϕ, the asymptotic representation of α̂S in (3.2.12), and β̂JR in (3.2.4)
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for (3.1.4), we can write the residuals êJR to first order approximation s.t.

êJR = Y − α̂S1N −Xβ̂ϕ (3.2.14)

= Y − τS
N

1′ϕS[F(Y)]1−Xτϕ(X′X)−1Xϕ[F(e)] + β0

= (Y −Xβ0)− τS
N

ei∑
i=1

sgn(ei)1−Xτϕ(X′X)−1Xϕ[F(e)] + β0

= e− τSsgn(e)1− τϕHϕ[F(e)]

= e− τS
N

1′sgn(e)1− τϕHϕ[F(e)]. (3.2.15)

Then,

cov(êJR) = E((e− τS
N

1′sgn(e)1− τϕHϕ[F(e)])(e− τS

N
1′sgn(e)1− τϕHϕ[F(e)])′)

= E(ee′) + τS
N
E(e1′(1′sgn(e))′)− τϕE(eϕ[F(e)]′)H′

−τS
N
E(1′sgn(e)1e′) + τ2

S
N2 E(1′sgn(e)11′(1′sgn(e))′)

+τSτϕ
N

E(1′sgn(e)1ϕ[F(e)]′)H′ − τϕHE(ϕ[F(e)]e′)

+τSτϕ
N

HE(ϕ[F (e)]1′(1′sgn(e))′) + τ2
ϕHE(ϕ[F(e)]ϕ[F(e)]′)H′,

(3.2.16)

where H is the projection matrix onto the the space spanned by the centered design

matrix X. For t = 1, 2, ..., N , the joint rank-based t-th Studentized marginal residual is

e∗JR,t = êJR,t/
√
cov(êJR)t,t.

Using the similar approach in Hettmansperger and McKean (2012, Chapter 5) for the esti-

mate of cov(êJR) with one level dependent error structure, we need some new parameters,

which can be estimated as in (3.2.10), and notations defined as

E(ee′) = σ2B(1, ρsec, ρsch)
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E(eϕ[F (e)]′) = B(E(e111, ϕ[F (e111)]), E(e111, ϕ[F (e112)]), E(e111, ϕ[F (e121)]))H

E(ϕ[F (e)]ϕ[F (e)]′) = HB(1, ρϕ,sec, ρϕ,sch)H

E(e111ϕ[F (e111)′]) = 1
N

N∑
i=1

eijkϕ[F (eijk)]

Likewise, E(1′sgn(e)1ϕ[F (e)′]) can be obtained from

E(1′sgn(e)1ϕ[F (e)′]) = 11′B(E(sgn(e111), ϕ[F (e111)]), ...

E(sgn(e111), ϕ[F (e112)]), ...

E(sgn(e111), ϕ[F (e121)]))H

3.2.2 General Linear Hypothesis

In regard to testing interest, the asymptotic distribution of β̂JR in (3.2.6) suggests

a Wald type test of the general null hypothesis in the form of H0 : Hqxpβ = 0 based

on the test statistics Tϕ = (Hβ̂)T (HV̂JRH)(Hβ̂), which has an asymptotic distribu-

tion of χ2(q). Under the local alternatives, noncentrality parameter is given by η =

(Hβ)T (HVJRH)(Hβ). (An alternative test is the reduction of dispersion test; see Hettmansperger

and McKean, 2011).

3.3 Generalized Rank Method (GR)

In this section, the k-step estimate algorithm in the generalized rank method for the

mixed models is introduced. This is an iteratively reweighted rank method based on the

Newton-type approximation. McKean and Hettmansperger (1978) developed the asymp-

totic properties of linearized rank estimators for use in the linear model with the k-step

Gauss-Newton approximation without reweighing, and it was proposed for independent

case. Here, we extend this theory to the k-step GR method in the dependent case of

mixed models; i.e., k-level nested models. It suffices to discuss the asymptotic linearity

of the estimate for first step, because the argument is the same for each step. The theory
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for one-step estimate suffices to show the behavior of the k-step iterations. Also, after the

first step, the estimates are asymptotically equivalent to the independent case because

residuals are no longer dependent due to reweighing with variance-covariance matrix.

3.3.1 GR Algorithm

Consider the general mixed model in (3.1.1). The proposed Iteratively Reweighted

Generalized Rank-based algorithm (GR) is as follows.

(0) Set l = 0

(1) Obtain β̂(l) by fitting Y ∗ = Σ̂−
1
2

Y ·Y to X∗ = Σ̂−
1
2

Y ·X using a rank-based regression

estimate. If l = 0 then use Σ̂Y = In; otherwise use Σ̂Y = ΣY (θ̂(l−1)).

(2) Use β̂(l) to calculate the residuals, ê(l) = Y −Xβ̂(l).

(3) Use ê(l) to obtain b̂(l), the predictor of b.

(4) Use b̂(l) to estimate the variance components, θ̂(l).

(5) If
∥∥∥β̂(l) − β̂(l−1)

∥∥∥ < TOL and
∥∥∥θ̂(l) − θ̂(l−1)

∥∥∥ < TOL then stop; let β̂ = β̂(l), θ̂ = θ̂(l)

and b̂ = b̂(l). Otherwise, let l = l + 1 and return to step 1.

The estimators of the asymptotic variance-covariance matrix of β̂GR require consistent

τS , τϕ and ΣY which are obtained from the current estimate of weighted errors. When

we specialize to the model of interest, the three level nested model, the estimate of ΣY is

obtained via the RPP algorithm. The next section discusses the asymptotic theory and

consistency of these estimates.

3.3.2 Pseudo-Estimates for the k-Step Estimator

Using the same assumptions as in JR, the model is

Yi = α1i +Xiβ + ei, i = 1, 2, ..., I.

Let Y ∗i = Σ̂−
1
2

i ·Yi , X∗i = αΣ̂−
1
2

i 1i+Σ̂−
1
2

i ·Xi and e∗i = Σ̂−
1
2

i ·ei. Σ̂i is the variance-covariance

matrix of êi. Let β∗ = (α, β′)′. New model is now the model passing through the origin
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defined as

Y ∗i = X∗i β
∗ + e∗i . (3.3.1)

It will be convenient to express the rank-based pseudo-estimate, which is free of the

intercept estimate, after reweighting the first step in the next theorem.

Theorem 1. The asymptotic representation of β̂∗ is

τS(X∗TX∗)−1X∗TH1sgn(e∗) + τϕ(X∗TX∗)−1X∗THXϕ[F (e∗)] + op(1/
√
N).

Then, the asymptotic pseudo-estimate and distribution are

β̂GR
.= τS(X∗TX∗)−1X∗TH1sgn(e∗) + τϕ(X∗TX∗)−1X∗THXϕ[F (e∗)]

+op(1/
√
N) (3.3.2)

β̂GR
.= τS(X∗TX∗)−1X∗TH1sgn(e∗) + τϕ(X∗TX∗)−1X∗THXϕ[F (e∗)] (3.3.3)

with variance

var(β̂∗GR) .= (X∗TX∗)−1X∗T [1N X∗c ]


τ 2
S

N
0

0 τ 2
ϕ(X∗Tc X∗c )−1

 [1N X∗c ]T X∗(X∗TX∗)−1,

(3.3.4)

where X∗c = X∗ − H1X
∗, H1 is the projection matrix on the intercept space, Hx is the

projection matrix on the centered design matrix X∗ space.

The argument follows that the projection of Y ∗i on the space spanned by 1niand X∗c,i

is reprojected on the desired space which is spanned by X∗ keeping the independent

properties on the β distribution (See Chapter 3 in Hettmansperger & McKean, 2011).

For the asymptotic representation, equations (3.2.4) and (3.2.12) are modified along with

the projections.
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3.3.3 One Step GR

Consider the general mixed model,

Y = Xβ + e. (3.3.5)

X is N × p including the intercept design, Y is N × 1. Assume Σ is the var-cov of e, and

without loss of generality the true β is 0. Consider the model with true weights Σ

Σ−1/2Y = Σ−1/2Xβ + Σ−1/2e

Y ∗ = X∗β + e∗. (3.3.6)

Let β̂(0) be the JR estimate on model (3.3.5). Then
√
Nβ̂(0) is O(1), and it satisfies the

asymptotic properties developed for the JR (See Sections 3.2.2, 3.2.4) and 3.2.6). After

obtaining the estimated weights Σ̂ based on β̂(0), the model is

Σ̂−1/2Y = Σ̂−1/2Xβ + Σ̂−1/2e

Y ∗∗ = X∗∗β + e∗∗. (3.3.7)

Let β̂∗∗ denote the first Newton step rank-based estimate based on Model (3.3.7).

β̂∗∗ = β̂(0) + τ(X∗∗′X∗∗)−1SX∗∗(β̂(0)).

Using the linearity and quadratic results of the JR development (Jureckova, 1971; Chapter

3 in the book of Hettmansperger and McKean, 2011), denote b̃∗the pseudo-estimate of

the approximation of the dispersion function on Model (3.3.6) defined in (3.3.3). This

model is independent case. It suffices to obtain the results of Theorem 3.5.4 and 3.5.5 in

Hettmansperger and McKean (2011); i.e.,

√
N(β̂∗∗ − b̃∗)→ 0 in probability.
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Note that
√
Nb̃∗ = τ(X∗′X∗)−1SX∗(0).

Then we have

√
N(β̂∗∗ − b̃∗) =

√
Nβ̂(0) + τ

√
N(X∗∗′X∗∗)−1SX∗∗(β̂(0))− τ

√
N(X∗′X∗)−1SX∗(0).

Now, we will show that the right hand side is op(1). Assume the design matrix conditions

for X, X∗ and X∗∗ are satisfied. This includes the Huber’s condition. The assumptions

on the leverage values. Given δ > 0, assume that N0 is large enough

N ≥ N0 , ‖X∗∗ −X∗‖F < δ

uniformly, where ‖·‖F denote the Frobenius norm, defined as the square root of the sum

of the absolute squares of its elements for a given matrix or vector. In particular, assume∣∣∣x∗∗ij − x∗ij∣∣∣ < δ ∀i, j and i, j = 1, ..., N . The responses are transformed too. So similarly

we assume that N0 is sufficiently large so that

Y ∗∗i − Yi∗ = op(1) for i = 1, ..., N, (3.3.8)

and

F ∗∗(t)− F ∗ (t) = op(1) for N ≥ N0. (3.3.9)

It is convenient to consider the transformation of the design matrix and parameters. Let

F be cdf of errors. The new notations are defined as

∆ = (X∗′X∗)1/2β

C∗ = X∗(X∗′X∗)−1/2 = 1√
N
XΣ−1/2

c∗i = 1√
N
x∗i s.t. the sum is 0 in probability since x′is are centered.
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c∗∗i = 1√
N
x∗∗i .

Appendix A.3 of Hettmansperger and McKean (2011) develops the asymptotic linearity

and quadracity of the R estimates for linear models. Based on this development it suffices

to obtain our result for the simple linear case, because the convexity arguments used in

the appendix hold here. What we need to show is the equivalence of S∗(∆) in terms of c∗∗i

and F ∗∗ following the next lemmas. By Appendix A.3 in Hettmansperger and McKean

(2011),

S∗(∆) =
N∑
i

c∗iϕ[F ∗(Y ∗i )]− 1
τ

∆ + op(1). (3.3.10)

Lemma 2. Using the notations for models (3.3.6) and (3.3.7),

S∗(∆) =
N∑
i

c∗∗i ϕ[F ∗(Y ∗i )]− 1
τ

∆ + op(1).

Proof. Knowing (3.3.10), we can add and subtract ∑N
i c
∗∗
i ϕ[F ∗(Y ∗i )] to it s.t.

S∗(∆) =
N∑
i

c∗∗i ϕ[F ∗(Y ∗i )] +
N∑
i

(c∗i − c∗∗i )ϕ[F ∗(Y ∗i )]− 1
τ

∆ + op(1). (3.3.11)

Choose N so large that |x∗∗i − x∗i | < δ ∀i , i = 1, ..., N . This implies |c∗∗i − c∗i | <
δ√
N

.

We next show that the second term in (3.3.11) is op(1) with the following remark. Then

the desired result follows.

Remark 3. ∑N
i (c∗i − c∗∗i )ϕ[F ∗(Y ∗i )] is op(1). To show it, recall that c∗∗i of the order xi√

N
as

in Liang & Zeger (1986). Assume that the weights satisfy the expression

c∗∗i = c∗i + op(
1√
N

).

Hence, for arbitrary δ > 0, N ≥ N0,

N∑
i

(c∗∗i − c∗i )ϕ[F ∗(Yi)] = δ√
N

N∑
i

ϕ[F ∗(Yi)] = op(1)√
N
.
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Since ϕ[F ∗(Yi)] are independent and identically distributed (iid) with mean 0 by the

Central Limit Theorem, the above is op(1).

Lemma 4.

S∗(∆) =
N∑
i

c∗∗i ϕ[F ∗∗(Y ∗∗i )]− 1
τ

∆ + op(1).

Proof. Knowing Lemma 3.3.10, S∗(∆) = ∑N
i c
∗∗
i ϕ[F ∗(Y ∗i )]− 1

τ
∆ + op(1), we can rewrite

the first term as

N∑
i

c∗∗i ϕ[F ∗(Y ∗i )] =
N∑
i

c∗∗i ϕ[F ∗∗(Y ∗∗i )] +
N∑
i

c∗∗i {ϕ[F ∗(Y ∗i )]− ϕ[F ∗∗(Y ∗∗i )]}.

The claim is that the second term is op(1). To do this, we again use the assumptions of

the weights. Assume N ≥ N0 so that

1√
N
Y ∗∗i = 1√

N
Y ∗i + op(

1√
N

), i = 1, ..., N.

and
1√
N
F ∗∗ = 1√

N
F ∗ + op(

1√
N

), i = 1, ..., N.

Because the composite function ϕ◦F is uniformly continuous, it follows from the expres-

sion (3.3.9), for any arbitrary δ > 0, ∃N0, N ≥ N0 and

ϕ[F ∗(Y ∗i )]− ϕ[F ∗∗(Y ∗∗i )] < δ.

Then,
N∑
i

c∗∗i {ϕ[F ∗(Y ∗i )]− ϕ[F ∗∗(Y ∗∗i )]} ≤
N∑
i

| c∗∗i | δ

=
N∑
i

1√
N
| x∗∗i | δ = δOp(1) = op(1)

where we have used the assumption that ∑ 1√
N
x∗∗i is bounded. Hence, the proof is

completed.
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3.3.4 Studentized Residuals

For the GR, theoretically the transformed model is an independent model. Assume

that the transformed errors are uncorrelated. Hence, the Studentized residual for inde-

pendent case in Rank-based fitting is valid (See Hettmansperger and McKean, 2011, p.

222).

3.4 Generalized Estimating Equations Method (GEER)

Considering an alternative generalization of GLMs for correlated data in estimates,

Abebe et al. (2010) implemented the general estimating equations (GEE) method of

Liang and Zeger (1986) for simple mixed models, and derived the asymptotic normality

of the rank estimators. Note that this estimator does not require the same marginal cdfs.

Using the notations and approach of Abebe et al. (2010) for the model of interest in

(3.1.3), this GEE method assumes that the marginal density of yijk, univariate variables,

is of the exponential class of distributions and is given by

f(yijk) = exp{yijkθijk+a(θijk)+b(yijk)}φ,

where θijk = h(ηijk), ηijk = xijkβ, φ > 0, thus, the first two moments of yijk are given by

E(yijk) = a′(θijk) and var(yijk) = a′′(θijk).

Any link function, h−1o(a′)−1, can be used to make a link between the marginal mean

E(Yi) and the design matrix Xi. For example, when the outcome is categorical, we can

use the logit link function coupled with logistic model. To increase efficiency, the GEE

takes the correlation into account employing the ’working’ covariance of Yi given by

Vi = A
1/2
i RiA

1/2
i , (3.4.1)
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which is a ni.×ni. symmetric matrix (See Liang & Zeger, 1986; Abebe et al., 2010). Here,

Ai = diag{a′′(θi1), a′′(θi2), ..., a′′(θini.)} and Ri is ’working’ correlation matrix for school

i. In particular, Vi need not be the variance of Yi.

For Liang & Zeger’s (1986) estimator, the general estimating equations are defined by

I∑
i=1

DT
i V̂i

−1[Yi − a′(θi)] = 0, (3.4.2)

where Di = ∂a′(θi)
∂β

is ni. × p Hessian matrix. When the identity link function a(x) is

assumed, (∑I
i=1 D

T
i V
−1
i Di)−1(

I∑
i=1

DT
i V
−1
i Yi) is the LS solution of the equation (3.4.2) for

β. The iterative procedure works as follows: V (0)
i requires an initial estimate of fixed

effect β and estimation of scale effects. After V (0)
i is estimated, the fixed effect β(1) is

estimated as in (3.4.3). These iterations continue until a desired tolerance is achieved.

Updated estimate can be expressed using the Gauss-Newton method as

β̂(k+1) = β̂(k) − (
I∑
i=1

DT
i

(k)V −1
i

(k)Di
(k))−1(

I∑
i=1

DT
i

(k)V −1
i

(k)(Yi − a′(θi)(k))). (3.4.3)

The variance of β̂GEE is

(
I∑
i=1

DT
i V
−1
i Di)−1{

I∑
i=1

DT
i V
−1
i cov(Yi)V −1

i Di}(
I∑
i=1

DT
i V
−1
i Di)−1. (3.4.4)

This method is called GEE, or Iteratively Reweighted Generalized LS estimates (IRLS).

Alternatively, we can rewrite expression (3.4.2) in terms of the Euclidean norm

DGEE(β) =
I∑
i=1

(Y ∗i − di(β))2, (3.4.5)

where ni. × 1 vectors Y ∗i = V̂i
−1/2
· Yi and di(β) = V̂i

−1/2
· a′(θi). Liang & Zeger (1986)

showed that the fixed estimates β̂GEE, which is a nonlinear least squares (LS) estima-

tor, is consistent and the consistent variance estimates V̂i are possible under the weak

assumption that the estimated variance converges.Combining the results of two theories
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from Liang & Zeger (1986) and Brunner & Denker (1994), the consistency of the esti-

mate of Σi (the same notation with Vi in the GR) requires the cluster number I→ ∞,

and the cluster size ni. → ∞. Consistency of scale estimates are discussed in Liang &

Zeger (1986), saying that these do not depend on the correct choice of working variance-

covariance matrix, so the consistency of Σi and Σ is not a matter of issue.

Abebe et al. (2010) developed a class of nonlinear robust estimators minimizing rank-

based pseudo-norm of the residuals defined in (3.2.1) utilizing a ’working’ covariance

structure in the rank-based fitting as an analogue of the GEE.

Next, we will make the rank-based objective function analogous to the GEE in the

model of interest, the 3-level nested model, for estimating fixed effects with the dispersion

function

DR(β) =
I∑
i=1

Ji∑
j=1

nij∑
k=1

ϕ

[
R(y∗ijk − dijk(β))

N + 1

]
·
[
y∗ijk − dijk(β)

]
, (3.4.6)

where dijk(β) is (jk)-th of the vector di(β). We can obtain the R estimator and write

(3.4.6) as to be in the form of (3.4.2), thus, these two representations will be used to

employ to estimate and to derive the R asymptotic theory. The equivalence of these dual

representations is shown by

DR(β) =
I∑
i=1

Ji∑
j=1

nij∑
k=1

ϕ

[
R(e∗ijk)
N + 1

]
·
[
e∗ijk

]

=
I∑
i=1

Ji∑
j=1

nij∑
k=1

ϕ

[
R(e∗ijk)
N + 1

]
·
[
e∗ijk −m(β)

]

=
I∑
i=1

Ji∑
j=1

nij∑
k=1

ϕ
[
R(e∗ijk)
N+1

]
e∗ijk −m(β) ·

[
e∗ijk −m(β)

]2

=
I∑
i=1

Ji∑
j=1

nij∑
k=1

wijk(β)
[
e∗ijk −m(β)

]2

=
I∑
i=1

Ji∑
j=1

nij∑
k=1

[
w

1/2
ijk (β)e∗ijk − w

1/2
ijk (β)m(β)

]2
(3.4.7)

=
I∑
i=1

DT
i V
−1/2
i WiV

−1/2
i [Yi − a′(θi)−m∗(β)]2 , (3.4.8)
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where e∗ijk = y∗ijk − dijk(β), wijk =
ϕ
[
R(e∗ijk)
N+1

]
e∗ijk −m(β) , Wi = diag{wijk}, m(β) = med

i,j,k
{e∗ijk},

m∗(β) = m(β) · V 1/2
i · 1ni. . Assuming that the score function is odd about 1

2 , the use

of the median in the weights ensures that the weights are non-negative. As discussed in

Abebe et al. (2010) other score functions, not odd about 1
2 , can be used by changing

to another quantile. The median is used for centering so the weights are skewed about

0. Hence, the weights are non-negative. If the weight is zero, we replace it with the

maximum value of the weight matrix W . When the score a[R(eijk)
N+1 ] is zero, again, the

weight is adjusted with the maximum value. Thus, the estimates are obtained by the

usual iterated re-weighted least squares (IRLS) algorithm applied to the Rank-based

fitting in (3.4.8). We call these estimates the GEER estimates following with the next

theorem.

Theorem. Define β̂GEER as the solution to the IRLS equation in (3.4.8). Letting Mi =

V̂
−1/2
i WiV̂

−1/2
i , and ni.×ni. vector ϕi = ϕi(R(e∗i )) then the asymptotic representation and

variance of β̂GEER are

β̂GEER = (
I∑
i=1

DT
i MiDi)−1(

I∑
i=1

DT
i Mi(Yi − a′(θi)−m∗(β))) (3.4.9)

and

var(β̂GEER) = (
I∑
i=1

DT
i MiDi)−1{

I∑
i=1

DT
i V̂
−1/2
i var(ϕi)V̂ −1/2

i Di}(
I∑
i=1

DT
i MiDi)−1, (3.4.10)

respectively.

An elegant proof is sketched in the Appendix of the study in Abebe et al. (2010)

involving a Taylor series expansion similar to Liang & Zeger (1986)’s approach. The

GEER algorithm iterates between (3.4.9) and (3.4.1). For estimate of var(ϕi), we propose

three covariance structures via the RPP: Nonparametric (NP) estimator, Approximation

of the NP estimator (AP) and Improved AP with Compound Symmetric Structure (CS).

For the nested design, the AP and CS structure in the variance estimates of fixed effects
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in the model is our choice used in the simulation study. Abebe et al. (2010) implemented

NP and AP for the simple mixed model. To get the NP estimator, ̂var(ϕi) is obtained

from simple moment estimator using the scores a(i). AP assumes the true weighted errors

are independent. Asymptotically, var(ϕi) converges to Ini.and Wi converges to (1/τ̂ϕ)Ini

for the nested model, however, there is a need for the investigation of convergence under

different models.Thus, the variance estimates of the fixed effect estimate will be defined

by

var(β̂GEER−AP ) .= τ̂ 2
ϕ(

I∑
i=1

DT
i V̂
−1
i Di)−1{

I∑
i=1

DT
i V̂
−1
i Di}(

I∑
i=1

DT
i V̂
−1
i Di)−1. (3.4.11)

The other one is

var(β̂GEER−CS) .= τ̂ 2
ϕ(

I∑
i=1

DT
i V̂
−1
i Di)−1{

I∑
i=1

DT
i V̂
−1/2
i Bi(1, ρϕ,sec, ρϕ,sch)V̂ −1/2

i Di}..

..(
I∑
i=1

DT
i V̂
−1
i Di)−1.

The GEER methods allow any link function. For the convergence of the weights used

here, see Sievers and Abebe (2004).

So far, all three Rank-based methods (JR, GR and GEER) allow for arbitrary scores

in the rank dispersion function that is appropriate for the error distribution. Hence,

knowledge of the underlying distribution of the errors should increase the efficiency of

the estimators.
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3.5 Variance Component Estimators

The Rank-based theories developed in this work require the consistency of the estimate

of scale parameters. Asymptotic theory for the dispersion function and its estimate are

discussed here in two steps. First, working with true errors for the 2-level nested model,

we discuss it for the RPP algorithm. Here, we need the results of mean and median

estimates in Groggel’s (1983) thesis. Second, after fitting the model with Rank-based

estimates, the asymptotic properties and convergence of residual dispersion function are

handled using the quadratic approximation of the dispersion function and the first order

approximation of the rank-based fit and its residuals. Later, these results are generalized

for the 3-level nested model. Similar arguments will lead to the consistency of the scale

estimators for each type of random errors in the k-level nested models.

Definition 5. The functional parameter corresponding to the dispersion function in

(2.1.5) evaluated at the errors ei for i = 1, ..., n is

D̄e =
ˆ
ϕ(F (x))xdF (x).

Lemma 6. D̄e is a scale parameter (or,D̄ae+b = aD̄e, a > 0, b is real.)

Proof. Assuming the independent case, letting Fn and F denote the empirical distribution

function and distribution function of the errors e1, ..., en, respectively. Now, let u =

ae + b, and Fu(ae + b) = P (e ≤ u−a
b

) = F (u−a
b

). Thus, D̄u =
´
ϕ(Fu(x)xdFu(x) =

´
ϕ(v))F−1

u (v)dv with Fu(x) = v. We can show F−1
u (x) = aF−1(x) + b. Thus, D̄u =

´
ϕ(v)F−1

u (v)dv =
´
ϕ(v)(aF−1(v) + b)dv = a[

´
ϕ(v)(F−1(v) + b)dv]. Because the score

function is standardized, this simplifies to aD̄e.

Theorem 7. (The consistency of the dispersion function with general scores) Assuming

that the errors e1, ..., en are iid,

1
n

n∑
i=1

a(R(ei)) · ei →
ˆ
ϕ(F (x))xdF (x) = D̄e in probability.
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Proof. This part is shown in Hettmansperger & McKean (2011, pg.201).

Corollary 8. (The consistency of the dispersion function with Wilcoxon scores) Assuming

the score function is the Wilcoxon. Then,

2
√
π

n

n∑
i=1

(
R(ei)
n+ 1 −

1
2

)
· ei →

ˆ
ϕ(F (x))xdF (x) = D̄e.

Also, D̄e =
√

3
π
σe under the normal errors ei with the standard deviation σe.

The argument in the proof follows the same argument in the previous proof. Only

we need to show that D̄e is equivalent to 3
π
τϕ using the Wilcoxon scores. Replacing

a(u) =
√

12(u − 1
2) in the dispersion function with general scores yields the desired

results.

3.5.1 For 2-level Nested Structure

Consider the balanced dependent case, for a 2-level nested structure or simple mixed

error model, the errors can be expressed as

eij = ai + εij (3.5.1)

for i = 1, 2, ..., k, j = 1, 2, ..., n and N = n+ k (say, k schools, n students observations in

each school). Errors ai and εij are random cluster effects and error effects, respectively.

We only observe the values of eij, the individual ai and εij are not observable. We begin

formation of the pseudo-samples by defining the pseudo-errors Eij and Ai using the mean

as location estimate. We define ēi. = n−1∑
j
eij, ē.. = N−1∑

i

∑
j
yij, ε̄i. = n−1∑

j
εij, ε̄.. =

N−1∑
i

∑
j
εij and ā. = k−1∑

i
ai. Throughout this chapter, the bar symbol might substitute

with any consistent location estimate averaging/collapsing over the dot subscripts; in

particular, it might be the mean, the median or the HL location estimate. The pseudo-

error Eij is defined as

Eij = eij − ēi. = εij − ε̄i.. (3.5.2)
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As n → ∞, ε̄i. → 0 in probability, so for large n, Eij behaves like the εij. The pseudo-

random error Ai is defined as

Ai = ēi. − ē.. = ai + ε̄i. − ā. − ε̄... (3.5.3)

As n → ∞ and k → ∞, Ai behaves like ai, since ε̄i., ε̄..and ā converge in probability to

zero. Let

A = {A1, A2, ..., Ak} and E1 = {E11, E12, ..., E1n} (3.5.4)

be the pseudo-samples. In our nested structure, the highest level clusters are independent

and down to levels and sample sizes of these levels, they have the same distribution. So

without loss of generality, we will generally work with the first cluster. The analogs of

these random and error vectors are as follows:

a = {a1, a2, ..., ak} and ε1 = {ε11, ε12, ..., ε1n}.

Under the conditions of bounded underlying density functions of these errors, and for k

and n large, the pseudo-samples converge for the estimates of random and error effects

such that

A→ a and E1 → ε1,

if consistent location estimates with desired asymptotic properties are used (Groggel,

1983). Also, these pseudo-samples behave like independent samples of the errors so that

the variance of them is equal to the variances of the errors in the limiting case as n→∞

and k →∞. What we substitute for the estimates of the true errors (ai and ε1j) in model

(3.5.1) is the pseudo-sample estimates of the pseudo-samples.

Now, to establish the consistency of the residual dispersion function, we need the

following lemma and corollary. Before that, we write the results of Groggel’s study

(1983) that we need. We call Facts.

Fact 9. Assume errors ai and ε1j in Section 3.5.1 have the empirical cdf Fk(x) and Gn(x),
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and cdf F (x) and G(x), respectively. Assume each cdf is symmetric around zero. The

results are obtained as follows as n→∞ and k →∞:

(a) P (ε1j − ε̄1. < x)→ P (ε1j < x) = G(x), P (ai + ε̄i. < x)→ P (ai < x) = F (x), and

P (ai + ε̄i. − ā. − ε̄.. < x)→ P (ai < x) = F (x) in probability by Slutsky’s Theorem.

(b) Gn(x)→ G(x) and Fk(x)→ F (x) in distribution.

(c) |ϕ[Fk(ai + ε̄i.)]− ϕ[Fk(ai)]| → 0 and |ϕ[Fk(ai + ε̄i. − ā. − ε̄..)]− ϕ[Fk(ai)]| → 0,

since ϕ ◦ F is a uniformly bounded and continuous function, and part (a) and (b).

(d) |ϕ[Gn(ε1j + ε̄1.)]− ϕ[Gn(ε1j)]| → 0, since ϕ ◦ F is a uniformly bounded and con-

tinuous function, and part (a) and (b).

(e) ε̄i. = op(1), (n+k)1/2ā. = Op(1), (n+k)1/2ε̄i. = Op(1) due to the Markov inequality

and E[(n+ k)ε̄2
i.] is uniformly bounded due to the finite Fisher assumption.

(f) Two lemmas from Groggel (1983) are summarized here as.

1
n

n∑
j

[Gn(ε1j − ε̄1.)−Gn(ε1j)] = op(
1√
n+ k

)

and
1
k

k∑
i

[Fk(ai + ε̄i. − ā. − ε̄..)− Fk(ai)] = op(
1√
n+ k

).

(g) ϕ[F (ε1j)]ε̄1. → 0 and ϕ[F (ai)]ε̄i. → 0 in probability since ε̄1. → 0 in probability,

ϕ ◦ F is a uniformly bounded, and Slutsky’s theorem.

Groggel (1983) has shown part (f) using the mean and median estimate. For the

median, ā. + ε̄.. is replaced by medi,j{ai + medj(εij)}. For the HL estimate, it has the

desired tightness to get the similar convergence results.

Lemma 10. For the 2-level nested model, under the notations of Fact 9, the pseudo-

sample error vectors A and E1 are defined in (3.5.4). Then, the pseudo-samples have

dispersion functions s.t.

Disp(A)→ D̄a and Disp(E1)→ D̄ε
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Proof. First part, as k →∞,

Disp(A) = 1
k

Σk
i=1a[R(Aj)]Aj

= 1
k

Σk
i=1a[R(ēi. − ē..)](ēi. − ē..)

= 1
k

Σk
i=1a[R(ai + ε̄i. − ā. − ε̄..)](ai + ε̄i. − ā. − ε̄..)

.= 1
k

Σk
i=1ϕ

[
k

k + 1Fk(ai + ε̄i. − ā. − ε̄..)
]

(ai + ε̄i. − ā. − ε̄..), by (a)

.= 1
k
{Σk

i=1ϕ

[
k

k + 1Fk(ai + ε̄i. − ā. − ε̄..)
]

(ai) +

+Σk
i=1ϕ

[
k

k + 1Fk(ai + ε̄i. − ā. − ε̄..)
]

(ε̄i. − ā. − ε̄..)}, by (a), (c) and (f)

.= 1
k

Σk
i=1ϕ

[
k

k + 1Fk(ai)
]

(ai), by (c) and Slutsky Theorem

.= 1
k

Σk
i=1ϕ[F (ai)](ai), by (b)

.=
ˆ
ϕ[F (x)](x)dF (x) = Da. (3.5.5)

For the second part, as k →∞ and n→∞,

Disp(E1) = 1
n

Σn
j=1a[R(E1j)]E1j

= 1
n

Σn
j=1a[R(e1j − ē1.)](e1j − ē1.)

= 1
n

Σn
j=1a[R(ε1j − ε̄1.)](ε1j − ε̄1.)

.= 1
n

Σn
j=1ϕ

[
n

n+ 1Gn(ε1j − ε̄1.)
]

(ε1j − ε̄1.) by (a)

.= 1
n

Σn
j=1ϕ

[
n

n+ 1Gn(ε1j)
]

(ε1j) by (d), (f) and (g)

.= 1
n

Σn
j=1ϕ [G(ε1j)] (ε1j) by (b)

.=
ˆ
ϕ[G(x)](x)dG(x) = Dε. (3.5.6)

We consider to summarize the consistency of the dispersion function with pseudo-

errors and true errors in the following corollary. Next, the consistency of the rank-based
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residual dispersion function is stated in the theorem.

Corollary 11. As a result of the previous lemma and independent error types, it can

be summarized that Disp(A)→ D̄a, Disp(E1)→ D̄ε, Disp(a)→ D̄a, Disp(ε1)→ D̄ε as

well as Disp(ei)→ D̄e, where ei is error vector in any highest level cluster i.

Theorem 12. Consider Model (2.1.1) and the assumptions in Lemma 10. Suppose the

residuals ê are obtained from a rank-based method fit s.t. êij = yij − xTijβ̂ϕ, and one

cluster residuals vector is ê1, ê1 = (ê11, ..., ê1n). If the pseudo residual vectors Â and Ê1

are obtained from the median location estimate, where Âi = ¯̂ei.− ¯̂e.., Êij = êij − ¯̂ei. in the

RPP, then the corresponding residual dispersion functions are consistent, i.e.

∣∣∣Disp(Â)−Disp(A)
∣∣∣→ 0,

∣∣∣Disp(Ê1)−Disp(E1)
∣∣∣→ 0 and

|Disp(ê1)−Disp(e1)| → 0

in probability.

Note: Here, the bar symbol substitutes with the median or HL estimate averaging/collapsing

over the dot subscripts.

Proof. We need the sufficiency of one cluster residuals (ê1) obtained from the Rank-based

fit to establish the consistency of the residual dispersion due to the RPP structure in

estimating random effects (See Section 2.1.2). For example, the difference Êij = êij − ¯̂ei.

is the predictor of εij, defined with ¯̂ei. = medj{êi1, êi2, · · · , êin}. Also, the difference

Âi = ¯̂ei. − ¯̂e.. is the predictor of ai, which is medj{êi1, êi2, · · · , êin} −medi{medj{êij}. In

particular, to get the random effects, we get the intercept estimate in a Rank-based model

using one cluster residuals. Once we show the scale estimate obtained from this cluster

is consistent, we can generalize it for these predictors. The next argument discusses this.

The following case suffices to generalize for many clusters in the model Y = Xβ + e.

Without loss of generality, we consider the first cluster. Suppose Y1, X1 and e1 are the
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response vector, design matrix, and the error vector, respectively for cluster 1. Let Y2,

X2 and e2 denote the respective parts for the rest of the model. Then, without loss of

generality, we write

Y =

 Y 1

Y 2

 =

 X1

X2

β +

 e1

e2

 = Xβ + e. (3.5.7)

So that (Y1,X1) and (Y2,X2) define clusters 1 and 2, respectively. Let (Y,X) be the

long model; (Y1,X1) be the short model. Let n1 and n2 denote the cluster sample sizes

and let n = n1 + n2. Let λ1 = limn→∞ n1/n and assume that 0 < λ1 < 1. Now we have

the same model so statements such as the following are true.

limX ′1X1/n1 = Σ

limX ′2X2/n2 = Σ

limX ′X/n = Σ,

where Σ is positive definite. Assume without loss of generality that the true β is 0.

Suppose we get any of our fits (the JR, GR or GEER) fit of the entire model, i .e., the

long model Y and X. Then we know that
√
nβ̂L = Op(1). But then we also have that

√
n1β̂L = Op(1). That is, the estimate of the long model is uniformly bounded for the

short model too. This is all we need to establish the theory for the intercept in the short

model. For the short model, the residuals based on the long model fit are Y1 − X1β̂L.

The results in Hettmansperger and McKean (Lemma 3.5.1 and A.3.2, 2011) hold because

(X ′1X1)1/2β̂L is Op(1). Thus Theorem 3.5.6 of Hettmansperger & McKean (p.186, 2011)

is true and the results on theory for the intercept as the median of the residuals Y1−X1β̂L

holds.

In the same way the theory holds for the HL estimate of the residuals. The linearity

result on Theorem A.2.11 (Hettmansperger and McKean, p.460 and p.190, 2011) and the

boundedness of √n1β̂L = Op(1) establishes the linearity. Using the above notations and
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results, since √n1β̂L = Op(1), we have:

D(Y 1 −X1β̂L) = Q(Y 1 −X1β̂L) + op(1), (3.5.8)

where Q(Y 1 −X1β̂L) = (1/(2τ))β̂′LX ′1X1β̂ − β̂LS1(e1) +D1(e1)

and S1(e1) = X1ϕ[F (e1)]. In Equation (3.5.8), the first term on the right is Op(1). For

the second term, using the pseudo estimate based on Q(), quadratic approximation to

the dispersion function, in the long model we have:

β̂L = τ(1/n)Σ−1S(e) + op(1/
√
n). (3.5.9)

After some algebra, the second term is

β̂
′
LS1(e1) = τϕ[F (e)]′X(1/n)Σ−1 [X1ϕ[F (e1)] + 0′ϕ[F (e2)]] + op(1)

= τϕ[F (e)]′X(1/n)Σ−1 [X ′10′]ϕ[F (e)] + op(1).

The second term in (3.5.8) is uniformly bounded. It follows from Equation (3.5.8) that

D(Y1 − X1β̂L) is asymptotically equivalent to D1(e1). It follows that (1/
√
n)[D(Y1 −

X1β̂L)−D(e1)]→ 0 in probability. Also the weaker result holds, i.e., (1/n)[D(Y1−X1β̂L)−

D(e1)]→ 0. Since 1
n
D(e1) is a consistent estimate of D̄e, so is 1

n
D(ê). (1/n)D(Y1−X1β̂L)

because D1(e1) is consistent. This result can be generalized to obtain the consistency of

the residual dispersion of other types since the algorithm in the RPP uses either the

median or HL estimate. Also similar arguments obtain the consistency of the asymptotic

distributions of the location estimate based on the median and the HL estimator.

3.5.2 For 3-level Nested Structure

In this section, using the similar arguments in the previous section, we can obtain, for

the 3-level nested structure, that the pseudo random samples, which are pseudo school

effects vector A = {Ai}, pseudo section effects vectorWi = {Wij}, and pseudo error effects
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vector Eij = {Eijk}, are represented as Ai = ei.. − e... = ai + w̄i. + ε̄i.. − (ā. + w̄.. + ε̄...),

Wij = eij. − ei.. = wij + ε̄ij. − (w̄i. + ε̄i..), and Eijk = eijk − eij. = εijk − ε̄ij. for i = 1, ..., I,

j = 1, ..., J and k = 1, ..., n. Besides the cdf F (x) for random term ai and G(x) for wij,

H(x) is defined for εijk. Under balanced case, using the similar argument discussed for

the 2-level case for the choice of either of the estimates (mean, median or any consistent

location estimator), Ai → ai, Wij → wij, and Eijk → εijk in probability as I and nk go

to ∞. The desired results are summarized in Claims.

Claim 13. (Consistency of Residual Dispersion Function in the 3-level model) Under

Model 3.1.3 and the pseudo-sample notations in Section 3.5, the following results are

obtained.

1. Using true errors vector a, w1 and ε11, Disp(a)→ D̄a, Disp(w1)→ D̄w, Disp(ε11)→

D̄ε, and Disp(e1)→ D̄e.

2. Using pseudo errors vector A, W1 and E11, Disp(A) → D̄a, Disp(W1) → D̄w and

Disp(E11)→ D̄ε, Disp(e1)→ D̄e.

3. Using the estimates of pseudo errors vector Â, Ŵ1 and Ê11 obtained from the RPP

with the Rank-based fit, Disp(Â) → D̄a, Disp(Ŵ1) → D̄w, Disp(Ê11) → D̄ε, and

Disp(ê1)→ D̄e.

As in the 2-level case argument, we have consistency of location based on residuals.

To these analogous quantities of true errors and consistency of the scale estimator (the

dispersion function). Using similar asymptotical and convergence equivalences regarding

with additional pseudo-sample terms described below and in Facts 14, we can generalize

the consistency of residual dispersion functions to the the 3-level case and k-level case.

In case of using all errors in estimates by forming pseudo random samples, the average

for the same level clusters is a consistent estimate.

Claim 14. By Slutsky Theorem and convergence of the location estimate,

(a) G(w1j + ε̄1j.− w̄1.)→ G(w1j), ϕ[F (ai)]ε̄i. → 0 in probability since ε̄i. → 0, ϕ[F (ai)]

is a uniformly bounded.
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(b) ϕ[F (wij + ε̄ij.)](ε̄ij.)→ 0 in probability.

Using residuals from the fit with the Rank-based methods, there is a need to investi-

gate the finite sample corrections for score functions and various location-scale estimates

in RPP algorithm.

3.5.3 Finite Correction for the Scale Estimates

Groggel et al. (1988) developed finite sample corrections for median-based pseudo-

samples in the 2-level nested model. We offer the correction for the variance components

σ2
ε , σ2

sch and σ2
sect as in the traditional case. The variance terms in the pseudo random

sample structure using the mean estimate can be expressed as var(Ai) = I−1
I
σ2
sch +

I−1
I·Ji

σ2
sect + I−1

N
σ2
ε , var(Wj(i)) = Ji−1

Ji
σ2
sect + Ji−1

ni.
σ2
ε and var(Eijk) = nij−(p+1)

nij
σ2
ε for the

estimates of σ2
ε , σ2

sch and σ2
sect where p + 1 is the rank of the design matrix X. In an

analogous manner to this correction, in the HL, median, MAD and Disp estimators,

it might worth trying similar ways with which nij and J̄i can be calculated from the

harmonic mean of the number of observations in section and the number of sections

within school.



Chapter 4

Simulation Results and Real Data
Analysis

To illustrate the proposed methods, we first present the results of a Monte Carlo in-

vestigation comparing the performance of the GR method and the traditional likelihood

method, REML. For the GR method, we also compare the empirical behaviors of two

alternative procedures of location-scale estimator pairs (med-MAD and HL-Disp) for the

RPP algorithm. For the second performance of our study, we compare the fittings in-

cluding the JR, GR, GEER and REML fitting methods over various situations of the

strengths of intra and inter correlation. The second part contains a validation and effi-

ciency study. Further, two real data sets are analyzed with these methods. Throughout

the simulations, the Wilcoxon scores are used. Initial fit is obtained from the JR estimate

with the Wilcoxon scores. For the GEER analysis, one step iteration is run due to the fast

convergence. Also, the Rank-based regression estimates are obtained from R packages

wwest (Terpstra and McKean, 2005).

4.1 Performance of GR Estimates

In this section, the performance of fixed effect estimates in the GR fitting are investi-

gated and scale estimates using the RPP are discussed. In this experiment, the package

nlme/lmer in R software developed by Pinheiro et al. (2011) is used to obtain the REML

and ML estimates.

47
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Simulations are conducted to evaluate the performance of our iterative GR fitting

with the RPP algorithm found in (2.1.2) for random, fixed, scale effects and intra-class

correlations in the 3-level nested model,

yijk = xTijkβ + ai + wj(i) + εk(ij). (4.1.1)

We assume that the section effects wj(i) are random and nested within schools with

random effects ai. With unbalanced design, the total sample size is 338 observations in

the total of seven schools with varying sections (four to five) within schools. The total

measurements in each section vary from 8 to 20. We have two error types in the model,

overall error (εk(ij)) and random errors (ai and wj(i)). Fixed parameters relating to the

fixed effects, namely intercept and covariate, are set at zero, β = (β0, β1) = (0, 0), because

the methods are regression and scale equivariant.

For non normal cases, contaminated (CN) errors are set at 20% contamination per-

centage, and the ratio of the contaminated variance to the uncontaminated is set at 16.

Scale parameters, θ = (σ2
school, σ

2
section(school), σ

2
error), are set at (1, 4, 9) when no contam-

ination is employed. The scale parameter θ becomes (4, 16, 36) when both random and

error terms are contaminated.

Using the two location estimates (med and HL) and scale estimates (Disp and MAD),

we investigate empirically the two proposed RPP procedures (HL-Disp and med-MAD)

in the GR method under the four cases: Case 1: Both errors are normal. Case 2: Only

error terms are contaminated. Case 3: Only random errors are contaminated. Case 4:

Both errors are contaminated.

Also, for each case, one observation or one section are made up as outliers (call it cor-

rupted data) to observe the sensitivity and efficiency of the methods. In the experiment,

the standard errors (se) and empirical asymptotic relative efficiencies (ARE) without bias

correction were obtained. The empirical AREs were obtained from the ratios of mean

squared errors (MSE). The se’s of fixed effects, scale and intra-class estimates are either

competitive under normal case, and are mostly better than the REML when CN or cor-
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rupted data are considered. Surprisingly, the empirical se for covariate estimates except

in Case 1 are observed smaller than that in the REML throughout the simulations (See

Tables 4.1 to 4.4). Moreover, the estimates in the REML method are biased under some

situations. When both errors are contaminated as specified, the intra-class estimates in

the RPP are unbiased, while the REML estimates are biased. On the other side, we

have not made any degrees of freedom corrections for the RPP estimators of scale. In

general, they appear to be biased. Small sample corrections are under investigation. The

HL-Disp procedure outperforms better than the med-MAD procedure in the RPP. Our

small simulation study in nested design suggests that Disp as a scale estimator is more

efficient for nested designs than MAD.

We compare on performance of the intra-class parameter estimates for only Case 1

and Case 4. Under these situations, the scale estimates σ̂, Disp and Mad are all con-

sistent to the same parameter. In Case 2 and 3, it is fact that they are not consistent

due to the mixed contaminated and normal errors. Moreover, the scale estimates using

REML were highly variable in all cases (See se’s for the scale and intra-class parameter

estimates in Tables 4.1 to 4.4.). We did not use a bias correction for these estimators.

Intraclass correlation parameters vary depending on the amount of contamination as in

four cases above: This is for Cases 1 and 4, ρ = (64.3%, 7.1%, 35.7%), for Case 2,

ρ = (87.8%, 2.4%, 12.2%), for Case 3, ρ = (31%, 13.8%, 69%). The intra-class correla-

tion estimators of the RPP are more efficient when contaminated or corrupted data are

employed. However, the RPP and REML estimators are biased for contaminated data.

Surprisingly, in all cases the REML does poorly, except when the errors are normal. Even

in Case 1, the intra-school is biased using the REML estimator.

The empirical AREs indicate that our proposed procedures, HL-Disp and med-MAD

in the RPP algorithm with the GR fitting method, are generally competitive with or

outperforms the REML estimators. Also, the results indicate that random effects for

school and section in both methods (GR and REML) capture the parameter values.
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4.1.1 Simulation Results

In the tables below, HL-Disp means that the location and scale estimators are

respectively HL and Disp. Med-MAD is likewise. These are the RPP procedures in the

GR fitting we work. ARE values which are greater than 1 indicates the results in the

GR with the RPP is favored over the REML in efficiency. Also, (*) means any cluster

effect among the others. When the data is corrupted, (*) is the effect of the cluster

related with the corrupted data.
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Table 4.1: Case-1 Simulation Results
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Table 4.2: Case-2 Simulation Results
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Table 4.3: Case-3 Simulation Results
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Table 4.4: Case-4 Simulation Results
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4.1.2 Sensitivity

Rank-based inference inherits better efficiency properties of the estimates when outlier

exists. In the simulation study, when corrupted data on one observation or one subcluster

(section) were employed, it was observed that the RPP procedure was more efficient and

less sensitive in the cases (See Table 4.5). The estimates of fixed effects using the REML

were highly variable in case of having any outlier. Also, little biases were observed in

small sample sizes in both methods.



CHAPTER 4. SIMULATION RESULTS AND REAL DATA ANALYSIS 56

Table 4.5: Case-1 Simulation Results for Corrupted Data (Outlier)
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4.2 Empirical Results for JR, GR and GEER Esti-
mators

In this section, the validity using the empirical level for alpha at 5% and efficiency

using comparative confidence interval (CI) lengths (or ARE’s) are investigated for the

proposed JR, GR and GEER estimators. Thirteen situations were formed with respect

to the strength of intra and inter correlation in clusters (school) and subclusters (section

within school). For each situation 10,000 simulations were used. Model is the 3-level

nested model with unbalanced size, and the same model (4.1.1) is used. The total sample

size is 185 observations in the total of seven schools with two to three sections within

schools. The total measurements in each section vary from 6 to 20. Two error types in the

model were generated from normal distribution. For non-normal situations, contaminated

errors were generated at 10% to 20% contamination percentage and at 4 to 16 as the

variances ratio (See Section 4.1). The variables of interests are response (a continuous

data obtained from the errors), treatment (treatment or control group) and covariate (a

normal continuous data).

The Monte Carlo results indicate that the performance of the Rank-based estimators

of the fixed parameters β = (β0, β1, β2) is more efficient than the REML. This traditional

estimator of the fixed parameters in the nested random model mostly meets the true

alpha level at 5% when the error distribution is normal, however not optimal for some

situations. For example, when the scale parameters θ = (σ2
school, σ

2
section(school), σ

2
error) were

generated as (1,1,9) and (0,1,1), it yielded somewhat liberal results for the empirical level

in the covariate (See Tables 4.8 and 4.11). Also, the empirical levels for intercept in both

methods under each situation was liberal (>5% to 10%) The exception to this fact is that

the GR generated slight conservative results (See Tables 4.6, 4.8, 4.9, 4.11, 4.6, 4.15 and

4.17). Overall, the GR and GEERs among the Rank-based methods are the best and

closest to the true alpha level. One reason to explain why the GR is conservative (less

than 5%) in some situations is that the standard error calculations and the estimates

using the projected space in Theorem 1 were obtained without the correction for degrees
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of freedom. Hence, this would make the error wider. However, Rank-based estimators

have consistency for this type of estimators (Hettmansperger and McKean, 2011). This

part can be further studied to get close results to the true level.

The ARE results in the proposed methods are competitive with the REML under

normal errors, and better than it when the data follow contaminated errors. Some small

degree of loss is observed in rank-based estimators. Under normal errors, the efficiency

loss is about 5% in fixed effects, and 30-50% in intercept estimates. These empirical

AREs are expected results for the estimator of intercept using L1 (median) norm and the

estimator of fixed effects using the Wilcoxon scores.

One weakness in the JR estimators was observed in the empirical level results of

the treatment variable when observations within schools were highly correlated (>30%)

in Tables 4.7, 4.9, 4.12, 4.13, 4.14, 4.16 and 4.17. In the future, we are planning to

investigate the JR method by fitting the random effects as fixed effects in addition to

their estimation of the random effects. This appeared to be a positive correction in the

studies of Kloke et al. (2009) The empirical alpha level in this simulation was close to

the true level, 5%, in the GR and GEER methods for the treatment effect estimators.

The covariate variable used in this simulation was continuous data, and overall our

methods behaved very well in the empirical level and efficiency, better than the traditional

method in the AREs. In this variable, the true alpha level for alpha was gained in general.

Under the highly correlated school and section situations (high intra and inter correla-

tion), the empirical levels of the results in the GR, GEER-AP and GEER-CS were quite

close to the true levels, whereas the REML was either slightly liberal or conservative.

For example, Tables 4.7 and 4.16 show the outperformance of these methods. One of the

most powerful results about the proposed methods can be observed here. The GR with

the procedure med-MAD and HL-Disp is the winner among the rank methods.

The REML and the Rank-based methods had somewhat liberal empirical alpha level

(>5%) in covariate estimates in the situation of zero intra-school and intra-section corre-

lation (See Table 4.10). In this case, the GEERs were observed better among the other
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rank methods.

Tables 4.12, 4.14 and 4.16 summarize the results of the situation of little or zero

correlation for nested subclusters, indicating that the GR is better, whereas the REML

has liberal level in treatment and intercept. Even in the intercept estimate, the GR is

precise.

Table 4.11 illustrates the results for independent situation for school clusters (zero

intra-school correlation). The GR and GEER were observed better in empirical alpha

level, however, the REML has lost some precision.

When contaminated errors were employed, the relative efficiencies of the estimators

in the GR and GEER relative to the REML estimators were in favor of the Rank-based

estimators. Tables 4.18, 4.19 and 4.20 illustrate that the GR and GEER methods outper-

formed the REML in the empirical AREs. These 3-level nested model results are in an

agreement with the study of Hettmansperger & McKean (2011) and Kloke et al. (2009)

for the independent and simple mixed model simulations.
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Table 4.6: θ = (1, 4, 9), Normal

Table 4.7: θ = (9, 4, 1), Normal

4.2.1 Simulation Results

10,000 simulation yields the margin of error of 0.0043 at 5% alpha level, and the ac-

ceptable interval on level is [0.0457, 0.0543]. For 1,000 simulations, the margin of error be-

comes 0.0135 and the acceptable confidence interval for the alpha level is [0.0365, 0.0635].

Throughout the tables, the variance components are stated as θ = (σ2
school, σ

2
section(school), σ

2
ε ).

By changing the parameters in θ, new situations are formed in regard to the strength of

intra and inter correlation coefficients ρschool and ρsection(school). Each table illustrates the

situations in this simulation study.
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Table 4.8: θ = (1, 1, 9), Normal

Table 4.9: θ = (1, 1, 1), Normal

Table 4.10: θ = (0, 0, 1), Normal, nsims=1,000
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Table 4.11: θ = (0, 1, 1), Normal,nsims=1,000

Table 4.12: θ = (1, 0, 1), Normal, nsims=1,000

Table 4.13: θ = (100, 100, 1), Normal
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Table 4.14: θ = (100, 1, 100), Normal

Table 4.15: θ = (1, 100, 100), Normal

Table 4.16: θ = (100, 1, 1), Normal
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Table 4.17: θ = (1, 100, 1), Normal

Table 4.18: θ = (1, 1, 3), CN at 20% with the Variance Ratio at 4

Table 4.19: θ = (1, 1, 3), CN at 10% with the Variance Ratio at 4
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Table 4.20: θ = (1, 1, 1), CN at 20% with the Variance Ratio at 2

4.3 Application to Real World Data

4.3.1 PISA Data Set

The data set was obtained from the OECD Programme for International Student

Assessment (PISA) in 2009 (OECD, 2010). Every three years, math, science and read-

ing comprehension skills of students of age 15 in 65 countries are assessed. This is a

very large data set. We consider a subset of the data concerning the private schools

in USA (334 observations in 11 private schools across the country) on the educational

outcome of metacognitive scores. This is an index measure of the metacognitive aspect

of learning, which has a skewed distribution. The research interests are how metacog-

nitive scores depend on gender and age, and how the variability of the scores are ex-

plained by region differences (here, the regions are Northeast, Midwest, South and West)

and school differences. Student scores are nested in the private schools within the re-

gions. Assuming the schools within the same regions are correlated; students within the

same schools are correlated; hence, regions and schools could be considered to have ran-

dom effects on observations in the random effects nested model. (These are clusters so

that correlation structures are inherited.) This design is hierarchical with three levels

(students in schools within regions). In a 3-level nested study, to measure each level’s

contribution to the total variability, intra-class correlations are defined as intra-region,

ρRegion = σ2
Region

σ2+σ2
Region+σ2

School(Region)
, and intra-school, ρSchool(Region) = σ2

Region+σ2
School(Region)

σ2+σ2
Region+σ2

School(Region)
.
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In this data set, the equity of educational systems and outcomes are assessed via the cal-

culation of percentage of the variance in student performance explained by cluster levels

or hierarchical levels (i.e. for regional or locational differences, intra-region correlation

coefficient helps to answer it). The coherence is the total variance between schools ex-

pressed as a percentage of the total variance within the region, which is defined as the

intra-school correlation coefficient. We show the precision of the rank-based GR analysis

with this data set by obtaining contextual parameter estimates. In this analysis, the

sampling weights were not considered.

The fixed and scale estimates are reported in Table 4.21. Both the REML and GR

agree on the fixed effect inference with little difference. The standard errors confirm the

same or slightly better precision of the R estimates compared to the REML analysis.

Moreover, in these estimates, there is gain, about 4% to 14%, in favor of the Rank-based

analysis.The GR result indicates that 15.1% of the total variability is due to the region

differences, 16.6% is due to the school differences within region. These are almost the

same in the REML results. For the checking of the quality of both fits, the standardized

residuals and the q-q plots in Table 4.22 indicate that the standardized residuals in the

GR fit are scattered as in the REML. Also, both q-q plots suggest the skewness of the

residuals.

For the sensitivity analysis, an outlier at 100 standard deviations away from the center

is introduced in the response space. When this new data set is analyzed, it’s conclusions

and inferences on the contextual interests might be corrupt and misleading. Doing the

same analysis with the new data set, PISA results using the REML analysis in Table

4.21 dramatically changed. The fixed effect estimates remained the same for the GR

estimates, whereas the REML results changed. In the REML, the age effect was calculated

negative, indicating that as the age increases the metacognitive score decreases, -which

is unrealistic-. The sign of gender effect in the new data set was reversed, indicating

the conflict with the original data set results. The lack of precision of these estimates

worsened in the REML, indicating the GR estimates were 900% to 4,500% more efficient.
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Table 4.21: Estimates in PISA Data for Cognitive Scores with Two Covariates
Original Data REML GR
Fixed effects est se est se

Intercept 0.082 0.278 0.350 0.267
Gender -0.264 0.109 -0.295 0.107
Age 0.246 0.172 0.226 0.161

Variance

Region 0.275 0.147
Private School (Region) 0.001 0.015

Student 0.855 0.812
Intra-Inter Corr est est

ρRegion 24.3% 15.1%
ρSchool(Region) 24.4% 16.6%

With One Outlier REML GR
Fixed effects est se est se

Intercept 0.267 0.516 -0.093 0.176
Gender 0.133 0.640 -0.324 0.106
Age -0.376 1.033 0.185 0.154

Variance

Region 0.000 0.137
Private School (Region) 0.000 0.018

Student 31.085 2.049
Intra-Inter Corr est est

ρRegion 0% 6.2%
ρSchool(Region) 0% 7.0%
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Table 4.22: The Q-Q Plots of PISA Data Analysis
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Table 4.23: The Q-Q Plots with Outlier
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Table 4.24: The Q-Q Plots with Outlier When Omitting the Outlier



CHAPTER 4. SIMULATION RESULTS AND REAL DATA ANALYSIS 71

As shown in the REML results with the data with one outlier, Table 4.21 indicates that

the regions and schools had 0% contribution to the total variability, which is debatable.

The GR analysis is not nearly as sensitive to the outlier effect as far the REML analysis

(See Tables 4.22, 4.23, and 4.24). Standardized residuals in the REML with outlier

analysis and fitted values were distorted and forced to be within the range of [-.5, .2] and

[.1, .6], respectively, except the residual’s value pertaining to the outlier. These ranges

mislead the judgment of the goodness of individual fits and the prediction, indicating

the REML fit is clearly poor when the data has an outlier. However, the GR were not

affected that much and kept almost the same values of the standardized residuals and

fitted values as in the original fit (See Tables 4.22 and 4.24).

4.3.2 PASSIVE Data Set

Next, we consider an application of the nested models with random and treatment

effect in industry. A data set consisting of highly correlated data with 72 observations

is discussed in Lit tell et al. (2006, p.81). The data are from a study in the semicon-

ductor industry where the objective is to estimate the variance components to determine

assignable causes for the observed variability. The outcomes are thicknesses of the oxide

layer on silicon wafers determined at three randomly selected sites on each wafer. The

variable ’source’ has two treatments, one is control, hence, the treatment variable is bi-

nary. The wafers stem from eight different lots, and each lot consists of 3 wafers. The

process consisted of randomly selecting eight lots, then 3 wafers were selected from each

lot for use in the oxide deposition process. After the layer of oxide was deposited, the

thickness of the layer was determined at three randomly selected sites on each wafer.

The structure of the study involves three sizes of experimental units in the design struc-

ture with a uniform application of a single treatment in the treatment structure. Table

4.25 indicates that the estimates of the treatment and scale effects in both methods are

consistent. The GR is more precise.

For the sensitivity analysis, an outlier at 15 standard deviations away from the center is
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Table 4.25: Estimates for PASSIVE Data with Treatment
REML GR

Fixed effects est se est se

Intercept -5.04 5.77 -3.88 8.83
Source 10.08 8.16 8.62 7.40
Variance est sd est sd

lot 119.89 79.36
wafer(lot) 35.86 21.47

error 12.56 8.15
Intra-Inter Corr est est

ρlot 71.2% 72.8%
ρwafer(lot) 92.5% 92.5%

With One Outlier REML GR
Fixed effects est se est se

Intercept -5.04 8.28 -4.88 5.04
Source 14.64 11.71 -0.42 4.31
Variance est sd est sd

lot 194 124
wafer(lot) 104 62

error 409 59
Intra-Inter Corr est est

ρlot 27% 51%
ρwafer(lot) 42% 76%
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Table 4.26: The Q-Q Plots of PASSIVE Data Analysis
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Table 4.27: The Q-Q Plots with Outlier
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Table 4.28: The Q-Q Plots with Outlier When Omitting the Outlier
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introduced in the response space. Passive data results dramatically changed in inferences

of the REML analysis. The fixed effect estimates changed in both methods as well. The

variance estimates in the GR method were not as sensitive as in the REML’s method.

The estimate of the lot-to-lot variance of 194 in the REML is 1.5 times larger than the

GR. The scale estimate of residual variance of 409 in the REML is 6.9 times larger than

the GR. The precision of the scale and fixed effects in the GR was observed better than

that of the REML (See Tables 4.25, 4.26, 4.27 and 4.28). In particular, standardized

residuals in the REML fit with outlier were affected as to be correlated in Table 4.28 and

thus the goodness of the fit is said poor. Also, the fits for the observations in the same

cluster with the outlier were distorted.Table 4.28 illustrates that the GR fit still kept the

randomness of the distribution of the standardized residuals the same as in the original

fit. The outlier did not affect much the other fits and residuals in the GR except the

intercept estimate, however, the REML was affected badly in these parts.



Chapter 5

Discussion, Conclusion and Further
Study

This work proposes new rank-based fitting methods in handling random, fixed and

scale effects in k-level nested designs for estimation and inference. Also, the proposed

Rank-based fitting methods including Joint Ranking (JR), Generalized Rank Estimate

(GR) and Rank-based General Estimating Equation (GEER), are investigated along with

an algorithm for Rank Prediction Procedure (RPP) with two alternatives. In the RPP, the

Hodges-Lehman (HL) and median (med) location estimators, and the Dispersion Function

(Disp) and Median Absolute Deviation (MAD) scale estimators are employed. These

methods with the RPP obtain robust estimation and prediction. Estimation includes fixed

effects and their standard errors. Prediction includes random effects. The methods further

obtain estimates of the variance components. The RPP is an iterative procedure, hence

the GR estimation procedure is a k-step estimate. In this work, asymptotic distribution

theory of the GR estimation is developed. Furthermore, the consistency of scale estimate

using dispersion function is discussed. For simplicity, a 3-level nested design that deals

with students nested within sections in schools is used to employ our methods. These

methods can be applied to any mixed models, i.e. k-level nested random models with

covariate. For hierarchical models, the RPP algorithm should be adjusted according to

the design of random effects.

In this work, the validation and efficiency results of a Monte Carlo investigation

including a comparison with the traditional analysis are presented. The proposed methods

77
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are competitive with the traditional method when the errors have normal distributions.

Under non-normal situations, these methods are less sensitive than the REML method.

When random errors are contaminated, the intra-class correlation estimates in the RPP

are unbiased, while the REML estimates are biased.

For the Wilcoxon score, the empirical precision of the estimates based on a Monte

Carlo investigation exhibited empirical AREs that indicate the loss is close to 5% relative

to that of the REML method when the error distributions are normal. In fact, this is

what is expected from the Wilcoxon scores. When correlation structure is increased within

nested groups, the GR and GEER outperform the traditional likelihood method (REML).

In little correlated or highly correlated data, the validity of the proposed methods is

confirmed, using the empirical significance level at 5%. The proposed methods have the

empirical alpha level of nearly 5% in treatment and covariate estimates. However, for the

intercept estimates, it is observed around 10%, which is liberal (>5%). This occurs in

the REML as well.

Based on our investigations, the REML analysis is quite sensitive to outliers, whereas

the proposed Rank-based methods are robust. Two real data analyses further validate

this. When an outlier is introduced to response space in these examples, it is observed that

the Rank-based methods are less sensitive to the outlier, hence, more reliable inferences

are obtained relative to the traditional likelihood method.

Further research is recommended on the power, finite correction, geometry for the

intercept in Rank-based analysis, the convergence of residual weights in the GEER, and

fitting without intercept in the GR. Also, the growth rate of variance of empirical dis-

tribution function should be investigated. The extension of k-level nested designs with

random effect and covariates should be applied to random coefficient models in hierarchi-

cal designs. Also, poor empirical alpha level and efficiency results of the JR analysis for

correlated data could be fixed by augmenting the random effects as fixed to the model

employed in some conventional techniques (see Pinheiro et al., 2011). This will be the

next investigation.
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Computation of the rank estimators are easily accessible for R Software users. We aim

to develop a complete R Software package, called R-HLM for two- and three-level nested

cases, which are common in practice. This will make use of the R Software package Rfit

developed by Kloke and McKean (2012).
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Appendix

Assumptions

Assumptions required for the asymptotic theory in the rank-based analysis:

The regularity conditions are:

J1. N−1XTX converges to a positive definite matrix where X is centered design

matrix. n−1
i ·XT

i ·Xi → Σi > 0 as ni →∞.

J2. Leverage values converge to zero. (leverage value assumption of the projection

matrix onto range Xij)

J3. f(t) and F(t) denote continuous pdf and cdf of errors ε and f(t) has finite Fisher

information.

J4. Exchangeable: Assuming ei’s distribution is exchangeable: i.e.,

L(ei1, ei2, ..., eiJi) = L(eiα1 , eiα2 , ..., eiαi)

L denotes distribution and α‘s are permutation of integers 1, ..., Ji·

J5. (This is more general than J4.) All univariate marginal distributions of the

random errors are the same.

J6. Errors are continuous variables; Xi full column design matrix. Observations

between schools are independent. Random errors are uncorrelated.
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