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Conventional real-time scheduling algorithms are in care of timing constraints; they 

don’t pay any attention to enhance or optimize the real-time packet’s security 

performance. In this work, we propose an adaptive security-aware scheduling with 

congestion control mechanism for packet switching networks using real-time agent-

based systems. The proposed system combines the functionality of real-time 

scheduling with the security service enhancement, where the real-time scheduling 

unit uses the differentiated-earliest-deadline-first (Diff-EDF) scheduler, while the 

security service enhancement scheme adopts a congestion control mechanism based 

on a resource estimation methodology. 

The security service enhancement unit was designed based on two models: single-

layer and weighted multi-layer design models. For single-layer, the design provides 

an enhancement for a single security service: confidentiality, integrity, or 

authentication, while the weighted multi-layer design provides an enhancement for 

multiple security services with different weights on a real-time network with multi-

processor end nodes. The proposed system provides the required QoS guarantees for 

different classes of real-time data flows (video, audio), while adaptively enhances the 



packet’s security service levels according to a feedback from the congestion control 

model, which efficiently utilizes the buffering system at the edge network, and thus 

protects the network from being congested by heavy traffic load.  

Our agent-based system eliminates the overhead of the security association phase 

performed by the internet protocol security (IPsec). Such elimination had been 

achieved by overloading the priority code point (PCP) fields of the IEEE 802.1Q 

tagged frame format for the single-layer scheme, while repeated single-layer and 

overloading the PCP and the virtual-LAN identifier (VID) fields of the IEEE 802.1Q 

were the adopted methodologies by the weighted multi-layer security design model.  

By using the Diff-EDF scheduler, the proposed system minimizes the flows miss 

rates and the flows average total delays compared to the earliest-deadline-first (EDF) 

and the first-come-first-served (FCFS) schedulers. From the other hand, our adaptive 

security enhancement scheme minimizes the buffer consumption, the average total 

packet delays, and the pending packets at the end users compared to the IPsec 

protocol. It was also compared to an implemented feedback-IPsec, where our 

adaptive system eliminated the repeated security associations performed by the 

feedback-IPsec, hence less overhead and increases the chances to meet the flows QoS 

requirements.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background and General Overview  

 

The earliest type of packet network applications was governmental based. 

Such applications were not sensitive to any variations in packet losses or delays. 

Accordingly, the service adopted by the service provider (internet) was the best effort 

service, where all data packet streams were treated equally by the service provider 

without denying any data traffic admission. The only limitation that affects such 

provided service is the availability of the network’s resources, where additional 

system delays will be added. 

Different factors played a key role in the transition of the provided service by 

the internet. One factor was based on the fact that different classes of network 

applications with different requested services started to share and congest the internet. 

Real-time video and audio streams are examples of such classes. According to the 

previous data classes, real-time data losses and system delays became more critical 

[1]. Another factor was based on quality issues, where the internet became a 

commercial entity that needs to provide its customers with the best quality of service 

(QoS) guarantees [2][3]. 

According to the type of requested service by the network application, QoS 

could be in different forms such as delivery, capacity, reliability, mean time between 

failures (MTBF), mean time to restore a service (MTRS), or any combination of such 

metrics [4] . To provide real-time network applications with such QoS guarantees, 
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different network technologies were developed such as differentiated services (Diff-

Serv) and multiprotocol label switching (MPLS) [5]. Such technologies provide the 

required QoS guarantees by applying the appropriate real-time scheduling algorithm.  

Real-time scheduling algorithm selects the next appropriate real-time packet 

to be served among a number of arrived packets from different data classes to the 

scheduler [6]. The process of choosing the appropriate scheduling algorithm is mainly 

controlled by the type of flowing data streams. According to the best effort traffic 

(text), the first come first served (FCFS) scheduling algorithm shows high efficiency 

in providing the best services to its applications, while for real-time traffics (video, 

audio), the priority scheduling algorithms such as earliest deadline first (EDF) and 

differentiated earliest deadline first (Diff-EDF) are more efficient in guaranteeing the 

required QoS requirements to such data flows [7][8]. 

1.2 Problem Statement  

 

 Nowadays, real-time data packet sources are in care of providing security 

services to their real-time applications [9][10], making them robust against different 

security threats specially in local-area network (LAN), where most of the hacking 

processes occurred at the network’s edge [11]. The development of network 

technologies is shown in Fig. 1.1.  

In order to provide such security services on the network’s data streams, 

different security protocols were implemented such as the secure sockets layer 

protocol (SSL), the transport layer security protocol (TLS), and the internet protocol 

security (IPsec). With the current security protocols, any dynamic change in the 
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network can not affect the pre-negotiated security level. Therefore, network 

performance issues are not taken into account and the QoS may not be guaranteed for 

different classes of real-time data streams. Such results may lead into a catastrophe 

especially for those hard real-time network applications [12]. 

 

Figure 1.1: Network Development. 

While providing such security services to its real-time network applications, 

service provider should keep a balance between guaranteeing such security services 

and preserving the overall performance of the network. The overall performance of a 

real-time network could be measured by different network performance metrics 

(NPMs) such as miss rate, total average packets delay, functionality, jitter, and 

throughput [13]. A key factor that affects such NPMs, and thus controls the overall 

performance of the network is the best utilization of the network’s queuing system, 

which regulates the total amount of traffic load in the network and thus, limits the 

maximum throughput in the network [14]. Accordingly, different network-based 
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algorithms were implemented based on network buffer estimation models such as 

routing, scheduling, maintenance, load balancing, and security [15].  

Different methodologies were implemented to analyze and measure the 

overall performance of the network such as off-line monitoring, agent-oriented 

systems, and live monitoring. Such monitoring techniques were based on queuing 

theory analysis models [16]. Conventional simulation techniques were inefficient in 

modeling and analyzing complicated heterogeneous environments such as dynamic 

real-time networks with QoS guarantees and security aspects. In order to overcome 

such limitations, real-time agent based simulation systems were implemented, where 

the whole environment is modeled by interactive entities that are cooperating together 

within a time-critical constrained protocol to accomplish the main system’s tasks 

[17].  

In designing any multi-agent system, two main pre-phases should be defined: 

collaboration and interaction. Collaboration is the process of establishing different 

levels of cooperation between agents, while interaction is the protocol of rules and 

constraints that control the different transactions performed by agents. According to 

the environment at which the multi-agent system was deployed, two main agent-

based architectures were implemented: software and artificial intelligence. 

In this research, we propose an adaptive security-aware scheduling with 

congestion control mechanism for packet switching networks using real-time agent-

based systems. The novelty of our research could be presented from the following 

perspectives:  
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1) Our work implements an object-oriented agent-based system that combines 

the functionality of real-time scheduling with the security service enhancement for 

packet switched networks, where the real-time scheduling unit uses the differentiated-

earliest-deadline-first (Diff-EDF) scheduler, while the security service enhancement 

scheme adopts a congestion control mechanism based on resource estimation 

methodology. 

 2) The security service enhancement unit was designed based on two models: 

single-layer and weighted multi-layer design models. For single-layer, the design 

provides an enhancement for a single security service: confidentiality, integrity, or 

authentication, while the weighted multi-layer design provides an enhancement for 

multiple security services with different weights on a network with multi-processor 

end nodes. 

 3) The proposed system provides the required QoS guarantees for different 

classes of real-time data flows (video, audio), while adaptively enhances the packet’s 

security service levels according to a feedback from the control congestion model, 

which efficiently utilizes the buffering system at the edge network, and thus protects 

the network from being congested by heavy traffic load. 

 4) Our agent-based system eliminates the overhead of the security association 

phase performed by the IPsec protocol. Such elimination had been achieved by 

overloading the priority code point (PCP) fields of the IEEE 802.1Q tagged frame 

format for the single-layer scheme, while repeated single-layer and overloading both 
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the PCP and the VID fields of the IEEE 802.1Q tagged frame format fields were the 

adopted methodologies by the weighted multi-layer security design model. 

By using the Diff-EDF scheduler, the proposed system minimizes the flows 

miss rates and the flows average total delays compared to the earliest-deadline-first 

(EDF) and the first-come-first-served (FCFS) schedulers. From the other hand, our 

adaptive security enhancement scheme minimizes the buffer consumption, the 

average total packet delays, and the pending packets at the end users compared to the 

IPsec protocol. It was also compared to an implemented feedback-IPsec, where our 

adaptive system eliminated the repeated security associations performed by the feed-

back-IPsec, hence less overhead and increases the chances to meet the flows QoS 

requirements. 

1.3 Research Goals 

The main goal of our research is to apply the object-oriented agent-based 

methodology to propose a new real-time security awareness scheduler, which 

provides the real-time data packet flows with guaranteed QoS requirements, while 

adaptively enhances the flows’ security service levels in a packet switched networks. 

While providing such guarantees (QoS & security), the proposed system preserves the 

overall performance of the network, such that no network congestion occurs. To 

achieve this general goal, the following specific objectives were highlighted: 

1-  Evaluating the efficiency of using the Diff-EDF real-time scheduling 

algorithm at the scheduler agent over the well known FCFS and EDF 

scheduling algorithms. Network performance metrics (NPMs) will be in 
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terms of the flow’s miss rate at the server agent and the flow’s average 

total delays at the edge router’s queue agent.   

2- Evaluating the efficiency of our proposed algorithm at higher levels of 

data packets arrival rates at the edge router, where NPMs were measured 

for a dynamic network topology, such that the number of secure data 

channels (source/destination pairs) was varied by a constant step in the 

single simulated iteration. 

3- Evaluating the efficiency of our proposed algorithm over the static IPsec 

protocol for both single and weighted multi-layer security design models. 

The measured NPMs will be in terms of packets’ total average delays at 

the destination’s queue agent and the utilization of the destination’s 

buffering system. 

4- Defining the functionalities and communication schemes for each network 

entity in the heterogeneous environment, such that the overall networking 

system could be designed and modeled using a real-time multi-agent 

system, which has the capability to enforce the required timing constraints 

on both requests and actions performed by the interacted agents. 

5- Evaluating the efficiency of redesigning the IEEE 802.1Q Ethernet tagged 

frame for both single and weighted multi-layer security design models. In 

order to perform that, our proposed system was compared to an 

implemented feedback-IPsec protocol. Simulation results show the 

efficiency of our proposed system in eliminating the repeated security 
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association phase performed by the feedback-IPsec protocol for each 

security level change, and thus increases the chances of guaranteeing the 

requested QoS requirements for different classes of data streams. 

6- Implementing a congestion control mechanism based on a resource 

estimation methodology for the local-area end stations. Such mechanism 

will be used in adjusting the real-time packets’ security levels, such that 

no congestion occurs in the network with both QoS and security 

requirements are achieved. 

1.4 Dissertation Outline 

Our dissertation is structured in seven chapters including the introduction one. 

In this section we provide the overall outline of our adaptive security-aware 

scheduling algorithm using agent-based systems in a real-time packet switched 

network. 

Chapter two presents an exhaustive literature review that covers the recent 

related work to our research topics. According to the literature, we begin by 

reviewing the properties, types, and applications of real-time systems. For such real-

time systems, we provide the methodologies that guarantee providing their flows 

within the requested QoS. Being a key factor of enhancing the overall performance of 

the network, the literature provides different methods for estimating the availability of 

the network’s buffering system. As a method of providing the required QoS 

guarantees to the different classes of data flows in the network, real-time scheduling 

has been reviewed.  In this chapter we also provides an extensive literature about 
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different security topics such as security threats, security services, security protocols, 

and secure scheduling methods. Being the most efficient method for modeling and 

analyzing heterogeneous environments, our literature outlines the real-time agent-

based systems.  

In chapter three, we present the process of using the object-oriented real-time 

agent-based methodology to design and model our proposed system; the chapter 

provides the design process for each real-time agent. It also provides the design 

process of two real-time security models: single-layer and weighted multi-layer 

security models.  Chapter four presents the implementation process of our real-time 

security-aware scheduler for packet switched networks. Such process includes 

implementing the workload process using the Brownian motion queuing model; it 

also provides the timing protocol implementation for both scheduling and security 

design models (single-layer & weighted multi-layer). The implementation of the live 

feedback mechanism was also reviewed. Finally, this chapter provides 

implementation of our proposed agent system using the .Net object oriented 

programming platform. 

Chapter five introduces the common static network security protocols. 

According to the limitations of using such security protocols, this chapter provides a 

design model for an adaptive feedback-IPsec protocol, where the security levels for 

the data packets are adaptively upgraded. The proposed mechanism of overloading 

the IEEE 802.1Q frame format was reviewed as a method of solving the limitations of 

using the feedback-IPsec protocol.  
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The system’s simulation and numerical results was provided in chapter six. 

The chapter begins by initializing the simulation parameters. Simulation results 

examine the performance of our proposed agent-based system from different 

perspectives. For each simulation experiment, two parameters were identified: 

network performance metrics to be measured (NPMs) and the real-time agent at 

which the experiment was carried out.  Finally, chapter seven introduces our 

research’s conclusions and contributions. We also provide blueprint directions for our 

future work. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 General Overview 

In the area of networks and data communication, a huge amount of research 

has been performed to provide network flows from different classes with different 

levels of QoS guarantees. According to the type of data stream flowing through the 

network, QoS could be in different metric forms. Different categories of security 

threats attack different types of flowing data streams in the network; accordingly, data 

traffic generators are in care of applying security services to their data streams. 

Nowadays, researchers are studying the effect of applying such guarantees on the 

overall performance of the network. They are also trying to implement network 

technologies that provide both QoS and security guarantees to their data traffics, 

while still preserving the overall performance of the network. 

In this chapter, we provide an intensive literature review about our system’s 

related topics. Since our research environment is a packet switched network, we 

outline the properties, types, and applications of real-time systems. The literature 

covers different methodologies that had been used to provide real-time applications 

with the required QoS guarantees. The proposed system makes a balance between 

providing the required guarantees to the network’s applications and the overall 

performance of the network. In order to achieve that, the network’s buffering system 

is efficiently utilized. As a key factor of enhancing the overall performance of the 



 

12 
 

network, the literature provides different methods for estimating the availability of the 

network’s buffering system. 

As a method of providing the requested QoS guarantees to different classes of 

data flows in a real-time network, real-time scheduling has been reviewed in this 

literature. In this chapter we provide an extensive literature about different security 

protocols that had been adopted to provide the required security services to real-time 

network applications. Secure scheduling mechanisms at different environments will 

also be reviewed. Real-time agent-based system was the best method for modeling 

and analyzing our heterogeneous environment. It controls the limitations of using 

conventional simulation based systems; accordingly, the literature provides an 

overview of using such methodology in real-time heterogeneous networks.  

2.2 Real-time Applications  

In a real-time environment, the entire system should have the capability to 

enforce the required timing constraints on its sub-tasks [18]. Such constraints could 

be reflected by the associated relative deadline timing parameter. The real-time 

system should have a mechanism to check the validity of its functionality. The 

validation process could be achieved by applying two main correctness parameters: 

logical and temporal. The logical correctness checks for generating correct system 

outputs, while temporal correctness deals with the system clock. It checks whether 

system outputs had been generated at the pre-defined instances of time or not [19].  

According to the type of real-time data traffic and its requested QoS 

requirements, the real-time system implements the appropriate scheduling algorithm 
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that serves such traffic and guarantees its requested QoS requirements. In a passive 

real-time system, where the required time to serve each real-time traffic is pre-

defined, the entire system uses the traffics’ specifications to decided  if a schedule is 

exist for such data streams or not [20], and thus it performs a prior validity check for 

the previous correctness parameters (logical & temporal). From the other hand, active 

real-time system doesn’t have any prior expectation about system’s behavior [21], 

and thus an individual correctness mechanism should be performed.   

2.2.1 Properties of Real-time Applications  

Nowadays, different classes of real-time applications share and congest the 

same integrated real-time network; accordingly, integrated networks should have the 

capability to provide different types of services for its real-time data flows. Real-time 

applications could be in different forms such as audio streams, video streams, 

multimedia applications, real-time signal processing applications, and real-time 

control applications. The implementation of the serving real-time scheduler depends 

on the traffic’s generator model, where a specific model is defined for each real-time 

data generator. Such model specifies the characteristics of the generated real-time 

data traffics such as the size of the flow’s data units, the traffic’s inter-arrival time, 

the traffic’s associated deadline, and the sending rate. 

 Accordingly, three main real-time generator models were defined [22]: the 

fixed data rate model (FDR), the variable data rate model (VDR), and the fixed data 

rate with variable size model (FDVS). In the FDR model, the generator generates 

equally-size real-time data units periodically such as real-time control and data 
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processing systems for hard real-time medical applications [23]. VDR model 

generates equally-size data units asynchronously, where different gaps isolate the 

stream of data at different instances of time such as the discrete real-time audio 

systems. In such systems, the data traffic interrupts the scheduler aperiodically [24]. 

According to the FDVS model, different classes of data traffics with different 

characteristics are integrated in a hybrid model, where the generator generates 

variable-size data units at a fixed data rate; accordingly, a synchronization mechanism 

was implemented to regulate the process of serving such real-time data units [25]. 

The classification of real-time system generator models is shown in Fig. 2.1. 

Due to its strict timing constraints, real-time system should have the following 

properties: 

1- Efficient response time for external discrete interrupt events. 

2- Flexible to adopt dynamic changes in the system’s environment. 

3- Reliability, which could be achieved through deploying the logical and 

temporal correctness mechanisms. 

4- High processing speed that insures providing the required QoS guarantees 

to different classes of data traffics. 

5- Overload stability, where critical tasks will be given higher priority over 

other tasks to guarantee their QoS requirements. 

6- The ability to be modeled and analyzed using simulation based systems or 

multi-agent systems for monitoring issues. 
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According to the statistical analysis for the traffics’ characteristics, different 

hard real-time generator models were implemented such as traffic shaper model [28], 

peak theory model [29], and LBAP model [30]. Such models reduce the overhead and 

complexity of predicting the system’s behavior and exchanging flow’s information, 

and thus enhancing the overall performance of the system.  

Hard real-time schedulers were applied in different applications such as fast 

computing machines, where a real-time scheduling algorithm was implemented to 

provide the optimal number of parallel processors needed for a multi-threading hard 

real-time environment [31][32]. Hard real-time systems were employed in diagnostic 

and therapeutic instruments such as magnetic resonance tomography (MRT) and 

remote (robotic) surgery equipments. Such applications provide patients with the 

required critical-time health care services [33][34]. A huge research was performed to 

implement hard real-time applications on network technologies, especially at the edge 

of the network, where different methodologies were applied on layer-2 devices of the 

OSI model (switch, hub) to protect the end nodes from being congested by heavy 

traffic loads. Such methodologies include the internet traffic management practices 

(ITMP) [35][36] and the hardware-modification based schedulers [37][38]. The 

previous methodologies require designing specific network resources for hard real-

time applications. Such problem was solved by implementing a generic hard real-time 

protocol suit, which deals with the traffic, regardless the network’s equipments 

[39][40]. 
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From the other hand, soft real-time applications are less sensitive to variations 

in QoS parameters; it can accommodate a pre-defined miss rate, while the whole 

system still considered reliable. Such applications are specifically designed for VDR 

generator models, where asynchronous traffics flowing in the system. Discrete real-

time audio systems are examples of such soft real-time applications. In order to 

guarantee the QoS requirements for such systems, two models should be 

implemented: audio signal recognition model and soft real-time scheduling model.  

According to the recognition model, the challenge was to detect the isolating 

gaps, where a discontinuity appears in the audio stream. Since the audio signal could 

be represented as a stationary signal, different statistical Markov models were 

proposed to recognize the whole audio stream (talk and pause) such as the 

unidirectional Markov model audio detectors [41][42][43], the bidirectional Markov 

model audio detectors [44][45][46], and the hidden Markov chain model audio 

detectors [47] [48]. The previous models show high efficiency in recognizing 

continues signals over the paused signals, and thus a new algorithm was implemented 

to efficiently detect the discontinuity gaps in the audio signal. Such algorithm called 

the tri-state audio detector [49][50][51].  

The most efficient schedulers for soft real-time systems are the priority based 

schedulers such as the earliest deadline first (EDF) scheduler, where the task that is 

closer to expire will be given higher priority over other tasks [28]. Modified versions 

of EDF scheduler were implemented such as the dynamic queue deadline first 

(DQDF) scheduler, which integrates the functionality of the EDF scheduler with the 



 

18 
 

dynamic queuing model on a single processor environment. DQDF provides an 

efficient utilization for the system resources with a minimized processing overhead 

[52]. Another proposed scheduler was the adaptive weighted fair queue (AWFQ) 

scheduler. In such scheduler, the tasks will be placed in queues with different 

properties. According to the status of the network and the flow’s QoS requirements, 

the priorities of the queues are dynamically change, such that the overall performance 

of the network will be enhanced [53]. 

2.3 Real-time Networks 

 The earliest types of data streams were not sensitive to any timing constraints; 

hence, the earliest version of the internet was in care of providing the network 

applications with the best effort services, where the only guarantee is to serve the 

arrived tasks in the order they were received. Such provided services started to be 

inefficient, especially when different categories of data traffics with different 

requested time-critical services begin to share the same integrated network.  

 In order to handle such time-critical services, network technologies started to 

implement embedded real-time protocols that provide the real-time data traffics with 

guaranteed QoS requirements. The process of providing guaranteed QoS 

requirements is mainly controlled by the overall performance of the network; hence, 

real-time network technologies were implemented based on protecting the network 

from being congested by heavy traffic load, and thus the chances for guaranteed QoS 

requirements would increase. 
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2.3.1 Quality of Service for Real-time Networks (QoS) 

According to data communication, QoS could be defined as the ability of real-

time network technologies to guarantee an appropriate delivery for different real-time 

data streams within their requested timing constraints.  In order to fulfill such task, 

network technologies depend on the process of prioritizing arrived data streams, such 

that the stream that is more critical to variations in delays and data misses will be 

given higher priority than other data streams [54]. 

 QoS could be represented in different metric forms such as delivery, capacity, 

and reliability. According to the generator’s sensitivity factor, delivery could be in 

one of two different forms: miss rate or total average delays. Miss rate could be in 

terms of the number of tasks lose their relative deadlines to the total number of 

arrived tasks, while task’s delay could be defined as the task’s waiting time in the 

scheduler queue ready to be served [55].  Capacity could be defined in terms of the 

aggregate bandwidth provided to the different classes of data streams. According to 

the international telecommunication union (ITU), reliability could be defined in one 

of two forms: mean-time between failures (MTBF) or mean time to restore a service 

(MTRS) [56]. Such QoS parameters could be in any of the previous forms; they could 

also be defined as a combined function of the previous metrics [57][58]. 

According to the type of flowing data traffics, the load of real-time data 

traffics, and network’s performance considerations, different models were adopted to 

implement the QoS guarantees in the system [59]. The earliest models were based on 

the implementation of threshold functions such as the quality-threshold and the 
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quantity-threshold models. Quality-threshold function could be driven by a single or a 

set of QoS metrics, such that none of the real-time tasks can exceed the pre-defined 

QoS metric’s value [60][61]; otherwise, the task will be considered as an expired one. 

Quantity-threshold function could be defined by determining a specific number of 

tasks that can exceed the pre-defined QoS values without affecting the overall 

reliability of the system [62]. According to the previous threshold models, the system 

doesn’t differentiate between the data streams, it treats all the traffics equally; hence, 

such models could be more efficient when dealing with best effort traffics, or when 

the system doesn’t accommodate heavy traffic loads.  

The revolution in networking and data communication fields pushed the 

researchers to think of different QoS models, especially when different categories of 

data flows started to share and congest the same integrated network; accordingly, 

differentiated QoS models were adopted [63]. Such models were implemented by 

modifying the IEEE protocols for both Ethernet frame format and IP packet format. 

According to the Ethernet frame format, priority code point (PCP) fields were added 

in a new modified IEEE 802.1Q tagged Ethernet frame format [64]; such fields 

prioritize different classes of data flows in an integrated network as shown in Fig. 2.2. 

From the other hand, differentiated service (DiffServ) fields were added in a new 

802.1P packet format, such that different levels of QoS guarantees were implemented 

at layer-3 of the OSI model [65]. 

Differentiation models are not efficient when dealing with heterogeneous 

environments such as real-time networks with stringent QoS and security 
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such environments, network performance issues should be taken 

into consideration, such that no network congestion occurs. Differentiation models 

ted as priority markers for real-time data streams. The new QoS 

models are based on system negotiations between data generators and the service 

provider, where each data source sends its traffic’s information to the provider; 

the provider predicts its capability of serving such traffics within the 

requested QoS requirements, and notifies each source. Such models were 

applying the appropriate real-time interactive scheduling algorithm

mainly based on applying a resource estimation methodology that ensures 

the best utilization of the network’s buffering system [66]. 

Figure 2.2: IEEE 802.1Q Priority Code Point (PCP)
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packet switched networks, data packet generators perform a negotiation process with 

the system provider on the requested QoS requirements. Such negotiations are 

controlled by the service level agreement protocol (SLA) [67], which adaptively 

controls the process of guaranteeing the QoS requests for the real-time flows 

according to the network’s performance level. 

The overall performance of the real-time network could be measured by 

different network performance metrics (NPMs) such as miss rate, average total packet 

delays, functionality, jitter, and throughput [68]. As we can see, the first two NPMs 

(miss rate and total average packets delay) are common between the QoS 

requirements and the overall performance of the network. According to the QoS 

requirements, the previous metrics are predefined by the data packet generator as 

requested services, while they will be measured using network monitoring techniques 

for the network performance case. 

The functionality metric measures the efficiency of network elements at 

different layers of the OSI model in performing their tasks. Jitter can be defined as the 

variation in the arrival times for the real-time tasks at the destination side. Such 

variations are caused by different delay factors such as network congestion delays, 

delays by buffer limitations at both edge router and end stations, and delays by 

priority-based scheduling algorithms [69]. Throughput could be defined as the 

average rate of transmitted data over the communication data link; it is measured by 

(bits/second). This metric reflects the overall utilization of the data link, which affects 

the overall performance of the network [70].  
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In order to measure the previous metrics, different queuing-theory based 

monitoring techniques were implemented such as conventional simulation based 

systems (offline monitoring), agent-oriented systems, and live monitoring methods. 

Conventional simulation based systems are mainly based on capturing a set of packets 

from different flowing data streams. Once the data was collected, analysis processing 

mechanisms will be performed on the collected data to evaluate two main NPMs: 

utilization and throughput. Different monitoring projects were built based on such 

methodology such as global coral reef monitoring network (GCRMN) [71] and web-

based internet/intranet network traffic monitoring and analysis systems 

(WebTrafMon) [72].  

 Live monitoring techniques are mainly efficient for time-critical applications, 

where a direct response should be taken according to the status of the network. The 

implementation of such methodology is carried out through the usage of specific 

control packets; according to live monitoring, the provider sends specific control 

packets (ICMP echo request packet) to the pre-defined network’s component, and 

then analyzes the arrived response packets (ICMP echo response packet). The 

performance metrics to be evaluated using such techniques include: the connectivity, 

the miss rate, and the total average packet delay [73]. One of the projects that 

implement such technique is the ping end-to-end reporting, which was used to 

implement end to end performance tests through the system’s data links [74]. Another 

active monitoring project is the national internet measurement infrastructure (NIMI), 

which was used to check the reliability of the internet clouds and paths [75]. 
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 Agent oriented monitoring systems are checking the same NPMs of the offline 

monitoring models. Such models solve the limitations of using offline models in large 

heterogeneous environments such as wide-area networks (WANs), where both QoS 

and security requirements should be provided. In this model, network’s components 

are modeled by real-time agents that are cooperating together to accomplish the main 

system’s tasks. The agent system inherits object oriented capabilities to handle the 

complexity of such heterogeneous environments [76]. One of the most famous work 

on such monitoring models is the measurement and analysis on the wide area internet 

(MAWI) [77], which was implemented to trace public traffic streams through the 

internet (WAN). 

2.4 Buffer Estimation Techniques for Real-time Networks 

Nowadays, researchers pay a significant attention on the factors that affects 

the overall performance of networks, especially those real-time networks that need to 

provide different QoS guarantees to their real-time applications. The best utilization 

for the network’s buffering system is a key factor that regulates the network’s traffic, 

controls the maximum throughput in the network, protects the network from being 

congested, and improves the overall performance of the network. As a result, such 

efficient utilization will increase the chances of guaranteeing the flows’ QoS 

requirements; accordingly, efficient communication-based algorithms such as real-

time routing, real-time scheduling, network maintenance, load balancing, and 

network security were implemented based on such efficient buffer utilization [78]. 
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In order to achieve an efficient utilization for the network’s buffering system, 

the service provider implements an appropriate buffer estimation methodology that 

works at different network’s layers. According to real-time network’s type and the 

requested needs from the real-time data streams, different buffer estimation models 

were implemented [79]. 

 One of the models was based on the statistical analysis, where two Poisson 

distribution functions were implemented: one for modeling customers’ buffer 

requests, while the other one for modeling the average holding time for the 

information in the system’s buffer. The model calculates the optimal number of 

buffers needed to accommodate the arrived real-time tasks without congesting the 

network, and thus maintaining high network performance [80]. Another model was 

implemented to evaluate the minimum limit of buffers needed to accommodate two 

main types of data: internally generated data and received data from other nodes. The 

research strategy was implemented at each network node in a homogenous network, 

such that a maximum throughput is maintained, while the network will be protected 

from being congested by heavy traffic load [81]. 

In a TCP-IP packet switched network, a buffer estimation model was 

developed to provide an efficient utilization for the buffering system in a real-time 

multimedia network; such model uses the flow’s information such as transmission 

rate, average round trip time (RTT) for the stream’s packets, and the data packet size 

to evaluate  the minimum number of available buffers at both end users and edge 

router, such that QoS requirements will be guaranteed with minimum average 
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packets’ delays [82]. In the area of packet optical networks, a buffer estimation model 

was implemented to evaluate the minimum buffer requirements at each optical node 

in the network. The model combines a proposed genetic algorithm with the shortest 

path first (SPF) routing algorithm, such that the best route for the real-time optical 

data packet is determined without overriding the internal data buffer of the optical 

node [83].  

Queuing theory was employed to evaluate the average queue size for an 

internet gateway server in a real-time network; the model was based on an 

asynchronous live monitoring for the server’s queue. By analyzing the collected 

information from live monitoring, the service level agreement protocol (SLA) 

specifies the optimal QoS guarantees that can be offered by the service provider, such 

that a minimum miss rate values are achieved [84]. Later, a work was performed to 

examine the capability of using tiny routers with bounded buffers in a real-time 

network. The proposed algorithm implements a buffer estimation mechanism for the 

router’s internal queues, such that a peak throughput is maintained with a minimum 

number of dropped packets [85].   

2.5 Real-time Network Scheduling 

In order to provide different real-time data streams with guaranteed QoS 

requirements, the real-time service provider implements the appropriate real-time 

scheduling algorithm to be applied on the arrived data flows. Such scheduling 

algorithm decides the order of serving a number of arrived data tasks from different 

flows to the scheduler’s queue [86]. Besides guaranteeing QoS requirements for real-
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time data flows in an integrated network, schedulers are the key behind the 

implementation of real-time operating systems, real-time multi-processing systems, 

real-time data-base transaction management, and pipeline management systems [87]. 

2.5.1 Types of Network Scheduling Algorithms   

Different factors control the process of choosing the appropriate scheduling 

algorithm that should be applied to provide the best services to arrived data streams. 

Such factors include the type of flowing data traffic, the processing capabilities of the 

service provider, the type of requested QoS requirements, and network’s available 

resources. In order to model and design any real-time scheduler, different 

characteristics should be taken into consideration such as priority, preemption, rate 

controllability, and bandwidth conservation [88]. According to priority 

characteristics, schedulers are classified into dynamic or fixed priority sc. In a 

dynamic based scheduler, the priorities of queued data tasks at the scheduler are 

dynamically changing according to the specifications of new arrived data tasks, such 

that QoS parameters among all streams will be satisfied. From the other hand, in a 

fixed priority scheduler, data streams will be given their static priorities in the SLA 

phase, without any future updates [89]. 

 Preemptive schedulers are based on dynamic priority schedulers, where a new 

higher-priority arrived data task will cause the system to preempt the under-served 

lower priority task and start serving such arrived task. Such schedulers are mainly 

used for hard real-time systems with strength timing requirements [90]. Rate 

controllable scheduler depends on the service level management phase (SLM), which 
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specifies a fixed sending rate for each real-time stream in the negotiation process, 

such that the QoS guarantees will be met for all data flows, while non-rate 

controllable scheduler adaptively enhances the sending rates for the data streams 

according to the network status, such that none of the traffics misses its QoS [91].  

Bandwidth conservative scheduler keeps all the links with the end nodes in an 

active mode, even when no packets are currently scheduled for a certain destination, 

while non-bandwidth conservative systems only activates the link that is currently 

connected with the under-served node, and terminates all other links; such system 

reduces the number of reserved resources in the network, whereas additional 

overheads are added due to the links’ reestablishing processes [92]. According to the 

previous scheduling characteristics, different scheduling algorithms were 

implemented such as first come first served (FCFS), earliest deadline first (EDF), 

weighted fair queue (WFQ), and multi-level schedulers.  

The FCFS scheduler was implemented to serve the earliest virgins of real-time 

data traffics (best effort traffics). Since best effort traffics are not sensitive to any 

variations in packet losses or delays (QoS requirements), they were treated equally by 

the service provider, and thus the FCFS was the best choice for serving such types of 

data streams. According to FCFS, arrived data packets will be queued in the 

scheduler’s buffer according to their arrival-time, such that the packet that arrived 

first will be at the top of the queue ready to be served next; hence, the FCFS 

scheduler is considered as the simplest scheduler. The only requirement for its 
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implementation is to order the packets in the scheduler’s queue based on their arrival 

time [93]. 

 In order to examine the efficiency of such scheduler, FCFS was deployed in 

different environments such as asynchronous best-effort networks, integrated real-

time networks, and real-time networks with multi-processing technology [94]. For 

asynchronous best-effort networks, the PB-FCFS scheduler was proposed by 

integrating the FCFS algorithm with a backfilling strategy. By implementing a 

resource recycling process, such scheduler improves the utilization of the network’s 

buffering system, and thus enhances the overall network’s performance [95]. 

In a real-time integrated network, different classes of data flows with different 

QoS requirements share and congest the same network. In such environment, the 

FCFS scheduler shows low efficiency in guaranteeing such QoS requests, especially 

for both heavy load and hard real-time streams [96]. A reasonable reliability was 

achieved when deploying the FCFS scheduler with real-time multi-processing 

networks, where the only limitation was the type of flowing real-time data traffics. 

Simulation results show that it would be more reliable if the system is dealing with 

soft real-time applications rather than hard real-time applications [97].  

 Weighted fair queue (WFQ) scheduler was implemented to solve the 

limitations of using the FCFS scheduler in an integrated real-time network. According 

to WFQ, each data flow reserves a virtual sub-queue at the scheduler side, such that 

the scheduler assigns each sub-queue with an associated weight. The queues will be 

served in a round-robin mechanism according to their weights; hence, the starvation 
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problem of the FCFS will be solved, which totally leads to increase the chances of 

guarantee the flow’s QoS requirements. According to its proportional fairness, this 

model provides a minimized end-to-end transmission delay limits and efficiently 

utilizes systems with limited bandwidth [98].  

According to the network’s technology, different WFQ models were 

implemented. Generalized processor sharing (GPS) model was adopted for clustered 

network, where flowing data units are in terms of tasks (jobs). For such model, 

different streams from different sources are flowing to the scheduler simultaneously, 

where each flow consists of a batch of divisible tasks that reserve a certain sub-queue 

in the scheduler. According to delay bounds, the scheduler gives dynamic weights to 

sub-queues that can be change based on the queue’s capacity. Simulation results show 

the efficiency of using such scheduler in terms of bandwidth utilization and end-to-

end delays [99, 100].  

GPS scheduler is non-efficient when dealing with packet switched networks, 

since packets are indivisible data unit, and thus the packet weighted fair queue 

(PWFQ) scheduler was implemented, which deals with packets rather than tasks 

[101][102]. When the time slice for the underserved queue finishes, PWFQ doesn’t 

terminate the packet’s servicing process, and thus the allowable sending rate 

(bandwidth) for such session will be exceeded. In order to solve such limitation, the 

worst-case fair weighted queue (WF
2
Q) scheduler was implemented [103][104]. To 

model and design such scheduler, two main phases were developed: the eligibility 

phase and the scheduling phase. According to the eligibility phase, the packet is 
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checked if it can be scheduled within the current time slice or not, while in the 

scheduling phase, eligible packets are scheduled according to the PWFQ scheduling 

algorithm.  

A major problem with the previous packet scheduling models is the big 

variations in the bandwidth utilization for the online session, especially when a pre-

offline session becomes online. For such scenario, the sending rate of the online 

session is sharply dropping, while the pre-offline one retains its maximum bandwidth 

in one shot.  To regulate such sudden changes in the session’s bandwidth, the slow-

start weighted fair queue (S
2
WFQ) scheduler was implemented [105], which 

regulates the process of reserving the bandwidth of the new online session; it assigns 

the bandwidth to the session in an exponential upgrading, until it gains the whole 

specified bandwidth [106]. 

The EDF scheduler was implemented as the most efficient algorithm for hard 

real-time applications; it is a priority-based algorithm with the packet’s relative 

deadline being priority key, such that the packet that is closer to expire will be given 

higher priority than other arrived packets to the scheduler’s queue. Different models 

of EDF scheduler were implemented to guarantee the flows’ QoS requirements at 

different environments. Standard EDF scheduler (SEDF) was implemented to serve 

real-time data streams in an integrated network [107]; it shows an optimal efficiency 

when dealing with equally-likely data traffics, where SEDF provides the same miss 

rate QoS metric for all data traffics; hence, it was not efficient when dealing with data 

traffics with different QoS requirements [108]. In order to solve such limitation, a 
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modified version of SEDF with live monitoring strategy was developed, where all 

data flows are initially operated with the same levels for each QoS metric. Once the 

scheduler receives a notification from the monitoring policy about any stream being 

close to its QoS requirements, it adaptively modifies the priority scheme for the 

streams, such that all QoS will be met [109].  

The previous EDF models were efficient when dealing with limited number of 

data generators, such that no heavy load traffic will affect the process of guaranteeing 

the requested QoS metrics. In order to solve such limitation, a modified model of the 

EDF scheduler with a pre-negotiation phase was adopted. In such model, both system 

provider and data generators negotiate on the type of services that can be guaranteed 

[110][111]. In order to achieve an efficient scheduling, the algorithm takes into 

consideration different system parameters such as traffic characteristics (relative 

deadlines, arrival times, service times), the available bandwidth, the number of data 

sources, and the scheduler’s available resources (computational power, available 

buffers). According to this scheduler, the negotiation phase determines if a schedule 

is available for each data stream within the requested QoS or not. 

 The pre-negotiated model is efficient when dealing with static network 

topologies; for dynamic topologies such as wireless networks, the scheduling 

algorithm should have the capability to handle any new updates in the network’s 

topology; accordingly, a modified version of pre-negotiated model was implemented, 

where a feedback about the status of the network is sent to the scheduler to reinitiate 
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According to our simulations, both adaptive scheme and IPsec protocol apply 

the same level of security requirements on the real-time data flows. Whereas, our 

proposed adaptive protocol is more effective in protecting the destination

gested by heavy traffic load, and thus increases the chances of meeting 

the QoS requirements for the real-time data streams. The previous results show the 

enhancement of the network’s utilization that leads to preserve the overall 

performance of the network.  
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to allow new arrived data packets to wait until the destination processes queued data 

packets, and releases its memory resources. In our simulations, we compare the 
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efficiency of our proposed scheme over the static IPsec protocol by measuring the 

average number of pending packets at a fully consumed destination’s buffer. The 

comparison process was carried out at the steady state security level for the cases of 

initial buffer length: λf /25 and λf /8. Tables: 6.1, 6.2, 6.3, and 6.4 show simulation 

results for the single-layer confidentiality, single-layer integrity, single-layer 

authentication, and weighted multi-layer security design models respectively. 

Table 6.1: Average Pending Packets at Destination for Confidentiality. 

Pending Packets Algorithm 

(Single-Confidentiality) ((λf / 25) Buffers) 
1 

(IPsec-Confidentiality) (Level 5) ((λf / 25) Buffers) 4 

(Single-Confidentiality) ((λf / 8) Buffers) 
2 

(IPsec-Confidentiality) (Level6) ((λf / 8) Buffers) 
6 

 

Table 6.2: Average Pending Packets at Destination for Integrity. 

Pending Packets Algorithm 

(Single-Integrity) ((λf / 25) Buffers) 
2 

(IPsec-Integrity) (Level 3) ((λf / 25) Buffers) 5 

(Single-Integrity) ((λf / 8) Buffers) 
3 

(IPsec-Integrity) (Level 5) ((λf / 8) Buffers) 
9 

 

 

 

As we can see from the results, our adaptive scheme reduces the average 

number of pending packets at the fully consumed destination’s buffer without 

affecting the provided security level. Such reduction decreases the network 

congestion chances and increases the chances of meeting the QoS requirements for 
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real-time data classes, which totally leads to preserve the overall performance of the 

network. 

 

Table 6.3: Average Pending Packets at Destination for Authentication. 

Pending Packets Algorithm 

(Single-Authentication) ((λf / 25) Buffers) 
5 

(IPsec-Authentication) (Level 2) ((λf / 25) Buffers) 7 

(Single-Authentication) ((λf / 8) Buffers) 
10 

(IPsec-Authentication) (Level 3) ((λf / 8) Buffers) 
12 

 

 

 

Table 6.4: Average Pending Packets at Destination (Weighted Multi-layer). 

Pending Packets Algorithm 

(Weighted Multi-layer) ((λf / 25) Buffers) 
7 

(Weighted Multi-layer) (IPsec) {Levels (C:5, I:3, A:1) or 

(C:4, I:3, A:2)} ((λf / 25) Buffers) 

 

12 

(Weighted Multi-layer) ((λf / 8) Buffers) 

 
8 

(Weighted Multi-layer) (IPsec) {Levels (C:6, I:4, A:2) or 

(C:5, I:4, A:3)} ((λf / 8) Buffers) 

 

13 

 

6.5 Network Performance from Edge Router Agents’ Perspectives 

Different real-time scheduling algorithms could be used to provide the 

required service for different classes of real-time data flows in a packet switched 

network. In this section, we demonstrate the efficiency of using the differentiated 

earliest deadline first (Diff-EDF) scheduling algorithm at the scheduler agent over the 
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two well-known scheduling algorithms: earliest deadline first (EDF) and the first 

come first serve (FCFS) algorithm.  

According to the implementation of our agent-based system, changing the 

scheduling algorithm will only affect the functionality of the real-time queue agent, 

where queuing and fetching transactions are algorithm dependent. According to the 

FCFS, real-time data packets will be queued and fetched based on their arrival time, 

where the packet that arrives first to the queue will be retrieved first. The EDF 

algorithm is similar to the Diff-EDF algorithm in that both of them are priority based 

scheduling algorithms. The only difference between such algorithms is in the priority 

key, where the EDF algorithm considers the relative deadline as the queuing key 

rather than the effective deadline.   

In order to examine the efficiency of our scheduling algorithm, we have 

studied the effect of the scheduling algorithm on the performance of two real-time 

edge router’s agents: the server and the queue agents. The efficiency was measured 

by considering two main QoS metrics: the miss rate at the server agent and the 

average total packet delays at the queue agent. Simulation results for the two metrics 

are shown in Fig. 6.17 and Fig. 6.18 respectively.  

 



 

 

Figure 

Figure 6.18: Average Total Packet Delays Metric at Queue Agent
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 6.17: Miss Ratio Metric at Server Agent. 

 

 

Average Total Packet Delays Metric at Queue Agent

 

 

Average Total Packet Delays Metric at Queue Agent. 
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Since the previous metrics were measured at the edge router agent, and 

because we are using the same traffic characteristics for both single-layer and 

weighted multi-layer security design models, the obtained simulation results are 

design-model independent. As we can see from Fig. 6.17, applying Diff-EDF 

algorithm minimizes the number of dropped packets at the server agent, and thus 

increases the chances to meet the QoS requirements of the real-time data flows.  

Fig. 6.18 shows the efficiency of using the Diff-EDF algorithm over the EDF 

and FCFS algorithms in protecting the edge router’s buffer from being congested by 

heavy traffic load; such protection was achieved by minimizing the total average 

delays for the queued packets that are waiting to be served by the server agent. 

According to the previous simulation results, the real-time Diff-EDF scheduling 

algorithm has been chosen for such time-critical video/audio packet switched 

network. 

6.6 Adaptive Security-aware Scheduler Vs Feedback IPsec 

According to the implemented feedback-IPsec protocol, a feedback from the 

edge network to the IPsec protocol was implemented, where a notification with the 

new security levels to be adopted will be sent. In this section, we demonstrate the 

efficiency of our proposed adaptive security-aware scheduling algorithm over the 

implemented feedback IPsec protocol. In order to evaluate such efficiency through 

simulation, we measure the number of security level changes of the feedback-IPsec 

protocol that are required to reach the steady state security level. 



 

 

The simulations were carried out

destination’s buffer and the

6.21, Fig. 6.22, and Fig. 6.23 

single-layer confidentiality, single

two weighted multi-layer (

 

Figure 6.19: Feedback 
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The simulations were carried out at different values of both initial available 

and the negotiated time interval (T). Fig. 6.19, Fig.

21, Fig. 6.22, and Fig. 6.23 show such feedback-IPsec security level changes 

ayer confidentiality, single-layer integrity, single-layer authentication, and the 

layer (ψ1, ψ2) security design models respectively. 

: Feedback IPsec Security Level Changes for Confidentiality

at different values of both initial available 

Fig. 6.20, Fig. 

security level changes for 

layer authentication, and the 

 

Security Level Changes for Confidentiality. 



 

 

Figure 6.20: Feedback 

Figure 6.21: Feedback 
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: Feedback IPsec Security Level Changes for Integrity

 

: Feedback IPsec Security Level Changes for Authentication

 

Security Level Changes for Integrity. 

 

Security Level Changes for Authentication. 



 

 

 Figure 6.22: Feedback 

Figure 6.23: Feedback IPsec
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: Feedback IPsec Security Level Changes (Weighted Multi
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Weighted Multi-layer ψ1). 

 

Multi-layer ψ2). 
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According to the simulation results and for each security level change, the 

feedback-IPsec protocol repeats the pre-security association phase (SA) between the 

data packet generator and the end user, which means adding additional overhead to 

the system (Dsec) as shown in equations: 5.1 and 5.2. The figures show that the 

number of security switches will be less for both higher number of initial available 

buffers and initial negotiated time interval (T), where the system reaches its steady 

state average security level faster than it for lower values of initial available buffers 

and time interval (T).  

Our proposed scheme eliminates the repeated security association phase 

performed by the feedback-IPsec, and thus less overhead is added to the system. Such 

elimination increases the chances to meet the QoS requirements for different classes 

of data flows in terms of both miss rate and average total delays; it also preserves the 

overall performance of the network by protecting it from being congested by heavy 

traffic load. 
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions  

In the area of real-time networks and data communication, a huge amount of 

research has been performed to provide different levels of service guarantees to the 

real-time network applications. In this research, we propose an adaptive security-

aware scheduling with congestion control mechanism for packet switching networks 

using real-time agent-based systems. The proposed system combines the functionality 

of real-time scheduling with the security service enhancement, where the real-time 

scheduling unit uses the differentiated-earliest-deadline-first (Diff-EDF) scheduler, 

while the security service enhancement scheme adopts a congestion control 

mechanism based on a resource estimation methodology. 

The security service enhancement unit was designed based on two models: single-

layer and weighted multi-layer design models. For single-layer, the design provides 

an enhancement for a single security service: confidentiality, integrity, or 

authentication, while the weighted multi-layer design provides an enhancement for 

multiple security services with different weights. The proposed system provides the 

required QoS guarantees for different classes of real-time data flows (video, audio), 

while adaptively enhances the packet’s security service levels according to a feedback 

from the congestion control model, which efficiently utilizes the buffering system at 

the edge network, and thus protects the network from being congested by heavy 

traffic load.  



 

137 
 

Our agent-based system eliminates the overhead of the security association phase 

performed by the internet protocol security (IPsec). Such elimination had been 

achieved by overloading the priority code point (PCP) fields of the IEEE 802.1Q 

tagged frame format for the single-layer scheme, while repeated single-layer and 

overloading both the PCP & the virtual-LAN identifier (VID) fields of the IEEE 

802.1Q tagged frame format fields were the adopted methodologies by the weighted 

multi-layer security design model.  

Simulation results prove that using the differentiated-earliest-deadline-first 

(Diff-EDF) scheduler minimizes the flows miss rates and the flows average total 

delays compared to the earliest-deadline-first (EDF) and the first-come-first-served 

(FCFS) schedulers. From the other hand, simulation results show that our adaptive 

security enhancement scheme minimizes the buffer consumption, the average total 

packet delays, and the pending packets at the end users compared to the IPsec 

protocol. Our system was also compared to an implemented feedback-IPsec, where 

our adaptive system eliminated the repeated security associations performed by the 

feed-back-IPsec; hence, less overhead and increases the chances to meet the flows 

QoS requirements. Moreover, the implemented feedback monitoring mechanism 

makes our system capable of treating any dynamics in the network’s topology, which 

increases the reliability of our adaptive system. 
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7.2 Research Contributions 

  Our proposed multi-agent system provides the required QoS requirements for 

a variety of real-time data classes; it also provides an adaptive enhancement for the 

security levels of the real-time data classes in a packet switched network, such that 

the overall performance of the network is preserved. While carrying out our proposed 

system, the following contributions were achieved: 

1) Our proposed system implements an object-oriented agent-based 

architecture that combines the functionality of real-time scheduling with the security 

service enhancement for packet switched networks, where the real-time scheduling 

unit uses the differentiated-earliest-deadline-first (Diff-EDF) scheduler, while the 

security service enhancement scheme adopts a congestion control mechanism based 

on resource estimation methodology. 

 2) The security service enhancement unit was designed based on two models: 

single-layer and weighted multi-layer design models. For single-layer, the design 

provides an enhancement for a single security service: confidentiality, integrity, or 

authentication, while the weighted multi-layer design provides an enhancement for 

multiple security services with different weights. 

 3) The proposed system provides the required QoS guarantees for different 

classes of real-time data flows (video, audio), while adaptively enhances the packet’s 

security service levels according to a feedback from the control congestion model, 

which efficiently utilizes the buffering system at the edge network, and thus protects 

the network from being congested by heavy traffic load. 
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 4) Our agent-based system eliminates the overhead of the security association 

phase performed by the IPsec protocol. Such elimination had been achieved by 

overloading the priority code point (PCP) fields of the IEEE 802.1Q tagged frame 

format for the single-layer scheme, while repeated single-layer and overloading both 

PCP and VID fields of the IEEE 802.1Q tagged frame format fields were the adopted 

methodologies by the weighted multi-layer security design model. 

7.3 Future Work 

According to the proposed work, there are variety of characteristics and 

certain concerns that could be solid bases for significant and relevant future work; 

such concerns include: 

1- According to our proposed system, the packet’s security enhancement 

process is performed by the source agent according to a notification from 

the coordinator agent. Such approach could be modified by performing the 

packet’s security enhancement process at the edge router, where most of 

the hacking processes occur at that level of the network. Such 

modification reduces the control messages between coordinator and source 

agents; it also provides direct live responses to any dynamics in the 

network’s status. 

2- A linear network coding unit could be implemented as a part of the 

security enhancement unit at the edge router. Such design provides the 

real-time data flows with an additional layer of security, which doesn’t 

affect the packet’s QoS requirements, where the linear network coding 
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process is a machine bit-wise operation; accordingly, this operation can be 

used to attain the maximum possible throughput in the network. The 

system design requires providing the server agent with a specific buffer 

for each end station, where the network coding process depends on 

combining several real-time packets together before transmission. One of 

the network coding packet’s combination processes is the logical bit-wise 

xor operation. According to the xor operation, the size of the generated 

coded packet will be equal to the maximum size of the combined packets. 

From the other hand, the destination agent performs a linear decoding 

process to extract the original transmitted real-time data packets. 

3-  The agent based system could be modified to serve both real-time (video, 

audio) and non real-time (text) data flows; such modification will be in 

terms of applying a hierarchal scheduling algorithm at the scheduler agent, 

where two scheduling algorithms are used; one for each class of data flows 

(real-time and non real-time). This design could also modify the structure 

of the queuing system through implementing an individual queue for each 

data class. The coordinator agent will be implemented to make the 

required transition between queues, such that QoS requirements will be 

achieved for all data classes. 

4- Our edge-router agents could be redesigned to be installed on a wireless 

router to provide the required security requirements in a wireless mesh 

network (WMN). According to the designed agent-based system, the 
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scheduler agent should be capable of identifying the real-time data sources 

that have the ability to transmit; it also identifies their corresponding 

transmission power levels and rates. The security enhancement unit should 

keep into consideration the requested QoS requirements by the source 

agent, where the mobility of end stations affects such QoS requirements in 

terms of total average packets’ delays; accordingly, such mobility plays a 

key role in the packet’s security enhancement process. 

5- A software agent-based system for multiprocessor edge router could be 

designed to provide the required QoS and security requirements for real-

time data packets in a parallel forwarding system. In such design, the 

coordinator agent provides an adaptive load balancing technique that 

achieves the optimal resource utilization, maximizes the flow of data in 

the network (throughput), minimizes the packet’s waiting time at the 

queue agent (minimizes response time), and protects the network from 

being congested by heavy traffic load. 
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