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Abstract: 

The process of offset lithography requires several unique 

characteristics in paper. One of these is an ability in the sheet 

surface to accept water without deteriorating. Of�set coatings 

commonly use starch and protein in their binder systems. These 

adhesives are inherently water sensitive. The characteristic of 

water resistance in coated grades can be obtained through the use 

of crosslinking agents. Among the more commonly used are urea­

formaldehyde, melamine-formaldehyde, and glyoxal. A more recent 

development involves the use of ammonium zirconium carbonate. 

Through the years many studies have examined the effects of 

various insolubilizing agents in starch coatings. Most of these 

have analyzed only one agent and have all but, excluded-�rotein coat­

ings. A need seemed to exist for a comparative analysis of the 

commonly used insolubilizing agents in both starch and protein coat­

ings. The lack of literature concerning ammonium zirconium carbonate 

suggested that its analysis should also be included. 

A series of starch and protein based coatings were prepared 

using 16 parts adhesive and 100 parts clay. _Styre�e-:-butadi���_-latex. 

was included in both coatings. Urea-formaldehyde, melamine-formalde­

hyde, and glyoxal were added at levels of 5, 7, 9, 11, and 13 percent 

based on dry starch or protein. AmmoniUill zirconium carbonate, due 

to its purported superior insolubilizing efficiency was added a� 

levels of 1, J, 5, 7, and 9 percent. A four pound coat weight was 

applied by a hand-held blade drawdown technique to a 45 pound base 

sheet. 

Testing of water resistance was carried out via an on-press 

technique. The samples were allowed to cure two months before 

testing. Results showed that urea-formaldehyde produced the highest 

degree of water resistance. Ammonium zirconium carbonate was compet­

itive with UF and MF resins when added at levels greater than 5 %, 

even when those agents were added at higher levels. Glyoxal harmed 

starch-latex coating water resistance. Analysis of the protein­

latex coatings proved inconclusive. 
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Introduction: 

Papers used for lithography require several characteristics 

to permit acceptable printing. The process of offset lithography 

involves the transfer of an image to a rubber blanket from a 

planographic plate. Seperation of the image and non-image areas 

is maintained through the mutual repellancy of ink and water. 

The image is delivered to the paper from the rubber blanket. One 

of the most important requirements of paper for this process is a

resistance to wet abrasion and picking. These characteristics can 

be obtained in starch and protein based coatings through the addition 

of various crosslinking agents. These agents in effect water proof 

the coating. Among the more commonly used are urea-formaldehyde, 

melamine-formaldehyde, and glyoxal. A recent development which has 

been poorly substantiated in the literature is ammonium zirconium 

carbonate. 

Through the years the literature has reported many studies 

concerning the use of urea-formaldehyde, melamine-formaldehyde, 

and glyoxal· to insolubilize starch coatings. The use of ammonium 

zirconium carbonate has been discussed in several. patents. ··-very 

little work is available comparing these agents when used with protein. 

The literature also seems deficient in comparing the relative effect­

iveness of these agents under tYPical offset coating conditions. 

This thesis is meant to provide such a study. It will examine the 

use of urea-formaldehyde, melamine-formaldehyde, glyoxal, and 

ammonium zirconium carbonate,as crosslinking agents for the improv­

ement of water resistance in starch and protein based coatings. 

Theoretical Discussion: 

Surface Strength of Coated Papers: 

A significant problem encountered in offset lithography is that 

of insufficient paper surface strength. It is manifested by a 

release of fibrous materials from uncoated sheets and by coating 

particles from coated p�pers. These phenomena are referred to as 
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linting and picking. Both are of major concern to printers and 

paper makers since they contribute to a degradation in print quality. 

The material released by the paper surface tends to accumulate on 

the blanket and plate, eventually working its way into the ink and 

water distribution systems. Three problem phases are easily recog­

nized. The initial phase is the pickout. Coating released from the 

image area leaves a noticeable defect in the finished product. The 

second phase is that of repeating defects, "hickies." They are caused 

by a build up on the plate or blanket resulting in localized poor 

ink transfer. These defects are seen in each successive sheet. 

The final phase occurs when released material works its way into the 

ink and water distribution systems. It results in an �set of the 

normal ink-water balance. (i) 

The surface strength of offset lithographic papers is signif­

icantly affected by the water requirement of the process. This is 

particularly true of coated grades. Since lithography is based on 

the mutual repellancy of ink and water, when the image is delivered 

to the sheet, the non-image area will receive a thin film of water. 
-

� . ,- � --- '-'- --·- -

This water has a chance to soften the coating. In multi-color 

printing operations the softened coating may fail in subsequent 

applications due to the strong tack force of the ink. In practice 

the ink and water are not completely immiscible. After the press 

has stabilized, droplets of fountain solution become entrained in 

the ink. The end result is that the ink may in fact transfer three 

times as much water to the sheet as the non-irr.1age area. (Z) 

The ammount of water transferred to the sheet during the printing 

process is dependent on several variables. It directly influences 

the quantity of coating removed. Among the variables involved in 

water transfer are contact time between the sheet and impression 

blanket, ink density, and the grain size of the plate. The contact 

time is a complex combination of the printing cylinder diameter, 

press speed, impression used, and to a lesser extent the ink tack 

and paper resiliency. The effect of ink on water transfer has al­

ready been mentioned. Ultimately it is the plate that will control 
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the maximum water transfer. It is the plate which picks up water 

from the fountain. A more grainy plate will transfer more water. 

According to Beckman(Z) under average operating conditions the contact 

time is expected to be in the range of 3 to 10 msec. With a medium 

grain plate and 10 msec contact time the non-image area water film 

thickness will be approximately 15 microns. This ammounts to 0.10 

lb/ream (25 x J8 - 500) in the non-image area. Total water transfer 

may be three times this much. 

Acceptable quality printing requires that the water applied 

to the sheet surface must be quickly absorbed by the sheet. If the 

water is not absorbed by the sheet it will present a barrier to good 

ink transfer in later stages. A condition called scumming is the 

result. Solid image areas may become weak and gray. At the same 

time the water and ink vehicle are absorbed by the paper, the ink 

pigment must be left on the surface. A unique set of characteristics 

is required. While water is being drawn into the sheet from the surface 

so as not to interfere with ink deposition it must not soften the 

coating. These requirements have led to the use of variolli:f insol­

ubilizing techniques to prevent . the coating. fron: ��f te�g :( J }- --

Use of Insolubilizing Agents, 

Historically, casein and more recently protein adhesives have 

dominated the off set coating industry. They are the easiest of the 

natural adhesives to insolubilize. Casein shortages during World 

War II started the industry looking for a substitute. The availabil­

ity of starches with rheological properties superior to proteins 

has shifted the emphasis of the industry. Starches also have 

economic advantages. The major disadvantage of starch adhesives 

remains their inherently poor water resistance. The increase in 

press size and speed coupled with an increased need for inexpensively 

produced offset publications has further fncreased the cost advant­

age of using starches. This has led to much work in the area of 

improving the water resistance of starch coatings. 
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Both starch and protein coatings usually require some sort 

of insolubilizing agent to improve their water resistance. Several 

groups of compounds have gained prominence in this field, Among 

the more commonly used are urea-formaldehyde, melamine-formaldehyde, 

and glyoxal. A more recent development concerns the use of ammonium 

zirconium carbonate. 

Urea-Formaldehyde: 

Urea-formaldehyde resins have been used extensively to improve 

the water resistance of coatings. Numerous patents exist covering 

its use,<4-6) Its properties have been widely discussed in the

literature. (?-1i) It,;is generally accepted that urea-formaldehyde 

increases water resistance via a combination of blocking and cross­

linld.ng reactions. Cleek and Chase(9) have shown that while water 

resistance can be improved by the use of urea-formaldehyde, moisture 

vapor transmission is left unhindered. Their work indicates that 

a continuous film is not being formed, This is essential for use 

. in offset lithography. If a continuous film is produced the. water 

transferred to the sheet surface cannot be dissipated and will 

present a barrier to ink transfer in the next application. 

Urea-formaldehyde is commonly used in starch coatings. Several 

types are available including dimetholyol urea, urea-formaldehyde 

concentrates and resin polymers, These latter are available with 

varying formaldehyde to urea ratios. In reactions with starch, the 

accepted mechanism involves a methylol group on the resin combining 

with a hydroxyl on the starch (C(,-glucoside). A water molecule is

split off. The reaction is shown in Figure 1. The reaction of one 

urea-formaldehyde polymer with more than one starch chain establishes 
a crosslinked network. Reduced solubility of the starch is explained 

through two mechanisms. First, large agglomerates are formed by the 

crosslinking action. It is commonly known that large polymeric systems 

are much less soluble. Second, the hydroxyl sites active in hydrogen 

bonding with water are effectively blocked. With the water inter­

action sites blocked the starch is rendered much less soluble.(iO) 
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Urea-formaldehyde has been used over a broad range of addition 

levels in starch coatings. Addition levels are selected based on 

the degree of water resistance desired, the resin concentration, 

and the ratio of formaldehyde to urea. To achieve a higher degree 

of water resistance more crosslinking and blockage of hydroxyl sites 

is required. Accomplishing this requires higher addition levels. 

Economics enter into the equation as addition levels become higher. 

At some point it may become more cost effective to use an inherently 

less soluble adhesive. The consideration of resin concentration 

is simply one of increasing the active ingredient per measure of 

addition. The formaldehyde-urea ratio is varied to assure the proper 

concentration of each reactant in forming and maintaining the desired 

condensation product. Belche and Cleek(?) have found a molar ratio 

of 2 to 1 formaldehyde to urea to be optimum. 

Urea-formaldehyde resins do not impart immediate water 

resistance to the coated surface. The resin requires a curing 

period to develop maximum resistance. The length of cure is depen­

dant on several factors. The most important _is thE3 pH of.�!?._� c_oating, 

formula. For optimum results a pH range of 3 to 4 is suggested. 

Above this pH curing is slow. Below this range the resin becomes 

too active and may gel. Since it is usually desireable to run a 

coating color near neutral conditions, the pH reciuirement for resin 

curing is met through the use of catalysts. The two most widely 

recognized categories for use with urea-formaldehyde are ammonium 

salts of strong acids and aluminum salts. The aluminum salts are 

preferred because of their ease of use and more powerful catalytic 

effect. Heat and resin concentration also influence the rate of 

cure. Higher temperatures increase the cure rate. Higher concen­

trations reduce cure time.<12)

Urea-formaldehyde resins also find application in protein 

based coatings. (Casein will be considered as a protein. In general 

its reactions and properties are similar to soya protein. ) Low 

addition levels (2-4 % based on the weight of protein) are usually 
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required. to avoid severe viscosity increases. Ritson(J) states that 

these increases may be caused by the interaction of protein and the 

free formaldehyde present in urea-formaldehyde resins. 

The insolubilization of protein is similar to that of starch. 

It is thought to occur through a reaction of methylol groups with 

active hydrogen atoms on the protein molecule. The same combination 

of' crosslinking and blocking are postulated. as the reasons for the 

increased. water resistance. Proteins are easier to insolubilize 

because they are inherently less soluble than starches. They are 

much larger moleeular structures with fewer hydrophiU.c si:t,.es,. 

As with starches, protein coatings require a cure period to develop 

maximum water resistance. Proteins are affected by th� same combination 

of resin concentration, formaldehyde-urea ratio, pH, and temperature.fiJ) 

Melamine-Formaldehydes 

Another commonly used insolubilizing agent is melamine-formal­

dehyde. Literature exa�ining its use include several patents<6 • 14-i6) 

and studies. (iO, ii) In general it is a more efficient mea�� of

producing water resistance than urea-formaldehyde. This is due to 

the six amino groups contained. in melamine as opposed to only two 

in urea. The additional amino groups allow melamine to combine with 

as many as six formaldehyde molecules. The probable mechanism of 

reaction for melamine-formaldehyde is the same as for urea-formaldehyde. 

Crosslinking and blocking of water reactive sites on the adhesive 

molecules contribute to the increased water resistance. In a coating 

application the added formaldehyde in melamine=.:-formaldehyde reacts 

to form a more complex crosslinking network. This accounts for the 

higher degree of insolubilization attainable with melamine-formald­

ehyde.(i'l) 

Besides their more efficient production of water resistance, 

melamine-formaldehydes offer several other advantages. It cures 

more quickly and under less extreme conditions of pH and temperature. 

Melamine resins are more heat and light stable than urea resins. 
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Finally, melamine-formaldehyde does not exhibit the viscosity increase 

with protein that is characteristic of urea-formaldehyde. This is 

probably due to the lower concentration of free formaldehyde.(i?) 

The reaction between melamine-formaldehyde and starch is thought 

to be the same as that for urea-formaldehyde. A methylol group on 

the resin combines with a hydroxyl on the starch (ot.-glucoside). 

A water molecule is Split off. The reaction is shown in Figure 2. 

In proteins the methylol group is thought to react with an amino 

group. This reaction is shown in Figure J. In both cases the in­

solubilization is accomplished by a combination of crosslinking and 

blocking of hydrophilic sites. The crosslinking results in large 

insoluble agglomerates while blocking reduces the water sensitivity 

of these adhesives. As in urea-formaldehyde, the degree of insol­

ubilization is influenced by the level of addition, resin concentration, 
- (10)temperature, pH, and use of acid catalysts. 

Glyoxal: 

Glyoxal is a highly reactive dialdehyde. It-is frequently 

used to improve the water resistance of coatings.(ii,iB-ZO) As

with the formaldehyde derivatives, glyoxal promotes water resistance 

through the formation of a crosslinked network. Unlike the formal­

dehyde derivatives, glyoxal requires very little time to cure. In 

many cases the time required to dry the coating is sufficient. This 

may be the result of its difunctionality. Glyoxal is most effective 

under slightly acidic conditions. If made alkalin�, glyoxal under­

goes an internal Cannizzaro reaction which slowly forms salts of 

glycolic acid (see Figure 4). In coating situations a pH of 6 to

8 is satisfactory. Reaction with the coating adhesive will occur 

much more rapidly than the Cannizzaro reaction in this pH range. 

Acid catalysts may also be used to improve the effectiveness of 

glyoxal. Magnesium silicofluoride, ammonium sulfonate, and ammonium 

chloride are commonly used. Care should be taken since these catalysts 

may lead to undesireable viscosity increases.(ZO) 
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Figure 2 
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Figure J 
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Glyoxal. contributes to crosslinking of starch through a two 

stage mechanism. In the first stage, while water is still present 
in the coating, unstable hemi-acetal.s are formed. As the water is 
removed during the drying process the hemi-acetals are converted to 

more stable acetals. Four factors are important to the development 

of wet resistance with glyoxal. They include the concentration of 

glyoxal, the drying time, and pH or use of acid catalysts. Another 

important consideration is the type of starch used. Hydroxyethylated 

starches have been shown to be the most reactive while dextrins are 

the least reactive. The point of addition also affects the performance 

of glyoxal. in starch coatings. Buttrick, Kelly, and Eldred(i9) in­

dicate that cooking starch at high solids in the prese�ce of glyoxal. 

and utilizing a high percentage of starch in the final coating gave 

the best results.<11• 20)

Glyoxal can also be used in protein coatings. Here it reacts 

similar to?formaldehyde resins and contributes to water resistance 

in much the same way. When used with protein coatings, glyoxal may 

contribute to undesireable brightness reversion. In recent.years 
- "-" . - -. . 

the production of a stabilized glyoxal solution has reduced this

possibility.

Eldred and Spicer(2i) noted that with the internal application

of glyoxal to improve sheet wet strength, the resistance to water 

was limited to several minutes. Beyond this time the wet strength 

of the sheet quickly deteriorated. It could not be determined from 

the literature what effect this may have in coating applications. 

Ammonium Zirconium Carbonates 

The use of ammonium zirconium carbonate (AZC) as an insolubil­

izing agent for offset coatings is not well established in the lit­

erature, certainly not as well established as the previously mentioned 

agents. Its use has been covered by several patents<22-24) but is

relatively unsubstantiated. Its chemistry makes it ideal as an in­

solubilizing agent. Zirconium compounds have a strong affinity for 
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for oxygen and nitrogen containing groups. In solution they a.re 

polymeric by nature. This is explainable by examining the chemical 

nature of zirconium. A valency of 4 and small ionic radius (0.74 A) 

tends to make it hydrolyse strongly in water solutions. The hydro­

lysed species are then polymerized. Due to zirconium's high coor­

dination number (8), these polymers can become large. The reactions 

that take place between zirconium and an adhesive system is then 

dependent upon the affinity for zirconium of the functional groups 

on the adhesive as compared to the ions present on the zirconium 

compound. Table I lists those functional groups with a strong affinity 

for zirconium. 

Table I 

Functional Groups with Strong Affinities for Zirconium 

Mono and Dica.rboxylic Acids 

Hydroxyca.rboxylic Acids 

Hydroxyl Ions 

Carbonate Ions 

Diols R---R 
HO 6H

R--C-OH HO_--::g-R--R-g-oH

HO-R--COOH 

OH

In addition to these groups, the amino groups present in proteins 

·may also react with zirconium.(25)

Under the conditions generally prevalent in coating systems 

(pH 6-11) the compound ammonium zirconium carbonate has been found 

to be the most successful insolubilizing compound. It is an alkaline 

solution containing carbonate ions. The carbonate ions have an aff­

inity for zirconium and thus prevent it from reacting with other 

functional groups that may be in solution. Upon drying AZC loses 

carbon dioxide and ammonia and �eacts by a crosslinking mechanism 
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with the adhesive. In some binder systems AZC may react by hydrogen 

bonding in solution. This can cause a viscosity increase but is 

only noticeable under low shear conditions. (Z5) 

The actual mechanism of reaction between AZC and an adhesive 

system depends on the functional groups present. In the case of 

modified starches carboxyl groups are the primary interaction sites. 

Hydroxyl groups may reinforce the structure. UI11�odified starches 

will react primarily via hydroxyl groups. Proteins seem to interact 

via carboxyl groups with some reinforcement from amino groups. The 

degree of crosslinking and ultimately the water resistance devel0ped 

is dependent on the affinity of the functional groups present for 

zirconium. (Z.5) 

AZC is reputed to have several signi:ficant advantages over more 

conventional insolubilizing agents. One of the most obvious is the 

la.ck of cure time. The crosslinking reaction is triggered by the 

loss of carbon dioxide and ammonia, both of which are driven off 

during the drying process. Thus a sheet insolubilized with AZC will 
. .  

show maximum water resistance immediately aft_er _:leaving t_he _ _  dryer 

section. AZC does not produce as severe a viscosity increase as is 

noted with the formaldehyde derivatives. It has no adverse affects 

on optical properties. In general it is stated as being a more cost 

effective method of insolubilizing starch and protein coatings.(26)

Testing Procedures: 

Through the years a wide variety of instruments have been devel-

0ped to assess the surface strength of paper. The approaches which 

have been made can be divided into three categories. These include: 

force simulators, press models, and on-press testing. The force 

simulators may be further subdivided to include the two major forces 

present in an offset press. The forces employed are either plucking(Z7-ZB)

or rubbing.(z9-JJ) The ammount of material removed by these methods 

is evaluated by weight, optical densitometry or visual methods with 

these measurements being used to characterize the sample. Press 

models or printability testers have also flourished. The best known 
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in the United States is the IGT printability tester.(J4) This instru­

ment allows the operator to control the ink film thickness, pressure, 

and speed used to test the paper. All of these are important variables 

relating to sheet surface failure, IGT has also developed a procedure 

for use with wet resistance tests,(JS) 

The ultimate test for determining tp.e ability of papers to perform 

adequately under press conditions remains on-press testing. Since 

the variables involved in operating a printing press are complex to 

the point that they are not fully understood, on-press testing offers 

certain advantages over the previously described methods. Until 

all of the parameters involved in printing can be completely described, 

any attempt to simulate press operation will probably fall short 

of its goal. Secondly, since the paper will be run on a printing 

press its propensity to fail can best be determined by studying it 

under press conditions. 

Experimental Procedures: 

The experimental portion of this thesis has been designed to 

answer three basic questions: 

1) The majority of the available literature deals with

the insolubilization of starch coatings, What results

can be obtained through the use of conventional insol­

ubilizing agents with protein and how do these results

compare with those obtained with starch j

2) Little is available in the literature concerning the

use of ammonium zirconium carbonate. How does it compare

with conventional insolubilizing agents?

J) Many studies have been made concerning individual insol­

ubilizing agents. How do these materials compare in

a side by side analysis?

The literature survey indicates that protein coatings can be e:x:pected 

to show superior water resistance. It might also be expected that 

melamine-formaldehyde will show the greatest development of wet resis­

tance. 
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Two secondary studies carried out include an analysis of the 

coating viscosities and a monitoring of brightness and K & N values. 

The viscosity study examined the effect of addition level on 

rheological properties. The optical analysis was to assure that 

increasing levels of insolubilizing agent did not adversely affect 

these properties. 

Coatings, 

Two basic formulae were utilized in this experimental procedure. 

They have been selected to be similar to coatings that may be used 

commercially to produce offset grade papers. As such, the adhesive 

portion of each formula will contain a portion of styrehe-butadiene 

latex. This is in addition to either starch or protein. Table II 

outlines the basic formula for both the starch and protein coatings. 

A more detailed analysis of each coating used can be found in Appendix I. 

These coatings were prepared according to the procedures outlined 

1n Tables III and IV. 

Table II 

Basic Coating Formulae 

Starch Base: 

Ingredient 

Clay, number 1 coating 

Dispersant, TSPP 

Starch, hydroxyethylated 

Latex, styrene-butadiene 

Protein Base: 

Ingredient 

Clay, number 1 coating 

Dispersant, TSPP 

Protein 

Borax, 5%, on protein 

Ammonia, 15% on protem 

Latex, styrene-butadJ.ene 

Parts by Dry Weight 

100.0 

0.1 

8.0 

8.0 

Parts by Dry Weight 

100.0 

0.1 

10.0 

0.5 

6.o
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Table III 

Starch-Latex Coating Make-Up Procedure 

<; 1) Dissolve the TsPP (tetrasodium pyrophosphate) in water in

a double walled cooker. The volume between the walls is

filled with water.

2) Di5perse the clay (Hydrafine by J.M. Huber) using a Cowles

Dissolver. Agitate 10 minutes before applying heat.

J) Heat to 110 F (43.3 C) using a gas!burner. The heating is

done indirectly via the water contained. in the double walled

cooker. Add the starch (a hydroxyethylated corn starch,

Pen Cote by Penick & Ford). Continue to heat to 185 F

(85 C) before shutting off the burner. Hold at this temperature

for 15 minutes. Covering the cooker will make holding the

temperature more convenient as well as min�izing WJ.l.t�r losses.

4) Cool to 110 F (43.3 C) by flushing the hot water with cold

water. Add the styrene-butad.iene ( Dow latex 620) �.

Agitation is maintained. throughout the cooking procedure.

5) Add the desired insolubilizing agent.

Table IV 

Protein-Latex Coating Make-Up Procedure 

1) Dissove the TSPP in water in a double walled cooker, The

volume between the walls is filled with water and will be

used to indirectly cook the protein.

2) Disperse the clay (Hydrafine) using a Cowles Dissolver.

Agitate 10 minutes before applying heat. The Cowles is used

throughout the cooking procedure, Disperse the borax.

3) Begin heating and ad.ding the Pro-Cote (Ralston Purina).

At 110 F (4J.3 C) or when the viscosity becomes unmanageable

add the ammonia.
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Table IV continued, 

4) Continue heating to 150 F (65,6 C), Hold at this temperature

for 20 minutes. Covering the container will make holding

the temperature easier and will also minimize water losses,

5) Cool to 120 F (48,9 C) before adding the Dow 620.

6) Add the desired insolubilizing agent.

Four commercially available insolubilizing agents were used 

in this investigation. Parez 608 is a urea-formaldehyde resin 

syrup of a moderate degree of condensation. Parez 707 is a methylated 

trimethyol melamine resin. Parez 801 is a stabilized glyoxal. resin 

containing a trace of formaldehyde. All three agents are available 

from American Cyanamid. Bacote 20 is a temperature stabilized form 

of ammonium zirconium carbonate. It is available in the United States 

from Magnesium Elektron, Inc. These crosslinking agents were added 

to the coating formulations after the starch and protein were cooked. 

Five levels of addition were used. The UF, MF, and glyoxal resins 

were added at 5, 7, 9, 11, and 13 percent based ·on either starch 

or protein. The AZC was added at 1, J, 5, 7, and 9 percent based 

on starch or protein. The difference reflects the purported superior 

efficiency of AZC. All levels were based on the manufacturers' 

suggestions.(26•36-38)

Application and Dryinp;: 

A forty-five pound (25 x 38 - 500) base stock was used in this 

procedure. Coatings were applied in the lab using a hand-held blade 

drawdown technique. The desired coat weight was four pounds. Coat 

weight was checked for each sheet to maintain uniformity. The accept­

able range was established as 3,8-4.2 pounds. This was to minimize 

the influence of coat weight during the testing stage. 

It was recognized that the method used to dry coated sheets in 

the lab would not be representative·of a mill application. It was 

al.so recognized that duration and temperature would affect curing 
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of the insolubilizers. For these reasons drying conditions were 

standardized. A drying time of 20 seconds at a temperature of 220 F 

(104.4 c) in a convection oven was used. Selection of these conditions 

was based on a study made by Dow Chemical Company. Dow has found 

these conditions to be representative of typical conditions on their 

pilot coater. Conditions on this pilot coater are similar to those 

expected on a production blade coater. 09) 

All samples were calendered to improve the uniformity bf the 

sheet surface. The usual method utilized a steel to steel calender. 

Pressure was set using a torque wrench. Sample sheets were treated 

to two nips. During the course of the coating the steel calender 

was dismantled to permit regrinding of the rolls. Coatings applied 

during this period (starch-latex with MF and starch-latex with AZC) 

received a cold supercaJ.ender treatment, 2 nips at 15 psig. It was 

not felt that this difference would significantly affect the results. 

Testing Procedures: 

An on-press testing technique was used to determine the water 

resistance of the coatings being analyzed. (During the initial stages 

of the investigation the IGT wet pick procedure was attempted. Its 

shortcomings are summarized in Appendix II.) In:'.all cases the samples 

used were aged under TAPPI standard conditions for at least two months 

before testing. This should assure that all resins approached the 

maximum cure stage. The following procedure was used: 

Instruments AM model 12.50 offset printing press 

with a standard blue blanket. 

Sample Preparation 

1) Test strips were cut 1 inch by 5 inches in the machine

direction.

2) Five strips at a time were mounted on a press clean up

blotter.

J) Successive tests were run, rotating the position of

the samples as indicated in Figure 5. This method was
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adopted to minimize the variations across the width 

of the press. 

1) A blank blotter was placed in the plate clamps. The

fou...,tain solution was set for maximum flow and the

impression set at approximately 60 cycles/minute.

The press was allowed to run 15 minutes to stabilize

and to assure that the flow of fountain solution had

reached equilibrium.

2) The blank blotter was replaced with one containing 5

strips. The press was allowed to run through a pre­

determined number of cycles. The number Qf cycles is

dependent on the degree of insolubilization.

J) The press was stopped and the blanket allowed 30 seconds

to dry. The piling or linting was examined and each

strip was rated on a scale of from 1 to 5 with 1 being

the best.

4) After cleaning the blanket the test p:roceduz:e:was_repeated.

Tests were run in sets with each set containing 5 samples.

The test was repeated 5 times for each set to assure

that each sample occupied each press position (see Figure

5).

5) At the end of the testing, individual ratings were compiled.

The lowest score indicates the highest degree of insol­

ubilization.

Clean-Up 

1) Between individual runs the blanket was cleaned with

a solution of isopropyl alcohol and water (50/50 by

volume}.

2) Between sets the blanket was cleaned with the alcohol

solution then allowed to dry. After drying it was cleaned

with A. B. Dick blanket cleaner (4-1235) followed by

a second treatment of alcohol solution.
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The fountain solution used was made up using 10 ml/liter with distilled 

water. The final pH was 6,5, For use with the protein coated samples 

a fountain solution with a pH of J,5 was made. 

Coating viscosities were checked using a Brookfield viscometer 

at 20 and 100 rpm. The temperature was maintained near 95 F (35 C). 

These tests were performed inunediately after completion of the coating 

make--up process. Spot checks of G. E. Brightness and K & N value 

were performed on the coated samples one day and thirty days after 

coating. 

Results, 

The data obtained from the on-press wet resistance tests of 

the starch-latex coated samples is presented in Table V. This is 

graphically represented in Figure 6. Figure 6 is broken into five 

sets, representing the five levels of insolubilizing agent used in 

this investigation. The histograms indicate the relative ranking 

of UF, MF, glyoxal, and AZC as compared to the starch-latex control. 

No data is presented for the protein-latex coatings. _The tests 

performed on these samples proved to be inconclusive. The test did 

not appear to be severe enough to obtain any meaningful wet resistance 

results. 

The viscosity data obtained from the coatings is presented in 

Table VI. Viscosity data from both starch-latex and protein-latex 

coatings is presented here. It is represented graphically in Figures 

7 and 8. These figures show viscosity as a function of addition_ 

level. 

Analysis of brightness and K & N value showed no significant 

change over the thirty day curing period alloted. The data obtained 

did not seem to warrant presentation. 

Discussion of Results: 

Starch-Latex Coatings: 

The histograms clearly demonstrate that urea-formaldehyde 
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Table V 

On-Press Wet Resistance Test Results 

Starch-Latex Coatings 

Level 1 Control UF MF Glyoxal AZC 

4 1 J 2 5 
4 1 J 2 5 
J 1 2 4 5 
2 4 1 J 5 
4 1 _i_ _...5_ 2 

total 17 8 12 16 22 

Level 2 4 1 2 5 J 
2 1 J 5 4 

4 1 2 J 5 
J 1 4 2 5 
1 2 ...2. _i_ 4 

total 14 6 .14 20 21 

Level J 4 1 2 5 J 
4 1 2 5 J 

J 1 4 2 5 
2.5 1 4 2.5 5 
2 1 -2. 4- l

total 
I 
15.5 5 15 18.5 21 

Level 4 2 1 5 4 J 
4 1 2 5 J 
5 2 1 4 J 
4 1 2 5 J 
4 1 _b_5 ...2.. ...b-5 

total 19 6 12.5 2J 14.5 

Level 5 J 2 1 5 4 
4 1 2 5 J 
4 1 2 5 J 
4 1 J 5 2 
4 1 _i_ ...2... 2 

total 19 T 11 25 14 

produced the highest degree of insolubilization. This is indicated 

by the fact that it consistently has the shortest bar. Since each 

bar is generated by a series of five tests, the lowest possible score 

is five if that particular sarn:e_le proved to be the best sample in 
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Table VI 

Viscosity Data 

Starch-Latex Protein-Latex 

20rpm 100rpm 20rpm 100rpm 

Control 4840 cP 1292 cP 2120 cP 866 cP 

UF 5fo _5440 cP 1.514 cP 2)60 cP 1006 cP 

?% 6.5.50 1802 2330 984 

gf, 68.50 1930 2940 1200 

11% 6.510 1878 3.5.50 1388 

13% 7.560 200()+ 3700 -1430

MF 5% .5150 cP 1412 cP 2120 cP 882 cP

71<> _5480 1.514 2380 984 

gt, 3.580 1000 2200 9J6 

11% 6000 16.50 22.50 910 

13% .5610 1550 22.50 894 

Gly 5% 50.50 cP 1354 cP 5430 cP 1870 cP 

7% .5100 · 1430 .56.50 1890 

gt, 4760 1_348 5900 1968 

11% 414-0 1138 8000 2.516 

13% 4540 1232 7340 23.56 

AZC 1% J230 cP 880 cP 2_560 cP 1040 cP 

J% 3070 860 2810 1090 

.5% _3420 980 2280 932 

7/4 )610 1070 24.50 1032 

gt, 4100 1260 2000 882 

each test. Urea-formaldehyde was consistently either the best or 

second best sample. The fact that urea-formaldehyde did score so 

well proves its superiority over"the other insolubilizing agents. 
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The data indicates that glyoxal harms the water resistance of 

starch-latex coatings. At all but the lowest addition level (5o/�) 

glyoxal shows water resistance inferior to the control coating. 

A weak trend seems to exist towa_-rd an increasing diSparity between 

the control and the glyoxal sa�ples. If this is actually the case 

it would indicate that increasing levels of glyoxal further reduce 

the wet resistance of starch-latex coatings. It has been suggested 

that this may be due to the latex present in the coating. Buttrick, 

Kelly, and Eldred (i9) have indicated that glyoxal is most effective

with the highest possible sta_-rch concentration in the adhesive. 

The presence of latex will lower this concentration and detract from 

the glyoxal efficiency. 

When compared with the control coating, AZC shows a definite 

improving trend. At the three lowest levels of addition (i, J, and 

5 percent) it shows less water resistance than the control, but each 

time by a narrower margin. The improvement continues in the 7 and 

9 percent levels. At these levels it is only slightly wor�e than 

melamine-formaldehyde. It must be remembered, however, that the 

melamine-formaldehyde samples used for comparison here contain 11 

and 1) percent crosslinking agent. This substantiates the proposal 

that AZC is a more.efficient insolubilizing agent. 

Examining the histogra�s, as addition level is increased there 

is an increasing di5parity between the control and the UF, MF, and 

AZC samples. The control clearly becomes consistently worse. This 

indicates an increased degree of insolubilization with increased. 

level of addition. Glyoxal, as has been mentioned before, seems 

to become worse with increased level of addition. 

Protein-Latex Coatings, 

Wet resistance tests were run on the protein-lat.ex coated samples

using the same on4press test procedure used for the starch-latex 

coatings. Initially a fountain solution with a pH of 6.5 was tried. 

The coating did not fail even after being subjected to 150 cycles. 
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(Failure was noted by observing piling on the blanket. In the case 

of the starch-latex coatings, this occured within 50 cycles.) A 

second fountain solution with a pH of J.5 was tried. It was thought 

that the more acidic fountain solution would provide a.more severe 

test. Once more, there was no failure even after 200 cycles. Since 

the control coating did not fail either, any evaluation of these 

insolubilizing agents in protein-latex coatings by the methods used 

here must be considered inconclusive. 

Viscosity and Optical Testss 

The viscosity data collected durL�g the coating make-up proced­

ure for starch-latex colors indicates the following trends. Both 

UF and MF showed distinct viscosity increases with increased addition 

levels. UF showed the most dramatic increase. The viscosity of the 

glyoxal. coatings remained relatively constant. There may have been 

a slight downward trend but this was not significant. Initially 

AZC showed a dramatic viscosity drop as compared to the starch-latex 

control. This was followed by a slight increasing trend as_the add­

ition level was increased. The viscosity of �he highest addition 

level did not approach that of the control. This unexpected behavior 

has not been explained. 

The data collected for the protein-latex coating viscosities 
- ·

showed the following trends. UF, MF, and glyoxa.l all showed viscos-

ity increases with increased addition levels. Glyoxal showed the

most dramatic increase, while MF actually remained qµite stable.

The UF coatings were intermediate. AZC showed a downward trend with

increased addition levels.

Brightness and K & N values were examined for all coatings one 

and JO days after coating application. No significant differences 

were found either with ag.ing, addition level variation, or between 

the various crosslinking agents. 

Conclusions, 

The following conclusions may be drawn relating to the use of 
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urea-formaldehyde, melamine-formaldehyde, glyoxal, and ammonium 

zirconium carbonate in offset coatings under the conditions set 

up for this thesis. 

Starch-Latex Coatings: 

1) Urea-formaldehyde showed superior development of water

resistance at all levels of addition. This was accom­

panied by a sharp viscosity increase in the coating.

2) Addition of glyoxal impared the development of water

resistance. Increasing levels of addition were progres­

sively more harmful. Glyoxal had little affect on tm

viscosity of starch-latex coatings.

J) Above a level of 5 percent, ammonium zirconium carbon­

ate was competitive with more conventional. insolubilizing

agents, even when the conventional. agents were added

at significantly higher levels. Ammonium zirconium

carbonate reduced starch-latex coating viscosities.

4) The degree of insolubilization increased,with increased

addition level for UF, MF, and AZC.

5) All four agents showed no significant affect on bright­

ness or K & N value.

Protein-Latex Coatings: 

t) · 1) Protein-latex coatings developed a degree of water

resistance significantly higher than starch-latex 

coatings. 

2) Under the conditions of this thesis, a relative ranking

of the insolubilizing agents used is not possible.

Recommendations: 

Several areas related to this thesis remain to be investigated. 

The most obvious of these concerns the use of insolubilizing agents 

in protein based coatings. The protein-latex coatings analyzed in 
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this thesis yielded an inconclusive comparison of the insolubilizing 

agents under study. Future studies could take two directions. The 

first may be to eliminate the use of a latex in combination with 

protein, Thsi should lower the water resistance of the coatings 

and make a comparative analysis possible, A second direction would 

be to increase the severity of the test sufficiently to cause the 

coatings to fail. 

Initially a curing rate study was planned for this thesis. 

Complications resulted in its being eliminated, This is another 

area of investigationopen to further study. It is known that cure 

rates of some of the resins used in this study are significantly 

altered by the use of catalysts and heat. An evalu�tion with respect 

to these variables could prove particularly beneficial. 

The on-press test procedure used in this thesis provides at 

best a qualitative analysis of the coatings under study. A very 

profitable area of study involves the refinement of this test pro­

cedure. The work of Daniels(i) suggests that on-press testing has 

great potential as a research tool for analyzing the beh�vior of 

offset papers and coatings. His work develops a method of on-press 

testing capable of arriving at a quantitative single number evaluation 

of the linting properties of paper. This test may be easily applied 

to water resistance,.tests. 
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Appendix.! 

The following is a list of the formulae used to produce the 

starch-latex and protein-latex coatings analyzed in this thesis. 

Starch-Latex Coatings: 

Ingredient 

Water 
TsPP 
Clay 
Starch 
Latex 

Wet Weight 

325.4 
4.65 

465.0 
37.2 
74.4

% Solids Dry Weight 

Control 

906.7 

100 
100 
100 

_2Q_ 
60 

actual solids 60.0 

Clay-- no. 1 coating grade, Hydrafine J.M. Huber
Starch-- hydroxyethylated corn, Pen-Cote Penick & Ford 
Latex-- styrene-butadiene, Dow Latex 620 Dow Chemical 

UF 5% 

UF 7% 

Water 
TSPP 
Clay 
Starch 
Parez 608 
Latex 

Water 
TSPP 
Clay 

:JtSta$Ch 
Parez 608 
Latex 

Water 
TSPP 
Clay 
Starch 
Parez 608 
Latex 

325.7 
4.65 

465.0 
37.2 

2.82 
74.4 

909.8 

100 
100 
100 
66 

-¾ 
actual solids 59.4 

325.8 
4.65 

465.0 
37.2 
3.94 

74.4 
911.0 

100 
100 
100 
166 

-¾ 
actual solids 59.3 

326.0 
4.65 

465.0 
37.2 
5.08 

74.4 
912.3 

100 
100 
100 
66 

-¾ 
actual solids 59.9 

4.65 
';465.0 

37.2 
;37.2

_544.o 

4.65 
465.0 
37.2 
.1.86 
37.2 

9+5.9 

4.65 
465.0 
.37.2 
2.60 

�2 
.6

4.65 
465.0 
37.2 
J.35

37,2 
9+7.4 



Ingredient Wet Weight % Solids Dry Weight 

UF 11% Water 326.2 
TSPP 4.65 100 4.65 
Clay 465.0 100 465.0 
Starch 37.2 100 37.2 
Parez 608 6.20 66 4.09 
Latex 74.4 50 2z.2 

913.6 60 _548.1 
actual solids. 60.1 

UF 1J,i6 Water 326.2 
TSPP 4.65 100 4.65 
Clay 465.0 100 465.0 
Starch 37.2 100 37.2 
Parez 608 7.3 66 4.84 
Latex 74.4 50 :rz.2 

914.8 60 - _548.9 
actual solids 59.3 

MF 5% Water 326.3 
TSPP 4.65 100 4.65 
Clay 465.0 100 465.0 
Starch 37.2 100 37.2 
Parez 707 2.33 80 1.86 

Latex 74.4 ,20 27.2 
909.8 60 .545.9 

actual solids 59.3 
MF '"('fa Water 326.6 

TSPP 4.65 100 4.65 
Clay 465.0 100 465.0 
Starch 37.2 100 37.2 
Parez 707 3.25 80 2.60 
Latex 74.4 

-¾- :¢t·2
911.1 .6 

actual solids 59.4 
MF Wo Water 326.7 

TSPP 4.65 100 4.65 
Clay 465.0 100 465.0 
Starch :37.2 100 37.2 
Parez 707 4.19 80 3.35 
Latex 'l,4.4 ,20 27.2 

912.3 60 .547.4 
actual solids 60.3 



Ingredient Wet Weight % Solids Dry Weight 
MF 11% Water 327.2 

TSPP 4.65 100 4.65 
Clay 465.0 100 465.0 
Starch 37,2 100 37.2 
Parez 707 5.11 80 4.09 
Latex 24,4 ,20 Jz.2 

913.6 60 548,1 
actual solids 60.0 

MF 1)% Water 327,5 
TsPP 4,65 100 4.65 
Clay 465.0 100 465.0 
Starch 37,2 100 37'/2 
Parez 707 6.05 80 4.84 
Latex z4.4 

¾ 27,2 
914.8 -- 548.9 

actual solids 58,9 
Glyoxal Water 32J,9 

5% TSPP 4,65 100 4.65 
Clay 465.0 100 465.0 
Starch 37,2 100 37.2 
Parez 801 4.65 40 1.86 

Latex 24.4 ,20 27,2 
909.8 60 545.9 

actual solids 60.7 
Glyoxal Water 323.2 
7/o TSPP 4.65 100 4.65 

Clay 465.0 100 1;465.0 
Starch 37.2 100 37.2 
Parez 801 6,5 40 2.60 
Latex 74.4 

¾ �-2
911.0 .6 

actual solids 60.7 
Glyoxal Water 322.7 

TSPP 4.65 100 4.65 
Clay 465.0 100 ltlJ.$5,0 
Starch 37.2 100 37.2 
Parez 801 8.38 40 3.35 
Latex 74.4 50 27,2 

912.3 60 547,4 
actual•solids 60.9 



Ingredient Wet Weight % Solids Dry Weight 

Glyoxal Water 322.0 
11% TSPP 4,65 100 4.65 

Clay 465,0 100 465.0 
Starch 37,2 100 37.2 
Parez 801 10.22 40 4.09 
Latex 24,4 50 27,2 

913,5 60 548,1 

actual solids 60.0 

Glyoxal Water J21.4 
13% TS'PP 4,65 100 4,65 

Clay 465.0 100 465.0 
Starch 37,2 100 37.2 
Parez 801 12,1 40 4. 84"
Latex 24,4 ,!iO 27,2 

914.8 60 -· _548. 9

actual solids 60.0 

AZC 1% Water 324,9 
TSPP 4.65 100 4.65 
Clay 465.0 100 465.0 
Starch 37.2 100 37.2 
Bacote 20 1.24 JO 0.372 
Latex 74.4 2,0 J7,2 

907.4 60 544,4 

actual solids 60.1 

AZC J% Water 323.6 
TsPP 4.65 100 4.65 
Clay 465.0 100 465.0 
Starch 37.2 100 _37.2 
Bacote 20 J,72 JO 1.12 
Latex 24,4 

+
�7.2

908.6 545,2 

actual solids 59.2 

AZC 5% Water J22.4 
TsPP 4.65 100 4.65 
Clay 465.0 100 465.0 
Starch 37.2 100 37,2 
Bacote 20 6.2 JO 1.86 
Latex 74.4 2,0 J2,2 

909,8 60 545�9 

actual solids 59,5 



Ingredient Wet Weight % Solids Dry Weight 

AZC 7J{, Water 321.1 
TSPP 4.65 100 4.65 
Clay 465.0 100 465,0 
Starch 37.2 100 37.2 
Bacote 20 8.67 JO 2.60 
Latex 'l_4.4 5.0 

�
-2

911.0 60 .6 

actual solids 59.5 

AZC 9fo Water 319.9 
TsPP' 4.65 100 4.65 
Clay 465.0 100 465.0 
Starch 37.2 100 37.2 
Bacote 20 11.17 JO 3,35 
Latex 'l.4,4 .50 22,2 

912,3 60 _ 547,4 

actual solids 59,2 

Protein-Latex Coatings: 

Ingredient Wet Weight % Solids Dry Weight 

Control Water 200,0 
TsPP 4.00 100 4.00 
Clay 400.0 100 400,0 
Borax 2.00 100 2.00 
Protein 40.o 100 40,0 
Water 170,4 
Ammonia 6.o
Latex 48.0 20 24.o

870.l} 54 470 

actual solids 53,6 

Clay-- no, 1 coating grade, Hydrafine J.M. Huber 
Protein-- Pro-Cote MV Ralston Purina 
Latex-- styrene-butadiene, Dow Latex 620 Dow Chemical 

UF 5% Water 200,0 
TsPP 4,65 100 4.65 
Clay 400.0 100 400.0 
Borax 2,00 100 2.00 
Protein 40.0 100 40.0 
Water 171.1 
Ammonia 6.o
Parez 608 J.OJ 66 2.00 
Latex 48.0 5.0 24.o

874,1 54 472 

actual solids 54,3 

·,



Ingredient Wet Weight % Solids Dry Weight 

lJF 7% Water 200.0 
TsPP 4.00 100 4.00 
Clay 400.0 100 400.0 
Borax 2.00 100 2.00 
Protein 40.0 100 40.0 
Water 171,4 
Ammonia 6.0 
Parez 608 4.24 66 2.80 
Latex 48.0 50 24.o

875.6 54 472,8 

actual solids _54.2

lJF 9/o Water 200.0 
TsPP 4,00 100 4.00 
Clay 400,0 100 400.0 
Borax 2.00 100 2,00 
Protein 40.0 100 40,0 
Water 171,6 
Ammonia 6,0 
Parez 608 _5.45 66 3,60 
Latex 48.0 ..50 24.o

877.0 54 473,6 

actual solids _54.4

lJF 11% Water 200.0 
TsPP . 4,00 100 . 4,00 
Clay 400.0 100 400,0 
Borax 2.00 100 2.00 
Protein 40.0 100 40.0 
Water 171.8 
Ammonia 6.o
Parez 608 6.67 66 4.40 
Latex 48.0 50 24.o

878,5 .54 474.4 

actual solids _54,1 

UF 13,% Water 200,0 
TSPP 4.oo 100 4.00 
Clay 400.0 100 400,0 
Borax 2.00 100 2.00 
Protein 40.0 100 40,0 
Water 172.1 
Ammonia 6.o
Parez 608 7,88 66 5,20 
Latex 48.0 ,20 24.0 

880,0 54 475,2 

actual solids · 53.5



Ingredient Wet Weight % Solids Dry Weight 

MF 5% Water 200,0 
TSPP 4,00 100 4.00 
Clay 400.0 100 400.0 
Borax 2.00 100 2.00 
Protein 40.o 100 40,0 
Water 171.6 
Ammonia 6.o
Parez 707 2.50 80 2.00 
Latex 48.0 ,20 24.0 

874,1 .54 472,0 

actual solids 53,4 

MF'(%, Water 200,0 
TSPP 4.00 100 4.00 
Clay 400.0 100 400,0 
Borax 2.00 100 2.00 
Protein 40.o 100 40.0 
Water 172.1 
Ammonia 6.o
Parez 707 3.50 80 2.80 
Latex 48.0 .50 24.o

875.6 54 472.8 

actual solids 54.2 

MF� Water 200.0 
TsPP 4.00 100 4.00 
Clay 400.0 100 400,0 
Borax 2,00 100 2.00 
Protein 40.0 100 40.0 
Water 172.5 
Ammonia 6.o
Parez 707 4.50 80 J.60
Latex 48.0 .50 24.o

877,0 54 47J,6 

actual solids _54.1

MF 11% Water 200.0 
TSPP 4.00 100 4,00 
Clay 400.0 100 400.0 
Borax 2.00 100 2.00 
Protein 40.0 100 40.0 
Water 173,0 
Ammonia 6.o
Parez 707 5,50 80 4.40 
Latex 48,0 ,20 24.o

878,5 54 474,4 

actual solids 54,0 



Ingredient Wet Weight % Solids Dry Weight 
NF 1)}& Water 200,0 

TSPP 4.00 100 4.00 
Clay 1+00. o 100 400,0 
Borax 2.00 100 2,00 
Protein 40.0 100 40.0 
Water 173,5 
Ammonia 6.o
Parez 707 6.5 80 5.20 
Latex 48.0 20 24.0 

880,0 .54 475,2 

actual solids .54,6

Glyoxal Water 200,0 
5% TSPP 4.00 100 4.00 

Clay 400,0 100 400.0 
Borax 2.00 100 2,00 
Protein 40,0 100 40.0 
Water 169.1 
Ammonia 6.o
Parez 801 5,00 40 2.00 
Latex 48.0 20 24.0 

874,1 .54 472.0 

actual solids _54.6

Glyoxal Water 200.0 
7fo TsPP 4.00 100 4.00 

Clay 400.0 100 400.0 
Borax 2.00 100 2,00 
Protein 40.0 100 40.0 
Water 168.6 
Ammonia 6.o
Parez 801 7.00 40 2.80 
Latex 48.0 50 24.0 

875,6 .54 472.8 

actual solids ,54.1 

Glyoxal Water 200.0 
9% TSPP 4.oo 100 4.00 

Clay 400.0 100 400.0 
:Borax 2.00 100 2.00 
Protein 40.0 100 40.0 
Water 168.0 
Ammonia 6.o
Parez 801 9.00 40 3,60 
Latex 48.0 ,'.20 24.o

877.0 .54 473,6 

actual solids ,54.2 



Ingredient Wet Weight % Solids Dry Weight 

Glyoxal Water 200.0 
111& TSPP 4.00 100 4.00 

Clay 400.0 100 400.0 
Bora,"'< 2.00 100 2.00 
Protein 40.0 100 40.0 
Water 167.5 
Ammonia 6.o
Parez 801 11.00 40 4.40 
Latex 48.0 50 24.o

878,5 54 474.4 

actual solids .54.5 

Glyoxal Water 200.0 
1.:,r� TSPP 4.oo 100 4.00 

Clay 400.0 100 400.0 
Borax 2.00 100 2,00 
Protein 40.0 100 40.0 
Water 167.0 
Ammonia 6,0 
Parez 801 13.00 40 5.20 
Latex 48.0 5.0 24.0 

880.0 54 475.2 

actual solids 54.4 

AZC 1% Water 200.0 
TSPP 4.00 100 4.00 
Clay 400.0 100 400.0 
Borax 2.00 100 2.00 
Protein 40.0 100 40.0 
Water 169.8 
Ammonia 6.0 
Bacote 20 1.33 30 o.4o
Latex 48.0 .50 24.0 

871.1 54 470.4 

actual solids 54,5 

AZC J% Water 200.0 
TsPP 4.oo 100 4.00 
Clay 400.0 100 400.0 
Borax 2.00 100 2.00 
Protein 40.0 100 40.0 
Water 168.6 
Ammonia 6.o
Bacote 20 4.00 30 1.20 
Latex 48.0 ,20 24.o

872.6 54 471.2 

actual solids .54.8 



Ingredient Wet Weight % Solids Dry Weight 

AZC 5;,& Water 200.0 
TSPP 4.00 100 4.00 
Clay 400.0 100 400,0 
Borax 2.00 100 · 2.00
P:rotein 40.0 100 40.0
Water, 167.4 1-� 

Ammonia 6.0 
Bacote 20 6,67 JO 2.00 
Latex 48.0 5():.1 24.0 

874.1 .54 472,0 

actual solids ,54.2 

AZC 7fo Water 200.0 
TSPP 4.oo 100 4.00 
Clay 400,0 100 400.0 
Borax 2.00 100 2.00 

Protein 40.0 100 40.0 
Water 166.J
Ammonia 6.o
Bacote 20 9,33 JO 2.80 
Latex 48.0 50 24.o

875,6 .54 472,8 

actual solids 55.0 

AZC 'ffi Water 200.0 
TSP? 4,00 100 4.00 
Clay 400.0 100 400.0 
Borax 2.00 100 2.00 
Protein 40.0 100 40.0 
Water 165.0 
Ammonia 6.0 
Bacote 20 12.00 30 J.60
Latex 48,0 ,20 24.0 

877,0 .54 473.6 

actual solids ,54.4 



Appendix II 

The original eXperimental design for this thesis called for 

a quantitative analysis of water resistance development. The coatings 

were to be analyzed using the method described in IGT information 

leaflet WJ2. Briefly, this method employs the IGT AC2 printability 

tester. Both printing disk shafts were to be employed. A rubber 

dampening disk was mounted on the top shaft. The dampening disk 

was kept moist by a weighted doctor blade enclosing a moisture ladened 

cotton wick. An ink roller was mounted on the second shaft. When 

running a test the paper sample comes in contact with the dampening 

roller first and then with the ink roller. By running_the test in 

the constant speed mode, both the picking force and the water-contact 

time can be calculated. The dampening unit has been calibrated to 

apply a constant, known ammount of water. The applied ink film thick­

ness is also known by controlling the inking procedure. Thus the 

entire printing procedure can be controlled and characterized. Test 

results were to be quantitatively determined by measuring the optical 

density of the removed coating, 

The problem encountered with the method was twofold. At low 

pick forces wet repellancy impared observation of wet pick. Since 

wet pick could not be singled out from wet repellancy, the use of 

an optical density measuring system was precluded. Visual observation 

aided by magnification also failed to distinguish coating failure 

from wet repellancy. At high pick forces fiber failure occured. 

Under dry conditions fiber failure occured before coating failure. 

Using the dampening system it was still not possible to distinguish 

coating failure well enough to provide the desired comparisons. 

For these reasons the IGT method was abandoned in favor of the on­

press method. Time spent working with the IGT method also necces­

sitated abandoning a proposed cure rate study. 
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