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GEOPHYSICAL AND REMOTE SENSING APPLICATIONFOR BETTER

UNDERSTANDING OF THE STRUCTURAL CONTROLS ON

GROUNDWATER FLOW IN THE LUCERNE VALLEY,
CALIFORNIA

Dale R. Dailey, M.S.

Western Michigan University, 2012

An integrated study was conducted in the Mojave Basin to investigate the

potential role of faults and basement uplifts for groundwater flow in the Mojave

Desert. Observations made include: 1) Very Low Frequency (VLF) measurements

across mapped (using LIDAR and Geoeye-1 imagery) fault traces showed significant

radio field dip angles indicative of presence of shallow sub-vertical, sheet-like

conductors; many of the VLF tilt peaks coincided with changes in the magnetic

profiles; 2) Vertical Electric Soundings indicate shallow basement west of, and

parallel to, the Helendale Fault and deep saturated zones east of the fault/basement

outcrop (F/B); and 3) isotopic analyses for groundwater from productive wells, and

mountain front and valley springs sampled west of the F/B are less depleted than

samples east of the F/B, and show evidence ofmixing between aquifers on either side.

Findings are consistent with the Helendale Fault channeling groundwater from the

San Bernardino Mountains with basement uplifts acting as barriers to lateral

groundwater flow.
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CHAPTER 1

INTRODUCTION

1.1 Project Statement and Location Background

The Mojave Desertoccupies areas in southeastern and centralCalifornia,

southern Nevada, southwestern Utah, and northwestern Arizona, in the United States.

The southwestern Mojave Desert is characterized by numerous mountain ranges

within it including the Tehachapi, the San Gabriel, and San Bernardino that are

separated by valleys and inland basins (e.g., Badwater, Owl Canyon, VictorValley,

High Desert, and Rainbow Basin). These mountain ranges andvalleys are partof the

Basin and Range province, an area witnessing crustal thinning, pull apart basin

tectonics (from 17 -22 MA in age though 6-13 MA in age), and lateral displacements

across the numerous dextral faults (e.g., Helendale, Lenwood, Lockhart, and Camp

Rock) related to the Late Cenozoic tectonics in the area (Dokka, 1990;Dokka, 1983).

These dextral fault systems formed secondarily to the San Andreas Fault, due

primarily to extension and rotationof the MojaveFault Block (Dokka, 1990; Dokka,

2001).

The Mojave River Basin, the study area, lies in the extreme southern portion

of the Mojave Desert (Fig. 1, Red Watersheds). The basin itself is located in

northern San Bernardino County, about 65 km northeast of Los Angeles, California.

The basin is the primary water supply for the southern Mojave Desert. Its rapidly

growing population (combined population in 1980: 64,685; combined population in



2010: 349,730) has created an ever increasing need for fresh water resources.

Figure 1. Overview of the southern Mojave Desert. A hill shade has been applied to
accentuate topographic features showing the distribution of major: (a) faults (e.g., San
Andreas, Garlock), (b) mountain ranges (e.g., Tehachapi, San Gregornio, San
Bernardino, and Pinto mountains), (c) subbasins defined by these mountain rages;
labeled "A" through "M", and (d) aquifers (e.g., Mojave River Regional: red areas;
Lucerne Valley: yellow; Johnson Valley: green). Enlargements of the study area
covered by Box "B" are shown in Figs 2a, and 3. Inset (lower left corner) shows the
areal extent of the Mojave Desert in California, Nevada, Utah, and Arizona and Box
"A" outlines the area covered in Fig. 1.

Precipitation in this area averages between 25 and 40 centimeters annually

(USGS, 2004; Laton et.al, 2005). Surface water is limited to ephemeral flow during

winter and spring storm periods. Runoff and groundwater flow resulting from the



melting of snowpack over the adjacent San Bernardino Mountains constitute the

principal source of the groundwater in the southern parts of the Mojave River Basin

(Stamos et. al., 2003; Laton et al, 2005; USGS, 2004), whereas the northern and

central portions of the basin are largely recharged by groundwater and surface flow

from the Cougar Buttes and Granite mountains (Fig. 1), as well as infiltration via the

Mojave River floodplain aquifer.

Increasing extraction of groundwater from the Mojave River Basin affected

various sections in the basin in varying degrees, The central portions witnessed

progressive decline in water levels over the years (20m from 1950-1986), whereas

areas proximal to the mountains either did not, or showed significantly less decline

(Laton, 2005; Smith and Pimentel, 1998). One popular explanation for the

groundwater deficits in the central parts of the basin is that the dextral faults in the

area acted as barriers for lateral flow of groundwater from the mountains towards the

central parts of the basin (Stamos et al, 2003). A better understanding of how

regional and local fault systems interact with the principle aquifers in the Mojave is of

key importance in meeting the rising demand for groundwater resources.

In this study, we examine the role of one of the major dextral faults in the

area, the Helendale fault and its subsequent splays, as potential barriers to

groundwater flow (Stamos et.al, 2003), or as a conduit for groundwater flow (Dailey

et. al., 2010; Sultan et. al., 2007). The former widely accepted hypothesis is largely

based on the observed water level differences (3-10 m) across each of the Johnson



Valley and Emerson Faults (Lewis, 1972; Trayler and Koczot, 1995; GSI, 2000) and

those observed (~40 m) across the Helendale fault in the Central Lucerne Valley

area. This explanation is at odds with reported findings elsewhere that suggest that

fractured fault planes often act as conduits for groundwater flow (Sultan et. al., 2007;

Caine et al., 1996; Gudmundsson, 2001). If such models were applicable to the

Helendale, the fault could be channeling groundwater from the San Bernardino

Mountains in the south, to the lowlands of the Mojave River Basin in the north, a

suggestion that could probably account for an annual groundwater surplus of 300-700

acre feet in the Lucerne Valley Aquifer (Laton et al., 2005) and of 900-1000 acre-feet

in the Johnson Valley Aquifer (Kennedy, et al., 2007).

An integrated approach utilizing remote sensing, geophysical, geochemical,

and subsurface data was adopted to investigate: (1) the potential role of the Helendale

Fault as a barrier for lateral groundwater flow or as a conduit for groundwater flow

along its length, and (2) the distribution and nature of barriers for lateral groundwater

flow in the study area. The wide distribution of similar structural elements (e.g., strike

slip faults) and landforms (mountainous areas and inland basins) in the Mojave Desert

makes it likely that our findings could be applicable to many other similar areas in the

Mojave Desert.

1.2 Geologic and Hydrogeologic Setting



The Mojave River Basin is characterized by a series of Cenozoic, parallel,

northwest trending dextral strike-slip faults which make up the Mojave Desert Fault

Block in the eastern California Shear Zone. Their occurrence spans from the San

Andreas Fault in the west to the Johnson Valley fault in the east (Fig. 1). The fault

system is commonly thought of as a simple shear system with the dextral faults

terminating against the cross-cutting Garlock Fault to the north, and the San

Bernardino thrust belt in the south (Garfunkel, 1974). This model is contested by

more recent research by Dokka, who suggests that the basin is instead a more

complex rotational system, with the majority of offset along the faults being

attributable to extensional and rotational elements due to movement along the San

Andreas Fault (Dokka 1986, 1990). The southern portions of the basin are also

characterized by thrust faulting along the San Bernardino mountain belt. The

Northeast Mojave Block, located in the northeastern portion of the Mojave Desert, is

a separate rotational block of dextral faults, oriented west to east, and trending nearly

perpendicular to the majority of other dextral faults in the shear zone (Dokka, 1991).

The southernmost boundary of the Mojave Desert terminates against the San

Bernardino Mountain belt. These mountains, along with other smaller mountain belts

and outcrops, form the shallow bedrock underlying the Este Hydrologic sub-basin.

Bedrock units in the Mojave River Basin consist mainly of Mesozoic granites and

gabbros, with sparse dispersions of Tertiary volcanic units in the central and northern

portions of the basin. Quaternary alluvial sediments make up the majority of surface



sediments, with additional marine and non-marine sand deposits spread sparsely

throughout the basin, generally near the coast or desert playas (Fig. 2a).
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Figure 2.
(A)Simplifiedgeologicmap. This map shows the distributionof the major rock

groups, and bedrock ridges (subparallel to Helendale and Lenwood faults) that
we infer to extend along their projected length at shallow depths beneath the
overlying alluvium.

(B)A cross section along line A-A' shown in Fig. 2a. Cross section constructed
from lithologic and head data extracted from well proximal to the Helendale
(yellow circles).



TheLucerne Valley groundwater basin, located in the Estehydrologic sub-

basin, is a closed watershed, with no external surface water flowing from the basin

(Blazevic and Laton, 2008). The basin contains several shallow bedrock ridges that

are proximal and parallel to the dextral fault systems in the valley. The faults

originate and/or terminate against thenorthern andsouthern mountain ranges. For

example, Fig. 1 shows the Helendale Fault originating in the south along the San

Bernardino Mountainfront, and extending northwest, terminating in the Newberry

Mountains. Surficial sediments are derived from the surrounding mountains via

weathering and erosion, and carried to the lower portions of the basin viaexpansive

alluvial fan and ephemeral stream systems. The collective alluvial material is

comprised of Tertiary sediments and Quaternary stream alluvium, combined with

playa, dune, and some landslide deposits (Blazevic and Laton, 2008). The Lucerne

valley dry lake represents the topographic low for the sub-basin (86 m amsl) while the

mountain peaks to the south represent the topographic high (2513 m amsl).

The Mojave River basin is broken up into a series of smaller sub basins.

These subbasins are apparently separated by ridges defined by basement and/or

bedrock outcrops and shallow bedrock saddles between the exposed ridges.

Examination of Fig. 3 shows that the Lucerne Valley Aquifer in the Estesubbasin is

separated from the Fifteen Mile Valley Aquifer by a NW-SE trending bedrock ridge.

Across someof these ridges and proximal, sub-parallel faults, large differences in

water levels were reported. For example, Fig. 2b (located on the previous page)



shows an abrupt drop in water levels in the vicinity of the Helendale Fault. Water

levels are not the only features that vary across these topographic ridges and/or faults.

Varying groundwater flow directions were reportedfrom aquifers separated by these

topographic highs and faults.

mwoo-w 116'4Q'00*W

UWQTN

34yycm

34'20"0"N

Figure3. Location map for our VLF and Magnetic transects (thick black lines) and
VES resistivity data (open circles). Boxes a, b, c, and d outline locations where
findings from VLF data were indicative of presenceof conductive subvertical layers.

These shallow aquifers, ranging from 15-90 m in depth (Fig. 2b) in places like

Lucerne Valley, are recharged through precipitation and surface runoff during the

short rain seasons (Stamos et. al., 2003). Surface runoff consists of both rainfall



runoff following precipitation events, as well as snow melt in the spring from the San

Bernardino Mountains. Many of these shallow aquifer systems feed a large central

aquifer, known as the Regional Mojave River aquifer. This deeperaquifer is present

throughout the Mojave RiverBasin, underlying several watersheds and subbasins

presentalong the lengthof the Mojave River (Fig.l). The Regional Aquifer is

recharged at the southwest portion of the Este sub-basin west of the Helendale Fault,

where it receives incoming surface flow and groundwatercarried along the foothills

of the San Bernardino Mountains. East and north of the fault, the Este sub-basin is

underlain by the Lucerne Valley Aquifer, whichis the primary source of groundwater

for the residents of Lucerne Valley. The Johnson Valley Aquifer lies in the

southeastern sections of the Este sub-basin, and extends east to Johnson Valley. As

indicatedearlier, both aquifers are being recharged through initial losses from

infiltrating precipitation and transmission losses from ephemeral channels following

precipitation events (Smithand Pimentel, 1998). In this study, we investigate a

previously unrecognized additional source of recharge. Specifically, we investigate

the potential role of the strike-slip faults in the basin as conduits for groundwater

flow, providing recharge to both the local and regionalaquifers. We also investigate

the role of basement uplifts (ridges) in controlling lateral groundwater flow in the

study area.



CHAPTER 2

METHODOLOGY

2.1 Methodology Overview

We adopted a four-fold methodology. Firstly, we collected and processed

available satellite and airborne LIDAR images to better delineate the fault traces, as

many of them are obscured by alluvium or too subtle to observe in the field.

Secondly, we appliedseveral geophysical techniques to verify the satellite-based

distribution of faults using magnetic and electromagnetic measurements and to

examine the role of faults and basement uplifts on groundwater flow. Thirdly, we

collected groundwater samples from the study area to conduct isotopic analyses in

search of isotopic provenances that are related to the distribution of faults and uplifts

in the study area. Lastly, the collected geophysical and geochemical data were

evaluated together with all other relevant hydrologic data (e.g., water levels, stream

flow, and water chemistry) in a GIS environment for a better understanding of the

spatial relationships.

2.2 Remote Sensing Methods

2.2.1 Light Detection and Ranging (LIDAR)

Airborne LIDAR utilizes a laser emission and detection system to send

pulses of light (several hundred thousand per second) to the land surface, while

measuring how long it takes to receive a backscatter signal

10



(http://opentopo.sdsc.edu/). Through inertial tracking and real-time differential GPS,

this process can be used to make extremely detailed digital elevation images of the

surface, while stripping away surface obscurers such as vegetation, as seen in

Haugerud et. al, (2003). Using densely packed laser emissions and detection

apparatus, LIDARimageshave the ability to return spatial resolutions on the order of

1 meter. This allows for small scale features, such as subtle topographic changes, and

partially obscured small scale fault features to be easily observed and analyzed, where

most other airborne and satellite datasets limited resolutions might cause them to be

overlooked. This is ideal for areas like the Mojave, where even the large faults are

often obscured or buried. Unlike ASTER, and IKONOS and other remote sensing

data sets, LIDAR is not a satellite mounted imaging system and therefore is not a

global data set. Due to the expense of equipment and mission flights, LIDAR

datasets are generally unavailable for most areas of the country.

2.2.2 GeoEye-1

GeoEye-1 is a high resolution satellite launched by GeoEye

(www.geoeye.com) in 2008. GeoEye-1 has a spatial resolution of 0.41m in the

panchromatic band, and 1.65mfor multispectral bands. All scenes are tonally

balanced, map accurate, and pre-mosaicked, making them ideal for easily accessible

and reviewable high resolution data. Scenes are available for more than 98% of the

world, including the entire United States. The very high spatial resolution makes

11



these scenes ideal for examining smaller, less regional features such as fault splays

and highly variable topography.

2.2.3 Advanced Spaceborne Thermal Emissionand Reflection Radiometer (ASTER)

ASTER is an imaging instrument attached to the Terra Satellite, which was

launched in 1999 as part of NASA's Earth Observing System (EOS)

(www.asterweb.jpl.nasa.gov). The ASTER scenes with their 14 spectral bands in the

visible, near-infrared, short-infrared and thermal infrared wavelength regions offer

enhanced opportunities for lithologic mapping. Because the Helendale juxtaposes

compositionally distinct rock units, the regional distribution of the fault traces were

delineated from ASTER images processed in ways that enhanced compositional

differences (Sultan et al, 1987). The ASTER scenes were used in conjunction with the

LIDAR data to better map the regional extent of the Helendale Fault, and its

subsequent splays and zones of deformation.

2.3 Geophysical Methods

2.3.1 Very Low Frequency (VLF) Profiles

The VLF band of the radio spectrum is between 3 kHz and 30 kHz. The Iris

Instruments T-VLF Very Low Frequency Radio Receiver (WMU S/N 99) was used to

measure the distortion of the normally horizontal electro-magnetic flux lines by local

electrical conductors. It uses the radio carrier waves (15-30 kHz) of the submarine

communications stations of the various navies of the world (Paterson and Ronka,

12



1971). This records for each frequency used, the tilt of the magnetic field (from the

horizontal) given in percentage, the ellipticity in the vertical and horizontal planes,

and signal strength.

The instrument has several limitations. It responds strongly to massive

sulfides, as well as to graphitic shear zones; however the Mojave River Basin is not

known to contain these types of sulfide deposits and shear zones, so it is unlikely that

interference would present itself in this form. It is also limited to detection within an

approximately90 degree fan of strikes (+/- 45 degrees from the radial azimuth to the

transmitting station). To combat this, measurements were recorded using one of three

transmitting stations: Seattle (NLK at 24.8 kHz), which provided nearly ideal

geometry for transects done in an east or northeast direction. Lamour, N. Dakota

(NML at 25.2 kHz), which was available only for the 2011 data, was used for the

northwest trending transects. Lastly, the Cutler, Maine (24.0 kHz) was used as an

alternative, since the receiver collects from two stations simultaneously. Data from

this frequency was generally only used for north trending transects. The VLF method

is also limited to use during daylight hours, when the overhead ionosphere is well-

developed (Vallee, et.al., 1992). It is also subject to sudden pulsations from the solar

wind, which result in rapid deviations of the apparent tilt angle that may last for

several minutes. In the event that unexpected or inexplicable anomalies were

encountered, data collection would be paused or repeated to rule out this possible

inference source.

13



Over the course of three summers (2009-2011), 25 transects were performed

in various locations across or near to the Helendale fault (Fig. 3). These transects

were most commonly taken in the exposed ridgelines along the southern portion of

the Helendale, the lower alluvial portions of the valley, and the canyons in the

northern portion of the Este sub-basin. Some of these transects were taken along

suspected splays of the main fault, as opposed to crossing the Helendale Fault itself.

Several of these splays were previously mapped, while others were identified using

available geologic maps and remote sensing datasets. Seven of these transects will be

detailed in the discussion section of this paper.

2.3.2 Magnetic Profiles

The Proton-Precession magnetometer (GeoMetrics G-816) was used to

measure the absolute total magnetic field strength (in gammas or nanoTeslas [nT]) at

the position of a sensor held on a staff approximately 2.5 meters above the ground.

The total magnetic field, location, and time of acquisition were recorded for every

station. Because the earth's magnetic field is subject to several time variations, the

principal of which is the daily or diurnal variation, a profile is usually preceded with a

reading (and time) at an arbitrary local base station (which may be the first station of

the profile). The base station is then read again at the end of the transect. Since

measurements along each of the transects were done in less than an hour, the drift

could be approximated as a simple linear function and readily corrected. Of the 25

14



VLF profiles conducted, 18 had magnetic data collected simultaneously. Transects

lacking magnetic data were due to unavailable or malfunctioning equipment. Of the

seven profiles detailed in the discussion, five also have magnetic data.

2.3.3 Vertical Electrical Soundings

A vertical electrical sounding (VES) is a type of resistivity measurement that

measures the electrical resistivity as a function of depth at a fixed point, assuming

sub-horizontal layering (Telford, et al, 1990). The VES measurements taken in the

field were performed using a 4-electrode expanding Schlumberger Array. In this

array, the two measuring (or voltage) electrodes (M and N) are kept fixed for 3-5

different expansions of the current electrodes (A and B). Because the current

electrode spacing (A-B) is the primary control of the depth distribution of current

lines (in addition to the resistivity layering structure), the AB or AB/2 distance is the

reference for each reading. We used AB/2 spacings that increased from 1.0 m to 147

m in equi-spaced intervals on a logarithmic scale, six spacings per decade. MN

spacings were always 1/5 or less of the AB spacings. At the point where the

measuring electrodes are expanded, another reading is taken without moving the

current electrodes, which provides data overlap. In this way, any surficial, lateral

resistivity changes near the measuring electrodes reveal themselves as a plot segment

that is higher or lower than the adjacent segment(s). This can be corrected for by

simply moving that segment up or down (multiplying by a constant, as this is a log

plot), so that it matches the adjacent segment. Thus, the first stage of treatment of the

15
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Schlumberger VES data is to make a smooth curve by either adjusting segments up or

down, or if they show little offset (<1%) then simply averaging the overlap points is

sufficient. A potential source for error in these measurements is based on the

amplitude of the voltage reading. In the Mojave environment, when the voltage

signal falls below about 2 milliVolts, the uncertainty of the calculated resistivity rises

rapidly. Points that fell below this threshold have been rejected in this study. This

method was the last field method implemented in this area, and was only conducted

in the summer of 2011. A total of 10 VES stations were taken near a central location

of the Helendale fault (Fig. 3)

2.4 Isotopic Methods

Two groups of water samples were collected and analyzed for their isotopic

compositions (8D and 8180). Twenty groundwater samples were collected (winter

2010) from shallow (depth: 35 to 40 m) production wells from the Old Woman

Sandstone formation and six samples were collected (Spring 2011) from the springs

at the foothills of the San Bernardino Mountains. H and O isotopic ratios in water

were measured by standard methods of equilibration with H2 and CO2 respectively

(Coplen, 1996; Nelson, 2000). Hydrogen and oxygen isotopes are reported in terms of

the conventional delta (8) notation, in units of per mil (%o) deviation relative to the

Standard Mean Ocean Water (V-SMOW) and PeeDee Belemnite (PDB) standards

(Coplen, 1996), where



8, %o = [(Sample-i?Std)/Rstd] >< 1000. (1)

and R= 2H/]H, or 180/160. Reproducibility of8 values for 8 D is± l%o and that of8

180 is± 0.2%o. The samples were analyzed for the stable isotopes at ISOTECH

Laboratories, Champaign, Illinois. Analysis of these isotopes can be used to

determine the source(s) of groundwater and to identify mixing trends between these

sources (e.g., Izbicki, 1998). In general, contrasts in these isotopic ratios across

structural features such uplifts and faults could be indicative of the role these features

play as barriers to groundwater flow.

2.5 GIS Analyses

Analysisof the collected data for this project involved the generationof a

database for data integration, analysis, and visualization. An Arc Info GIS

environment was utilized for data manipulation and representation, using Arc Spatial

Database Engine (SDE). All procedures and methodologies were adapted for use in

this environment. The database incorporates all relevant co-registered digital mosaics

with a unified projection (World Geodetic System [WGS] 84) covering the southern

Mojave Desert: (1) Geologic Map (scale 1:250,000) (available at

www.groundwater.fullerton.edu); (2) False-color mosaic of ASTER day scenes

(spatial resolution 15m)(www.nasa.echo.gov) (3) 1.5 KM Light Detection and

Ranging (LIDAR) swath (spatial resolution lm) spanning the approximate length of

the Helendale Fault (available via www.opentopo.sdsc.edu); (4) Well data including
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one or more of the following parameters: well location, well name, well type (i.e.

production, commercial, domestic, municipal), depth to water table, well elevation,

and H and O stable isotopic compositions; (4) IKONOS and GeoEye-1 satellite

scenes (spatial resolution l-5m); (5) California Alquist-Priolo Earthquake Fault Zone

maps (scale 1:24,000)(available via www.consrv.ca.gov); (6) vertical electrical

sounding data from LucerneValley Bottom in the immediatevicinity of the

Helendale Fault; (7) VLF and magnetic profiles acquired in tandem for dextral faults

and intersecting fault splays in and near the Lucerne Valley and Helendale Fault

areas.
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CHAPTER 3

DATA AND DISCUSSIONS

3.1 VLF and Magnetic Data

If the hypothesis that the dextral faults and intersecting fault splays in the

Lucerne Valley are channeling groundwater is plausible, a significant conductive

response in the VLF would be expected as the transect crosses the fault plane. In

cases where the fault plane is not readily apparent or well known, it is presumed that

the magnetic signatureof the underlyingrock would show either a peak or trough

indicating the presence of an area of changed magnetite content, such as those often

encountered in zones of fault gouge, or an abrupt change in slope, indicating a

juxtaposition of rock units of varying magnetic susceptibilities.

VLF data can be examined directly on tilt-angle vs transect distance plots.

Conductors are located where the tilt angle changes sign, i.e. where there is a zero

cross-over. Alternatively, simple filtering can be applied to remove short-wavelength

features (e.g., single-station anomalies) and to shift the peaks by 90 degrees. The 4-

point Fraser filter (Fraser, 1969) is widely used to accomplish this, and shifts the

curve so that positive peaks are directly over the conductors. Note that Fraser used

discrete station spacings of 50 ft. (15.24 m), as the typical wavelength of geologic

anomalies due to a single sub-vertical conductor is about 150 ft. (45.7 m), or the

horizontal distance subtended by the 4-station operator. The amplitude of peaks

varies with distance from the transmitting station, average surface earth conductivity,
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and time of day. Interfering noise depends on season, latitude, and solar activity,

Thus, Fraser (1969) pointed out that in optimal conditions a filtered peak of 5 may be

significant, and that values can go as high as 100. For this survey, we conservatively

regarded Fraser-filtered peaks above 20 as significant, even though on some days the

threshold could have been 10 or 15, as verified by comparing profiles repeated at the

same location on different dates.

Figure 4 (a-c) show the VLF and magnetic transects at three locations (Fig. 3:

Tl 104, Tl 103, T0209) along the northern portion of the Helendale Fault and its

splays in areas proximal to the San Bernardino mountains. Scenes were re-oriented to

display transects trending roughly left to right. The VLF and magnetic transect

locations were plotted with colored circles, where hollow circles indicate a VLF

response below a Fraser tilt of 0% (i.e., not conductive). A LIDAR swath or high

resolution Geoeye-1 imagery was used as a background image and faults were

mapped locally (dashed lines) from these images. Several scenes also have the

California Alquist-Priolo (AP) fault zones as an added background. These zones

outline buffer areas where risk of movement along active faults has been assessed

since 1971 (www.consrv.ca.gov), as measured by the California Geological Survey.

The VLF responses shown in figure 4 together with the magnetic measurements that

were acquired simultaneously along the same transects were graphed figure 5.

Similar displays (Fig. 6) and response graphs (Fig. 7) were generated for the VLF and

magnetic transects (Fig. 3: T3001, T1003, T0105 and Tl 105) located along the
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Figure 4. Selected VLF and Magnetic
Transects for the northwest portion of
the Helendale Fault. Fig. 4a-4c show
strong VLF responses (Fraser Tilt %),
where transects intersect the fault

locations (dashed black line) within
AP zones (light blue area outlined by
black dotted lines). Figure 5d-f
(located on the next page) shows the
data plots (red lines: Fraser Tilt %;
black lines: magnetic responses in
nanoTeslas) for each of the measured
transects. Appreciable VLF and
magnetic responses (marked by
arrows) correspond to known (black
dashed lines) fault locations on Figs.
4a-4c.



northernportion of the Helendale fault, in the more mountainous region northwest of

Lucerne Valley.

1104;FraserTilt[24.8kHz!and Magnetic Profile

Meters NE

E:Line 1103; Fraser Tilt [24.8 kHz]and Magnetic Profile

Meters SW

F:Line 0209; Fraser Tilt [25.2 kHz]and Magnetic Profile

Meters SW

Figure 5. Corresponding VLF and magnetic plots for figure 4a-4c.
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The following observations can be seen in figure 4. Transect 1104 was

performed in a box canyon, moving west to east. The modestVLF peak (FT 30%)

aligns wellwith the maintrace of the Helendale Fault, whichis well defined in the

LIDAR dataset, and lies well within the mapped AP zone (outlined in light blue with

thin black dotted lines). The magnetic response shows a change from sizable and

short wavelength anomalies in the northeastto a smooth, gentle gradientin the

southwest. This is clearly an indication of the juxtaposition of two different basement

lithologies and/or shallow basement to the northeast and deeper basement to the

southwest.

Transect 1103 shows good responseswith both magnetic and VLF methods. The

very strongVLF anomaly aligns with a clear dipolarmagnetic response. Both

responses align well with a mappedfault shownon the LIDARimageand is also

identified on geologic maps. This fault also lies well within the mappedAP zone for

the Helendale. This fault is most likely a branch of the primary Helendale that

"kinks" through the large ridge, with the main trace being obscured to the east, or

possibly still buried beneath the relatively shallow valley sediments. Another strong

anomaly at the beginning of the profile aligns with another large fault, which is most

likely responsible for creating the large depression seen in the LIDAR image.

Transect 0209 shows a strong VLF response (FT 45%) which aligns well with a

mappedportion (AP zoning and local geologicmaps) of the Helendale Fault, which
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curves through the canyon in this area. The magnetic profile does not show any

significant trend change or anomaly at this position.

Figure 6 (a-c) shows four VLF transects, two of which also have magnetic data, while

figures 7 (d-g) shows the VLF and magnetic data plots for these transects. Transects

3001 and 1003 (T: 3001, T: 1003) are repeat transects, done each year in the same

approximate location. T: 1003 was performed in summer of 2009 while T: 3001 was

performed in summer of 2011. T: 3001 shows a single, well defined peak with a

Fraser tilt of 45%o very near the fault plane, while T: 1003 shows a similar peak with a

tilt of 58%. Both peaks align very well with the mapped AP zone for this area of the

Helendale Fault as well. While not shown, this was also the case in the repeat

transect from 2010. The profile from 2011 showed a significantly higher response

than that of 2009 and 2010 (15-25%) higher). This is most likely due to the timing of

the profile and the increased amount of groundwater still present in the fault plane

when measured. Transects performed in 2011 were conducted much earlier in the

season than those in 2009 and 2010. Additionally, 2011 was a wet year by

comparison to 2009 and 2010. Both factors would lead to a higher amount of

groundwater and therefore a stronger response. Transect 0105 runs parallel to the

Helendale Fault and crosses at high angles a series of suspected fault splays which

intersect the Helendale itself. In each case an appreciable peak (FT 20%o or greater) is

seen as the transect crosses the fault trace, indicating the presence of shallow

subvertical conductive sheet, most likely groundwater within high-angle fault splays.
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If these splays connect to the Helendale, they can possibly collect additional

groundwater to add to that already channeled by the main fault. The magnetic profile

shows a much larger range of variability than most other transects measured on this

project. There were obvious lithology changes along the profile and some of the

abrupt magnetic changes are most likely due to this. Transect 1105 crosses a

suspected splay of the Helendale (Helendale is mapped as a black, dashed line) in the

far south, which splits into two small subsplays (mapped as red, dashed lines). The

fault traces here are fairly well defined, and two appreciable VLF peaks are observed

as each fault trace is crossed, again indicating the presence of a shallow, conductive

material. The magnetic profile for this transect is quite varied, showing an abrupt

change in slope as each fault trace is crossed. This is observed particularly well at

location B2.

25



^™
-^-^^•opsoocoo

T:1003 %
•••

n§• JO 0.12S 0.25
\ | Km

26

Figure 6. Selected VLF and magnetic
transects for the southeast portion of
the Helendale (black dashed line)
Fault. Fault splays (red dashed line)
were mapped from LIDAR and
Geoeye-1 imagery, and AP zones are
applied where appicable (light blue
area outlined by black dotted lines).
(6a-6c) show very strong VLF
responses. (7d-7g, located on page 27)
show the data plots (red lines: Fraser
Tilt %; black lines: magnetic responses
in nT) for each of the measured
transects. Appreciable responses
(marked by arrows) correspond to
known fault locations (black dashed
lines) or LIDAR and satellite-based
inferred fault locations (red dashed
lines) on Figs 6d-g.
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Figure 7. Corresponding VLF and magnetic plots for figure 6d-6g.

1

3.2 VES Data

The ten Schlumberger VES sounding locations and the location of the single

multi-level Electrical Resistivity (ER) transect are shown on Fig. 8. The 8 VES's

near the fault were expanded in the NNW sense, parallel to the fault, or NS along
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roads (VES's 4 and 9). VES 9, 4, 6 and 7 were run parallel to the E side of the fault,

VES 10, 1,5, and 8 were run parallel to the W side of the fault. Additionally,

soundings 2 and 3 were performed west of VES 1. This row (3, 2, 1 and 4

respectively) of soundings shows how the subsurface characteristics change across

the fault.

East of the fault, the four soundings show a strong similarity in curve types,

all with two maxima. The northernmost sounding (VES 9) shows the first maximum

is at the surface and becomes progressively deeper to the south. The intervening

minimum and the second maximum also become progressively deeper (move to the

right on the VES plot) and overall resistivities increase as the soundings progress SSE

and up the alluvial fan to higher elevations. Each of these four soundings ends with a

steeply declining branch, indicating that the conductive, saturated zone is being

detected. It should also be noted that this conductive zone is observed at deeper and

deeper depths to the south-southeast. The two maxima are likely coarse grained

vadose zone sediments, sandwiching a more conductive fine-grained unit.

A greatly differing trend is observed west of the fault. In general, a much

lower trend in resistivities is observed in each of the soundings when compared to

similarly placed soundings east of the fault. They are similar in that the resistivities

rise moving north to south, up the alluvial fan surface. The right (deepest) branch of

the log-log VES curves 1, 5 and 8 show an increase in resistivity. This is contrary to

the case on the east side of the fault, and the most plausible interpretation is that
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Figure 8. VES Location, apparent resistivity, thickness, and distribution of saturated
and unsaturated rock units in areas west (VES 10, 3, 2, 1,5 and 8) and east (9, 4, 6
and 7) of the Helendale Fault (white dashed line).
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bedrock has been encountered at fairly shallow depths. These sections were

conducted alongthe strikeof the topographic ridge to the southeast (Boxes C and D

in Fig. 3 are conducted along this ridge), andwould appear to make a strong case for

the continuation of that bedrock ridge in the subsurface all the way north to Lucerne

Valley. If this is the case, then this bedrock ridgejust to the west of the Helendale

fault is likely what is blocking eastward flow of groundwater across the fault. Flowis

then onlypossible through a passage on the order of one milewide at the valley

bottom, starting northof VES 1 and terminating against a ridge slightly northof VES

10(this is the same ridge seenin Fig.2a, and also in Fig. 3 where the transects seenin

Box B were performed).

Soundings 3, 2, 1 and 4, whichwere performed in a row crossing the fault east

to west, show a clear change across the fault between soundings 1 and 4. It also

shows the low resistivity of the two central soundings(VES 2 and VES 1) where the

surface sediments consisted of fine silts and clays, typical of the valley floor. The

surface material at VES 3 was coarser, which typically shows higher resistivity, but

the deeper resistivities were also low, as with soundings 1 and 2. The deepest

segment of the curve for sounding 3 is a rising branch, possiblyindicating another

area of shallow bedrock. Another, much smaller ridge is seen to the southeast of

sounding 3, and appears to continue to the northwest. It is reasonable to assume that

this ridge, like the ridge that parallels the Helendale Fault, simply extends into the

shallow subsurface before outcropping again to the northwest.
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When the inversion outputs for a row of VES's are taken and plotted as a cross

section showing boundaries between layers and the layerresistivities added, the result

can be displayed as a 2-D geoelectrical section. At that point, zones of similar

resistivities can be correlated as in a fence diagram between wells, except that in this

case it is the VES solutions (resistivity vs depth) rather than wells that are being

correlated. A diagram of this sort was made in the W-E direction to showthe changes

across the fault (Fig. 9). Line A-A' shows that the vertical resistivity structure at

VES#4 is totallydifferentfrom that of VES's 1-3. West of the fault, the water table

is interpreted at about7-10 m depth, and a shortdistance east of the fault it is double

that value. Also to the east a thick, high-resistivity (375 Ohm-m) unsaturatedzone is

present, while to the west it is much lower resistivity, probably reflecting finer-

grained sediments. Two of the VES's to the west appear to have reached high-

resistivity basement rock at depthsof about 40 m. This supports the hypothesis of a

shallowbedrock sill joining the topographic ridges to the NW and SE. The eastern

limit of this sill would be the Helendale Fault, and the western limit would be the

beginning of the deeper Fifteen MileAquifer about3 kilometers west of the Helendale

Fault.
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Figure 9. Geoelectric Cross Section along line A-A' shown in figure 8. Line shows
geoelectrical layering differences from west to east across the fault: apparent
resistivity values in Ohm-m.

3.3 Isotope Data

Isotopic analyses (5D and 8180) were conducted on groundwater samples

collected (fall 2010) from productive wells and springs sampled in summer of 2011.

The distribution of the well and spring samples is given Fig. 10 and the isotopic

analyses of these samples are presented in Table 1 and Fig. 11; well and spring

samples are labeled as "mwa" and "wmu" samples, respectively. Inspection of Table

1 and Figs. 10 and 11 shows that the samples to the west of the fault (mwa: 1,2,11,13-

16; wmu: 1,2,3) from the Lucerne Valley Aquifer and proximal to the fault (mwa:

1,12,13,14,19; wmu: 3,5,6), hereafter referred to as group I samples, have depleted
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isotopic compositions (5D: -84.7 to -94.1; 5180: -10.54 to -12.61%o; Average 5D: -

88.1 %o) and plot along an evaporation line (Fig. 9; EVL1), an observation that is

consistent with a unified source (SI) whose composition (5D: -88; 8 O -12.3) is

given by the intersection of the evaporation and global meteoric lines. Because a

number of these samples were collected from springs (wmu: 1, 2, 3, and 5) at the

foothills of the San Bernardino Mountains, we suggest that the source of group I

samples is largely the melt of the snow falling over the mountains. This suggestionis

consistent with earlier findings (USGS, 2004) that suggest that the Regional Aquifer

is being recharged by runoff and groundwater flow from the San Bernardino

Mountains in the south.
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Figure 10. Locations of wells (open circle; name designation: mwa) and springs (open
diamond; name designation: wmu) sampled for isotopic analyses (O, H). Also shown
are: (a) principal aquifers including Regional Aquifer (red area), Lucerne Valley
Aquifer (yellow area), and Johnson Valley Aquifer (green area), (b) groundwater
flow direction indicated by arrows, and (c) the Helendale Fault (modified from ESA,
2004; Stamos et al, 2001, 2004).



Table 1. List of well and spring samples, including naming schema, specific and
general location information, elevation, and isotope data. Well type and sample depth
are also included where applicable.

Sample ID Name Aquifer Latitude Longitude
Elevation

(fa .s.l.)
Description

Sample
Depth (ft)

DWT (ft) 6D%o 6180%o

219848

219849

219850

219851

219852

219853

wmu-1

wmu-2

wmu-3

wmu-4

wmu-5

wmu-6

Regional Aquifer 34.37575 -116.9929 4449

4449

Mountain Front Spring
Mountain Front Spring

N/A 0 -85.6

-85.2

-88.3

-96.6

-86.5

-84.7

-87.5

-11.8

-11.4

-11.7

-12.5

-10.4

-10.5

-11.6

-12.2

-12.2

-12.3

-11.9

-11.6

-12.8

-12.1

-12.5

-12.3

-12.4

-12.2

-11.9

-11.7

-10.5

-11.0

-12.6

-11.0

Regional Aquifer

Lucerne Valley

Johnson Valley
Lucerne Valley

Regional Aquifer

Regional Aquifer

34.37468

34.36283

34.40575

34.36406

34.45823

34.3669

-116.9945 N/A

N/A

N/A

0

0

0

-116.8575

-116.7208

-116.7488

-116.9636

-116.9295

4589

3172

4167

Mountain Front Spring
Valley Spring

Mountain Front Spring
Valley Spring

N/A

N/A

0

02871

03N01W12A01 mwa-2 4145 Production Well

04N01E09D04

O4N01E16N02

04N01E21A02

04N01E24D03

mwa-3

mwa-4

mwa-5

mwa-6

Lucerne Valley

Lucerne Valley

34.45752

34.42977

-116.8893

-116.891

-116.8384

2926

3037

3063

2877

2877

2877

2877

2967

2967

3008

2985

Production Well

Domestic Well

Domestic Well

Domestic Well

Municipal Well

225

180

165

155

152

-91.6

-932

-90.7

-91.8

-97.5

-100.7

Unknown

Lucerne Valley 34.42797

04N01W01R04

04N01W01R05

04N01W01R07

04N01W01R08

04N01W13D01

04N01W14G03

04N01W15K04

mwa-7

mwa-8

mwa-9

Lucerne Valley 34.46049

34.46049

-116.9283

-116.9283

-116.9283

-116.9283

-116.9456

-116.952

-116.9714

-117.0219

-117.05

-116.9104

-116.9104

-117.002

-117.015

Lucerne Valley Municipal Well
Municipal Well
Municipal Well

Commercial Well

Domestic Well

Domestic Well

Municipal Well

180

Lucerne Valley 34.46049

34.46055

34.44022

34.438

34.43518

143

180

136

153

-92.0

-91.8

-91.2

-91.4

-88.2

-87.9

-86.4

-95.6

mwa-10

mwa-12

mwa-13

Lucerne Valley
Lucerne Valley

Regional Aquifer
mwa-14 Regional Aquifer

165

180

83

152

04N01W18Q01 mwa-15 Regional Aquifer 34.42903

34.417

34.53181

34.53181

34.489

04N02W24M01

05N01E08N03

mwa-16

mwa-17

Regional Aquifer
Lucerne Valley

3390

2880

2880

2902

Domestic Well

Municipal Well

05N01E08N04 mwa-18 Lucerne Valley
Lucerne Valley

Municipal Well
Domestic Well

180

143

145

175

175

125

152

128

129

128

129

105

-97.7

-94.1

-85.3

05N01W29H02 mwa-19

05N01W32E01

05N01W36F01

05N01W36F02

05N01W36F03

05N01W36F04

05N01W36F05

mwa-1 Lucerne Valley 34.483 3007

2854

2854

2854

Domestic Well

Municipal Well

Municipal Well

Municipal Well

mwa-20

mwa-21

mwa-22

mwa-23

mwa-24

Lucerne Valley

Lucerne Valley
34.48049

34.48049

-116.9405

-116.9405

-96.7

-98.3

-93.9

-93.3

-94.3

-11.8

-12.4

-12.4

-12.8

-12.8

Lucerne Valley
Lucerne Valley

Lucerne Valley

34.48049 -116.9405

34.48049

34.48049

-116.9405

-116.9405

2854

2854

Municipal Well

Municipal Well

Samples collected east of the fault, from the Lucerne Valley Aquifer, hereafter

referred to as Group II samples, are generally more depleted compared to Group I

samples. It is likely that the Lucerne Valley Aquifer is recharged largely from

precipitation over the northern mountains (Ord, Rodman, and Stoddard mountains)

(Blazevic, 2007). The groundwater flow in the Lucerne Valley is towards the

southeast (Fig. 10). We speculate that the depleted nature of group II samples

(Lucerne Valley Aquifer) compared to Group I (Regional Aquifer) could be related to

compositions that are dominated by fossil groundwater that was precipitated in
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previous wet cool climatic conditions in the case of GroupII samples as opposedto

the less depleted modern precipitation that are being precipitated in relatively warmer

conditions (USGS 2004) prevailing nowadays. This suggestion is supported by the

fact that the precipitationover the source areas (San Bernardino mountains) for the

Regional Aquiferfar exceeds that for the sourceareas (Newberry and Ord mountains)

for the LucerneValley Aquifer (Izbicki 2004, USGS 2004). This can potentially lead

to excessive flushing of the fossil water in the Regional Aquifer, and less of it in case

of the Lucerne Valley Aquifer.

-70

-75-

-80

Groundwater Samples

East of Helendale Fault } (Group 2)

♦ West ofHelendale Fault 1

• Proxii
Fault

1 (Group 1)

-14 -13.5 -13 -12.5 -12 -11.5

5'80(%o)

11.5 -10

Figure 11. Comparison between stable isotope ratios [hydrogen (8D) vs oxygen
(8180)] for groundwater samples from wells and springs west, east, and proximal to
the Helendale Fault. Also shown are the evaporation lines EVL1 And EVL2, for
Group I and Group II samples, respectively and their intersections (SI and S2) with
the Global Meteoric Line (5D = 8180 + 10; Craig, 1961). Arrows represent
groundwater flow directions (ESA, 2004; Laton, 2005) for the major aquifers.
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Group II samples show a wide range of variation in their isotopic composition

(8D: -85.30 to -100.7; 8180: -10-39 to -12.81%o; Average 8D: -93.6%o) compared to

group I samples. The most depleted of these samples (mwa: 7, 8, 17, 18)plot along

an evaporation line (Fig. 11; line EVL2) that defines a source (S2) with an isotopic

composition of5D: -104; 8180 -14.2 at its intersection with the global meteoric line.

The remainingGroup II samples plot towards the compositionsof group I samples.

The isotopic composition of these samples is consistent with an explanation that calls

on various degrees of mixing between two sources (SI and S2) and various degrees of

evaporation for each of the two sources and samples.

Several samples were taken from areas on either side of the Helendale Fault,

in relatively close proximity to each other (mwa-13 and mwa-12; wmu-3 and wmu-

5). In each case, the samples plot along the upper evaporation line, indicating their

composition is that of GroupI. This observation is consistent with the interpretation

that the Helendale is actively channeling groundwater along its length from the San

Bernardino Mountains.

It is commonly thought that the Helendale Fault acts as a barrier to lateral

groundwater flow (Stamos et al, 2001; ESA, 2004; Smith and Pimentel, 1998)which

would prevent groundwater from the Fifteen Mile Valley Aquifer from mixing with

that of the Lucerne Valley Aquifer. This does not appear to be the case. Several

water samples have 8D and 8180 values which plot between the two principal



evaporation lines for these waters (Fig 11). These wells typically are those east of the

Helendale Fault, and fall along the east-southeast flow path of the Lucerne Valley

groundwater. This indicates that mixing of groundwateris occurringwithin the

Lucerne Valley Aquifer. This would make sense if there are open "windows"

between the shallow bedrock ridges that trend along the fault across which

groundwater is able to flow. Two of these windows, where groundwaterflow appears

to be uninhibited, occur in the vicinity of wells mwa-13 and mwa-12, as well as at

springs wmu-3 and wmu-5. In each case, the bedrock ridge that cuts across the

majority of the valley floor is unexposed at the surface. Since water levels west of

the fault are relatively shallow, it is plausible that water is able to spill over the

bedrock barrier in these locations, facilitating mixing between the aquifers. It is also

likely that the fault itself is helping facilitate this mixing, as groundwaterchanneled

throughthe fracture planes along the bedrock ridges would also spill into the aquifers

along the valley floor as these ridges dip into the subsurface below the overlying

alluvium. Regardless of which hypothesis is adopted, groundwater samples from the

Lucerne Valley Aquifer that have mixed isotopic compositions must have been

derived, at least in part, from recharge waters in areas west of the fault because if an

impermeable barrier were preventing lateral flow, these anomalous mixed

composition values could not be explained.
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CHAPTER 4

SUMMARY

4.1 Interpretation of Results

There are differing camps when it comes to the Helendale Fault and how it

interacts with the groundwater aquifers it intersects. The commonly accepted opinion

is that the fault (and other faults in this area) is a barrier to groundwater flow, and is

thus responsible for the observed local differences in water level across the fault

(Stamos et. al, 2003). This, potentially, has many implications for future water

supply for the High Desert, as pumping of these aquifers can and will be heavily

influenced by availability of water as well as sustainability of the aquifers through

recharge. If the faults are preventing the movement of groundwater, recharge for

those aquifers may be limited on either side, making sustainable water supply a non-

option. It is likely that the fault itself is not what is preventing groundwater flow, but

rather the surface and subsurface geology. Fluid transport through fractured and

faulted crystalline rocks and the role of fault zone architecture and related

permeability as the primary controls on fluid flow in brittle fault zones has been

discussed (Barton et al., 1995; Caine et al., 1996; Evans et al., 1997; Gudmundsson,

2001; Sultan et al., 2007). For example, it has been demonstrated that the Najd Shear

System, a complex of brittle faults and shear zones in the Arabian-Nubian Shield, and

the largest transcurrent Pre-Mesozoic fault system on Earth acts as a conduit for

groundwater flow, allowing significant amounts of groundwater to be channeled to
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areas normally outside the reach of standard recharge and groundwater inflow

(Sultan, 2007).

The VLF data has shown that the majority of locations along the Helendale

Fault are conductive, indicating that the fault plane contains groundwater, even at

higher elevations on the southern ridges. It is likely that the Helendale Fault is acting

as a conduit for groundwater flow, channeling groundwater from the higherelevation

areas in the south to the lowland areas in the central and northern portions of the

Mojave River Basin. Magnetic data generally indicates an abrupt change in magnetic

composition across the fault, which suggests a juxtaposition of units withvarying

magnetic susceptibilities. This is to be expected as shallowbasement ridges are

generally observed westof the fault, while dry lakeand playasediments are typically

observed east of the fault.

The isotopic data is also consistent with the Helendale acting as a conduit.

Twomaingroups of groundwater samples were found in the study areabasedon their

distribution and isotopic compositions: (1) Group I were sampled from the Mojave

River Regional Aquifer west of the fault and are compositionally less depleted than

samples collected from the Lucerne Valley Aquifer east of the Fault (Group II).

Groups I and II samples show evidence for varyingdegreesof evaporation. Several

sampleswere taken from wells proximal to the Helendale Fault, typically from areas

east of the Helendale Fault, along the east-southeast flow path of the Lucerne Valley

groundwater. These samples plot along, or close to, the upper evaporation line,
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indicating that their compositionis largely that of Group I sample, the San Bernardino

Mountain recharge waters, but show evidence for mixing with the Group II waters,

the LucerneValley groundwater. One way for such mixing to occur is for the fault

to channel groundwater through its fracture planes, many of which are observed

within the bedrockridges, as these ridges dip into the subsurfacebelow the overlying

alluvium. If the Helendale fault acted as an impermeable barrier preventing lateral

flow, these anomalous mixed composition values from the Lucerne Valley Aquifer

couldnot be explained, as these samples must have been derived, at least in part, from

recharge waters in areas west of the fault.

If the Helendale is not a barrier for lateral groundwater flow, then what is

causingthe observed change in water level across the fault? West of the fault,

groundwater is found an average of 5-10m below surface level, while to the east of

the fault; groundwater averages45 m below surface level (Stamos et. al., 2003; Smith

and Pimentel 1998). Our geophysical data (VES's) suggest that the groundwater drop

across the Helendale can be attributed, at least partially, to the shallow bedrock ridges

which prevent the groundwater from flowing eastward across the fault.

West of the fault, high resistivities are observed occurring at greater sounding

depths, which is characteristic of shallow bedrock. These high resistivities occur

along strike of a prominent bedrock ridge, which runs parallel to the Helendale Fault,

and dips below the surface along the valley floor. It is likely that these resistivity

highs are simply the continuation of this bedrock ridge. Further west of the fault,
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shallow resistivity is much lower, and fits with mapped geologic units of young

alluvium overlying older, higher resistivity alluvium. Further west still, another deep

resistivity high is seen, again along strike of a bedrock ridge to the southeast. It is

quite possible that these ridges are preventing groundwater from flowing eastward

through the faulted zone.

4.2 Regional Implications

Results indicate that the Helendale and intersecting fault splays are acting as

conduits for groundwater flow and are able to actively channel groundwaterfrom the

higher precipitationmountains in the southeast, to the lower portions of the valley to

the north and northwest. This is evidenced by the conductive responses observed in

the VLF data, and via the mixed isotopic compositions found in close proximity to

the fault. Resistivity also suggests that lateral flow across the fault is indeed possible,

and that the fault is not acting as a total barrier to flow. This is also evidenced by the

isotopic compositions of the aquifers proximal to the fault. This study highlights the

potential for identifying similar zones throughout the Mojave Desert Region, as it is

likely that similar faults, especially those with exposed bedrock ridges trending along

their length (Lenwood, Camp Rock, Calico, Granite Mountains, and Johnson Valley

faults) will exhibit similar behavior. From a groundwater supply standpoint, this is of

great importance, as it indicates additional resources may be available for the dry, low

precipitation areas which are increasing in population each year.
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