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In recent years there has been great interest in the positioning of people and assets 

in indoor and outdoor environments. Many systems were constructed to accomplish 

this. The application of these systems depends on the environment and the precision 

required for localization. The Global Positioning System (GPS) cannot be used for a 

precise indoor localization due to the attenuation and scattering of the signals. For 

indoor environments, other technologies like Wireless LAN, laser, camera images 

and motion sensors are used in precise localization. GPS can be used in outdoor 

environments but if localization accuracy is a critical requirement, other technologies 

should be used. 

An intersecting application scenario for precise pedestrian localization is for the 

blind and visually impaired. This important segment of our society faces several 

challenges during daily activities like path planning, navigation and obstacle 

avoidance. Many of the blind still trust and rely on the white cane to explore their 

environments. The state-of-the-art white canes have audio systems to guide the blind 

through their environment. Continuously wearing a headset and hearing sounds can 



 

 

 

be irritating for some people. Our work provides techniques to fuse data from 

multiple cost-effective sensors such as Accelerometers, Gyroscopes, Time Difference 

of Arrival (TDoA) sensors, Wi-Fi and AM radio signals of opportunity. These 

techniques allow for building autonomous navigation systems for the blind and 

visually impaired.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background and General Overview  

The fast growing manufacturing of mobile devices instrumented with 

positioning technologies stimulated the development of Location Based services 

(LBS) [1]. These services provide users with their geographical location as they 

navigate through their environment. Many technologies are already available to 

develop these services like Wi-Fi [2, 3], AoA based systems [4] and UWB [5]. In our 

work we utilize low cost MEMS sensors along with TDoA based sensors to perform 

PDR. 

The main goal of localization is to track moving objects. Localization can be 

performed in buildings and closed environments (Indoor Localization) or outside 

buildings (Outdoor Localization). Many surveillance and tracking applications rely 

completely on the knowledge of the position of objects in the environment.  

There are many real world applications that depend on this automation 

process. Location detection of personnel or medical equipment inside a hospital, 

moving assets inside a store, intelligent guidance, location-aware multimedia services 

are examples of these applications[6-8]. 

1.2 Problem Statement and Research Goals 

The positioning of people and assets in indoor and outdoor environments has 

been the target of many research groups recently. To accomplish this, many systems 
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were constructed and the application of these systems depends on the environment 

and the precision required for localization. The Global Positioning System (GPS) 

cannot be used for a precise indoor localization due to the attenuation and scattering 

of the signals. For indoor environments, other technologies like Wireless LAN, laser, 

camera images and motion sensors are used in precise localization. GPS can be used 

in outdoor environments but if localization accuracy is a critical requirement, other 

technologies should be used. 

The complexity of indoor/outdoor environments resulting from multipath 

propagation and frequent environment changes requires using more than one 

technique to improve localization accuracy. Data from wireless LANs, Ultra Wide 

Band (UWB), Infrared (IR), Ultrasound, camera images and Inertial Measurement 

Units (IMUs) were fused by multiple data fusion techniques to provide more precise 

and robust localization systems. These systems are evaluated based on location 

accuracy, cost, range, and the data rate. Tradeoffs between these evaluation 

parameters exist in each of these systems. 

 Our target application for precise pedestrian localization is for the blind and 

visually impaired. This important segment of our society faces several challenges 

during daily activities like path planning, navigation and obstacle avoidance. Many of 

the blind still trust and rely on the white cane to explore their environments. The 

state-of-the-art white canes have audio systems to guide the blind through their 

environment. Continuously wearing a headset and hearing sounds can be irritating for 

some people.  
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Current blind assistance navigation systems provide the position or the 

orientation of the pedestrian which comprises only a part of a complete and 

comprehensive social network. These systems do not provide sharing of user 

experience with their environment and neither have they provide tagging for points of 

interest in a certain environment. In this work, we provide a software architecture for 

a complete social network for the blind and visually impaired and will illustrate how 

the user experience will be shared with all users to maximize network benefit. 

Many of the state-of-the-art smart phones are equipped with accelerometers, 

gyroscopes and magnetometers. Our work provides techniques to fuse data obtained 

from the low-cost sensors on these smart phones. These techniques allow for building 

autonomous navigation systems for the blind and visually impaired. 

The conventional approaches for Pedestrian Dead0Reckoning (PDR) used in 

[9, 10] track the position of a pedestrian by integrating the accelerometer and 

gyroscope signals. Heading is obtained from a heading sensor like a digital compass. 

However, using signals from these technologies alone is susceptible to error due to 

inherent instrumental errors and environmental disturbances. 

 In this work we proposed gyroscope drift correction approach using Time 

Difference of Arrival (TDoA) technology. The advantages of using TDoA over 

magnetometers for drift correction is that it is less susceptible to magnetic noise 

sources in the environment. This enables the usage of the proposed drift correction 

approach along with the PDR techniques described in this work in order to perform 

precise localization of pedestrians in both indoor and outdoor environments.  
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1.3 Dissertation Outline 

Our dissertation is structured in eight chapters including the introduction one. 

In this section we provide the overall outline of our Rule-Based localization services 

in mobile environments.  

In chapter two, we provide a detailed literature review of the previous work in 

localization for both indoor and outdoor environments. We present the approaches to 

localization and discuss the advantages and disadvantages of these approaches. 

Furthermore, we discuss the approaches to PDR and discuss the pros and cons of 

these approaches.  

Since we use Particle Swarm Optimization (PSO) as our efficient tool for 

optimization, we also present a survey about PSO in this chapter.  

Our approach to gyroscope drift correction based on TOA technology in 

support of pedestrian dead reckoning is presented in chapter three. The chapter starts 

by providing a brief introduction about PDR and discusses our approach to pedestrian 

step detection. Our approach to symbolic representation of accelerometer signal and 

the Flip-Flop filter design is also presented in this chapter. Our novel approach to 

PDR using TDoA technology is discussed in detail and the chapter concludes with the 

results obtained from simulation about PDR.  

Our approaches to indoor and outdoor localization are presented in chapters 

four and five respectively. The chapters starts by providing a brief introduction about 

indoor/outdoor localization and then discuss our Budgeted Dynamic Exclusion (BDE) 

technique that is used both in indoor and outdoor approaches.  
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The Particle Filter (PF) approach to fuse data from multiple sensor 

technologies is discussed next followed by a discussion of the results obtained both in 

indoor and outdoor localization techniques.   

Chapter six presents an example application of our precise localization service 

which is a social network for the blind and visually impaired. We present our vision 

to this social network and provide preliminary software architecture for this social 

network and present some basic use cases.  

Chapter seven discusses the software testing approach. The chapter starts by 

listing some of the most common definitions of software testing. The most important 

requirements to software testing are discussed next followed by an explanation of the 

general software testing principles and techniques. The chapter also provides and 

illustration of the V-Model approach to software testing and explains each stage of 

this model.  

Rule-Based expert systems are presented in chapter eight. The chapter starts 

by providing a brief introduction about Rule-Based expert systems and lists some 

definitions for the expert system concept. Expert system components and the 

functionality of each component is discussed next followed by an explanation of the 

Rule-Based expert systems.  

The validation and verification of Rule-Based expert systems, challenges to 

Rule-Based expert system’s testing and recommendations to the process of verifying 

and validating Rule-Based expert systems are also discussed in this chapter. The 
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dissertation concludes in chapter nine in which we provide an explanation for all the 

results that we obtained in this research  
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Overview 

In this chapter we provide a literature review of the localization techniques in 

both indoor and outdoor environments. We also discuss the various sensor 

technologies used in these approaches and discuss the advantages and disadvantages 

of these technologies. Since we use Particle Swarm Optimization (PSO) as our 

optimization tool in this research, we start this chapter by presenting a detailed survey 

about PSO and provide some applications of PSO in engineering and networking.   

2.2 Review of Optimization and its Applications in Engineering and Networking 

Swarm Intelligence is a type of Artificial Intelligence that is based on the 

cooperative performance of the decentralized systems. Such systems are modeled by 

a set of agents that interact with each other and interact with its environment. Despite 

the fact that there is no centralized control on the behavior of these systems, the 

localized random behavior of these system leads to universal system intelligence. 

Examples of these systems are bird flocking, ant colonies and, fish schooling [11]. 

This section provides a detailed review of PSO. The general concept of 

optimization is discussed first followed by a review of other optimization techniques 

like the Genetic Algorithms (GA), Simulated Annealing (SA), Tabu Search (TS) and 

many other optimization techniques. A detailed description of PSO in the continuous 
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and binary spaces is provided next and the application of PSO in engineering and 

networking is also described in this section.  

2.2.1 Optimization in Mathematics 

Optimization is the study of maximizing or minimizing some objective 

function by finding the best variables’ values. Generally, a representation of an 

optimization problem is of the form [12]: 

min f (x)         x ϵ S ⊂ R
n 

                              (2.1) 

According to the linear or nonlinear constraints 

gi(x) ≤ 0,  i = 1, …, m, where m is the number of constraints in the problem       (2.2) 

A penalty function is used to solve most of the optimization problems. In this 

approach, two types of points exists in the search space of the problem; infeasible and 

feasible points. Infeasible points are the points which violate at least one of the 

problem constraints, while feasible points are the points satisfying the set of all the 

constraints.  

The penalty functions are divided into two different sub categories: stationary 

and non-stationary functions.  The non-stationary functions add vigorously alternating 

value for the penalty based in its distance of the infeasible point from the constraint. 

On the other hand, in the stationary functions, unchanging value is added to the 

constraint if it violates the objective function. [12]. 

The penalty function can be formulated as [12]:  

F(x) = f(x) + h(k)H(x)   x ϵ S ⊂ R
n
                                                 (2.3) 
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Where f(x) is the objective function in equation 2.1, h(k) is a dynamically 

changing penalty function, k is the current algorithm iteration and H(x) is a penalty 

factor defined as [12] : 

H(x)=∑ Θ	(qi(x))qi	(x)	exp	(γ	qi(x)�	)		����                                             (2.4) 

Where qi (x) = max {0,gi(x)}, γ (qi(x)) is the power of the penalty function, 

Θ(qi(x))  is a multi-stage assignment function and    gi(x) are the constraints described 

in equation 2.2 . 

2.2.2 Taxonomy of Optimization Algorithms 

In this section, we provide a detailed taxonomy of optimization. In general, 

optimization can be classified into three major categories [11]: 

• Optimization Algorithms:  The majority of these algorithms are designed for 

linear programming. Examples of optimization algorithms are simplex 

algorithm of George Dantiz, extensions of the simplex algorithms designed 

for Quadratic programming and Combinatorial Algorithms. 

• Iterative methods: These methods are used for non-linear programming 

problems. Examples of these methods are the Newton’s Method, Conjugate 

Gradient Method, Interior Point Methods and The Gradient Descent Method. 

• Heuristics: In addition to the finitely terminating optimization algorithms and 

the convergent iterative method, Heuristic approaches provide an approximate 

solution to optimization problems. Examples of these approaches are the 
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Genetic Algorithms, Tabu Search, Harmony Search and Particle Swarm 

Optimization.  

The aforementioned and more approaches are presented in Fig. 2.1. Since the 

main topic of this section is a heuristic-based approach (PSO), in this section we 

provide a detailed description for the major heuristic approaches. We also compare 

the performance of PSO and other heuristic approaches such as Genetic Algorithms 

(GA), Simulated Annealing (SA), Tabu Search (TS) , Harmony Search (HS), 

Stochastic Tunneling (ST) and the Cross Entropy (CE) Method.  

1) Genetic Algorithms (GA): A search method that mimics the biological 

evolution. Given a target problem, the input to the GA is a set of candidate solutions 

generated randomly and evaluated according to a fitness function. In general, most of 

these solutions do not survive the evaluation process and are killed instantly. Multiple 

randomly modified copies of the survivors are generated and a pool of new 

generations of candidate solutions is constructed.  This process of generating, 

evaluating and modifying the best solutions is repeated for several hundreds or 

thousands of rounds until the algorithm converges to an acceptable solution [13-16].  



 

 

2) Tabu Search (TS): The 

in a local optimum by keeping track of the search paths that already visited by the 

search procedure. This can lead the algorithm to accept some inferior solutions to 

avoid revisiting previous paths 

search. The visited search paths (

maintained by a forbidding strategy that decides which solutions are candidates and to 

be kept in the tabu list [17

3) Simulated Annealing (SA):

crystallization from a melt. The atoms of a melt are free to move a

11 

Figure  2.1: Taxonomy of optimization. 

The goal of TS is to prevent the search procedure from falling 

in a local optimum by keeping track of the search paths that already visited by the 

search procedure. This can lead the algorithm to accept some inferior solutions to 

ting previous paths to find the best solution through more globalized 

rch. The visited search paths (forbidden solutions) are stored in a tabu list which is 

maintained by a forbidding strategy that decides which solutions are candidates and to 

[17-20].  

Simulated Annealing (SA): This method mimics the process of 

crystallization from a melt. The atoms of a melt are free to move at high temperatures 

 

of TS is to prevent the search procedure from falling 

in a local optimum by keeping track of the search paths that already visited by the 

search procedure. This can lead the algorithm to accept some inferior solutions to 

the best solution through more globalized 

forbidden solutions) are stored in a tabu list which is 

maintained by a forbidding strategy that decides which solutions are candidates and to 

s method mimics the process of 

t high temperatures 
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and when cooling  the melt sample, these atoms start to crystallize into a solid. If 

the melt is cooled quickly, the melt becomes amorphous and if it is annealed (cooled) 

slowly the melts becomes a perfect crystal which is considered the global minimum 

energy configuration of the system. The goal is to find the best annealing schedule 

that converts the melt into a perfect crystal [21]. 

4) Harmony Search (HS): Another meta-heuristic optimization approach that 

mimics the musical improvisation. Each musician corresponds to a variable in the 

fitness function and the pitch range of each musical device corresponds to the range 

of values a variable can have. A candidate solution is represented by an improvised 

harmony. The more the musicians practice, the better harmonies created and 

correspondingly better solution vectors will be produced [22-25]. The algorithm 

works by randomly generating solution vectors (harmonies) and then disturbing these 

vectors according to HS algorithm to get the global minimum (best harmony).  

5) Stochastic Tunneling (ST): a global optimization technique was originally 

proposed for minimizing the energy function in complex rugged Potential Energy 

Surfaces (PES). In this method, the dynamical process explores a transferred 

adaptively changing version of the PES not the original one. The idea of this 

algorithm is to flatten the energy surface in all areas that have a value for energy 

above a certain threshold [26]].  

6) The Cross Entropy Method (CE): This is a new generic method used in 

combinatorial optimization and rare event simulation. The CE is an iterative method 

in which each iteration is comprised of two phases. The first phase is generating 
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random data samples using a specified mechanism followed by the second phase of 

updating the parameters of the mechanism to produce better results in the next 

iteration. The power of the CE method stems from the fact that it produces a 

framework to derive optimal learning rules obtained from the theory of simulation. In 

this approach, the deterministic problem is converted to a stochastic problem. After 

that, the CE method is used to solve the problem [27-29]. 

2.2.3 Standardization of PSO 

In the original PSO, Euclidean neighborhood was used for information 

sharing between particles. This approach, also known as the lbest model, has high 

computational complexity which was the reason for replacing it with topological 

neighborhood. In this approach, also known as the gbest model, each particle has a 

global knowledge of all particles of the swarm [30]. Using one of these models is 

application dependent. In general, the local best approach has slow convergence rate 

unlike the gbest model which has high convergence rate that can trap the algorithm 

into a local minimum. 

In the original PSO, the velocity and position update equations are [30]: 

vid = vid+c1r1(pid−xid)  + c2r2 (pgd− xid )                                                            (2.5)  

Where r1 and r2 are random numbers uniformly distributed between 0 and ,1 

c1,c2 are the cognitive and social parameters. pid is the particle’s best position 

and pgd is the swarm’s best position [30].  

vid = Vmax  if vid>Vmax 
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vid = - Vmax if vid < -Vmax  

xid = xid + vid                              (2.6)  

In order to avoid large values for the velocities which cause the swarm to 

explode after several iterations, the particles’ velocities are clamped by setting a 

maximum velocity Vmax. Having a fixed value for Vmax is not applicable for all search 

spaces. Large search spaces require high values of Vmax allowing for adequate 

exploration of the search space. This is not the case for small search spaces which 

require small values of Vmax to avoid the swarm from exploding out of the feasible 

solution space.  

Incorrect choice of Vmax can lead to poor performance while there is no precise 

method for choosing a value for Vmax beyond trial and error. For this reason, the 

inertia weight w is introduced to replace Vmax and equation 2.5 becomes:  

vid = w.vid + c1.r1.(pid−xid) + c2.r2(pgd−xid )                                           (2.7) 

The inertia weight has an initial value greater than 1 to allow for more 

exploration of the search space. The inertia weigh then decreases reaching a value 

that allows for in detail exploration around the global optimum.  

In [31], a study for the choice of the inertia weight value was carried out. The 

authors concluded that the use of the inertia weight for controlling the velocity 

induces high efficiency of the PSO. A carefully chosen value of the inertia weight 

allows for providing a balance between the local exploitation and global exploration 

of the search space. Setting the inertia weight to a random value between [0, 1] is 
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better than setting the inertia to a maximum value and linearly decrease this value 

until it reaches zero. The linear decrease of the inertia weight can trap the in local 

minima instead of a global one.  

Another method for this adaptive search in the search space was the 

introduction of the Constriction Factor X which is defined by [31]: 

X = 
�

�	��	��������	�                                                                      (2.8)  

Where φ= c1+c2 

It was found that when φ<4, the convergence around the best fitness value is 

slow but not guaranteed. However, when φ> 4 the convergence is fast and is 

guaranteed. A typical value for X is around 0.7 which results when c1=c2=2, and the 

velocity equation becomes [31]: 

Vid = X * [ vid + c1.r1(pid − xid ) + c2r2(pgd  − xid ) ]                        (2.9)  

The initial number of particles has a great impact on the performance of the 

optimization technique. Small number of particles can lead to insufficient explorers 

resulting in local optima.  

On the other hand, a high number of particles leads to unnecessary processing 

degrading the performance of the optimization algorithm. Empirical results show that 

a number of 50 particles provides good results with many objective functions. In 

general 20-100 particles are usually acceptable [30].  
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2.2.4 PSO in Continuous Space   

Kennedy and Eberhart introduced in PSO 1995 [32]. They founded techniques 

to optimize continuous nonlinear mathematical functions. The ideas of this technique 

were obtained from social psychology, artificial intelligence, and swarming theory 

[32]. The algorithm simulates swarms of animals looking for foods like bird flocks 

and fish schools. This technique represents a problem by randomly created set of 

particles. These particles move in the search space observing the particle with best 

value for the objective function  

The i
th

 particle in the swarm is represented by a D- dimensional vector Xi = 

(xi1, xi2, …, xiD), the particle’ velocity Vi = (vi1, vi1,…,viD) and the particle’s best 

position denoted as Pi = (pi1, pi2, …, piD). The dynamics of the particle in the solution 

space is governed by the following equations [32]: 

V���� = x	[	w	V�� +	c�	r��� P�� − X��� + c�	r��� P&� − X���	]                (2.10) 

()*�� =	()* +	+)*��                                                                         (2.11) 

Where i ∈ [1, N] and N is the size of the swarm. 

The relative magnitude between  r1.c1 and r2.c2 determines whether the particle 

travels in the direction of  gBest or pBest. If the upper bound of r1.c1 is higher than the 

upper bound of r2.c2 , the particle benefits from the neighborhood experience more 

than its own experience.  

A. The PSO algorithm  

The algorithm of the PSO can be written as follows [33]: 
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“For each particle 

{ 

    Do   

    {  Initialize particle  } } 

Do 

{ 

For each particle  

{ 

Calculate the corresponding fitness value 

If the fitness value is better than the particle’s best fitness value 

Set the current P vector to the particle’s current X vector 

            } 

Choose the particle with the lowest fitness value and make it the global best position 

 

For each particle  

{ 

Calculate the particle’s velocity according to Eq.11 

Update the particle current position vector X 

            } 

 

} while maximum iteration or minimum error criteria is not attained” 

The algorithm starts by generating the swarm initialized particles. The 

position of each particle is calculated based on equations (2.10, 2.11). In each 

iteration, the particle compares between its current value for the position and its best 

position. If the current value is better than the previously calculated best position, the 

particle’s position is assigned to the current value. The swarm’s best particle is 

assigned to the particle with the best value for the objective function. The flow chart 

in Fig. 2.2 shows the PSO mode of operation.  

The advantage of the PSO is that it does not require tuning many parameters 

in order to get acceptable performance [34]. Furthermore, the parameters of the PSO 

are problem dependent and it is not trivial to find the best values for parameters. 
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B. Modifications to PSO 

In [30], a modification to the original PSO in [32] was presented. The 

modified PSO was applied in power system applications particularly in location and 

sizing of multiple STATCOM units in a power system. The goal was to find the best 

solution to improve the voltage profile of the power system at minimum cost. A 

comparison with the original PSO illustrated that the modification of velocity 

NO 

YES 

Initialize Particles 

Calculate the fitness for each 

particle 

Choose the particle with 

lowest fitness to be the global particle 

Calculate the velocity & 

position of each particle 

Error criteria met? 
END 

Figure  2.2: PSO mode of operation. 
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equations allowed the search process to be more efficient in obtaining the best 

feasible solutions. The enhancement was in a form of basic logic added to the 

particles thus facilitating the search in the solution space. The logic was defined by 

the rules [30]: 

“If the particle is not yet in the feasible space then its velocity is defined as: 

v (t) = wi vi (t −1) + c·r· [  pg – xi (t −1) ]                                     (2.12)  

This means that the particle should rely on its neighborhood to     get into the 

feasible space rather than on its current position. If none of the particles in the swarm 

are in the feasible space, the maximum velocity of each particle is set to a random 

number so that the particles move erratically in the search space trying to find one 

feasible particle. If the particle local best and the swarm’s global best are both 

feasible, then the original canonical PSO is applied”.  

Simulation results illustrated that the enhanced PSO suggested in [30] shown 

significant gains in the performance when comparing with the  canonical PSO, higher 

ability to pinpoint the feasible solutions and it found the optimal solution for the 

problem in hand.  

Another modification to the PSO called New PSO (NPSO) was addressed in 

[35]. The goal was to guide each particle in the swarm to move away from its 

previous worst position and the group’s worst position. The previous worst position 

of a particle is represented by P=( pi1, pi2, …, piD), the swarm’s worst position is g  

and the change in position is ∆Xi=(∆xi1, ∆xi2,…, ∆xiD). The velocity equations are 

similar to those of the original PSO: 
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∆Xid=∆Xid+c1r1(xid-pid)+c2r2(xid-pgd)                                               (2.13) 

xid = xid + ∆Xid                                                                                     (2.14) 

This modification to the PSO was tested on benchmark functions (i.e. The 

sphere, Griewank, Rastrigrin and Rosebrock ) that are used by many researchers. The 

results for specific settings of these functions were better than that of the PSO. The 

results also illustrated that this technique does not always outperforms the PSO and 

can be considered as a variation of the PSO instead of a better PSO algorithm.  

An efficient speedup strategy based on the introduction of an adaptive scaling 

term into the original PSO was presented in [36]. The parameter Vmax was multiplied 

by the scaling term (1 – (t/T)
h
), where t is the current generation number, h is a 

constant obtained from trial and error  and T is the maximum number of generations. 

The modified equations become:  

vid = (1 – (t/T)
h
) Vmax                           (2.16) 

if vid>(1 – (t/T)
h
) Vmax  

Vid = - (1 – (t/T)
h
) Vmax                           (2.17) 

if vid < -(1 – (t/T)
h
) Vmax 

This scaling term ((1 – (t/T)
h
) allows the algorithm to evolve with a 

descending searching scale. 

The modified PSO in [36] was tested on four well known benchmarks for 

PSO. The modification resulted in a considerably better convergence performance 

than PSO. The modified algorithm also added more control on the PSO which is 
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achieved by introducing the parameter h. This parameter is introduces  to control the 

speed of the searching scale. 

2.2.5 Binary PSO 

Many optimization problems that require a discrete ordering of discrete 

elements can be represented in the discrete or binary space. Scheduling and routing 

are examples of these problems.  In the continuous space, the trajectories of particles 

are adjusted based on information about the previous best performance. In the binary 

space, the trajectories are changed based on the probability that a certain coordinate 

will change to one or zero. In other words, a particle may be seen as moving nearer or 

father on the corners of a hypercube [37]. 

The velocity of the particle is defined as the hamming distance between the 

particle at time t and at time t+1 in the next iteration. This is represented in terms of 

probability changes that a certain bit will be zero or one. In general, vid, will represent 

the probability that a bit will be equal to 1.  

The PSO equations remain the same as equations (10, 11) except that pid and 

xid are integers in {0, 1}. Since the velocity is a probability, it will be in the [0, 1]. To 

achieve that, a logistic transformation S(vid, is used to limit the velocity to be in [0,1]. 

The transformation S can be the sigmoid function which is defined as:  

 	S(v�/) = 	 �
��01234                          (2.18)  

The resulting position change is defined based on the rule                                            
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xid = 51								R	 < 	9(:id)0								R		 ≥ 	S(vid)>                     (2.19) 

Where R is uniformly distributed random number between [0, 1]. 

While a higher value of Vmax  in the continuous space allows for more 

exploration of the search space, a lower value of Vmax is required initially to explore 

the search space. This value should be decreased gradually when the algorithm is 

about to converge to the optimal solution.  

A. Runtime Analysis of Binary PSO 

The analysis of the runtime for the evolutionary algorithm is getting more 

attention in the recent years. This kind of analysis is usually hard because the 

underlying probabilistic model of the swarm algorithm usually depends on a history 

of past solutions [38]. The first analysis for the Ant Colony optimization was carried 

out in [39, 40].  In 1997, Kennedy and Eberhart [37] introduced a binary version of 

the classical PSO. 

The lower bounds analysis of vmax illustrated that setting vmax to a constant 

value leads to better results only for problems with bounded sizes. However, this 

leads to dramatic performance decrease for problems with variable size. The authors 

proved that the probability that PSO finds the global optimal value when having at 

most 2
K
 global optima is equal to 2

-K
 where K is a positive constant. The upper bound 

of the binary PSO was found by setting the cognitive constant c1 =0. This means that 

each particle follows the leader of the swarm and ignores its best found solution [38].  
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B. Modifications to Binary PSO 

In [41], the authors studied the shortcomings of the original binary PSO 

proposed in [37]. Their work illustrated that no clear choice was made for the value of 

the inertia weight in the original binary PSO.  

The proposed algorithm in [42] interpreted the velocity in a different way than 

in [41]. The velocity is defined as the rate of change in the bits of the particle. The 

direction of change to one or to zero is maintained through the introduction of new 

vectors of velocity +�→ and +@→ for each particle. After these vectors are updated, the 

velocity change is obtained as in equation 2.18. The previous direction and previous 

state of each particle is also taken into account and provided better solutions.  

Another modification to the original binary PSO was introduced in [42]. In 

this work, the authors provided a better solution to the partner selection problem 

which is a critical issue in the research of the virtual enterprise. After presenting the 

optimization model, an improved version of the binary PSO was designed to decrease 

the probability of the algorithm falling into a local optimum and to enhance the search 

ability. The modification targeted the particle position equation such that the particle 

velocity is divided into three regions. The state of the particle being one, zero or 

unchanged is determined by the particle’s current region. The ranges of these regions 

change adaptively as the algorithm iterates to achieve global convergence. The 

velocity equation remains the same as in the original binary PSO, but the position 

equations became [42]:  
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If 0.5 – δ ≤  s(v�,C���)<0.5 + δ  then  x�,C���= x�,C�                                    (2.20)  

If s(v�,C���) ≤0.5- δ then x�,C���=0                                                                              (2.21) 

If s(v�,C���) ≤ 0.5+δ then	x�,C���= 1                                                                            (2.22) 

The value of δ is initially 0.5 and decrease gradually in each iteration. 

Equation 2.20 allows each particle to keep its own inertia and prevents particles from 

moving to the same position falling in a local optimum. The simulation results in [42] 

illustrated that the proposed algorithm provides better performance and has quick 

convergence abilities.  

The work in [43] addressed a special type of optimization problems when the 

solution is a set of integers in the discrete space. The target problem was the Sudoku 

puzzle and the modified PSO is called Integer PSO (IPSO). This algorithm uses the 

same velocity update equation as in the original binary PSO. The only difference is 

that instead of having one velocity in the N-dimensional search space, a separate 

velocity value for each variable is utilized. This means that each particle has N-

dimensional velocity vector and each of the variables’ velocity vectors is updated 

separately.  

The velocity vector is scaled by a modified version of the sigmoid function to 

a get a value between 0 and 1. The goal of this modification was to change the 

sigmoid function to get high probabilities for large positive and negative velocities. 

Hence, the sigmoid function was changed to [43] :  

SI(x) = 
�

��D1|F| − 1                             (2.23)  
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The proposed IPSO in [43] was compared with two other algorithms, the 

(µ + G) Evolutionary algorithm, and the original PSO algorithm. The IPSO was tested 

for 50 Sudoku puzzles of different levels of challenge. The algorithm outperformed 

the original PSO in all runs but was outperformed by the (µ + G) Evolutionary 

algorithm in some cases. 

Another modification to the original PSO was performed in [44]. The goal 

was to design an algorithm for gene selection and tumor classification. The 

modification was updating the next position such that 10% of the particles are forced 

to move away from the gbest to avoid falling in local optima. The new suggested 

position update equations were: 

If( 0 < viD ≤ a ), then xiD(new) = xiD(new)                                             (2.24) 

If( a < viD ≤ 
��H
�  ), then xiD(new) = piD(new)                                      (2.25) 

If(
	��H
� 	< viD ≤ 1  ), then xiD(new) = pgD(new)                                     (2.26) 

The experimental results in [45] illustrated that this modification increased the 

effectiveness of the search algorithm and presented a tool mining high dimensional 

data.  

The authors in [38] suggested an inertia weight equation that prevents the 

original PSO from getting immaturely trapped in a local optimum. The approach 

followed the evolutionary approaches to find a near optimal solution like Genatic 

Algorithms [14], Ant Colony Optimization [46] and Tapu Search [47]. The goal was 

to find a combined approach of the binary PSO with the K-nearest neighbor algorithm 

for the selection of features using logistic map. The suggested algorithm was called 
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the Chaotic Binary PSO (CBPSO). Chaos is a dynamic deterministic system that is 

sensitive to the assigned initial values. The suggested inertia weight equation that 

guarantees the global optimum results is [38]:  

w(t+1)  = 4.0*w(t)*(1-w(t))                                                         (2.27) 

Where w(t) ∈ (0,1) 

The experimental results in [38] illustrated that the new suggested inertia 

weight saves processing time compared to other methods in the literature. The results 

also revealed that the CBPSO with chaotic sequences achieves higher classification 

accuracy and reduces the number of features.   

2.2.6 PSO Network Applications 

PSO is applied in almost all disciplines of engineering. In this section we 

discuss the usage of PSO in computer network related applications. PSO was used in  

[48] to solve the problem of selecting the neighboring peers in a P2P network. In this 

kind of problems, performance and search efficiency are highly influenced by the 

topology of the network. Many P2P systems were built not only to share multimedia 

files between uses, but also for the public welfare like supplying a power for the 

process of fighting cancer. Any P2P system consists of peers and some connection 

between these peers. The key point for having efficient and high performance system 

is to define how these peers are connected. 

 Finding such a definition for these connections is challenging because of the 

dynamic membership of the peers in the network. Hence, a continuing reorganization 
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of the network topology is required all the time[48]. An efficient strategy for neighbor 

selection was proposed in  [49]and was based on the Genetic Algorithm approach. 

Another application of PSO in networks was performed in [50]. The goal was 

to study the usage of PSO in the design of a network infrastructure including 

decisions concerning the locations and sizes of the links. The optimization aimed to 

minimize the average packet delay in the network and the network layout cost [50]. 

The network design problem is considered NP-Hard so it was targeted using 

meta-heuristic techniques such as tabu search, simulated annealing and evolutionary 

computing [51, 52]. The solution to this problem is usually not optimal since it 

involves the optimization of several contradicting objectives such as network 

deployment, average delay or throughput subject to constraints like bandwidth and 

reliability [50].  

A solution to the Shortest Path Problem (SPP) in networks was introduced in 

[53]. The shortest path calculation is one of the main problems in graph theory and 

finding a polynomial solution for such problem is known to be impossible. Finding a 

feasible solution for this problem is considered the basis for many applications like 

routing in communications networks, sequence alignment in molecular biology, robot 

motion planning, and many other applications [53]. 

The SPP was targeted by many approaches like Artificial Neural Networks 

(ANN) [54], Tabu Search  [55] and Genetic Algorithms[13]. ANN weren’t used on 

large scale for this kind of problem because the hardware complexity increases with 

the size of the network and ANNs do not provide sub-optimal path like the meta-
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heuristic approaches. This was the reason for moving toward the evolutionary 

approaches like GA and TS. These two approaches gave better results than the ANN 

but when compared to PSO, the later outperformed them in terms of success rate, 

computation complexity and solution quality [53]. 

Along with PSO which was used in [53] to solve the SPP, additional noising 

mechanisms [56] were used to improve the local search quality around any local by 

using a diversification mechanism to discover near optimal points. The main issue in 

using PSO in SPP is the way a particle is encoded. A representation scheme called 

cost-priority-based was used in [54] to encode the particle based on node priorities. 

The goal was to compare the performance of PSO with two variants of GA based 

approaches. The results illustrated that PSO outperforms the GA for all configurations 

of the network in terms of speed and solution quality  [53].  

A modification on PSO called Trained PSO (TPSO) was presented in [57]. 

This approach distributed particles to reduce computational overhead and traffic in 

the optimization process and was applied in an Ad-Hoc network. The optimization 

goal was to find the node with the highest processing load in the network. To reduce 

the overhead of particles moving across the Ad-Hoc network, the original PSO was 

improved by changing the parameters of PSO (w and P) according to the system 

requirements using a training system [57]. The simulation results in [57] illustrated 

that the convergence time of TPSO is about to be constant. 

PSO was used in [58] to design an algorithm for power consumption 

minimization in Ad-Hoc networks. In this type of networks, the power supply for the 
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mobile node is limited by the battery capacity. Hence it is necessary to develop a 

power minimization algorithm for enhancing the throughput to determine power level 

assignment and neighbor selection [58]. 

A solution to this problem is achieved by scheduling the node to enter into a 

sleep mode which will decrease the total power consumption. Another approach 

called power control [59] reduces the power consumption by adjusting the power 

level for each frame to be sent based on the perceived Ad-Hoc network status.  The 

simulation results carried out in illustrated that the suggested power saving algorithm 

based on PS outperform all other existing algorithms. 

2.3 Pedestrian Dead-Reckoning (PDR) 

The fast advancement in manufacturing mobile devices that are equipped with 

built in positioning features stimulated the development of Location Based services 

(LBS) [1]. These services allowed various users to sopt their location within their 

environment. Many technologies are already available to develop these services like 

Wi-Fi [2, 3], UWB [5] and AoA based systems [4]. In our work we utilize low cost 

MEMS sensors along with TDoA based sensors to perform PDR. 

The conventional approaches for PDR determine the position of a moving 

object by integrating the accelerometer and gyroscope signals [9, 10] . A heading 

sensor is used to determine the attitude of the object like a digital compass. Using 

signals from these technologies alone is susceptible to error due to inherent 

instrumental errors and environmental disturbances.  
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Experimental results in [60] illustrated that double integration of 

accelerometer signal produces fast growing position error overtime. To overcome this 

problem, many zero-velocity-update (ZUPT) based techniques were introduced in 

shoe-mounted systems in support of PDR. For example, both approaches in [9] and 

[10] proposed accelerometer calibration during the zero-phase velocity for each step.  

A waist-worn IMU comprised of accelerometer, gyroscope and a 

magnetometer was proposed in [61] to perform PDR. A quaternion-based Extended 

Kalman Filter (EKF) was used to estimate the magnetic disturbances and correct 

them. The experimental results illustrated that a relative distance error of 3% to 8% 

can be achieved. However, such systems require sophisticated techniques for 

navigation. This is due to the difficulty to obtain zero-velocity points from the pelvis 

as in shoe-mounted DPR systems.  

An alternative to using MEMS based accelerometers and gyroscopes is the 

system called monocular Simultaneous Localization and Mapping (SLAM) [62]. In 

SLAM, a local visual map of a region is captured by a mono-vision camera and is 

processed by applying image processing techniques [63]. Visual mono-SLAM 

provided precise estimation of the camera pose related to fixed features in the 

environment. The generated map is registered in the global virtual map if there exists 

an absolute positioning system (e.g., GPS). However, this makes SLAM work only in 

outdoor environments. 
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2.4 Data Fusion in Support of Indoor Localization 

The majority of tracking applications is based on triangulation and literation 

techniques using light [64, 65], ultrasound [66, 67], or radio signals [2, 68-70]. Other 

techniques use inertial navigation to provide relative object location detection [71, 

72]. Unfortunately, these techniques suffer from drifting and error accumulation 

resulting from noisy data integration over time, which requires continuous and 

periodic system calibration to reset the system state.  

Available systems with different configurations and accuracies are currently 

being used worldwide.Microsoft Research’s WaveLAN system [73] AT&T 

Cambridge Ultrasonic Bats [64], Active Badges [74], Radio tags, Computer vision 

systems [75], are examples of such systems. Data fusion for data observed from 

wireless LANs, Ultra Wide Band (UWB), Infrared (IR), Ultrasound, camera images 

and Inertial Measurement Units (IMUs) were fused by multiple data fusion 

techniques to provide more precise and robust localization systems [18-22].  

Data fusion between IMU data and WLAN signal was proposed in [3]. 

Pedestrian tracking was achieved by the integration of sensor data from low-cost 

MicroElectroMechanical Systems (MEMS) accelerometer, WLAN and building map 

information. To avoid the error due to sensor noise, the zero-crossing algorithm was 

used to estimate the walking distance. The Sequential Importance Re-sampling 

Particle Filter (SIRPF) was used to perform data fusion. Simulation and real walking 

tests illustrated improved localization performance compared to Kalman Filtering in 
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terms of mean error and standard deviation. Using IMUs in localization requires 

periodic system calibration due to inherent drifting aspects of the accelerometers. 

Sensor fusion between IMU and camera images using the Extended Kalman 

Filter (EKF) was proposed in [76, 77]. A wearable Augmented Reality (AR) system 

was mounted on a helmet. It is comprised of a real-time 3D visualization system 

comprised of a stereo see-through Head Mounted Display (HMD) and a real-time 

tracking system, composed of an Inertial Measurement Unit (IMU) and a camera. 

Sensor fusion used vision-based values in the correction step and inertial 

measurements in the prediction step. 

A motion capture (MoCap) system fuses data obtained from gyroscopes,  

accelerometers and acoustic sensors by an EKF was presented in [78]. The ultrasonic 

system provides relative distances across sensors. However, this MoCap system does 

not obtain absolute positioning of users in the environment since it only provides 

relative distances. An improvement to this system was presented in [79] by 

introducing an UWB localization system.  

Kalman filter is used in most of the data fusion techniques. Its main the linear 

model assumption can be hardly fulfilled in real systems. Unscented Kalman Filter 

(UKF) [80] and Extended Kalman Filter (EKF) [19, 20] were proposed to solve the 

non-linearity problem by linearizing all the non-linear models. These filters are 

reliable only for almost-linear systems. Distributed information is impossible to be 

included for tracking by UKF or EKF. An alternative to Kalman filter, Particle Filter 

(PF) is getting more attention recently [81]. 
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In this work, we present a novel approach for performing data fusion between 

multiple sensor technologies including accelerometers, gyroscopes, Wi-Fi, and Time 

Difference of Arrival (TDoA) sensors to achieve precise localization in indoor 

environments. The proposed Inertial Navigation System (INS) is comprised of tri-

axial accelerometer, gyroscope and an MIT Cricket system for gyroscope drift 

correction. The INS system provides the distance that the moving object travelled and 

the direction of that distance. 

2.5 Data Fusion in Support of Outdoor Localization 

Many surveillance and tracking applications rely completely on the 

knowledge of the position of objects in the environment. These applications provide 

an innovative automation layer called automatic object location detection. Real world 

applications using this automation process are numerous. Location detection of 

personnel or medical equipment inside a hospital, inventory tracking in warehouses, 

moving assets inside a store, location detection of firemen inside a burning building,  

intelligent guidance, location-aware multimedia services are examples of these 

applications [6-8]. 

The Extended Kalman Filter (EKF) was used in [79] to perform fusion 

between inertial motion MoCap system and an Ultra Wide Band (UWB) localization 

system. The MoCap registered the movements of the operator’s limbs accurately but 

gave inaccurate results for the global object position. To obtain more precise position 

measurements, an UWB localization system is used along with MoCap [79].  



34 

 

Outdoor localization of robots was carried out in [82]. An enhanced 3-D 

navigation system was described using KF. The system integrates odometry obtained 

from Reduced Inertial Sensor System (RISS) comprised of three accelerometers and 

one Gyroscope, wheel encoders and GPS. The experimental results illustrated that 

during GPS outages, KF with velocity update obtained from the forward speed of 

wheel encoders is an acceptable method localization errors reduction. The results 

illustrated that the KF with RISS and velocity updates in GPS outages achieves huge 

enhancement over KF with full IMU without any updates. 

Particle filter (PF) was used in [83] to combine sensor data from UWB with 

GPS to achieve localization both indoor and outdoor. The test was performed on a 

robot mounted with an UWB antenna and a GPS receiver. The location error was 

small as the robots moves inside a building were only UWB beacons were available. 

This error accumulates up to few meters as the robot moves away from the UWB 

beacons and GPS coverage only is available. 

 Finally, Covariance Intersection (CI) which is a generalization of the Kalman 

Filter is used in [84] to perform the fusion of data coming from a wireless 

pyroelectric sensory system embedded with traditional fire detector and wireless LAN 

signals. The maximum mean error of Received Signal Strength (RSS) was near 19% 

and the maximum mean distance error from the pyroelectric measurements was near 

14%. Using the CI the distance mean error achieved was below 9%.  
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CHAPTER 3  

PEDESTRIAN DEAD-RECKONING 

3.1 Introduction 

Precise and robust localization of humans is one of the most demanding 

challenges that researchers face these days. GPS provides a perfect solution in open 

areas with acceptable localization accuracy. However, in indoor environments where 

GPS service is almost denied, dead reckoning algorithms that utilize low cost sensors 

provide alternative solutions for such environments. In this work, we use low cost 

MEMS (accelerometer and gyroscope) sensors to achieve Pedestrian Dead Reckoning 

(PDR) based on the zero-velocity update (ZUPT) strategy. We also propose a novel 

drift correction mechanism using a TDoA technology; the MIT Cricket. 

3.2 Step Detection  

A Triaxial accelerometer mounted on the foot of the pedestrian can be used to 

detect the step length. Fig. 3.1 shows the total acceleration signal from a foot-

mounted accelerometer. When the foot is in stable contact with the ground, the 

accelerometer measures around 1g (9.8m/s
2
). This means that during this time, the 

only force acting on the accelerometer is gravity force. This observation is used to 

detect the pedestrian step.  
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Figure  3.1:IMU acceleration signal. 

 

3.2.1 Flip-Flop Filter 

This filter consists of two Exponentially Weighted Moving Average (EWMA) 

filters. The first one is agile with a gain of 0.1 and the second one is stable with a gain 

of 0.9. The general equation of such filters is of the form:  

Et = α Et-1 + (1-α) Ot                                                   (3.1)  

Where Et is the smoothed estimation at time t, Et-1 is the flip-flop filter output 

at time t-1, Ot is the observed signal value at time t and α is the filter gain which 

determines the reactivity to the input signal. If the gain is large, the EWMA filter will 

be less sensitive to the input signal and the old input values will dominate in 

calculating the current estimate. If the gain is small, the filter will be sensitive to the 

current observation and history will have less effect on the filter estimate.  
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3.2.2 Symbolic Representation of Accelerometer Signal 

In our work, the output of the Flip-Flop filter (Et) is represented as an infinite 

string of symbols. “R” means that the estimated filter output represents a “Resting 

Foot” with the corresponding Et is between 0.9g and 1.1g. All other values for Et are 

represented by the symbol “M” meaning that he foot is in Moving state. For example, 

the signal in Fig. 3.1 has the symbolic representation shown in Fig. 3.2:  

 

Figure  3.2: Mapping of the acceleration signal to symbolic string. 

The sampling rate of the accelerometer is 50Hz. This means that every 20 

milliseconds a sample is acquired from the accelerometer. The step time can be 

determined by multiplying the number of M symbols in the signal string (before an R 

is observed) by 20 milliseconds. Fig. 3.3 shows our signal processing approach and 

the flow char of the flip-flop filter [85]. 
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3.3 Pedestrian Dead-Reckoning (PDR) 

Dead-Reckoning is the process of tracking an object’s 

previously calculated position and updating this position based on speeds 

over time. Our Inertial Navigation System (INS) is comprised of tri

accelerometer, gyroscope and an MIT Cricket system for gyroscope drift correction.  

In this section, we present our app

background and then our approach for dead

Figure 
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Reckoning (PDR)  

Reckoning is the process of tracking an object’s location

position and updating this position based on speeds 

time. Our Inertial Navigation System (INS) is comprised of tri

accelerometer, gyroscope and an MIT Cricket system for gyroscope drift correction.  

In this section, we present our approach for PDR by starting from the theoretical 

background and then our approach for dead-reckoning. 

Figure  3.3: Accelerometer signal processing. 

location based on a 

position and updating this position based on speeds estimated 

time. Our Inertial Navigation System (INS) is comprised of tri-axial 

accelerometer, gyroscope and an MIT Cricket system for gyroscope drift correction.  

roach for PDR by starting from the theoretical 
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3.3.1 Acceleration, Velocity and Distance Relations 

The estimated acceleration samples are double integrated over time to get the 

step size in meters. Only samples of type M are integrated since they symbolize real 

foot motion while samples of type R represent noise while the foot is resting and 

should be neglected in the integration process. 

  The attitude of the IMU relative to the global frame of reference can be 

tracked by integrating the angular velocity signal of the body frame ωb(t)=( ωbx(t), 

ωby(t), ωbz(t) ) acquired from the gyroscope. Quaternion, Euler’s Angles and 

Direction Cosines can be used to represent the orientation of the IMU. In this 

approach we use the direction cosines for orientation representation which is 

specified by a 3-by-3 rotation matrix C.  Each column of C represents a unit vector in 

the body axis projected along the global frame.  

C =      

IJIK IJLK −LJ
LMLJIK − IMLK LMLJLK + IMIK LMIJ
IMLJIK + LMLK IMLJLK − LMLK IMIJ

                               (3.2) 

Where s* and c* are the sine and cosine respectively. 

The element in the j
th

 column and i
th

 row is the cosine of the angle between 

the j
th

-axis of the body frame and the i
th

-axis of the reference frame [86] and (M, J, K) 

are the Euler angles (roll, pitch, yaw), respectively. A vector quantity Vb in the body 

frame is equivalent to:  

Vg = CVb                                                                       (3.3) 
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Where Vg is represented in the global frame of reference. To track the attitude of the 

IMU, the C matrix must be updated through time. The rate of change in C at time t is 

given by:  

N(O)P = limST→@	 U(T�ST)�U(T)ST                                                               (3.4)  

From equation 3.4, the rotation matrix C(t+∆t) can be written as:  

C(t+∆t) = C(t) ( I + 
V)WX
X  B + 

��YZVX
X�  B

2
 )                                            (3.5) 

Where:  

B =    

0 −ω[\]O ω[^]O
ω[\]O 0 −ω[_]O−ω[^]O ω[_]O 0

                                                  (3.6) 

`b =( ωbx(t), ωby(t), ωbz(t) )
T
                                                                         (3.7) 

a =	| ∆tωb|                             (3.8) 

A complete derivation of equation 3.5 can be found in [87]. 

To track the IMU position, acceleration data is integrated to get the velocity 

vector which is then integrated to get the position of the IMU. Before integrating the 

3-dimentional accelerometer vector ab(t) = ( abx (t), aby (t), abz (t)  ), it must be 

projected on the global frame of reference using the rotation matrix C [87]: 

ag (t) = C(t) ab(t)                                                           (3.9) 

Fig. 3.4 shows how the gravity is compensated from the accelerometer signal 

using the gyroscope and the rotation matrix 

. 
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Figure  3.4: Gravity compensation from the accelerometer signal. 

After projecting the acceleration signal from the body frame of reference to 

the global frame of reference, it is possible to compensate for the acceleration due to 

gravity by subtracting the gravity acceleration vector G = (0,0,g) from ag(t). The 

resulting acceleration is then integrated to get the IMU velocity:  

vg (t) = vg_initital + b cd(O) − 	e	fOT
@                                      (3.10) 

Where vg_initital is the initial velocity of the IMU. The new position of the IMU is 

computed by integrating the velocity vector vg(t) :  

pg(t) = pg_initial + b gd(O)	fOT
@                                     (3.11) 

Where pg_initital is the initial position of the IMU. 
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3.3.2 Accelerometer and Gyroscope Error Characteristics   

Accelerometer and gyroscope signals suffer from various types of noise that 

should be filtered out before being utilized in position tracking. In [87], the authors 

summarize the various types of noise that affect both gyroscopes and accelerometers:  

1) Constant bias: Despite of being stationary, gyroscope and accelerometer 

output a signal that has an average called the bias (b). If this bias is integrated over 

time, it will cause an angular error of b*t and a position error of	[T�� . This bias must be 

subtracted from all subsequent samples of the device. 

           2) Thermo-Mechanical White Noise: this noise fluctuates by a rate greater than 

sensor’s sampling rate which causes a white noise affecting the samples obtained 

from the sensor. This noise causes an angle random walk with standard deviation of  

σ√O. ]O  and a position error with a standard deviation of σ.Oj �⁄ .�]O 3⁄ . 

3) Other types of noise like bias instability, calibration, and temperature 

effects. These types minimally affect the position and angular estimation compared 

with the first two types of noise. 

3.3.3 Time Difference of Arrival (TDoA) Background  

To overcome the accelerometer and gyroscope error characteristics described 

above, the distance obtained from the accelerometer is corrected by using a Time 

Difference of Arrival (TDoA) technology like the MIT Cricket [88]. 
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In its basic design form, Cricket is comprised of beacons attached to the 

ceiling of a building, and listeners attached to the tracked object. The beacons 

periodically broadcast their location information in an RF message and 

simultaneously transmit an ultrasonic (US) pulse. The listeners receive these signals 

and measure the distances from close by beacons based on the difference in the time 

of arrival between the RF and US signals and accordingly estimate their relative 

location. This architecture allows for scalable system and preserves user privacy [88]. 

 In Cricket, beacon-to-listener distance computation is achieved using TDoA 

between the RF and US signals. Since the velocity of the RF signal (speed of light) is 

much higher than that of the US (speed of sound), the listener measures the time 

interval ∆T between the start of the RF signal and the arrival of the US signal. The 

distance between the beacon and the listener is then computed by:    

∆T = 
m
nop-

m
nqr                                                        (3.12) 

At normal room temperature, the speed of sound, VUS = 344 m/s and the speed 

of light, VRF = 3*10
8
 m/s. Since VRF≫ VUS, equation 3.12 becomes: 

D ≈ ∆T * VRF                                                         (3.13) 

The major disadvantage of using Cricket in localization is that is requires a 

Line of Sight (LoS) between the beacon and the listener. We overcome this drawback 

in the Cricket by mounting the beacon and the listener on the feet of the pedestrian as 

shown in Fig. 3.5. This installation of the beacon and listener solves the LoS problem. 

It also provides more distance accuracy since the Cricket system has an accuracy of 1 
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cm if the distance between the beacon and the listener is less than 3.5m [89]. This is 

apparently always the case in our Cricket system installation as presented in Fig 3. 5. 

Since the Cricket subsystem provides absolute distance information, this 

information will be used to correct the noisy distances provided by the accelerometer 

due to drift.  

 

Figure  3.5: Installation of Cricket beacon and listener in support of PDR. 
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3.3.4 Our Approach for PDR 

Accelerometer bias can be removed by calibrating the accelerometer while the 

IMU is momentarily stationary and averaging the output signal to get the bias. For 

gyroscope, the bias changes with time and the gyroscope needs to be calibrated 

whenever possible to remove the bias and other sources of noise. In our approach, we 

calibrate the gyroscope when the foot is in contact with the ground (i.e. while the 

accelerometer symbolic signal output is of type R).   

The gyroscope bias bg=(bgx,bgy,bgz) is estimated each time the foot is in contact 

with the ground by comparing the estimated distance resulting from the acceleration 

signal integration (Eda)with the observed accurate distance from the Cricket motes 

(dc).  

Our approach for PDR is summarized by the following navigation steps:  

1) Initialize the rotation matrix C(t) = I 

      i. The initial position of the IMU is P(0) = (x0, y0, z0) 

     ii. Start = the time at which first “M” is received 

     iii. End = the time at which first “R”  is received 

2) If the accelerometer signal stream is of type R, calibrate the gyroscope: 

End = current time  

  ii. Use Particle Swarm Optimization (PSO) to solve the unconstrained     

optimization    problem: 
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Minimize  

| [fY� – [ [Px(End) - Px(Start) ]
2
 + [Py(End) – Py(Start) ]

2
 +[Pz(End) – Pz(Start) 

]
2
] | 

Where P(End) is the position of the IMU at time t = End and P(Start) is the 

position of the IMU at time t = Start. The output of this minimization problem 

is the gyroscope bias vector bg that will be removed from all gyroscope 

samples.  

3) If the accelerometer signal stream is of type M:  

i. Start = Current time 

ii. Update C(t+∆t) in equation 3.5 using the gyroscope signal ωb(t)=( 

ωbx(t), ωby(t), ωbz(t) ) and the gyro bias bg=(bgx,bgy,bgz) found from the 

previous step by substituting  Wb(t) = ωb(t) - bg  in equations 3.6-3.8. 

iii. Find ag (t), vg (t), pg(t) using equations 3.9-3.11 

       iv. From equation 3.11, the new position of the IMU   is:  

              P (t+∆t)  = P(t)+ 
∆t�	.uv(t)

�  

3.4 Simulation Setup 

In our work, we used IMUSim [90] as our simulation environment. IMUSim 

simulates sensor readings based on continuous trajectory models, and shows how 

suitable models can be generated from existing motion captures or other sampled data 

[18].  
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The input to IMUSim is a motion capture file [91] that describes the motion 

trajectories of a moving subject. The output can be chosen to be the accelerometer, 

gyroscope or magnetometer signals from the IMUs attached to the body parts of the 

moving subject. In our work, we utilized signals from an IMU attached to the right 

foot of the pedestrian. IMUSim has several types of IMUs . We used an ideal IMU 

and added white noise and constant gyroscope drift during each walking step of the 

moving pedestrian. We used MIT Cricket to correct this drift as described in the 

previous sections. The accuracy of the MIT Cricket is assumed to be 1 cm [88]. 

3.5 Results and Discussion 

 In this section, we illustrate how our novel drift correction approach works 

based on TDoA technology. Fig. 3.6 shows the position of an IMU attached to the 

right foot of a pedestrian starting at position (0, 0, 0). The figure represents the ideal 

position in x, y and z dimensions. This acts as a baseline of comparison with our 

proposed approach. This figure shows two steps of the pedestrian as apparent in the 

x-dimension from the figure.   
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Figure  3.6: The ideal position obtained from double integrating 

acceleration signal from IMUSim. 

A drift [dx, dy, dz] is added to the filtered gyroscope signal and the resulting 

signal is used in equation 3.9 to rotate the accelerometer signal vector. Fig. 3.7 shows 

the resulting position after integrating the accelerometer signal using the drifty 

gyroscope signal.  

Our TDoA drift correction approach was able to remove high percentage of 

the drift in the gyroscope signal. Fig. 3.8 shows the IMU position after drift removal 

which is very close to the ideal position shown in Fig. 3.6. Fig. 3.9 shows the x-axis 

position of the IMU for the ideal, drifty and corrected gyroscope signals. Fig. 3.10 

shows the amount of drift added on the x, y, z axes and the remaining drift in the 

signal after correction. About 85% of the added drift was removed using our drift 

correction approach. 
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Figure  3.7: The position obtained from double integrating accelerometer 

and drifty gyroscope signals. 

 

 

Figure  3.8: The position obtained from double integrating accelerometer 

and corrected gyroscope signals. 

Another experiment that we conducted is for a pedestrian moving forward and 

going back to the initial position is shown in Fig. 3.11. The figure shows the position 

on the x-axis for ideal, drifty and corrected gyroscope signals. The amount of the drift 

added is shown in Fig. 3.12. The figure shows both the added and the remaining drift 
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in the gyroscope signal. On average about 95% of the added bias was removed using 

our drift correction approach. 

 

Figure  3.9: The x- axis position obtained from ideal, drifty and corrected 

gyroscope signals. 

 

 

Figure  3.10: The added and remaining drift after correction of the 

gyroscope signal. 
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Figure  3.11: The x-axis position obtained from ideal, drifty and corrected 

gyroscope signals. 

 

Figure  3.12: The added and remaining drift after correction of the 

gyroscope signal. 
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CHAPTER 4  

DATA FUSION IN SUPPORT OF INDOOR LOCALIZATION 

4.1 Introduction  

Indoor localization with a significant degree of precision is extremely 

challenging. In this chapter, we present a precise indoor localization approach based 

on novel particle filter and dynamic exclusion techniques.  The approach is compared 

with the Euclidian Distance probabilistic methods used for localization. The novelty 

of the proposed approach stems from its ability to fuse data collected from different 

sensor technologies to converge to more accurate distance estimation. Furthermore, 

the proposed approach is a pattern-based one that relies on empirical training data as 

opposed to closed-form mathematical models. 

4.2 Background 

Location fingerprints is an offline collection of features collected from the 

localization network. Location fingerprinting refers to the process of matching the 

fingerprint of a signal characteristic that is location dependent. This can be done in 

two stages [92]: 

1) Offline: in this stage, a site survey is performed to collect a known location 

coordinates/tags with their respective signal strengths from nearby LPAM 

radio base stations. These measurements are stored in a location fingerprint 

database to be used in the online stage. 
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2) Online: during this stage, the localization technique uses the offline data 

stored in the location fingerprint database along with the online Received 

Signal Strength Indicator (RSSI) measurements to estimate the object 

position. The main challenge for this technique is that the signal strength is 

affected by diffraction, reflection and scattering in indoor environments [93].  

 The location fingerprints database contains N fingerprints with each location 

fingerprint representing the RSSI measurements observed from M nearby access 

points. The database structure is shown in Table 4.1. The table has two columns, the 

RSSI measurements vector and the corresponding location ID at which these RSSI 

measurements are observed. A location fingerprint FPi at location i can be 

represented by: FPi= {RSSI�xyz, RSSI�xyz, RSSIjxyz, … , RSSI{xyz}. 

Table  4-1: The fingerprint database structure. 

 

 

 

 

 

By using the Euclidian Distance (EUC) technique, the object localization is 

treated as a classification problem. Given N location fingerprints and an online RSSI 

vector (S) for the moving target T, where S = {RSSI�|, RSSI�|, RSSIj|, … , RSSI}| }, the 

Euclidian distance between S and FPi is given by [92]: 

Fingerprint Location 

FP1= {~99�����, ~99�����, ~99�j���, … , ~99�}���} ���� = (X1,Y1) 

FP2= {~99�����, ~99�����, ~99�j���, … , ~99�}���} ���� = (X2,Y2) 

… … 

FPN= {~99�����, ~99�����, ~99�j���, … , ~99�}���} ���� = (XN,YN) 
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���z|  = �∑ �~99����z − ~99��|�
�}���                                    (4.1) 

 Where M is the number of access points. The probability that the object is near 

fingerprint FPi given the measured RSSI vector S is given by: 

P(FPi|S) =  
�

mr�z� 	                                                           (4.2) 

Then the location decision rule becomes [93]: 

Choose  if P(FPi |S) > P(FPj |S),  where  is the location of FPi, for∀  i, j = 1, 2, 3, . . . 

, N,  j  i.  

Assuming that the probability that the tracked object is at location �)��  is 

given by P(�)��) and assuming that P(L)xy) = P(L�xy) for i, j = 1, 2, 3, . . . , N,  j ≠ i. 

Using Bayes’ theorem we have the following formula that is based on the likelihood 

that P(S|FPi) is the probability that the signal strength is S provided that the tracked 

object is at location �)��: 

Choose �)�� if  P(S|FPi) > P(S|FPj), for ∀	i, j = 1, 2, 3, . . . , N;  j ≠ i. 

Based on the fact that the measuring units in the localization area are 

independent, the overall likelihood of the target location can be calculated from the 

collected signal strengths during the online phase. Hence, the tracked object location 

can be estimated using the previous rule. However, this can be applied only for 

discrete location candidates. In reality, the tracked object can be at any position in the 

network and not only at discrete locations. Thus, the location LT of the tracked object 
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can be interpolated by a weighted average of the locations of all location fingerprints 

in the database using the equation: 

LT(x,y) =  ∑ �(��) 	|9)�)��(�, �)�)��                                         (4.3) 

Where x,y are the coordinates of FPi .     

The following provides the Pseudo code for the EUC approach for indoor 

localization: 

N : Number of location fingerprints 

M : Number of access points 

D: distance between a location fingerprint and the tracked object. 

FPw : Weight assigned to a given fingerprint  

W : Summation of all location fingerprint weights 

F = Multiplication factor 

S : The current RSSI vector for the tracked object 

LT: Estimated location of the tracked object expressed by LTx, LTy  

���z : Location of fingerprint i expressed by �_��z  and  ��̂�z 
LTx=0  LTy=0   W=0 

For i = 1 To N  

Compute Di using equation (4.1) 

FPwi = 
�
mz  

W=W+FPwi 

   End For 

   F = 1/ W 

For i = 1 To N  

 �(��) 	|9) = F * FPwi 

LTx= LTx + �(��) 	|9) * �_��z 
LTy= LTy +  �(��) 	|9) * ��̂�z 
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End For 

A static location fingerprint exclusion technique was demonstrated in 

RADAR [2] using the K-Nearest Neighbors (KNN) algorithm. The idea behind this 

approach is that only a specific set of location fingerprints are used in the location 

estimation. Only K nearby fingerprints contribute to location estimation based on 

their RSSI distance from the tracked object.  

The results in [2] shown that a small value of K induces higher location error. 

The error becomes smaller as more nearby location fingerprints are added to the set of 

the contributing location fingerprints. Adding further location fingerprints increases 

the location error again. The drawback of this approach lies in the difficulty to 

determine the value of K that offers minimum location error for a certain localization 

environment.  

In this research, the performance of the proposed localization technique using 

Budgeted Dynamic Exclusion (BDE) is compared with existing approaches using the 

Euclidian Distance methods. Further localization accuracy is achieved by fusing INS 

data with RSSI measurements using the particle filter. 

4.3 Proposed Approach 

In the EUC approach, the weight of a given location fingerprint in estimating 

the tracked object location completely depends on the RSSI differences between the 

location fingerprint and the tracked object. All access points are involved in 

computing the RSSI distance between a specific location fingerprint and the RSSI 

vector of the tracked object according to equation 4.1.   
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The proposed approach aims to identify the outlier access points and exclude 

them from the position estimation process to gain more localization accuracy.  

Further localization accuracy is gained by fusing the RSSI data with data from the 

INS using the Particle Filter. The following sections discuss the proposed indoor 

localization in detail. 

4.3.1 Budgeted Dynamic Exclusion (BDE) Heuristic in Support of Indoor    

……..Localization 

 

In the BDE heuristic, we aim to exclude the RSSI values from the outlier 

access points while computing the distance between an RSSI vector retrieved from 

the location fingerprint database and the RSSI vector measured by the tracked object. 

This is done by comparing the RSSI value from the j
th

 access point in the i
th

 location 

fingerprint with the corresponding RSSI value	(~99����z) from the j
th

 access point in 

the RSSI vector of the tracked object. If the difference between these two RSSI 

values is less than certain budget, the corresponding access point (the j
th

 access point) 

will be excluded from the RSSI distance measurement process (equation 4.1). 

 If the tracked object is close to a certain location fingerprint, the 

corresponding RSSI values on both of them are most likely less than the budget. 

Hence, more access points will not be involved in equation 4.1 and consequently that 

location fingerprint will have more weight in the location estimation process 

according to equations 4.1 and 4.2. This means that only RSSI values from non-
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outlier access points which conform to the budget constraints are involved in the 

location estimation process. 

BDE starts with small value for the budget, (i.e 5%) and computes the 

Euclidian Distance from all access points in a location fingerprint. A new distance is 

calculated based on the criteria described above. If the change in the new calculated 

distance compared with the previously computed Euclidian Distance is also greater 

than the budget, we increase the budget to achieve more access point exclusion. 

Otherwise, the system returns the last distance as the distance between the current 

fingerprint’s RSSI vector and the tracked object’s RSSI vector. This process is further 

described in the following steps: 

The following provides the Pseudo code for the BDE approach for indoor 

localization: 

N : Number of fingerprints 

M : Number of access points 

D: distance between a fingerprint and the tracked object. 

FPw : Weight assigned to a given fingerprint  

W : Summation of all fingerprint weights 

F = Multiplication factor 

S : The current RSSI vector for the tracked object 

LT: Estimated location of the tracked object expressed by LTx, LTy  

���z : Location of fingerprint i expressed by �_��z  and  ��̂�z  
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LTx=0  LTy=0   W=0 

For i = 1 To N  

Compute Di from equation (4.1) 

For budget = 5% To 25% StepBy 5% 

   For j=1 To M 

          If ( ~99����z  - ~99��| )/ ~99����z  > budget 

        D = D + ( ~99����z  - ~99��| )
2 

          End if  

   End For  

If (D-Di)/Di > budget 

Budget = budget+5% 

Else  

 Di = D  

D=0 

Break 

End if 

End For 

FPwi = 
�
mz  

W=W+FPwi 

End For 

F = 1/ W 

For i = 1 To N  

 �(���	|9) = F * FPwi 

LTx= LTx + �(���	|9) * �_��z 
LTy= LTy +  �(���	|9) * ��̂�z 
End For 

 

4.3.2 Particle Filter Application in Support of Indoor Localization 

In addition to the Sequential Monte Carlo (SMC) nature of estimation, the PF 

allows for flexible design and parallel implementation. The main advantage of the PF 

is its ability to combine measures from multiple sensors considering their 

probabilistic behavior. The key idea behind the PF is that the posterior Probability 

Density Function (PDF) of state x(k) is directly estimated conditioned on the set of 

measurements Z(k) according to the equations [84]: 
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P[x(k)|Z(k)] ≈ ∑ �)(�)�[�(�) − �)(�)]�)��                                       (4.4) 

∑ �)(�) =�)�� 1	                                                                                  (4.5)	
Where N is the number of particles, �)(�) is the weight of the i

th
 particle �)(�) and 

�(. ) is the Dirac distribution.  

The biggest advantage of using the PF instead of the EKF is its ability to solve 

non-Gaussian and non-linear estimation problems. Many versions of the PF are 

available in the literature; in the proposed approach we use the SIRPF. This algorithm 

comprises the following steps [84] :  

1) Particle Generation: generate N {��(0), 	��(0),		�j(0), …, ��(0)} initial 

particles according to the initial PDF p(x(0)). 

2) Prediction Sampling : for each particle �)(�) , propagate the �)(� + 1) 
particle according to the transition PDF p[x(k+1)|x(k)] 

3) Importance Sampling : for each particle �)(� + 1), generate the  w�(k +
																1) = p	[Z(k + 1)|	�)(k + 1)].  

4) Normalization and Rejection Sampling: The weights of the particles are 

normalized. Particles with low weight are deleted and particles with high 

weight are duplicated such that each particle has the same weight.  

In this work, the dynamics of the particle filter are controlled by the data from 

the INS and the RSSI location fingerprints. If the tracked object’s position was 

estimated at time k, the position estimation at time k+1 is guided by the INS to 
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generate particles in the direction given by the INS. For each particle ��(�) = [ xi(k) 

yi(k) ], the next particle ��(� + 1) can be obtained by: 

xi(k+1) = xi(k) + d cos (ϴ) + N(µ,σ)                                          (4.6) 

yi(k+1) = yi(k) + d sin (ϴ) + N(µ,σ)                                   (4.7) 	
Where d is the absolute distance traveled by the tracked object during the time 

interval [k, k+1] and ϴ is the direction of d.  

For each particle ��(�) = [xi(k), yi(k)], the RSSI distance between the closest 

location fingerprint to ��(�) and the tracked object is calculated. The smaller this 

distance, the higher weight ��(�) will have.   

������� �¡|  = �∑ �~99�������� �¡ − ~99��|�
�}���                          (4.8) 

Where ������� �¡|  is the closest location fingerprint to particle	��(�). Hence, 

the weight of ��(�) is given by:  

�)(�) = 
�

mr����� �¡�                                                               (4.9) 

Fig. 4.1 shows our overall localization system architecture which has three 

main components, the Inertial Navigation System (INS), the location fingerprints 

database and the particle filter for data fusion. 



 

Figure 

 

4.3.3 Mathematical Error Analysis for 

In this section, the error analysis for indoor localization

Mathematical bound analysis on the position error in 

approach is also described in this section.

measurements observed at the tracked object’s location, the RSSI measurements on 
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Figure  4.1:The overall localization system architecture.

Error Analysis for Indoor Localization 

In this section, the error analysis for indoor localization is addressed

Mathematical bound analysis on the position error in the proposed

approach is also described in this section. The analysis is based on RSSI 

measurements observed at the tracked object’s location, the RSSI measurements on 

 

The overall localization system architecture. 

is addressed. 

the proposed localization 

analysis is based on RSSI 

measurements observed at the tracked object’s location, the RSSI measurements on 
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the Location Fingerprints (LF) around the localization estimate (PE), and the INS data 

obtained from the proposed INS subsystem.  

The localization accuracy is defined as the probability that the tracked object 

is within a certain distance (D) from its real location. Obviously, the closer the 

physical distance between the LF and the tracked object, the more weight that LF will 

have. The weight assigned to a given LF is composed of two parts: 

1) Weight based on INS data. 

2) Weight based on RSSI measurements. 

The region of confidence around the location estimate is described as a circle. 

The probability that the tracked object is within this circle is calculated based on the 

weights of the LFs around the location estimate (PE). For example, if the required 

localization accuracy equals 90%, we find the area of the circle such that the 

percentage of the LF weights that lies within this circle equals to 90% of the total 

weights of all LFs in the localization area.  Fig. 4.2 shows a snapshot of the 

localization area at a given time.  

The localization area shown in Fig. 4.2 has M LPAM radio base stations (T), 

N circles around the localization Position Estimate (PE) and K location fingerprints on 

each circle. LFn denotes the  LF on the n
th

 circle. fW¢ denotes the distance between the 

LF on the n
th

 circle and the m
th

 LPAM radio base station. £m denotes the angle 

between the m
th

 LPAM radio base station and the positive x-axis. The radius of the 



 

inner circle is denoted by 

consecutive circles. 

Figure  4.2: A snapshot of the localization area with the previous location 

A. RSSI-based Weight Analysis

The signal strength estimation between the tracked object and any access 

point is expressed in terms of the mean path loss and a log

The mean path loss at a given distance is given by:

 PL¤¤¤¤ (d)[dBm] = PL(d0)[dBm] + 10 * v * log10(

64 

inner circle is denoted by R which is also equal to the distance between any 

: A snapshot of the localization area with the previous location 

estimate included. 

based Weight Analysis 

strength estimation between the tracked object and any access 

point is expressed in terms of the mean path loss and a log-normally distributed noise. 

The mean path loss at a given distance is given by: 

(d)[dBm] = PL(d0)[dBm] + 10 * v * log10(
/
/@)            

which is also equal to the distance between any 

 

: A snapshot of the localization area with the previous location 

strength estimation between the tracked object and any access 

normally distributed noise. 

    (4.10) 
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Where  PL(d0)[dBm] is the path loss at a 1 meter distance in free space which 

is about -20 dBm [94],  d0=1 m, and v is the mean path loss exponent and provides an 

indication of how fast path loss increases when distance increases. The RSSI at a 

given distance is then given by:  

RSSI = PL¤¤¤¤ (d)[dBm] + Xσ [dBm]                 (4.11) 

Where Xσ is a zero mean log-normally distributed random variable with 

standard deviation σ in decibels. The values of v and σ are suggested in [95] based on 

empirical experiments for various environments. In the proposed path loss model, we 

chose v=4.04 and σ = 4.3 for an office building. Fig. 4.3 shows the RSSI values 

against distance in meters. 

Given N LFs and an online RSSI vector (S) for tracked object T, where S = 

{~99��|, ~99��|, ~99�j|, … , ~99�}| }, the Euclidian distance between S and LFn RSSI 

vector is given by: 
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D¦x§¨  = �∑ RSSI�¦x§ − RSSI�̈ ��{���                (4.12) 

 

Figure  4.3: The RSSI values at various distances. 

To show how the weight based on the RSSI of the n
th

 LF changes with the 

distance from the position estimate PE, we represent this weight in terms of the radius 

of the n
th

 circle and the distance between PE and the M access points in the 

localization area. A single RSSI measurement from access point i at the tracked 

object location is denoted by [95]: 

 RSSI�̈  = PL(d0)[dBm] + 10 * v * log10(
/©ª3
/@ ) + Xσ                      (4.13) 

Where f�«)  is the distance between the position estimate (PE) and the i
th

 access 

point. As we showed in the previous section, the distance between the n
th

 location 

fingerprint and the i
th

 access point is denoted by:  

d¬� =  �(dyª� )	� +	(nR)�	– 	2(nR)dyª� cos(β�)	                              (4.14) 
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Hence, the RSSI value on the n
th

 location fingerprint from measured from the 

i
th

 access point is denoted by: 

RSSI�¦x§		= PL (d0) [dBm] + 10 * v *	log�@ 		³(dyª� )	� 			+ 	(nR)�	– 	2	(nR)	dyª� 	cos(β�)´ ∗
d@���	+ Xσ                                                (4.15) 

The Euclidian distance between the online RSSI vector of the tracked object 

and the RSSI vector of the n
th

 location fingerprint is given by: 

Dxy§¨  = �∑ RSSI�¦x§ − RSSI�̈ ��{���                                                  (4.16) 

The non-normalized weight based on the RSSI measurements of the nth LF is 

then given by:  

w= 
�

¶·©§¸  = 
�

�	�∑ �¹ºº»3¼·§�¹ºº»3̧ �
�½3¾�
                                                     (4.17) 

The normalized weight based on the RSSI measurements of the n
th 

LF is then 

given by: 

w¬¹ºº»= 
¿

∑ ¿3À3¾�
                                                                                    (4.18) 

B.  INS- based weight analysis 

Instead of finding the position estimate based on phase shifts or RSSI values 

only, the INS subsystem guides the future position estimate with certain distance and 

direction. We define the LF’s normalized INS weight	(w¬»Áº) based on how close it is 

from the position estimate: 

w¬»Áº = 
�

√¬¹∗∑ �C¹ÀÂ¾�
                          (4.19) 
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C. Combined-Weight Error Analysis 

As a result of data fusion, the generic total weight of a given location 

fingerprint is calculated by combining the weights from the two approaches explained 

in the previous sections (�WÃÄÄÅ , �WÅ�Ä). The best combination approach is to multiply 

these normalized weights to get the total weight of LF: 

wn = w¬¹ºº» ∗ w¬»Áº                                                  (4.20) 

Let W be the summation of the location fingerprints weights along the positive 

x-axis:  

W= ∑ w¬Á����@                                                                                    (4.21)  

Where N is the number of LFs on the positive x-axis.  

Our goal is to find the value of n such that a certain percentage (P) of W lies 

within the n
th

 circle. In other words we want to find n such that:  

 ∑ w¬¬����@  = P*∑ w¬Á����@                                   (4.22)  

Based on equations (4.18, 4.19, 4.20), it is difficult to find a deterministic 

solution for equation 4.22, we will use linear approximation to find a function En 

approximating wn such that En ≥ wn ∀	n	∈{0,1, …, N-1}. 

Theorem 1:  

The required localization accuracy defined as the probability (P) that the 

tracked object is within a certain distance D is guaranteed by the approximation 

function En. 
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Proof: 

 The value of wn expressed in equation 4.20 decreases as the value of n 

increases which means that farther LFs have less weight than those who are close to 

the position estimate. This means that the function wn is a decreasing function of n. 

The goal of linear approximation is to find a linear function that approximates the 

increasing function qn  = 1/wn : 

qn= 	 �
	¿§ÆÀÇ∗		¿§ÈÇÇÆ	                                                                 (4.23) 

The line (Ln) approximating qn is required to have values such that Ln ≤ qn ∀ 

n	∈{0,1, …, N-1}. This guarantees that our approximation to wn (En), will always be 

greater than wn ∀	n∈{0,1, …, N-1}. Fig. 4.4 shows an example of qn and Ln and Fig. 

4.5 shows the corresponding wn=1/qn and En=1/Ln.The goal now is to find the linear 

approximation function (Ln) with the properties mentioned above. Since Ln is a line, it 

can be written as:  

Ln = A.n+ B                                                                               (4.24)   

Where A is the slope of Ln and B is the point where Ln intersects with the positive y-

axis.  

Since Ln ≤ qn, this means that B can be equal to q0, which is the point at which 

qn intersects with the positive y-axis (see Fig. 4.4). After finding B, the objective 

becomes finding the slope of Ln that guarantees no intersection between Ln and qn 

∀n∈{1,2, …, N-1}. qn is an increasing discrete function with values in [w0 : wN-1]. 
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Fig. 4.6 shows the slopes of all lines connecting pairs (wn,wn+1) ∀	n∈{0,1, …, 

N-1}. Choosing the slope with minimum value guarantees that �É	will not intersect 

with qn 	∀	n∈{1,2, …, N-1}.After finding the line Ln=An+B, the function En (Fig. 4.5) 

that will approximate wn is of the form:  

En=1/Ln = 
�

Ê.¬�Ë                                                                            (4.25) 

 

Figure  4.4: An example of qn and Ln. 

The analysis of this function is much easier than wn in equation 4.20. To find 

the n
th

 circle at which lies in a percentage (P) of the total weight (W) is at least 

equivalent to finding P of the area under the curve En.  
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Figure  4.5: The required approximation function and the real wn. 

Since En≥wn ∀	 n∈{0,1, …, N-1}, finding P of the area under the curve En 

implies finding P or more of the area under wn. This guarantees that the localization 

accuracy will be more than P that the tracked object is within a certain distance.  

 

Figure  4.6: The slopes between all values of qn. 
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D. Distance Estimation 

To find the value of n at which lies P percentage of the area under En, 

compute the total area under En and then find the P percentage of that area. The area 

under En can be found by:  

AEn = b �
Ê.¬�Ë 	dn	Á��

@  

 AEn = 
	Ì¬Ê(Á��)�Ë	

Ê  - 
	Ì¬Ë	
Ê     

AEn=
Ì¬(Ê(Á��)�Ë)/Ë

Ê                                                                           (4.26)  

Where N is the total number of LFs on the positive x-axis. 

The value of n at which P
th 

percentage of the area under En is:  

b �
Ê.¬�Ë 	dn	¬��

@  = P* AEn 

Ì¬(Ê(Á��)�Ë)/Ë
Ê   = P * 

Ì¬(Ê(Á��)�Ë)/Ë
Ê      

ln (Ê(¬��)�Ë)Ë = ln[(Ê(Á��)�Ë)Ë ]y 

(Ê(¬��)�Ë)
Ë  = Î(Ê(Á��)�Ë)Ë Ïy 

n=
Ë	∗	([(Ê(Á��)�Ë)/Ë])©�Ê	�	��

Ê                                                             (4.27)  

After finding the value of n, the distance (D) at which exists P percentage of 

the total weight W is equal to: 

D = n * R                                     (4.28) 

Where R is the radius of the inner circle around PE .  

Our approximation algorithm can be summarized in the following steps:  
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1- Find the values of wn ∀	n∈{0,1, …, N-1} using equation 4.20. 

2- Set B = w0. 

3- SetA=
arg	MIN	

S [S	 = 	 (w��� 	− 	w�, )∀	i ∈ {0,1, … , N − 1}	] 

4- Find n = 
Ë	∗	([(Ê(Á��)�Ë)/Ë])©�Ê	�	��

Ê  . 

5 - Find D = n*R. 

4.4 Simulation Setup  

The simulation was performed in a 10x10 m room. The simulation starts by 

setting up the access points uniformly in the simulation area. The training data 

(location fingerprints) are then spread uniformly across the area. Fig. 4.7 shows the 

distribution of 2 access points and 35 location fingerprints in the simulation area. 

 

Figure  4.7: Distribution of access points and fingerprints in the 

simulation area. 
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The particles in the PF are divided into two groups: explorers and exploiters. 

About 20% of the particles are generated with high value for µ= 10 m to allow the 

particle filter converge quickly and prevent it from moving away from the optimal 

solution. The other 80% of particles are exploiters for the best possible solution. 

As the tracked object moves in the simulation area, the position is calculated 

using the EUC, BDE and PF techniques. The position estimated by these techniques 

is then compared with the simulation position of the tracked object. The simulation 

was executed for three hours and then replicated for 10 times. The accuracy of the 

INS subsystem is assumed to have an average error of 5 cm. 

4.5 Results 

The main goal of this work is to fuse data from multiple sources to achieve 

minimum localization error. We compare the performance of the proposed EUC, 

BDE and PF in terms of the mean location error. System accuracy is defined as the 

probability that the tracked object is within a certain distance. We also show the 

enhancement achieved by using the PF for data fusion by comparing the performance 

of the PF with RSSI only and the PF with RSSI and INS data. 

Fig. 4.8 shows the relation between the number of access points and the mean 

location error. As the number of access points increases, the mean location error 

decreases. The EUC error remains almost the same for 4 or more access points and no 

further enhancement can be achieved. The PF performance also remains unaffected 

by adding more than 7 access points to the simulation area. The performance of the 
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BDE approach becomes closer to that of the PF approach when increasing the number 

of access point to 20, which is impractical in real life.  

 

Figure  4.8: The mean location error vs. number of access points. 

 The location error Cumulative Density Function (CDF) shows that the PF 

outperforms both EUC and BDE in terms of location accuracy. For 3 access points, 

the probability that the tracked object is within 50 cm was about 50% and about 10% 

for both EUC and BDE. This probability increases rapidly to about 90% within the 

80cm range for the PF and becomes about 15% for both BDE and EUC. 

Fig. 4.9 shows that increasing the number of access points in the simulation 

area provide more accurate results. The figure shows the error CDF for 3 and 10 

access points for the three localization techniques.  

The data fusion between the RSSI and INS data provides better location 

accuracy than using the RSSI alone for location estimation. 
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Figure  4.9: The CDF of the accuracy of the proposed localization system. 

Fig. 4.10 shows the mean location error attained from the PF with RSSI only 

and PF with INS data. The data fusion achieves almost double the accuracy compared 

to RSSI-only location estimation. 
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Figure  4.10: PF performance with RSSI measurements only and with RSSI and 

INS data. 
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CHAPTER 5  

DATA FUSION IN SUPPORT OF OUTDOOR LOCALIZATION 

 5.1 Introduction  

 Outdoor localization is an important issue for many applications like 

autonomous mobile robotics and augmented reality. In this research, we propose a 

budgeted dynamic exclusion heuristic based on signal phase shifts from multiple base 

stations. We also propose an outdoor localization technique based on the particle 

filter for data fusion. The novelty of the proposed approach stems from its ability to 

fuse data collected from different sensor technologies to converge to more accurate 

distance estimation. The combination of multiple sensor data tends to overcome the 

drawbacks of using one sensor technology in the localization process. 

In this section, we discuss the details of our proposed data fusion approach to 

combine data collected from multiple sensor technologies to achieve precise 

localization in outdoor environments. Our Inertial Navigation System (INS) is 

comprised of tri-axial accelerometer, gyroscope and an MIT Cricket system for 

gyroscope drift correction. The INS system provides the distance that the moving 

object travelled and the direction of that distance. 
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5.2 Proposed Approach 

The substantial capabilities of the emerging Software Defined Radio (SDR) 

systems can be used to utilize AM radio signals for the purposes of indoor/outdoor 

localization. Phase shifts between the carriers of different AM radio signals can be 

used to calculate the distances between the receiver and the locally deployed Low 

Power AM (LPAM) radio base stations. Hence, the relative position of the receiver 

can be estimated within a Euclidian coordinate system. 

Phase shift is any change that occurs in the phase of one signal, or in the phase 

of two different signals [96]. We refer to it by angle θ as it represents the shift from 

zero phase. For infinite sinusoids, the change in θ is the time-delay between two 

signals. If a sinusoidal signal x(t) is time-shifted (delayed) by ¼  of its cycle, it 

becomes :  

x(t -  ¼ T ) = A sin (2πf (t - ¼ T ) + θ )  = A sin (2πf t -  π/2 + θ ), which is equivalent 

to x(t)  shifted by Ö 2⁄  radians. 

The SDR system on the tracked object surveys the phase shifts in signals 

received from multiple LPAM radio base stations and analyzes them to estimate the 

distances between the LPAM radio base stations and current location. In a 

configuration of three LPAM radio base stations {BS1, BS2, BS3} and one receiver 

{R}, the distances between R and the LPAM radio base stations can be estimated by:    

�Ã×Ä�  = c * OÃ×Ä�                                                         (5.1) 

�Ã×Ä�  = c * OÃ×Ä�                                         (5.2) 
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�Ã|Ø = c * OÃ×ÄØ                                                               (5.3) 

Where c is the Speed of Light, �Ã|z is the distance between R and Ti, and  OÃ|z is the 

signal propagation time from Ti to R.  

The receiver requires a minimum of three signals to estimate each  �Ã|z based 

on the following equation 

 
mqÙp��	mqÙp�

Y   =  J×Ä�×Ä�                                                                (5.4) 

mqÙp��	mqÙpØ
Y   =  J×ÄØ×Ä�                                                         (5.5) 

mqÙp��	mqÙpØ
Y   =  J×ÄØ×Ä�                                                    (5.6) 

This is a system of three equations and three unknowns and can be solved by 

the Particle Swarm Optimization (PSO) [97] method described in the previous 

sections. J×ÄÚ×Äz 	 is the measured phase shift between the signals from Û9 i and Û9 j and 

is expressed as:  

J×ÄÚ×Äz =   OÃ×Äz  - OÃ×ÄÚ                                         (5.7) 

A positive value for J×ÄÚ×Äz indicates that the signal from Û9i arrived before the 

signal from Û9j and vice versa. Our localization area is comprised of N LPAM radio 

base stations distributed over the coverage area. We utilize the phase shifts measured 

from the various LPAM radio base stations to estimate inter-base-station distances. 

The knowledge of these distances provides the relative position of each LPAM radio 

base station provided that we know the position of only one base station serves as a 
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reference of the coordinate system. We call this base station the Anchor Base Station 

(ABS). Fig. 5.1 shows our coordinate system. The ABS can be any base station in the 

area with known (x, y) coordinates.  

 

Figure  5.1: Our network coordinate system showing the LPAM radio 

base stations. 

 5.3 LPAM Radio Base Stations Position Estimation 

For each Û9k, we use PSO to estimate its distance from other LPAM radio 

base stations. These distances are then used to estimate the positions of the remaining 

base stations in the localization area. The idea is to compute the distances between 

base stations from the measured phase shifts at each base station using the following 

constrained optimization problem: 

Minimize: 

∑ ∑ |	f*) − f*� − I ∗ J×ÄÚ×Äz���)�� |���) , ∀	 i < j, (i, j) ≠ k, i∈ {1, …, N}, k∉{1, …, N}  

(5.8) 
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Such that: 

f*) − f*� = I ∗ J×ÄÚ×Äz    ∀	 	 i< j, (i, j) ≠ k, i∈{1, …, N}, k∉{1, …, N}                          

(5.9) 

Where f*)  is the estimated distance between Û9  and Û9k and is expressed by: 

f*)  =  �(�) − �*)� + (�) − �*)��
                                                                            (5.10) 

Where (�), �)) is the position of Û9i. 

From graph theory, for N LPAM radio base stations, there are  
�(���)

�  

estimated distances (edges) between the LPAM radio base stations.  After finding 

these distances using equation 5.8, the positions of the N LPAM radio base stations 

are found by solving  
�(���)

�  equations of the form in equation 5.10.  We also use the 

PSO method to solve for the (x, y) coordinates of the LPAM radio base stations using 

the following unconstrained optimization problem assuming that the ABS is at the 

known position (X1, Y1): Minimize:  

∑ |	f)��)�� − �(�) − (�)� + (�) − Ý�)�	� |+,∑ ∑ 	[	|	f�)���)�� − �(�) − ��)� + (�) − ��)�	� |	]�)��  

∀	i<j                   (5.11) 

The solution for this problem provides the coordinates of all LPAM radio base 

stations in the coverage area. This helps in estimating the location of the tracked 

object as explained in the next section. 
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5.4 Euclidian Distance Heuristic (EUC) in Support of Outdoor Localization 

The knowledge of the locations of nearby LPAM radio base stations helps in 

finding the global location of any tracked object with an AM radio receiver. The same 

approach used to estimate the distances between the LPAM radio base stations which 

led to estimating the LPAM radio base stations’ positions can be used to estimate the 

distances between the tracked object and the LPAM radio base stations.  

For an area with N LPAM radio base stations and one receiver R, there are N 

distances between R and the LPAM radio base stations. The location estimation of the 

moving object requires that these distances be estimated first then used in the next 

step of location estimation. As noted before, it requires at least three LPAM radio 

base stations to triangulate the location of the tracked object as shown by equations 

5.4-5.6. 

Given the signal phase shifts observed at R, the distances between R and the 

LPAM radio base stations can be estimated by using the PSO method to solve the 

constrained optimization problem:  

Minimize:  

∑ ∑ |	fÃ) − fÃ� − I ∗ J×ÄÚ×Äz���)�� |�)�� , ∀	i < j                            (5.12) 

 Such that :  

	fÃ) − fÃ� = I ∗ J×ÄÚ×Äz, ∀	i < j, i ∈ {1, …, N}                                    (5.13) 

Where 	fÃ)  is the estimated distance between R and Û9i. To estimate the 

position of the tracked object, we substitute the estimated distances from equation 
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5.10 in the following unconstrained optimization problem and solve it using the PSO 

method to get the estimated position of the moving object: 

Minimize:  

∑ 	[	|	fÃ)�)�� − �(�Ã − �×Äz)� + (�Ã − 	�×Äz)�	� | ]                   (5.14) 

Where	(�Ã , �Ã) is the estimated position of the moving object and  �×Äz,�×Äz� is the 

position Û9 i. 

5.5 Budgeted Dynamic Exclusion (BDE) in Support of Outdoor Localization 

The EUC approach utilizes the signals received from all LPAM radio base 

stations in location estimation. In practice, some signals can be noisy and harmfully 

contribute to the location estimation process. The BDE approach aims to identify 

these noisy LPAM radio base stations and remove them from the processing of 

location estimation process.  

The BDE benefits from the estimated distances in equation 5.12 and the 

estimated position in equation 5.14 to calculate the total error of distance estimation. 

This is done by using the estimated position (�Ã , �Ã) of R and the positions of LPAM 

radio base stations to calculate the Euclidian distances between R and the LPAM 

radio base stations. These calculated distances are then compared with the estimated 

distances from equation 5.12. Estimated distances from noisy LPAM radio base 

stations have large difference between them and the calculated ones compared to ones 
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from non-noisy LPAM radio base stations. This helps identifying noisy LPAM radio 

base stations and excluding them from the location estimation process. 

The BDE starts by removing a small number of LPAM radio base stations that 

have high distance differences. If the total error is decreased by more than the 

percentage of the removed LPAM radio base stations from the N LPAM radio base 

stations, BDE attempts to remove more noisy base stations to get a smaller location 

error. The BDE ends when removing more base stations does not reduce the total 

error by more than the percentage of the removed base stations. 

The following provides the Pseudo code for the BDE approach for outdoor 

localization: 

N: Total number of Û9s. 

Ncur: Current number of BSs. 

Nprev: Previous number of BSs. 

Pinit: Initial percentage of removed LPAM radio base stations 

Pinc: The increment on initial percentage 

Pcur: Current percentage 

Ecur: Current total error 

Eprev: Previous total error 

Eprev= EUC total error 

Pcur=Pinit 

Ncur=N 
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LOOP Remove ⎿(Pcur*Ncur)⏌ noisy LPAM radio base stations based 

on the differences between the calculated and estimates distances  

Perform EUC on the remaining LPAM radio base stations 

Ncur = Pcur*Ncur 

Compute Ecur for the Ncur Ts 

If  
à�áâ	1	àãâ ä

àãâ ä   >  
��áâ�	�ãâ ä

�ãâ ä  

Nprev= Ncur 

Eprev =Ecur   

Pcur=Pcur+Pinc 

 goto LOOP 

Else END 

 

After applying this heuristic, the position estimated by the BDE is the result of 

applying the EUC computations described in the previous section on the set of LPAM 

radio base stations that were not removed by the BDE heuristic. The remaining base 

stations are the most likely non-noisy base stations in the area.  

5.6 Particle Filter (PF) in Support of Outdoor Localization 

In addition to the Sequential Monte Carlo (SMC) nature of estimation, the PF 

allows for flexible design and parallel implementation. The main advantage of the PF 

is its ability to combine measures from multiple sensors considering their 

probabilistic behavior. The key idea behind the PF is that the posterior Probability 

Density Function (PDF) of state x(k) is directly estimated conditioned on the set of 

measurements Z(k) according to the equations [84]:  

p(x(k)|Z(k)) ≈ ∑ �)(�)�[�(�) − �)(�)]�)��                                           (5.15) 

∑ �)(�) =�)�� 1	                                                              (5.16)	
Where N is the number of particles, �)(�) is the weight of the i

th
 particle 

�)(�) and �(. ) is the Dirac distribution.  
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The biggest advantage of using the PF instead of the EKF is its ability to solve 

non-Gaussian and non-linear estimation problems. Many versions of the PF are 

available in the literature; in our approach we use the SIRPF. This algorithm 

comprises the following steps [84] :  

1) Particle Generation: generate N {��(0), 	��(0),		�j(0), …, ��(0)} initial 

particles according to the initial PDF p(x(0)). 

2) Prediction Sampling : for each particle �)(�) , propagate the �)(� + 1) 
particle according to the transition PDF p[x(k+1)|x(k)] 

3) Importance Sampling : for each particle �)(� + 1), generate the  w�(k +
																1) = p	[Z(k + 1)|	�)(k + 1)].  

4) Normalization and Rejection Sampling: The weights of the particles are 

normalized. Particles with low weight are deleted and particles with high 

weight are duplicated such that each particle has the same weight.  

In our work, the dynamics of the particle filter are controlled by the data from 

the INS and the RSSI location fingerprints. If the tracked object’s position was 

estimated at time k, the position estimation at time k+1 is guided by the INS to 

generate particles in the direction given by the INS. For each particle ��(�) = [xi(k) 

yi(k) ], the next particle ��(� + 1) can be obtained by: 

xi(k+1) = xi(k) + d cos (ϴ) + N(µ,σ)                                      (5.17) 

yi(k+1) = yi(k) + d sin (ϴ) + N(µ,σ)                                (5.18) 
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Where d is the absolute distance traveled by the tracked object during the time 

interval [k, k+1] and ϴ is the direction of d.  

The particle’s weight is computed by comparing the phase shifts generated at 

the particle’s position with the phase shifts received by the tracked object. The closer 

the particle’s phase shifts to the tracked object’s phase shifts, the more influence the 

particle will have in computing the tracked object’s position. The following equation 

computes the weight of particle ��(�) = [ xi(k) yi(k) ] at time k: 

�)(�)= 
�

∑ ∑ |	ÃåæÇÚ	
æÇ��Ú¾�ç� �	�åæÇÚ	

æÇ� 	�1��¾� |,   ∀		l < j                                     (5.19) 

Where 	~èËºÚ	Ëº� is the received phase shift between signals from BSl and BSj on 

the receiver R and	�èËºÚ	Ëº� is the observed phase shift between signals from BSl and BSj 

for the particle	��(�). 
The PF approach can be applied to all LPAM radio base stations in the 

coverage area including the noisy LPAM radio base stations. It can also be applied 

after performing the BDE heuristic first to isolate the noisy LPAM radio base stations 

in the coverage area. Then, the PF approach is applied on the set of non-noisy LPAM 

radio base stations to get a better estimation of the tracked object location. Fig. 5.2 

shows the overall architecture of our localization system which has three main 

components; namely the Inertial Navigation System (INS), the set of measured signal 

phase shifts by SDR and the particle filter for data fusion. 



 

Figure  5

5.7 Mathematical Error 

In this section, we address the error analysis for outdoor localization. For 

outdoor localization, the analysis is based on phase shifts observed at the tracked 

object’s location, phase shifts at the LFs around the tracked object and INS data 

obtained from our INS subsystem.

Mathematical bound analysis on the position error in our localization 

approach is also described in this section. We define the localization accuracy as the 

probability that the tracked object is within a certain distance (
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Mathematical bound analysis on the position error in our localization 

proach is also described in this section. We define the localization accuracy as the 
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location. Obviously, the closer the physical distance between the LF and the tracked 

object, the more weight that LF will have. The weight assigned to a given LF is 

composed of two parts: 

 1) Weight based on INS data	(w¬»Áº). 
2) Weight based on signal phase shifts (w¬é) 

We describe the region of confidence around the location estimate as a circle. 

The probability that the tracked object is within this circle is calculated based on the 

weights of the LFs around the location estimate (PE). For example, if the required 

localization accuracy equals 90%, we find the area of the circle such that the 

percentage of the LF weights that lies within this circle equals to 90% of the total 

weights of all LFs in the localization area.  Fig. 5.3 shows a snapshot of the 

localization area at a given time.  

The localization area shown in Fig. 5.3 has M LPAM radio base stations  (T), 

N circles around the localization Position Estimate (PE) and K location fingerprints on 

each circle. LFn denotes the  LF on the nth circle. fW¢ denotes the distance between 

the LF on the n
th

 circle and the m
th

 LPAM radio base station. βm denotes the angle 

between the m
th

 LPAM radio base station and the positive x-axis. The radius of the 

inner circle is denoted by R which is also equal to the distance between any 

consecutive circles 



 

Figure  5.3: A snapshot of the localization area with the previous location 

5.7.1 Phase-Shift-Based 

As we mentioned before, the outdoor analysis depends on the phase shifts 

observed at the tracked object location, the phase shifts at the LFs and the data 

obtained from the INS subsystem. In this section, we will show how the weights of 

the LFs around the position estimate will change as we move farther from the position 

estimate. 

The phase shift (θ
is denoted by J�«Ëº�Ëº�  and is equal to:

θyªËº�Ëº� = 
/©ª� �/©ª�

ë         
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A snapshot of the localization area with the previous location 

estimate included. 

ased Weight Analysis 

mentioned before, the outdoor analysis depends on the phase shifts 

observed at the tracked object location, the phase shifts at the LFs and the data 

obtained from the INS subsystem. In this section, we will show how the weights of 

on estimate will change as we move farther from the position 

θ) observed at PE between the signal received from T

and is equal to: 

                  

 

A snapshot of the localization area with the previous location 

mentioned before, the outdoor analysis depends on the phase shifts 

observed at the tracked object location, the phase shifts at the LFs and the data 

obtained from the INS subsystem. In this section, we will show how the weights of 

on estimate will change as we move farther from the position 

between the signal received from T1 and T2 

      (5.20) 
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Where C= 2.99x108 m/s2 is the speed of light. Similarly, the phase shift (J) 

observed at LF1 between the signals received from BS1 and BS2 is denoted by 

J�Ëº�Ëº�  and  is equal to: 

θ�Ëº�Ëº� = 
/���/��
ë                          (5.21) 

As we mentioned early, the phase shifts weight assigned to a given LF 

depends on the closeness between the phase shifts (obtained from all the LPAM radio 

base stations) at LF and the phase shifts observed at the tracked object location PE. 

The LF’s weight also depends on INS data obtained from the INS subsystem. 

We will derive the part of the weight depending on the phase shifts only, and 

then derive the part depending on the INS data. The final weight of the LF will be a 

multiplication of those two parts. 

To simplify the error analysis, we calculate the weights for the location 

fingerprints residing on the positive x-access as shown in Fig. 5.3. The non-

normalized weight for the n
th	LF residing on the positive x-axis is denoted by 

wn	where É		 ∈{0,1, …, N-1}.  

w= 
�

∑ ∑ ìé©ª
æÇ3æÇÂ�	é§

æÇ3æÇ¸Â 	ì½Â¾3ç�½3¾�
                                                        (5.22) 

Where θ¬Ëº3ËºÂ is the phase shift between signals received from the i
th

 BS and 

the j
th 

BS observed at the n
th 

LF on the positive x-axis. θyª
ËºzËºÚ

 is the phase shift 

between signals received from the i
th

 BS and the j
th

 BS observed by the tracked object 

SDR system. 
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The goal is express � in terms of the distances between the PE and all the 

LPAM radio base stations in the localization area and in terms of radius of the n
th

 

circle around the estimate. This will show how � increases as we move farther from 

PE. It is obvious from equation 5.21 that θn depends on the distance between LFn and 

the entire LPAM radio base stations in the localization area (d¬{). Hence, we will 

express these distances in terms of the distances between PE and LPAM radio base 

stations and in terms of the radius of the n
th

 circle around PE.  

Using the law of cosines, the distance between the location fingerprints and 

the i
th

 LPAM radio base stations can be expressed as:  

 d�� =  �(dyª� )	� +	R� 	− 	2Rdyª� cos(β�)	 + Yî�                         (5.23) 

d�� =  �(dyª� )	� +	(2R)�	– 	2(2R)dyª� cos(β�)	 +Yî�                           (5.24) 

⁞ 

 d¬� =�(dyª� )	� +	(nR)�	– 	2(nR)dyª� cos(β�)	 + Yî�                           (5.25) 

Where	ÝX), is a uniformly distributed noise on the distances observed from the 

LPAM radio base stations i. By substituting 5.25 into equations 5.21-5.22, the non-

normalized weight of the n
th 

location fingerprint can be written as:  

w =	Î�ë∑ ∑ ï	³dyª� −	dyªC ´ − ³d¬� − d¬C ´	ï{C����{��� Ï��																			          (5.26) 

The normalized weight of the n
th

 LF is denoted by: 

w¬é = 
¿

∑ ¿ÂÀÂ¾3
                                                                                      (5.27) 
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5.7.2 INS-Based Weight Analysis 

Instead of finding the position estimate based on phase shifts or RSSI values 

only, the INS subsystem guides the future position estimate with certain distance and 

direction. We define the LF’s normalized INS weight	(w¬»Áº) based on how close it is 

from the position estimate: 

w¬»Áº = 
�

√¬¹∗∑ �C¹ÀÂ¾�
                            (5.28) 

5.7.3. Combined-Weight Error Analysis 

As a result of data fusion, the generic total weight of a given location 

fingerprint is calculated by combining the weights from the two approaches explained 

in the previous sections (�Wè , �WÅ�Ä). The best combination approach is to multiply 

these normalized weights to get the total weight of LF: 

wn = w¬é ∗ w¬»Áº                                                (5.29) 

 Let W be the summation of the location fingerprints weights along the 

positive x-axis:  

W= ∑ w¬Á����@                                                                                       (5.30) 

Where N is the number of LFs on the positive x-axis.  

Our goal is to find the value of n such that a certain percentage (P) of W lies 

within the n
th

 circle. In other words we want to find n such that:  

∑ w¬¬����@  = P*∑ w¬Á����@                                    (5.31) 
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Based on equations 5.27-5.29, it is difficult to find a deterministic solution for 

equation 5.31, we will use linear approximation to find a function En approximating 

wn such that En ≥ wn ∀	n	∈{0,1, …, N-1}. 

Theorem 1:  

The required localization accuracy defined as the probability (P) that the 

tracked object is within a certain distance D is guaranteed by the approximation 

function En. 

Proof: 

The value of wn expressed in equation 5.29 decreases as the value of n 

increases which means that farther LFs have less weight than those who are close to 

the position estimate. This means that the function wn is a decreasing function of n. 

The goal of linear approximation is to find a linear function that approximates the 

increasing function qn  = 1/wn : 

qn= 	 �
	¿§ð∗¿§ÆÀÇ	                                                                       (5.32) 

The line (Ln) approximating qn is required to have values such that Ln ≤ qn ∀ 

n	∈{0,1, …, N-1}. This guarantees that our approximation to wn (En), will always be 

greater than wn ∀	n∈{0,1, …, N-1}. Fig. 5.4 shows an example of qn and Ln and Fig. 

5.5 shows the corresponding wn=1/qn and En=1/Ln.  
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Figure  5.4: An example of qn and Ln. 

The goal now is to find the linear approximation function (Ln) with the 

properties mentioned above. Since Ln is a line, it can be written as:  

Ln = A.n+ B                                                                                               (5.33) 

Where A is the slope of Ln and B is the point where Ln intersects with the 

positive y-axis. Since Ln ≤ qn, this means that B can be equal to q0, which is the point 

at which qn intersects with the positive y-axis Fig. 5.4. After finding B, the objective 

becomes finding the slope of Ln that guarantees no intersection between Ln and qn ∀	
n	∈	{1,2, …, N-1}. qn is an increasing discrete function with values in [w0 : wN-1]. 
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Figure  5.5: The required approximation function and the real wn. 

  Fig. 5.6 shows the slopes of all lines connecting pairs (wn,wn+1) ∀	n∈{0,1, …, 

N-1}. Choosing the slope with minimum value guarantees that �É	will not intersect 

with qn 	∀	n∈{1,2, …, N-1}. 

After finding the line Ln=An+B, the function En (Fig. 5.5) that will 

approximate wn is of the form:  

En=1/Ln = 
�

Ê.¬�Ë                                                                                 (5.34) 

The analysis of this function is much easier than wn in equation 5.29. To find 

the n
th

 circle at which lies in a percentage (P) of the total weight (W) is at least 

equivalent to finding P of the area under the curve En.  
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Figure  5.6: The slopes between all values of qn. 

Since En≥wn ∀	 n∈{0,1, …, N-1}, finding P of the area under the curve En 

implies finding P or more of the area under wn. This guarantees that the localization 

accuracy will be more than P that the tracked object is within a certain distance.  

5.7.4. Distance Estimation 

To find the value of n at which lies P percentage of the area under En, 

compute the total area under En and then find the P percentage of that area. The area 

under En can be found by:  

AEn = b �
Ê.¬�Ë 	dn	Á��

@  

AEn = 
	Ì¬Ê(Á��)�Ë	

Ê  - 
	Ì¬Ë	
Ê  

AEn=
Ì¬(Ê(Á��)�Ë)/Ë

Ê                                                     (5.35) 

Where N is the total number of LFs on the positive x-axis. 
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The value of n at which P
th 

percentage of the area under En is:  

b �
Ê.¬�Ë 	dn	¬��

@  = P* AEn 

Ì¬(Ê(Á��)�Ë)/Ë
Ê   = P * 

Ì¬(Ê(Á��)�Ë)/Ë
Ê      

ln (Ê(¬��)�Ë)Ë = ln[(Ê(Á��)�Ë)Ë ]y 

(Ê(¬��)�Ë)
Ë  = Î(Ê(Á��)�Ë)Ë Ïy 

n=
Ë	∗	([(Ê(Á��)�Ë)/Ë])©�Ê	�	��

Ê                                                             (5.36) 

After finding the value of n, the distance (D) at which exists P percentage of 

the total weight W is equal to: 

D = n * R                                                 (5.37) 

Where R is the radius of the inner circle around PE .  

Our approximation algorithm can be summarized in the following steps:  

1)  Find the values of wn ∀	n∈{0,1, …, N-1} using equation 5.29. 

2) Set B = w0. 

3) Set A=
arg	MIN	

S [S	 = 	 (w��� 	− 	w�, )∀	i ∈ {0,1, … , N − 1}	] 

4) Find n = 
Ë	∗	([(Ê(Á��)�Ë)/Ë])©�Ê	�	��

Ê  . 

5) Find D = n*R. 
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5.8 Simulation Setup 

The simulation was performed in a 100x100m area. The simulation starts by 

setting up the LPAM radio base stations uniformly in the simulation area. The noise 

is expressed as the inaccuracy in the phase shifts received from a specific LPAM 

radio base station. Equation 5.7 is used to generate the phase shifts between signals 

from different LPAM radio base stations. The distance between R and a noisy LPAM 

radio base station is simulated to have a value equivalent to the simulation distance 

plus a noise factor between 1m and 5 m.  

On the other hand, a distance from a non-noisy LPAM radio base station is 

simulated to have a value equivalent to the simulation distance plus a noise factor 

between 0m and 1m. This noise is due to inaccuracy in estimating the LPAM radio 

base stations’ positions. It is also a result of other sources of noise in AM radio 

signals (i.e. nearby power lines, electric motors, TV sets, etc.). The accuracy of the 

INS subsystem is assumed to have an average error of 5cm.       

5.9   Results 

The main goal of this work is to fuse data from multiple sources to achieve 

minimum localization error. We compare the performance of our proposed EUC, 

BDE and PF approaches in terms of the mean location errors, and location accuracy 

defined as the probability that the target node is within a certain distance. We also 

show the enhancement achieved by using the PF for data fusion by comparing the 
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performance of the PF using only signal phase shifts and the PF with phase shifts and 

INS data.  

The first experiment studies the effect of increasing the number of LPAM 

radio base stations in the area on the localization performance. Fig. 5.7 shows that the 

PF overcomes both EUC and BDE techniques in terms of the mean location error 

when having 20% noisy LPAM radio base stations in the area. Both BDE and EUC 

are highly sensitive to increasing the number of LPAM radio base stations in the area 

while the PF performance remains unaffected by increasing the number of LPAM 

radio base stations to more than 9 stations. It is also clear how the BDE approach 

reacts to increasing the number of noisy LPAM radio base stations compared to BDE. 

The EUC is badly affected when more noisy LPAM radio base stations are in the area 

while BDE was able to detect these noisy stations and isolate them from the location 

estimation process. 

The percentage of noisy LPAM radio base stations in the coverage area has a 

big impact on the localization accuracy. Fig. 5.8 shows how the three approaches 

react to increasing this percentage. The figure also shows that BDE fails to detect the 

noisy LPAM radio base stations when the percentage of noisy LPAM radio base 

stations is more than 40%. When the percentage of noisy LPAM radio base stations is 

more than 40% the PSO solution is biased towards the noisy LPAM radio base 

stations in the solution space and incorrectly removes the non-noisy LPAM radio base 

stations instead of noisy LPAM radio base stations.  
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Figure  5.7: The effect of increasing the number of BSs on system 

performance. 

The INS subsystem greatly enhances the localization accuracy. Fig. 5.9 shows 

the performance of the particle filter when working with phase shift data alone and 

when fusing it with INS data. The localization accuracy is almost 7 times better with 

INS data being fused with phase shift data. The figure also shows how the particle 

filter (with phase shifts only) is affected by increasing the number of noisy LPAM 

radio base stations in the area. The number of noisy LPAM radio base stations in this 

figure is 20% of the total number of LPAM radio base stations. 
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Figure  5.8: The effect of increasing the percentage of noisy BSs on system 

performance. 

 

Figure  5.9:  INS contribution to localization performance. 
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radio base stations when performing data fusion. Fig. 5.10 shows that the mean 

location error is enhanced by about 25% when integrating the BDE with the PF. The 

figure shows the localization performance when there are 20% noisy LPAM radio 

base stations in the coverage area. 

 

Figure  5.10:  Integration of BDE with PF. 

The location error CDF shown in Fig. 5.11 shows that the PF approach 
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Figure  5.11: Localization accuracy CDF. 

. 

 

 

 

 

 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

P
ro

b
ab

ib
li

ty

Distance (m)

Distance Error CDF

EUC

BDE

PF: PSH+INS+DE



106 

 

CHAPTER 6  

SOCIAL NETWORK FOR BLIND AND VISUALLY IMPAIRED 

6.1 Introduction and Background 

The Blind and Visually Impaired (BVI) encounter various difficulties during 

their daily activities like path planning, navigation and obstacle avoidance. Many BVI 

still trust and rely on the white cane to explore their environments. The state-of-the-

art white canes have audio systems to guide the BVI through their environment. In 

this chapter, we present a top-down design approach for a social collaboration service 

especially designed for the BVI.  

The Blind and Visually Impaired (BVI) usually lack the information needed to 

bypass obstacles and hazards. They also have little knowledge about the landmarks in 

their surrounding environment and about appropriate routes that need to be followed 

from a source to a destination. In this work, we propose a social collaboration service 

that provides such information to make this important segment of our society more 

independent.  

Research and development efforts that focus of the use of technology to help 

the BVI started not long time ago. These efforts focused on building tools to avoid 

obstacles. The regular white cane (which is used by most of the blind) is 

supplemented with laser and ultra sound to efficiently help the blind avoid obstacles. 

However, these tools are not enough to help the BVI navigate complex environments 

without the assistance of others.  
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In the last two decades, research and development efforts have focused mainly 

on the navigation component of assistive devices. Location identifiers were affixed on 

places with known locations to help the blind identify land marks in the environment. 

Those identifiers are then equipped with sensors and the blind can sense these 

identifiers using special equipments [98]. The disadvantage of this approach is that 

individuals have to scan the entire surrounding environment to search for these 

identifiers. 

An example of systems that use location identifiers is the Talking Signs 

System [99]. In this system, infrared transmitters are spread throughout the 

environment and continuously send digital speech signals in a range of 15-40 meters 

depending on their battery power. The receiver held by the user picks up these signals 

and the user can listen to these voice commands. Transmitter localization can also be 

achieved using a hand-held receiver for maximum efficiency. The disadvantage of 

using such systems is their high installation cost and maintenance relative to the 

limited coverage they provide [98]. 

A group of researchers at the University of Rome developed a system called 

Project II [100] to help the blind navigate their environment. The system is comprised 

of a tag network, an RFID tag reader and a PDA with a system installed especially for 

this purpose. The RFID tags are spread all over the test floor to provide the system 

with all kinds of needed information. The reader is installed in a cane similar to those 

used by the blind and the antenna is installed in the extremity of the cane near to the 

ground.   The antenna is directly connected to the reader which connects to the PDA 
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using Bluetooth. The reader continuously reads the signals from the tags and 

transmits them to the PDA which in turn converts them into speech signals that can 

be heard by the user through the use of headsets. The disadvantage of using such 

systems is the high cost of installation and it requires the blind to continuously wear a 

headset while moving around. 

Most recent systems like iNAV [101] is based on a compass and consisted of 

many sensors to provide location and orientation. Using compass for providing a 

decentralized location service allowed iNAV to separate navigation and positioning 

problems.  Cricket motes by MIT [89] utilize the speed difference between light and 

sound to compute the distance between a sender called “Beacon” and a receiver. In 

another work, a system called DOLPHIN [102] uses a distribution of ultra sound 

sensors to determine the absolute location of the user. SWAN [103] determines the 

location of the user using the signal strength of the radio signal observed at the smart 

phone to determine the location of the user. Finally, the Active Bat [104] system uses 

the reflections of ultrasonic pulses to determine the position and the orientation of the 

blind person.  

All of the aforementioned systems provide position coordinates and/or 

orientation details needed as a foundation to provide a comprehensive social 

collaboration environment for the blind. What these systems do not provide is a 

collaboration environment that enables its users to easily associate and share data 

with location coordinates and orientations. In this work, we present a complete social 

collaboration environment for the blind and visually impaired and demonstrate how 
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the user experience can be collected over time and shared among the users; thus, 

leveraging the power of the crowd to quickly build and mine a database that 

associates  data with location coordinates and orientations. 

6.2 Social Networking for the Blind 

A survey [105] conducted by researchers at the University of Birmingham in 

2012 targeted a group of blind and visually impaired students at the age of 14 years 

and up. The goal of the survey was to understand how this segment of students access 

the Internet and whether they are interested in using known social networking sites or 

not. Furthermore, the work intended to know why the blind uses social networking 

sites and whether they use their phones to access these sites and whether accessibility 

to these sites is easier through cell phones or computers. [105].  

Almost all of the participants in the survey access the internet at home from 

their own computers and about 69% access the internet through their mobile phones. 

The reasons for internet access vary between all the participants. The majority of the 

participants are familiar with the term “Social Networking” and all of the participants 

mentioned Facebook as an example of a social networking site while 80% mentioned 

Twitter [105].  

About 15% of the participants were unable to register in the social networking 

website by their own because of their visual impairment. The website that most of the 

participants were unable to register on was Facebook which is expected because 

Facebook was the most popular site to be used. Participants with severe visual 
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impairment were those who face more difficulty in site registration. Only about fifth 

of the 70 participants said that the accessibility of the website determines whether or 

not to register in the website. Website accessibility is defined in [105] as:  

“The ease with which you can use the site because it may be difficult 

to set the colours or size of things on the screen for you to see 

properly, or difficult for you to use a screen reader.” 

 The survey in [105] states that about 60% of the participant access the social 

networking website on a daily basis spending about 20-40 minutes. The most popular 

functionality on the social network website is chatting which participants use to keep 

up with their friends, communicate with relatives living far away and even discussing 

homework. Six of the participants said that they were intimidated by using social 

networking website either for issues related to their eyesight or because of unpleasant 

comments [105].    

Only one participant had no access to a mobile phone and about 75% of the 

participants have smart phones. Most of the phone features used by the participants 

are related to the accessibility of the mobile phone. The majority of the participants 

use mobile phone to mainly communicate with their families and friends. Other 

activities are listening to music, internet access, using phone applications and social 

networking [105].  
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6.3 Software Architecture of a Social Network for BVI 

6.3.1 Overview 

 Our goal is to build a social network especially designed for BVI. In this 

section we present a software architecture for a social collaboration environment for 

the blind. This network provides assistance for the blind and visually impaired while 

they travel from a source Point of Interest (PoI) to a destination location PoI. The 

social collaboration environment provides route planning services, obstacle avoidance 

services (i.e. what kind of obstacles available on a specific route and how to navigate 

around them), route alternatives service and the ability to tag a certain PoI both by 

audio and text. 

The user is given the ability to create PoIs and register them on the 

collaboration server. The user can tag each PoI by providing textual or audio 

metadata that provides details about the PoI. The PoI is then registered on the server 

with its location and orientation information. PoIs can be public or private based on 

the user preference. This gives the user the ability to tag places in his/her own private 

environment (home, office, etc.) and will allow the user to navigate between these 

PoIs. If the user creates and tags a public PoI, then the PoI will be accessible by other 

users using the collaboration network.  

  

Keyhole Markup Language (KML), a product of Google Earth, is used to 

represent the PoI tags through XML. KML provides the ability to provide meta-data 

about a certain location using XML. The user can provide a description and exact 
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location information for the PoI. Fig. 6.1 shows an example of a tag created for the 

Waldo Library at Western Michigan University. 

In order to navigate between various PoIs, the user is equipped with our 

indoor/outdoor localization system that provides precise position and orientation 

information and continuously sends it to the collaboration server. Our precise 

localization system allows the user to create PoIs with sub-meter accuracy. As the 

server receives this information, it provides textual or audio assistance to the user 

about the assigned route and the PoIs located on the route from the source to 

destination.  Users are able to configure their preferences on whether they like to be 

provided with audio or tactile instructions to allow them to navigate through the 

details of the followed route. Furthermore, the system allows the user to interact with 

other users (using text or audio) within a certain distance to share their experiences.   

 

Figure  6.1: An example of a PoI tag using KML. 
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6.3.2 General Architecture  

In this section we provide generic software architecture of the proposed social 

collaboration services. Fig. 6.2 shows the block diagram for the overall system while 

a detailed discussion is provided in section III-C.  

The system components are hosted on the server which the users will connect 

with while using the collaboration services. The User Interface (UI) provides the user 

with the ability to tag locations and pass it to the Rule-Based Expert System (RBES) 

which is considered the “Brain” of the system. The RBES analyzes all the rules that 

are related to the user’s current location and orientation and provides the proper 

assistance to the user.  

All the rules and user accounts are stored in the system’s database. The user 

must be authenticated to the system first before starting to use the collaboration 

services. Users can connect to the server from any device and uses Google maps 

augmented with audio/tactile instructions to navigate outdoor environments (floor 

plans augmented with audio/tactile instructions are utilized for indoor environments). 

The system also provides some reporting services functionality through the 

reporting services system. This reporting service provides some statistical reports 

about all network services (i.e. the number of current online users, the number of 

visually impaired users logged in the system in the past three months, etc.). The 

location tagging sub-system interacts with the user through the UI provides the user 

with the ability to create public or private location tags in the form of text or audio. 



 

The system also provides some reporting 

reporting services system. This reporting service provides some statistical reports 

about all network services (i.e. the number of current online users, the number of 

visually impaired users logged in the system in the pa

location tagging sub-system interacts with the user through the UI and provides the 

user with the ability to create public or private location tags in the form of text or 

audio.  
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Figure  6.2: System block diagram. 
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6.3.3 System Objects 

In this section we provide a description of the various system objects and 

describe their functionality. Fig. 6.4 shows the class diagram of the overall system 

and the relations between its objects.  

 

1) The Server Object: This object will host our social collaboration services. All 

other system objects will be part of this object. Users connect to this object through 

the Internet and interact with it as they move between PoIs.  

2) Point of Interest (PoI) Object: A PoI can be any place with known location. The 

user can create a PoI of interest, tag it with textual or audio information and register it 

on the system. As mentioned earlier, PoIs can have public visibility (i.e. a cafe on a 

route, restaurant, bookstore, mall, etc) or can have private visibility (i.e. parent’s 

house, desk location in the living room, etc.).  

3) User Object: This object is created once a user gets registered on the collaboration 

network. 

4) Profile Object: Each user has a profile object that contains the user’s preferences 

and details. 

5) Tag Object: This object contains a description about a certain PoI and is created 

by the user and represented using KML. The Tag can contain textual or audio 

description about the PoI. For example, if the PoI is for a hotel, the tag can be a 

textual review about the hotel’s customer reviews, etc.  

6) Location Object: This object has 3D location information about a certain PoI.  
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7) Database Object: All user profiles, PoI tags, Rules, PoI locations and orientations 

are stored in the database object 

8) Route Object: The route object contains detailed directions from a source PoI to a 

destination PoI. It also has information about the route details including its associated 

obstacles and PoIs.  

9) Rule-Based Expert System: This system analyzes the users’ tags and PoIs and 

provides consultation and advice for the user. The user interacts with the Rule-Based 

expert system through an interface especially designed for this purpose. The user 

experience is stored in the knowledge object in the form of a set of rules. Sample 

rules can be of the form: 

“Avoid routes having obstacles when navigating from point A to point B”. 

“Go from Point A to Point B and Pass by a pizzeria”. 

“Go to a hotel in downtown Chicago that has a review score of 4 out of five or 

more”. 

Go to a coffee shop in downtown Kalamazoo that has at least 50 reviews about it“. 

“Follow the route with least traffic from point A to point B”. 

“Only use routes where traffic lights have a speech system installed on”. 
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Figure  6.3: The social network class diagram. 

 

6.3.4 Use Case Diagrams  

This section describes the interactions between the system object in a form of 

use case diagrams.  

1) Account Use Case: In this use case, the user attempts to create an account on the 

system by providing a unique username and a password. The systems sends a 

confirmation email to verify the user and when the user confirms his/her email 

address, the systems create a profile object for the user and the user can login to the 

system. The use case diagram in Fig. 6.4 illustrates this operation. 
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Figure  6.4: The account use case diagram. 

 

2) Create PoI use case: This use case illustrates how PoI gets created bases on the 

user request. The user requests a use case creation from the system. The system then 

asks for the location information. Then, the user input all the information about the 

location and new PoI gets registered in the database. Fig. 6.5 shows an illustration of 

this process.  

 

Figure  6.5: Tag creation use case. 
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 3) Route use case: This use case illustrates how the system provides a route between 

a source and a destination provided by the user. The user first prompts the system to 

navigate from a source to a destination. The system then prompts the user to input the 

source and destination and any user requirements. The system analyzes the user input 

through its Rule-Based Expert System and provides the best route based on the user 

input. Fig. 6.6 shows an illustration of this use case. 

 

Figure  6.6: The route use case. 
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CHAPTER 7  

SOFTWARE TESTING: PRINCIPLES AND TECHNIQUES 

7.1 Introduction 

Approximately 50% of software development time and cost is spent on testing 

[106]. The word test refers to the Latin word testum which is an earthen pot or vessel. 

This vessel was used to examine metal to check for the existence of various metals, 

thus the idiom “to put to the test”.  The concept of “Software Testing” arose 

concurrently with the first computer systems. Programs developed in the early stages 

of programming had to be tested and references to testing techniques return back to 

1950s [107][108].  

At the beginning time  of software development, software testing was thought 

of as a follow on activity. After the completion of a computer program, the testing 

goal was not only discovering errors, but also correct them. In the earliest 

publications on testing, debugging was the main topic for these papers until 1957 

where testing was clearly distinguished from debugging. In the last 1950s and 1960s 

testing became more and more important because a considerable amount of 

development budget was spent on correcting for program deficiencies.  

7.2 Testing Definitions 

Testing “is the process of establishing confidence that a program or system 

does what it is supposed to” [109]. 
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Testing “is the process of executing a program or system with the intent of 

finding errors” [110] . This definition of testing is based on the belief that a computer 

program is initially assumed to have errors and the goal of testing is to find these 

errors. If the goal of testing was only to show that the program works, test data will 

be selected in a way that will have low probability of causing errors. On the other 

hand, if the intention was to prove that the program has errors, test data will be more 

sophisticated and test will be more successful in general.  

Testing “is any activity aimed at evaluating an attribute or 

capability of a program or system and determining that it meets its required results” 

[111]. 

From the above definitions of software testing, the main goal of software 

testing is to find errors in the software and verify that the software is doing what it is 

intended to do. 

7.3 Principles of Software Testing 

Several basic testing principles can be extracted from the existing sufficient 

software testing experience. These principles help provide a foundation for testing 

methods and techniques that will be discussed later in this chapter. They also help 

understand what testing is all about and how it should be done to save time and 

money. In this section we summarize the most important principles in software 

testing and verification.  
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Principle 1:   Complete testing is not possible 

Even the simplest programs has practically and infinite number of test cases. 

It is impossible to try all these test cases and consequently verify program 

correctness. The tester selects test cases that hopefully will be representative to the 

test data space. The selected test cases should be big enough to measure the system’s 

performance but it also should not be too big and make it difficult to manage the test 

process [111].  

Principle 2: Testing must be done by different persons at different levels 

Several factors decide who will perform system testing. These factors are the 

development methodology used, risks, the size and the context of the system and the 

skill and the experience of the testers. It’s usually the responsibility of the component 

developer to perform component testing, but system/subsystem testing should be 

performed by independent person or team. Testers should be assisted by development 

staff before performing acceptance testing which is performed by the end user [112].  

Principle 3:  Testing is context dependant 

The context determines what testing should be performed at different points in 

time. For example, an e-commerce website is testing differently from a safety-critical 

software application. Furthermore, systems developed using agile development 

approach is tested differently than systems developed using the waterfall approach for 

system development. The objectives of testing are also different at different points in 

time of the software development. For example, the objective of unit and component 
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testing it to verify that the code is working correctly. However, the objective of 

system testing is to verify that the system is doing what it is intended to do [112]. 

Principle 4: Testing Work Is Creative and Difficult 

Anyone who had enough experience in testing work knows that performing 

software testing is not an easy task. Complete understanding of the system purpose is 

required before the testing process starts. Usually, senior business analysts are 

assigned to insure that the system is doing what it is intended to as they should 

understand the complex systems and their interactions within the enterprise. Asking 

untrained testers to perform system testing is exactly like asking parents to test their 

children on what they have learned in school. Hence, experienced and knowledgeable 

testers should be assigned to perform testing [111]. 

Principle 5: Testing is Risk-Based 

 This principle is concerned about how much testing should be done if the risk 

of system failure or finding a defect is not negligible? On the other hand, how much 

testing should be done is the risk of failure can cost a human life? The answer to these 

questions emphasizes that good testing is inherently risk-based. The amount of testing 

that should be done is dependent on the amount of risk involved in the system. If the 

system involves too much risk, many test well designed test cases should be designed 

for testing [111]. 

Principle 6: Design Effective Test cases 

System requirements should be complete and precise to perform effective 

testing. User requirements should be well known before test case design and testing 
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should be performed against those requirements. Full understanding of system 

architecture and requirements is important. It allows designing test cases that will 

discover deficiencies in short amount of time. Test cases must provide a complete 

description of the input data and the expected output data [112]. 

Principle 7: Testing should be start early in the development 

Finding errors at the early stages of system development saves huge amount 

of money and rework. According to [112], finding a problem after product delivery 

costs 10 – 100 times more than if it was detected at the requirement gathering 

process. Fig. 7.1 shows the cost of finding errors at different stages of development 

[112].  

Principle 8: Testing must be planned 

All software developers agree with this principle, but yet most of them do not 

discipline themselves to act on it. Appropriate testing requires building an overall 

approach, designing tests, and establishing expected results for the chosen test cases. 

Since a complete testing is impossible (Principle 1), a representative test data 

distinguishes between good and poor testing.  A test plan document describes the 

testing objectives and the overall testing approach. A test design document describes 

which system components are to be tested and describes the expected test results. Test 

plans and designs can be developed for any stage of software development. Testing 

few inputs is not considered testing. The purpose of testing is to measure the software 

quality. Unplanned or Ad hoc testing can be harmful and may lead to a false sense of 

security [111].  



 

Figure  7.1:
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Principle 10: End of testing 

Testing is an ongoing process that has to be stopped at some point in time. 

Practically, testing is a trade-off between budget, time and quality. Effort spent on 

software testing is correlated with the consequences of software errors [113]. Testing 

can be stopped when the risk is under acceptable boundaries or for 

budgetary/scheduling limitations [112].   

7.4 Software Testing Requirements 

A successful testing process completely depends on building a complete and 

robust system requirements document. Software requirements are the conditions and 

constraints that the system must abide by and are usually broken into functional and 

non-functional requirements. The requirements document is basically a “problem 

definition”. From testing point of view, the testers need to verify that this document is 

properly formulated before testing starts. So, in order to verify that the developed 

system works, it is important to test against these requirements to prove that the 

system meets its requirements contract. In this section we will deal with software 

requirements from a testing perspective [114].  

The knowledge of how a requirement will be tested helps focusing on the real 

meaning of the requirement and makes it easy to correctly formulate the requirement. 

To achieve a good statement of the requirements, each requirement should be 

associated with a test solution along with it. Consequently, all problems associated 



127 

 

with misunderstanding the requirements disappear [111].  Furthermore, poor 

requirements document can cause the whole project to fail. This is a result of a 

constantly changing requirements because the stakeholder themselves they don’t have 

a clear understanding of what they want the system to do [114]. 

Having a poor requirements document makes it difficult to prove that the 

developed system works or not when it’s complete. Since establishing this proof is 

the responsibility of testers, they have to make sure that the requirements are good 

and clear. Otherwise, it will be very difficult to understand the expected results of the 

system or even develop a global understanding of what the system is doing [114]. 

Usually, requirements are not completely defined until they are implemented. Hence, 

the implementer’s interpretation of the requirements becomes the final definition. 

This causes testers to periodically adjust their test cases at the last minute and 

stakeholders will more likely not accept the final product. Some aspects of “good 

requirements” are [114]:  

1) Clear (Understandable): Everybody can understand them. Stakeholders, 

implementers and testers should have the same understanding of the requirements 

document. The clearness problem can avoided if all disciplines are involved in the 

requirements review process. 

2) Complete and reasonably detailed:  complete requirements help testers to make 

sure that everything that needs to be tested is being tested. Meanwhile, it is necessary 

to have enough but not too much detail to avoid misunderstanding of the 
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requirements. This can be achieved by referencing supporting details as external 

documents. 

3) Verifiable (Testable): This means that a test case can be written against that can 

verify whether the requirement has been implemented correctly or not. 

4) Unambiguous: A requirement is unambiguous if all of its readers understand it in 

the same way. On the other hand, a requirement should not be so non-ambiguous in a 

way that makes it a legal document.  

Testers should be involved early in the requirement gathering stage. If this 

was not possible, they should at least get involved in the requirements review process. 

Once the tester team receives the requirements document, they start writing test cases 

for these requirements and it quickly becomes apparent to them whether the 

requirements are good or not.  If it is possible for testers to ask for changes in the 

requirements, they immediately should ask managers for requirement revisions. This 

helps having clear vision of what the final shape of the requirement will be and it will 

be easier to write tests for the requirements [114]. 

On the other hand, if the requirements are base-lined and the tester is not 

allowed to ask for requirement changes, the tester can make informal changes and 

document them. The tester can write his own interpretation of the questionable 

requirements and discuss that with manager and stakeholders. Based on that, the 

tester can start writing test to these questionable requirements and present execution 

results to manager and stake holders. This will stir discussions about these 

requirements and make interpretations clear to everybody [114]. 
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A Requirements Validation Matrix (RVM) is used to effectively organize 

requirements. It insures that tests are specified for all requirements in a form of 

requirement versus test cases. Each requirement is listed with test cases or situations 

that are created to test it. The requirement can have multiple test cases associated with 

it and it is very rare to have a single test case to verify a single requirement. 

Furthermore, a test case associated with more than one requirement is a common 

thing in the RVM. The RVM has many benefits and those include [111]: 

1) Ensures that all requirements are listed. 

2) Identifies the tests linked to each requirement.  

3) Facilitates the requirements review process. 

 4) Provided a simple technique to track the status of the test design and 

review. 

 Another important strategy for testing the requirements is by using test 

models or prototypes. This includes building a model system with no intention to use 

it but to test and confirm that true understanding of requirement is available for all 

disciplines. Test models are more beneficial when there is little understanding about 

requirements that it is essential to gain more experience with a working model. 

Modeling can be considered as a part of the incremental development 

approach. Incremental development means that gathering requirements, designing, 

building and testing the system is done in parts. Rather than solving a total problem, 

the problem is divided into sub problems. Sub problem-subsystem is built and tested 

independently of others. This has the advantage that requirements for later increments 
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do not have to be defined prematurely and can be changed based on the work 

experience.  

7.5 Software Testing Techniques 

Software testing is an art and cannot be considered as science [115]. 

Techniques invented 20-30 years ago are still being used in today’s testing. Some of 

these techniques are crafted methods or even heuristics rather than well-engineered 

testing techniques. Software testing is not an easy process at all. A piece of software 

can never be considered as correct and the same applies on the software specification. 

There is no verification system available that can verify the correctness of every 

program and it is even impossible to verify the correctness of the verification program 

itself [115].  

7.5.1 General Testing Techniques 

There are various testing techniques serving multiple purposes during the 

software life cycle. Those techniques can be classified based on purpose in several 

categories: 

1) White Box Testing: This is a complementary testing technique that relies on the 

knowledge the analyst has for the internal structure of the software. In white box 

testing, the analyst has complete knowledge of the structure of the system being 

tested. For example, if the analyst is designing a test case for a function that checks if 

a certain input is of integer type, the analyst is aware that the function will be of type 

IF-THEN-ELSE and can make sure that the appropriate logic is implemented. In 
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white box testing the analyst has full access to all software design documents and 

other sources of knowledge about the software being tested [116].  

2) Black Box Testing: In this technique, the analyst does not have knowledge about 

the internal structure of the software. Example software can be an extension to legacy 

software where system documentation is lost or Commercial-Off-The-Shelf (COTS) 

software. In black box testing, test cases must be designed for the external behavior of 

the system. If the software requirements are available, those must be test against. 

Otherwise, user guides or any document that describes how the software should 

behave can be used in testing [116].  

3) Correctness Testing: The minimum requirement of any software is to be correct. 

This technique requires an oracle to tell the wrong behavior of the system from the 

correct one. In correctness testing the tester may or may not know the internal details 

of the system to be tested. Hence, either black box or white box testing can be used in 

testing [115].   

4) Performance Testing: This technique involves all the phases in the mainstream of 

the software lifecycle. Performance testing insures that the software under testing 

complies with the performance requirements of the system. The performance of any 

system is usually measured by throughput, resource usage and stimulus response 

time[117].   
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7.5.2 Functional Testing Techniques 

The previous techniques are considered general techniques and are used in 

most software testing approaches. The authors in [116] classified testing techniques 

as functional and non-functional techniques. Functional techniques are used to verify 

that the Application Under Test (AUT) meets all functional requirements listed in the 

requirements document. The major functional testing techniques are:  

1) Equivalence Partitioning: This technique divides the input data to a software 

module into partitions from which test cases can be derived. Each partition has at 

least one test case designed especially to uncover certain classes of error. This 

reduces the number of test cases that should be developed.  Another advantage of 

using this technique is that it discovers the so-called “Dirty” test cases. An 

inexperienced tester may ignore the use of invalid data during testing which results in 

huge number on unnecessary test cases. It is necessary to mention that equivalence 

partitioning is not enough to derive test cases and should be supplemented by 

boundary value analysis which is the next functional testing technique [118]. 

2) Boundary Value Analysis: Since errors tend to occur near the extreme values of 

the input variables, test cases should be designed to test for these conditions. For 

example, loop conditions may test for a “<” when they should test for a “≤” and loop 

counters are usually off by 1. This technique works well when the UAT is a function 

of independent variables representing bounded physical quantities. The limitation of 

this techniques is that is does not consider the nature of the function or the semantic 
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meaning of the input variables. Test cases belonging to this technique tend to be 

elementary with no insight and imagination [119]. 

3) Intrusive Testing: Using this technique, the AUT is intentionally modified by the 

tester for the purposes of testing. For example, some variable values that are not 

visible during the execution of the program are made visible by adding statements to 

view these variables’ values. Other example is that the tester deliberately sets variable 

values using symbolic debugger or intentionally triggers error conditions for testing 

purposes. The modifications made by the testers should not be delivered to the user 

which requires careful change control and management. The main objection on using 

this technique for testing is the argument that what you tested is not what you deliver 

to the user. Furthermore, some of systems tested using this techniques contained 

tester modifications that manifested themselves during normal system execution 

[116].    

4) Random Testing: The purpose of this technique is to generate so many test cases 

to hopefully uncover as many faults or hit many coverage targets. For instance, the 

test cases are continuously sampled until certain number of feasible branches in the 

AUT is executed. Since test cases detect failures and do not uncover faults, from a 

mathematical point of view faults cannot be considered as targets. The target is to 

make specific system expectations fails, thus triggering visible failures [120].  

5) State Transition Analysis: This technique is used where some parts of the AUT 

can be represented as Finite State Machine (FSM). This means that at any point in 

time the system is in a known state and the transitions between system states are 



134 

 

governed by machine rules. The state transition model of this technique has four main 

parts [121] :  

1) System states. 

2) State transitions. 

3) Events that trigger transitions between states. 

4) Actions that result from state transitions.  

Evaluating what have been tested using this technique is a white box approach 

and developing test cases for the state transition model is a black box approach. It is 

possible to design test cases for every state transition in the model which is known as 

“0-Switch” coverage. It is also possible to develop test cases for every pair of state 

transitions in the so-called “1-Switch” coverage. Deriving test cases from the state 

transition only may result in neglecting the negative test which represents the invalid 

state transitions [121].     

6) Static Testing: In this testing technique, the AUT is not actually used. This 

approach only checks the sanity of the code. It also involves syntax checking of the 

code and manually reviewing the code for errors. From a black box point of view, this 

approach involves reviewing the requirement and specification documents [11] .   

7.5.3 Non-Functional Testing Techniques 

 The last category of testing techniques is the Non-functional testing 

techniques. The goal of these techniques is to insure that the application under testing 

meets all of it non-functional requirements. These techniques include:  
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1) Installation/Configuration Testing: The goal of this testing technique is not to 

find application errors but to find installation errors. Test cases designed using this 

approach to insure that [122]:  

1) The compatible set of system options is selected.  

2) All parts of the system exist before installation. 

3) Interconnections between all programs are all set. 

4) All files are created and have their content. 

5) The hardware configuration is appropriate. 

Installation test cases are formulated by analyzing the test plan after being 

designed by analyzing the system external specification. This testing approach should 

be performed by the application development team which is familiar with both the 

software and the available hardware specifications [122].   

2) Performance Testing: This technique validates the scalability, speed and stability 

of the AUT. Performance related issues like testing and tuning are considered to 

achieve response time, throughput and resource localization requirements of the 

AUT. This approach to software testing is useful to uncover the performance 

bottlenecks in high use applications. Performance testing allows involves an 

automated test suits allowing for simulation of normal and exceptional workloads 

[123]. 

3) Stress Testing: The AUT is stressed by applying more than the maximum allowed 

loads, by offering a certain amount of loads in a very short period of time or by 

offering no loads to the AUT at all [124]. The main goal of stress testing is to verify 
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that when the system fails it recovers in a graceful way; this is called the 

recoverability of the system [116]. 

For example, if a system is designed to accept a maximum of thirty 

simultaneous users. A stress testing technique may check what happens when the 

thirty first user tries to login to the system? Or what happens if the thirty users login 

to the system at the same time? Simulation is the best tool to perform stress testing. In 

the previous example, it is hard to have thirty real users logging in the system at the 

same time from thirty different terminals. In general, developing test cases for stress 

testing is time and resource consuming but this helps taking the critical decision of 

whether to put the AUT live or not [116]. 

4) Recovery Testing: Operating systems and database management systems usually 

have system recovery objectives that states how the system should recover from 

programming errors and disk failures. The goal of this testing technique is to show 

that recovery functions do not work properly. Programming errors are intentionally 

injected in the application to show how it reacts to failures due to these errors. 

Simulation can be used to simulate hardware failures like parity errors, device I/O 

errors or even a noise in a communication link [110] . 

 The design goal of such systems is minimizing the Mean Time to Recovery 

(MTTR) which is the time the application takes to recover from failure. The objective 

of this testing technique is also showing that the system does not meet the service 

level agreement of the MTTR which always have lower and upper boundaries that 

should be considered in the design of test cases [110] .  
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5) Security Testing: The role of the AUT determines the level of security testing that 

should be performed. Some of the requirements specify the need to insure the 

integrity, availability and confidentiality of the application and data. The goal of 

security testing is to test whether the features implemented in the software provide the 

required level of protection. Security testing is often conducted by a dedicated team 

whose role is to make sure that the AUT conforms to all the security requirements of 

the AUT. This team may also verify that a standard or formal process was followed 

during the development of the application. It is possible to run security test during 

any phase of software testing but they are usually run in system testing and 

acceptance testing phases [116].    

6) Volume Testing: In this technique the AUT is subjected to heavy volumes of data. 

For example, a compiler application can be tested by feeding it a huge program to 

compile. Also, a linker/loader can be tested by feeding it with a program having 

thousands of modules. An operating system job queue can be fed with full capacity 

number of jobs. The goal of volume testing is to prove that the AUT cannot handle 

the volumes of data specified in the objectives. Since volume testing is known to 

consume significant resources, time and workforce, it is not possible to go overboard. 

However, each application should be tested with volumes of data in a certain way 

[110].  
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model is a software development process that was first found by Paul 

model can be considered as an extension to the water fall model 

g [11]. Instead of progressing in a learner way, the software 

process is bent upward forming a v-shape. This model reveals the relationships 

between the software development phases and their corresponding testing phases. The 

goal of this model is to improve the effectiveness and the efficiency of the software 

development process and to demonstrate the relationships between development and 

test activates as shown in Fig. 7.2 [11, 126].    

Figure  7.2: The V-model. 
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 In the V-model, testing begins as early as possible in the development 

process. It is always important to involve testers in the early phases of the software 

life cycle. There are a lot of test activities that should be carried out before ending the 

coding phase. These activities run concurrently with the development activities to 

enable the testes produce some test deliverables. The model demonstrates that 

software verification and validation can be integrated in each phase of the product life 

cycle.  

There are many variants of the V-Model in the literature [11, 125, 127-130] . 

In this section, we will discuss a common type of the V-model which has four main 

testing levels namely; Unit Testing, Integration Testing, System Testing and 

Acceptance Testing. 

7.6.1 Unit Testing 

Unit testing is the first level of testing and it refers to testing each program 

unit separately. Examples of system units are procedures, functions or methods. 

Classes in Object-Oriented Programming can be also considered as application units. 

Syntactically, a program unit is a piece of code that that is called from outside the unit 

and can also call or invoke other units. Furthermore, a unit is known to implement 

well-defined functionality at a low or high level of abstraction [131].    

It is natural to test a program unit separately before integrating it with other 

program units. This makes it easy to attribute errors found during testing to a specific 

unit so that is can be easily fixed. This also allows for verifying that each distinct 
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execution of a program unit provides the expected results. All possible unit execution 

paths should be considered while performing unit testing. This requires cautious 

selection of input data for each execution of the program unit [131].  

A programmer needs to verify that a code works or not when performing unit 

testing because unit testing has inherent limited scope. Intuitively, a program unit is 

tested in the following ways [131]:  

1) Every line of code should be executed. The programmer should observe the 

behavior of the program unit when each line of code is executed.  

2) Every predicate in the unit should be executed and evaluated as true or 

false.  

3) The program unit should perform its intended function without any known 

errors. 

Because of the limitations of testing in isolation, not all the expected 

functionalities of a program unit can be tested in isolation. Hence, there is no 

guarantee that the tested unit will work correctly from a system-wide perspective. 

This means that some of the errors will be found later when integrating the unit with 

other system units during integration and system testing stage. Although it is not 

possible to find all errors during unit testing, it is always necessary to make sure that 

a unit functions satisfactorily before integrating it with other units. The reason for that 

is it will be a waste of time and resources to perform testing in subsequent test stages 

and it will be harder to find the root cause of error [131].  



141 

 

Unit testing insures that all parts of the system works correctly before finally 

integrating them together. Although this is considered as a good idea by many 

researchers, unit testing still not widely and formally performed. One of the main 

reasons for this is the lack of effort and commitment to unit testing. Reusable test 

cases for units are hard to build and if the unit code changes, this might require 

changing the unit test cases as well. Another reason is the lack of software 

management support for unit testing. Unit testing is not considered as a real 

deliverable in a project. Hence, a program tester might divert his attention to more 

superficial deliverables of a project plan [132].   

7.6.2 Integration Testing 

Integration testing is the process of checking how system components work 

together especially at unit interfaces. The purpose of integration testing is to make 

sure that different program units interact and communicate data among each other and 

function consistently. Integration testing can be performed at different levels. The 

lowest level is to test that all program units work together with no errors. Higher 

levels of testing might be performed by the developer of the test team [113]. 

The integration test plan is considered as a road map for developers in most 

organizations. It allows the test team to test how individual parts works together and 

to make sure that what the group is testing does not overlap with what other groups 

are testing.  Many companies deliver well tested systems without performing 
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integration testing. This is done by performing an extended unit testing or well 

performed system testing [113]. 

 Integration testing can be very important when developing large and complex 

systems. Some bugs are impossible to discover during unit testing and are discovered 

by integration testing. The integration testing targets the interfaces between program 

units since they constitute the error-prone parts of the system.  It is common to start 

the test plan as soon as possible. This means that the integration testing should begin 

as soon as the system design is beginning to stabilize [113].  

System developers play an important role in performing integration testing. 

Developers have no way of knowing that the system they developed is viable until 

they participate in integration testing. Having the developers involved in integration 

testing speeds up the process of finding bugs and correcting for them. When 

performing integration testing, it is always necessary to creating a scaffolding code 

(drivers and stubs). The test team member may or may not have the required skill to 

make such a scaffold code [113].   

The testing order in integration testing can be performed by four different 

strategies [133]:  

1) Top Down: In this strategy, the interfaces located in the top layer of the system 

design hierarchy are tested first, followed by layers going downward in the design 

hierarchy. In this technique, the main programs servers are the driver for testing and 

in this technique a shell is quickly created. The disadvantage of this strategy is that it 

requires so many stubs to perform integration testing [133].  
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2) Bottom-Up: This strategy starts with lower interface in testing and higher 

components are replaced with drivers. This means that it might require too many 

drivers to perform testing. The advantage of this strategy is that it enables early 

integration with system hardware where this is relevant [133].   

3) Functional Integration: In this strategy, the system is integrated by functionality 

area. This is a kind of a vertically divided top-down approach. This strategy makes it 

possible to have functional areas as quick as possible [133].  

4) Big-Bang Integration: In this strategy, all parts of the system are integrated in one 

run. At first glance, this strategy seems to reduce the test effort but in reality it does 

not. It is very hard to find any defects in the interfaces and impossible to get proper 

coverage when testing the interface in a big bang approach. Both bottom-up and top-

down end up in a big bang testing even if this was not the initial intention [133].  

7.6.3 System Testing  

System testing begins after the completion of integration testing. The goal of 

this test is finding defects in features of the system compared to how it was defined in 

the requirements document. Furthermore, this test aims to reach to a fully integrated 

functioning system. Efficient unit and integration system leads to more efficient 

system testing. System testing is usually impacted by poor or missing component in 

unit and integration testing [133].  

System testing is still necessary after unit and integration testing because the 

later techniques test for techniques specifications; from the technical viewpoint of the 
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software developer. However, system testing is more biased to the perspective of the 

end user of the system. Furthermore, many system function result from the interaction 

of various system components and they are only visible at the global system level and 

can only be tested at this level [133, 134]. 

The specification of the system test is based on the requirements document 

specification. In this specification, both functional and non-functional system 

expectations should be expressed. The system functional requirements express what 

the system shall do and the non-functional requirements express how the system 

presents its functionality and behavior. The test techniques used are often among 

functional techniques and can be enhanced with experience-based techniques. 

However, it is recommended that experience-based techniques should never be the 

only techniques used in system testing [134].   

The system test configuration should be designed to place the system under all 

of its operational inputs and environmental conditions. The sources of deciding which 

measurements are valuable should exist in system-level specifications. The main 

elements of system test configuration are [135]:  

1) System Inputs and Environment: The system test configuration must include all 

the conditions that affect the system behavior like inputs and interactions with the 

environment. If any of these are impractical, simulation should be used to realistically 

represent their interactions with the system [135].  

2) System Outputs and Test Points: All expected system output should be 

converted into measurable quantities and recorded during the test. These recordings 
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should also be performed for the inputs to enable the correlation between the 

variations in inputs and changes in outputs [135].  

3) Test Conditions: The conditions under which the system will be placed during 

operational evaluation should be visualized and duplicated. This leads to successful 

operational evaluation by the end customer. Furthermore, some system parts maybe 

stresses intentionally to insure system robustness under severe conditions. This 

includes verifying the functionalities that guarantees system recovery to full system 

capabilities [135].  

7.6.4 Acceptance Testing 

Software acceptance is “an accumulative process of approving or rejecting 

systems during development or maintenance stages according to how close the 

software is to predefined requirements” [136].  The acceptance decisions verify that 

the documentation delivered is consistent with the system and that the final submitted 

system meets all the end user requirements.  The final software acceptance must be 

done at the end of the software development process to insure that the delivered 

software meets predetermined functionality, quality and interface criteria. Security or 

safety criteria might be enforces legally or by the nature of the software system [136].    

Software acceptance is described in a formal document during the early stages 

of the software development process. The plan lists the products for acceptance, the 

acceptance criteria, acceptance reviews, and the acceptance testing throughout the 

software development life cycle [136] .  The software acceptance must state a certain 
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criteria that the product should meet in order to be accepted. The most important 

means to accept critical software like weapon systems or defense information 

network is a periodic review of temporary software documentation and other software 

products [137].    

Final software acceptance testing is considered as the last chance for the end 

user to check the software for functional, safety, security, and quality requirements 

before finally accepting the software. At this stage, the software should include the 

delivered system with all of its documentation and versions. The final step in 

performing software acceptance testing is writing the review document which 

contains the software acceptance testing results [137].  

The main goal of software testing is to pinpoint errors and find potential 

problems in the software. Initial analysis of the requirements document is important 

because requirements are the basis for acceptance testing criteria since they verify 

that the product will meet the user’s needs. However, later acceptance testing 

activities do not focus on direct proof that the system will meet user expectations. 

These activities focus on the each successive products of development are consistent 

with each other and that all requirements will be met. If the earlier stages of 

acceptance testing complete successfully, then the final testing stage should be little 

more than a formality [137]. 

The acceptance criteria and a complete set of system requirements form the 

basis for the acceptance testing approach. The software system and the installation 

site affect how the acceptance testing will be performed. Some special arrangements 
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are required when the software system cannot be completely installed and tested live.  

Multiple configurations might need to be installed at different test sites and test cases 

might not be the same for all installation sites. Hence, configuration management of 

test documentation requires special attention. Planning in advance is required to make 

sure that the operations staff is well trained so that the acceptance testing of the 

software goes well without any interruptions [137].  

The end users are involved in deciding how the acceptance testing will be 

performed, even if the acceptance testing is to be performed by a third party. The 

minimum requirement is that the staff of the end users is involved in the testing 

process. The end users should create scenarios of how they perform their functions 

and how the final software will be used. Furthermore, the end user must provide 

managerial time for the process of acceptance testing from its beginning. They also 

must allow tie for reviewing and developing the test documentation [137].   
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CHAPTER 8  

SOFTWARE VERIFICATION OF RULE-BASED EXPERT SYSTEMS 

8.1 Introduction  

Problems like theorem proving, speech and pattern recognition, game playing 

(e.g. Backgammon and Chess) and many complex and stochastic problems were 

thought to only be solved by humans.  The reason is that the formulations and 

solutions to these problems require human abilities like thinking, observing, 

memorizing and learning. However, intensive research in the last five decades or so 

shows that the majority of these problems can be formulated and solved by 

computers. The broad field which is referred to now as Artificial Intelligence (AI) 

deals with these kinds of problems which first seemed intractable and impossible to 

solve [138].  

 The Artificial Intelligence is defined by A, Barr and E. A. Feigenbaum [139] 

as:  

“Artificial Intelligence is the part of computer science that 

is concerned with designing intelligent computer systems, that is, 

systems that exhibit the characteristics we associate with 

intelligence in human behavior- understanding language, learning, 

reasoning, solving problems and so on.”   

Artificial Intelligence has several subareas including expert systems, 

automatic game playing, automatic theorem proving, pattern recognition, artificial 
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vision, robotic and neural networks. Although expert systems are treated as a subarea 

of AI, most of other areas in AI include an expert system part in their structure [138].  

8.2 Expert System Definition 

Expert systems have many definitions in the literature. For example, Stevens 

[140] defines an expert system as:  

“Expert systems are machines that think and reason as an expert 

would in a particular domain. For example, a medical –diagnoses 

expert system would request as input the patients symptom’s, test 

results, and other relevant facts; using these as pointers, it would 

search it database for information that might lead to the 

identification of the illness. […] A true expert system not only 

performs the traditional computer functions of handling large 

amounts of data, but it also manipulates that data so the output is a 

meaningful answer to a less  fully specified question.” 

 The definition of expert systems evolved over the years due to the rapid 

technology development. M. Josephine and K. Sankara defined the expert system as 

[141]:  

“An expert system is a computer program that simulates the 

judgment and behavior of a human or an organization that has 

expert knowledge and experience in a particular field. Typically, 

such a system contains a knowledge base containing accumulated 
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experience and a set of rules for applying the knowledge base to 

each particular situation that is described to the program.” 

Based on these definitions, an expert system should have the ability to:  

1) Process and memorize data. 

2) Understand this data and reason it in both deterministic and un-

deterministic situations. 

3) Interact with humans and experts. 

4) Make decisions based on this experience and also provide explanations on 

why these decisions have been made.  

An expert system can be thought of as a consultant that can provide help to a 

human expert with certain degree of reliability [138].  

8.3 Expert System Components 

There are several taxonomies for the expert systems that are available in the 

literature. In general, an expert system has four main components: 

1) Knowledge Base (KB): KB is considered as a storage place for the human expert 

knowledge to solve a certain problem in a certain area like engineering, finance 

medicine and so on. Knowledge can be in a form of heuristics which are based on 

experience and intuition. Therefore, it varies from one expert to another. Knowledge 

can be also described as “deep knowledge” which includes theories and principles 

obtained from textbooks [142]. 
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2) Inference Engine: The inference engine is basically a program that includes an 

analytical framework for generating and explaining the advice to the user. The 

inference engine task is to combine user’s answers to questions with the rules stored 

in the KB in order to provide an advice to the user or solve a certain problem. While 

doing that, the inference engine can also generate additional questions as required, 

and conclude based on the satisfied rules what are the final solutions and 

recommendations should be [143] . 

3) User Interface (UI): The user interface is a software the allows the user interact 

with the computer by inputting data and accepting output from the computer. The UI 

provides a communication layer between the inference system and the user. 

Furthermore, the inference engine uses the UI to obtain facts from the users about the 

rules in the knowledge base [142, 143].   

4) Working Memory: This component also referred to the as “Blackboard”, 

represents the memory of the expert system. It includes the initial facts that are 

entered by the user and the fact inferred by the inference engine [144].  It also 

contains the plan of action for solving the problem in hand and the alternative actions 

that can be taken to solve the problem. 

5) Explanation Module: The purpose of this module is to provide the user of 

justifications to the decision that are taken by the expert system. It also provides the 

user with the ability to request on how a certain conclusion was obtained. For 

example, the user of the expert system can request a rule trace or the set of rules what 

were executed until a decision or a conclusion is reached [144].   
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8.4 Rule Based Systems 

A Rule-Based System (RBS) is a system that comprises knowledge base in a 

set of rules in the form of “IF-THEN-ELSE” and a simple inference mechanism or a 

rule interpreter. The interpreter examines the facts on the left hand side of the rule.  A 

successful examination of these rules sets the facts to new values based on the right 

hand side of the rule. The database of facts is affected by the actions of the rules and 

rule firing depends on the fact stored in the database [145]. 

In a RBS knowledge is represented by a set of rules. That is, a set of 

conditional statements relating facts to one another. The primary rule of inference that 

systems use to add new facts to the knowledge base is called “Modus Ponens” [146].  

This rule works as follows: 

Suppose P and Q are both logical statements and assume that P and “P then 

Q” are both true. Hence, we can infer that B is also true. An example of inference 

using the modus ponens can be described by the following three sentences [147]:  

• If it is raining, then there are clouds in the sky (P� Q) 

• It is raining (P) 

• Therefore, there must be clouds in the sky (Q). 

OR 

P 

P�Q 

_ _ _ _ _ 

Q 
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The Rule-Based system frame work is conceptually simple. The variations 

required to interact with the real word makes this framework interestingly complex. 

For instance, the rule P�Q is often interpreted as “P suggests Q”. The fundamental 

assumption in a Rule-Based system is “Knowledge is a power”. The general problem 

solving knowledge when merged with specific knowledge of task provides an expert 

level analysis of difficult situations [146].   

Heuristics, or rules of thumb, have been used by Artificial Intelligence (AI) 

researchers in intelligent problem solving. The reason for that is mathematically 

precise and computationally feasible methods are knows for a relatively few problem 

classes. The most important information that should be available to the expert or 

Rule-Based system is the body of heuristics that experts use to solve hard problems. 

An expert system can also use informal knowledge reasoning in problem solving. The 

goal of the expert system is not to simulate a specialist problem solving behavior. 

However, the power of the expert system is derived from integrating the heuristic 

knowledge as specialists use with the same style of informal reasoning [146].  

The pioneers of experts systems are DENDRAL [148] in organic chemistry 

and MACSYMA[149] in symbolic integration. These systems were built in 1660’s 

and their emphasis was on system performance. They also were unique systems in AI 

at that time since they targeted real world problems on specialized knowledge. 

Serious work in expert systems started in 1970’s especially in the field of medicine. 

The systems in [150-153] are examples of the first expert systems. Later systems 

[154, 155] added the explanation capabilities to the Rule-Based expert system making 
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the system provide explanations for the recommendations provided to the user. 

Furthermore, the flexibility in acquiring knowledge was added in newer expert 

systems like the systems in [146] [156, 157] .  

The construction of a new expert systems was difficult and time consuming 

because each system was custom-crafted [146]. The major difficulty was in acquiring 

expert’s knowledge and converting it into a form that can be consumed by the 

computer. This process was later known as knowledge engineering. The major 

contribution of the researchers work in 1980’s was the development of “knowledge 

engineering frameworks”.   These frameworks were constructed to help build, debug, 

interpret and explain new expert systems. The process of engineering an expert 

knowledge into a useful computer program is a difficult task and thus, computer aid 

to the system builder is necessary. Hence systems like EMYCIN [158], ROSIE [159], 

EXPERT [160], OPS [161] and KAS [162] were built to help developers building 

robust expert systems [146]. 

8.4.1 Rule-Based Systems Verification and Validation 

A Rule-Based system can be verified using two approaches [163]. The first 

approach considers the system as a one unit while the second approach deals with 

each system unit separately. Since the modern Rule-Based systems are modular in 

design, a combination of the two verification approaches can be used. The integrity of 

the Rule-Based system can be maintained by following the accepted software 

engineering techniques. These techniques include performing unit, module and 
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system level testing. The work in [164] identifies the tests that are applied to the 

expert system knowledge base to verify its correctness, consistency and 

completeness. During this phase of testing, online debugging tools can be involved in 

system testing [165]. 

The goal of the testing process if to verify that the functionality of the system 

developed meets the expectations of the end user. This work is often performed by 

the development personnel using the review document of the system specification and 

documentation. Beta-testing can be performed of the prototypes through the initial 

implementation of the Rule-Based expert system. The outcome of this process can 

cause reformulation of the objects and heuristics and can also result in redesigning the 

system knowledge structure [165].  

The common way of testing a Rule-Based system is by providing a number of 

test cases with known results and measuring how the rule-base performs against these 

test cases. The drawback of using this method is that it is difficult to obtain an 

indication of how much the rule-base is actually exercised by test cases. Furthermore, 

it is possible that there are some rules never get fired by these test cases at all. Hence, 

the accuracy of the test applies only to part of the rule base [166].  

The work in [166] implemented a Rule-Based verification and validation tool 

called TRUBAC. This tool proved to enhance the typical functional evaluation based 

on a series of  base coverage measures. The work was motivated by the control flow 

analysis and data flow that have been applied to procedural programs in the past. 

TRUBAC uses a set of Rule-Based measures to evaluate the rule base. 
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O’Keefe and O’Leary [167] and Boehm [168] developed an approach that 

defines verification as” building the system right and validation as building the right 

system”. Hence, verification tests whether the system follows its formal specification. 

Their work focuses on validation issues and provided methodologies to prove 

whether the system provides its expected functionalities in the eyes of experts and 

users as well [169].  

The Verification and Validation (V&V) of Rule-Based system was proposed 

in many approaches [170-173]. These approaches focus on detecting structural 

abnormalities between rules and on the completeness system to check whether all 

ranges of a condition are checked or not. None of the proposed approaches verify the 

accuracy of the system rules. On the other hand, verification methods are concerned 

with constructing suitable test cases for a given Rule-Based system [174]. 

8.4.2 Rule Accuracy Measurement  

Rule accuracy is concerned with how a given rule accurately represents the 

expert knowledge encoded inside the rule. The absence of accurate methods to 

structure and formulate the rules may result in inaccurate expert knowledge 

representation by the rules. An accurately coded rule must represent its part of the 

domain knowledge and nothing else. If it is possible to verify the rule against the 

knowledge that is represents, then it is possible to evaluate whether the rule correctly 

models its intended part of knowledge [174]. 
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Rules apply on objects in a finite universe. A rule selects objects from this 

universe based on the rule’s conditions. A correctly coded rule will select the correct 

objects in its actions and conditions. Hence, if it is possible to verify that the rule 

selects the correct objects in both actions and conditions with respect to the 

knowledge that the rule represents, then the rule accuracy can be safely verified 

[174].   

For example, a rule R in a rule-bases knowledge system can be defined as 

[174]:  

o If there is a patient X, and  

o X has dry cough, and  

o X has high temperature, and  

o X has headache,  

o Then  assert that X has influenza. 

Assume the knowledge K that is to be represented is: Patients having dry 

cough, high temperature, muscular paint and headache suffer from influenza. It is 

clear that R is not accurate with respect to the knowledge K. If the patient universe 

was the one represented in table 1, then the rule R would select patients {X2, X3}. 

However, knowledge K implies selecting only {X1}. In this case, R violates the 

condition for accuracy which is whether the rule represents part or all of the intended 

knowledge [174].  
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Table  8-1: A sample patient universe. 

Patient  Dry Cough Headache   High Temperature Muscular Pain 

X1 FALSE TRUE TRUE FALSE 

X2 TRUE TRUE TRUE TRUE 

X3 TRUE TRUE TRUE FALSE 

X4 FALSE FALSE TRUE TRUE 

X5 TRUE FALSE TRUE FALSE 

 

8.4.3 Coverage Analysis and Rule-Based Systems 

Coverage analysis is one of various techniques that are utilized in the 

validation and verification of software systems. Coverage analysis is a part of 

dynamic analysis which presents a structured and well-defined approach to exercise a 

software system. It requires the construction of test cases that are comprehensive to 

reveal the correctness of software. The development of these test cases is done using 

structural analysis (White Box Testing) or using functional analysis (Black Box 

Testing) [175].  

Coverage analysis provides a measure to the completeness of the software 

testing process. It provides an indication to how deeply the software was tested and 

how effective the test cases have been. The general objective of software verification 

is to make sure that all statements in the software are executed at least once. An 

executed statement is considered as tested [175].  

Test coverage analyzers or dynamic analyzers [111, 176, 177] are 

instrumented in the software during compilation or execution to monitor its 
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execution. These tools then use the information provided by the instrumented 

statements to record which software parts were exercised by the test cases. Test 

coverage analyzers also provide information about which parts of the software were 

not exercised and the percentage of coverage. This information is used by the testing 

team to determine the effectiveness of the set of test cases [175].  

A demonstration prototype called SAVE (Suzanne and Abe’s Validator for 

Expert Systems) [178] was developed to demonstrate the feasibility of constructing 

tools for the verification and validation of Rule-Based systems. This tool is equipped 

with a coverage analysis tool to verify and validate the knowledge base. The 

percentage of coverage of rules within the knowledge base and the effectiveness of 

each rule is analyzed using SAVE. Using the available commercial knowledge 

systems allows the Rule-Based system developer to focus on knowledge testing 

instead of inference engine and user interface testing [175].  

8.4.4 Verification and Validation of Rule-Based Systems Challenges 

The major difficulty in the verification and validation of expert systems is the 

lack of requirements specifications and acceptance criteria. The absence of a 

specification for the acceptance criteria makes the concept of acceptance unclear and 

subject to misinterpretation. Rule-Based system developers are usually reluctant to 

write a formal specification of user requirements. The reason for this is the ill-defined 

nature of the problems which the Rule-Based system usually tries to solve. 

Furthermore, the research environments at which experts system are developed and 
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the small size projects also cause the absence of acceptance criteria or requirements 

specification [178].  

Unlike other process-oriented Artificial Intelligence systems, expert systems 

are problem oriented. Hence,  expert systems are more amenable to the requirements 

specifications definition. Embedded Rule-Based systems are more accessible to 

requirements specification due to the exacting environment in which the operate in. 

categories of requirements are defined in current research to reflect the uniqueness of 

Rule-Based systems [178].    

The type of results provided by the expert systems makes it even more 

difficult to verify and validate expert systems. It is easy to verify the correctness of 

conventional software because their results are exact and can only be correct or 

incorrect. However, it is hard to evaluate the results of an expert systems in the same 

exact manner. Validation of expert system is like grading an essay question as 

explained in [179]. The results of Rule-Based systems are usually complex and what 

makes system validation even more complex is that experts usually do not agree on 

the correctness evaluation of the produced results [178].   

8.4.5 Recommended Activities in the Verification of Rule-Based Systems 

In this section, we summarize a list of activities that can be done during the 

verification of Rule-Based System. These activities are illustrated in table 2 according 

to the linear model described in [178]. 

1) Planning Phase 
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A verification and validation plan that describes a comprehensive verification 

activity of the Rule-Based system being developed in is recommended in this phase. 

This plan is not completed, reviewed and base lined until the next phase starts [178].  

 Table 8-2: Recommended verification in linear model. 

Planning    

Knowledge 

Definition 

Source Identification & 

Selection 

Acquisition, Analysis 

and Extraction 

Knowledge 

Design 

Definition 

Detailed Design 

Code & Checkout 

Knowledge 

Verification 

Formal test 

Test Analysis 

System Evaluation 

 

2) Knowledge Definition Phase 

The output of this phase is a knowledge that has been verified, reviewed and 

base lined by the system experts. Since the knowledge is not encoded into rules until 

the next phase, the only verification that can be done at this phase is a manual 

examination of knowledge. This examination can be done using the techniques of 

walkthrough or inspection [178].  

The test cases collection process is recommended to start during the 

knowledge definition phase. This process is coordinated and performed by the 

personnel responsible for the verification and validation of the Rule-Based system. 
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The tested cases can be collected from on-going transactions, real world data or from 

historical cases. End users and expert are the best sources for these test cases. The 

target usage for these test cases must be specified in advance and they should be 

maintained in a repository for this usage [178]. 

3) Knowledge Design Phase 

The major activities in this phase are the generation of test plan and formal 

reviews of the design document. The verification and validation document, which is a 

product of the knowledge definition phase, is tested with respect to the design 

document. The design decisions during this phase can cause modifications and 

additions to this plan. Hence, the plan should be reviewed after these modifications 

[178].  

4) Code Checkout  

This phase includes the activities of documentation review produced in this 

phase, the formal review of test readiness, and code testing. The linear model does 

not specify the type of code testing that should be performed in this phase. However, 

the most common type of testing performed during this phase is the dynamic unit 

testing performed according to the test plan for unit testing [178].  

5) Knowledge Verification 

During this phase, the test functions listed in the test plan are implemented, 

the results of these tests are analyzed and documented, and the software under 

development is formally reviewed and base-lined. At this phase, knowledge base 

should be free from internal errors due to the previously performed testing activities. 
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Hence, the test objective is to verify that the system parts works well together as a 

whole or incrementally. Furthermore, knowledge implementation is examined in this 

phase (i.e. the expert system answers and the explanation module behavior). After the 

testing team is comfort that the system is working correctly, validation starts after that 

[178]. 

The goal of validation testing is to examine the level of expertise and the 

accuracy of the Rule-Based expert system. This provides an indication to the testing 

team whether the system is ready for validation by the end user or not. Using 

automated tool to compare the testing results is recommended during this phase. 

These tools provide statistical measures to the equivalency between the Rule-Based 

systems results and those obtained from human experts [178].    

6) System Evaluation 

The meaning of system evaluation in this phase is to determine the correctness 

of the Rule-Based system and validate it according to the user requirements. After 

performing all the testing activities in the previous phases, the testing team is satisfied 

with the functionality of the expert system and guaranteed that it meets the user 

expectations. Hence, the testing activities during this phase are mainly user 

acceptance testing activities [178]. 

The user acceptance validation uses the test cases maintained in the test 

repository to illustrate both the explicit and implicit requirements of the Rule-Based 

system. The user validation testing is commonly performed with the existence of the 

user or a representative of the user in the environment where the Rule-Based expert 
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system will be installed. The end-user should be given access to all the tools used for 

verification and validation during system development [178]. 
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CHAPTER 9 

CONCLUSION AND FUTURE WORK 

9.1 Conclusion 

In this work we presented a technique for gyroscope drift correction based on 

a TDoA technology; the MIT Cricket system. We used this technique to build a 

complete Inertial Navigation System (INS) comprised of a gyroscope, accelerometer 

and the MIT cricket motes. This INS was used in our indoor localization system at 

which we fuse data from RSSI measurements with the data received from our INS to 

perform precise location estimation. Furthermore, we used our INS to perform 

outdoor localization by fusing the data from our INS with signal phase shift 

measurements obtained from opportunistic AM radio signals.  

 The advantages of using TDoA over magnetometers for drift correction is 

that it is less susceptible to magnetic noise sources in the environment. The proposed 

approach was able to remove more than 85% of the inserted drift in the gyroscope 

signal. This enables the usage of the proposed drift correction approach along with 

the PDR techniques described in this paper in order to perform precise localization of 

pedestrians in both indoor and outdoor environments.  

In this work, we proposed a novel dynamic access point exclusion technique 

for indoor localization. We also proposed a data fusion technique based on particle 

filter. The proposed approach fuses RSSI measurements received from nearby access 

points and data obtained from the INS subsystem. 
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The proposed approach takes advantage from the high distance accuracy 

provided by the MIT Cricket and avoids its LoS problems by proper installation of 

the beacon and listener. Significant location accuracy was achieved using PF which 

can be further enhanced if data from other sources like camera images or UWB were 

fused by the PF. 

We also proposed a novel dynamic base station exclusion technique for 

outdoor localization. Furthermore, we proposed a data fusion technique based on the 

particle filter. The proposed approach fuses phase shifts from signals received from 

nearby base stations with data obtained from the INS subsystem. 

9.2 Dissertation Contributions 

Our proposed indoor/outdoor localization approach provides a solid 

framework to perform localization in both indoor and outdoor environments. While 

carrying out our proposed localization approach, the following contributions we 

successfully achieved:  

 1) We provided a novel gyroscope drift correction technique based on MIT 

Crickets instead of using a magnetometer for drift correction. Using a magnetometer 

for drift correction is very susceptible to noise from any device with magnetic field. 

We avoided this problem by using MIT Cricket motes with intelligent installation that 

avoids the LoS problems of MIT Crickets mores.  

 2) Our indoor localization approach provides the ability to locate any moving 

object in an indoor environment where there is no GPS coverage with sub-meter 
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location accuracy. The indoor localization approach makes use of the internet 

infrastructure that is available in any organization in these days and of low cost 

MEMS sensors to achieve precise indoor localization.  

 3) The usage of available signals of opportunity almost everywhere in outdoor 

environments allows our outdoor localization technique to precisely locate users in 

these environments where there is no Wi-Fi. The outdoor localization approach 

achieves high accuracy of less than one meter compared to the most popular outdoor 

localization tool which is GPS that has an accuracy of about ten meters. 

 4) All of the above contributions enabled the design of a comprehensive social 

network for blind and visually impaired. This group of people will be able to use our 

social network to navigate and share users’ experience in their environments. Users 

will use our precise indoor/outdoor localization system to provide the network with 

their location. The Rule-Based Expert System installed on the network server 

provides the appropriate help for this group of people based on their specific 

requirements.  

9.3 Future Work 

The contributions mentioned in the previous section provide a solid basis for a 

significant and relevant future work. That includes:  

1- Our outdoor localization approach makes use of the online available AM 

radio signals of opportunity to perform precise localization. While doing that, we run 

some optimizations online using PSO to solve for the distances and the position of the 
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user relative to the nearby LPAM radio base stations. This is done using Matlab and 

requires significant resources to be done in a real time system. 

 Our future plan for this involves introducing the concept of location 

fingerprints used in performing indoor localization into outdoor localization. We will 

create location fingerprints from the signal phase shifts obtained from multiple nearby 

LPAM radio base stations, record them in a database and use them in the same way as 

we did in indoor localization using the Particle Filter.  

2) Our current implementation separates indoor and outdoor localization and 

both techniques works independently. We are planning to merge those two techniques 

into one approach that performs indoor/outdoor localization and make use of any 

available Wi-Fi or AM radio signals of opportunity or both. This new approach will 

still depend on our novel Inertial Navigation System (INS) and on the Particle Filter 

to perform data fusion between INS data, RSSI measurements and AM radio signals 

of opportunity all together.  

3) There is some other senor data sources used in localization in the literature 

like RFIDs, heat sensors, Ultra Sound and camera images. We plan to fuse data from 

these sensor technologies using our adaptive particle filter to provide more 

localization accuracy and more awareness of the surrounding environment.  

4) We designed a preliminary software architecture that provides a solid basis 

for our social network especially designed for the blind and visually impaired. This 

network will be developed based on the requirements of this group of people and will 

allow them to navigate through their environments with the least help from others. 
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The network will provide features like location tagging, obstacle avoidance routing 

and some other features based on requirements collected from the blind and visually 

impaired.    
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