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 The analysis of public health surveillance data to identify departures from 

historical patterns of disease is required to facilitate the timely identification of 

potential outbreaks. Using the Box-Jenkins forecasting model, this study 

examines the potential to predict future disease burden based upon the historical 

record within local public health jurisdictions. Box-Jenkins forecasting was 

developed as a direct result of forecast problems in the business, economic, and 

control-engineering applications, yet it has not been systematically examined for 

use with public heath surveillance data.  

 Box-Jenkins forecast models are constructed by stratifying 84,029 disease 

reports from the State of Utah by year (n = 10), disease type (n = 50), and 

jurisdiction (n = 13). A disease has to be present in all years and have a rate 

greater than 0.2/100K to be included in the study. Sixteen diseases have been 

selected for analysis. Accuracy of the forecasts is determined by conducting 48 

forecast trials; within these trials there are 576 monthly forecasts. The results are 

compared to the actual values for the same period. Accuracy is determined 

calculating the Mean Absolute Percentage Error (MAPE) for each forecast trial. 



 

 

Forecast predication intervals explore the relationship between actual values and 

the predication interval associated with each forecast. 

 Forecasts have an absolute accuracy of 71% (range: 43.4–91.7%). Ten of 

the 16 forecasts (63%) have an absolute accuracy greater than 75%, four (25%) 

have an absolute accuracy between 52.6% and 69.6%, and two (12%) have an 

accuracy of less than 50%. Forecast accuracy is independent of rate of disease 

(r = –.348, n = 16, p >.05) and jurisdictional size (r =.396, n = 7, p =.380). Eighty-

four percent of all forecast values are contained within the first forecast interval, 

88% within the second, and 99% within the third.  

 This study demonstrates that it is possible to predict future disease burden 

using Box-Jenkins forecasting techniques. The overall accuracy of the forecast 

and disproportionate number of forecast values contained within the first forecast 

interval validate this as a method that may be used to monitor disease trends and 

potentially facilitate the early identification of an outbreak. 
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CHAPTER I 

INTRODUCTION 

The analysis of public health surveillance data to identify departures from 

previously observed or historical patterns of disease is required to facilitate the 

timely identification of a potential outbreak or epidemic. It is believed by many 

that if an outbreak is detected early the public health response may limit its 

spread and break the chain of transmission thereby reducing the overall disease 

of the outbreak burden on a community (Williamson & Weatherby, 1999). 

For definitional purposes, an epidemic (from the Greek epi [upon], demos 

[people]) (Berube, 1985) occurs when new cases of a disease, in a given 

population, and during a defined period, substantially exceeds what is expected 

(Last, 1995). As such, baselines or expected counts from the historical record of 

disease events are needed to determine whether a disease report represents an 

expected event or may be part of a larger problem or epidemic. For example, a 

high count of influenza cases during the winter in the northern latitudes is 

expected, whereas the same number of cases during the summer may be cause 

for concern (Lipsitch & Viboud, 2009).  

To create comparative baselines, epidemiologists use data from disease 

surveillance systems with disease report information obtained from physicians, 

hospitals, public health departments, and public and private laboratories (Teutsch 

& Churchill, 1994). To be relevant, these baselines need to be created on a 
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continual basis and grounded upon sound forecasting methodologies. Presently, 

many of the baselines used in public health rely upon basic methods such as 

historical counts of disease (Overhage, Grannis, & McDonald, 2008) or forecasts 

created using simple moving averages (SMA). The SMA is the most basic 

forecasting method and tends to produce good forecasts only if the data are 

relatively stable or slowly changing as volatile and unstable data elements 

produce unsatisfactory results (Makridakis, Wheelwright, & Hyndman, 2000). 

However, many infectious disease patterns are not stable due to increasing or 

decreasing populations, seasonality of disease, the occurrence of outbreaks and 

other external conditions (Unkel, Farrington, Garthwaite, Robertson, & Andrews, 

2012). 

Statement of Problem 

Due in part to the events surrounding 9/11, there has been a renewed 

interest in public health disease surveillance systems and the methods used to 

analyze their data (Gesteland et al., 2002). Additional concerns that have also 

driven this interest include emerging infectious diseases (e.g., Severe Acute 

Respiratory Syndrome), bioterrorism (e.g., Anthrax), and concerns over 

globalization and the subsequent transmission of disease (e.g., Influenza) 

(Mikanatha, 2007). Much of this interest has focused upon new surveillance 

methodologies that are collectively known as syndromic surveillance systems 

(Buckeridge, 2010). These systems, used by public health practitioners, are 

intended to give advanced notification of a potential outbreak. They are based 
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upon syndromes, symptoms of disease such as a fever and rash, or data from 

secondary sources such as the amount of antidiarrheal medication sold at a local 

pharmacy. New methods, including the establishment of moving averages and 

baselines, are necessary for the analysis of these data. However, the analytical 

methodology associated with traditional disease report surveillance systems 

based upon actual diagnosed disease reports has remained relatively unchanged 

during this period. With or without these new systems, public health professionals 

need to be capable of monitoring disease trends and accessing information from 

multiple sources to identify or characterize situations that may signal an outbreak 

or other public health emergency (Goldstein, 2010). This dissertation focuses 

strictly upon the analysis of data obtained from public health surveillance 

systems compatible with the National Electronic Disease Surveillance System 

(NEDSS). NEDSS compatible systems are based upon actual disease reports 

originating from physicians, hospitals and laboratories and not upon syndromes 

or other secondary data sources. Data from a NEDSS system will be examined 

to determine if accurate disease forecasts can be made using Box-Jenkins 

forecasting models. Box-Jenkins was selected as many diseases exhibit trend 

and seasonality (Uziel & Stone, 2012). This model takes into account such 

occurrences when constructing forecasts (Box & Jenkins, 1994). As such, Box-

Jenkins may be an appropriate tool to make disease forecasts; it has not been 

systematically evaluated for use with NEDSS data. 
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Definition of Terms 

The vocabulary associated with forecasting is often unclear due to the 

assortment of terms used to describe the outcome or purpose of a forecast. This 

may lead to confusion and it is therefore necessary to define these terms to 

clarify the intent of the forecasting processes associated with this dissertation. 

Terms frequently associated with forecasting include: (a) forecast, (b) prediction, 

(c) scenario, (d) extrapolation, and (e) projection. The following quote provides 

the context used to define these terms.  

A forecast is a probabilistic statement, on a relatively high confidence 
level, about the future. A prediction is an apodictic (non-probabilistic) 
statement, on an absolute confidence level, about the future. An 
anticipation is a logical constructed model of a possible future, on a 
confidence level as yet undefined. (Jantch, 1967) 
 

Using the above quote as a framework, a definition of terms associated 

with forecasting follows: 

 A statement about the future that has a quantifiable probability 

of being accurate is a forecast.  

 A statement about the future put forward as a certainty but not 

based upon statistical modeling, and often an opinion, is a 

prediction. 

 A statement of a possible future without a quantified 

probability is a scenario. 

 A statement about the future based upon the continuation of a 

past trend is an extrapolation. 
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 A statement based upon a scenario or extrapolation and 

contains a far-reaching view of the future with consideration of 

past and current events is a projection. 

For consistency, the forecast discussion presented in this dissertation is based 

upon statistical modeling and outcomes that are based upon a quantifiable 

probability. As such, forecasting, in its simplest terms, is a systematic process 

with the objective of predicting and making statements about events whose 

actual outcomes have not yet been observed. More precisely, forecasting 

attempts to predict change in the presence of uncertainty. This uncertainty is 

based upon trend, cycle, and seasonality (Levenback & Cleary, 2006). 

Forecasting uses recognized statistical methods utilizing historical data from 

longitudinal data sets (Armstrong, 2001). There is no single correct forecasting 

method to use and the method selection is usually based on the objectives 

associated with the forecast and the underlying condition of the data used to 

create the forecast. Forecasting methods can be broken into time series and 

explanatory types of analysis (Makridakis & Wheelwright, 1987). Time series 

models lend themselves to predicting the continuation of historical patterns, such 

as disease burden within a community, if the three following conditions are met:  

1. Data from the historical record are available. 

2. These data are quantified in the form of numerical data. 

3. It can be assumed that at least some portion of the past pattern will 

continue into the future.  
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The last condition, known as the assumption of continuity, is the underlying 

premise of all quantitative forecasting methods (Makridakis et al., 2000). 

Explanatory forecasting seeks to understand an action or phenomena 

such as exploring how weather patterns affect asthma rates within a community. 

Qualitative forecasts are used when there are little or no quantitative data or 

when one believes they have unique insight into the future. Research has 

consistently shown that the judgment of humans is usually less accurate than 

those associated with even simple quantitative models (Hogarth & Makridakis, 

1981); as such, they are not discussed further.  

Forecast accuracy is the difference between the forecast and actual value 

during a defined time period (Armstrong & Collopy, 1992). Just as there is no 

single correct forecasting method, the determination of the accuracy of a forecast 

varies depending upon the objective of the forecast. The method to ascertain the 

accuracy in this analysis is the mean absolute percentage error (MAPE). MAPE 

compares the forecast values against the actual values for each forecast trial. 

Additional details about MAPE and the methods used to determine forecast 

accuracy are described in detail in the Methods chapter.  

Significance of Research 

Box-Jenkins was selected for evaluation because it has the potential of 

producing a point forecast within a given population, it provides a forecast 

interval, and is based upon a proven model (Geurts & Ibrahim, 1975); however, it 

has not been systematically evaluated for use in public health. Forecast results 
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and their associated forecast intervals may help local and state public health 

practitioners make informed decisions about whether the number of observed 

disease reports in a given timeframe represents a potential outbreak or is a 

function of random variation. This is possible as Box-Jenkins relies upon the 

mathematical properties of the underlying time series from which the forecast is 

based and not upon the dynamics of infectious disease transmission. 

Box-Jenkins is an autoregressive integrated moving average (ARIMA) 

model. The difference between traditional regression and ARIMA is that the 

variable being forecast is not related to another variable but is related to its own 

past values, a process known as autocorrelation (Levenback & Cleary, 2006). 

Autocorrelation examines the correlation between each observation and its 

previous observations. Moreover, forecasts based upon ARIMA take into account 

the premise that data, taken over time, may have an internal structure based 

upon trend, and seasonality that can be accounted for (Box & Jenkins, 1994). 

Many diseases exhibit trend and seasonality (Uziel & Stone, 2012), and as such, 

the use of Box-Jenkins is an appropriate tool to make these forecasts; it has not 

been systematically evaluated for use with NEDSS data.  

Box-Jenkins is considered by many to be complex, which may help 

explain its limited use in public health and other disciplines including those that 

rely upon forecasting in the manufacturing, financial, and marketing industries 

(Levenback & Cleary, 2006; Mentzer & Cox, 1984; Winklhofer, Diamantopoulos, 

& Witt, 1996). Its usage may increase due to the number of statistical programs 

that support it use including SAS and SPSS; however, many of these programs 
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require a certain level of expertise on the part of the user to create forecasts. 

This situation may be changing as there are an increasing number of computer 

programs that specialize in forecasting. Generally, these programs contain 

limited overall functionality when compared to complete statistical programs but 

offer an array of forecasting models and provide simplified methods for data 

input, analysis, and subsequent evaluation of the forecast models.  

Purpose of the Study 

This study examines the potential to predict future disease burden based 

upon the historical record within public health jurisdictions using Box-Jenkins 

forecasting models. It also examines the influence of jurisdictional size and rate 

of disease upon the accuracy of a forecast. The results are important as they 

may help facilitate the future identification of outbreaks and other disease related 

events. Moreover, these results will support the development of thresholds for 

proper disease forecasting methodologies and its appropriate use based upon 

jurisdictional size and rate of disease.  

Research Questions 

There are a limited number of articles describing disease forecasting using 

the Box-Jenkins method. However, the literature is silent on methods to 

determine disease forecast accuracy; as such, the threshold upon which a 

disease forecast is determined to be accurate was the subject of extensive 

consideration. Setting the threshold too low dilutes a model’s value, while setting 
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it too high is impracticable as prophetic forecasting models do not exist. For this 

analysis, the threshold was determined by one-on-one interviews with state and 

local public health officials as well as individuals from academic settings. 

Participants include: three local health officers, three local health department 

epidemiologists, one disease investigator, one state epidemiologist, and two 

associate professors from schools of public health. To prepare for the interviews, 

participants were provided with the results of a pilot study upon which this 

dissertation is based and asked to consider the following question:  

If your surveillance data indicated that the number of hepatitis A disease 

reports exceeded the forecast baseline, how confident would you have to 

be with your baseline before you would consider publicly naming a 

suspect restaurant? 

Hepatitis A was purposefully selected as the disease for these discussions based 

upon the following criteria:  

 There is an effective public health intervention based upon the use of 

Immunoglobulin (IG) yet this intervention is time sensitive and 

potentially expensive based upon the number of necessary injections 

(Heymann, 2008).  

 A public announcement of a hepatitis A associated with a restaurant 

carries financial implications. Food safety managers cite losses of 40% 

to 80% of revenues for a named restaurant (―Restaurant Industry,‖ 

1997). An announcement that is later shown to be unwarranted may 

have legal ramifications. 
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 It is expensive for health departments to investigate an outbreak of 

hepatitis A associated with a restaurant. For example, the calculated 

cost associated with an outbreak in Denver was $689,314 (Dalton, 

Haddix, Hoffman, & Mast, 1996). An investigation that yields no results 

is costly in both time and other investigation related expenses.  

The consensus of those interviewed was that they needed to know that a 

forecast was between 70–80 % accurate before they would consider publicly 

naming a restaurant. Based upon this, for this analysis, a forecast is considered 

accurate at the 75% threshold level.  

Based upon the 75% accuracy threshold, two questions are answered in 

this dissertation, with the second question based upon the results of the first. 

Specifically, the research questions are:  

1. Can Box-Jenkins forecasts produce disease specific forecasts that are 

equal to or greater than 75% accurate?  

2. For diseases specific forecasts that are equal to or greater than 75% 

accurate, what influence does jurisdictional size and rate of disease 

have upon the accuracy of the forecasts? 

The data source, diseases selected for evaluation, and the methods used 

to define forecast accuracy and to assess what influence jurisdictional size and 

rate of disease has upon these forecasts is described in the methods section of 

this dissertation.  
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Summary 

Data within public health systems are used to help identify potential 

outbreaks or epidemics. To maximize the benefit of these data it is necessary to 

create baselines or expected counts. These baselines need to be created on a 

continual basis and grounded upon sound forecasting methodologies in order to 

give the forecast credibility.  

This dissertation examines the use of Box-Jenkins based forecasting as a 

tool for public health use. It was selected for evaluation as it has the potential of 

producing accurate forecasts of disease within a given population as well as 

providing a forecast interval for a given forecast. Box-Jenkins is based upon an 

autoregressive integrated moving average model and is used in a variety of other 

professional disciplines that rely upon forecasting to help make decisions based 

upon data.  

To determine the accuracy of the forecasts associated with this 

dissertation it is necessary to calculate the mean absolute percentage error for 

each forecast. Disease forecasts that are determined to be accurate (i.e., > 75% 

accurate) will be examined to determine at which point the Box-Jenkins 

methodology fails based upon rate of disease and population size.  

The results of these analyses, will be used to aid in determining if the 

forecasting methodologies associated with Box-Jenkins can help local and state 

public health practitioners make informed decisions about whether the number of 

observed disease reports in a given timeframe represents a potential outbreak or 

is a function of random variation 
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CHAPTER II 

LITERATURE REVIEW 

To establish a contextual framework for this dissertation a comprehensive 

literature review was completed. This chapter presents the results of the review 

and includes: (a) the literature scope and search strategy, (b) the development of 

public health surveillance systems, (c) current methods and strategies used to 

analyze surveillance data based upon the National Notifiable Diseases 

Surveillance System (NNDSS1) architecture, (d) a description of Box-Jenkins, 

and (e) methods used to evaluate forecasting results. The intent is to present the 

current state of public health surveillance and analytical methodologies which in 

turn influences the overall scheme of this dissertation.  

Literature Scope and Search Strategy 

To assure completeness, an examination was completed on a wide array 

of literature that describes public health surveillance systems and the analytical 

methods used within these systems. Journal articles were reviewed describing 

the use of Box-Jenkins in forecasting, regardless of their professional affiliation 

                                            

1
 The National Notifiable Diseases Surveillance System (NNDSS) represents public health 

surveillance systems developed by local and state-based public health agencies and the Centers 
for Disease Control and Prevention. These systems support surveillance activities associated 
with the Nationally Infectious Diseases list. As such, NNDSS is an umbrella term used to describe 
all public health infectious disease surveillance systems in this dissertation regardless of its 
specific type, usage, or source of origin. 



 13 

 

(e.g., sales forecasting, product production, etc.), as well as those that described 

methods to determine the accuracy of forecasting models. Several statistical text 

books were studied that describe the use and application of Box-Jenkins.  

To assure totality, a literature review was completed for the time period 

1970–2012 utilizing the following databases: Scopus, PubMed, ProQuest, and 

Google Scholar. Searches utilized both individual and combinations of keywords 

using the terms: National Notifiable Disease Surveillance System, public health 

surveillance, public health data analysis, outbreak detection, predictive 

surveillance, public health informatics, Box-Jenkins forecasting, forecast 

modeling and accuracy, and forecast evaluation. An available feature within 

some of these databases allowed for the use of the ―find similar article‖ feature 

that was used to identify additional articles. All citations were imported into an 

electronic database (RefWorks, Version 2.0).  

Abstracts were reviewed for each identified article and full copies obtained 

if they contained information relevant for an in-depth evaluation. Key articles and 

their associated reference lists were also reviewed, and articles from these were 

reviewed and obtained as well. The majority of the literature review was 

completed during the first six months of 2012; a small portion was completed 

earlier during a pilot study that was used to determine the feasibility of the 

research questions associated with this dissertation. Eighty-one of the identified 

articles were used and/or cited in this dissertation.  
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Public Health Surveillance Systems 

 It is useful to understand the history of public health surveillance systems 

and how their data have been used have been used in order to appreciate how 

the forecasting principles presented in this dissertation may be used to identify 

potential outbreaks. In the book Principles and Practice of Public Health 

Surveillance (Teutsch & Churchill, 1994), Steven Thacker provides a historical 

review on the development of public health surveillance systems in the United 

States for the years 174 –1961. Highlights of this historical review include the first 

introduction of a surveillance system in Rhode Island in 1741, which required 

tavern keepers to report contagious disease among their patrons. In 1850, the 

federal government published the first mortality tables based upon death 

registration and decennial census data. Twenty-four years later, in 1874, the 

Massachusetts Board of Health established a surveillance system using a 

postcard based system to submit weekly disease reports from medical providers 

to the state health department. In 1878, Congress authorized the collection of 

morbidity data for use in quarantine control measures administered by the Public 

Health Service (PHS2). In 1893, Michigan became the first state to require 

medical providers to report infectious disease of public significance with the 

remainder of the states instituting similar systems within the next nine years. In 

1914, there was a significant enhancement in disease reporting when the PHS 

                                            

2
 The Public Health Service (PHS) was the federal agency responsible for enforcing 

quarantine measures in the United States. It was the forerunner of the Centers for Disease 
Control and Prevention (CDC).  
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assigned personnel to select state and local health departments to telegraph 

weekly disease reports to the PHS. This increased both the timeliness and 

completeness of infectious disease reporting from these jurisdictions. However, it 

was not until 1925 that all states participated in a nationally based reporting 

system (National Office of Vital Statistics, 1953). Expectations associated with 

public health surveillance at this time were limited to compiling and publishing 

morbidity statistics in weekly reports and were not used to actively identify 

outbreaks or other health related events. 

In 1951, the Council of State and Territorial Epidemiologists (CSTE), in 

cooperation with the CDC, created a list of reportable diseases and established 

criteria that need to be in place for a disease to be considered reportable. For 

definitional purposes, the CSTE and the CDC define a notifiable disease as one 

for which regular, frequent, and timely information regarding individual cases is 

considered necessary for the prevention and control of the disease (Centers for 

Disease Control and Prevention, 2009). A case definition is uniform criteria for 

reporting cases (Centers for Disease Control and Prevention, 1997). An example 

of a case definition associated with Giardiasis is shown in Figure 1 (Council of 

State and Territorial Epidemiologists, 2012).  

The list of national reportable diseases is contained in Appendix C, yet it 

should be noted that reporting is mandated only at the state or local level and is 

controlled by state legislation or local regulation (Centers for Disease Control and 

Prevention, 2012).  
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Case Definition: Giardiasis 
 

Clinical Case Definition 
An illness caused by the protozoan Giardia lamblia (aka G. intestinalis or G. 
duodenalis) and characterized by gastrointestinal symptoms such as diarrhea, 
abdominal cramps, bloating, weight loss, or malabsorption. 
 

Laboratory criteria for diagnosis: 
Laboratory-confirmed giardiasis shall be defined as the detection of Giardia organisms, 
antigen, or DNA in stool, intestinal fluid, tissue samples, biopsy specimens or other 
biological sample.  
 

Case classification 
Confirmed: a case that meets the clinical description and the criteria for laboratory 
confirmation as described above. When available, molecular characterization (e.g., 
assemblage designation) should be reported. 
 

Probable: a case that meets the clinical description and that is epidemiologically linked 
to a confirmed case. 

 

Figure 1: Example of a reportable disease case definition. 

 

In the publication Public Health Then and Now: Celebrating 50 Years of 

MMWR at CDC (Centers for Disease Control and Prevention, 2011), Lisa Lee 

and Steven Thacker review the development of surveillance systems from 1961 

through 2011. Highlights of this review include the deployment of a weekly 

telegraphic-based reporting system in 1961. This system essentially remained 

unchanged until 1975 when it was replaced with a telephone-based reporting 

system. In 1981, the telephone system began to support the electronic transfer of 

data associated with cumulative disease reports directly to computers at the 

CDC. The success of these data transfers led to the Electronic Surveillance 

Project (ESP) in 1984. The ESP was a five-year pilot project with the purpose of 

exploring issues associated with electronically transferring individual disease 

reports as opposed to the cumulative data being reported within the telephone-
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based system. The success of the ESP led directly to the development of the 

National Electronic Telephonic System for Surveillance (NETSS) in 1990. This 

system changed how reportable disease reports were sent to the CDC; prior to 

NETSS, data were reported as cumulative counts rather than individual case 

reports. Upon implementation of NETSS, states began electronically capturing 

and reporting individual case reports to CDC without personal identifiers (Centers 

for Disease Control and Prevention, 2009). The increase in the granularity of 

these reports (e.g., race, gender, exposure data, etc.) is now used by 

epidemiologists to help determine the source of an outbreak and for public health 

program evaluation purposes.  

 In the early 1990s additional development of NETSS allowed for the 

capture of expanded data sets associated with specific diseases (e.g., Lyme 

disease, vaccine preventable diseases, meningitis, etc.). By 1995, development 

of NETSS had reached the limit of its DOS-based architecture making the 

addition of other disease specific data sets impossible without completely 

rewriting the system. In response, a steering committee formed within CDC to 

investigate integrated public health surveillance systems. This committee 

produced a report, widely known as the ―Katz report,‖ which served as the 

blueprint for one of the CDC’s new priority objectives, the creation of an 

integrated public health information and surveillance systems (Morris, Snider, & 

Katz, 1996).  

 In 2001, development begins on the National Electronic Disease 

Surveillance System (NEDSS). NEDSS is described by the CDC as an ―internet-
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based infrastructure for public health surveillance data exchange.‖ It is not a 

single application, but a system of interoperable subsystems and modules, based 

upon industry standards. It includes software applications developed by the CDC, 

state and local health departments, and those created by commercial vendors 

(Centers for Disease Control, 2008b). All NEDSS compliant systems developed 

since 2001 are built upon these agreed standards. These standards facilitate 

interoperability and simplify data transfer between disparate systems. 

Nebraska began using the NEDSS Base System (NBS) in 2003 and within 

four years, 16 states had adopted the NBS as shown in Figure 2. From 2004 

through the end of 2006, CDC received over 315,000 case reports from states 

using the NBS. The CSTE 2010 NEDSS Assessment Report (Council of State 

and Territorial Epidemiologists, 2010) showed that all states either had 

implemented the NBS or had developed or purchased a NEDSS compliant 

system. A breakdown of the states not using the NBS (shown as gray in Figure 

2) show that 12 states had purchased a commercial off the shelf system, 15 

states had develop a NEDSS compatible system in-house, 15 states used the 

CDC developed NBS, and eight states developed a hybrid system based upon 

customization of the NBS.  

The use of NEDSS or NBS is a definite improvement for health 

departments and their associated disease surveillance activities. However, work 

on the analysis of data associated with these systems remains. For example, the 

CDC acknowledges that most outbreaks are identified in one of two ways with 

the first, and most common, being calls from a doctor, some other health care 
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provider, or a citizen who knows of ―several cases‖ (Centers for Disease Control 

and Prevention, n.d.). This method is often referred to as the astute observer. 

The second means of identifying outbreaks is the routine analysis of public health 

surveillance data. As the majority (i.e., 63%) of all the health departments in the 

United States serve jurisdictions less than 50,000 (Novich, 2011) and only 25% 

of all health departments employ an epidemiologist (Leep, 2007), a point forecast 

value and an associated forecast interval may be useful to evaluate the 

creditability of an astute observer report and the results of routine data 

evaluation. 

 

 

Figure 2: Location of states using the NEDSS Base System, 2012. 
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Analysis of National Notifiable Diseases Surveillance System Data 

 Disease control is a core function of public health and to accomplish this, 

public health practitioners routinely analyze public health data for a variety of 

purposes including the detection of unexpected increases in disease incidence 

that may indicate an outbreak or a change in disease patterns. The early 

detection of an outbreak may allow for the placement of effective interventions 

with the intent of mitigating excessive morbidity and mortality (Williamson & 

Weatherby, 1999). While the Box-Jenkins methodology has been used to 

forecast disease burden (Helfenstein, 1986) and within medical research 

(Helfenstein, 1996), its use with NEDSS data has been limited.  

 The analysis of data contained within NEDSS systems occur at the local, 

state, and federal level of public health practice, yet the literature for the most 

part is silent on these activities. As such, there are a limited number of peer-

reviewed journal articles that describe efforts to apply regression and time-series 

analytical techniques to these data (Williamson & Weatherby, 1999). Most 

describe efforts aimed at developing systems to detect real time aberrations with 

Statistical Control Process (SPC) (Hutwagner, Maloney, Bean, Slutsker, & 

Martin, 1997) and their associated evaluation techniques based upon Shewhart 

Control Charts. Control charts are used to evaluate the stability of the process 

and variation represents a process that is considered out of control. An out of 

control finding would suggest the possibility of an outbreak. These studies are 

limited to a small subset of diseases. No peer-reviewed journal articles were 

identified describing the use of time-series analytical techniques for forecasting 
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future disease burden based upon the use of NEDSS data. As such, the ongoing 

analysis of NEDSS data has a tendency to rely on straightforward temporal 

statistical methods such as historical monthly and weekly averages (Stroup, 

Wharton, Kafadar, & Dean, 1993).  

Using historical data to produce any type of forecast carries an inherent 

level of uncertainty. To describe this uncertainty two types of information are 

needed; they are, a point forecast and a forecast interval (or confidence interval). 

Point forecasts are the best estimate of a future value and are easy to 

understand. However, by their nature point forecasts are incomplete since they 

describe only one possible outcome. The forecast interval is equally important as 

it describes the spread of the likely range, or potential distribution, of forecast 

outcomes (Cristofferson, 1998). Temporal statistical methods do not produce 

forecast intervals, thus making interpretation difficult beyond subjective 

comparisons between the observed and the expected data. Without a forecast 

interval, it is difficult to determine if an observed value is within an expected 

range of values or represents the potential beginning of an outbreak.  

In the emerging field of syndromic surveillance, alternative methods of 

data analysis are being investigated for use within public health practice. While a 

specific definition for syndromic surveillance is lacking, these systems monitor 

surrogate data sources or disease related syndromes and not specific reportable 

diseases. Their intent is to monitor individual and/or population-based health 

indicators that may be detectable before confirmed laboratory diagnoses occur. 

The algorithms used within these systems are based upon symptoms or actions 
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an ill person may exhibit prior at an actual diagnosis (Baer, Rodriguez, & Duchin, 

2011). Examples of data used within these systems use include over-the-counter 

prescription sales, school absenteeism data, and syndrome categories including: 

fever, respiratory, gastrointestinal illness, hemorrhagic illness, localized 

cutaneous lesion, lymphadenitis, neurologic, rash, severe illness, and death 

(Henning, 2004). These systems are intended to support early outbreak detection 

by using near real-time reporting, automated outbreak identification, and related 

analytics (Chen, Zeng, & Yan, 2009), yet their usefulness, to date, remains 

unproven. While syndromic surveillance is potentially an important public health 

tool, the analysis of data associated with these systems is distinctly different from 

those associated with this dissertation as they do not rely upon diagnosed 

reportable disease data and their analytics based upon a cumulative sum chart 

(CUSUM), statistical control charts, and spatial analytical techniques (Kleinman, 

Abrams, Yih, Platt, & Kulldorff, 2006).  

A detailed explanation of data analysis associated with historical averages 

is presented as it is a common method used to examine public health 

surveillance data. It is based upon the concepts associated with simple moving 

averages (Centers for Disease Control and Prevention, 2008a). As an example, 

a five-year monthly average, for a specific disease, for the month of October 

2012 is the sum of the incident counts for the month of October for the years 

2011, 2010, 2009, 2008, and 2007 and then divided by five. The resulting 

number represents a five-year monthly average. The use of a month as the unit 

of analysis is due to the relatively small incidence of disease within states that 
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have small populations and within most local public health jurisdictions. 

Additional analysis takes the monthly expected averages and sums them by 

month to create an expected year-to-date (YTD) count. This allows the observed 

YTD count to be compared to the expected YTD count and a morbidity ratio 

calculated (Utah Department of Health, 2011). A morbidity ratio is simply the ratio 

of the observed counts divided by the expected counts of disease. Table 1 shows 

the results from this type of analyses.  

 

Table 1: Monthly Report of Notifiable Diseases, November 2011 

 
 

Current 
Month # 
Cases 

Current 
Month # 

Expected 
Cases  
(5-yr. 
Avg.) 

# 
Cases 
YTD 

# 
Expected 
YTD (5-
yr Avg.) 

YTD 
Morbidity 

Ratio 
(obs/exp) 

Campylobacteriosis 
(Campylobacter) 

15 20 413 321 1.3 

Shiga toxin-producing 
Escherichia coli (E. coli) 

4 7 166 113 1.5 

Hepatitis A (infectious 
hepatitis) 

0 1 6 10 0.6 

Hepatitis B (serum hepatitis) 0 1 7 13 0.6 

Meningococcal Disease 0 1 10 7 1.5 

Pertussis (Whooping cough) 8 27 446 345 1.3 

Salmonellosis (Salmonella) 16 24 293 304 1.0 

Shigellosis (Shigella) 2 4 51 43 1.2 

Varicella (Chickenpox) 13 72 318 630 0.5 

 
Note. Utah Department of Health, Monthly Health Indicators Report, Nov. 2011. Source: 
http://health.utah.gov/opha/publications/hsu/1112_HlthSummit.pdf  
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 The numerical data displayed in Table 1 represent point forecasts. As 

previously described, without forecast intervals, the interpretation of these data is 

subjected to interpretation by subjective judgment as there is no presentation of 

the distribution. The Morbidity Ratio is calculated in an attempt to counter this 

subjectivity, yet these results are potentially unstable especially when small 

numbers are involved. 

At the CDC, and within larger public health jurisdictions, the analysis of 

NEDSS data occurs at a finer level of granularity utilizing individual weeks as the 

unit of analysis and uses methods in the calculation to help account for season 

variations in disease incidence over time (Centers for Disease Control and 

Prevention, 2006) The CDC presents the results of a five-year weekly average 

for publication in the Morbidity and Mortality Weekly Report (MMWR) Series by 

summing the incidence counts of the current month for the preceding five-year 

period; the sum is divided by five. A historical five-year weekly average is derived 

by summing the incidence counts of the current week, the two weeks prior to the 

current week, and the two weeks after the current week, for the preceding five-

year period; the sum is divided by twenty-five.3 As an example, a five-year 

weekly average, for a specific disease, for week number 38 of 2012 is the sum of 

the incidence counts for the weeks 36, 37, 38, 39, and 40 for the years 2011, 

2010, 2009, 2008, and 2007 and then divided by 25. The resulting number 

                                            

3
 These statistics are collected and compiled from reports sent by state and territorial health 

departments to the National Notifiable Diseases Surveillance System (NNDSS), which is 
operated by CDC in collaboration with the Council of State and Territorial Epidemiologists 
(CSTE). 
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represents a five-year weekly average. A visual representation of the five-year 

weekly average calculation method is shown in Table 2.  

 
Table 2: Five-Year Weekly Average Calculation 

Year Week Number 

Week 36 Week 37 Week 38 Week 29 Week 40 

2011   Current 
Week 

  

2010 X1 X2 X3 X4 X5 

2009 X6 X7 X8 X9 X10 

2008 X11 X12 X13 X14 X15 

2007 X16 X17 X18 X19 X20 

2006 X21 X22 X23 X24 X25 

 
Note. Five-year weekly average for current week = Sum of incidence counts X1 through 
X25, divided by twenty-five. 

 
 
 Literature to support the premise that NEDSS data are routinely analyzed 

by regression and time-series statistical techniques is scarce and is usually only 

alluded to in the literature. Upon reviewing original sources, it is apparent they 

describe only small-scale studies, focus on a limited number of diseases, and 

they are dated. For example, in the History of Statistics in Public Health at CDC, 

1960–2010: The Rise of Statistical Evidence (Centers for Disease Control and 

Prevention, 2011), Donna Stroup and Rob Lyerla review the use of statistics at 

the CDC. In the introduction, they put forth the notion that ―the use of statistics to 

assess data in epidemiology and public health are critical for identifying the 

causes of disease, modes of transmission, appropriate control and prevention 
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measures, and for prioritizing and evaluating activities.‖ It is interesting to note 

that no mention is made of using statistics to identify outbreaks or to detect 

unusual patterns of disease. Later in the text, they do provide a limited 

discussion on statistics and surveillance in the following manner: ―During this 

period [1980s], statistical methods for surveillance also advanced. The 

availability of methods for forecasting by using time series methods augmented 

previous regression results.‖ The first of the referenced materials associated with 

these statements describe a time-series analysis on two diseases and published 

in 1988 and the second on three diseases published in 1989 (Stroup, 1989). 

Box-Jenkins Statistical Model 

 The Box-Jenkins approach to forecasting was first described by 

statisticians George Box and Gwilym Jenkins and was developed as a direct 

result of their experience with forecast problems in the business, economic, and 

control engineering applications (Box & Jenkins, 1994). The methods associated 

with Box-Jenkins resembles auto regression moving averages (ARMA) models 

with the exception that data within the time series has a steady underlying trend. 

Box-Jenkins accounts for this underlying trend by examining the differences 

between the successive observed values, instead of the values themselves. Box-

Jenkins is one of several auto regressive integrated moving average (ARIMA) 

methods, all of which contain the following components (Caldwell, n.d.):  

 Auto regression (AR): Regression that uses past values of itself to 

create forecasts instead of a predictor variable. 
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 Integrated (I): A time series has an underlying trend based upon 

differences between the successive observed values, instead of the 

values themselves. To retrieve the original data from the differences 

requires a form of integration. 

 Moving Average (MA): The value in a time series forecast is influenced 

by the current error term and weighted error terms from the past. 

 The statistical theory behind Box-Jenkins is quite complicated and its use 

was somewhat limited until the relatively recent introduction of specialty 

forecasting packages that has greatly simplified its usage (Rycroft, 1995). Box-

Jenkins forecasting is of greatest use when the underlying factors causing 

demand for products, services, revenue, and, in this case, disease burden are 

believed to behave in the future in much the same manner as it did in the past 

(Levenback & Cleary, 2006). A known shortcoming of Box-Jenkins forecasts is 

that they are based strictly upon univariate analysis, and this limits its use for 

exploring relationships to time and number of events (Pankratz, 1983). However, 

for this analysis the univariate methodology is appropriate as the intent is not to 

explore interdependent relationships but to explore the feasibility of using it to 

forecast disease burden. 

Forecast Evaluation 

 While anyone can look retrospectively at a forecast and determine how 

accurate it was, it remains difficult to determine beforehand how accurate a 

specific forecast is going to be. There are a variety of statistical process tools that 
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can be run when a given forecast is being prepared to help the forecaster 

determine how accurate a forecast may be. It is an accepted practice to test 

forecast accuracy beforehand by simulating trial forecast scenarios over a time 

period for which the actual results are known (Makridakis et al., 1993). When a 

forecaster has the time to conduct this type of analyses upon their forecasts prior 

to their actual usage, the use of a holdout sample is the preferred method as it 

provides a true test of the forecasts accuracy (Levenback & Cleary, 2006; 

Makridakis et al., 2000).  

 Holdout samples are simply a portion of the dataset that is withheld from 

the end of the series. These data are not used in the forecast model and are 

used to compare the actual value against a forecast value. Forecast accuracy 

may then be determined through a variety of methods (Hyndman, 2006) with the 

most common being the (a) Mean Absolute Deviation (MAD), (b) Mean Squared 

Error (MSE), and (c) Mean Absolute Percentage Error (MAPE). Each is 

discussed separately.  

 The MAD is a measure that is easy to calculate and the results are easily 

understood. It detects the average amount the forecast deviates from the actual 

data. It is most useful if the forecast will not be hurt by large errors. MAD is 

calculated by:   where  is the absolute value of the error term 

and n is the number of terms being evaluated.  

 The MSE is a more statistically based measure than MAD and is similar to 

evaluating the variance from random samples. MSE magnifies large errors found 

in forecasts and is useful when large forecasting errors are disruptive. MSE is 
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calculated by: . Both MAD and MSE are based upon the principle 

of making all errors positive either through the use of an absolute value or 

squaring the results of the errors. MAD has the advantage of being easier to 

explain where as MSE has the advantage of being easier to handle 

mathematically (Makridakis et al., 2000). Both MAD and MSE have a common 

limitation in that they each report errors in units independent of the actual data 

and provide no information about the magnitude of the errors. 

MAPE is the most common measure of forecast accuracy and is used to 

measure the accuracy of forecasts associated with this dissertation. While a 

detailed explanation of MAPE is presented in the Methods chapter, a brief 

explanation of MAPE is provided here to contrast it with MAD and MSE.  

MAPE calculates the mean of all the percentage errors for a given dataset 

without respect to the error being positive or negative in value and has the 

advantage of reporting the overall error as a percentage. For example, a MAPE 

result of .19 means the difference between the forecast value and the actual 

value is 19%, or put another way, the forecast is 79% accurate. MAPE is 

calculated as: . MAPE is sensitive to 

results with small or zero volume results as this skews the results.  

Summary 

 The development of public health surveillance systems has created many 

independent systems. Within these systems are data that may be used to identify 

potential outbreaks, which is one of the stated reasons these systems exist. 
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Many continue to use relatively unsophisticated methods for the analysis of data 

contained within these systems. While there are many different methods that 

may be used to analyze these data, I have chosen to evaluate Box-Jenkins as 

the usefulness of it as an analytical tool for public health has not been 

systematically explored. Moreover, Box-Jenkins was selected as it supports a 

proactive approach to disease surveillance data analysis by allowing disease 

forecasting as opposed to simply looking at historical averages. MAPE is used to 

determine the overall accuracy of these forecasts as it is a recognized method to 

determine accuracy. 
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CHAPTER III 

METHOD 

In the preceding chapter, public health surveillance systems and the 

analysis of data associated with these systems were presented. Also discussed 

were the concepts of Box-Jenkins forecasting as well as providing a review of 

methods used to analyze these forecasts. This chapter presents the methods 

used to examine the study questions associated with this dissertation and 

includes: (a) the source of the data and an explanation of the data elements 

necessary to complete this analysis, (b) a description of the preparation 

necessary to prepare these data for the forecasting process, (c) a description of 

the mean absolute percentage error (MAPE), (d) the determination of  forecast 

accuracy, and (e) the methods used to determine the forecast accuracy when 

they are stratified by jurisdictional size and rate of disease.  

Data Source and Element Description 

This dissertation utilizes NEDSS data obtained from the Utah Department 

of Health, Bureau of Epidemiology. While forecasts may be made with short time 

periods, longer time periods are preferred to as they will be more apt to capture 

trend, seasonality and other subtleties within the data (Stellwagen & Goodrich, 

2008). As such, a 10-year dataset representing the years 2002–2011 is used. 

Although disease trends may change over time, the Box-Jenkins forecast model 
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accounts for this by weighing values closer to the forecast event more heavily 

than those in the distant past. An additional factor in the selection of the 10-year 

dataset is that these data are contained within a single NEDSS based system.4  

Many data elements are contained within the available dataset, including 

demographics, disease specific risk factors, exposure history, and laboratory 

data, yet these data do not support forecasting, as forecasting is based upon an 

event of interest, time, and location. As such, to support this analysis, the 

following data elements are used: (a) disease type, (b) date of first report, and 

(c) jurisdiction of record. Each data element is discussed separately.  

The disease type must be a disease contained on the list of Nationally 

Notifiable Diseases and Other Conditions of Public Health Importance. This list is 

maintained by the CDC and is updated on a yearly basis. Individual states modify 

this listing to support their unique needs; as such, diseases for this analysis data 

originate from a listing contained within the Utah Administrative Code, 

Communicable Disease Rule (Utah Administrative Code, 2012). 

Each disease report has up to five dates that are relevant to the report or 

subsequent investigation. These dates are assigned to a hierarchy as follows: 

(a) date of disease onset, (b) date of diagnosis, (c) date of laboratory result, 

(d) date of first report to the public health system, and (e) MMWR report date. For 

this analysis, the date of first report to the public health system is used as all 

other dates are recorded either retrospectively or during the course of the 

                                            

4
 The Utah Department of Health, Bureau of Epidemiology currently uses a NEDSS 

compliant system. This system replaced a NETSS based system in 2001. Data in the NETSS 
system are reported to be unreliable and/or incomplete.  
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disease investigative process making their accuracy suspect. Moreover, this date 

is the only one that is consistently recorded.   

The jurisdiction of record represents the local public health jurisdiction 

from where the report originated or to the jurisdiction it was assigned to if the 

report was initially reported to the Utah Department of Health. It is the 

responsibility of the jurisdiction of record to investigate and record additional data 

associated with an investigation. These jurisdictions align with the geopolitical 

boundaries in Utah (i.e., counties). Six of the 12 local public health jurisdictions 

represent single counties with the remainder being multi-county jurisdictions; in 

addition, the entire State of Utah is considered a public health jurisdiction for this 

analysis. All of the public health jurisdictions are shown in Figure 3. The 

populations within these jurisdictions range from 23,530 to 2,763,885.   

 

Figure 3: Utah Public Health Department jurisdictions.  
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Data Preparation 

To prepare these data for forecasting, the entire dataset is stratified by year 

(n = 10), disease type (n = 505) and public health jurisdiction (n = 136). Rates for 

each disease are also calculated utilizing a mid-point population estimate to 

control for the 23.8% population increase over the time period of the study (U.S. 

Census Bureau, 2012).  For a disease to be included in this analysis, the 

following criteria must be met:  

 A disease must have a 10-year average rate greater than 

0.16/100,000. This rate equates to approximately five cases a year for 

the entire state.    

 A disease must be listed within the Communicable Disease Rule for 

the entire 10-year period associated with this study. Several diseases 

were either added or removed from the listing over the 10-year period 

associated with this study; as such, they are excluded from this 

analysis. 

 A disease that has a mandatory telephone reporting requirement is 

excluded. This exclusion is based upon potential inconsistencies with 

the date of first report. Moreover, these diseases typically represent 

rare events and often have a limited number of reports (i.e., rate < 

0.16/100,000).  

                                            

5
 Although there are 75 diseases listed within the Utah Communicable Disease Rule, many 

did not have a single confirmed laboratory report in the 10-year dataset used in this study.  
6
 There are 12 local public health jurisdictions in Utah; for this study, the 13

th
 encompasses 

all of the local public health jurisdictions.  
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Diseases selected for inclusion are shown in Figure 4. 

 

 
Disease Name 

 
Amebiasis 
Campylobacter 
Chlamydia trachomatis 
Coccidioidomycosis 
Dengue 
E. coli 
Encephalitis 
Giardiasis 
Gonorrhea 
Haemophilus influenzae 
Hepatitis B (acute) 
Hepatitis C (acute) 
Legionellosis 
Lyme disease 
Malaria 
Meningitis (viral) 
Pertussis 
Rocky Mountain spotted fever 
Salmonellosis (excluding Typhoid) 
Shigella 
Streptococcus pneumoniae 
Varicella 

 

 

Figure 4. Infectious diseases selected for inclusion in determination of accuracy 
of Box-Jenkins forecasting methods. 

 
 

Upon completion of the disease inclusion assessment, preliminary disease 

specific forecasts are conducted. All forecasts use fitted values that are based 

upon the weighted average of the previous observations, plus a combination of 

weighted error values associated with the observations (Box, Jenkins, & Bacon, 

1967). This results in events that are closer to the forecast being weighted more 

heavily than events in the distant past.   
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The fitted value, used to generate the preliminary forecast, is screened for 

outliers. Forecasting using fitted values that contain outliers has the potential to 

substantially influence the accuracy of a forecast. A solution is to screen the 

historical data for outliers and replace them with adjusted values prior to 

generating the actual forecasts (Stellwagen & Goodrich, 2008). In this case, an 

outlier is defined as a value in the historical data that is greater than three 

standard deviations from the fitted value used to produce the forecast models. 

Data that meet this definition are adjusted to a corrected value that is associated 

with the upper limit of one standard derivation. This allows the impact of the 

outlier to be accounted for but reduces the overall influence on the forecast. This 

outlier identification and correction process is presented in graphic detail in 

Appendix D. All forecasting is completed using Forecast PRO XE (Forecast Pro, 

Version 5.5). The modified dataset is now ready for use to answer the research 

question associated with this dissertation: 

1. Can Box-Jenkins forecasts produce disease specific forecasts that are 

equal to or greater than 75% accurate?   

2. For diseases specific forecasts that are equal to or greater than 75% 

accurate, what influence does jurisdictional size and rate of disease 

have upon the accuracy of the forecasts? 

Mean Absolute Percentage Error  

The accuracy of a forecast is the quantified difference between the 

forecast value and the actual value for a defined time period. In this case, 
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observed values are the incidence of disease. By convention, forecast values are 

subtracted from the actual value as shown in the following formula:   

where E is the forecast error at period t, Y is the actual value for period t, and F is 

the forecast value for period t.  

Additional calculations are necessary to determine the overall accuracy of 

a forecast using the mean absolute percentage error (MAPE) calculation. 

Forecast accuracy is determined by comparing the forecast values against the 

actual values within the holdout samples by calculating a MAPE for each of the 

forecasts trials. MAPE is defined as the average of percentage errors and is 

calculated as: 1 . By convention A is the 

actual value, F is the forecast value and t is a period in time. Once MAPE is 

determined, it is then possible to derive the absolute accuracy of the forecast 

using the following calculation   

A limitation of MAPE is when the forecast model perfectly predicts the 

actual value as this result is a situation requiring division by zero. To account for 

this possibility, perfect predictions will be removed from the overall accuracy 

determination and reported separately.  

Determination of Forecast Accuracy 

As a retrospective secondary data analysis, the results from the Box-

Jenkins forecasts are compared to actual data from the same time period. To 

accomplish this, disease specific forecasts are made against three holdout 

samples with each being one calendar year in duration. A holdout sample is a 
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portion of the dataset reserved for evaluating the accuracy of a forecast.  The 

underlying logic of using holdout samples to determine accuracy is that portions 

of the time series data are withheld before the forecasts are created. This allows 

forecast results to be compared against data which have been withheld rather 

than trying to determine how well they perform against data which has been used 

to create the forecast. This allows for a simple comparison on their forecasting 

accuracy by comparing their MAPE performance against their associated holdout 

sets. Each disease selected for inclusion will have three forecasts completed and 

the results averaged. This will be completed by using data from years 2002–2008 

to forecast year 2009 and the accuracy determined. The process is repetitive 

with data from 2002–2009 used to forecast year 2010, and data from 2002–2010 

used to forecast year 2011.  

There are 22 diseases eligible for forecasting based upon the established 

inclusion criteria as outlined previously. Each disease will have three forecast 

trials with the results averaged. This will result in 66 forecasts trials and 22 

averaged results. The threshold for forecasting accuracy is set at 75% with 

forecasts meeting or exceeding this threshold considered accurate and forecasts 

below this threshold considered inaccurate. The 75% threshold was determined 

by consulting with state and local public health officials. Overall accuracy of the 

Box-Jenkins ability to forecast future disease burden is determined by comparing 

the number of accurate forecasts against the number of inaccurate forecasts.  
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Forecast Accuracy Based Upon Jurisdiction Size and Rate of Disease 

All forecasting models have a point upon which the lack of historical data 

affects its ability to create accurate forecasts (Boylan, 2005).  Public health 

jurisdictions vary in size and the populations and in this study they have over a 

one hundred-fold difference ranging from 23,530 to 2,763,885. As a function of 

size, public health jurisdictions with smaller populations have a fewer number of 

reportable diseases. An additional factor influencing the number of reports is that 

the incidence of reports varies by disease. These two factors often results in 

smaller jurisdictions having no reports for specific diseases for extended periods 

of time. It is therefore necessary to examine forecast results by jurisdictional size 

and rate of disease to determine at which point the Box-Jenkins forecast model 

fails.   

Disease specific forecasts that are equal to or greater than 75% accurate 

will be evaluated by examining the relationship between each holdout sample’s 

actual value and the forecast interval associated with each disease specific 

forecast. The forecast intervals are calculated at one, two, and three standard 

deviations. To quantify the results, the following rule set is used: 

 The forecast is acceptable if the actual monthly value does not exceed 

the upper limit of the forecast’s predication interval more than three 

times in the 36-month holdout period.7  

                                            

7
 This rule will be adjusted if a forecast cannot be completed for a specific year. For 

example, if only two forecast years are completed for a specific disease due to sparse data then 
the rule would be applied as follows: The forecast is acceptable if the actual monthly value does 
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 Actual monthly values greater than those associated with the third 

forecast interval are classified as outbreaks. 

 If there are less than three actual monthly values during a given year, a 

forecast will not be completed for that specific disease within that 

jurisdiction and will be reported as incomplete.  

To examine the effect of jurisdictional size and rate of disease have upon 

forecast accuracy, it is necessary to select jurisdictions with differing population 

sizes. Seven public health jurisdictions are used to represent these differing 

population sizes. Selection for inclusion is based upon the following 

methodology. The first category is the largest public health jurisdiction. The 

population of this jurisdiction is then divided in half and the jurisdiction with the 

population closest to the product is selected for inclusion. This process is 

repetitive until the final jurisdiction is selected. Table 3 shows the public health 

jurisdictions by population selected for inclusion.  

Statistical Testing  

Beyond the determination of the absolute accuracy of the forecasts using 

MAPE statistical testing is used to examine the various relationships between 

jurisdictional size, rate of disease, forecast accuracy, and forecast intervals. 

These tests will be used to help determine usefulness of Box-Jenkins as a tool 

                                                                                                                                  

not exceed the upper limit of the forecast’s predication interval more than two times in the 24-
month holdout period.  
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for public health and help determine the point where Box-Jenkins forecasts begin 

to fail. All statistical tests are conducted using SPSS (SPSS, Version 21.0). 

 

Table 3: Public Health Jurisdiction by Population 

Public Health 
Jurisdiction   Counties Population Designation Inclusion 

State of Utah All Counties 2,763,885 Large Yes 

Salt Lake  Salt Lake 1,029,655 Large Yes 

Utah Utah    516,564 Large Yes 

Davis Davis    306,479 Medium No 

Weber-Morgan Weber, Morgan    240,705 Medium Yes 

Southwest Beaver, Garfield, 
Iron, Kane, 
Washington 

   203,204 Medium No 

Bear River Box Elder, Cache, 
Rich 

   167,895 Medium Yes 

Central Utah 
 

Juab, Millard, 
Piute, Sanpete, 
Sevier, Wayne 

     75,707 Medium Yes 

Tooele Tooele      58,218 Medium No 

Southeastern Carbon, Emery, 
Grand, San Juan 

     56,350 Medium No 

Summit Summit      36,324 Small Yes 

Wasatch Wasatch      23,530 Small No 

 
Note. The Large, Medium, Small designation matches the criteria used in the 2010 
National Profile of Local Health Departments.  
 
 

Pearson correlation is used to examine the following relationships as 

these data have a normal distribution and are continuous:  
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 The relationship between rate of disease and forecast accuracy (both 

grouped [all disease forecasts] and for diseases with > 75% accuracy). 

 The relationship between jurisdictional size8 and forecast accuracy. 

 The relationship between incomplete forecasts and jurisdictional size. 

 The relationship between incomplete forecasts rate of disease. 

 The relationship between rate of disease and number of observations 

in the first forecast interval. 

 

 

                                            

8
 Jurisdictional size is a continuous variable as it is based upon the population of the 

jurisdiction.   
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CHAPTER IV 

RESULTS 

 
This chapter is presented in two sections; each contains the results 

associated with the research questions in this dissertation. The first section 

reports on the global accuracy of the Box-Jenkins forecasting trials. The second 

section reports on the influence jurisdictional size and rate of disease has upon 

forecast accuracy and forecast intervals. Figure 5 shows the workflow associated 

with the analysis and subsequent reporting of these data.   

 

71 Diseases
(84,029 Records)

Stratify Records 
by Year and , 
Disease Type

Met Selection 
Criteria?

Disease Not 
Selected for 

Analysis

Absolute Accuracy 
Analysis

Result > 75% 
Accurate?

Report Results

Stratify by 
Jurisdictional Size

Forecast 
Prediction 

Interval Analysis

Yes
No

No Yes

Data
Preparation

 

Figure 5: Disease forecast analysis and reporting workflow. 
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Twenty-two diseases were initially selected for analysis using methods 

outlined in the previous chapter. During the analysis, six were excluded: three for 

data inconsistencies; two for incomplete datasets; and one for a change in the 

laboratory component of the case definition that resulted in a large increase in 

the incidence of reported disease. As a result, 16 diseases are reported on in this 

chapter. 

Forecast Accuracy 

Utilizing data representing all public health jurisdictions in Utah, three 

forecast trials were completed for each disease resulting in 48 trials. Within these 

trials there are 576 monthly forecasts. There are 53 perfect predictions that were 

removed from the absolute accuracy calculations. This is necessary as a perfect 

forecast results in a situation that would require division by zero in the MAPE 

calculation. The forecast results charts are contained in Appendix E. 

The forecasts trial results were grouped by disease, compared against 

their associated holdout sample,9 and absolute accuracy calculated. In 

aggregate, the absolute accuracy of all forecast trails10 is 71% (range: 43.4 – 

91.7%). Ten of the 16 disease forecasts (63%) had an absolute accuracy greater 

than 75%, four (25%) had an absolute accuracy between 52.6% and 69.6%, and 

                                            

9
 Holdout samples are simply a portion of the dataset that is withheld from the end of the 

series. These data are not used in the forecast model and are used to compare actual value 
against the forecast value. 

10
 The aggregate absolute accuracy results do not contain the forecasts that were perfect 

(n = 53). 
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two (12%) had an absolute accuracy of less than 50%. Table 4 shows the 

absolute accuracy results for all public health jurisdictions in Utah. 

 
Table 4: Forecast Trial Results: Absolute Accuracy of Disease for All Public 

Health Jurisdictions in Utah  
 

Disease Name Disease Rate Forecast Accuracy 

Amebiasis   0.4/100K 85.2% 

Campylobacter 13.6/100K 78.9% 

Chlamydia trachomatis*** 183/100K n/a 

Coccidioidomycosis   2.3/100K 75.4% 

Dengue    0.2/100K 79.8% 

E. coli*   4.7/100K n/a 

Encephalitis   0.4/100K 91.7% 

Giardiasis 15.2/100K 75.3% 

Gonorrhea* 25.4/100K n/a 

Haemophilus influenza   1.3/100K 58.8% 

Hepatitis B (acute)*  1.7/100K n/a 

Hepatitis C (acute)** 17.7/100K n/a 

Legionellosis    1.0/100K 63.8% 

Lyme disease   0.9/100K 81.8% 

Malaria   0.4/100K 78.3% 

Meningitis (viral)    4.0/100K 62.5% 

Pertussis 17.1/100K 60.0% 

Rocky Mountain spotted fever**   0.4/100K n/a 

Salmonellosis       12.6/100K 76.8% 

Shigella   2.0/100K 43.4% 

Streptococcus pneumonia   5.7/100K 76.5% 

Varicella 23.0/100K 47.2% 

* Analysis not completed due to inconsistencies within dataset  
** Analysis not completed due to incomplete dataset  
*** Analysis not completed due to change in case definition / laboratory test 
 

Influence of Jurisdictional Size and Rate of Disease on Forecast Accuracy 

The 10 diseases with forecast accuracy greater than 75% were examined 

to determine the possible influence jurisdictional size and rate of disease has 
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upon a disease’s actual location within the first, second, or third forecast interval. 

While technically 100% accurate, forecasts that predict zero events and 

contained a forecast interval of zero were removed from this portion of the 

analysis. This was done to unmask the influence these forecasts have upon 

accuracy and to help determine the point when the forecasting model fails. In 

some cases, the majority of forecast results for a specific disease were removed. 

As such, the results associated with forecast accuracy in this portion of the 

analysis are considerably lower than the aggregate results described above. 

Three forecast trials were completed for each disease (n = 10) and 

jurisdiction (n = 7) resulting in 210 additional forecasts.  Within these trails there 

are 2, 520 monthly forecasts.  These forecasts produced usable results in 53.6% 

(n = 1,350) of the trails at one, two and three forecast intervals as shown in 

Table 5.  

The relationship between jurisdictional size and forecast accuracy was 

examined using Pearson correlation. There is a moderate, correlation between 

the two variables (r = –.396, n = 7, p = .380). The association is not statistically 

significant; therefore, jurisdictional size is not related to the accuracy of a 

forecast. 

The relationship between rate of disease and forecast accuracy was 

investigated using Pearson correlation. There is a moderate, negative correlation 

between the two variables (r = –.496, n = 10, p = .164]. The association is not 

statistically significant; therefore, rate of disease is not related to the accuracy of 

a forecast.   



 47 

 

Table 5: Forecast Accuracy and Actual Values Location in the Forecast Intervals 
 

Jurisdiction 
(population) 

Disease 
Rate per 

100K Accuracy 
Incomplete 
Forecast Outbreak 

1
st
 

Forecast 
Interval 

2
nd

 
Forecast 
Interval 

3
rd

 
Forecast 
Interval 

 
Giardiasis 

State of Utah 
  (2,763,885) 

15.2 75.3% 0 0 72.2%   97.2% 100% 

Salt Lake Valley 
  (1,029,655) 

 53.3% 0 0 80.5% 100% 100% 

Utah County 
     (516,564) 

 32.5% 0 0 72.2%   97.2% 100% 

Weber/Morgan 
     (240,705) 

 45.9% 0 0 94.4% 100% 100% 

Bear River 
     (167,895) 

 85.1% 0 0 94.4% 100% 100% 

Central Utah 
       (75,707) 

 52.5% 0 0 94.4% 100% 100% 

Summit 
       (36,324) 

 82.5% 0 2 94.4%   94.4%   94.4% 

    Mean: 84.1%   98.4%   99.2% 

 
Campylobacter 

       

State of Utah 
  (2,763,885) 

13.6 78.9% 0 2 63.9% 88.9%   88.9% 

Salt Lake Valley 
  (1,029,655) 

 69.6% 0 3 72.2% 88.9%   91.7% 

Utah County 
     (516,564) 

 54.8% 0 4 52.8% 77.8%   88.9% 

Weber/Morgan 
     (240,705) 

 52.6% 0 0 77.8% 94.4% 100% 

Bear River 
     (167,895) 

 52.2% 0 1 80.5% 97.2%   97.2% 

Central Utah 
       (75,707) 

 63.4% 0 1 97.2% 97.2%   97.2% 

Summit 
       (36,324) 

 84.5% 0 0 91.6% 97.2% 100% 

    Mean: 84.1% 98.4%   99.2% 
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Table 5—Continued 
 

      

Jurisdiction 
(population) 

Disease 
Rate per 

100K Accuracy 
Incomplete 
Forecast Outbreak 

1
st
 

Forecast 
Interval 

2
nd

 
Forecast 
Interval 

3
rd

 
Forecast 
Interval 

 
Salmonella 

       

State of Utah 
  (2,763,885) 

12.6 76.8% 0 0 76.5%   94.4% 100% 

Salt Lake Valley 
  (1,029,655) 

 40.6% 0 0 63.8%   91.7% 100% 

Utah County 
     (516,564) 

 33.4% 0 1 58.3%   91.7%   97.2% 

Weber/Morgan 
     (240,705) 

 45.9% 0 1 83.3%   94.4%   94.4% 

Bear River 
     (167,895) 

 51.6% 0 0 69.4% 100% 100% 

Central Utah 
       (75,707) 

 83.7% 0 1 94.4%   97.2%   97.2% 

Summit 
       (36,324) 

 64.1% 0 0 94.4% 100% 100% 

    Mean: 76.6%   91.7%   94.8% 

 
Streptococcus 
pneumonia 

       

State of Utah 
  (2,763,885) 

5.7 76.5% 0 0 66.7%   94.4% 100% 

Salt Lake Valley 
  (1,029,655) 

 58.4% 0 0 61.1%   94.4% 100% 

Utah County 
     (516,564) 

 57.3% 0 1 83.3% 100% 100% 

Weber/Morgan 
     (240,705) 

 60.2% 0 1 66.7%   88.9%   94.4% 

Bear River 
     (167,895) 

 62.9% 0 2 61.1%   94.4%   94.4% 

Central Utah 
       (75,707) 

 n/a 36 0 n/a n/a n/a 

Summit 
       (36,324) 

 n/a 36 0 n/a n/a n/a 

    Mean: 67.8%   94.4%   97.8% 
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Table 5—Continued 
 

      

Jurisdiction 
(population) 

Disease 
Rate per 

100K Accuracy 
Incomplete 
Forecast Outbreak 

1
st
 

Forecast 
Interval 

2
nd

 
Forecast 
Interval 

3
rd

 
Forecast 
Interval 

 
Coccidioidomycosis 

      

State of Utah 
  (2,763,885) 

2.3 75.4% 0 0 94.4% 100% 100% 

Salt Lake Valley 
  (1,029,655) 

 84.4% 0 0 94.4% 100% 100% 

Utah County 
     (516,564) 

 n/a 36 0 n/a n/a n/a 

Weber/Morgan 
     (240,705) 

 n/a 36 0 n/a n/a n/a 

Bear River 
     (167,895) 

 n/a 36 0 n/a n/a n/a 

Central Utah 
       (75,707) 

 n/a 36 0 n/a n/a n/a 

Summit 
       (36,324) 

 n/a 36 0 n/a n/a n/a 

    Mean: 94.4% 100% 100% 

 
Lyme 

       

State of Utah 
  (2,763,885) 

0.9 81.8% 0 0 83.3%   94.4% 100% 

Salt Lake Valley 
  (1,029,655) 

 50.0% 24 0 50.0% 100% 100% 

Utah County 
     (516,564) 

 n/a 36 0 n/a n/a n/a 

Weber/Morgan 
     (240,705) 

 n/a 36 0 n/a n/a n/a 

Bear River 
     (167,895) 

 n/a 36 0 n/a n/a n/a 

Central Utah 
       (75,707) 

 n/a 36 0 n/a n/a n/a 

Summit 
       (36,324) 

 n/a 36 0 n/a n/a n/a 

    Mean: 66.7%   97.2% 100% 



 50 

 

Table 5—Continued 
 

      

Jurisdiction 
(population) 

Disease 
Rate per 

100K Accuracy 
Incomplete 
Forecast Outbreak 

1
st
 

Forecast 
Interval 

2
nd

 
Forecast 
Interval 

3
rd

 
Forecast 
Interval 

 
Encephalitis 

       

State of Utah 
  (2,763,885) 

0.4 97.7% 0 0 97.2%   97.2% 100% 

Salt Lake Valley 
  (1,029,655) 

 65.6% 0 0 91.7%   91.7% 100% 

Utah County 
     (516,564) 

 16.7% 24 0 91.7%   91.7% 100% 

Weber/Morgan 
     (240,705) 

 91.7% 12 4   83.3%   83.3%   83.3% 

Bear River 
     (167,895) 

 n/a 36 0 n/a n/a n/a 

Central Utah 
       (75,707) 

 n/a 36 0 n/a n/a n/a 

Summit 
       (36,324) 

 n/a 36 0 n/a n/a n/a 

    Mean:   91.0%   91.0%   95.8% 

 
Malaria 

       

State of Utah 
  (2,763,885) 

0.4 78.3% 0 0 94.4% 100% 100% 

Salt Lake Valley 
  (1,029,655) 

 77.8% 0 1 97.2%   97.2%   97.2% 

Utah County 
     (516,564) 

 n/a 36 0 n/a n/a n/a 

Weber/Morgan 
     (240,705) 

 n/a 36 0 n/a n/a n/a 

Bear River 
     (167,895) 

 n/a 36 0 n/a n/a n/a 

Central Utah 
       (75,707) 

 n/a 36 0 n/a n/a n/a 

Summit 
       (36,324) 

 n/a 36 0 n/a n/a n/a 

    Mean: 95.8% 98.6% 98.6% 
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Table 5—Continued 
 

      

Jurisdiction 
(population) 

Disease 
Rate per 

100K Accuracy 
Incomplete 
Forecast Outbreak 

1
st
 

Forecast 
Interval 

2
nd

 
Forecast 
Interval 

3
rd

 
Forecast 
Interval 

 
Amebiasis 

       

State of Utah 
  (2,763,885) 

0.4 85.2% 0 0 91.7% 97.2% 100% 

Salt Lake Valley 
  (1,029,655) 

 62.8% 0 0 94.4% 100% 100% 

Utah County 
     (516,564) 

 n/a 36 0 n/a n/a n/a 

Weber/Morgan 
     (240,705) 

 n/a 36 0 n/a n/a n/a 

Bear River 
     (167,895) 

 n/a 36 0 n/a n/a n/a 

Central Utah 
       (75,707) 

 n/a 36 0 n/a n/a n/a 

Summit 
       (36,324) 

 n/a 36 0 n/a n/a n/a 

    Mean:   93.1%   98.6% 100% 

 
Dengue 

       

State of Utah 
  (2,763,885) 

0.2 79.8% 0 0   94.4% 100% 100% 

Salt Lake Valley 
  (1,029,655) 

 n/a 36 0 n/a n/a n/a 

Utah County 
     (516,564) 

 n/a 36 0 n/a n/a n/a 

Weber/Morgan 
     (240,705) 

 n/a 36 0 n/a n/a n/a 

Bear River 
     (167,895) 

 n/a 36 0 n/a n/a n/a 

Central Utah 
       (75,707) 

 n/a 36 0 n/a n/a n/a 

Summit 
       (36,324) 

 n/a 36 0 n/a n/a n/a 

    Mean: 94.4% 100% 100% 

    Totals: 84.1%   96.5%   98.5% 
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Forecast Acceptance  

Using the rule set defined in the methods section, 84.1% (n = 1,135) of the 

monthly forecasts were determined to be acceptable at the first forecast interval, 

87.5% (n = 1,181) were acceptable at the second forecast interval, and 98.7% 

(n = 1,332) acceptable at the third forecast interval. The remaining (n = 21) actual 

values observed in the holdout samples were classified as outbreaks (i.e., > third 

forecast interval). It is interesting to note that when an actual value is located 

within the second forecast interval, it progresses to outbreak status 54% (n = 21) 

of the time.  

The number of acceptable forecasts located in the first forecast interval is 

16% greater than expected when considering results in a normal distribution or 

bell curve. The excess numbers of forecasts contained in the first forecast 

interval are from values one would expect to find in the second forecast interval. 

The relationship between the percentage of forecast values contained within the 

first forecast interval and rate of disease was investigated using Pearson 

correlation. There is a moderate, negative correlation between the two variables 

(r = –.328, n = 10, p > .05). The association is not statistically significant; 

therefore, the rate of disease is not associated with the number of forecast 

values located within the first forecast interval. 

Model Failure Point 

The failure point of the model is due to the lack of available data and not 

upon the models ability to produce forecasts. Even forecasts that are not overly 
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accurate have usable results that generally fall within the first or second forecast 

interval. Table 6 shows the point where data used in this study failed to produce 

results. It is based upon the rate of disease and jurisdictional size.  

 
Table 6: Forecast Model Failure Point by Rate of Disease and Jurisdictional Size 

 
State of 

Utah  
(2,763,885) 

Salt Lake 
Valley 

(1,029,655) 

Utah 
County 

(516,564) 

Weber/ 
Morgan 

(240,705) 

Bear 
River 

(167,895) 

Central 
Utah 

(75,707) 
Summit 
(36,324) 

Giardiasis 
15.2/100K 

Pass Pass Pass Pass Pass Pass Pass 

Campylobacter 
13.6/100K 

Pass Pass Pass Pass Pass Pass Pass 

Salmonella 
12.8/100K 

Pass Pass Pass Pass Pass Pass Pass 

Strep pneumoniae 
5.7/100K 

Pass Pass Pass Pass Fail Fail Fail 

Coccidioidomycosis 
2.3/100K 

Pass Pass Fail Fail Fail Fail Fail 

Lyme 
0.9/100K 

Pass Pass Pass Fail Fail Fail Fail 

Encephalitis 
0.4/100K* 

Pass Fail Fail Fail Fail Fail Fail 

Malaria 
0.2/100K 

Pass Fail Fail Fail Fail Fail Fail 

 
*There are three diseases at the 0.4/100K level; each has the same failure point.  

 

The relationship between the number of incomplete forecasts and 

jurisdictional size was investigated using Pearson correlation. There is a strong, 

negative correlation between the two variables (r = –.936, n = 10, p = .01), with 

smaller jurisdictions having more incomplete forecasts than larger jurisdictions. In 

support of this finding, there is a strong negative correlation between the rate of 

disease and incomplete forecasts (r = –.961, n = 10, p = .01) with diseases 

associated with lower rates having more incomplete forecasts than diseases with 

larger rates.  
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Perfect Forecasts 

There were 53 perfect forecasts and they were removed from the MAPE 

calculation as perfect forecasts require division by zero in a MAPE calculation, 

thus nullifying the use of MAPE in the determination of the overall accuracy of the 

forecasts. However, these forecasts do need to be accounted for in this analysis. 

Table 7 shows the distribution of these perfect forecasts.  

 
Table 7: Number of Perfect Forecasts by Rate of Disease and Jurisdictional Size 

Disease Name 
Disease 

Rate 

 Forecast 
Accuracy 

Number of 
Perfect 

 Forecast 

Amebiasis   0.4/100K  85.2% 6 

Campylobacter 13.6/100K  78.9% 1 

Coccidioidomycosis   2.3/100K  75.4% 3 

Dengue    0.2/100K  79.8% 5 

Encephalitis   0.4/100K  91.7% 5 

Giardiasis 15.2/100K  75.3% 2 

Haemophilus influenza   1.3/100K  58.8% 3 

Legionellosis    1.0/100K  63.8% 4 

Lyme disease   0.9/100K  81.8% 4 

Malaria   0.4/100K  78.3% 6 

Meningitis (viral)    4.0/100K  62.5% 5 

Pertussis 17.1/100K  60.0% 1 

Salmonellosis       12.6/100K  76.8% 0 

Shigella   2.0/100K  43.4% 4 

Streptococcus pneumonia   5.7/100K  76.5% 3 

Varicella 23.0/100K  47.2% 1 

 

The relationship between rate of disease and the number of perfect 

forecasts was investigated using Pearson’s correlation. There is a strong, 

negative correlation between the two variables (r = –.588, n = 16, p = .05), with a 
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low rate of disease associated with an increase number of perfect forecasts. The 

association is statistically significant.  

The relationship between forecast accuracy and the number of perfect 

forecasts was investigated using Pearson’s correlation. There is a moderate 

correlation between the two variables (r = .348, n = 16, p = .186). The association 

is not statistically significant; therefore, forecast accuracy is not related to the 

number of perfect forecasts.  

Summary 

The cumulative accuracy of all the forecast trials was 71% with a range of 

43.4 – 91.7%. Although lower than the 75% threshold associated with the original 

research question, it was found that 63% of the disease specific forecasts had 

accuracies greater than 75%. Thus, it is valid to state that Box-Jenkins forecasts 

can produce disease specific forecasts that are equal to or greater than 75% 

accurate but not for all diseases of public health significance. There was no 

statistical relationship between rate of disease and forecast accuracy when 

examining the results in aggregate and when using only the disease forecasts 

that were greater than 75% accurate. 

There was no statistical relationship noted between jurisdictional size and 

accuracy as well as disease rate and accuracy; therefore, it is valid to state that 

jurisdictional size and rate of disease are not associated with the accuracy of 

Box-Jenkins disease specific forecasts. 
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A comparison of the forecast intervals against the holdout values found a 

disproportionate number (84%) of actual values located in the first forecast 

interval. The number of acceptable forecasts located in the first forecast interval 

is 16% greater than expected when considering results in a normal distribution or 

bell curve. The excess number of forecasts contained in the first forecast interval 

is from values one would expect to find in the second forecast interval. There 

was no statistical relationship between the number of forecast values contained 

within the first forecast interval and rate of disease. It was also found that when 

an actual is located within the second forecast interval, it progresses to outbreak 

status 54% of the time. 

The failure rate of the Box-Jenkins forecasts is based upon the rate of 

disease and jurisdictional size and not upon the ability of the model to create 

accurate forecasts. Both low rate of disease and small jurisdictional size were 

significantly more likely to be unable to produce forecasts due the number of 

incomplete reports in the historical data.  

Lastly, there was statistical relationship noted between disease rate and 

the number of perfect forecasts, but this did not hold true for the relationship 

between forecast accuracy and the number of perfect forecasts. 
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CHAPTER V 

DISCUSSION 

 
The threat from new and emerging diseases as well as those associated 

with bioterrorism has focused attention on public health surveillance systems. 

Health departments across the nation are enhancing existing surveillance 

systems or developing new ones to better detect disease trends and potentially 

identify outbreaks earlier. However, methods that support the analysis of data 

within these systems, in many cases, has not progressed beyond rudimentary 

methods such as historical counts of disease or comparisons based upon simple 

moving averages. Regardless of the method, detection algorithm, or statistical 

model, all outbreak detection methodologies are based upon the premise of 

comparing the observed count against the expected count of disease. The 

creation of the expected count, or baseline, is challenging as many infectious 

disease patterns are not stable due to increasing or decreasing populations, 

seasonality of disease, the occurrence of outbreaks and other external 

conditions.  

This study specifically examined the use of Box-Jenkins forecasting and 

tested its ability to create accurate baselines. Specifically, as a retrospective 

secondary data analysis using NEDSS data from a state-based disease 

surveillance system this study examined the use of Box-Jenkins forecasts 
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models and its ability to create accurate baselines for use in public health 

practice. To accomplish this task this study posed two research questions, they 

are:  

1. Can Box-Jenkins forecasts produce disease specific forecasts that are 

equal to or greater than 75% accurate?   

2. For disease specific forecasts that are equal to or greater than 75% 

accurate, what influence does jurisdictional size and rate of disease 

have upon the accuracy of the forecasts? 

Forecast Accuracy 

Forecast accuracy was determined by calculating the mean absolute 

percentage error or MAPE associated with each disease specific forecast. MAPE 

is the most common measure of forecast accuracy and determines error by 

calculating the mean of all the percentage errors for a given dataset. It 

accomplishes this without respect to the error being positive or negative in value 

and has the advantage of reporting the overall error as a percentage. Initially, 22 

diseases were selected for review representing a range of disease rates. Six 

were unable to be evaluated due to a variety of issues, which underscores the 

challenges of working with secondary data sets. 

Utilizing data representing all public health jurisdictions in Utah, three 

forecast trials were completed for each disease resulting in 48 trials. Within these 

trials there were 576 monthly forecasts. By calculating MAPE for each of these 

forecasts, it was determined that the cumulative accuracy of all the forecast trials 
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was 71% with a range of 43.4 – 91.7%. Although the cumulative accuracy was 

lower than the 75% threshold associated with the original research question, it 

was found that 63% of the disease specific forecasts had accuracies greater than 

75%. Thus, it is valid to state that Box-Jenkins forecasts can produce disease 

specific forecasts that are equal to or greater than 75% accurate but not for all 

diseases of public health significance. 

While some may argue that using a 75% threshold for accuracy 

determination is arbitrary, it was necessary to set a value that would allow 

comparisons to be made.  Additionally, the 75% threshold was established 

through a consultative effort with individuals actively engaged in public health 

practice. 

There was no statistical relationship between rate of disease and forecast 

accuracy when examining the results in aggregate and when using only the 

disease forecasts that were greater than 75% accurate. This implies that the rate 

of disease has no effect on Box-Jenkins forecast accuracy. However, caution 

should be used with the interpretation of this finding; while insignificant, both 

statistical tests reported moderate negative correlations suggesting that diseases 

with small rates were more accurate than diseases with large rates. These 

results may be simply a function of the number of diseases examined in this 

study. 

Forecast results are estimates of future values and are easy to 

understand. However, by their nature, forecast values are incomplete since they 

describe only one possible outcome. Without a forecast interval, it is impossible 
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to determine if an observed value is within an expected range of values. In 

practical terms, the forecast value and interval work together to help the end user 

interpret the results of the forecast.  

A comparison of the forecast intervals against the holdout values found a 

disproportionate number (84%) of actual values located in the first forecast 

interval. This further validates the use of Box-Jenkins as a forecasting tool in 

public health practice; if the forecasting associated with this study followed a 

normal distribution, the number of actual values located in the first forecast 

interval would approximate 68%. In practical terms, forecast intervals may be as 

important as forecast accuracy as it is possible to have forecasts that are not 

considered accurate but have a value contained within the first or second 

forecast interval. There were several examples of this occurring in the analysis. It 

was also found that when an actual value is located within the second forecast 

interval it progresses to outbreak status 54% of the time; this suggests that when 

setting a threshold for action (i.e., increase vigilance, active surveillance, etc.) 

consideration should be given to setting the threshold at the boundary of the first 

and second forecast interval.  

Jurisdictional Size and Forecast Accuracy 

 There was no statistical relationship between jurisdictional size and 

forecast accuracy. Again, this implies that Box-Jenkins forecasting models may 

be a useful tool for public health practice. It is often assumed that the 

establishment of baselines is of limited value in small jurisdictions due to the 



 61 

 

potential volatility associated with small number analysis. It has been 

demonstrated, through this study that Box-Jenkins forecasting controls for this 

volatility and produces usable results for public health jurisdictions regardless of 

size. This is an important finding as nearly 2/3 of all public health jurisdictions in 

the United States serve populations less than 50,000 and are classified as Small 

by the National Association of City and County Health Officers. 

It is interesting to note that jurisdictional size and rate of disease does not 

diminish forecast accuracy. The point where the model fails is directly linked to 

jurisdictional size and rate of disease and is simply a function of population and 

rate of disease; frequently, diseases with small rates in smaller public health 

jurisdictions do not occur for several years, if ever. This results in forecasts and 

forecast intervals of zero. While technically correct, they do not represent useful 

information 

Model Failure Point 

The results of this study demonstrate that the failure point of the model is 

due to the lack of available data and not jurisdictional size or rate of disease. As 

with the other findings, this result suggests that the Box-Jenkins model is useful 

for public health practice. As expected, there are statistically significant findings 

that smaller jurisdictions and diseases with lower rates have a greater number of 

incomplete forecasts. Incomplete forecasts are a direct function of the population 

size and rate of disease. For example, in a jurisdiction with a population of 
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50,000 and a disease rate of 0.2/100K, one would expect to see the disease 

report for that disease once every 10 years.  

Based upon these findings it is apparent that it is possible to determine the 

cutoff points of useful forecasting based upon jurisdictional size and rate of 

disease. Using the National Association of City and County Health Officials 

department size designation of Small, Medium, and Large Table 8 displays the 

point where this occurs.  

 
Table 8: Determination of Cutoff Points for Box-Jenkins Forecasting Ability Based 

Upon Jurisdictional Size and Rate of Disease 
 

 Large 
(500,000+) 

Medium 
(50,000–499,999) 

Small 
(< 50,000) 

Giardiasis 
15.2/100K 

Usable Forecasts Usable Forecasts Usable Forecasts 

Campylobacter 
 13.6/100K 

Usable Forecasts Usable Forecasts Usable Forecasts 

Salmonella 
12.8/100K 

Usable Forecasts Usable Forecasts Usable Forecasts 

Strep pneumoniae 
5.7/100K 

Usable Forecasts Use with Caution No 

Coccidioidomycosis 
2.3/100K 

Usable Forecasts Use with Caution No 

Lyme 
0.9/100K 

Usable Forecasts Use with Caution No 

Encephalitis 
0.4/100K* 

Use with Caution No No 

Malaria 
0.2/100K 

Use with Caution No No 

 
Note. The study had four diseases with a rate of 0.4/100K. Encephalitis represents the 
findings based upon jurisdictional size and rate of disease as all failed to produce usable 
forecasts at the same point.   
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Discussion 

The results of the study indicate that it is possible to predict future disease 

burdens within a community based upon the historical surveillance data within 

local health jurisdictions of varying size. The statistically insignificant results 

demonstrate that the forecasting model is effective, and the lack of differences 

between the accuracy of the projections in jurisdictions of varying size and rates 

of disease demonstrates that forecasting is a successful technique that may have 

a practical application for local health departments. Smaller jurisdictions may 

have challenges related to the inability to make projections due to the interaction 

between jurisdictional size and rate of disease. The results imply that smaller 

jurisdictions and diseases with lower rates may have more forecasts that cannot 

be completed due to insufficient data. Beyond these findings, there are practical 

applications for Box-Jenkins forecasting results as well. 

The timely detection, investigation, control, and prevention of outbreaks 

and other long-term public health problems require a well-trained and competent 

epidemiology workforce. The National Association of County and City Health 

Officials assessed the size of the epidemiology workforce in local health 

departments and reported that 1,500 epidemiologists worked in local health 

(Novich, 2011). Using data from the same report, the estimated number of local 

health departments without an epidemiologist is 72%. Many reasons are cited for 

this low capacity, the most frequent being uncompetitive pay and the lack of 

trained epidemiologists.  
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 For many health departments, the job classification of epidemiologist falls 

to other professional disciplines, such as a registered nurse or environmental 

health specialist (Moehrle, 2008). This reality requires many public health 

professionals to work in areas that were not part of their formal education, which 

may limit their understanding on the nuances associated with disease 

surveillance activities, including when to increase their surveillance and disease 

control activities based upon an increase in the number of disease reports. 

Additionally, this lack of formal epidemiological training may make the use of 

complex statistical models difficult for them to utilize and interpret.  

Based upon inexpensive and readily available software, the forecasting 

techniques used in this study are simple to complete and provide results that are 

easy to understand. Outputs from the forecast produce a point projection for the 

number of disease events in a specific timeframe and forecast intervals that help 

put the projected number into context. This information may be used to evaluate 

the creditability of an astute observer report and the results of routine data 

evaluation. A nurse or environmental health specialist can use this information to 

know when to increase prevention activities or vigilance to a specific disease 

instead of relying upon past experience or intuition. 

Using actual forecast results and the data used to create them a plausible 

scenario of how Box-Jenkins forecasts may be used in public health is 

presented. A nurse, acting in the capacity of a local health department’s 

epidemiologist, receives the following series of disease reports. 
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During the first quarter of 2011, there are 18, 20, and 12 confirmed cases 

of Salmonella reported to the health department. During the second quarter, the 

number of confirmed cases more than doubles with 33, 38, and 36 cases 

reported to the health department. To a registered nurse, these confirmed reports 

may appear to be the beginning of an outbreak. Using the results of the Box-

Jenkins forecasts contained in Figure 6, the nurse compares the number of 

confirmed cases of Salmonella against the forecast values. While the number of 

confirmed cases is high when compared to the forecast values, they are within 

the expected range of the forecast interval. The nurse determines that the 

number of reports does not represent an outbreak, but based upon the number of 

confirmed cases being on the high side of the1st forecast interval, sends a 

 

Lower Forecast Upper Quarterly Yearly
2011 – Jan   11     19   26
2011 – Feb    9     17   24
2011 – Mar   13     21   28      57
2011 – Apr   18     26   33
2011 – May   21     28   36
2011 – Jun   22     30   37      84
2011 – Jul   29     36   51
2011 – Aug   24     31   46
2011 – Sept   23     31   38      98
2011 – Oct   18     25   33
2011 – Nov   13     20   28
2011 – Dec   10     17   25      62 301

The value in the forecast column 
represents the expected number of 
reports your jurisdiction should 
receive in a given month. 

The value in the lower column 
represents the lower limit of 
reports you should expect to 
receive in a given month. A number 
lower than this may represent 
problems with your surveillance 
reporting activities

The value is the upper column 
represents the upper limit of 
reports you should expect to 
receive in a given month. A number 
higher than this may represent the 
beginning of an outbreak and 
consideration should be given to 
increasing your surveillance 
activities. 

The value in the forecast column 
represents the expected number of 
reports your jurisdiction should 
receive in a given month. 

The value in the lower column 
represents the lower limit of 
reports you should expect to 
receive in a given month. A number 
lower than this may represent 
problems with your surveillance 
reporting activities

The value is the upper column 
represents the upper limit of 
reports you should expect to 
receive in a given month. A number 
higher than this may represent the 
beginning of an outbreak and 
consideration should be given to 
increasing your surveillance 
activities. 

 
Figure 6. Forecast values and upper/lower forecast interval for Salmonella, 2012. 

Vertical line separates model’s historical values from predicted values. 
Forecast intervals are the upper and lower horizontal lines on the right 
of the vertical separator. 
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newsletter to the medical providers in her community reporting the findings and 

asking them to consider obtaining stool samples from their patients presenting 

with symptoms consistent with Salmonella. 

 

Limitations 

Some limitations of this study need to be taken into account when 

interpreting the results. In this study, the data used to create the forecasts were 

obtained from a NEDSS compliant database. As such, these data are from a 

passive surveillance system; the possible biases in disease reporting and 

potential underreporting may influence the precision of this analysis. 

Inconsistencies in the data were also noted ranging from variations in the naming 

of disease, changing case definitions, and apparent data gaps associated with 

specific diseases. These problems resulted in the inability to complete the 

analyses with six of the 22 diseases that were initially selected for use in this 

study.  

There are known delays between diagnosis and report dates; however, 

this limitation should improve with the implementation of an electronic-based 

reporting system. The level of analysis is also a limitation. The unit of analysis 

was by month and to increase the usefulness of the forecast the granularity 

needs to be at a finer level.  

 Using MAPE to analyze the accuracy of the forecasts introduced a level of 

uncertainty into the absolute accuracy calculations. Fifty-two perfect reports were 

not included in the overall accuracy calculation as perfect forecast result in a 



 67 

 

division by zero problems. An alternative method to determine accuracy should 

be considered; however, the reader is cautioned to be aware of the limitations of 

each of the accuracy determination methods. 

The final limitation is that there is a ―rate hole‖ in the analysis. This hole 

represents diseases that have a rate between 5.7 – 12.6/100K. The 

aforementioned data problems are responsible for a portion of this limitation, but 

the largest contributor is based upon the fact that most of the reportable diseases 

in Utah do not fall into this range; this limitation impacts the ability to determine 

the cutoff point of Box-Jenkins forecasting ability based upon rate of disease and 

jurisdictional size. 

Future Studies 

Box-Jenkins was chosen for evaluation as it is routinely used to support 

forecasting problems in business, economic, and control-engineering 

applications, yet it had not been systematically examined for use with public 

heath surveillance data. The results of this study show that it is possible to 

produce Box-Jenkins forecasts that are equal to or greater than 75% accurate. 

However, these findings open additional questions that should be assessed in 

future studies. For example, what other types of analytical techniques are there 

that can produce forecasts as accurate as or more accurate than Box-Jenkins? 

Do forecasts based upon exponential smoothing models (i.e., Simple, Holt, and 

Winters) produce better forecast models than Box-Jenkins? Is there a role for 

simple moving averages, and how does one support forecasting models that 
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have a disproportionate number of zeros in the historical dataset? What role, if 

any, is there for Statistical Process Control and Shewart Control Charts? A future 

study that answers these questions could produce results that will allow local 

health jurisdictions to apply the appropriate statistical model to create a baseline 

that is disease specific and based upon rate of disease and jurisdictional size. 

Moreover, local, state, and federal public health jurisdictions should consider the 

use of multiple systems and indicators, including forecasting, to monitor the 

ongoing health of the communities they serve. Each system has its own unique 

set of strengths and weakness, and no single system will answer the underlying 

questions about when resources, including investigations, are expended. This 

question is especially important in smaller jurisdictions with limited manpower 

and budgets, again, strongly suggesting the use of multiple systems.  

Finally, a future study needs to be conducted across a larger dataset with 

a different pattern of disease burden in the population to examine how Box-

Jenkins forecasts perform in the aforementioned ―rate hole‖ that encompasses 

diseases with rates between 5.7 – 12.6/100K. Not only will this address model 

performance but will help determine the cutoff points for model usage based 

upon rate of disease and jurisdictional size.  

Conclusion 

The results of this study showed that the cumulative accuracy of all the 

forecast trials was 71%. Although this is lower than the 75% threshold associated 

with the original research question, it was found that 63% of the disease specific 
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forecasts had accuracies greater than 75%. Thus, it is valid to state that Box-

Jenkins forecasts can produce disease specific forecasts that are equal to or 

greater than 75% accurate, but not for all diseases of public health significance. 

The lack of a statistical correlation between the rate of disease and 

forecast accuracy as well as jurisdictional size and forecast accuracy 

demonstrated that Box-Jenkins forecasts retain their accuracy regardless of rate 

of disease or jurisdictional size. This is important as the majority of health 

departments in the United States serve populations < 50,000. However, it was 

noted that smaller health departments and diseases with low rates tend to be 

statistically more likely to have a higher number of incomplete forecasts due to 

the lack of data necessary to create a forecast. 

A comparison of the forecast intervals against the holdout values found a 

disproportionate number of actual values located in the first forecast interval. This 

further validates the use of Box-Jenkins as a tool for public health practice. In 

practical terms, forecast intervals may be as important as forecast accuracy as it 

is possible to have forecasts that are not considered accurate but have a value 

contained within the first or second forecast interval. There were several 

examples of this occurring in the analysis.  

An important component of any epidemiologically based analysis is the 

ability to rapidly identify the difference between the expected disease burden 

within specific populations and a disease burden that actually represent an 

abnormal finding or the beginning of a disease outbreak or epidemic. The use of 

Box-Jenkins time series models to create forecasts of these expected disease 
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burdens may be a useful tool to support these types of analysis. An additional 

benefit is that these forecasts appear to be useful in jurisdictions of varying size. 

Finally, the use of Box-Jenkins as a tool should encourage epidemiologist to look 

beyond the traditional biostatistical methods associated with disease 

surveillance, as the underlying methodology associated with its use are borrowed 

from the unlikely discipline of business management and are based upon 

forecasting future sales cycles, not disease. The use of the techniques described 

in this study can easily be automated and show promise as an effective tool to 

assist local public health jurisdictions in their efforts to monitor and control 

disease. 
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List of Acronyms 

 
ARMA: Autoregressive Moving Average 

ARIMA: Autoregressive Integrated Moving Average 

CSTE:  Council of State and Territorial Epidemiologists 

CUSUM: Cumulative Sum Chart  

CDC:  The Centers for Disease Control and Prevention 

ELR:  Electronic Laboratory Report 

ESP:  Electronic Surveillance Project 

MAD:  Mean Absolute Deviation  

MSE:  Mean Squared Error 

MAPE: Mean Absolute Percentage Error 

MMWR: Morbidity and Mortality Weekly Report 

NBS:  NEDSS Base System 

NETSS: National Electronic Telephonic System for Surveillance 

NEDSS: National Electronic Disease Surveillance System 

NNDSS: National Notifiable Disease Surveillance System 

PHS:  Public Health Service 

SMA:  Simple Moving Average 

SPC:  Statistical Process Control 

UDOH: Utah Department of Health 

YTD:  Year to Date 
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Nationally Notifiable Disease Listing: 

The following conditions are immediately notifiable to CDC for all or some cases, 

as specified in the relevant CSTE position statements: 

1. Influenza, novel 

2. Measles 

3. Plague Anthrax 

4. Botulism 

5. Brucellosis 

6. Diphtheria 

7. Polio 

8. Rabies in an animal 

9. Rabies in a human 

10. Rubella 

11. SARS Coronavirus 

12. Smallpox 

13. Tularemia 

14. Viral hemorrhagic fevers 

15. Yellow fever 

16. Arboviral Disease, Calif. Serogroup 

17. Arboviral Disease, Eastern equine 

18. Arboviral Disease, Powassan 

19. Arboviral Disease, St. Louis 

20. Arboviral Disease, West Nile Virus 
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21. Arboviral Disease, Western equine 

22. Cancer 

23. Chancroid 

24. Chlamydia trachomatis 

25. Cryptosporidiosis 

26. Cyclosporiasis 

27. Dengue Virus Infections 

28. Ehrlichiosis/Anaplasmosis 

29. Escherichia coli, Shiga toxin-producing (STEC) 

30. Giardiasis 

31. Gonorrhea 

32. Haemophilus influenzae 

33. Hantavirus pulmonary syndrome 

34. Hemolytic Uremic Syndrome, Post-diarrheal 

35. Hepatitis A 

36. Hepatitis C 

37. HIV 

38. Influenza-associated mortality, pediatric 

39. Lead, exposure screening test result 

40. Legionellosis 

41. Listeriosis 

42. Malaria 

43. Meningococcal Disease (Neisseria meningitidis) 
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44. Mumps 

45. Pertussis 

46. Pesticide-related Illness 

47. Psittacosis 

48. Q fever 

49. Spotted Fever Rickettsiosis 

50. Rubella, Congenital Syndrome 

51. Salmonellosis 

52. Shigellosis 

53. Silicosis 

54. Staphylococcus (VISA, VRSA) 

55. Streptococcus (STSS, IPD) 

56. Syphilis 

57. Tetanus 

58. Trichinellosis (Trichinosis) 

59. Tuberculosis 

60. Typhoid fever 

61. Varicella (Chickenpox) 

62. Vibrio cholera 

63. Vibriosis 

64. Waterborne Disease Outbreak 

 



 85 

 

The following conditions are provisionally included in the Nationally Notifiable 

Condition List. Conditions included on a provisional basis are those which have 

not yet met the criteria outlined in CSTE position statement 08-EC-02; for 

example, a CDC Case Notification Request may be incomplete, or a revised 

position statement containing a case reporting definition may be incomplete. 

65. Foodborne outbreaks 

66. Hansen’s disease (leprosy) 

67. Hepatitis B, acute 

68. Hepatitis, viral, chronic: Hepatitis B 

69. Lyme disease 

70. Toxic-shock syndrome (non-streptococcal) 
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Appendix D 

Outlier Identification and Correction 
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This appendix shows graphically the effect of the outlier identification and 

correction process on an actual forecast. The data used in this example 

represents statewide disease reports of Salmonella for the years 1999-2006.  

A holdout sample has been applied to year 2006 and is represented by the 

vertical line.   

 

 
This graph shows the historical record for cases of reported cases of Salmonella 

for the years 1999-2006. 

 

 

 
The graph shows both the forecast value and the actual value in the holdout sample 

(i.e., year 2006). No outlier identification or correction has been completed.  
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The graph shows both the outlier and corrected values. Notice the effect of the 

correction on the forecast in the holdout sample.  

 

 

 
The graph shows the confidence interval associated with the forecast contained 

in the holdout sample. In this case, all of the forecast values are within the 

confidence interval.  
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Appendix E 

Forecast Results Charts 
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The following graphs show the results of a single three year projection 

based upon data from the years 2002–2008. They are intended to provide a 

visual representation of the forecasting process. The forecasting projections 

associated with this study completed three individual forecasts for each disease. 

Yearly forecasts result in better overall accuracy. The second forecast interval is 

displayed. 

The vertical line on the graph separates the model’s historical values from 

predicted values. The thin line with the most vertical movement on the left of the 

vertical separator is the historical data. The thick smoothed line on the left of the 

vertical separator is the fitted value upon which the actual forecast is based. The 

thin line on the right of the vertical separator is the actual or observed values. 

The thick smooth line represents the forecast. The forecast intervals are the 

upper and lower horizontal lines on the right of the vertical separator.   

Forecast intervals that rapidly expand represent diseases that benefit from 

forecasts created on a smaller time frame (i.e., one a year instead of a forecast 

for three years).  
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